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Abstract

In this work, a numerical framework for modelling of hygrothermal ageing in laminated composites

is proposed. The model consists of a macroscopic diffusion analysis based on Fick’s second law coupled

with a multiscale FE2 stress analysis in order to take microscopic degradation mechanisms into account.

Macroscopic material points are modelled with a representative volume element (RVE) with random

fibre distribution. The resin is modelled as elasto-plastic with damage and cohesive elements are included

at the fibre/matrix interfaces. The model formulations and the calibration of the epoxy model using

experimental results are presented in detail. A study into the RVE size is conducted and the framework

is demonstrated by simulating the ageing process of a unidirectional specimen immersed in water. The

influence of transient swelling stresses on microscopic failure is investigated and failure envelopes of dry

and saturated micromodels are compared.

Keywords: Composites, Multiscale, Damage, Micromechanics

1 Introduction

Research on composite material usage optimization has been on the rise in the past few years, and particular

focus is being given to reducing design uncertainty. In the case of wind turbine blade design, large rotor

diameters are necessary in order to increase power output but they also bring significant increases in gravity

bending fatigue loads. The reduction of design uncertainty through a better understanding of material

behaviour and its interaction with service environment becomes a promising approach.

Wind turbines are subjected to extreme environmental conditions during service life, including exposure

to moisture, high/low temperatures, UV radiation, sand and water droplet erosion. For the composite ma-

terials that comprise the main load bearing structure of a blade, the combined influence of temperature and

moisture ingression is regarded as the most critical environmental effect [1]. Water ingress occurs through a

diffusion process dependent on the temperature and the concentration of water molecules in the surrounding

environment.

Once absorbed, water molecules become attached to polymer chains, promoting plasticization (lower

modulus and strength) and swelling [2, 3]. Depending on the polymer system, chains may also be broken

through hydrolytic reactions [4]. Since most fibre systems used in industrial applications (e.g. glass, carbon)

do not absorb water and therefore do not swell, differential swelling stresses arise [3]. Water molecules also

weaken the interface adhesion between fibres and resin, facilitating debonding [5, 6]. These degradation

mechanisms may act at different time scales and be either reversible or irreversible upon drying, increasing

the complexity of the problem at hand. The combination of such effects makes a purely experimental

characterisation of the hygrothermal ageing phenomenon a difficult task.

A number of authors has therefore advocated numerical modelling in order to simulate the hygrothermal

ageing process in polymers and composites [3, 2, 7, 8] as well as in porous materials [9]. Since the men-

tioned degradation effects act on the microsopic material constituents, a micromechanics approach becomes

a necessity. However, it is also important to predict how such microscopic processes affect macroscopic

material behaviour. Naya et al. [7] successfully used micromechanics to predict the wet properties of a

unidirectional ply by fitting a mesoscale failure criterion, although the swelling phenomenon was not con-

sidered. Such a numerical homogenisation approach entails a one-way upscaling procedure after which the

microscopically obtained failure envelope can be used in mesolevel analysis.
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Figure 1: Schematic representation of the multiphysics/multiscale model for hygrothermal ageing

However, macroscopic phenomena such as transient swelling stresses during diffusion [10] may also

influence the resultant microscopic degradation processes. Joliff et al. [3] simulated the immersion of

a macroscopic specimen including diffusion and differential swelling by explicitly meshing its complete

microstructure. The authors demonstrated the importance of including differential swelling in the ageing

model, although material failure and degradation (plasticization, interface weakening) were not included.

However, such a direct numerical simulation (DNS) approach becomes computationally infeasible if an

iterative failure analysis is performed at the same time.

In order to simultaneously account for macroscopic transient phenomena and microscopic failure mech-

anisms, a concurrent multiscale approach can be chosen by solving finite element problems at both macro

and micro scales and coupling them through homogenisation by means of a so-called FE2 approach [11].

