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 A B S T R A C T

Given a mild solution 𝑋 to a semilinear stochastic partial differential equation (SPDE), we 
consider an exponential change of measure based on its infinitesimal generator 𝐿, defined in 
the topology of bounded pointwise convergence. The changed measure Pℎ depends on the choice 
of a function ℎ in the domain of 𝐿. In our main result, we derive conditions on ℎ for which 
the change of measure is of Girsanov-type. The process 𝑋 under Pℎ is then shown to be a mild 
solution to another SPDE with an extra additive drift-term. We illustrate how different choices 
of ℎ impact the law of 𝑋 under Pℎ in selected applications. These include the derivation of an 
infinite-dimensional diffusion bridge as well as the introduction of guided processes for SPDEs, 
generalizing results known for finite-dimensional diffusion processes to the infinite-dimensional 
case.

1. Introduction

Consider a semilinear stochastic partial differential equation (SPDE) of the form 
{

d𝑋(𝑡) = [𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡))] d𝑡 +
√

𝑄d𝑊 (𝑡), 𝑡 ≥ 𝑠,
𝑋(𝑠) = 𝑥.

(1)

The operator 𝐴 denotes the generator of a strongly continuous semigroup (𝑆𝑡)𝑡≥0 on a Hilbert space 𝐻 , whereas 𝐹  denotes a non-
linear operator and 𝑄 is a symmetric, positive operator on 𝐻 . The process 𝑊  is a cylindrical Wiener process on 𝐻 , defined on a 
stochastic basis (𝛺, , (𝑡)𝑡≥0,P). We assume that the operators 𝐴, 𝐹  and 𝑄 satisfy suitable conditions such that Eq.  (1) admits a 
unique mild solution 𝑋 = (𝑋(𝑡, 𝑠, 𝑥))𝑡≥𝑠 for any 𝑠 ≥ 0 and 𝑥 ∈ 𝐻 . Throughout the article we fix some arbitrary 𝑥0 ∈ 𝐻 and simply 
write 𝑋(𝑡) if the SPDE in (1) is assumed to be initialized at 𝑋(0) = 𝑥0.

For any 𝑚 ∈ N, let 𝐶𝑚(R+ × 𝐻) be the Banach space of continuous functions 𝜑 ∶ R+ × 𝐻 → R such that ‖𝜑‖𝑚 = sup𝑡,𝑥(1 +
‖𝑥‖𝑚)−1|𝜑(𝑡, 𝑥)| <∞. The process 𝑋 is Markovian and defines a transition semigroup

(𝑇𝑡𝜑)(𝑠, 𝑥) = E[𝜑(𝑠 + 𝑡, 𝑋(𝑡 + 𝑠, 𝑠, 𝑥))], 𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝐻,

on 𝐶𝑚(R+×𝐻). It is well-known that the semigroup (𝑇𝑡)𝑡≥0 is not strongly continuous with respect to the norm topology on 𝐶𝑚(R+×𝐻), 
see e.g. Cerrai [1] and Da Prato [2]. However, it does possess the properties of a strongly continuous semigroup in several weaker 
‘modes of convergence’. This has been studied in the framework of -convergence in Cerrai [1,3] and Cerrai and Gozzi [4], the mixed 
topology in Goldys and Kocan [5] and of bp- (bounded pointwise) or 𝜋- convergence in Priola [6]. See also Fabbri et al. [7], Appendix 
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B for a recent survey. In the respective convergence of choice, one can then define an infinitesimal generator (𝐿, dom𝑚(𝐿)) of the 
semigroup (𝑇𝑡)𝑡≥0 in the usual way. In this article, we will work within the framework of 𝜋-convergence as introduced in Priola [6].

Crucially, the operator (𝐿, dom𝑚(𝐿)) exhibits the common properties that are characteristic for infinitesimal generators of strongly 
continuous semigroups. Of particular importance for us is the fact that Dynkin’s formula holds, i.e. for any ℎ ∈ (𝐿, dom𝑚(𝐿)) the 
process

𝐷ℎ(𝑡) = ℎ(𝑡, 𝑋(𝑡)) − ∫

𝑡

0
𝐿ℎ(𝑠,𝑋(𝑠)) d𝑠

is a P-martingale. In other words, 𝑋 solves the martingale problem of (𝐿, dom𝑚(𝐿)) as introduced in Stroock and Varadhan [8]. 
Furthermore, one can show that for any positive ℎ ∈ dom𝑚(𝐿), the process

𝐸ℎ(𝑡) =
ℎ(𝑡, 𝑋(𝑡))
ℎ(0, 𝑥0)

exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

, 𝑡 ≥ 0,

whenever existent, is a positive, continuous local P-martingale with E[𝐸ℎ(0)] = 1. If 𝐸ℎ is a true P-martingale, it defines an exponential 
change of measure Pℎ on  such that for any 𝑡 ≥ 0

dPℎ∣𝑡 = 𝐸ℎ(𝑡)dP∣𝑡 . (2)

The change of measure Pℎ is well-known in the literature for Markov processes, see Palmowski and Rolski [9] and references within. 
If the function ℎ is harmonic, i.e. 𝐿ℎ = 0, it is known as Doob’s h-transform, following its introduction in Doob [10]. In Palmowski 
and Rolski [9] it was shown that 𝑋 remains Markovian under Pℎ and solves the martingale problem corresponding to a perturbation 
of 𝐿.

In this article we aim to establish conditions on the ℎ-function under which 𝑋 is not only Markovian under the changed measure, 
but again the mild solution of another SPDE, differing from Eq.  (1) by an additional drift-term dependent on ℎ. This can be viewed 
as a special case in which Pℎ is a Girsanov-type change of measure. In this spirit, we show the following as the main result of this 
paper.

Theorem 1.1 (Informal).  Under suitable assumptions on ℎ ∈ dom𝑚(𝐿), there exists a unique measure Pℎ on (𝛺, , (𝑡)𝑡≥0) that satisfies 
(2). Furthermore, the process

𝑊 ℎ(𝑡) = 𝑊 (𝑡) − ∫

𝑡

0

√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)) d𝑠, 𝑡 ∈ [0, 𝑇 ],

is a cylindrical Wiener process with respect to Pℎ. In particular, 𝑋 under Pℎ solves the SPDE
d𝑋(𝑡) =

[

𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡)) +𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))
]

d𝑡 +
√

𝑄d𝑊 ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ].

1.1. Approach and challenges

Let us demonstrate our approach on how to derive Theorem  1.1 in the case that 𝐻 = R𝑑 . Eq. (1) then describes a stochastic 
ordinary differential equation (SODE) 

d𝑥(𝑡) = 𝑏(𝑡, 𝑥(𝑡))d𝑡 +
√

𝑞d𝑤(𝑡), (3)

where 𝑏 is some Lipschitz continuous function, 𝑞 is a symmetric positive definite matrix and 𝑤 is an R𝑑 -valued Wiener process. 
Let ℎ ∈ 𝐶1,2

𝑏 (R+ × R𝑑 ) be differentiable with bounded derivatives. An application of Itô’s formula then gives that ℎ(𝑡, 𝑥(𝑡)) is the 
semimartingale given by

ℎ(𝑡, 𝑥(𝑡)) = ℎ(0, 𝑥0) + ∫

𝑡

0
𝐿0ℎ(𝑠, 𝑥(𝑠)) d𝑠 + ∫

𝑡

0
⟨

√

𝑞D𝑥ℎ(𝑠, 𝑥(𝑠)), d𝑤(𝑠)⟩,

where 𝐿0 is the Kolmogorov operator associated with Eq. (3), defined via

(𝐿0ℎ)(𝑡, 𝑥) = 𝜕𝑡ℎ(𝑡, 𝑥) + ⟨𝑏(𝑡, 𝑥),D𝑥ℎ(𝑡, 𝑥)⟩ +
1
2
tr[𝑞D2

𝑥ℎ(𝑡, 𝑥)].

From this, one can conclude that ℎ ∈ dom𝑚(𝐿) with 𝐿ℎ = 𝐿0ℎ and Dynkin martingale 𝐷ℎ given by

𝐷ℎ(𝑡) = ℎ(0, 𝑥0) + ∫

𝑡

0
⟨

√

𝑞D𝑥ℎ(𝑠, 𝑥(𝑠)), d𝑤(𝑠)⟩.

An application of the integration by parts formula for semimartingales then shows that the local martingale 𝐸ℎ equals the stochastic 
exponential

𝐸ℎ(𝑡) = exp
(

𝑀ℎ(𝑡) − 1
2
[

𝑀ℎ]
𝑡

)

of the Itô process 𝑀ℎ(𝑡) = ∫ 𝑡0 ⟨
√

𝑞D𝑥 logℎ(𝑠, 𝑥(𝑠)), d𝑤(𝑠)⟩. Therefore, if 𝐸ℎ is a true martingale, the Girsanov theorem implies that the 
process 𝑤ℎ(𝑡) = 𝑤(𝑡) − ∫ 𝑡0

√

𝑞D𝑥 logℎ(𝑠, 𝑥(𝑠)) d𝑠 is a Wiener process under Pℎ and that 𝑥 solves the SODE
d𝑥(𝑡) = 𝑏(𝑡, 𝑥(𝑡))d𝑡 + 𝑞D logℎ(𝑡, 𝑥(𝑡))d𝑡 +

√

𝑞d𝑤ℎ(𝑡).
𝑥

2 
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We face two key challenges when generalizing this approach to the setting of an infinite-dimensional Hilbert space 𝐻 . Firstly, since 
𝐴 is an unbounded operator on 𝐻 , we generally cannot expect the SPDE (1) to admit a strong solution. This renders any direct 
application of Itô’s formula infeasible and even for smooth functions ℎ, the process ℎ(𝑡, 𝑋(𝑡)) is in general not a semimartingale.

We circumvent this issue by approximating 𝑋 by a sequence of strong solutions 𝑋𝑛 that satisfy Eq. (1) when substituting 𝐴 by 
its Yosida approximations (𝐴𝑛)𝑛. Under suitable assumptions on ℎ, one can then approximate the process ℎ(𝑡, 𝑋(𝑡)) by the sequence 
of semimartingales ℎ(𝑡, 𝑋𝑛(𝑡)) for which Itô’s formula is applicable.

Secondly, consider the Kolmogorov operator

(𝐿0𝜑)(𝑡, 𝑥) = 𝜕𝑡𝜑(𝑡, 𝑥) + ⟨𝐴𝑥 + 𝐹 (𝑡, 𝑥),D𝑥𝜑(𝑡, 𝑥)⟩ +
1
2
tr[𝑄D2

𝑥𝜑(𝑡, 𝑥)]

associated with the SPDE (1). In order for 𝐿0𝜑 to be a well-defined and continuous function on R+×𝐻 , besides the usual smoothness 
properties of 𝜑, one requires that there exists a continuous extension of the mapping

R+ × dom(𝐴) → R, (𝑡, 𝑥) ↦ ⟨𝐴𝑥,D𝑥𝜑(𝑡, 𝑥)⟩.

This severely limits the class of functions for which 𝐿0𝜑 is a well-defined differential operator and substantial work has been done to 
construct suitable spaces of test functions for Kolmogorov operators in infinite dimensions, see Da Prato [2] and references within.

In particular, for most of our applications, the ℎ-functions of interest cannot be expected to be in the domain of 𝐿0. However, 
in Manca [11,12] it is shown that the space of exponential test functions 𝐴(R+ ×𝐻), defined as the real and imaginary parts of the 
functions

R+ ×𝐻 → R, (𝑠, 𝑥) ↦ exp(𝑖(⟨𝑥, 𝑎⟩ + 𝑐𝑠)), 𝑎 ∈ dom(𝐴∗), 𝑐 ∈ R,

acts as a core for the infinitesimal generator (𝐿, dom𝑚(𝐿)) with respect to 𝜋-convergence. Therefore, under the weaker assumption 
that ℎ ∈ dom𝑚(𝐿), we may approximate ℎ with a sequence of suitable test functions (ℎ𝑛)𝑛 ⊂ 𝐴(R+ × 𝐻) for which 𝐿0ℎ𝑛 remains 
well-defined.

1.2. Related work and applications

In applications of the exponential change of measure 𝐸ℎ, one chooses a suitable ℎ-function such that 𝑋 under Pℎ exhibits certain 
desired properties. A well-known application from the finite-dimensional setting is the derivation of diffusion bridges that describe 
the process 𝑥 conditioned on hitting an endpoint 𝑥(𝑇 ) = 𝑦 ∈ R𝑑 . An application of our results lifts this to the infinite-dimensional 
case, thereby allowing us to derive an equation for the infinite-dimensional diffusion bridge (or SPDE bridge).

To the best of our knowledge, the existing literature on infinite-dimensional bridges is limited to the case where 𝐹 ≡ 0. This 
ensures mild solutions are Gaussian processes, which leads to an explicit expression for the SPDE bridge, also called an Ornstein–
Uhlenbeck (OU) bridge in this case. Simāo [13] shows that an infinite system of one-dimensional OU bridges defines an OU bridge 
on a Hilbert space. In a more general, non-diagonal setting, Goldys and Maslowski [14] derive an equation for the OU bridge and 
apply it to study basic properties of transition semigroups for semilinear SPDEs. More recently, Di Nunno et al. [15] consider a 
linear stochastic reaction–diffusion equation on a bounded domain where the process is conditioned on a noisy observation at time 
𝑇 . A general framework for the spatial discretization of these bridge processes is developed.

