
Static Deadlock Analysis for
Kotlin Coroutines

Version of October 10, 2024

Bob Brockbernd

Static Deadlock Analysis for
Kotlin Coroutines

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Bob Brockbernd
born in Zeist, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

JetBrains
Concurrent Computing Lab

Gelrestraat 16
Amsterdam, the Netherlands

www.jetbrains.com

www.ewi.tudelft.nl
www.jetbrains.com

©2024 Bob Brockbernd. All rights reserved.

Static Deadlock Analysis for
Kotlin Coroutines

Author: Bob Brockbernd
Student id: 4594665

Abstract

Asynchronous programming is often a difficult and non-trivial task. To make asyn-
chronous programming more straightforward, languages are continuously introducing
new syntax and patterns, making it easier to think about and develop solutions for con-
current problems. JetBrains introduced coroutines for Kotlin in 2018. Although Kotlin
coroutines promise safe execution and concise code, it is not immune to concurrency
bugs such as deadlocks. Particular runBlocking deadlocks are common when working
with Kotlin coroutines. While other languages have made various advancements in
detecting deadlocks, Kotlin lags behind.

In this work, we present two static analysis techniques that help developers de-
tect and prevent deadlocks. The first technique, focused on the runBlocking problem,
successfully identified dangerous patterns in open source repositories, leading to their
resolution. Additionally, this technique has been integrated into JetBrains flagship
IDE: IntelliJ IDEA. The second technique, aimed at general deadlock detection, has
been developed and tested as a prototype. By using existing modeling techniques
combined with novel approaches we have been able to accurately predict deadlocks
in a controlled environment. Overall, this study tackled a common problem in Kotlin
coroutines and made the first steps toward general deadlock detection.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. B. Ozkan, Faculty EEMCS, TU Delft
Company supervisor: Drs. N. Koval, JetBrains
Committee Member: Prof. Dr. C. Poulsen, Faculty EEMCS, TU Delft

bobbrockbernd@gmail.com

Preface

I would like to thank Nikita and Burcu for their invaluable guidance throughout the thesis,
for their confidence in my success and for their constructive criticism when I needed to hear
it. Lastly, my endless gratitude goes out to Carlotta for taking care of me when I had to take
care of this thesis.

Bob Brockbernd
Delft, the Netherlands

October 10, 2024

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Related Work 3
2.1 Deadlock detection for JVM . 3
2.2 Deadlock detection for C# . 4
2.3 Deadlock detection for Go . 4

3 Background 5
3.1 Coroutine builders . 5
3.2 Suspend function . 6
3.3 Coroutine scope . 7
3.4 Dispatchers . 7
3.5 Channels . 9

4 RunBlocking analysis 11
4.1 The runBlocking problem . 11
4.2 Solution . 14
4.3 Implementation of runBlocking analysis 18
4.4 Validation . 19
4.5 Discussion and future work . 21

5 Static Deadlock Detection 23
5.1 Channel Deadlocks . 24
5.2 Expressing Kotlin in Promela . 25
5.3 Translating Kotlin to Promela . 32

v

CONTENTS

5.4 SPIN model verification . 37
5.5 Validation: Accuracy . 38
5.6 Validation: Scalability . 41
5.7 Discussion and Future work . 42

6 Conclusion 43

Bibliography 45

A Prompt 49

vi

List of Figures

4.1 Visualization of a deadlock when calling runBlocking from a coroutine dis-
patched in a single-threaded environment. 12

4.2 Call graph representing all coroutine builders and functions they can reach from
Listing 4.4 . 15

4.3 Call graph representing the code in Listing 4.5. The Included area is the result-
ing Coroutine Call Graph. 17

4.4 What the end user would see for an analysis of Listing 4.4. 19
4.5 How an end user would change the settings of the analysis. 19

5.1 A visual illustration of the wait for relations that result in the deadlock of List-
ing 5.1. Each arrow shows what is waited for e.g. ch1.send() waits for
ch1.receive(). 24

5.2 Execution order of Listing 5.2 that does not lead to a deadlock. 25
5.3 Execution order of Listing 5.2 leads to a deadlock. The last send in coroutine B

will never be executed. 25

vii

Chapter 1

Introduction

Asynchronous programming is often a difficult and non-trivial task. Due to the non-deterministic
nature of scheduling, it can introduce bugs that are difficult to detect and, thus, challenging
to solve. To make asynchronous programming more straightforward, languages are con-
tinuously introducing new syntax and patterns, making it easier to think about and develop
solutions for concurrent problems. Recently, JetBrains introduced coroutines for Kotlin
(October 2018). Although Kotlin coroutines promise safer execution due to structured con-
currency [30, 14], it is not immune to concurrency bugs. An empirical study [6] shows that
blocking and non-blocking concurrency bugs are possible and occur in real-world reposito-
ries.

Research gap and Impact

Concurrency bugs are notoriously hard to detect and debug. Therefore, good tooling is re-
quired to help developers make better code and provide better understanding. Currently, ex-
isting tools can check for linearizability [20]. Additionally, race detection can be performed
with platform-specific tools like DRD [31] for JVM. However, while other languages have
made various advancements in detecting deadlocks (chapter 2), Kotlin lags behind.

According to recent work, [6] a certain runBlocking mistake which leads to deadlocks,
is often made across multiple repositories. This shows that a study in deadlock detection
for Kotlin is not only novel but might even be necessary. Unfortunately, the runBlocking
deadlock differs significantly from the classical deadlocks. Therefore, in addition to study-
ing the specific runBlocking problem, we believe that a more general technique capable of
detecting communication deadlocks [13] and deadlocks with mutexes can benefit Kotlin as
well. Granted that deadlocks do not occur as often in Kotlin as they occur in Go, it is im-
portant to note that Kotlin is growing in popularity and further adoption of coroutines in
concurrent backends should be expected. Consequently, this study can help set up Kotlin
for the future and allow developers to write concurrent code with more confidence.

1

1. INTRODUCTION

Research questions

This thesis will embark in two directions: tackle the urgent runBlocking problem, and make
the first steps towards a general deadlock detection technique. In this study we aim to
answer the following questions:

• What code pattern leads to the common runBlocking problem and how can it be
detected?

• How can we accurately model and verify asynchronous behaviour of a Kotlin corou-
tine program, enabling the prediction of deadlocks?

Scope and Goal

The scope of this work is in twofold. For the runBlocking detection we aim to provide an
effective tool that can help developers solve the current problems. For the general deadlock
detection we focus on creating an initial prototype that supports only one synchronisation
primitive and basic language features. Proving that the proposed solution has potential and
encouraging future research.

Structure

This thesis will be presented as follows: the related deadlock detection techniques are dis-
cussed in chapter 2, a comprehensive introduction into Kotlin coroutines is given in chap-
ter 3, the runBlocking part of the thesis is discussed in chapter 4, the general deadlock
detection study is presented in chapter 5, and lastly we conclude in chapter 6.

2

Chapter 2

Related Work

In this chapter, we will discuss the deadlock detection techniques that are most related to
Kotlin deadlock detection. Detection techniques for the JVM will be discussed, since that
is Kotlin’s main platform. But also techniques for C# and GO since these languages have
similar concurrency primitives.

2.1 Deadlock detection for JVM

In this section, the existing deadlock detection techniques for JVM will be discussed. Since
Kotlin is primarily a JVM language, one might expect that one of these techniques works
for Kotlin coroutines. However, Kotlin’s concurrency system is vastly different from the
other JVM languages. All current available deadlock detection techniques for JVM focus
on thread operations, while deadlocks in Kotlin can manifest on coroutine level.

Stalemate [29] and JADE [23] are static deadlock detection techniques that rely on the
creation of lock order graphs. JADE only focuses on two-thread deadlocks but is more
scalable than Stalemate. Both techniques, however, produce many false positives. Another
downside of these techniques in the context of Kotlin coroutines is that these techniques
focus on locking primitives that work on the thread level. Whereas Kotlin coroutines come
with locking mechanisms that do not block the thread but work on coroutine level. There-
fore, deadlocks created with these locks will stay under the radar.

INFER Starvation [7] is a recent development in the static deadlock detection field for
JVM. It favours false negatives over false positives, aiming to make reported deadlocks
more reliable. Furthermore, it addresses scalability by focussing on code changes instead of
reanalysing the complete code base after each commit. However, just as with the previously
discussed methods, it only focuses on thread level deadlocks.

Some dynamic analysis techniques that detect deadlocks in the JVM are Dl-check [18],
Sherlock [15] and Omen [27]. Dl-check creates and maintains a lock order graph dur-
ing runtime. It, however, has no control over the execution. Sherlock, on the other hand,
attempts to steer execution towards a deadlock with concolic execution. Lastly, Omen syn-
thesises specific tests that potentially lead to a deadlock; these tests are then executed with
a dynamic deadlock detector to validate the tests.

3

2. RELATED WORK

Another work [26] proposes a technique where Stalemate [29] is used to find lock order
violations. Which are then used to steer Omen [27] towards test generation that potentially
trigger the deadlocks found by Stalemate.

2.2 Deadlock detection for C#

This section discusses deadlock detection for C#. Kotlin and C# are quite similar in how
one deals with concurrency. Both languages provide async/await syntax in some form and
use continuation passing style with function colouring.

DeadWait [28] is a static deadlock detection tool for C# that creates a continuation
scheduling graph to detect potential deadlocks. By keeping track of which thread might
execute which continuation and how continuations are sequenced and relate to each other,
it can deduce whether there is a possibility for a deadlock. This technique has been proven
to work on code bases up to 30000 lines of code. However, this technique does not detect
deadlocks that occur with mutexes and channels.

2.3 Deadlock detection for Go

Similar to Kotlin, in Go one can spawn coroutines to do concurrent work. Both have prim-
itives to non-blockingly, wait on coroutines and lock resources. And both allow for com-
munication over channels. Static deadlock detection techniques for go are often based on
behavioural types [17].

The first static deadlock detection based on behavioural types for go is, dingo-hunter
[24]. In this work, local session types are inferred from coroutines and channels. These
session types can be thought of as communicating state machines. By attempting to create
a global graph from these small state machines, dingo-hunter can test for deadlocks.

A newer deadlock detection technique based on behavioural types is Godel Checker
[22]. This technique is able to represent more of the go language, resulting in higher preci-
sion and recall. While inferring session types from go source code is a similar approach to
the previous technique, the analysis differs. It uses the mCLR2 model checker [9] to check
for deadlocks. This not only allows for more flexibility in properties that can be checked,
but also takes advantage of the scalability a model checker can provide.

A recent advancement made, based on Godel Checker [22], is a technique called GOMELA
[10, 11]. The first iteration of this technique solved a limitation of Godel Checker, namely
the lack of support for coroutines spawned in loops and channels with limited capacity. This
tool asks the user to bound parameters for loop count and channel capacity where needed.
The Promela language is used to encode the behavioural types and the SPIN model checker
to verify behaviour. Promela has native support for channels and is more alike Go, making
it easier to report deadlocks. The second iteration of GOMELA added support for mutexes
and waitgroups. This technique has been tested on large codebases, implying scalability.

4

Chapter 3

Background

In this section, we introduce Kotlin coroutines [14]. A coroutine is a special kind of func-
tion or code block that enables a program to multitask. By suspending and resuming at
predefined points, they can yield computing resources to other coroutines and coordinate
their execution. This kind of multitasking is called cooperative multitasking.