A large body of literature is dedicated to the treatment of pure stress analysis in FE2 [12, 13], including

consistent treatment of material failure across scales [14] and modelling of processes at different time scales

[15, 16]. On the other hand, treatment of other field problems such as heat transfer [17], mass diffusion [18]

and coupled diffusion-reaction [19] in an FE2 framework is still not extensively documented. Particularly

for multiphysics applications, in which multiple fields are homogenised, no consensus exists on how to

couple the physical processes at play (full [20] or one-way coupling [21]) or how to perform macro to mi-

cro transitions of non-mechanical fields (constant [18] or periodically fluctuating microscopic fields [21]).

To the best of the authors’ knowledge, a framework that best suits the particular problem of hygrothermal

ageing in laminated composites has not been previously treated.

In this work, a multiphysics and multiscale framework is proposed for modelling hygrothermal ageing

in composites. A diffusion model at the macroscale is coupled with an FE2 homogenisation scheme in order

to model swelling and material degradation at both the micro- and macroscales. At the microscale, failure is

modelled in a representative volume element (RVE) of the material by using an elasto-plastic epoxy model

with damage [22] combined with cohesive interfaces around every fibre [23]. A model for concentration-

dependent mechanical properties with a single degradation factor is proposed. At every time step, the spatial

scales are coupled by passing the local strain and water concentration to micromodels embedded at every

material point, from which stress and tangent stiffness are in turn obtained. The model formulations and the

calibration of the epoxy model using experimental results are shown in detail. A study on the required RVE

size is performed and the framework is demonstrated by modelling ageing in a unidirectional short-beam

shear test specimen immersed in water.

2 Model formulation

2.1 Mathematical notation

In this work, both index notation and matrix notation will be used to represent tensors and vectors. When

index notation is used, the indices i, j, k, l range from one to the number of spatial dimensions of the

problem being solved. In products between two entities in index notation, summation over repeated indices

is implied. In matrix notation, vectors are represented by boldfaced lower-case symbols while matrices are

given by boldfaced upper-case symbols. When representing stresses and strains in matrix notation, the use

of Voigt notation is implied.

As the formulations presented here span multiple spatial scales, the superscripts M and m will be used
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to represent macroscopic and microscopic entities, respectively. For the sake of generality, all formulations

will be presented considering three-dimensional macro- and micromodels.

2.2 Macroscale problem

In order to simulate the ageing process at the macroscopic scale, a coupled multiphysics problem is solved

involving water diffusion and mechanical stresses (Figure 1). At a given point in time, the water concentra-

tion field cM is given by Fick’s second law of diffusion:

ċM +
∂jMi
∂xM

i

= 0 (1)

where jMi are the water flux components, given by:

jMi = −DM
ij

∂c

∂xM
j

(2)

and DM
ij is a diffusivity tensor. The water movement is therefore modelled as a smooth molecular motion

driven by concentration gradients.

It is worth mentioning that the water uptake model of Eq. (1) is suitable for resin systems featuring

one-phase Fickian diffusion behaviour, which is the case for the epoxy system used to calibrate the present

formulations [24] and systems studied by multiple other authors [3, 4, 5, 10]. For systems that display

a two-phase behaviour, the model must be expanded into a diffusion-reaction scheme, which entails the

inclusion of a reaction term into Eq. (1). Details of such procedure can be found in [25].

An increase in water concentration will cause the macroscopic specimen to swell. If the specimen is

constrained or if the concentration field is not constant at every point in space, swelling stresses will be

generated. Stress equilibrium is enforced by:

∂σM
ji

∂xM
j

+ bi = 0 (3)

where bi are body forces. In stress analysis, it is also necessary to define the relationship between the strain

and displacement fields. Here, the small strain tensor is used:

ǫMij =
1

2

(
∂uM

i

∂xM
j

+
∂uM

j

∂xM
i

)
(4)

For the rest of this section, matrix notation will be adopted and the superscript M will be dropped to keep

the notation compact. In order to solve the multiphysics problem with the Finite Element Method (FEM),

the macroscopic volume Ω is discretised in elements and both concentration and displacement fields are

interpolated using the nodal values c and u:

c = Ncc u = Nuu (5)

where Nc and Nu are shape functions for concentration and displacements, respectively.

