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Abstract—Security is one of the most important features that
a system must provide. Depending on the application of the
target device, different threats should be considered at design
time. However, the attack space is vast. Hence, it is difficult to
decide what components to protect, what level of protection they
require and how efficient they are in the field. This paper tries
to close this validation gap for power based side channel attacks
by providing a fast and reliable leakage assessment at design
time that can be used to perform design space exploration for
security. To accomplish our goal, we use Generative Adversarial
Networks (GAN) to generate reliable power traces for hardware
implementations at design time that are subsequently used to
assess the leakage of the design. As a case study, we validated our
framework against three AES implementations (i.e., unprotected,
masked-protected, and balanced protected). In comparison to
CAD-based scenarios, our findings show that the GAN model
creates extremely reliable power traces in terms of attackability
and leakage assessment. In addition, it is approximately 120 times
quicker than CAD tools with respect to trace generation.

Index Terms—Countermeasures, design exploration, gener-
ative adversarial networks, side channel analysis, symmetric
cryptography

I. INTRODUCTION

There is no doubt that security has become a critical com-

ponent of microelectronic devices. Software-only solutions

are being complemented by hardware security solutions (e.g.,

ARM TrustZone [1] and Intel Boot Guard [2]) [3]. However,

designing a hardware protection scheme is quite challenging

as new vulnerabilities arise and, differently from software,

they cannot be updated after deployment. One set of popular

hardware attacks exploit the power consumption. For example,

a malicious adversary can take advantage of power behavior

to deduce secret information through side channel attacks [4].

One way of evaluating power-based vulnerabilities is to use

off-the-shelf security tools and equipment (e.g., equipment of

Rambus [5] or Riscure [6]). This approach can only be applied

after the chip is manufactured. Consequently, this verification

adds extra steps in the design process, which increases the pro-

duction cost. Even worse, when the security is not satisfactory

the chip has to be redesigned and manufactured, affecting not

only the cost but also the design time considerably. Therefore,

a pre-manufacturing power leakage assessment solution is

needed.

There are currently a few options to evaluate countermea-

sures prior to manufacturing. These options can be divided into

two categories: formal verification [7] and CAD tools [8]. The

aim of formal verification-based solutions is to mathematically

analyze the leakage of an implementation. Formal verification

examples can be found in [7], [9]. Unfortunately, such solu-

tions focus on analyzing randomness created by masks. As

a result, they only operate on one type of countermeasure,

i.e., masking countermeasures. CAD-based solutions, on the

other hand, tend to produce the power behavior of the targeted

implementation such as [10] and [11]. Unfortunately, creating

simulated power traces is a time-consuming operation, and

reducing the number of simulated traces cannot validate the

protection against real attacks such as Correlation Power

Analysis (CPA), which typically require a large number of

traces. Additionally, we see in the industry that secure IPs are

evaluated with a minimum of 10 million power traces [12].

Therefore, a CAD-based assessment solution would be an

interesting solution only if it can generate millions of power

traces in a timely manner.

This paper presents a novel method to speed up the CAD

based assessment by generating reliable power traces at design.

We first train a Generative Adversarial Network (GAN) based

on CAD-based power traces and their corresponding switching

activity. Subsequently, the GAN is used to generate new power

traces using the switching activity as input only. In summary,

the contributions of this paper are:

• Proposal of a novel methodology to generate power traces

and a leakage assessment framework based on GANs that

can be used at design time.

• Proposal of evaluation metrics to measure the quality of

the generated traces.

• Evaluation of the framework by performing a design

space exploration (i.e., search for a protected AES im-

plementation with low leakage). The security is evaluated

by performing attacks on the generated traces.

• Applying transfer learning to reduce training time of the

GAN.

• Validation of the generated traces by comparing them to

CAD-based power traces.

The remainder of the paper is organized as follows. Sec-

tion II describes the related work. Section III provides a

background on AES, side channel attacks, and Generative

Adversarial Networks. Section IV explains the proposed leak-

87

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00022

20
23

 2
6t

h 
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e 

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n 

(D
SD

) |
 9

79
-8

-3
50

3-
44

19
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

DS
D6

08
49

.2
02

3.
00

02
2

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 09:50:40 UTC from IEEE Xplore.  Restrictions apply. 



age assessment framework. Section V validates the proposed

framework against different AES implementations. Finally,

Section VII concludes this paper.