Our approach via the change of measure 𝐸ℎ is more general. In the specific case that ℎ(𝑡, 𝑥) = 𝑝(𝑡, 𝑥; 𝑇 , 𝑦), with 𝑝 the transition 
density of the process with respect to an appropriately chosen reference measure, it gives rise to the infinite-dimensional diffusion 
bridge that conditions the process to hit 𝑦 at time 𝑇 . Our results allow for other choices of ℎ, for example ℎ(𝑡, 𝑥) = �̃�(𝑡, 𝑥; 𝑇 , 𝑦), where 
̃ is the transition density of the SPDE without the nonlinearity. The resulting process is called a guided process, analogous to the 
finite-dimensional setting introduced in Schauer et al. [16]. The guided process is different from the conditioned process, but it 
mimics properties of that process, though the extra term in the drift ignores the nonlinearity. Contrary to 𝑝, the transition density �̃�
is explicitly known. Therefore, the SPDE for the guided process can be numerically approximated. Taking into account the likelihood 
ratio of distribution of the true conditioned process with respect to the guided process, weighted samples of the conditioned process 
are obtained. It is exactly this approach which has been proposed in earlier works in the simpler setting of stochastic ordinary 
differential equations (see, for instance, Schauer et al. [16], Delyon and Hu [17], Bierkens et al. [18] and applications in Mider 
et al. [19]). The results in this paper prove the existence of the guided process as the mild solution to a particular SPDE.

Another application that we consider is that of forcing the process so that its marginal distribution at time 𝑇  is fixed to a specified 
distribution. This extends the results for the finite-dimensional case considered in Baudoxin [20].

1.3. Outline

We provide an overview of the needed preliminaries in Section 2. Particular attention will be given to semigroups that are 
strongly continuous with respect to 𝜋-convergence as well as their infinitesimal generators. In Section 3, we present, in a detailed 
manner, the main result of this paper and its proof. Additionally, a modified version is given for the special case that the change 
of measure is limited to a finite time horizon. We showcase some applications of the main result in Section 4. These include the 
derivations of the infinite-dimensional diffusion bridge and the forced process as well as the guided process.
3 
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2. Preliminaries

2.1. On the stochastic basis

We assume to be working on the stochastic basis (𝛺, , (𝑡)𝑡≥0,P) defined as follows. Let 𝐻 be some Hilbert space, embedded 
in another Hilbert space 𝐻 ′ such that the embedding 𝐽 ∶ 𝐻 ↪ 𝐻 ′ is a Hilbert–Schmidt operator. Note that in particular, 𝐽𝐽 ∗ is a 
positive definite trace-class operator on 𝐻 ′. Define 𝛺 = 𝐶(R+;𝐻 ′) as the space of all continuous functions from R+ to 𝐻 ′ equipped 
with the metric

𝑑(𝜔, �̃�) =
∞
∑

𝑛=1

1
2𝑛

‖𝜔 − �̃�‖𝑛
1 + ‖𝜔 − �̃�‖𝑛

,

where ‖𝜔 − �̃�‖𝑛 = sup𝑡∈[0,𝑛] |𝜔(𝑡) − �̃�(𝑡)|. Then (𝛺, 𝑑) is a Polish space and we denote by  the Borel 𝜎-algebra of (𝛺, 𝑑).
On (𝛺, ) define the canonical process 𝜂 ∶ R+ × 𝛺 → 𝐻 ′, 𝜂𝑡(𝜔) = 𝜔(𝑡) and let (𝑡)𝑡≥0 be the right-continuous extension of the 

natural filtration of 𝜂𝑡, i.e. 𝑡 =
⋂

𝜀>0 𝜎(𝜂𝑠 ∶ 𝑠 ≤ 𝑡 + 𝜖) for any 𝑡 ≥ 0. By the Kolmogorov extension theorem, there exists a Gaussian 
measure P on (𝛺, , (𝑡)𝑡≥0) such that, under P, the canonical process 𝜂 is a Wiener process on 𝐻 ′ with covariance operator 𝐽𝐽 ∗. In 
particular, 𝜂 is a cylindrical Wiener process on 𝐻 .

Denote by P𝑡 the restriction of P onto 𝑡 for any 𝑡 ≥ 0. We will need the following result (see Stroock [21], Lemma 4.2). 

Lemma 2.1.  Let (𝐸(𝑡))𝑡≥0 be a non-negative martingale on (𝛺, , (𝑡)𝑡≥0,P) with E[𝐸(0)] = 1. Then there exists a unique measure Q on 
 such that dQ𝑡 = 𝐸(𝑡)dP𝑡 for all 𝑡 ≥ 0.

Remark 2.2.  Note that Lemma  2.1 does not give absolute continuity of Q with respect to P. However, under the stronger assumption 
that 𝐸 is a uniformly integrable martingale, it can be shown that Q is absolutely continuous with respect to P on  with dQ = 𝐸∞dP, 
where 𝐸∞ is the unique random variable such that 𝐸(𝑡) = E

[

𝐸∞ ∣ 𝑡
] for all 𝑡 ≥ 0.

In many applications the martingale 𝐸 is only defined on some half-open interval 𝑡 ∈ [0, 𝑇 ). In that circumstance, the following 
variation of Lemma  2.1 will be useful. 

Lemma 2.3.  Let (𝐸(𝑡))𝑡∈[0,𝑇 ) be a non-negative martingale on (𝛺, , (𝑡)𝑡∈[0,𝑇 ),P) with E[𝐸(0)] = 1. Then there exists a unique measure 
Q on 𝑇  such that dQ𝑡 = 𝐸(𝑡)dP𝑡 for all 0 ≤ 𝑡 < 𝑇 .

Proof.  The proof is similar to that of Stroock [21], Lemma 4.2. For details, see Pieper-Sethmacher et al. [22], Appendix  A. □

2.2. On stochastic evolution equations

The following is a standing assumption on the components involved in Eq.  (1). 

Assumption 2.4. 
(i) 𝐴 is the generator of a strongly continuous semigroup (𝑆𝑡)𝑡≥0 on 𝐻 . In particular there exists a 𝐶𝑆 > 0, 𝜔𝑆 ∈ R such that 

‖𝑆𝑡‖𝐿(𝐻) ≤ 𝐶𝑆 exp(𝜔𝑆 𝑡) for all 𝑡 ≥ 0.
(ii) 𝑊  is a cylindrical Wiener process on 𝐻 .
(iii) 𝑄 is a symmetric, positive and bounded operator on 𝐻 . Furthermore, the family of operators (𝑄𝑡)𝑡≥0 defined by 

𝑄𝑡 = ∫

𝑡

0
𝑆𝑠𝑄𝑆

∗
𝑠 d𝑠 (4)

is such that sup𝑡 tr(𝑄𝑡) <∞.
(iv) 𝐹  is such that there exists a constant 𝐶𝐹 > 0 with

‖𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑦)‖ ≤ 𝐶𝐹 ‖𝑥 − 𝑦‖ and ‖𝐹 (𝑡, 𝑥)‖ ≤ 𝐶𝐹 (1 + ‖𝑥‖)

for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ 𝐻 .

Under Assumption  2.4, Eq. (1) admits a unique mild solution 𝑋 = (𝑋(𝑡, 𝑠, 𝑥))𝑡≥𝑠 for any initial value 𝑥 ∈ 𝐻 , i.e. 𝑋 is an 𝐻-valued, 
𝑡-adapted process that satisfies 

𝑋(𝑡, 𝑠, 𝑥) = 𝑆𝑡−𝑠𝑥 + ∫

𝑡

𝑠
𝑆𝑡−𝑢𝐹 (𝑢,𝑋(𝑢, 𝑠, 𝑥)) d𝑢 + ∫

𝑡

𝑠
𝑆𝑡−𝑢

√

𝑄d𝑊 (𝑢), 𝑡 ≥ 𝑠. (5)

The process 𝑋 is Markovian and has a P-almost surely continuous modification. Furthermore, for any 𝑚 ≥ 1, there exist some 
constants 𝐶𝑚 > 0, 𝛾𝑚 ≥ 0, also depending on 𝜔𝑆 , 𝐶𝑆 , 𝐶𝐹  and 𝑄, such that 

E[‖𝑋(𝑡, 𝑠, 𝑥)‖𝑚] ≤ 𝐶 exp(𝛾 (𝑡 − 𝑠))(1 + ‖𝑥‖𝑚). (6)
𝑚 𝑚

4 
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Though bounds similar to (6) are well known results in the literature, this particular bound follows from Goldys and Kocan [5], 
Proposition 3.1. To abbreviate notation, we fix some arbitrary 𝑥0 ∈ 𝐻 and simply write 𝑋(𝑡) whenever (1) is assumed to be initialized 
at 𝑋(0) = 𝑥0.

Due to the unbounded nature of 𝐴, Eq. (1) generally does not admit a strong solution. However, one can approximate its mild 
solution with strong solutions to a sequence of substitute equations in the following way. Let (𝐴𝑛)𝑛>𝜔𝑆  be the Yosida approximation 
of 𝐴, i.e. (𝐴𝑛)𝑛>𝜔𝑆  is the sequence of bounded, linear operators on 𝐻 defined as

𝐴𝑛 = 𝑛𝐴𝑅(𝑛, 𝐴),

where 𝑅(𝑛, 𝐴) = (𝑛−𝐴)−1 is the resolvent of 𝐴. It then holds that lim𝑛 𝐴𝑛𝑥 = 𝐴𝑥 for any 𝑥 ∈ dom(𝐴) and that 𝐴𝑛 defines a semigroup 
𝑆(𝑛)
𝑡  such that lim𝑛 𝑆

(𝑛)
𝑡 𝑥 = 𝑆𝑡𝑥 for all 𝑥 ∈ 𝐻 and 

‖𝑆(𝑛)
𝑡 ‖𝐿(𝐻) ≤ 𝐶𝑆 exp

(

𝜔𝑛𝑡
)

(7)

with 𝜔𝑛 =
𝜔𝑆𝑛
𝑛 − 𝜔𝑆

. Now let 𝑋𝑛 be the strong solution to the equation 

d𝑋𝑛(𝑡) =
[

𝐴𝑛𝑋𝑛(𝑡) + 𝐹 (𝑡, 𝑋𝑛(𝑡))
]

d𝑡 +
√

𝑄d𝑊 (𝑡), 𝑋𝑛(𝑠) = 𝑥. (8)

It is well-known (see e.g. Da Prato and Zabczyk [23], Proposition 7.4) that 

lim
𝑛→∞

E
[

sup
𝑡∈[𝑠,𝑇 ]

|𝑋𝑛(𝑡) −𝑋(𝑡)|𝑝
]

= 0 (9)

for any 𝑇 > 𝑠, 𝑝 > 1 and in particular 𝑋𝑛 → 𝑋 in probability as 𝐶([𝑠, 𝑇 ];𝐻)-valued random variables.
In the special case that 𝐹 = 0, we denote the time homogeneous mild solution to Eq.  (1) by 𝑍 and refer to it as the

Ornstein–Uhlenbeck (OU) process. The random variables 𝑍(𝑡, 𝑠, 𝑥) are Gaussian with mean 𝑆𝑡−𝑠𝑥 and covariance operator 𝑄𝑡−𝑠. Under 
Assumption  2.4 (iii), 𝑍(𝑡, 𝑠, 𝑥) converges in distribution to its invariant distribution 𝜈 ∼  (0, 𝑄∞) with 

𝑄∞ = ∫

∞

0
𝑆𝑢𝑄𝑆

∗
𝑢 d𝑢. (10)

2.3. On transition semigroups and their generators on spaces of polynomial growth

Let (𝐸, | ⋅ |𝐸 ) be a Banach space. For any 𝑚 ≥ 0, we let 𝐶𝑚(R+ ×𝐻 ;𝐸) be the space of all continuous functions 𝜑 ∶ R+ ×𝐻 → 𝐸
that are bounded in 𝑡 and of at most polynomial growth of order 𝑚 in 𝑥. The space 𝐶𝑚(R+ ×𝐻 ;𝐸) is a Banach space with norm

‖𝜑‖𝑚 = sup
(𝑡,𝑥)∈R+×𝐻

|𝜑(𝑡, 𝑥)|𝐸
1 + ‖𝑥‖𝑚

.

If 𝐸 = R𝑑 , equipped with the Euclidean norm, we simply write 𝐶𝑚(R+ ×𝐻).
It follows from the inequality (6) that the time-homogeneous space–time process of 𝑋, given by 𝑌 (𝑡, (𝑠, 𝑥)) = (𝑡+ 𝑠,𝑋(𝑡+ 𝑠, 𝑠, 𝑥)), 

defines a transition semigroup (𝑇𝑡)𝑡≥0 on 𝐶𝑚(R+ ×𝐻) via 

(𝑇𝑡𝜑)(𝑠, 𝑥) = E[𝜑(𝑠 + 𝑡, 𝑋(𝑡 + 𝑠, 𝑠, 𝑥))], 𝜑 ∈ 𝐶𝑚(R+ ×𝐻), 𝑡 ≥ 0, 𝑥 ∈ 𝐻. (11)

As noted in the introduction, (𝑇𝑡)𝑡≥0 is not strongly continuous with respect to the norm topology on 𝐶𝑚(R+ ×𝐻). Instead, one has 
to turn to the weaker mode of 𝜋-convergence.