Coroutines are similar to threads in the sense that they execute code concurrently from
the rest of the program. Where they differ is that threads are scheduled preemptively, mean-
ing that they can be interrupted at any point. Whereas coroutines are scheduled coopera-
tively, meaning that the developer has control over when coroutines suspend and resume. In
fact, a coroutine runs on a thread and can resume in a different thread after suspension.

Cooperative multitasking can be beneficial, for instance, when working with the net-
work. Network requests can take a relatively long time; therefore, keeping computing re-
sources occupied while waiting for the response would be wasteful. What coroutines allow
is for other code to execute while the request is in progress. And this can significantly
increase efficiency.

This section will introduce the following parts of Kotlin coroutines: the coroutine
builders, suspend functions, the coroutine scope, coroutine dispatchers, and channels.

3.1 Coroutine builders

Coroutines are created and launched by a coroutine builder, which is a function that takes a
suspendable code block and returns the result of that block either directly or wrapped. This
code block runs asynchronously in the created coroutine. The different kinds of builders are
discussed below.

3.1.1 runBlocking

The runBlocking coroutine builder creates a new coroutine that blocks the current thread
until the coroutine completes. Since it launches the coroutine in a blocking fashion, the
result will be returned in a normal matter. This builder is mainly used to bridge the syn-
chronous and asynchronous world. In the synchronous world, the code doesn’t run in a
coroutine and thus cannot suspend. runBlocking creates a coroutine that allows for code

5

3. BACKGROUND

Listing 3.1: runBlocking coroutine builder
1 // synchronous world
2 var asyncResult = runBlocking {
3 // asynchronous world
4 }

Listing 3.2: launch and async coroutine builders
1 // parent coroutine
2 var job: Job = launch {
3 // child coroutine
4 }
5 job.join() // wait for child coroutine to finish
6

7 var deferred: Deferred = async {
8 // another child coroutine
9 }

10 var asyncResult = deferred.await() // wait for result

to be suspended and, therefore, bridges to the asynchronous world. Listing 3.1 shows the
syntax for runBlocking builder.

3.1.2 Launch

The launch builder is used to create a coroutine that does not return a value. The builder it-
self, however, returns directly a Job object that can be used to control the launched coroutine
(see Listing 3.2). Note that the launch builder can only be called from a CoroutineScope
(see 3.3) and therefore can only be used in an asynchronous context.

3.1.3 Async

The async builder is used to create a coroutine that does return a value. Listing 3.2 shows
that the builder returns an instance of the Deferred object. This object can control the
coroutine just like the Job object but also wraps the return value of the code block run-
ning in the coroutine. Similar to the launch builder, the async builder is called upon a
CoroutineScope.

3.2 Suspend function

The suspend function is an important building block of Kotlin’s concurrency model. As
the name suggests, it is a function that can suspend (and resume) execution. This property
allows coroutines to pause and resume and, therefore, share threads. A suspend function

6

3.3. Coroutine scope

Listing 3.3: suspension points and suspend fun
1 fun main() {
2 runBlocking { // Spawn coroutine 1
3 var job = launch { ... } // Spawn coroutine 2
4 foo() // Suspension point
5 job.join() // Suspension point
6 }
7 }
8

9 suspend fun foo() { ... }

can only be invoked in an asynchronous context so, either from a coroutine code block or
from another suspend function (which runs by definition also in a coroutine).

Listing 3.3 shows runBlocking spawning the first coroutine and launch spawning the
second. The call to suspend function Foo() does create a suspension point, allowing corou-
tine 1 to potentially yield resources when this call is reached. The job.join() call creates
another suspension point in coroutine 1. This call suspends coroutine 1 until coroutine 2
has finished execution.

3.3 Coroutine scope

Coroutines follow a principle of structured concurrency, which means that new coroutines
can only be launched in a specific scope, delimiting the lifetime of the coroutine. Struc-
tured concurrency ensures that they are not lost and do not leak. An outer scope cannot be
completed until all its children’s coroutines are complete.

In Listing 3.3, runBlocking launches a new coroutine and establishes a coroutine scope
(accessible by this in the code block), so any coroutine launched within this block will
cause this runBlocking call to wait until the launched coroutine finishes, even without
explicit join calls.

One may also specify a custom CoroutineScope to ensure that launched coroutines
do not get lost and do not leak. Specifically, the scope finishes when all the coroutines
launched within it are completed. Listing 3.4 contains the printHelloWorld() suspend-
ing function that, launches a new coroutine and prints "Hello", while the launched corou-
tine suspends for one second and prints "World!". The coroutine scope here ensures that
printHelloWorld() finishes only when the launched coroutine finishes.

3.4 Dispatchers

The dispatcher determines the thread on which a coroutine runs. Like the OS dispatcher
allows threads to run on physical cores, a coroutine dispatcher allows coroutines to run on
a thread. The dispatcher of a coroutine can be defined during launch or switched with the
withContext method. See Listing 3.5. The following dispatchers are available.

7

3. BACKGROUND

Listing 3.4: CoroutineScope in Kotlin.
1 suspend fun printHelloWorld() = coroutineScope {
2 launch {
3 delay(1000L)
4 println("World!")
5 }
6 println("Hello")
7 }

Listing 3.5: coroutine context
1 runBlocking (Dispatchers.Default) {
2 // This code runs on the default thread pool
3 launch (Dispatchers.Main) {
4 // This code runs on UI thread
5 }
6 }

3.4.1 BlockingEventLoop

When no dispatcher is provided to the current coroutine context, a single-threaded event
loop is used that blocks the current thread. The runBlocking builder uses a BlockingEventLoop
and all coroutines that inherit from this context.

3.4.2 Dispatchers.Default

This dispatcher is designed for CPU-bound work. It uses a shared background thread pool,
and the number of threads is typically equal to the number of CPU cores. In contrast to
what the name might suggest, this dispatcher is not used by default.

3.4.3 Dispatchers.IO

This dispatcher is optimized for I/O-bound work, such as reading and writing files, making
network requests, or accessing a database. It’s backed by a thread pool, but the number of
threads is larger than in Dispatchers.Default because I/O operations are often slower
and may involve waiting.

3.4.4 Dispatcher.Main

This dispatcher is designed for UI-related work in Android applications. It ensures that the
coroutine runs on the main (UI) thread. This single UI thread is necessary since the Android
UI toolkit is not thread-safe [16]. Working with a single thread to do UI operations prevents
concurrency issues.

8

3.5. Channels

3.4.5 Dispatchers.Unconfined

This dispatcher is not confined to any specific thread. It deploys the coroutine on the thread
from where it is started or resumed. In other words, if a suspend call is made from this
coroutine and that runs on a different thread, then the resumed coroutine will also run on
that thread.

3.4.6 singleThreadContext

All coroutines using this context will run on the same thread. Since this reserves a native
resource (thread or worker), it is considered expensive and is, therefore, part of the delicate
API.

3.5 Channels

A channel can pass information from one coroutine to another and/or can be used to syn-
chronize two coroutines. Where a Deferred transfers one value between coroutines a chan-
nel can stream values. It has a send and a receive method and a capacity (buffer size) that
determines the number of pending messages it can hold at a time. [19]

3.5.1 Rendezvous channel

The rendezvous channel has a buffer size of zero. When a message is sent over the channel,
the sending coroutine is suspended until a receive call has been made. When a receive
call is made before send the receiving coroutine is suspended until something is sent over
the channel. This way, each send is matched to a receive, where the channel resumes both
coroutines when the rendezvous happens.

3.5.2 Buffered channel

A buffered channel has a buffer size larger than zero. Now, the send method only suspends
when the buffer is full. The receive method suspends when the buffer is empty. The
buffer can be seen as a queue where the send method adds a message to it, and the receive
method takes one.

3.5.3 Multiple senders or receivers

When multiple coroutines send a message over the channel but the receive method has
not been called, the sending coroutines are put in a queue. The same holds for receiving
coroutines when multiple receive calls have been made before a message is sent. This
queue should not be confused with the message buffer since all messages in the buffer did
not suspend the send call, but all messages in the send queue did suspend.

9

Chapter 4

RunBlocking analysis

This chapter discusses a common problem, found in Kotlin coroutine programs, that leads
to deadlocks and performance issues: nested runBlocking. First, some theory and intuition
about the problem are given in section 4.1. Then, section 4.2 discusses the proposed solu-
tion to the problem. After which the implementation of the discussed solution is described
in section 4.3. Next, we will discuss the performance and limitations of the provided im-
plementation in section 4.4. Lastly, the discussion and future work recommendations are in
section 4.5.

4.1 The runBlocking problem

The runBlocking builder bridges the synchronous and asynchronous world. It should func-
tion as a starting point from where coroutines can be spawned. Once inside a coroutine, we
should use the launch or async builder. However, calling the runBlocking builder from a
coroutine can lead to problems.

In the following sections I will explain why calling the runBlocking builder from a
coroutine is: risky (section 4.1.1), easily overlooked (section 4.1.2), solvable (section 4.1.3),
and most importantly avoidable (section 4.2).

4.1.1 Why avoid runBlocking from coroutine?

As the name suggests, the runBlocking builder blocks the function calling it. This blocking
happens on thread level. So when the runBlocking builder is called from a coroutine the
underlying thread gets blocked. Where coroutines are designed to share threads for perfor-
mance gains, in this case we block the thread which was supposed to be a shared resource.

While a potential loss of performance is undesired, a far more severe problem might
occur when runBlocking builders keep getting called from the wrong places. Listing 4.1
provides the code and the deadlock illustration. The program launches Coroutine A on
the Dispatcher.Main dispatcher (line 2), dispatching the coroutine onto the UI thread.
Then, coroutine A calls nonSuspendingFunction(). In turn, this function launches a new
coroutine B via runBlocking, scheduling it on Dispatcher.Main (line 8). The runBlocking
builder blocks the UI thread until coroutine B finishes. However, coroutine B cannot be

11

4. RUNBLOCKING ANALYSIS

dispatched until the UI thread is free. In other words, coroutine A blocks the thread that
needs to execute coroutine B, while coroutine A also waits for coroutine B to complete,
which results in a deadlock.

Listing 4.1: A program with a deadlock due to a runBlocking call from a coroutine on a
single-threaded dispatcher.

1 fun main() = runBlocking {
2 launch(Dispatchers.Main) { // launch coroutine A
3 nonSuspendingFunction() // call that leads to runBlocking
4 }
5 }
6

7 fun nonSuspendingFunction() {
8 runBlocking(Dispatchers.Main) { // launch coroutine B
9 println("Done")

10 }
11 }

Figure 4.1: Visualization of a deadlock when calling runBlocking from a coroutine dis-
patched in a single-threaded environment.

It might seem like this is a limitation of a single-threaded dispatcher. However, it can
happen in multithreaded scenarios as well. The same deadlock can occur not only in a
single-thread case but also in multi-threaded scenarios. Listing 4.2 provides such an ex-
ample. This program uses the Default multi-threaded dispatcher, which enables parallel
computations and typically bounds the number of threads to the number of CPU cores.
A program that spawns coroutines in a loop (e.g., spawning coroutines A on line 3) suf-
fers from a similar problem as in Listing 4.1. The program reaches deadlock when all the
threads of the Default dispatcher execute the copies of coroutine A, which are all waiting
for coroutine B to be scheduled. It is only a matter of time before all threads of the Default

12

4.1. The runBlocking problem

Listing 4.2: A program with a deadlock due to a runBlocking call from a coroutine on a
multithreaded dispatcher.