II. RELATED WORK

Generative deep models have already been applied to nu-

merous applications like images [13], audio [14], video [15]

and medical data like ECG [16]. In addition to the Generative

Adversarial Networks, there are also other methods that could

be used to generate fake traces such as Flow [17] and Auto-
regressive [18] based models. Flow models use a sequence of

invertible transformations to learn the exact data distribution.

As exciting as the possibility of exact likelihood computa-

tion might seem, Flow models usually have manifold times

more trainable parameters and require an order of magnitude

more processing (in GPU-based platforms) for the training

as compared to progressive GAN models [19]. On the other

hand, Auto-regressive models decompose the likelihood into

a product of conditional distributions. However, since the

prediction at every timestamp is dependent on all previous

predictions, these models are implicitly slow. Hence, for this

work, we prefer GANs over other deep generative models

as GANs can be trained relatively faster, have a reasonable

number of trainable parameters, and have been empirically

proven to produce really good quality results. Additionally,

taking the power leakage behavior into account, a GAN-based

model is ideal since it is quick at inference time and thus can

produce power traces swiftly. The existing Electronic Design

Automation(EDA) tool-based approaches to generate artificial

power traces are extremely slow to generate a large amount of

traces. Hence, employing GANs for this task can potentially

lead to an immense speed-up.

Generative adversarial networks have recently been intro-

duced in the side channel analysis domain. In 2020, Wang et

al. [20] proposed the usage of conditional GANs to enlarge

the size of the profiling dataset for carrying out profiled side

channel attacks. They use a traditional CGAN architecture

with dense layers and train it using the Jensen-Shannon

Divergence approach as proposed by Mirza and Osindero [21].

In the author’s own words, their study was aimed as a proof of

concept and not a robust methodology. Hence their proposed

methodology has a few limitations. First, dense layers are best

suited for shorter trace lengths, as the number of trainable

parameters grows substantially as the input/output size of the

GAN’s layers increases. Second, they condition the GAN

on only a few labels, namely the least significant bit and

Hamming weight of the SBOX output. Finally, they only use

the Jenson-Shannon Divergence loss and do not experiment

with other loss functions. Since the inception of GANs, many

architectural changes and loss functions have been proposed

that help in alleviating this problem as well as enhancing

training stability.

III. BACKGROUND

This section provides the background needed for this paper.

It first describes Advanced Encryption Standard. Thereafter,

Fig. 1: Random Masking

it presents the masking countermeasure. Finally, it discusses

generative adversarial networks.

A. Advanced Encryption Standard (AES)

Since 2001, AES, also known as Rijndael Cipher, has

become the current standard for symmetric cryptographic

algorithms. AES algorithm consists of four main functions:

AddRoundKey, SubByte, MixCoulmns, and ShiftRows, and

it supports three different keys length variants 128, 196,

and 256 bits. For more details regarding AES we refer

the reader to [22]. Among all AES functions, the SubByte
leaks the most information, and hence is often targeted by

side-channel attackers. The SubByte function (or so-called

SBOX ) is an essential nonlinear substitution function that

attempts to obfuscate the correlation between the key and the

plaintext/ciphertext. The SubByte function works as follows:

the multiplicative inverse of an 8-bit input representing a

polynomial is calculated using the finite Galois Field GF(28)

and the irreducible polynomial p(x) = x8 + x4 + x3 + x+ 1
followed by an affine transformation. To optimize the SubByte
in terms of performance, a pre-calculated look-up table (LUT)

containing all the possible values (256 values) of the 8-

bit input is used, which replaces the computation of the

multiplicative inverse and affine transformation. In addition to

the two naive implementations already described (i.e., Non-

LUT and LUT-based), the SubByte can also be implemented

in a variety of different ways, mainly to prevent information

leakage [23].

B. AES Countermeasures

For the past two decades, several countermeasures have

been proposed to thwart power attacks. These countermeasures

vary based on their implementation (i.e., software, hardware

design, circuit implementation) and technique (i.e., obfuscat-

ing or balancing power consumption). One of the famous

examples of obfuscating the power consumption is masking.

Masking can be implemented in software [24], by modifying

the hardware design [25] or using masked logic cells (i.e.,

masked dual-rail pre-charged logic) at circuit level [26].