We say a sequence (𝜑𝑛)𝑛 ⊂ 𝐶𝑚(R+ ×𝐻) is 𝜋-convergent to 𝜑 ∈ 𝐶𝑚(R+ ×𝐻) and write 𝜋- lim𝑛 𝜑𝑛 = 𝜑 if
sup
𝑛

‖𝜑𝑛‖𝑚 <∞ and lim
𝑛
𝜑𝑛(𝑡, 𝑥) = 𝜑(𝑡, 𝑥) for all (𝑡, 𝑥) ∈ R+ ×𝐻.

The 𝜋-closure of a subset 𝐵 in 𝐶𝑚(R+ ×𝐻) is defined as
𝐵
𝜋
= {𝜑 ∈ 𝐶𝑚(R+ ×𝐻) ∶ ∃(𝜑𝑛)𝑛 ⊂ 𝐵 s.t. 𝜋- lim

𝑛
𝜑𝑛 = 𝜑}.

The set 𝐵 is said to be 𝜋-closed if 𝐵𝜋 = 𝐵 and 𝜋-dense if 𝐵𝜋 = 𝐶𝑚(R+×𝐻). A linear operator 𝐿 ∶ dom(𝐿) ⊂ 𝐶𝑚(R+×𝐻) → 𝐶𝑚(R+×𝐻)
is a 𝜋-closed operator if the graph {(𝜑,𝐿𝜑) ∶ 𝜑 ∈ dom(𝐿)} is 𝜋-closed in 𝐶𝑚(R+ ×𝐻) × 𝐶𝑚(R+ ×𝐻). If a subdomain 𝐷 ⊂ dom(𝐿) is 
such that for any 𝜑 ∈ dom(𝐿) there exists a sequence (𝜑𝑛)𝑛 in 𝐷 with 

𝜋- lim
𝑛
𝜑𝑛 = 𝜑 and 𝜋- lim

𝑛
𝐿𝜑𝑛 = 𝐿𝜑 (12)

we call 𝐷 a 𝜋-core for (𝐿, dom(𝐿)).
The following definition of 𝜋-semigroups is based on Priola [6]. They are exactly those semigroups that are ‘strongly continuous’ 

with respect to 𝜋-convergence. 

Definition 2.5 (𝜋-Semigroup).  Let (𝑇𝑡)𝑡≥0 be a semigroup of bounded, linear operators on 𝐶𝑚(R+ × 𝐻), 𝑚 ≥ 0. We say (𝑇𝑡)𝑡≥0 is a 
𝜋-semigroup if the following conditions hold:
5 
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(i) There exist some 𝑀 ≥ 1 and 𝜔 ∈ R such that for all 𝑡 ≥ 0

‖𝑇𝑡‖ ≤𝑀 exp(𝜔𝑡). (13)

(ii) For any 𝑡 ≥ 0 and any (𝜑𝑛)𝑛 ⊂ 𝐶𝑚(R+ ×𝐻) such that 𝜋- lim𝑛 𝜑𝑛 = 𝜑 ∈ 𝐶𝑚(R+ ×𝐻) we have 

𝜋- lim
𝑛
𝑇𝑡𝜑𝑛 = 𝑇𝑡𝜑 ∈ 𝐶𝑚(R+ ×𝐻). (14)

(iii) For any 𝜑 ∈ 𝐶𝑚(R+ ×𝐻) and (𝑠, 𝑥) ∈ R+ ×𝐻 fixed, the mapping 

[0,∞) ⟶ R, 𝑡 ↦ 𝑇𝑡𝜑(𝑠, 𝑥) (15)

is continuous.

Remark 2.6.  Note that contrary to the case of semigroups that are strongly continuous with respect to the norm topology on 
𝐶𝑚(R+ ×𝐻), condition (𝑖) needs to be assumed as it does not follow from the other conditions.

Remark 2.7.  Conditions (𝑖) and (𝑖𝑖𝑖) imply that any 𝜋-semigroup (𝑇𝑡)𝑡≥0 is ‘strongly continuous’ with respect to 𝜋-convergence, i.e. if 
(𝑡𝑛)𝑛 is a sequence such that 𝑡𝑛 ↓ 0 then

𝜋- lim
𝑛
𝑇𝑡𝑛𝜑 = 𝜑, 𝜑 ∈ 𝐶𝑚(R+ ×𝐻).

We then write 𝜋- lim𝑡↓0 𝑇𝑡𝜑 = 𝜑.

Lemma 2.8.  For any 𝑚 ≥ 0, the semigroup (𝑇𝑡)𝑡≥0 defined in (11) is a 𝜋-semigroup on 𝐶𝑚(R+ ×𝐻).

Proof.  We show that (𝑇𝑡)𝑡≥0 satisfies properties (i) to (iii) in Definition  2.5. Let 𝜑 ∈ 𝐶𝑚(R+ ×𝐻). Then it holds for any (𝑠, 𝑥) that 
|(𝑇𝑡𝜑)(𝑠, 𝑥)| ≤ E[|𝜑(𝑠 + 𝑡, 𝑋(𝑠 + 𝑡, 𝑠, 𝑥))|]

≤ ‖𝜑‖𝑚E[1 + ‖𝑋(𝑠 + 𝑡, 𝑠, 𝑥)‖𝑚]

≤ ‖𝜑‖𝑚(1 + 𝐶𝑚 exp(𝛾𝑚𝑡)(1 + ‖𝑥‖𝑚)),

(16)

where we used the definition of ‖𝜑‖𝑚 in the second and the inequality (6) in the third step. It follows that

‖𝑇𝑡𝜑‖𝑚 = sup
(𝑠,𝑥)∈R+×𝐻

|𝑇𝑡𝜑(𝑠, 𝑥)|
1 + ‖𝑥‖𝑚

≤ ‖𝜑‖𝑚 sup
(𝑠,𝑥)∈R+×𝐻

(1 + 𝐶𝑚 exp(𝛾𝑚𝑡)(1 + ‖𝑥‖𝑚))
1 + ‖𝑥‖𝑚

≤ ‖𝜑‖𝑚(1 + 𝐶𝑚) exp(𝛾𝑚𝑡)

and thus (13) holds with 𝑀 = (1 + 𝐶𝑚) and 𝜔 = 𝛾𝑚.
To show (ii), let (𝜑𝑛)𝑛 be a sequence in 𝐶𝑚(R+ × 𝐻) such that 𝜋- lim𝑛 𝜑𝑛 = 𝜑. It then follows by the dominated convergence 

theorem that
lim
𝑛
(𝑇𝑡𝜑𝑛)(𝑠, 𝑥) = lim

𝑛
E[𝜑𝑛(𝑡 + 𝑠,𝑋(𝑡 + 𝑠, 𝑠, 𝑥))]

= E[𝜑(𝑡 + 𝑠,𝑋(𝑡 + 𝑠, 𝑠, 𝑥))] = (𝑇𝑡𝜑)(𝑠, 𝑥).

Furthermore, from (16) and sup𝑛 ‖𝜑‖𝑚 < ∞ it follows that sup𝑛 ‖𝑇𝑡𝜑𝑛‖𝑚 < ∞ and therefore that 𝜋- lim𝑛 𝑇𝑡𝜑𝑛 = 𝑇𝑡𝜑. To show 
(iii), it suffices to note that continuity of 𝑡 ↦ 𝑇𝑡𝜑(𝑠, 𝑥) follows from the almost sure continuity of 𝑡 ↦ 𝑋(⋅, 𝑠, 𝑥) and dominated 
convergence. □

The infinitesimal generator of a 𝜋-semigroup is defined in a similar manner as for a strongly continuous semigroup. 

Definition 2.9.  Let (𝑇𝑡)𝑡≥0 be a 𝜋-semigroup on 𝐶𝑚(R+ ×𝐻). The infinitesimal generator 𝐿 of (𝑇𝑡)𝑡≥0 is the operator defined via 
⎧

⎪

⎨

⎪

⎩

dom𝑚(𝐿) =
{

𝜑 ∈ 𝐶𝑚(R+ ×𝐻) ∶ ∃𝜓 ∈ 𝐶𝑚(R+ ×𝐻) s.t. 𝜋- lim𝑡↓0
𝑇𝑡𝜑 − 𝜑

𝑡
= 𝜓

}

(𝐿𝜑)(𝑠, 𝑥) = lim𝑡↓0
(𝑇𝑡𝜑)(𝑠, 𝑥) − 𝜑(𝑠, 𝑥)

𝑡
, 𝜑 ∈ dom𝑚(𝐿), (𝑠, 𝑥) ∈ R+ ×𝐻.

(17)

As the upcoming result shows, the infinitesimal generator of a 𝜋-semigroup satisfies the common properties characteristic for 
generators of strongly continuous semigroups. 

Theorem 2.10.  Let 𝐿 be the infinitesimal generator of a 𝜋-semigroup (𝑇𝑡)𝑡≥0 on 𝐶𝑚(R+ ×𝐻). Then:

(i) The domain dom (𝐿) is 𝜋-dense in 𝐶 (R ×𝐻).
𝑚 𝑚 +
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(ii) The operator 𝐿 is the unique 𝜋-closed operator such that for all 𝜆 > 𝜔 the resolvent 𝑅(𝜆, 𝐿) = (𝜆−𝐿)−1 is a bounded, linear operator 
on 𝐶𝑚(R+ ×𝐻) with 

𝑅(𝜆, 𝐿)𝜑(𝑠, 𝑥) = ∫

∞

0
exp(−𝜆𝑡)𝑇𝑡𝜑(𝑠, 𝑥) d𝑡. (18)

(iii) It holds that 𝑇𝑡(dom𝑚(𝐿)) ⊂ dom𝑚(𝐿) and for all 𝜑 ∈ dom𝑚(𝐿) and fixed (𝑠, 𝑥) ∈ R+ ×𝐻 the function 𝑡 ↦ 𝑇𝑡𝜑(𝑠, 𝑥) is differentiable 
with 

d
d𝑡
𝑇𝑡𝜑(𝑠, 𝑥) = 𝐿𝑇𝑡𝜑(𝑠, 𝑥) = 𝑇𝑡𝐿𝜑(𝑠, 𝑥). (19)

Proof.  See Priola [6], Propositions 3.2 to 3.6., where these properties have been shown in the context of 𝜋-semigroups on 𝐶𝑏(𝐻). □

The following is essentially a version of Dynkin’s formula in the context of 𝜋-semigroups. 

Lemma 2.11.  Let 𝑌 (𝑡) = (𝑡, 𝑋(𝑡)) be the space–time process of 𝑋(𝑡). Then for any 𝜑 ∈ dom(𝐿) the process 

𝐷𝜑(𝑡) = 𝜑(𝑌 (𝑡)) − ∫

𝑡

0
𝐿𝜑(𝑌 (𝑠)) d𝑠 (20)

is an 𝑡-adapted P-martingale. We call 𝐷𝜑(𝑡) the Dynkin martingale (of (𝜑,𝐿𝜑)).

Proof.  Clearly 𝑌 (𝑡) = (𝑡, 𝑋(𝑡, 𝑥)) is 𝑡-adapted with initial condition 𝑌 (0) = (0, 𝑥0). It holds for any 𝑟 ≤ 𝑡 that 

E[𝐷𝜑(𝑡) ∣ 𝑟] = E
[

𝜑(𝑌 (𝑡)) − ∫

𝑡

0
𝐿𝜑(𝑌 (𝑢)) d𝑢 ∣ 𝑟

]

= E[𝜑(𝑌 (𝑡)) ∣ 𝑟] − E
[

∫

𝑟

0
𝐿𝜑(𝑌 (𝑢)) d𝑢 ∣ 𝑟

]

− E
[

∫

𝑡

𝑟
𝐿𝜑(𝑌 (𝑢)) d𝑢 ∣ 𝑟

]

= 𝑇𝑡−𝑟𝜑(𝑌 (𝑟)) − ∫

𝑟

0
𝐿𝜑(𝑌 (𝑢)) d𝑢 − ∫

𝑡

𝑟
𝑇𝑢−𝑟𝐿𝜑(𝑌 (𝑟)) d𝑢,

(21)

where we used the Markov property and 𝑡-adaptedness of 𝑌 (𝑡) in the last step. By Theorem  2.10 (iii) and a substitution we have

∫

𝑡

𝑟
𝑇𝑢−𝑟𝐿𝜑(𝑌 (𝑟)) d𝑢 = ∫

𝑡−𝑟

0
𝑇𝑢𝐿𝜑(𝑌 (𝑟)) d𝑢

= 𝑇𝑡−𝑟𝜑(𝑌 (𝑟)) − 𝜑(𝑌 (𝑟)) P-a.s.

Plugging this into (21) gives E[𝐷𝜑(𝑡) ∣ 𝑟] = 𝜑(𝑌 (𝑟)) − ∫ 𝑟0 𝐿𝜑(𝑌 (𝑢)) d𝑢. □

In general, the abstract definition of the infinitesimal generator given in (17) does not lend itself easily to a closed form expression 
of 𝐿𝜑 for 𝜑 ∈ dom𝑚(𝐿). However, in many cases one can instead construct a suitable 𝜋-core for (𝐿, dom𝑚(𝐿)) on which 𝐿 acts in 
a more ‘descriptive’ manner. It turns out that in this case, 𝐿 acts as the Kolmogorov operator associated with (1) on the space of
exponential test functions 𝐴(R+ ×𝐻), defined as the span of the real and imaginary parts of the functions 

R+ ×𝐻 → R, (𝑠, 𝑥) ↦ exp(𝑖(⟨𝑥, 𝑎⟩ + 𝑐𝑠)), 𝑎 ∈ dom(𝐴∗), 𝑐 ∈ R, (22)

and 𝐴(R+ × 𝐻) defines a 𝜋-core of (𝐿, dom𝑚(𝐿)) as the following lemma shows. The 𝜋-core property of 𝐴(R+ × 𝐻) will play a 
crucial part in the proof our main result.