1 fun main() = runBlocking {
2 for(i in 1..1000) { // 1000 > max number of scheduler threads
3 launch(Dispatchers.Default) {
4 nonSuspendingFunction()
5 }
6 }
7 }
8

9 fun nonSuspendingFunction() {
10 runBlocking(Dispatchers.Default) {
11 println("Done")
12 }
13 }

dispatcher are executing a coroutine A, which are all waiting for their coroutine B to be
scheduled.

4.1.2 Why is this mistake easily made?

A common misconception is that the runBlocking builder can safely be used in non-suspending
functions. However, a non-suspending function can be called from an asynchronous con-
text; there is no guarantee that it runs outside a coroutine. Even if developers know they
are working inside a coroutine, they might be unaware that the function they call contains a
runBlocking builder. It is not always trivial to determine whether a piece of code runs inside
a coroutine or whether a function call reaches a runBlocking, especially when the call stack
is large.

When developers need to call a suspending function from a non-suspending function,
they tend to call runBlocking, especially when the developer is unaware that this syn-
chronous function actually runs in a coroutine. Another situation is where a developer
is sure that the current function is not reachable from a coroutine and in that case the only
valid option would be to call the runBlocking builder. However, in the future another de-
veloper might need to call this function without having knowledge of the internal workings
(which in larger teams is very probable) and calls it from a coroutine. The promise that any
normal function can be called from a suspend function wihtout worry doesn’t seem to hold.

A situation where it is nontrivial to identify parts of the codebase that run in coroutines
and they may introduce unintended nested runBlocking calls might occur when the codebase
is gradually migrated to use coroutines [8].

4.1.3 How to solve this mistake?

In the example program, turning nonSuspendingFunction into a suspendingFunction
by adding the suspend keyword does the trick, as given as a potential solution in Listing 4.3.

13

4. RUNBLOCKING ANALYSIS

Listing 4.3: A potential solution to the bug with nested runBlocking calls.
1 fun main() = runBlocking {
2 launch(Dispatchers.Main) { // launch coroutine A
3 suspendingFunction() // safe to call
4 }
5 }
6

7 suspend fun suspendingFunction() {
8 coroutineScope { // suspends execution until coroutine B is done
9 launch(Dispatchers.Main) { // launch coroutine B

10 println("Done")
11 }
12 }
13 }

By turning the function into a suspend function, the developer can call coroutineScope,
which allows for a normal launch. Note that this requires all functions calling suspendingFunction
to be suspending as well.

Ultimately, both runBlocking and coroutineScope will pause the execution of the
function calling it. The difference is that runBlocking does this by blocking the underly-
ing thread and coroutineScope by suspending the coroutine, which releases the thread in
the meantime.

In other cases, one might prefer to acquire a coroutine scope created from somewhere
else. This scope, however, comes with its own set of challenges [6]. Therefore, the right
course of action is not always clear and requires careful consideration by the developer.

4.2 Solution

From section 4.1 it is clear that the runBlocking builder should not be called from a corou-
tine. The core of the problem seems to be the challenge of keeping track of code that
potentially runs in coroutines. Therefore, we propose a solution that not only aids develop-
ers in fixing current occasions of nested runBlocking but might prevent the issue altogether:
a static analysis that finds and reports on runBlocking calls made from coroutines. When
implemented correctly and incorporated in an IDE this can potentially prevent dangerous
code changes that result in such runBlocking cases by warning the developer before a code
change is made final.

Sections 4.2.1 and 4.2.2 explain the theory and approach of the analysis, where sections
4.2.3, 4.2.4 and 4.2.5 reveal the difficulties and how they are addressed.

4.2.1 Coroutine Call Graph

To determine whether a runBlocking possibly runs in a coroutine or not, we need to know
what part of the codebase runs in coroutines. A function runs in a coroutine when that

14

4.2. Solution

function is reachable from the body of a coroutine builder. Therefore, we need to identify
all sites where coroutines are created. Those sites can than be the starting points of a call
graph that represents the part of the codebase that runs in coroutines. As discussed in
section 3.1 a coroutine is created with one of the following builders: launch, async, and
runBlocking. In Listing 4.4 there are three coroutine builders: runBlocking builder R1
on line 1, launch builder L1 on line 5, and another runBlocking builder on line 19. These
builders are represented in Figure 4.2 as red nodes in the graph. Then, by exploring function
calls (like on line 2 or line 6) and adding those to the graph we get a complete picture of
what functions run in coroutines.

Listing 4.4: Example Kotlin program with function
calls and coroutine builders.

1 fun main() = runBlocking {// launch R1
2 foo() // call 1
3 bar() // call 2
4

5 launch { // launch L1
6 bar() // call 3
7 }
8 }
9

10 fun foo() {
11 badFun() // call 4
12 }
13

14 fun bar() {
15 badFun() // call 5
16 }
17

18 fun badFun() {
19 runBlocking { // launch R2
20 println("Hello")
21 }
22 }

Figure 4.2: Call graph representing
all coroutine builders and functions
they can reach from Listing 4.4

4.2.2 Trace from coroutine creation to runBlocking

While it is clear that a runBlocking builder called from the call graph runs in a coroutine,
we would like to provide the developer additional info about the origin of the problem. A
potential call stack from coroutine origin to the runBlocking builder in question can help the
developer understand the problem at hand in more detail. By traversing the graph backwards
from a function node we can deduce what sequence of calls resulted in this function running
in a coroutine. From the graph in Figure 4.2 we can easily see that there are three paths from
a coroutine builder to the runBlocking on line 19 (Listing 4.4). Namely:

15

4. RUNBLOCKING ANALYSIS

• R1 → f oo → badFun → R2

• R1 → bar → badFun → R2

• L1 → f oo → badFun → R2

Note that enumerating all possible paths in larger call graphs can become infeasible.
Therefore, the choice is made to only compute (one of) the shortest path(s). Also impor-
tant to note that this graph can contain cycles (recursion). These should be skipped when
searching for coroutine origin.

4.2.3 Lambdas

A challenging situation arises when we encounter lambda functions. First of all, for these
functions it can be unclear when and where they are executed. Secondly, when calling a
lambda function it can be unclear which one is actually invoked. For example, in Listing 4.5
there is a class LambdaWrapper defined (line 13) which has a variable lambda property (line
14). This lambda function can be set by calling setFun (line 15), and can be invoked later
by calling invoke. It might look like there is a case of nested runBlocking calls (R1 on line
3 and R2 on line 5), however R2 is actually invoked on line 10. This is represented in the
graph in Figure 4.3. From this graph it is clear that the R2 runBlocking does not run from a
coroutine, given that foo doesn’t un in a coroutine. In this example it might seem trivial to
determine where R2 is executed but with larger code bases where multiple coroutines can
call setFun it becomes increasingly more difficult to determine.

However, ignoring lambdas all together would make our analysis weak especially since
lambdas are a first class citizen in Kotlin and can be found in abundance. For example,
looping commonly happens with forEach {} or repeat(n) {}. Luckily, in Kotlin most
functions that take lambda arguments are defined as inline. An inline function is a
function that in reality is not called but where all callsites are replaced with the body of
the function. Listing 4.6 is an example of an inline function runFun that takes a lambda
argument and is called on line 2. Listing 4.7 shows what the code would look like after the
inlining step of the compiler. Semantically, the code achieves the same, but in Listing 4.7
the function call and the lambda function have been merged into the body of main. More
importantly, from inline functions we know that their lambda arguments are invoked at the
callsite. And therefore, the body of the lambda function can be treated as the body of the
function which calls the inline function. In the case of our example (Listing 4.6 and 4.7) this
means that the print("world ") call can be added directly as a child to the main function
node.

Lastly, suspend lambdas run per definition in a coroutine and can therefore be safely
explored as well, for the coroutine call graph creation. So in conclusion, the analysis skips
the exploration of lambda arguments unless they are an argument for an inline function or
the argument itself is a suspend lambda.

16

4.2. Solution

Listing 4.5: Example Kotlin program with where a lambda func-
tion is passed but invoked from different execution context.

1 fun foo() {
2 val lw = LambdaWrapper()
3 runBlocking { //R1 blocking coroutine
4 lw.setFun {
5 runBlocking { //R2 looks nested
6 println("Blocking")
7 }
8 }
9 }

10 lw.invoke() //actually invokes runBlocking
11 }
12

13 class LambdaWrapper {
14 private var changableFun: () -> Unit = {}
15 fun setFun(lam: () -> Unit) {
16 changableFun = lam
17 }
18 fun invoke() {
19 changableFun()
20 }
21 }

Figure 4.3: Call graph rep-
resenting the code in List-
ing 4.5. The Included area
is the resulting Coroutine
Call Graph.

4.2.4 Functions overrides

Since Kotlin is object oriented and thus supports inheritance, it might not always be clear
which implementation of a function is actually invoked during runtime. To address this
issue, we explore only the function of the declared receiver type by default. However, we
can give the user more control by providing different strategy options. We provide two other
options, one is to not explore functions with overrides at all, this might have a big impact
on the number of true positives. The other is to explore all overrides.

4.2.5 Other limitations

There are other control flow constructs that are not modelled using the proposed call graph.
For example, conditional branching and shortcicuiting. By assuming that all branches can
be taken, might lead to false positives. However, one could argue that it would be bad design
when a nested runBlocking case is dependent on conditional branching.

Another limitation of this approach is that it does not take library or java code into

17

4. RUNBLOCKING ANALYSIS

Listing 4.6: Example Kotlin program with
where a lambda function is passed but in-
voked from different execution context.

1 fun main() {
2 runFun {
3 print("World ")
4 }
5 }
6

7 inline fun runFun(fn: ()->Unit){
8 print("Hello ")
9 fn()

10 print("!")
11 }

Listing 4.7: Example Kotlin program with
where a lambda function is passed but in-
voked from different execution context.

1 fun main() {
2 print("Hello ")
3 print("World ")
4 print("!")
5 }

account.

4.3 Implementation of runBlocking analysis

To implement the discussed analysis approach, we would need some tools that help parse
and traverse Kotlin code. Also, to make the analysis effective for developers, it should be
made available as part of a common developer tool used for Kotlin development.

In the case of Kotlin, the IntelliJ platform is the obvious (and only) choice. The IntelliJ
platform SDK offers a powerful toolset for creating code analyses. For example the PSI
(Program Structure Interface) system to traverse Kotlin’s AST and resolving references to
method calls. But also APIs to present the analysis results in the appropriate format and
location. Additionally, most Kotlin developers use IntelliJ IDEA (or a variant like Android
Studio) to develop, which supports the choice for the IntelliJ platform even further.

Figure 4.4 shows what the end user would see after analysing a code base containing
Listing 4.4. On the left side a list of files is presented that contain runBlocking(s) called
from a coroutine. And per file the runBlocking problems. When a runBlocking problem
is selected, it presents a potential call stack from coroutine origin to the runBlocking in
question. Each call in this stack is clickable and opens the corresponding file in the editor
while moving the cursor to the right code element.