In this paper, a simple form of masking implementation [27]

is used in addition to the naive implementations. The counter-

measure, as shown in Figure 1, works as follows: by selecting

two random 8-bit values (mask m and mask n) the SubByte

function can be calculated using Equation1. In Equation 1, P
denotes a byte of the plaintext, while K represents a byte
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Fig. 2: Generative Adversarial Network

of the secret key. To ensure that the encryption output is

correct, the SBOX also needs to be modified. Note that the

SBOX performs a non-linear transformation, hence for a given

plaintext P and mask n the sbox output SBOX(P ⊕n) is not

equal to SBOX(P )⊕SBOX(n). This countermeasure aims

to reduce the leakage by invalidating the Hamming Weight

and Hamming Distance leakage models.

SBOX[P ⊕K ⊕ n]⊕m (1)

In addition to the masking countermeasure, which can

be classified as an obfuscating countermeasure, the paper

considers the balancing countermeasure known as duplicate

design [28]. In this technique, two implementations of the

encryption algorithm (e.g., AES) run simultaneously; one

encryption uses the input message while the other one its

complementary value. The aim is to prevent leakage by having

overall the exact same switching activity, regardless of the

message being encrypted.

C. Generative Adversarial Networks (GANs)

GANs are used to generate new data sets with similar

characteristics as the training set, i.e., to approximate the train-

ing set’s distribution. They consist of two main components,

i.e., the generator G and discriminator D (see Figure 2. The

generator’s objective is to generate samples with a similar

distribution to the actual dataset distribution. The discrimina-

tor’s objective is to differentiate between real and fake traces,

namely x and G(z). Hence, the training process of a GAN

takes place in an adversarial setting wherein the discriminator

and the generator play a minimax game. The loss function L
can be expressed as follows:

min
G

max
D

L(G,D) = Ex∼p(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))] (2)

This loss function corresponds to the original GAN ar-

chitecture as proposed by Goodfellow et al. [29]. However,

as we want to condition the GAN on a categorical label

corresponding to each encryption, the label y (which for

example can correspond to the hamming weight/distance of

the SBOX output) is also a part of the loss function. This

conditional GAN loss function was originally proposed by

Mirza and Osindero [21] and can be expressed as:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x | y)]
+ Ez∼pz(z)[log(1−D(G(z | y)))]

(3)

The non-cooperative game is what makes training GANs

hard and unstable. To address this problem, a lot of research

has been performed to find better loss functions and nor-

malization techniques. In this work, in addition to the loss

function presented in Equation 3, we experimented with the

Least Squares GAN (LSGAN) [30] and the Wasserstein GAN

Gradient penalty (WGAN-GP) loss function [31]. The LSGAN

aims at increasing the quality of the generated samples by

improving the discriminator’s output by not only looking at

the binary output decision but also the quality of the generated

traces. Note that in the GAN proposed by Mirza and Osindero,

the discriminator’s purpose is to distinguish between the real

and fake samples as shown in Equation 3, which is realized

using a binary cross entropy loss. In LSGAN, however, we are

not only concerned with the binary classification but also with

how close or how far the fake traces are from the real ones.

This can be seen in the loss function presented in Equation 4.

min
D

LLSGAN(D) =
1

2
Ex∼pdota(x)

[
(D(x)− b)2

]

+
1

2
Ez∼px(z)

[
(D(G(z))− a)2

]

min
G

LLSGAN(G) =
1

2
Ez∼px(z)

[
(D(G(z))− c)2

]
(4)

During the training of the discriminator, we choose the value

of b as 1 to signify real traces and a as 0 to signify generated

traces. As the objective of the generator is to create fake traces

that look real, we set the value of c during the training of the

generator to 1 in order to attempt to fool the discriminator.

The WGAN-GP comes from the family of Wasserstein

GANs (WGAN). The objective of WGANs is to minimize

the earth mover (EM) distance. The EM distance represents

the level of dissimilarity between the distributions of the

generated and real traces. Minimizing the EM distance leads

to smoother gradients even when the generator outputs un-

satisfactory traces. The WGAN’s discriminator tries to model

a function that approximates the EM distance and not just

distinguishing the real samples from the generated ones.