Lemma 2.12.  For any 𝑚 ≥ 1, the space 𝐴(R+ ×𝐻) is a subset of dom𝑚(𝐿) with 𝐿𝜑 = 𝐿0𝜑, where 

(𝐿0𝜑)(𝑡, 𝑥) = 𝜕𝑡𝜑(𝑡, 𝑥) + ⟨𝑥,𝐴∗D𝑥𝜑(𝑡, 𝑥)⟩ + ⟨𝐹 (𝑡, 𝑥),D𝑥𝜑(𝑡, 𝑥)⟩ +
1
2
tr
(

𝑄D2
𝑥𝜑(𝑡, 𝑥)

)

(23)

for any 𝜑 ∈ 𝐴(R+ × 𝐻). Moreover, 𝐴(R+ × 𝐻) is a 𝜋-core for (𝐿, dom𝑚(𝐿)), i.e. for any 𝜑 ∈ dom𝑚(𝐿) there exists a sequence 
(𝜑𝑛)𝑛 ⊂ 𝐴(R+ ×𝐻).1 such that 

𝜋- lim
𝑛
𝜑𝑛 = 𝜑 and 𝜋- lim

𝑛
𝐿0𝜑𝑛 = 𝐿𝜑. (24)

Furthermore, if 𝜑 ∈ (𝐿, dom𝑚(𝐿)) is such that D𝑥𝜑 ∈ 𝐶𝑚(R+ ×𝐻 ;𝐻), the approximating sequence (𝜑𝑛)𝑛 in (24) can be chosen such that 

𝜋- lim
𝑛

D𝑥𝜑𝑛 = D𝑥𝜑. (25)

Proof.  This follows from some slight generalizations of the results in Manca [12], where the 𝜋-core property of exponential test 
functions for generators of 𝜋-semigroups was studied in the context of time homogeneous SPDEs. For more details, see Appendix 
A. □

1 This approximation relies on multi-indexed sequences, see Appendix  A However, for ease of notation, we may assume that the sequence only has one index.
7 
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Remark 2.13.  Note that for 𝜑 ∈ 𝐴(R+ × 𝐻), 𝐿𝜑 is in general not a bounded function anymore. Let for example 𝜑(𝑡, 𝑥) =
sin(⟨𝑥, ℎ⟩), ℎ ∈ dom(𝐴∗). Then D𝑥𝜑 = ℎ cos(⟨𝑥, ℎ⟩) and D2

𝑥𝜑(𝑥) = −ℎ ⊗ ℎ sin(⟨𝑥, ℎ⟩) and thus

𝐿𝜑 = cos(⟨𝑥, ℎ⟩)(⟨𝑥,𝐴∗ℎ⟩ + ⟨𝐹 (𝑡, 𝑥), ℎ⟩) − 1
2
sin(⟨𝑥, ℎ⟩)⟨

√

𝑄ℎ,
√

𝑄ℎ⟩,

which is not bounded but of linear growth under the Lipschitz assumption on 𝐹 . In particular, 𝐴(R+ × 𝐻) is not a 𝜋-core for 
(𝐿, dom𝑚(𝐿)) if 𝑚 = 0.

3. Main result

In this section we present the proof of our main result. It establishes conditions on the ℎ-function for which, under the exponential 
change of measure Pℎ, the mild solution 𝑋 to the SPDE (1) is a mild solution to yet another SPDE with an additional drift term 
dependent on the ℎ-function of choice.

Our point of departure is that, following Lemma  2.11, for any ℎ ∈ dom𝑚(𝐿), the process

𝐷ℎ(𝑡) = ℎ(𝑡, 𝑋(𝑡)) − ∫

𝑡

0
𝐿ℎ(𝑠,𝑋(𝑠)) d𝑠

is a P-martingale. Additionally, it can be shown that for any positive function ℎ ∈ dom𝑚(𝐿), the process 

𝐸ℎ(𝑡) =
ℎ(𝑡, 𝑋(𝑡))
ℎ(0, 𝑥0)

exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

, 𝑡 ≥ 0, (26)

is a continuous P-local martingale whenever it exists, see for example Palmowski and Rolski [9], Lemma 3.1. If 𝐸ℎ is a true 
P-martingale, it follows from Lemma  2.1 that it defines a unique measure Pℎ on  such that 

dPℎ𝑡
dP𝑡

= 𝐸ℎ(𝑡), 𝑡 > 0. (27)

Throughout this section we fix some arbitrary 𝑚 ≥ 1. We will need the following assumptions. 

Assumption 3.1.  The function ℎ ∶ R+ ×𝐻 ⟶ R>0 satisfies:

(i) ℎ ∈ dom𝑚(𝐿) such that ℎ−1𝐿ℎ ∈ 𝐶𝑚(R+ ×𝐻).
(ii) ℎ is Fréchet differentiable in 𝑥 such that D𝑥ℎ ∈ 𝐶𝑚(R+ ×𝐻 ;𝐻).
(iii) ℎ is such that 𝐸ℎ is a P-martingale.
The following is this sections main result. 

Theorem 3.2.  Let ℎ satisfy Assumption  3.1 and let Pℎ be the measure defined by (27). Then, for any 𝑇 > 0, the process 

𝑊 ℎ(𝑡) = 𝑊 (𝑡) − ∫

𝑡

0

√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠))d𝑠, 𝑡 ∈ [0, 𝑇 ], (28)

is a cylindrical Wiener process with respect to Pℎ. In particular, 𝑋 under Pℎ is a mild solution to the SPDE 

d𝑋(𝑡) =
[

𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡)) +𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))
]

d𝑡 +
√

𝑄d𝑊 ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ]. (29)

The main part of the proof of Theorem  3.2 lies in the following lemma. 

Lemma 3.3.  Let ℎ satisfy Assumption  3.1(i) and (ii) and let 𝐷ℎ be the corresponding Dynkin martingale. Then 

𝐷ℎ(𝑡) = ℎ(0, 𝑥0) + ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩

, 𝑡 ≥ 0. (30)

Furthermore, let 𝐸ℎ be the process as defined in (26). Then 𝐸ℎ is the stochastic exponential given by 

𝐸ℎ(𝑡) = exp
(

𝑀ℎ(𝑡) − 1
2
[𝑀ℎ]𝑡

)

, 𝑡 ≥ 0, (31)

where 𝑀ℎ(𝑡) = ∫ 𝑡0 ⟨
√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)⟩.

Proof.  Step One. We begin by showing the claim in Eq.  (30) for any exponential test function ℎ ∈ 𝐴(R+ ×𝐻).
Let (𝐴𝑛)𝑛>𝜔𝑆  be the Yosida approximation of 𝐴 such that lim𝑛 𝐴𝑛𝑥 = 𝐴𝑥 for all 𝑥 ∈ dom(𝐴) and let 𝑋𝑛 be the sequence of strong 

solutions to Eq.  (8). Define the sequence of processes (𝐷ℎ
𝑛 )𝑛 via 

𝐷ℎ(𝑡) = ℎ(𝑡, 𝑋𝑛(𝑡)) −
𝑡
𝐿ℎ(𝑠,𝑋𝑛(𝑠)) d𝑠. (32)
𝑛 ∫0

8 
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We first show that 𝐷ℎ
𝑛 (𝑡)

P
←←←←←←←→ 𝐷ℎ(𝑡) for any 𝑡 ≥ 0. It follows from (9) that ℎ(𝑡, 𝑋𝑛(𝑡))

P
←←←←←←←→ ℎ(𝑡, 𝑋(𝑡)) and 𝐿ℎ(𝑡, 𝑋𝑛(𝑡))

P
←←←←←←←→ 𝐿ℎ(𝑡, 𝑋(𝑡)). 

Furthermore, it holds that 

sup
𝑛

E

[

|

|

|

|

|

∫

𝑡

0
𝐿ℎ(𝑠,𝑋𝑛(𝑠)) d𝑠

|

|

|

|

|

]

≤ sup
𝑛

E
[

∫

𝑡

0

|

|

𝐿ℎ(𝑠,𝑋𝑛(𝑠))||
1 + ‖𝑋𝑛(𝑠)‖𝑚

(1 + ‖𝑋𝑛(𝑠)‖𝑚) d𝑠
]

≤ ‖𝐿ℎ‖𝑚 sup
𝑛 ∫

𝑡

0
(1 + E[‖𝑋𝑛(𝑠)‖𝑚]) d𝑠

< ∞.

(33)

Here, we used in the last step that, by the bounds in (6) and (7), there exists for any 𝑚 ≥ 1 some �̃�𝑚 > 0 and �̃�𝑚 ≥ 0 such that 

sup
𝑛

E[‖𝑋𝑛(𝑠)‖𝑚] ≤ �̃�𝑚 exp(�̃�𝑚𝑠). (34)

By the dominated convergence theorem it follows from (33) that

∫

𝑡

0
𝐿ℎ(𝑠,𝑋𝑛(𝑠)) d𝑠

𝐿1(P)
←←←←←←←←←←←←←←←←←←←←←←→ ∫

𝑡

0
𝐿ℎ(𝑠,𝑋(𝑠)) d𝑠

and therefore in total we get that 𝐷ℎ
𝑛 (𝑡)

P
←←←←←←←→ 𝐷ℎ(𝑡).

On the other hand, for any 𝑛 > 𝜔𝑆 , an application of Itô’s lemma gives that
dℎ(𝑡, 𝑋𝑛(𝑡)) = 𝐿𝑛ℎ(𝑡, 𝑋𝑛(𝑡))d𝑡 + ⟨

√

𝑄D𝑥ℎ(𝑡, 𝑋𝑛(𝑡)), d𝑊 (𝑡)⟩,

where 𝐿𝑛ℎ(𝑡, 𝑥) = 𝜕𝑡ℎ(𝑡, 𝑥) + ⟨𝑥,𝐴∗
𝑛D𝑥ℎ(𝑡, 𝑥)⟩ + ⟨𝐹 (𝑥),D𝑥ℎ(𝑡, 𝑥)⟩ +

1
2 tr[𝑄D

2
𝑥ℎ(𝑡, 𝑥)] is the Kolmogorov operator associated with the 

approximating SPDE in (8). Plugging this into (32) gives that 

𝐷ℎ
𝑛 (𝑡) = ℎ(0, 𝑥0) + ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋𝑛(𝑠)), d𝑊 (𝑠)
⟩

+ ∫

𝑡

0

[

𝐿𝑛ℎ(𝑠,𝑋𝑛(𝑠)) − 𝐿ℎ(𝑠,𝑋𝑛(𝑠))
]

d𝑠

= ℎ(0, 𝑥0) + ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋𝑛(𝑠)), d𝑊 (𝑠)
⟩

+ ∫

𝑡

0

⟨

𝑋𝑛(𝑠),
(

𝐴∗
𝑛 − 𝐴

∗)D𝑥ℎ(𝑠,𝑋𝑛(𝑠))
⟩

d𝑠.

(35)

It remains to show that 

lim
𝑛 ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋𝑛(𝑠)), d𝑊 (𝑠)
⟩

= ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩

(36)

and 

lim
𝑛 ∫

𝑡

0

⟨

𝑋𝑛(𝑠),
(

𝐴∗
𝑛 − 𝐴

∗)D𝑥ℎ(𝑠,𝑋𝑛(𝑠))
⟩

d𝑠 = 0 (37)

in probability. Then (30) follows from 𝐷ℎ
𝑛 (𝑡)

P
←←←←←←←→ 𝐷ℎ(𝑡) and (35)–(37).

To show (36), note that by the Itô isometry and (34) we have

sup
𝑛

E

[

‖

‖

‖

‖

‖

∫

𝑡

0

⟨
√

𝑄D𝑥ℎ(𝑠,𝑋𝑛(𝑠)), d𝑊 (𝑠)
⟩

‖

‖

‖

‖

‖

2]

= sup
𝑛 ∫

𝑡

0
E
[

‖

√

𝑄D𝑥ℎ(𝑠,𝑋𝑛(𝑠))‖2 d𝑠
]

≤ sup
𝑛

‖𝑄‖‖D𝑥ℎ‖2𝑚 ∫

𝑡

0
E[(1 + ‖𝑋𝑛(𝑠)‖𝑚)2] d𝑠

<∞.

Since D𝑥ℎ(𝑠,𝑋𝑛(𝑠))
P
←←←←←←←→ D𝑥ℎ(𝑠,𝑋(𝑠)), we get (36) by an application of the dominated convergence theorem.

Lastly, for any ℎ ∈ 𝐴(R+ ×𝐻), it holds that D𝑥ℎ(𝑠, 𝑥) =
∑𝑘
𝑖=1 𝑧𝑖𝑔𝑖(𝑠, 𝑥) for some 𝑧𝑖 ∈ dom(𝐴∗) and 𝑔𝑖 ∈ 𝐴(R+ ×𝐻), 𝑖 = 1,… , 𝑘. 

We show (37) for 𝑘 = 1. The case that 𝑘 > 1 follows from linearity. We have

∫

𝑡

0

⟨

𝑋𝑛(𝑠),
(

𝐴∗
𝑛 − 𝐴

∗)D𝑥ℎ(𝑠,𝑋𝑛(𝑠))
⟩

d𝑠 = ∫

𝑡

0

⟨

𝑋𝑛(𝑠),
(

𝐴∗
𝑛 − 𝐴

∗) 𝑧1
⟩

𝑔1(𝑠,𝑋𝑛(𝑠)) d𝑠.