To choose the exploration strategy discussed in section 4.2.4 the user can access the
settings of this particular inspection. This is shown in Figure 4.5.

4.3.1 Released into production

The implementation has been reviewed and approved by JetBrains and can be found at [5].
The runBlocking inspection is available as a standard inspection from IntelliJ IDEA 2024.2
onwards. To find the inspection, one would have to go to the Problems tool window, open
the Project Errors tab and click on Inspect Code. A window will reveal itself which allows

18

4.4. Validation

Figure 4.4: What the end user would see for an analysis of Listing 4.4.

Figure 4.5: How an end user would change the settings of the analysis.

the user to select the scope of the analysis and what inspections to include. This window
also allows the user to select one of the exploration strategies.

4.4 Validation

This section presents the validation results of the runBlocking analysis implementation. To
give some notion about accuracy and scalability, the algorithm has been tested on several
open source projects. Eight Android repositories have been selected since Kotlin is the
primary language for android app development. Additionally, the Ktor backend framework
and the IntelliJ-Community repository have been selected as well.

For each of these repositories and every exploration strategy, the analysis results have
been evaluated to count the true and false positives. During development, it became clear
that a second run of the algorithm usually runs much faster. Hence, for each strategy and
repository the execution time is measured twice. Once with a fresh boot of the IDE and a
second directly after.

19

4. RUNBLOCKING ANALYSIS

Table 4.1: True and false positive counts per repository per exploration level.

Repository Strict TP Strict FP Default TP Default FP All TP All FP
Woocommerce 0 0 0 0 0 0
DuckDuckGo 1 0 1 0 5 2
Tachiyomi 3 0 3 0 3 1
Wordpress 0 0 0 0 0 0
Ktor 0 0 0 0 1 1
Home-Assistant 3 0 3 0 4 4
Google-hfir 2 0 2 0 2 0
Firefox 3 0 3 0 3 0
IntelliJ 8 0 8 0 9 1
Total 20 0 20 0 27 9

4.4.1 runBlocking analysis precision

The true and false positive results are shown in table 4.1. The three exploration strategies
are Strict for not exploring overridable functions, Default for only exploring the overridable
function itself, and All for exploring the overridable function and all its sub implementa-
tions. These strategies are discussed in more detail in section 4.2.4. What immediately
stands out is that the Strict and Default modes produce exactly the same results and that
both do not have false positives. For the All mode, however, there is a gain of seven true
positives while also having nine additional false positives. Although the results of Strict
and Default are satisfactory, it is important to note that false positives are still technically
possible. Similarly, there might exist repositories where the Default setting finds more than
the Strict setting. Nevertheless, these results support the choice to make the Default setting
the default.

4.4.2 Execution time

The execution time is displayed in table 4.2. For each repository and each strategy, the
execution times are displayed. The first execution is with a fresh IDE, and the second
execution is directly after. It became clear that a second run is often faster. This is probably
caused by some caching mechanism to load PSI trees quicker.

4.4.3 Resolution of real world cases

A few runBlocking cases of the DuckDuckGo and Home-Assistant repositories have been
communicated to their corresponding development teams. These cases have been acknowl-
edged and some of these have been solved [3, 2].

20

4.5. Discussion and future work

Table 4.2: Averaged execution times for a first (fresh) execution and a second (cached)
execution.

Repository Strict 1 Strict 2 Default 1 Default 2 All 1 All 2 kLOC
Home-Assistant 0:21 0:03 0:26 0:02 0:33 0:03 64.2
Tachiyomi 0:12 0:08 0:20 0:15 0:26 0:10 78.0
Google-hfir 0:32 0:13 0:12 0:05 0:17 0:02 100.3
Ktor 0:42 0:44 0:42 0:59 1:02 0:15 180.5
Wordpress 0:18 0:21 0:20 0:24 0:27 0:24 306.2
Woocommerce 0:36 0:03 0:32 0:05 0:26 0:05 327.7
DuckDuckGo 0:38 0:04 0:36 0:04 0:41 0:05 351.5
Firefox 1:09 0:21 1:12 0:09 1:37 0:20 1178.6
IntelliJ 5:50 4:55 4:18 3:48 5:55 5:04 4222.8

4.5 Discussion and future work

Although this inspection has proven to be effective and scalable, it leaves room for improve-
ment in two areas.

First, while a runtime of 1 or a few minutes for a large repository is acceptable, a tool
is only useful when it is actually used. A minute of waiting after each commit for probably
no warning seems like a lot. To leave it to the developer to manually trigger this analysis
every once in a while might result in a nested runBlocking case that is deeper rooted in
the code and therefore harder to solve. Assuming that the developer remembers to use this
inspection. One simple solution would be to add this inspection as a step to a CICD pipeline
which can run in parallel with other steps. A better but more involved solution would be to
make this analysis incremental where we only need to recalculate parts of the callgraph that
have changed. This way the developer can be notified while working on the project just like
most other (fast) inspections in the IDE.

Second, while it is true that inline lambdas are more common than regular lambdas.
Higher order functions are first-class citizens in Kotlin and regular old lambdas are there-
fore not rare. This potentially leads to missing important runBlocking cases since the cur-
rent state of the analysis skips regular lambdas. In order to find which call sites call what
lambdas, we need to find where a reference originates from and how it is passed from func-
tion to function. However, keeping track of references during static analysis can be very
challenging. This is discussed further in chapter 5.

21

Chapter 5

Static Deadlock Detection

In the previous chapter, we discussed the detection of a possible anti-pattern that, in some
cases, can lead to a deadlock. This chapter will focus on detecting deadlocks that are the re-
sult of the interaction between coroutines. These interactions can happen through channels,
mutexes, or joins (or a combination thereof). Since there exists a plethora of techniques that
detect mutex deadlocks, the choice has been made to focus on channel-related deadlocks.
Moreover, channels are flexible enough to function as a mutex or a join. Therefore, once
we can detect channel-based deadlocks, it should be relatively easy to support mutexes and
joins as well.

As discussed in chapter 3 Go has similar features to Kotlin in terms of concurrency.
There already exist several successful works that describe static deadlock analysis tech-
niques for channels in Go. These techniques model concurrent behaviour and leverage the
power of existing model checkers to validate that model. From these model languages,
Promela (Process Meta Language) [21] seems well suited for our use case for the follow-
ing reasons: Promela has been designed to model distributed and concurrent behaviour,
Promela has native support for channels, Promela is more readable than other model lan-
guages like mCLR2. Additionally, most recent works use Promela as well. Therefore, using
this language to model Kotlin’s concurrent behaviour seemed like the best strategy.

The goal of this thesis is not to develop a comprehensive tool that fully models every
language feature and deadlock. What this work will focus on is developing a prototype
to evaluate the mentioned analysis’s ability to detect deadlocks and assess its scalability.
Therefore, this prototype will only support channel deadlocks and a subset of Kotlin’s fea-
tures. This will be discussed in greater detail in section 5.2.

But first, section 5.1 will give an introduction to such channel deadlocks in Kotlin. Then,
section 5.2 discusses how Kotlin’s concurrent behaviour can be expressed as a Promela
model. After which, section 5.3 will explain how the translation works. Section 5.4 will
briefly discuss how this model is verified by SPIN. Section 5.5 will go into detail about the
accuracy of the analysis technique. Section 5.6 discusses the scalability of the proposed
technique. Lastly, the findings will be discussed in detail, and some recommendations for
future work are given in section 5.7.

23

5. STATIC DEADLOCK DETECTION

5.1 Channel Deadlocks

The channel primitive in Kotlin coroutines does not only function as a message passing
mechanism but also allows for synchronization. As discussed in section 3.5, a channel
can suspend a coroutine when the send or receive functions are called. The coroutine is
resumed again when a corresponding receive or send call is made. However, incorrect use
of channels might lead to deadlocks. In the example of Listing 5.1 there are two coroutines
spawned: coroutine A (line 5) and coroutine B (line 10). Also, two channels are initialized:
ch1 and ch2 on lines 2 and 3, respectively. Coroutine A sends a message over both channels,
and coroutine B receives over both channels. However, they do these operations in reversed
order. Coroutine A is suspended after it sends over channel 1 and waits for a receive on
channel 1. While coroutine B is suspended after the receive on channel 2 and waits for a
send on channel 2. Neither of these coroutines can continue. As Figure 5.1 shows: all four
operations wait on each other to finish, resulting in a deadlock.

Listing 5.1: Example Kotlin program that
leads to a channel deadlock.

1 fun main() = runBlocking {
2 val ch1 = Channel <String>()
3 val ch2 = Channel <String>()
4

5 launch { // coroutine A
6 ch1.send("Hello")
7 ch2.send("World")
8 }
9

10 launch { // coroutine B
11 val world = ch2.receive()
12 val hello = ch1.receive()
13 println(hello + world)
14 }
15 }

Figure 5.1: A visual illustration of the wait
for relations that result in the deadlock of List-
ing 5.1. Each arrow shows what is waited for e.g.
ch1.send() waits for ch1.receive().

The channel deadlock shown in the last example consistently goes into a deadlock.
However, there exist programs that non-deterministically end up in a deadlock as well. In
other words, a program where in one execution it behaves as expected and another execution
it ends up in a deadlock. This is possible due to the non-deterministic nature of scheduling
coroutines. Listing 5.2 gives an example of such a bug. This bug works with one channel
created on line 3. Note that this channel has a capacity of one and is therefore a buffered
channel. As discussed in section 3.5: a buffered channel only suspends a send call when
its buffer is full and suspends a receive when the buffer is empty. Coroutine A and B
are spawned on lines 5 and 10, respectively. Figure 5.2 shows an execution order of the
two coroutines that does not lead to a deadlock. As expected, coroutine A sends a message
which is received by coroutine B. And afterward, coroutine A receives a message sent by
coroutine B. Figure 5.3, on the other hand, shows an execution order that does lead to a

24

5.2. Expressing Kotlin in Promela

deadlock. Coroutine A sends and receives its own message, which is possible since the
channel has a buffer. Then coroutine B calls the receive method but, since the buffer is
empty, suspends. The only other send operation is after the current suspending receive
and is therefore never reached. This results in a deadlock.

Listing 5.2: Example Kotlin program
that, depending on execution order, can
leads to a channel deadlock.

1 fun main() = runBlocking {
2 // Channel of capacity 1
3 val ch = Channel <Int>(1)
4

5 launch { // coroutine A
6 ch.send(0)
7 ch.receive()
8 }
9

10 launch { // coroutine B
11 ch.receive()
12 ch.send(1)
13 }
14 }

coroutine A coroutine B
ch.send(0)

ch.receive()
ch.receive

ch.send(1)

Figure 5.2: Execution order of Listing 5.2 that
does not lead to a deadlock.

coroutine A coroutine B
ch.send(0)
ch.receive

ch.receive()
ch.send(1)

Figure 5.3: Execution order of Listing 5.2 leads to
a deadlock. The last send in coroutine B will never
be executed.

5.2 Expressing Kotlin in Promela

This section will elaborate on what language features will be supported and how these
features can be modelled in Promela.