L= E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

︸ ︷︷ ︸
gradient penalty

(5)

Calculating the EM distance is an intractable problem and

the Kantorovich-Rubinstein duality [32] can be used to make

the problem simpler. The Kantorovich-Rubinstein duality is

used to transform the EM distance minimization problem

in order to find a least upper bound. The transformed loss

function is required to satisfy K-Lipschitz continuity. This

continuity limits how fast a function can change. In the original

WGAN paper [33], the Lipschitz constraint is enforced by

weight clipping. However, the weight clipping method is
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extremely sensitive to the clipping value hyperparameter and

quite often reduces the network’s ability to model complex

functions. Instead, WGAN-GP adds a gradient penalty term

to enforce the K-Lipschitz continuity as shown in Equation 5.

IV. PROPOSED FRAMEWORK

This section presents our proposed framework. We introduce

the methodology and subsequently explain each step in detail.

A. Methodology

Our proposed framework can be used to evaluate the effi-

cacy and efficiency of countermeasures against side-channel

attacks without the need to procure actual power traces for

an ASIC design. The methodology to create this framework

consists of two major phases as shown in Figure 3. In the

first phase, the Training Phase, the generative adversial neural

network is being trained for the targeted circuit using the

switching activity from simulation and their corresponding

CAD-based power traces. Once the GAN model reaches a

desired accuracy, the second phase begins. In this phase,

the Generating Phase, the trained neural network is used to

generate the desired number of power traces to evaluate the

security of the design. Here the GAN generates power traces

solely from switching activity. In the following subsections,

we describe each phase in more detail.

B. Training Phase

The first step in training the neural network to generate

reliable power traces is to define the GAN’s input and classi-

fication labels. As input data, we use the switching activity of

the targeted circuit. One of the most common representations

of the switching activity is the value change dump (VCD) file.

VCD files can be generated during RTL or netlist simulations.

To quantify the training accuracy, we need labels that represent

the actual power traces. Hence, we use gate-level power

simulations generated from a CAD tool. The CAD tool uses

the switching activity and technology library to generate gate-

level power traces. Next we configure the GAN network to be

able to generate accurate power traces. Unfortunately, using

the switching activity for the labels prevents us from using

embedding layers in the GAN’s architecture, as embedding

layers expect integer numbers as input. The reason for this is

that they are implemented as simple look-up tables. Hence,

we remove the embedding layer as well as the noise vector

and instead just use the VCD transition as a directed input to

the GAN (see also Figure 2). A similar architectural choice

was made by Kumar et al. in their MelGAN architecture [34],

wherein they observe little perceptual difference in the gener-

ated waveforms when additional noise is fed to the generator.

Mathieu et al. [35] and Isola et al. [36] demonstrated the

capability of the noise vector’s redundancy when using highly

informative conditioning. Finally, we train the structured GAN

until we reach a desired accuracy level.

C. Generating Phase

During this phase, the generator component of the trained

GAN model (see Figure 2) is utilized to generate the power

traces that can be used to evaluate the design or counter-

measure. It generates these traces using the switching activity

which can be obtained from RTL or gate-level simulations.

Note that the amount of power traces that need to be generated

can be significantly higher than those used in the training

phase. Generally, more than 100k traces could be required for

the evaluation. Several data sets can be constructed based on

the evaluation method; examples are data sets with a random

key and random plaintext, fixed key and fixed plaintext, and

fixed key and random plaintext.

D. Evaluate Framework

The evaluation of the framework is performed through a

generalization test. We evaluate if our model can provide

reliable power traces. In this step, not only the plaintext varies

but also the key value. In each scenario, the quality of the

generated power traces is verified through leakage assessment

techniques known as evaluation-test (i.e., Correlation Power

Attack). Finally, both CAD-based and generated power traces

are compared. In addition, for various different implemen-

tations, traces can also be generated and evaluated. In this

context, the framework can be used to perform a design space

exploration to find the most secure solution for a certain

algorithm by quickly generating and evaluating traces for

VCD files belonging to a different design. We limit our tests

to three implementations only, which are: unprotected AES

implementation, AES implementation with masking and AES

implementation with blinding.

When the framework is completed, designers can generate

as many traces as needed. For example, security components

used in the industry (i.e., Intellectual Property blocks) require

for their vulnerability assessment 10 million, 100 million or 1

billion power traces [12].

E. Framework Optimization

Each time the design changes, the generator model must

be retrained to be able to generate reliable power traces.

Training the generator is the most time-consuming phase of the

proposed framework. Luckily, transfer learning can be used to

reduce the training time. Transfer learning enables retraining

of the neural network with much less effort, including the

amount of training data required to achieve high accuracy [37].