By (9) it follows that 𝑋𝑛
P
←←←←←←←→ 𝑋 in 𝐶([0, 𝑡];𝐻) and in particular sup𝑛 sup𝑠∈[0,𝑡] ‖𝑋𝑛(𝑠)‖ <∞ a.s. Thus (37) follows from lim𝑛

(

𝐴∗
𝑛 − 𝐴

∗) 𝑧1 =
0. In total this concludes that (30) holds for any ℎ ∈ 𝐴(R+ ×𝐻).

Step Two. We proceed to show (30) for any ℎ ∈ dom𝑚(𝐿) that satisfies Assumption  3.1(i) and (ii). By Lemma  2.12 there exists a 
sequence (ℎ𝑛)𝑛 ∈ 𝐴(R+ ×𝐻) such that 

𝜋- limℎ = ℎ, 𝜋- limD ℎ = D ℎ and 𝜋- lim𝐿ℎ = 𝐿ℎ. (38)

𝑛 𝑛 𝑛 𝑥 𝑛 𝑥 𝑛 𝑛

9 
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Denote by 𝐷ℎ𝑛 (𝑡) the Dynkin martingale of (ℎ𝑛, 𝐿ℎ𝑛). Firstly, it follows by dominated convergence, the bound in (6) and the 
𝜋-convergence in (38) that 

𝐷ℎ𝑛 (𝑡) = ℎ𝑛(𝑡, 𝑋(𝑡)) − ∫

𝑡

0
𝐿ℎ𝑛(𝑠,𝑋(𝑠)) d𝑠

P
←←←←←←←→ ℎ(𝑡, 𝑋(𝑡)) − ∫

𝑡

0
𝐿ℎ(𝑠,𝑋(𝑠)) d𝑠

= 𝐷ℎ(𝑡).

(39)

On the other hand, since (ℎ𝑛)𝑛 ⊂ 𝐴(R+ ×𝐻), it follows from Step One that 

𝐷ℎ𝑛 (𝑡) = ℎ𝑛(0, 𝑥0) + ∫

𝑡

0

⟨
√

𝑄D𝑥ℎ𝑛(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩

, 𝑛 ∈ N. (40)

We already have that lim𝑛 ℎ𝑛(0, 𝑥0) = ℎ(0, 𝑥0). It thus remains to show that 

∫

𝑡

0

⟨
√

𝑄D𝑥ℎ𝑛(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩ P
←←←←←←←→ ∫

𝑡

0
⟨

√

𝑄D𝑥ℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)⟩. (41)

By Itô isometry it suffices to establish that

lim
𝑛→∞

E
[

∫

𝑡

0
‖

√

𝑄D𝑥ℎ𝑛(𝑠,𝑋(𝑠))‖2 d𝑠
]

= E
[

∫

𝑡

0
‖

√

𝑄D𝑥ℎ(𝑠,𝑋(𝑠))‖2 d𝑠
]

,

but this again follows from an application of the dominated convergence theorem, the 𝜋-convergence of 𝜋- lim𝑛 D𝑥ℎ𝑛 = D𝑥ℎ and the 
bound in (6). In total, the claim (30) thus follows from (39)–(41).

Step Three. We finish the proof by showing the claim in (31). First note that by Assumption  3.1(i) and the bound in (6), the 
process 

𝑡 ↦ ∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠 (42)

is finite P-a.s. and the process 𝐸ℎ in (26) is therefore well-defined with E [

𝐸ℎ(0)
]

= 1. Furthermore, the mapping in (42) is continuous 
and of finite variation and thus (see e.g. Palmowski and Rolski [9], Lemma 3.1) 

[

ℎ(𝑡, 𝑋(𝑡)), exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)]

𝑡
= 0. (43)

By Lemma  2.11, the process ℎ(𝑡, 𝑋(𝑡)) is a semimartingale and with the integration by parts formula for semimartingales it follows 
that 

d𝐸ℎ(𝑡) = 1
ℎ(0, 𝑥0)

[

ℎ(𝑡, 𝑋(𝑡))d
(

exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
))

+exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

dℎ(𝑡, 𝑋(𝑡))
]

= 1
ℎ(0, 𝑥0)

[

−exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

𝐿ℎ(𝑡, 𝑋(𝑡))d𝑡

+exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

dℎ(𝑡, 𝑋(𝑡))
]

= 1
ℎ(0, 𝑥0)

exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

d𝐷ℎ(𝑡),

(44)

where 𝐷ℎ(𝑡) = ℎ(𝑡, 𝑋(𝑡))−∫ 𝑡0 𝐿ℎ(𝑠,𝑋(𝑠)) d𝑠 is the Dynkin martingale of (ℎ,𝐿ℎ). From step two it follows that d𝐷ℎ(𝑡) = ⟨

√

𝑄D𝑥ℎ(𝑡, 𝑋(𝑡)),
d𝑊 (𝑡)⟩ and plugging this into (44) gives 

d𝐸ℎ(𝑡) = 1
ℎ(0, 𝑥0)

exp
(

−∫

𝑡

0

𝐿ℎ
ℎ

(𝑠,𝑋(𝑠)) d𝑠
)

⟨

√

𝑄D𝑥ℎ(𝑡, 𝑋(𝑡)), d𝑊 (𝑡)⟩

= 𝐸ℎ(𝑡)⟨
√

𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡)), d𝑊 (𝑡)⟩.
(45)

In particular, the process 𝐸ℎ(𝑡) is the stochastic exponential 𝐸ℎ(𝑡) = exp
(

𝑀ℎ(𝑡) − 1
2 [𝑀

ℎ]𝑡
)

 of the Itô process 

𝑀ℎ(𝑡) = ∫

𝑡

0

⟨
√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩

. □ (46)

We are now ready to give the remainder of the proof of Theorem  3.2, which is essentially just an application of Girsanov’s 
theorem.

Proof of Theorem  3.2.  Let 𝐸ℎ be the process as defined in (26). By Assumption  3.1 (iii), 𝐸ℎ is a P-martingale and thus, following 
Lemma  2.1, defines a measure Pℎ on  such that dPℎ = 𝐸ℎ(𝑇 )dP  on   for any 𝑇 > 0. On the other hand, Lemma  3.3 shows that 
𝑇 𝑇 𝑇

10 
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𝐸ℎ is the stochastic exponential of the Itô process 

𝑀ℎ(𝑡) = ∫

𝑡

0

⟨
√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)
⟩

. (47)

It therefore follows from Girsanov’s theorem that 

𝑊 ℎ(𝑡) = 𝑊 (𝑡) − ∫

𝑡

0

√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)) d𝑠, 𝑡 ∈ [0, 𝑇 ], (48)

is a cylindrical Wiener process with respect to the measure Pℎ. In particular, under Pℎ, the process 𝑋 given in (5) is a mild solution 
to the SPDE

d𝑋(𝑡) =
[

𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡)) +𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))
]

d𝑡 +
√

𝑄d𝑊 ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ]. □

3.1. The change of measure on a finite time interval

In certain applications we work with ℎ-functions that are only defined on the half open interval [0, 𝑇 ) for some 𝑇 > 0. We then 
replace Assumption  3.1 with the following.

Assumption 3.4.  The function ℎ ∶ [0, 𝑇 ) ×𝐻 ⟶ R+ satisfies for any 𝑆 < 𝑇 :

(i) ℎ ∈ 𝐶𝑚([0, 𝑆] ×𝐻) such that 𝐿ℎ(𝑡, 𝑥) exists for any [0, 𝑆] ×𝐻 and ℎ−1𝐿ℎ ∈ 𝐶𝑚([0, 𝑆] ×𝐻).
(ii) ℎ is Fréchet differentiable in 𝑥 such that D𝑥ℎ ∈ 𝐶𝑚([0, 𝑆] ×𝐻 ;𝐻).
(iii) ℎ is such that (𝐸ℎ(𝑡))𝑡∈[0,𝑆] is a P-martingale.
Under Assumption  3.4 (iii), (𝐸ℎ(𝑡))𝑡∈[0,𝑇 ) is a non-negative martingale with E[𝐸(0)] = 1. Following Lemma  2.3, it thus defines a 

measure Pℎ on 𝑇  such that 
dPℎ𝑡
dP𝑡

= 𝐸ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ). (49)

We get the following version of Theorem  3.2. 

Theorem 3.5.  Let ℎ satisfy Assumption  3.4 and let Pℎ be the measure defined on 𝑇  by (49). Then for any 𝑆 < 𝑇 , the process 

𝑊 ℎ(𝑡) = 𝑊 (𝑡) − ∫

𝑡

0

√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)) d𝑠, 𝑡 ∈ [0, 𝑆], (50)

is a cylindrical Wiener process with respect to Pℎ. In particular, 𝑋 under Pℎ is a mild solution to the SPDE 
d𝑋(𝑡) =

[

𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡)) +𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))
]

d𝑡 +
√

𝑄d𝑊 ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ). (51)

Proof.  Let 𝑆 < 𝑇  be arbitrary but fixed. Let ℎ̄ be an extension of ℎ onto R+ ×𝐻 defined via

ℎ̄(𝑡, 𝑥) =

{

ℎ(𝑡, 𝑥), 𝑡 ≤ 𝑆,
ℎ(𝑆, 𝑥), 𝑡 > 𝑆.

Then ℎ̄ satisfies Assumption  3.1. Following the proof of Lemma  3.3, we get that

𝐸ℎ(𝑡) = exp
(

𝑀ℎ(𝑡) − 1
2
[𝑀ℎ]𝑡

)

, 𝑡 ∈ [0, 𝑆],

where 𝑀ℎ(𝑡) = ∫ 𝑡0 ⟨
√

𝑄D𝑥 logℎ(𝑠,𝑋(𝑠)), d𝑊 (𝑠)⟩. The claim then follows from Assumption  3.4 (iii) and an application of Girsanov’s 
theorem. □

Typically, the martingale property of 𝐸ℎ in Assumption  3.4 (iii) is the most difficult of the three to verify. The following lemma 
summarizes conditions under which it is satisfied. 

Lemma 3.6.  Either of the following conditions are sufficient for (𝐸ℎ(𝑡))𝑡∈[0,𝑆] to be a martingale:

1. In addition to Assumption  3.4(i), ℎ−1𝐿ℎ ∈ 𝐶0([0, 𝑆] ×𝐻) is bounded.
2. In addition to Assumption  3.4(i) and (ii), it holds that

E
[

exp
(

1
2 ∫

𝑆

0
‖

√

𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))‖2d𝑡
)]

< ∞.

3. In addition to Assumption  3.4(i) and (ii), the mapping (𝑡, 𝑥) ↦
√

𝑄D𝑥 logℎ(𝑡, 𝑥) is Lipschitz in 𝑥, uniformly in 𝑡 ∈ [0, 𝑆].

Proof.  The first condition has been shown in Palmowski and Rolski [9], Proposition 3.2. The second condition is the Novikov 
condition, see for example Da Prato and Zabczyk [23], Proposition 10.17. A proof for the last condition can be found in Appendix 
B. □
11 
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4. Applications

4.1. Conditioned SPDEs

In this subsection we introduce a class of ℎ-functions for which the change of measure Pℎ corresponds to conditioning the process 
(𝑋(𝑡))𝑡∈[0,𝑇 ) on 𝑋(𝑇 ). Applications of this type of conditioning include for example the infinite-dimensional diffusion bridge.

For the construction of the ℎ-functions in this section, we rely on the transition density of 𝑋 with respect to some suitable 
reference measure. Since the state space of 𝑋 is not Euclidean, the typical choice of the Lebesgue measure is not available to us. 
However, one can construct a suitable Gaussian reference measure on (𝐻,(𝐻)) as follows.

In addition to Assumption  2.4, let the following hold. 

Assumption 4.1 (Strong Feller Assumption).  The semigroup (𝑆𝑡)𝑡≥0 and covariance operators (𝑄𝑡)𝑡≥0 defined in (4) are such that 
im(𝑆𝑡) ⊂ im(𝑄1∕2

𝑡 ) for all 𝑡 ≥ 0.

Under Assumption  4.1, the Ornstein–Uhlenbeck process 𝑍 is strongly Feller and absolutely continuous with respect to its invariant 
measure 𝜈 ∼  (0, 𝑄∞) with covariance operator 𝑄∞ as defined in (10).

Furthermore, it follows from the Girsanov theorem that L(𝑋(𝑡, 𝑠, 𝑥)) ∼ L(𝑍(𝑡, 𝑠, 𝑥)) for all 𝑡 ≥ 𝑠. In particular, we have that 
L(𝑋(𝑡, 𝑠, 𝑥)) ∼ 𝜈 and we define by 𝑝(𝑠, 𝑥; 𝑡, 𝑦) the transition density 

𝑝(𝑠, 𝑥; 𝑡, 𝑦) =
dL(𝑋(𝑡, 𝑠, 𝑥))

d𝜈
(𝑦), 𝜈-a.e. 𝑦 ∈ 𝐻, (52)

of 𝑋 with respect to 𝜈. From the Markov property of 𝑋 it follows that 𝑝(𝑠, 𝑥; 𝑡, 𝑦) satisfies the Chapman–Kolmogorov equation 

𝑝(𝑠, 𝑥; 𝑡, 𝑦) = ∫𝐻
𝑝(𝑠, 𝑥; 𝑟, 𝑧)𝑝(𝑟, 𝑧; 𝑡, 𝑦) 𝜈(d𝑧) (53)

for all 𝑠 < 𝑟 < 𝑡 and for 𝜈-a.e. every 𝑦 ∈ 𝐻 . Let us now define the function ℎ ∶ [0, 𝑇 ) ×𝐻 → R>0 via 

ℎ(𝑡, 𝑥) = ∫𝐻
𝑝(𝑡, 𝑥; 𝑇 , 𝑦)𝜇(d𝑦), (54)

for some measure 𝜇 on (𝐻,(𝐻)) such that ∫𝐻 𝑝(0, 𝑥0; 𝑇 , 𝑦)𝜇(d𝑦) < ∞. The ℎ-function constructed in (54) satisfies the following. 