5.2.1 Kotlin requirements

As the goal is to design a prototype, and Kotlin is a far more advanced language than
Promela, there will be some features that will not be supported during the translation from
Kotlin to Promela. However, as this will be tested on working code samples and real world
repositories, we need to find the right subset of Kotlin to support.

To detect deadlocks involving coroutines and channels, it is necessary to model corou-
tines along with the initialization, sending, and receiving actions of channels. As demon-
strated in the examples provided in Section 5.1, the order of operations on a channel is
crucial. Therefore, it is essential to account for Kotlin’s control flow, including statement
order, functions, and calls, as well as coroutines and asynchronous calls.

To determine which channel a send or receive operation targets, we must track refer-
ences and data flow, including function parameters, call arguments, and local variables.
Given that real-world applications often store channels as class properties, it is important to
support these as well. Consequently, we must also support classes to effectively model class

25

5. STATIC DEADLOCK DETECTION

properties. Therefore, the model should include compositional types (structs), constructors,
function return values, and call receivers.
Some language features that will not be supported in the prototype are:

• Conditional branching. For example, if (A) B; else C; will be treated as A; B; C;.

• Lambdas. They are treated as inlined, meaning that they are modeled as if they run at
the location where they are defined.

• Mutability and nullability.

• Inheritance.

5.2.2 Writing Promela

Using a series of examples, we will explain how Promela models Kotlin. During this explo-
ration, we will encounter certain limitations of Promela and demonstrate how these chal-
lenges can be addressed.

Coroutines and Channels

Listing 5.3 is the first deadlock example from section 5.1. Next to it, listing 5.4 shows what
this code sample would look like in Promela after translation.

As discussed before, the Kotlin example creates two channels (lines 2 and 3), and
launches two coroutines (lines 5 and 10) that perform send and receive operations on those
channels (lines 6, 7, 11, and 12).

The Promela example shows the creation of channels on lines 2 and 3. It shows a send
operation ch1!0 on line 10 and line 11. Note that the send operator is an exclamation mark
and that an integer 0 is sent. Since this analysis does not care about the content sent over
channels we default to send the integer 0. Line 15 and 16 are receive operations (?).

To model a coroutine Promela has a similar construct called a process. Processes like
coroutines run concurrently with each other and can be spawned dynamically. To define
a coroutine or process the keyword proctype is used. The syntax is similar to a function
definition: it has a name and arguments. The two coroutines A and B from Kotlin example,
lines 5 and 10, are defined in the Promela example on lines 9 and 14. Note that in the Kotlin
example, the channel references are available from the lexical scope, and in Promela, these
channels are passed explicitly.

In Kotlin, the launch builder is used to start a coroutine asynchronously (lines 5 and
10). In Promela, the run keyword is used to start a process (lines 5 and 6).

26

5.2. Expressing Kotlin in Promela

Listing 5.3: A Kotlin example program
that leads to a channel deadlock.

1 fun main() = runBlocking {
2 val ch1 = Channel <String>()
3 val ch2 = Channel <String>()
4

5 launch { // coroutine A
6 ch1.send("Hello")
7 ch2.send("World")
8 }
9

10 launch { // coroutine B
11 val world = ch2.receive()
12 val hello = ch1.receive()
13 println(hello + world)
14 }
15 }

Listing 5.4: A Promela example program that
leads to a channel deadlock.

1 proctype main() {
2 chan ch1 = [0] of {int}
3 chan ch2 = [0] of {int}
4

5 run corA(ch1, ch2)
6 run corB(ch1, ch2)
7 }
8

9 proctype corA(chan ch1;chan ch2){
10 ch1 ! 0
11 ch2 ! 0
12 }
13

14 proctype corB(chan ch1;chan ch2){
15 ch2 ? 0
16 ch1 ? 0
17 }

Functions and Calls

Promela does not support functions. Therefore, functions need to be modelled in terms of
processes and channels. Since processes accept arguments and can be called through the
run keyword they are closely related to a function. There is only one caveat, a process runs
asynchronously from the calling code. Therefore, we need to be able to differentiate be-
tween synchronous calls (normal functions) and asynchronous calls (spawning coroutines).
This can be achieved by passing to all processes a return channel ret. This channel can
then be used to synchronize the end of the callee and the continuation of the caller.

Listing 5.5 is an example of a synchronous call, while listing 5.6 is an example of an
asynchronous call. Both examples have a main process that calls another process (line 3). In
both cases, there is a return channel created (line 2) that is passed to the called process. Sub-
sequently, the called process returns by sending over the return channel (line 9). Where the
examples differ is how the caller function main deals with the return channel callReturn
(line 4). The synchronous call receives over the return channel (line 4). This makes the main
process wait on the synCall process to finish. The asynchronous case spawns another spe-
cial receiver process (line 4) that receives over this channel asynchronously. Basically, it
makes sure that the return statement on line 9 has a corresponding receive without blocking
the caller.

27

5. STATIC DEADLOCK DETECTION

Listing 5.5: Synchronous function call in
Promela.

1 proctype main() {
2 chan callReturn = [0] of {int}
3 run syncCall(callReturn)
4 callReturn ? 0
5 }
6

7 proctype syncCall(chan ret) {
8 // do stuff
9 ret ! 0

10 }

Listing 5.6: Asynchronous function call in
Promela.

1 proctype main() {
2 chan callReturn = [0] of {int}
3 run asyncCall(callReturn)
4 run receiver(callReturn)
5 }
6

7 proctype asyncCall(chan ret) {
8 // do stuff
9 ret ! 0

10 }
11

12 proctype receiver(chan ch) {
13 ch ? 0
14 }

Return values

A (Promela) channel not only synchronizes two processes but also allows for sending
a value. Therefore, we can use the ret channel to return a value to the caller. List-
ings 5.7 (Kotlin) and 5.8 (Promela) show an example where a function main calls a function
buildChan that creates and returns a channel. The return channel callReturn created on
line 2 (of listing 5.7), is now typed as a chan channel. The type of value that is transferred
over a channel is defined within the curly braces. At the callee function buildChan the
created channel is returned over the ret channel (line 12). This returned channel is then
received in the caller function main on line 6. And store in the channel variable on line 5.

Note that the channel created in the buildChan function is constructed by calling a spe-
cial construct ch function (line 11). This is due to a limitation of the Promela language.
In Promela a channel lives as long as the process that created it. If the buildChan pro-
cess would create this channel and return it to the main process, then the channel would be
unusable after buildChan finishes.

28

5.2. Expressing Kotlin in Promela

Listing 5.7: A Kotlin example of a function
returning a channel.

1 suspend fun main() {
2 val channel = buildChan()
3 }
4

5 fun buildChan(): Channel <Int> {
6 val ch = Channel <Int>()
7 return ch
8 }

Listing 5.8: A Promela example of a func-
tion returning a channel.

1 proctype main() {
2 chan callReturn = [0] of {chan}
3

4 run buildChan(callReturn)
5 chan channel
6 callReturn ? channel
7 }
8

9 proctype buildChan(chan ret) {
10 chan ch
11 construct_ch(ch)
12 ret ! ch
13 }

To tackle this problem, we propose a novel solution: define global channels. This is
done by initializing the channel at the top of a Promela file instead of in a process. For
each channel initialization in the Kotlin program, we create a global channel in the Promela
model. Subsequently, in Promela, we replace the normal channel constructor by assigning
the global channel to the local reference in the process. This, however, is not the complete
solution. For example, when the buildChan function from listing 5.7 is called twice it
creates two distinct channels. Therefore, we initialize an array of multiple channels for
each channel creation site in Kotlin. Each time this creation site is reached, we assign a new
channel from the array.

Listing 5.9 shows an example of such a global channel constructor. On line 1 the array
of channels is initialized. Note that all these channels are meant for the same creation site
but for different calls to the containing function. Line 2 initializes a counter that keeps track
of how many channels from the array have been assigned and functions as an index for the
next possible assign event. Line 3 introduces a new keyword: inline. This keyword defines
an inline function which is similar to Kotlin’s inline function discussed in section 4.2.3. The
reason that this inline function cannot be used to simulate normal functions from Kotlin is
that Promela does not allow channels to be created in an inline function. In fact, channels
can only be created at the top of a promela file or at the top of a process. The inline function
introduced on line 3 is the function that replaces the normal channel initialization.

Line 4 creates an atomic block that ensures that the code in this block will run once at
a time. Making sure that there are no race conditions involving the counter. Line 5 assigns
the channel at the index counter to the passed ch channel. Subsequently, the counter is
incremented at line 6. Lastly, line 7 asserts that the counter does not exceed the size of the
channel array. Since it is not trivial to determine how often a function can get called, the
choice is made to initialize the channel array with a fixed size. Once the counter exceeds
this number, a specific error is thrown that can be used as feedback for the model generator
to create a model with more channels initialized.

29

5. STATIC DEADLOCK DETECTION

Listing 5.9: In Promela the solution to destroyed channels.
1 chan global_ch[4] = [0] of {int}
2 int global_ch1_counter = 0
3 inline construct_ch1(ch) {
4 atomic {
5 ch = global_ch1[global_ch_counter]
6 global_ch = global_ch1 + 1
7 assert (global_ch1 < 4)
8 }
9 }

Class properties and constructors

To support compositional types, Promela allows defining structs. Listing 5.10 shows a
Kotlin example of two simple class definitions. Class A is introduced on line 1 and takes
one argument ch. This class has one property (or attribute) b defined on line 2.

Class B is defined on line 5 and has also one argument. This argument ch1 however is
a class property as well, this is indicated by the val keyword. Class B has another property
named ch2, this property is not passed but is initialized in the constructor.

Listing 5.11 demonstrates how the discussed classes A and B can be expressed in terms
of Promela structs. Class A needs to be defined before class B, since A contains an instance
of B (line 7). In more complex cases with lots of classes, this would mean that we need
to capture the dependencies between classes and perform a topological sort to find out in
what order they need to be defined. Note that a limitation to this approach (and a lack of
nullability) is that circular class dependencies are not supported.

Apart from that, defining structs is straightforward: B has two properties ch1 and ch2
defined on line 2 and 3 respectively, and A has a property b defined on line 7.

Listing 5.10: A Kotlin example of a two
classes.

1 class A(ch: Channel <Int>) {
2 val b = B(ch)
3 }
4

5 class B(val ch1: Channel <Int>) {
6 val ch2 = Channel <Int>()
7 }

Listing 5.11: A Promela example construc-
tor B.

1 typedef B {
2 chan ch1
3 chan ch2
4 }
5

6 typedef A {
7 B b
8 }

A constructor can be defined like any other function, with the addition of populating the
corresponding struct and returning it. An example of the constructor for class B in Promela
is given in Listing 5.12. This function (or process) takes ch1 as an argument just like the
Kotlin constructor of B in Listing 5.10. The ch2 channel is created by calling the specific
construct ch2 global channel constructor, as discussed before.

30

5.2. Expressing Kotlin in Promela

The struct this constructor constructs is constructed on lines 8, 9, and 10. Line 8 declares
the reference, lines 9 and 10 assign the contents. As with any other function modelled in
Promela we provide a return channel ret (line 3). This channel is used to return the object
this constructor created (line 12).

Listing 5.13 gives an example of a constructor for A. Remember that, the constructor of
A had only one property b obtained by calling the constructor of B. So, in Promela, we need
to start the constructor process of B (line 8) and receive the created struct over the return
channel (line 9). Note that in this case the return channel transfers messages of type B (see
line 5).