There are two methods of applying transfer learning, namely

feature extraction and fine tuning. In feature extraction, some

of the layers in the trained networks are frozen and used for

feature extraction, while others are retrained based on the new

training data. In fine tuning, the weights of the trained network

are used as initialization for the new network. Using the fine

tuning technique in our framework, we were able to reduce

the required number of traces from 10000 to 1000 to train the

GAN for each newly developed countermeasure.
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Fig. 3: Framework Methodology

V. EXPERIMENTAL RESULTS

This section presents the experiments setup, performed

experiments and evaluates the obtained results.

A. Setup

The different AES designs are simulated in Questasim [38],

which is additionally used to generate the VCD files that

contain the switching activity. Their corresponding power

traces are generated by Synopsys SpyGlass; using the RTL-

code of the design and the technology library for the target

ASIC design, SpyGlass can generate power traces at gate-level.

The VCD files and power traces are used to train the GAN

model. The GAN model is implemented with the PyTorch [39]

deep learning library and the remaining analysis are performed

in Python as well. All the experiments including the training of

the GAN are performed on an Intel i7-10750H CPU running

at 2.60GHz and the Nvidia GeForce RTX 2070 GPU.

To verify the accuracy of the framework, we test our find-

ings using three implementations with different keys/plaintext

combinations to ensure that our approach works regardless of

the input to the target design. As weight initialization (known

as transfer learning) for both the Generator and Discriminator,

a data set is used containing 20k traces of the unprotected AES

implementation based on random keys and plaintext values.

Note this is only done once per technology library. Next for

the evaluation of the target design, we start by training the

generator with only 1k traces. Subsequently, the Generator

is used to generate traces based on a VCD belonging to the

trained target (e.g., unprotected AES, protected masked SBOX

implementation or protected AES implementation based on

balancing). The traces are validated against corresponding

traces obtained from SpyGlass. Note that the GAN is only

trained with random inputs (i.e., for both plaintext and keys).

B. Evaluation Metrics and Performed Experiments

In this subsection, we first present the metrics used to eval-

uate our results. Thereafter we describe to which experiments

these metrics have been applied.

Evaluation-style Metric: In evaluation-style testing, power

traces are tested using actual side-channel attack scenarios.

They show whether the implementations are resistant to these

attacks or not. The attacks can be performed in a profiled or

unprofiled manner. Examples of profiled side-channel attacks

are template-based [40] and deep learning attacks [41]. Exam-

ples of unprofiled side-channel attacks are Differential power

analysis [42] and correlation power analysis [43]. In this paper,

we limit our analysis to CPA as it is one of the most popular

unprofiled techniques. Subkeys with highest correlation are

most likely the correct key guesses. The results are represented

using rank analysis of the correct, also referred to as partial

guessing entropy.
Trace equivalency: To compare the similarity between the

SpyGlass (referred to as CAD traces) and the GAN traces

(referred to as generated traces), certain signal processing

metrics like dynamic time warping and power spectral density
can be used. Dynamic time warping (DTW) [44] finds an op-

timal alignment between two unmatched temporal sequences.

This optimal alignment or the ‘warping path’ maps the two

sequences such that the distance between them is minimized.

The minimum distance can be used as a measure for the

similarity between any such two sequences. Similarly, even

the Power spectral density (PSD) of two signals can be used

as a measure for the similarity between them. Power spectral
density (PSD) is the measure of power distributed across

different frequency components that compose a signal [45].

For measured and generated traces to be visually similar, the

DTW distance should be low in value (the lowest it can be is

zero) and the PSD should be very similar.

C. Framework Evaluation
As described previously, we compare the attackability of

the generated traces with the CAD-based power traces. To

make the comparison fair, we test the Generator’s gener-

alization ability on VCD files corresponding to the same

AES implementation but with a different key. In addition,

different AES implementations with masking and blinding

countermeasures are tested as well. Note that the experiment

was performed using the GAN architecture shown in Figure

4. Hyperparameter tuning for GANs is much more complex

than hyperparameter tuning for other machine learning models

since the two-model architecture of GANs does not easily

fit into the popular hyperparameter search APIs. Our initial

architecture was inspired by a popular GAN implementation

[46] and then we randomly searched for optimal hyperparam-

eters. For this work: the batch-size is 100, and the kernel size
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for the convolutional layers is 8. The idea of using a slightly

larger kernel size was inspired from [47], where the author

demonstrates that deep learning based power side-channel

attacks using a convolutional neural network (CNN) with

larger kernel sizes perform much better than CNNs with small

kernel sizes. As for the loss function, the visual appearance

of the traces as well as the leakage behavior showed minor

variations for different loss functions. This minor impact of

loss functions on the generated traces is in line with [48],

where the authors state that the quality of the GAN generated

samples are not substantially dependent on the loss functions.