Lemma 4.2.  The function ℎ is space–time harmonic, i.e. for any (𝑠, 𝑥) ∈ [0, 𝑇 ) ×𝐻 it holds that

(𝑇𝑡ℎ)(𝑠, 𝑥) = ℎ(𝑠, 𝑥), 𝑡 < 𝑇 − 𝑠.

In particular, 𝐿ℎ = 0 and ℎ(𝑡, 𝑋(𝑡)) is a P-martingale.

Proof.  Let (𝑠, 𝑥) ∈ [0, 𝑇 ) ×𝐻 be fixed. Then for any 𝑡 < 𝑇 − 𝑠 we have

(𝑇𝑡ℎ)(𝑠, 𝑥) = E [ℎ(𝑡 + 𝑠,𝑋(𝑡 + 𝑠, 𝑠, 𝑥))]

= ∫𝐻
ℎ(𝑡 + 𝑠, 𝑧)𝑝(𝑠, 𝑥; 𝑡 + 𝑠, 𝑧) 𝜈(d𝑧)

= ∫𝐻 ∫𝐻
𝑝(𝑡 + 𝑠, 𝑧; 𝑇 , 𝑦)𝑝(𝑠, 𝑥; 𝑡 + 𝑠, 𝑧) 𝜈(d𝑧)𝜇(d𝑦)

= ∫𝐻
𝑝(𝑠, 𝑥; 𝑇 , 𝑦)𝜇(d𝑦) = ℎ(𝑠, 𝑥),

where we use the definition of ℎ in the third and the Chapman–Kolmogorov equation the fourth line. By definition of 𝐿 it follows 
that 𝐿ℎ = 0. Furthermore, using the Markov property of (𝑡, 𝑋(𝑡)) we have for any 𝑠 < 𝑡 < 𝑇  that

E[ℎ(𝑡, 𝑋(𝑡)) ∣ 𝑠] = (𝑇𝑡−𝑠ℎ)(𝑠,𝑋(𝑠)) = ℎ(𝑠,𝑋(𝑠)). □

From Lemma  4.2 it follows that ℎ satisfies Assumption  3.4(i) and (iii). In particular, ℎ(𝑡, 𝑋(𝑡))∕ℎ(0, 𝑥0) is a non-negative martingale 
with mean one and thus defines a unique measure Pℎ on 𝑇  via 

dPℎ𝑡
dP𝑡

=
ℎ(𝑡, 𝑋(𝑡))
ℎ(0, 𝑥0)

, 𝑡 < 𝑇 . (55)

On the other hand, Assumption  3.4 (ii) is hard to verify in general, as the Fréchet differentiability of ℎ depends on 𝑝(𝑠, 𝑥; 𝑡, 𝑦) as 
well as the choice of 𝜇. We thus keep it as an assumption. 

Assumption 4.3.  The function ℎ defined in (54) is Fréchet differentiable in 𝑥 such that D𝑥ℎ ∈ 𝐶𝑚([0, 𝑆] ×𝐻 ;𝐻) for any 𝑆 < 𝑇 .

The following result shows how the measure Pℎ changes the law of 𝑋. 
12 



T. Pieper-Sethmacher et al. Stochastic Processes and their Applications 185 (2025) 104630 
Proposition 4.4.  Let Pℎ be the measure defined by (55). It then holds for any bounded and measurable function 𝑔 and 0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑛 < 𝑇
that 

Eℎ[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛))] = ∫𝐻
E[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛)) ∣ 𝑋(𝑇 ) = 𝑦] 𝜉(d𝑦), (56)

where 𝜉 is the measure defined on (𝐻,(𝐻)) via 

𝜉(d𝑦) =
𝑝(0, 𝑥0; 𝑇 , 𝑦)𝜇(d𝑦)

∫𝐻 𝑝(0, 𝑥0; 𝑇 , 𝑦)𝜇(d𝑦)
. (57)

Additionally, if Assumption  4.3 is satisfied, 𝑋 under Pℎ satisfies the SPDE

d𝑋(𝑡) =
[

𝐴𝑋(𝑡) + 𝐹 (𝑡, 𝑋(𝑡)) +𝑄D𝑥 logℎ(𝑡, 𝑋(𝑡))
]

d𝑡 +
√

𝑄d𝑊 ℎ(𝑡), 𝑡 ∈ [0, 𝑇 ),

where 𝑊 ℎ is the Pℎ-cylindrical Wiener process as defined in (50).

Proof.  To show (56) it suffices to show that

Eℎ[𝑔(𝑋(𝑡))] = ∫𝐻
E[𝑔(𝑋(𝑡)) ∣ 𝑋(𝑇 ) = 𝑦] 𝜉(d𝑦)

for any 𝑡 < 𝑇  and continuous and bounded 𝑔 ∶ 𝐻 → R. The claim then follows by a standard cylindrical argument, see e.g. Ethier 
and Kurtz [24], Proposition 4.1.6. Indeed it holds that

Eℎ[𝑔(𝑋(𝑡))] = E
[

𝑔(𝑋(𝑡))
ℎ(𝑡, 𝑋(𝑡))
ℎ(0, 𝑥0)

]

= ∫𝐻
𝑔(𝑥)

ℎ(𝑡, 𝑥)
ℎ(0, 𝑥0)

𝑝(0, 𝑥0; 𝑡, 𝑥) 𝜈(d𝑥)

= ∫𝐻
𝑔(𝑥)

∫𝐻 𝑝(𝑡, 𝑥; 𝑇 , 𝑦)𝜇(d𝑦)
∫𝐻 𝑝(0, 𝑥0; 𝑇 , 𝑦)𝜇(d𝑦)

𝑝(0, 𝑥0; 𝑡, 𝑥) 𝜈(d𝑥)

= ∫𝐻

(

∫𝐻
𝑔(𝑥)

𝑝(0, 𝑥0; 𝑡, 𝑥)𝑝(𝑡, 𝑥; 𝑇 , 𝑦)
𝑝(0, 𝑥0; 𝑇 , 𝑦)

𝜈(d𝑥)
)

𝑝(0, 𝑥0; 𝑇 , 𝑦)
∫𝐻 𝑝(0, 𝑥0; 𝑇 , 𝑦)𝜇(d𝑦)

𝜇(d𝑦)

= ∫𝐻
E[𝑔(𝑋(𝑡)) ∣ 𝑋(𝑇 ) = 𝑦] 𝜉(d𝑦)

with 𝜉(d𝑦) = 𝑝(0,𝑥0;𝑇 ,𝑦)𝜇(d𝑦)
∫𝐻 𝑝(0,𝑥0;𝑇 ,𝑦)𝜇(d𝑦)

. Here we used the definition of ℎ in the third, Fubini’s theorem in the fourth and Bayes’ theorem in 
the last step. This shows the first claim of the proposition. The second is a direct consequence of Theorem  3.5 under Assumption 
4.3. □

The formula

Eℎ[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛))] = ∫𝐻
E[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛)) ∣ 𝑋(𝑇 ) = 𝑦] 𝜉(d𝑦)

provides a disintegration of the conditioned process: to draw from it one first generates an endpoint 𝑋(𝑇 ) = 𝑦 from 𝜉(d𝑦), followed 
by drawing the path conditioned on this value of 𝑦, see Example  4.5. Different choices of the measure 𝜇 in (54) correspond to 
different kinds of conditioning. We illustrate this in the following examples.

Example 4.5 (The Infinite-Dimensional Diffusion Bridge).  Let 𝑦 ∈ 𝐻 be such that 𝑝(𝑡, 𝑥; 𝑇 , 𝑦) is well-defined.2 Set 𝜇 = 𝛿𝑦 as the Dirac 
measure

𝛿𝑦(𝐴) =

{

1, if 𝑦 ∈ 𝐴
0, else.

It follows that 𝜉 = 𝛿𝑦 and thus the formula (56) reduces to

Eℎ[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛))] = E[𝑔(𝑋(𝑡1),… , 𝑋(𝑡𝑛)) ∣ 𝑋(𝑇 ) = 𝑦].

In other words, 𝑋 under Pℎ is the process (𝑋(𝑡))𝑡∈[0,𝑇 ) conditioned on hitting the endpoint 𝑋(𝑇 ) = 𝑦. We refer to this process as the
infinite-dimensional diffusion bridge. If the transition density 𝑝(𝑡, 𝑥; 𝑇 , 𝑦) satisfies Assumption  4.3, the infinite-dimensional diffusion 
bridge is characterized by the bridge equation 

d𝑋⋆(𝑡) =
[

𝐴𝑋⋆(𝑡) + 𝐹 (𝑡, 𝑋⋆(𝑡)) +𝑄D𝑥 log 𝑝(𝑡, 𝑋⋆(𝑡); 𝑇 , 𝑦)
]

d𝑡 +
√

𝑄d𝑊 (𝑡). (58)

This equation corresponds to the well known diffusion bridge equation for the case of a finite-dimensional state space.

2 This holds for 𝜈-a.e. 𝑦 ∈ 𝐻 .
13 
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Example 4.6 (Conditioning on a Noisy Observation). Suppose we do not observe the endpoint 𝑋(𝑇 ) = 𝑦 directly, but instead we 
observe a sample 𝑣 from a distribution 𝑞(𝑣 ∣ 𝑦)𝜈(d𝑣) where 𝑞(⋅ ∣ 𝑦) is some probability density function with respect to 𝜈. This 
corresponds to observing 𝑋(𝑇 ) under noise 𝑞. Furthermore, assume 𝑞 is such that

𝜇(d𝑦) = 𝑞(𝑣 ∣ 𝑦)𝜈(d𝑦)

is a finite measure. It then follows that

𝜉(d𝑦) =
𝑝(0, 𝑥0; 𝑇 , 𝑦)𝑞(𝑣 ∣ 𝑦)𝜈(d𝑦)

∫ 𝑝(0, 𝑥0; 𝑇 , 𝑦)𝑞(𝑣 ∣ 𝑦) 𝜈(d𝑦)
.

This has a nice Bayesian interpretation where the endpoint 𝑦 gets assigned prior density 𝜋(𝑦) = 𝑝(0, 𝑥0; 𝑇 , 𝑦) and the observation is 
given by 𝑣. The likelihood for this observation is 𝓁(𝑦 ∣ 𝑣) = 𝑞(𝑣 ∣ 𝑦) and hence

𝜉(d𝑦) =
𝜋(𝑦)𝓁(𝑦 ∣ 𝑣)𝜈(d𝑦)

∫ 𝜋(𝑦)𝓁(𝑦 ∣ 𝑣) 𝜈(d𝑦)
.

This shows that 𝜉(d𝑦) gives the posterior measure of 𝑦, conditional upon observing 𝑣. Therefore, using this ℎ-transform, the 
conditioned process is constructed by first sampling the endpoint 𝑦 conditional on the observation, followed by sampling the bridge 
to 𝑦.

Example 4.7 (The Forced/tilted Process). Let 𝑞 be some arbitrary density function with respect to 𝜈 such that

𝜇(d𝑦) =
𝑞(𝑦)

𝑝(0, 𝑥0; 𝑇 , 𝑦)
𝜈(d𝑦)

defines a finite measure on (𝐻,(𝐻)). By straightforward substitution we get that

ℎ(𝑡, 𝑥) = ∫𝐻
𝑝(𝑡, 𝑥; 𝑇 , 𝑦)
𝑝(0, 𝑥0; 𝑇 , 𝑦)

𝑞(𝑦) 𝜈(d𝑦)

and 𝜉(d𝑦) = 𝑞(𝑦)𝜈(d𝑦). Hence this corresponds to forcing/tilting 𝑋(𝑇 ) to have the distribution 𝑞(𝑦)𝜈(d𝑦).

4.2. Guided processes

In Example  4.5, setting ℎ(𝑡, 𝑥) = 𝑝(𝑡, 𝑥; 𝑇 , 𝑦), we have derived the infinite-dimensional diffusion bridge equation

d𝑋⋆(𝑡) =
[

𝐴𝑋⋆(𝑡) + 𝐹 (𝑡, 𝑋⋆(𝑡)) +𝑄D𝑥 log 𝑝(𝑡, 𝑋⋆(𝑡); 𝑇 , 𝑦)
]

d𝑡 +
√

𝑄d𝑊 (𝑡), 𝑡 ∈ [0, 𝑇 ),

that characterizes the law of the conditioned process 𝑋(𝑡) ∣ 𝑋(𝑇 ) = 𝑦 for 𝜈-a.e. 𝑦 ∈ 𝐻 . In many practical applications, one seeks to 
draw samples from 𝑋⋆. In general, however, the transition density 𝑝(𝑡, 𝑥; 𝑇 , 𝑦) is not tractable, rendering a direct simulation of 𝑋⋆

infeasible.
This motivates the following construction. Let �̃�(𝑡, 𝑥; 𝑇 , 𝑦) be a tractable density of the mild solution �̃� of another auxiliary SPDE. 