While it is possible to send and receive complete structs in one go, it is not allowed to
assign a complete struct. This limitation of Promela can be overcome by assigning each field
individually. Similar to a deep copy, except the channels are references. As Listing 5.13
shows, b is not assigned directly, but all subcomponents are assigned individually (lines 12
and 13).

Listing 5.12: A promela struct constructor
for class B.

1 proctype constructorB(
2 chan ch1;
3 chan ret
4) {
5 chan ch2
6 construct_ch2(ch2)
7

8 B obj
9 obj.ch1 = ch1

10 obj.ch2 = ch2
11

12 ret ! obj
13 }

Listing 5.13: A Promela example construc-
tor A.

1 proctype constructorA(
2 chan ch;
3 chan ret
4) {
5 chan callRet = [0] of {B}
6

7 B b
8 run constructorB(ch, callRet)
9 callRet ? b

10

11 A obj
12 obj.b.ch1 = b.ch1
13 obj.b.ch2 = b.ch2
14

15 ret ! obj
16 }

Call receiver

A call with a receiver object or method call is a call to a function that is part of a class.
Listing 5.14 has a class C (line 1) which has a method sendMSg (line 3). This method
accesses the class property channel (line 4). This access would, however, not work in
Promela. As in Promela, one can not couple a function to a struct like a method is coupled
to a class, and that function, therefore, has no access to the context of the class or struct. In
other words, the implicit reference to this is missing.

To solve this problem, the class context can be passed as a parameter. Listing 5.15
shows how a Kotlin method can be transformed to be a compatible function. The sendMsg
function is moved out of the class and has an additional parameter self that contains the
class context of C (line 5). On line 6, the channel property can be accessed through the

31

5. STATIC DEADLOCK DETECTION

self parameter. The call to this method has to change as well, the receiver object is now
passed as an argument, resulting in the call on line 11.

Listing 5.14: A Kotlin example a call with
receiver.

1 class C {
2 val channel = Channel <Int>()
3 suspend fun sendMsg() {
4 channel.send(0)
5 }
6 }
7

8 suspend fun main() {
9 val c = C()

10 c.sendMessage()
11 }

Listing 5.15: A Kotlin example of passing
class context.

1 class C {
2 val channel = Channel <Int>()
3 }
4

5 suspend fun sendMsg(self: C) {
6 self.channel.send(0)
7 }
8

9 suspend fun main() {
10 val c = C()
11 sendMessage(c)
12 }

Nested expressions

In Kotlin it is possible and common to nest expressions such as calls (function composition).
To model this in Promela we need to un-nest these cases such that the result is a linear order
of statements in the order of execution. This will become clear in the Listings 5.16 and 5.17.
Note that both listings semantically do the same.

Listing 5.16: A Kotlin example of nested calls.
1 fun main() {
2 return doSome(otherFun(foo()), bar())
3 }

Listing 5.17: A Kotlin example of
un-nested calls.

1 fun main() {
2 val v4 = foo()
3 val v3 = otherFun(v4)
4 val v2 = bar()
5 val v1 = doSome(v3, v2)
6 return v1
7 }

5.3 Translating Kotlin to Promela

Having clarified what elements of Kotlin are supported and how they can be expressed in
Promela, this section will delve into the translation process. This process has five distinct
phases, which will be discussed in that order. First, a callgraph with some additional infor-
mation will be initialized (section 5.3.1). Second, reference usages will be linked to origins,
and structs will be generated where necessary (section 5.3.2). Third, nested expressions
will be un-nested (section 5.3.3). Fourth, unnecessary nodes in the graph will be removed
(section 5.3.4). Fifth, Promela code will be generated from the graph (section 5.3.5).

32

5.3. Translating Kotlin to Promela

5.3.1 Graph initialization

The initialization phase sets up a call graph based on the Kotlin repository under test. It
creates a node for every function by traversing the PSI tree. A FunctionNode represents
a function and basically has three elements: a parameter list, a return type, and a list of
actions. This phase only captures channel parameters, parameters of other types will be
gradually added in the linking phase (section 5.3.2). The return type is initially set to Unit
(or void), this return type will be added in the linking phase as well. The list of actions
represents the body of a function. An action can be a statement or expression of interest for
our analysis, an action is one of the following:

• Call: a call action represents a Kotlin call expression. It contains a callee FunctionNode,
a return type, and an argument list. As with the function nodes, the return type will
be discovered in the linking phase. An argument can be one of two kinds: a reference
argument or an action argument. A reference argument is a reference passed to a func-
tion like doSomething(arg). An action argument is an expression that evaluates to an
argument. For example, a nested call like doSomething(getArg()). Just like return
types, reference will be explored in the linking phase. Therefore, only action argu-
ments are added in this phase. As discussed in section 5.2.2, a potential call receiver
object will be treated as an argument and added to the argument list accordingly.

• Async call: an async call action represents the launch of a coroutine. A FunctionNode
will be created for the launched coroutine, which will be the callee of the async call
action.

• Out-of-scope call: an out-of-scope call action represents a call to library code that
is not part of the analysis scope. That means that this call will not have a callee
FunctionNode, but can potentially have action arguments with calls to code that is
in scope. For instance: outOfScopeCall(inScopeCall()).

• Channel init: a channel init action represents the initialization of a channel. The
buffer size of the channel is captured as well.

• Channel send and receive: send and receive operations on a channel.

• Property assignment: a property assignment is the declaration and initialization of
a variable like: val prop = getProp(). Note that this property can be either a class
property or a local variable in a function.

• Property access: a property access action is the retrieval of a class property value
like: instance.prop. This action contains two values: the property name or identifier,
and an argument, which can be an action argument or reference argument.

Additionally, the initialization phase creates a function node for each class. This node
represents the constructor of that class. The parameters of this class are added to the param-
eter list of the function node and the class properties are added as property assignments to
the action list.

33

5. STATIC DEADLOCK DETECTION

5.3.2 Reference linking

The linking phase makes sure every channel operation is performed on the right channel
at the right moment. In other words, this phase is responsible for modelling the correct
dataflow from channel initialization to channel operation. For each channel operation (send
and receive actions) we track its channel reference back to all possible origins. During the
backtracking process, references are added, structs are evolved, and return types are set.

This is done by recursively exploring operands. In other words, any part of a statement
or expression that requires a value. This can be an argument for a function call, an expres-
sion to be returned, or the value that is assigned to a variable. In the context of this analysis,
these operands can have either a reference expression or an action that evaluates to a value
like a function call. If an operand contains a reference expression like: someFunCall(arg),
we resolve the origin of the reference. This origin can be one of three scenarios: a function
parameter, a local variable, or the this instance. An operand can also contain an action, the
prototype supports a call or property access.

Parameter

One possible origin of a reference is a parameter. Listing 5.18 shows an argument (operand)
arg marked in red. Its origin is a function parameter marked in blue. Now, the following few
steps are taken. First, a reference argument is created and added to the call action. Second,
if the parameter is not yet present in the function node, it is added as well. Subsequently,
the reference argument and origin parameter will be linked.

Since a backtracking process starts at a channel operation, this very argument will even-
tually lead to this operation. Therefore, to find all possible initialization sites of this channel,
we need to visit all callsites of function foo and their corresponding operands. Listing 5.19
shows two of these callsites. Since the origin parameter was the 2nd parameter of function
foo, the 2nd arguments (operands) of the callsites are to be explored (marked in green).
Note that these arguments can be either a reference argument (line 3) or an action argument
(line 8).

Listing 5.18: Function parameter is the origin
of an argument arg.

1 fun foo(x: Int, arg : ParamType) {
2 someFunCall(arg)

3 }

Listing 5.19: Function foo is called
twice resulting in two arguments to be
explored. One reference argument bar
and one action argument baz().

1 fun fooCaller1() {
2 // Other code

3 foo(0, bar)
4 }
5

6 fun fooCaller2() {
7 // Other code

8 foo(y, baz())
9 }

34

5.3. Translating Kotlin to Promela

Listing 5.20: Function parameter is the origin of an argument arg.
1 fun foo() {

2 val arg = baz()
3 someFunCall(arg)

4 }

Local variable

Another possible reference origin is a local variable. Listing 5.20 shows such a case. The
reference operand we are currently exploring is marked in red, the origin of this reference
is a local variable defined on line 2 (marked in blue). The local variable and argument will
be linked.

The operand assigned to variable arg has to be explored next and is marked in green.

This instance

Another possibility is a reference to this instance. It is the instance context of the class the
current method is a member of. Listing 5.21 shows a possible example in Kotlin. On line
2 there is a this reference and it is passed as receiver of the call to foo(). This receiver is
marked in green and would be the next operand for exploration.

However, the this operand cannot be linked to anything local. Now we start to see
the benefit of treating call receivers as arguments instead. During the initialization phase
(section 5.3.1) the code example will be desugared to Listing 5.22. Semantically, the code
does the same, but now the instance context is explicitly passed. Therefore, we can link the
operand to a parameter and continue exploring the argument in the call site on line 5. As if
it were like any other call with an argument.

Listing 5.21: A reference to this instance as
operand. The receiver of the call expression
is the next operand to explore.

1 fun foo() {

2 someFunCall(this)
3 }
4 fun fn() {

5 bar .foo()
6 }

Listing 5.22: A reference to self instance
passed as parameter. Origin is marked
as blue, the next operand to explore is
marked in green.

1 fun foo(self : ThisClass) {

2 someFunCall(self)
3 }
4 fun fn() {

5 foo(bar)
6 }

Call

As with every operand that we explore, the goal is to find the origin of the value. When
the operand is a call, the value is provided by the return statement(s) of the called function.
Listing 5.23 provides an example of a function call as operand (marked in red). Since a

35

5. STATIC DEADLOCK DETECTION

Listing 5.23: The function call as operand is marked in red. The next operand to explore is
marked in green.

1 fun foo() {

2 someFunCall(bar())
3 }
4 fun bar() {
5 // Other code

6 return baz
7 }

nested call is added in the initialization phase as action argument, we do not have to link it
at this stage. A reference argument will be added and linked during the un-nesting phase.
However, the return type of the called function bar and the call action bar() will be set.
This not only provides info about the return type but also marks the function and call as
important, preventing them from being pruned later.

The backtracking process is continued by exploring the operand from the return state-
ment of the called function (marked in green).

Property access

Listing 5.24 provides an example of a property access from within a class. At first glance,
this might look like a reference operand; however, the reference prop on line 5 is implicitly
this.prop. That results in Listing 5.25, where this is added explicitly. The operand is in
both listings marked in red. However, in listing 5.25 it becomes clear that the operand is a
property access where property prop is selected from object this.

As with other operands, the origin of the value needs to be explored. Meaning that
the next operand to explore becomes the operand of the property assign (line 2). However,
since this property is not locally accessed but is part of an instance, the origin of the instance
needs to be found as well. Therefore, in the case of a property access there are two next
operands. As shown in listing 5.25 there are two green highlighted operands, one for the
origin of the instance and one for the origin of the property. Now since this occurrence
proves that the property prop from class Claz is important, it is added to the struct of Claz.

Listing 5.24: Property access from within
class.