Fig. 4: GAN architecture

Evaluation-style Metric: The generated traces behave simi-

larly to the measured traces when we look at CPA ranking

analysis. For example, in the case of the unprotected im-

plementation, the number of attackable bytes was 16, which

equals the 16 attackable bytes when CAD traces were used.

Similarly, in the mask-protected implementation, the number

of the attackable bytes was zero for the GAN generated traces,

which matches the results obtained from the CAD traces. The

same results have been observed for the balance-protected

implementation. We further go into the depths of the ranking

analysis by examining the rank behavior of the correct key for

each of the three implementations as shown in Figures 5, 6,

and 7. The figures show that for different implementations

the rank analysis trends are similar both for generated and

CAD traces. This shows that the generative model can be used

with a wide range of VCD inputs. We believe that the GAN

model is able to extract the relevant signals for the leakage

effectively from the VCD and filter out the unneeded signals.

As a result, the generated traces can be used for evaluating

Fig. 5: CPA Results of Unprotected AES Implementation

Fig. 6: CPA Results of Masked AES Implementation

countermeasures.

Trace equivalency: The distance between GAN and CAD

traces was calculated using FastDTW [49] and we used

Euclidean distance as the distance measure for DTW. We

obtained values around 0.5 and noticed that the GAN provide

good results when the DTW value is between 2.0 and 0.3

Fig. 7: CPA Results of Balanced AES Implementation
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Fig. 8: PSD of CAD Versus GAN Traces

Fig. 9: PSD of CAD Versus VCD Traces

. Both these scores test to the similarity of the CAD and

generated traces. The Power spectral density (PSD) of CAD

and generated traces were also almost identical, as shown in

Figure 8. Note however that the distance between the PSD

of CAD and VCD traces is much larger (see Figure 9). This

shows that using traces obtained from VCD only is not as

accurate as generated from the GAN, even though the GAN

uses the VCD as input.

VI. COMPARISON TO STATE OF THE ART

Because we are only interested in hardware implemen-

tations, we have excluded from the comparison any trace

generation methods that are based on formal verification, any

methods that target software implementations at the instruc-

tion level, and any analytical-based approaches such as [50].

Methods that did not provide a discussion of the amount of

time necessary to gather the traces were also excluded [51].

Instead, we compare our method solely to state-of-the-art pre-

silicon techniques. We compare our approach to one method

that is based on the layout level and three other methods that

are based on the gate level, one of which is an approach based

on artificial intelligence. For the purpose of this comparison,

two criteria were used: first, the quality of the traces, which

was evaluated depending on the level at which the traces were

created (i.e., the layout, gate, or RTL level), and second, the

speed at which those traces were generated. We presumed

that traces produced at lower levels had a higher quality;

nevertheless, they require more time to generate [52]. In terms

of quality, we were successful in generating traces at the gate

level, which is better than the RTL level and allowed us to

obtain comparable results in terms of attackability. When it

comes to speed, our proposed approach exceeded the state-of-

the-art by 120 times as shown in Table I.

We are under the impression that our approach is likewise

capable of generating layout-based traces at a quicker rate

than the conventional way. However, because we need to

train the GAN using several thousands of layout-based traces

and because the generation of those traces takes a significant

amount of time, this may be considered a shortcoming of the

present technique. Still has the potential to be quicker than the

standard approach (i.e., CAD tool) when the number of traces

needed is in the hundreds of thousands or more.

VII. CONCLUSION

This study proposed a framework that is able to quickly

generate traces that are very comparable to CAD-based traces.

Our generative models were not only able to generate visually

indistinguishable power traces from the training set, but were

also able to learn the characteristics of the VCD transition

array. According to our experiments, only a few thousands of

CAD-traces are required to train GAN models using transfer

learning in order to produce high-quality power traces by

simply generating them from the switching activity. As a

result, we significantly improve the performance.
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