Then, setting ℎ̃(𝑡, 𝑥) = �̃�(𝑡, 𝑥; 𝑇 , 𝑦), one can define a change of measure Pℎ̃ such that

(i) 𝑋 under Pℎ̃ equals in law the mild solution 𝑋◦ to the SPDE

d𝑋◦(𝑡) =
[

𝐴𝑋◦(𝑡) + 𝐹 (𝑡, 𝑋◦(𝑡)) +𝑄D𝑥 log ℎ̃(𝑡, 𝑋◦(𝑡))
]

d𝑡 +
√

𝑄d𝑊 (𝑡), 𝑡 ∈ [0, 𝑇 ).

(ii) Pℎ and Pℎ̃ - and therefore, the laws of 𝑋⋆ and 𝑋◦ on 𝐶([0, 𝑇 ];𝐻) - are absolutely continuous with some likelihood ratio 𝛷.

Samples of the bridge process 𝑋⋆ can then be obtained by drawing proposal samples from the law of 𝑋◦ and accepting or rejecting 
the proposals based on the likelihood ratio 𝛷. We now showcase the idea of this construction in more detail.

For this, let �̃� denote the transition density of the OU process 𝑍 with respect to 𝜈, i.e.

�̃�(𝑠, 𝑥; 𝑡, 𝑦) =
dL(𝑍(𝑡, 𝑠, 𝑥))

d𝜈
(𝑦), 𝜈-a.e. 𝑦 ∈ 𝐻, 𝑠 < 𝑡.

Since 𝑍 is a Gaussian process and 𝜈 a Gaussian measure on (𝐻,(𝐻)), the densities �̃�(𝑠, 𝑥; 𝑡, 𝑦) can be obtained by the Cameron–Martin 
formula. We shall place an additional assumption on the covariance operators of 𝑍. 

Assumption 4.8.  The covariance operators (𝑄𝑡)𝑡≥0 as defined in (4) commute.

The following proposition shows that �̃� defines a function ℎ̃ that satisfies Assumption  3.4 and that the SPDE induced by the 
changed measure Pℎ̃ remains tractable. 

Proposition 4.9.  For 𝜈-a.e. 𝑦 ∈ 𝐻 , the function ℎ̃(𝑡, 𝑥) = �̃�(𝑡, 𝑥; 𝑇 , 𝑦) satisfies Assumption  3.4. Moreover, 

D log ℎ̃(𝑡, 𝑥) = 𝛤 ∗ 𝑄
− 1

2 [𝑦 − 𝑆 𝑥], (59)
𝑥 𝑇−𝑡 𝑇−𝑡 𝑇−𝑡

14 
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where 𝛤𝑇−𝑡 = 𝑄
− 1

2
𝑇−𝑡𝑆𝑇−𝑡 is a bounded operator on 𝐻 by Assumption  4.1. In particular, there exists a unique change of measure Pℎ̃ such 

that 𝑋 under Pℎ̃ is a mild solution to the SPDE 

d𝑋◦(𝑡) =
[

𝐴𝑋◦(𝑡) + 𝐹 (𝑡, 𝑋◦(𝑡)) +𝑄𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡[𝑦 − 𝑆𝑇−𝑡𝑋
◦(𝑡)]

]

d𝑡 +
√

𝑄d𝑊 ℎ̃(𝑡). (60)

Proof.  Let 𝑆 < 𝑇  be arbitrary but fixed. We start by showing that Assumption  3.4 (ii) is satisfied, i.e. that ℎ̃(𝑡, 𝑥) is Fréchet 
differentiable in 𝑥 on [0, 𝑆] ×𝐻 with derivative D𝑥ℎ̃(𝑡, 𝑥) of at most polynomial growth in 𝑥. For this, write

�̃�(𝑡, 𝑥; 𝑇 , 𝑦) =
dL(𝑍(𝑇 , 𝑡, 𝑥))
dL(𝑍(𝑇 , 𝑡, 0))

(𝑦)
dL(𝑍(𝑇 , 𝑡, 0))

d𝜈
(𝑦), 𝜈-a.e. 𝑦 ∈ 𝐻.

Since 𝑍 is a Gaussian process, the Cameron–Martin formula gives that
dL(𝑍(𝑇 , 𝑡, 𝑥))
dL(𝑍(𝑇 , 𝑡, 0))

(𝑦) = exp
(

⟨

𝑄
− 1

2
𝑇−𝑡𝑦,𝑄

− 1
2

𝑇−𝑡𝑆𝑇−𝑡𝑥
⟩

− 1
2
‖𝑄

− 1
2

𝑇−𝑡𝑆𝑇−𝑡𝑥‖
2
)

= exp
(

⟨

𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦, 𝑥
⟩

− 1
2
‖𝛤𝑇−𝑡𝑥‖

2
)

, 𝜈-a.e. 𝑦 ∈ 𝐻,

where the mapping 𝑡↦ 𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦 is continuous for 𝜈-a.e. 𝑦 ∈ 𝐻 , see Appendix  C for details. It follows that, for 𝜈-a.e. 𝑦 ∈ 𝐻 fixed, 
the function ℎ̃(𝑡, 𝑥) = �̃�(𝑡, 𝑥; 𝑇 , 𝑦) is well-defined and bounded on [0, 𝑆]×𝐻 . Moreover, it is Fréchet differentiable in 𝑥 with derivative

D𝑥ℎ̃(𝑡, 𝑥) = ℎ̃(𝑡, 𝑥)𝛤 ∗
𝑇−𝑡

(

𝑄
− 1

2
𝑇−𝑡𝑦 − 𝛤𝑇−𝑡𝑥

)

.

It holds that (𝑆𝑡)𝑡 and (𝑄𝑡)𝑡 are strongly continuous, from which it follows that 𝑡 ↦ 𝛤𝑇−𝑡𝑥 is continuous for any fixed 𝑥 ∈ 𝐻 . In 
particular, by the uniform boundedness principle and the continuity of 𝑡 ↦ 𝛤 ∗

𝑇−𝑡𝑄
− 1

2
𝑇−𝑡𝑦, we have that

sup
𝑡∈[0,𝑆]

(

‖𝛤𝑇−𝑡‖ + ‖𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦‖
)

<∞.

In total we get that D𝑥ℎ̃ ∈ 𝐶1([0, 𝑆] ×𝐻 ;𝐻) since

sup
𝑡∈[0,𝑆],𝑥∈𝐻

‖D𝑥ℎ̃(𝑡, 𝑥)‖
1 + ‖𝑥‖

≤ sup
𝑡∈[0,𝑆],𝑥∈𝐻

|ℎ̃(𝑡, 𝑥)|

⎛

⎜

⎜

⎜

⎝

‖𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦‖
1 + ‖𝑥‖

+
‖𝛤 ∗

𝑇−𝑡𝛤𝑇−𝑡𝑥‖
1 + ‖𝑥‖

⎞

⎟

⎟

⎟

⎠

< ∞.

We proceed to show that ̃ℎ satisfies Assumption  3.4 (i). By the Fréchet differentiability of ̃ℎ, it follows from Manca [12], Theorem 
4.1, that

(𝐿ℎ̃)(𝑡, 𝑥) = �̃�ℎ̃(𝑡, 𝑥) +
⟨

𝐹 (𝑡, 𝑥),D𝑥ℎ̃(𝑡, 𝑥)
⟩

,

where �̃� is the infinitesimal generator of the Ornstein–Uhlenbeck 𝜋-semigroup. By the same arguments as in Lemma  4.2, one shows 
that ℎ̃ is harmonic with respect to �̃�, i.e. �̃�ℎ̃(𝑡, 𝑥) = 0 for any 𝑡 < 𝑇 . With the Lipschitz continuity of 𝐹 , it thus follows that 
(𝐿ℎ̃)(𝑡, 𝑥) ∈ 𝐶𝑚([0, 𝑆] ×𝐻) for any 𝑚 ≥ 2 with

(𝐿ℎ̃)(𝑡, 𝑥) =
⟨

𝐹 (𝑡, 𝑥),D𝑥ℎ̃(𝑡, 𝑥)
⟩

.

Likewise, we have that ℎ̃−1𝐿ℎ̃ ∈ 𝐶𝑚([0, 𝑆] ×𝐻) for any 𝑚 ≥ 2 since
(ℎ̃−1𝐿ℎ̃)(𝑡, 𝑥) =

⟨

𝐹 (𝑡, 𝑥),D𝑥 log ℎ̃(𝑡, 𝑥)
⟩

=
⟨

𝐹 (𝑡, 𝑥), 𝛤 ∗
𝑇−𝑡

(

𝑄
− 1

2
𝑇−𝑡𝑦 − 𝛤𝑇−𝑡𝑥

)

⟩

.

Therefore, ℎ̃ satisfies Assumption  3.4(i) and 𝐸ℎ̃ is a well-defined continuous P-local martingale given by 

𝐸ℎ̃(𝑡) =
ℎ̃(𝑡, 𝑋(𝑡))
ℎ̃(0, 𝑥0)

exp
(

−∫

𝑡

0

⟨

𝐹 (𝑠,𝑋(𝑠)), 𝛤 ∗
𝑇−𝑠

(

𝑄
− 1

2
𝑇−𝑠𝑦 − 𝛤𝑇−𝑠𝑋(𝑠)

)

⟩

d𝑠
)

. (61)

It remains to show that 𝐸ℎ̃ is a true P-martingale. However, this follows directly from the uniform Lipschitz continuity of 
(𝑡, 𝑥) ↦

√

𝑄D𝑥 log ℎ̃(𝑡, 𝑥) and Lemma  3.6. □

By construction we immediately get the following. 

Corollary 4.10.  The measures Pℎ and Pℎ̃ are absolutely continuous on 𝑡, 𝑡 < 𝑇 , with likelihood ratio
dPℎ𝑡
dPℎ̃𝑡

(𝑋) =
ℎ(𝑡, 𝑋(𝑡))
ℎ̃(𝑡, 𝑋(𝑡))

ℎ̃(0, 𝑥0)
ℎ(0, 𝑥0)

exp
(

∫

𝑡

0

⟨

𝐹 (𝑠,𝑋(𝑠)), 𝛤 ∗
𝑇−𝑠

(

𝑄
− 1

2
𝑇−𝑠𝑦 − 𝛤𝑇−𝑠𝑋(𝑠)

)

⟩

d𝑠
)

.

Proof.  This follows from plugging in the likelihood functions dPℎ𝑡 = 𝐸ℎ(𝑡)dP𝑡 and dPℎ̃𝑡 = 𝐸ℎ̃(𝑡)dP𝑡 as given in (61) into dPℎ𝑡 ∕dPℎ̃𝑡 =
dPℎ∕dP dP ∕dPℎ̃. □
𝑡 𝑡 𝑡 𝑡
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Remark 4.11. Corollary  4.10 shows the absolute continuity of the measures Pℎ and Pℎ̃ on any 𝑡, 𝑡 < 𝑇 . In other words, the measures 
are equivalent as long as we ‘stay away from the conditioning time 𝑇 ’. However, in order to draw samples from the bridge process 
𝑋⋆, we require absolute continuity of Pℎ and Pℎ̃ on 𝑇 , i.e. on the complete interval [0, 𝑇 ].

To demonstrate this, note that Pℎ𝑡 ∼ P𝑡 for any 𝑡 < 𝑇 , but under P the event {𝑋(𝑇 ) = 𝑦} has measure zero, implying that samples 
of 𝑋 under P will almost surely not hit the endpoint 𝑋(𝑇 ) = 𝑦.

In contrast to this, the additional drift term 𝑄D𝑥 log �̃�(𝑡, 𝑥; 𝑇 , 𝑦) forces the process 𝑋◦ to hit the conditioning point 𝑋◦(𝑇 ) = 𝑦, 
resulting in absolute continuity of the laws of process 𝑋⋆ and 𝑋◦ on the complete interval. We postpone the proof of this result, 
along with numerical illustrations, to an upcoming article, as it is beyond the scope of this paper.
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Appendix

The complete proofs of the results in the appendices can be found in Pieper-Sethmacher et al. [22].

Appendix A

We give more details on the approximation properties of the exponential test functions 𝐴(R+×𝐻) with respect to 𝜋-convergence 
in 𝐶𝑚(R+ × 𝐻). For this, it does not suffice to consider single-indexed sequences. Hence, the results stated in this section rely on 
using 𝑘-indexed sequences, i.e. sequences (𝜑𝑛1 ,…,𝑛𝑘 )𝑛1 ,…,𝑛𝑘  that depend on 𝑘 indices for some 𝑘 ∈ N.

A 𝑘-indexed sequence (𝜑𝑛1 ,…,𝑛𝑘 )𝑛1 ,…,𝑛𝑘  in 𝐶𝑚(R+ ×𝐻) is said to be 𝜋-convergent to some 𝜑 in 𝐶𝑚(R+ ×𝐻) if for any 𝑖 ∈ {2,… , 𝑘}
there exists an (𝑖 − 1)-indexed sequence (𝜑𝑛1 ,…,𝑛𝑖−1 )𝑛1 ,…,𝑛𝑖−1  in 𝐶𝑚(R+ ×𝐻) such that

𝜑𝑛1 ,…,𝑛𝑖−1 = 𝜋- lim
𝑛𝑖
𝜑𝑛1 ,…,𝑛𝑖

and 𝜑 = 𝜋- lim𝑛1 𝜑𝑛1 . We then write 𝜋- lim𝑛1 ,…,𝑛𝑘 𝜑𝑛1 ,…,𝑛𝑘 = 𝜑.