1 class Claz() {
2 val prop = bar()
3 fun foo() {
4 // Other code
5 someFunCall(prop)

6 }
7 }

Listing 5.25: Property access from within
class. Implicitly access property from this.

1 class Claz() {

2 val prop = bar()
3 fun foo() {
4 // Other code

5 someFunCall(this .prop)

6 }
7 }

36

5.4. SPIN model verification

5.3.3 Un-nesting

Once linking is completed, the graph will be un-nested. This has already been discussed
in section 5.2. Listings 5.16 and 5.17 should give a clear example. However, there is one
important difference: although all nested calls will be moved out of the parent call, only
nested calls that have a return type will be assigned to a variable and passed to the parent
call.

5.3.4 Pruning

During the initialization and linking phase, function parameters have been added and return
types have been set. Since even class context is modelled as a function parameter, every-
thing a function can have an effect on has to be passed as a parameter. Therefore, when a
function has no parameters, we conclude that this function does not have any side effects.
Additionally, when that same function also has no return type set, we can conclude that no
channel (or struct containing a channel) is returned. Therefore, within the context of this
model, all calls to this function are pointless and should be removed.

Having removed all pointless calls, we are left with only calls that pass and/or return a
channel. The result of this is that separate concurrent parts of the codebase which do not
interact concurrently are now not connected in the graph. In other words, the graph is split
up in small subgraphs that work in isolation. This allows for each subgraph to be evaluated
separately, keeping the complexity of the models as small as possible.

Lastly, all functions that do not call and are not called (after pruning) are removed.

5.3.5 Generating Promela

When we removed all unnecessary elements from the graph, put all nested code into a
linear sequence of operations, and linked all references where needed, the graph is ready to
be written to Promela. In this form each element can easily be written to a string following
the methods of section 5.2.

We start by listing all function nodes that are not called. Each of such nodes is a starting
point for one model. The model is built by recursively traversing the graph from that point
and concatenating it into a string at each step. Each element has its specific string template
that represents that element in Promela.

5.4 SPIN model verification

SPIN is a tool that verifies concurrent models written in Promela. [21] It does so by ex-
ploring all possible execution orders. When it has explored all possible execution orders or
when a given time budget expires, the model is classified as deadlock-free.

37

5. STATIC DEADLOCK DETECTION

5.5 Validation: Accuracy

To validate the technique, it is important to know how well it detects deadlocks and if it
scales well with larger codebases. This section will go into detail about the accuracy of the
developed analysis technique. The next section (5.6) will go into detail about the scalability.

Section 5.5.1 will explain the method used to test the prototype. Section 5.5.2 will
briefly explain the used test data. Section 5.5.3 goes into detail about all possible errors that
can occur in a single test case. And lastly, section 5.5.4 reveals the results.

5.5.1 Method

To quantify the accuracy of the analysis method, test data is required. Although the pro-
totype works on some parts of a real-world repository, it is not yet powerful enough to
reliably extract models from opensource repositories. Additionally, it is not trivial to find
repositories of which it is known to have clear channel deadlocks, and if so, how many. The
opposite is true as well, for a given repository with channels, it is impossible to tell that it is
deadlock-free. In other words, there is no ground truth.

What is necessary is a set of code samples that tests the prototype within its designed
constraints and has a known ground truth. Large language models can be part of the solu-
tion. A large set of test cases can easily be generated by carefully crafting specific prompts.
This approach allows us to create test cases that take the design constraints into account.
The LLM can be instructed to not use mutexes or inheritance. Additionally, tests can be
created that specifically test features that should be supported like classes and properties.
Moreover, the LLM can be instructed to include a deadlock or not.

Given the stochastic nature of LLMs, not every generated test case will adhere to the
rules that have been set and may not even compile. Additionally, instructing an LLM to
create code that deadlocks doesn’t guarantee that it actually does. Therefore, some checks
need to be done on the tests. This is done by compiling and running tests individually. If
the test does not compile or generates a runtime error it is classified as unfit. If the test
run takes longer than 10 seconds, it is classified as a test that deadlocks. Given that the
tests do not make IO operations and don’t do heavy computations and, assuming that the
LLM does not create an infinite loop, 10 seconds should be enough for a program to finish.
However, keep in mind that when a program does finish within 10 seconds, it does not
automatically mean that there is no deadlock. As shown in section 5.1 a deadlock can occur
non-deterministically. Therefore, when a program does finish within 10 seconds and the
prompt instructed the LLM to not include a deadlock, we will assume it is deadlock-free.
In contradicting cases manual inspection is required.

5.5.2 The benchmark

The transformer GPT-4o has been used to generate the test set. [25] The prompt, used to
generate the tests, specifically names Kotlin features to include and not to include. For each
prompt a few random integers are generated to specify the number of functions, classes,
coroutines, and channels. This helps to create a variety of tests in terms of size and com-

38

5.5. Validation: Accuracy

plexity. The prompt template used to generate the tests is displayed in appendix A. The
generated test set can be found in a public repository [4].

5.5.3 Testing errors

In the process of generating, validating, and applying tests, errors can occur. Table 5.1
shows the error count per error type for all tests. The following errors can occur during a
test:

• KotlinCompileError indicates that the test sample does not compile and means that
the LLM created an invalid test.

• KotlinRuntimeError indicates that during the initial deadlock check by running the
sample a runtime error occurred. This suggests as well that the test is invalid.

• GraphError means that an error occurred during the creation and manipulation of
the deadlock graph. This can arise when certain complex Kotlin constructs that were
not part of the prototype design happen to be part of the test. Or it could indicate a
bug in the prototype implementation.

• WriteToPromelaError occurs during the phase where a model is converted to actual
Promela code. Note that since multiple models can be extracted from one code base,
this error can occur per extracted model per test. Usually, this error indicates that
a certain reference is not resolved correctly. This can happen when a property is
initialized by a complex expression like try/catch or if/else (yes, if/else can be an
expression in Kotlin).

• InvalidModelError occurs during SPIN execution and means that there is a Promela
compile error. Basically, it means that there is a syntactic or type error in the provided
Promela model.

• UnknownResultError occurs after SPIN execution and means that the provided out-
put by SPIN is not recognised.

• Success means that there was no error and that the test has been classified.

5.5.4 Results

This section presents the accuracy results. The results are summarized in a confusion matrix
(table 5.2) including True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN). It should be noted that the ground truth for negative cases may deviate
due to non-deterministic deadlock cases. More precisely, a code sample might have an
execution order that leads to a deadlock. However, during the validation of the test case, the
sample finished with another execution order.

From the results, it immediately stands out that there is a relatively large number of false
positives. Upon closer examination of the false positive cases, a recurring pattern emerged:

39

5. STATIC DEADLOCK DETECTION

Table 5.1: Count of errors per error type for all tests.

Error Type Count
KotlinCompileError 85
KotlinRuntimeError 17
GraphError 45
WriteToPromelaError 4
InvalidModelError 12
UnknownResultError 0
Success 837
Total 1000

Table 5.2: Confusion matrix for a total of
837 successful tests, the following numbers
are displayed: true and false positive counts
(left column), true and false negative counts
(right column).

Predicted
Yes No

A
ct Yes 470 67

No 116 184

Table 5.3: The fraction of correctly clas-
sified tests. Yes: T P/(T P + FN), No:
T N/(T N+FP). These values are given for:
all tests, tests with loops, and tests without
loops.

Deadlock All Loops No loops
Yes 0.875 0.806 0.920
No 0.613 0.476 0.841

the majority of these tests contained loops. To better illustrate the impact that loops have
on the performance of our prototype, two additional confusion matrices are presented that
display the results both with loops (table 5.4) and without loops (table 5.5).

When loops are present, the performance of the analysis technique degrades for both
negative and positive cases. In contrast, tests without loops perform substantially better.
The three confusion matrices are, however, hard to compare due to a different number in
ground truth values. Therefore, we present table 5.3. This table provides a clearer overview
of the influence loops have on prediction, by displaying the ratio of correctly classified cases
per label (yes or no), per test set (All, Loops, and No loops).

The reason for this gap in performance is that the prototype does not support conditional
branching like if/else and loops. It captures all statements and expressions from the body of
the loop and adds them to the model, as if the body of the loop was a part of the body of the
function without the loop. Effectively, taking the loop out of the loop. Therefore, the body
of the loop only runs once. If this body contained a send or receive operation, we possibly
model the wrong number of operations made on this channel, resulting in false positives.

Other false positives and false negatives can result from the model checker timing out,
bugs in the prototype implementation, or the presence of certain constructs in the Kotlin
language that were not intended to be part of the test.

40

5.6. Validation: Scalability

Table 5.4: Confusion matrix for 398 tests
that contain loops.

Predicted
Yes No

A
ct Yes 170 41

No 98 89

Table 5.5: Confusion matrix for 439 that do
not contain loops.

Predicted
Yes No

A
ct Yes 300 26

No 18 95

5.5.5 Threats to validity

While we believe the method of measuring accuracy gives good insight into the capabilities
of the proposed prototype, there are some obvious flaws to this method. First of all, there
is no accurate ground truth. While we can say with some confidence that a case labelled
as deadlock is in fact a deadlock, due to the small sizes of the programs they should not be
able to take longer than 10 seconds to execute. However, cases that are labelled as deadlock-
free might still deadlock due to non-determinism. Moreover, recognizing deadlocks with a
human eye is challenging and error-prone. While this emphasizes the need of a deadlock
detector, it makes it difficult to accurately validate them.

Secondly, while using an LLM to create a controlled environment allowed us to validate
the prototype, it probably created a biased environment only representing a subset of real
world scenarios. Nevertheless, we are confident that this method has given us valuable
insight into the capabilities and shortcomings of the prototype.

5.6 Validation: Scalability

In this section, we will go into detail about the scalability of the prototype. In other words,
how does it perform on bigger repositories.

5.6.1 Method

Due to the constraints of the prototype, it is challenging to run it on large repositories since
we have no control over what language features it contains. Nevertheless, it is important to
prove that: it can detect a deadlock in a large real world repository, and it completes within a
reasonable time. Therefore, from the list of the runBlocking test repositories (section 4.4),
we selected the biggest repository with channels that the prototype successfully extracts
models from. The selected repository is DuckDuckGo [12]. This repository has 351k lines
of code and uses channels and coroutines for parts of their concurrency needs.

To validate that a deadlock can be detected in this repository, a deadlock bug is seeded
[1].

5.6.2 Results

The prototype has extracted 18 models from the DuckDuckGo code base of which 15 were
valid. One of these models correctly predicted our seeded deadlock.

41

5. STATIC DEADLOCK DETECTION

Table 5.6: Execution time per phase for an average of three executions on the DuckDuckGo
repository.

Phase Time (s)
Graph initialization 108.12 s
Reference linking 1.10 s
Un-nesting 0.29 s
Pruning 0.09 s
Generating and verifying models 13.20 s
Total 122.80 s

Table 5.6 presents the (averaged) duration of each phase discussed in section 5.3. It is
clear that the initialization phase takes the longest, the reason for this is the many accesses
the PSI system leading to reads from disk. Validating 15 models took around 13 seconds.

5.7 Discussion and Future work

While having shown that the prototype works successfully within the confines of its design,
it is clear that there are many painpoints that need to be addressed before it can become a
useful tool.