Lemma A.1.  Let 𝜑 ∈ 𝐶0(R+ × 𝐻) such that D𝑥𝜑 ∈ 𝐶0(R+ × 𝐻 ;𝐻). Then there exists a three-indexed sequence (𝜑𝑛1 ,𝑛2 ,𝑛3 )𝑛1 ,𝑛2 ,𝑛3 ⊂
𝐴(R+ ×𝐻) such that 

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3

𝜑𝑛1 ,𝑛2 ,𝑛3 = 𝜑,

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3

D𝑥𝜑𝑛1 ,𝑛2 ,𝑛3 = D𝑥𝜑.
(A.1)

Proof.  The proof goes as in Manca [11], Proposition 2.7, where a similar result was shown in 𝐶0(𝐻). □

Lemma A.2.  Let 𝜑 ∈ 𝐶𝑚(R+ ×𝐻) be such that D𝑥𝜑 ∈ 𝐶𝑚(R+ ×𝐻 ;𝐻). Then there exists a four-indexed sequence (𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 )𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 ⊂
𝐴(R+ ×𝐻) such that 

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4

𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 = 𝜑,

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4

D𝑥𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 = D𝑥𝜑.
(A.2)

Proof.  Let 𝜑 ∈ 𝐶𝑚(R+ ×𝐻) be such that D𝑥𝜑 ∈ 𝐶𝑚(R+ ×𝐻 ;𝐻). For any 𝑛1 ∈ N, define

𝜑𝑛1 (𝑡, 𝑥) =
𝑛1𝜑(𝑡, 𝑥)
𝑛1 + ‖𝑥‖2𝑚

.

Then lim𝑛1 𝜑𝑛1 (𝑡, 𝑥) = 𝜑(𝑡, 𝑥) pointwise and sup𝑛1 ‖𝜑𝑛1‖𝑚 ≤ ‖𝜑‖𝑚. Furthermore, one can show that lim𝑛1 D𝑥𝜑𝑛1 (𝑡, 𝑥) = 𝜑(𝑡, 𝑥) pointwise 
with sup𝑛1 ‖D𝑥𝜑𝑛1‖𝑚 ≤ (‖𝜑‖𝑚 + ‖D𝑥𝜑‖0,𝑚) and in particular it holds that

𝜋- lim𝜑𝑛 = 𝜑, 𝜋- limD𝑥𝜑𝑛 = D𝑥𝜑.
𝑛1 1 𝑛1 1
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Noting that 𝜑𝑛1 ∈ 𝐶0(R+ × 𝐻) with bounded derivative D𝑥𝜑𝑛1 ∈ 𝐶0(R+ × 𝐻 ;𝐻), the claim follows from Lemma  A.1 by 
approximating 𝜑𝑛1  with a suitable sequence (𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 )𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 ⊂ 𝐴(R+ ×𝐻) such that

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4

𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 = 𝜑𝑛1 ,

𝜋- lim
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4

D𝑥𝜑𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 = D𝑥𝜑𝑛1 . □

Lemma A.3 ( Lemma  2.12 Above).  For any 𝑚 ≥ 1, the space 𝐴(R+ ×𝐻) is a subset of dom𝑚(𝐿) with 𝐿𝜑 = 𝐿0𝜑, where 

(𝐿0𝜑)(𝑡, 𝑥) = 𝜕𝑡𝜑(𝑡, 𝑥) + ⟨𝑥,𝐴∗D𝑥𝜑(𝑡, 𝑥)⟩ + ⟨𝐹 (𝑡, 𝑥),D𝑥𝜑(𝑡, 𝑥)⟩ +
1
2
tr
(

𝑄D2
𝑥𝜑(𝑡, 𝑥)

)

(A.3)

for any 𝜑 ∈ 𝐴(R+ × 𝐻). Moreover, 𝐴(R+ × 𝐻) is a 𝜋-core for (𝐿, dom𝑚(𝐿)), i.e. for any 𝜑 ∈ dom𝑚(𝐿) there exists a sequence 
(𝜑𝑛)𝑛 ⊂ 𝐴(R+ ×𝐻) such that 

𝜋- lim
𝑛
𝜑𝑛 = 𝜑 and 𝜋- lim

𝑛
𝐿0𝜑𝑛 = 𝐿𝜑. (A.4)

Furthermore, if 𝜑 ∈ (𝐿, dom𝑚(𝐿)) is such that D𝑥𝜑 ∈ 𝐶𝑚(R+ ×𝐻 ;𝐻), the approximating sequence (𝜑𝑛)𝑛 in (A.4) can be chosen such that 
𝜋- lim

𝑛
D𝑥𝜑𝑛 = D𝑥𝜑. (A.5)

Proof.  Using Lemma  A.2, the proof goes just as in Manca [12], Theorem 1.3 after noting that 𝑌 (𝑡, (𝑠, 𝑥)) is the mild solution to the 
noise-degenerate SPDE 

{

d𝑌 (𝑡) =
[

�̃�𝑌 (𝑡) + 𝐹 (𝑌 (𝑡))
]

d𝑡 +
√

�̃�d�̃� (𝑡), 𝑡 ≥ 0,
𝑌 (0) = (𝑠, 𝑥).

(A.6)

Here �̃�(𝑠, 𝑥) = (0, 𝐴𝑥) and 𝐹 (𝑠, 𝑥) = (1, 𝐹 (𝑠, 𝑥)) and �̃� = (0, 𝑄) are defined on the product space R ×𝐻 and it is straightforward to 
show that �̃�, 𝐹  and �̃� satisfy Assumption  2.4. □

Appendix B

Lemma B.1.  Let 𝐺(𝑠, 𝑥) be a Lipschitz continuous function in 𝑥, uniformly on [0, 𝑇 ], i.e. there exists some constant 𝐶 > 0 such that
‖𝐺(𝑠, 𝑥) − 𝐺(𝑠, 𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖

for all 𝑠 ∈ [0, 𝑇 ] and 𝑥, 𝑦 ∈ 𝐻 . Let 𝑋 be the mild solution to (1). Then the process 𝐸(𝑡) defined by

𝐸(𝑡) = exp
(

∫

𝑡

0
⟨𝐺(𝑠,𝑋(𝑠)), d𝑊 (𝑠)⟩ − 1

2 ∫

𝑡

0
‖𝐺(𝑠,𝑋(𝑠))‖2 d𝑠

)

, 𝑡 ∈ [0, 𝑇 ],

is a P-martingale.

Proof.  This follows from a standard stopping time argument. Defining the stopping times

𝜏𝑛(𝑋) = inf
{

𝑡 ∈ [0, 𝑇 ] ∶ ∫

𝑡

0
‖𝐺(𝑠,𝑋(𝑠))‖2 d𝑠 ≥ 𝑛

}

∧ 𝑇 ,

it follows that P (

lim𝑛 𝜏𝑛 = 𝑇
)

= 1. Applying Novikov’s condition on the processes 𝐸𝑛(𝑡) = 𝐸(𝑡 ∧ 𝜏𝑛) as well as the monotone 
convergence theorem in 𝑛 then gives that E[𝐸(𝑇 )] = 1. □

Appendix C

Lemma C.1.  Under Assumption  4.1, for any 𝑆 < 𝑇 , the operators 𝛤𝑇−𝑡 are uniformly Hilbert–Schmidt on [0, 𝑆], i.e.
sup
𝑡∈[0,𝑆]

‖𝛤𝑇−𝑡‖𝐻𝑆 <∞.

Proof.  From the Strong Feller Assumption  4.1 it follows that 𝛤𝑟 = 𝑄
− 1

2
𝑟 𝑆𝑟 is a bounded linear operator and thus 𝑆𝑟 = 𝑄

1
2
𝑟 𝛤𝑟 is a 

Hilbert–Schmidt operator for any 𝑟 > 0. Moreover, it follows from Assumption  4.1 that

im(𝑄
1
2
∞) = im(𝑄

1
2
𝑟 ), 𝑟 > 0,

see Proposition 2 in Chojnowska-Michalik and Goldys [25]. From this one concludes that 𝑄− 1
2

𝑟 𝑄
1
2
∞ and 𝑄− 1

2
∞ 𝑆𝑟 are bounded linear 

operators for all 𝑟 > 0. Now, fix some arbitrary 𝑆 < 𝑇 . Then for any 𝑡 ∈ [0, 𝑆] it holds that

𝛤 = 𝑄
− 1

2 𝑆 = (𝑄
− 1

2 𝑄
1
2 )(𝑄

− 1
2 𝑆 ) = (𝑄

− 1
2 𝑄

1
2 )(𝑄

− 1
2 𝑆 )𝑆 .
𝑇−𝑡 𝑇−𝑡 𝑇−𝑡 𝑇−𝑡 ∞ ∞ 𝑇−𝑡 𝑇−𝑡 ∞ ∞ 𝑇+𝑆−𝑡 𝑇−𝑆

17 
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Noting that (𝑄− 1
2

𝑇−𝑡𝑄
1
2
∞) and (𝑄− 1

2
∞ 𝑆𝑇+𝑆−𝑡) are strongly continuous in 𝑡, it follows from the uniform boundedness principle that

sup
𝑡∈[0,𝑆]

‖𝛤𝑇−𝑡‖𝐻𝑆 ≤ sup
𝑡∈[0,𝑆]

‖(𝑄
− 1

2
𝑇−𝑡𝑄

1
2
∞)(𝑄

− 1
2

∞ 𝑆𝑇+𝑆−𝑡)‖‖𝑆𝑇−𝑆‖𝐻𝑆 <∞. □

Lemma C.2.  For any 𝑆 < 𝑇 , the random process 

𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦 =
∞
∑

𝑗=1
𝑞
− 1

2
𝑗,𝑇−𝑡⟨𝑦, 𝑒𝑗⟩𝛤

∗
𝑇−𝑡𝑒𝑗 , 𝑡 ∈ [0, 𝑆], (C.1)

is well-defined as a limit in 𝐿2(𝐻, 𝜈;𝐶([0, 𝑆];𝐻)). Moreover, there exists a measurable space 𝐻𝑆 with 𝜈(𝐻𝑆 ) = 1 such that the limit exists 
pointwise for 𝜈-a.e. 𝑦 ∈ 𝐻𝑆 .

Proof.  For any 𝑛 ∈ N define the process

𝛶𝑛(𝑡) =
𝑛
∑

𝑗=1
𝑞
− 1

2
𝑗,𝑇−𝑡⟨𝑦, 𝑒𝑗⟩𝛤

∗
𝑇−𝑡𝑒𝑗

where (𝑞𝑗,𝑇−𝑡, 𝑒𝑗 )𝑗 is the eigenbasis of 𝑄𝑇−𝑡. From the strong continuity of (𝑄𝑡)𝑡 and (𝛤𝑡)𝑡 it follows that 𝛶𝑛 ∈ 𝐶([0, 𝑆];𝐻) for any 
𝑛 ∈ N. Furthermore, it holds that

∫𝐻
‖𝛶𝑛‖

2
0 𝜈(d𝑦) = ∫𝐻

sup
𝑡∈[0,𝑆]

‖

𝑛
∑

𝑗=1
𝑞
− 1

2
𝑗,𝑇−𝑡⟨𝑦, 𝑒𝑗⟩𝛤

∗
𝑇−𝑡𝑒𝑗‖

2 𝜈(d𝑦)

= sup
𝑡∈[0,𝑆]

𝑛
∑

𝑗=1
𝑞−1𝑗,𝑇−𝑡

(

∫𝐻
|⟨𝑦, 𝑒𝑗⟩|

2 𝜈(d𝑦)
)

‖𝛤 ∗
𝑇−𝑡𝑒𝑗‖

2

= sup
𝑡∈[0,𝑆]

𝑛
∑

𝑗=1
𝑞−1𝑗,𝑇−𝑡⟨𝑄∞𝑒𝑗 , 𝑒𝑗⟩ ‖𝛤

∗
𝑇−𝑡𝑒𝑗‖

2

= sup
𝑡∈[0,𝑆]

𝑛
∑

𝑗=1
⟨𝑄

− 1
2

𝑇−𝑡𝑄
1
2
∞𝑒𝑗 , 𝑄

− 1
2

𝑇−𝑡𝑄
1
2
∞𝑒𝑗⟩⟨𝛤

∗
𝑇−𝑡𝑒𝑗 , 𝛤

∗
𝑇−𝑡𝑒𝑗⟩

≤ sup
𝑡∈[0,𝑆]

(

‖𝑄
− 1

2
𝑇−𝑡𝑄

1
2
∞‖ ‖𝛤 ∗

𝑇−𝑡‖
2
𝐻𝑆

)

< ∞

from which we conclude the convergence of 𝛶𝑛 → 𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦 in 𝐿2(𝐻, 𝜈;𝐶([0, 𝑆];𝐻)). Now, the second claim follows by an 
application of the Itô–Nisio theorem. □

Corollary C.3.  There exists a measurable space 𝐻0 ⊂ 𝐻 with 𝜈(𝐻0) = 1 such that 

[0, 𝑇 ) → 𝐻, 𝑡↦ 𝛤 ∗
𝑇−𝑡𝑄

− 1
2

𝑇−𝑡𝑦 (C.2)

is well-defined and continuous for any 𝑦 ∈ 𝐻0.

Proof.  Set 𝐻0 =
⋂

𝑛𝐻𝑇−1∕𝑛 where 𝐻𝑇−1∕𝑛 is the measurable space given by Lemma  C.2. □
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