First and foremost, the prototype fails before classification on most open source repos-
itories. Often due to encountering unknown constructs or missing references. Efforts have
been made that allow the process to continue even when encountering these cases. However,
an improvement in the implementation would be appropriate.

Secondly, supporting more language features like conditional branching and mutability
is a logical next step, with priority for loops. Modelling these constructs in Promela has been
addressed before by GOMELA [11]. This approach, however, considers if/else constructs as
statements while Kotlin allows them to be expressions as well. This poses new challenges
that will have to be explored further.

Third, deadlocks can happen with more than only channels. Mutexes, semaphores,
joins, and coroutineScope are all primitives that synchronize coroutines and can partake
in a deadlock. Therefore, supporting these constructs should improve the accuracy of the
proposed tool as well. There is a similarity between channels and mutexes and the imple-
mentation of these constructs has been tackled by GOMELA as well.

Lastly, warning that a deadlock possibly occurs in a repository of 350,000 lines is not
very helpful. For this tool to become useful we need to provide the developer with feedback
about the elements involved in the deadlock and how it got to that state. Luckily, SPIN
provides a trail that can be used to deduce the steps taken that ended up at the deadlocked
state. This trail, however, references the Promela model and not the Kotlin code. Therefore,
transforming this trail such that it is understandable in the context of the Kotlin codebase
poses a new challenge as well.

42

Chapter 6

Conclusion

This is the first work that addresses deadlocks in Kotlin coroutines. Two static analysis tools
have been proposed: one tool that tackles the nested runBlocking antipattern, and one tool
that represents the first steps towards a general deadlock detection tool for Kotlin.

The runBlocking tool successfully detected problems in open source repositories, which
lead to their resolution. Moreover, the runBlocking analysis has been integrated in JetBrains
flagship IDE: IntelliJ IDEA.

The prototype for static deadlock detection has demonstrated to be effective within the
confines of its design. Two novel contributions allowed the prototype to model classes, at-
tributes, and methods in Promela. We believe this prototype to be a significant step towards
general deadlock detection for Kotlin coroutines.

43

Bibliography

[1] Bob Brockbernd. Deadlock bug seed in duckduckgo repo, 2024. URL
https://github.com/duckduckgo/Android/commit/50195a32e8b44c6eef
6383ba39e28610a4683ed9.

[2] Bob Brockbernd. [bug] runblocking calls from inside coroutine, Apr 2024. URL
https://github.com/duckduckgo/Android/issues/4409.

[3] Bob Brockbernd. Fix runblocking in coroutines, Apr 2024. URL https://github.c
om/home-assistant/android/pull/4340.

[4] Bob Brockbernd. Deadlock test repository, 2024. URL https://github.com/bbr
ockbernd/DeadlockTestRepo.

[5] Bob Brockbernd. Runblocking inspection implementation, Jun 2024. URL
https://github.com/JetBrains/intellij-community/commit/ea8296d
53925ec87ddbee66f37412793d3fbdb14.

[6] Bob Brockbernd, Nikita Koval, Arie van Deursen, and Burcu Kulahcioglu Ozkan.
Understanding concurrency bugs in real-world programs with kotlin coroutines. In
38th European Conference on Object-Oriented Programming (ECOOP 2024). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

[7] James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich. A compo-
sitional deadlock detector for android java. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 955–966. IEEE, 2021.

[8] Sam Cooper. How I fell in Kotlin’s runblocking deadlock trap, and how you can avoid
it, Oct 2023. URL https://betterprogramming.pub/how-i-fell-in-kotlins
-runblocking-deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1.

[9] Sjoerd Cranen, Jan Friso Groote, Jeroen JA Keiren, Frank PM Stappers, Erik P
De Vink, Wieger Wesselink, and Tim AC Willemse. An overview of the mcrl2 toolset
and its recent advances. In Tools and Algorithms for the Construction and Analysis of
Systems: 19th International Conference, TACAS 2013, Held as Part of the European

45

https://github.com/duckduckgo/Android/commit/50195a32e8b44c6eef6383ba39e28610a4683ed9
https://github.com/duckduckgo/Android/commit/50195a32e8b44c6eef6383ba39e28610a4683ed9
https://github.com/duckduckgo/Android/issues/4409
https://github.com/home-assistant/android/pull/4340
https://github.com/home-assistant/android/pull/4340
https://github.com/bbrockbernd/DeadlockTestRepo
https://github.com/bbrockbernd/DeadlockTestRepo
https://github.com/JetBrains/intellij-community/commit/ea8296d53925ec87ddbee66f37412793d3fbdb14
https://github.com/JetBrains/intellij-community/commit/ea8296d53925ec87ddbee66f37412793d3fbdb14
https://betterprogramming.pub/how-i-fell-in-kotlins-runblocking-deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1
https://betterprogramming.pub/how-i-fell-in-kotlins-runblocking-deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1

BIBLIOGRAPHY

Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings 19, pages 199–213. Springer, 2013.

[10] Nicolas Dilley and Julien Lange. Bounded verification of message-passing concur-
rency in go using promela and spin. arXiv preprint arXiv:2004.01323, 2020.

[11] Nicolas Dilley and Julien Lange. Automated verification of go programs via bounded
model checking. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1016–1027. IEEE, 2021.

[12] DuckDuckGo. Duckduckgo android repository, 2024. URL https://github.com/d
uckduckgo/Android.

[13] Roman Elizarov. Deadlocks in non-hierarchical csp, Jan 2019. URL https://eliz
arov.medium.com/deadlocks-in-non-hierarchical-csp-e5910d137cc.

[14] Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin corou-
tines: design and implementation. In Proceedings of the 2021 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pages 68–84, 2021.

[15] Mahdi Eslamimehr and Jens Palsberg. Sherlock: scalable deadlock detection for con-
current programs. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 353–365, 2014.

[16] Google. Processes and threads overview, June 2023. URL https://developer.an
droid.com/guide/components/processes-and-threads.html.

[17] Hans Hüttel, Ivan Lanese, Vasco T Vasconcelos, Luı́s Caires, Marco Carbone, Pierre-
Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto,
et al. Foundations of session types and behavioural contracts. ACM Computing Sur-
veys (CSUR), 49(1):1–36, 2016.

[18] Nikita Koval, Dmitry Tsitelov, and Roman Elizarov. Dl-check: Dynamic potential
deadlock detection tool for java programs. In Tools and Methods of Program Analysis:
4th International Conference, TMPA 2017, Moscow, Russia, March 3-4, 2017, Revised
Selected Papers 4, pages 64–76. Springer, 2018.

[19] Nikita Koval, Dan Alistarh, and Roman Elizarov. Fast and scalable channels in kotlin
coroutines. In Maryam Mehri Dehnavi, Milind Kulkarni, and Sriram Krishnamoorthy,
editors, Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, PPoPP 2023, Montreal, QC, Canada, 25 February
2023 - 1 March 2023, pages 107–118. ACM, 2023. doi: 10.1145/3572848.3577481.
URL https://doi.org/10.1145/3572848.3577481.

[20] Nikita Koval, Alexander Fedorov, Maria Sokolova, Dmitry Tsitelov, and Dan Alistarh.
Lincheck: A practical framework for testing concurrent data structures on jvm. In
International Conference on Computer Aided Verification, pages 156–169. Springer,
2023.

46

https://github.com/duckduckgo/Android
https://github.com/duckduckgo/Android
https://elizarov.medium.com/deadlocks-in-non-hierarchical-csp-e5910d137cc
https://elizarov.medium.com/deadlocks-in-non-hierarchical-csp-e5910d137cc
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
https://doi.org/10.1145/3572848.3577481

Bibliography

[21] Bell Labs. Verifying multi-threaded software with spin. URL https://spinroot.c
om/spin/whatispin.html. Accessed: 2024-10.

[22] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verifica-
tion framework for message passing in go using behavioural types. In Proceedings of
the 40th International Conference on Software Engineering, pages 1137–1148, 2018.

[23] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static dead-
lock detection. In 2009 IEEE 31st International Conference on Software Engineering,
pages 386–396. IEEE, 2009.

[24] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent go by
global session graph synthesis. In Proceedings of the 25th International Conference
on Compiler Construction, pages 174–184, 2016.

[25] OpenAI. Hello gpt-4o, May 2024. URL https://openai.com/index/hello-gpt
-4o/.

[26] R Rajesh Kumar, Vivek Shanbhag, and KV Dinesha. Automated deadlock detec-
tion for large java libraries. In Distributed Computing and Internet Technology: 17th
International Conference, ICDCIT 2021, Bhubaneswar, India, January 7–10, 2021,
Proceedings 17, pages 129–144. Springer, 2021.

[27] Malavika Samak and Murali Krishna Ramanathan. Multithreaded test synthesis for
deadlock detection. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, pages 473–489,
2014.

[28] Anirudh Santhiar and Aditya Kanade. Static deadlock detection for asynchronous c#
programs. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 292–305, 2017.

[29] Vivek K Shanbhag. Deadlock-detection in java-library using static-analysis. In 2008
15th Asia-Pacific Software Engineering Conference, pages 361–368. IEEE, 2008.

[30] Martin Sústrik. Structured concurrency, Feb 2016. URL https://250bpm.com/blo
g:71/.

[31] Dmitry Tsitelov. Data race detector, 2017. URL https://opensource.devexpert
s.com/display/DRD.

47

https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://250bpm.com/blog:71/
https://250bpm.com/blog:71/
https://opensource.devexperts.com/display/DRD
https://opensource.devexperts.com/display/DRD

Appendix A

Prompt

The prompt used to generate the test cases for the validation of the static deadlock detection.
The ${} expressions inject a value into the prompt. This allows for variation in number of
function channels etc.

I need to test a channel deadlock detection algorithm for Kotlin coroutines.
I want you to create a test sample that ${dlString} contain a DEADLOCK.
The deadlock (if any) should arise from channels and coroutines.
I want the example to consist of:
- ${config.nFunctions} different functions
- ${config.nChannels} different channels
- ${config.nCoroutines} different coroutines
- ${config.nClasses} different classes

You ARE ALLOWED to use basic Kotlin constructs and coroutine primitives.
A few examples are:
- functions and suspend functions
- dot qualified expressions
- class properties
- local variables
- unbuffered and buffered channels
- channel init, send and receive
- return values
- function composition (nested calls)
- runBlocking and launch builder
- coroutineScope

You ARE NOT ALLOWED to use more complex features like:
- joins
- async builder
- lists, arrays or other datastructures
- mutability

49

A. PROMPT

- nullability
- for (i in channel)
- flow
- lateinit
- lazyval
- inheritance
- lambdas with arguments
- mutexes

50

	Preface
	Contents
	List of Figures
	Introduction
	Related Work
	Deadlock detection for JVM
	Deadlock detection for C#
	Deadlock detection for Go

	Background
	Coroutine builders
	Suspend function
	Coroutine scope
	Dispatchers
	Channels

	RunBlocking analysis
	The runBlocking problem
	Solution
	Implementation of runBlocking analysis
	Validation
	Discussion and future work

	Static Deadlock Detection
	Channel Deadlocks
	Expressing Kotlin in Promela
	Translating Kotlin to Promela
	SPIN model verification
	Validation: Accuracy
	Validation: Scalability
	Discussion and Future work

	Conclusion
	Bibliography
	Prompt