Substituting the discretized fields of Eq. (5) into Eqs. (1) and (3) and solving them in their weak form,

the global moisture and stress equilibrium equations are obtained:

Kcc+Cċ = fj Kuu = fext (6)

with ċ being the nodal values of the time derivative of the concentration, Kc, C and fj are the diffusion

matrix, the water capacity matrix and the external flux vector, respectively, given by:

Kc =

∫

Ω

BT
c DcBcdΩ C =

∫

Ω

NT
c NcdΩ fj =

∫

Γj

NT
c jΓdΓ (7)

and Ku and fext are the stiffness matrix and the external force vector, respectively:

Ku =

∫

Ω

BT
uDuBudΩ fext =

∫

Ω

NT
ubdΩ+

∫

Γσ

NT
uσΓdΓ (8)
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where Γ denotes surfaces with prescribed water flux or stresses and integrals in the macroscopic domain Ω
imply element-wise integration followed by an assembly procedure.

In Eqs. (7) and (8), B contains spatial derivatives of the shape functions and Dc is the diffusivity tensor

of Eq. (2). In this work, the diffusivity is considered independent of the water concentration and is thus

constant throughout the analysis. Finally, Du is the tangent material stiffness matrix. In contrast with the

diffusivity behaviour, a constitutive model for strains is not assumed a priori but is instead substituted by

embedded micromodels at every integration point. Each micromodel receives the strain from the macro-

model and returns the associated stress tensor and tangent stiffness. The down- and upscaling procedures

involved in this process are shown in Section 2.4.

As can be seen in Figure 1, a one-way coupling exists between the diffusion and stress models. The

diffusion analysis is not affected by the stress state of the material and the interaction between the two

problems shown in Eq. (6) does not need to be solved iteratively. Instead, the diffusion model is solved

first and the resultant concentration field is passed to the stress model. This type of staggered operator-split

strategy was also adopted by other authors [21, 18].

2.3 Microscale problem

The micromodel considered in this work consists in a Representative Volume Element (RVE) of unidirec-

tional fibres surrounded by resin, with interface elements around every fibre, allowing for the modelling

of fibre-matrix interface debonding. The difference in length scales between macro- and micromodels is

considered large enough for the principle of separation of scales [11] to be applied. Thus, the macroscopic

strains and water concentration are considered uniform over the microscopic domain and only the stress

equilibrium problem is considered:

∂σm
ji

∂xm
j

= 0 ǫmij =
1

2

(
∂um

i

∂xm
j

+
∂um

j

∂xm
i

)
(9)

where the body forces bi are neglected. The reasoning behind considering that the water concentration is

constant over the entire micro domain is presented in Section 2.4. Solving the problem using FEM involves

solving a system of equations similar to the second expression of Eq. (6) but now the integrations are

performed over the microscopic volume ω. Additionally, since the micromodel includes interface elements

around every fibre, the displacement jumps along them are also interpolated and their contribution to the

global stiffness matrix is obtained via:

JuK = NJuKu ⇒ KJuK =

∫

γi

NT
JuKTNJuKdγi (10)

where NJuK is the shape function matrix for displacement jumps, γi are the interface surfaces and T is the

tangent constitutive matrix for the interface elements.

At the microscale, the constitutive model of each material component is assumed a priori and is used to

compute the stresses σ = σ(ǫ), the tractions t = t(JuK) and provide the tangent constitutive matrices:

Du =
∂σ

∂ǫ
T =

∂t

∂JuK
(11)

Since water affects each material component (fibre, matrix, interface) differently, suitable constitutive

models have to be chosen in order to capture the essential degradation and failure processes that can occur

during ageing. The fibres are modelled as linear-elastic and their failure is not considered. In the subsequent

sections, the models for the epoxy and fibre-matrix interface behaviours are presented in detail.

2.3.1 Epoxy model

The epoxy resin is modelled as elasto-plastic with damage, using the model formulated by Melro et al.

[22] and incorporating improvements proposed by Van der Meer [26]. The model is composed of a linear-

elastic portion followed by plastic hardening and transitioning to damage with exponential softening after

the fracture strength is reached.

The model starts as elasto-plastic, with a stress-strain relationship given by:

σij = De
ijkl

(
ǫkl − ǫpkl

)
(12)
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where only the elastic part of the strains is considered and the elastic stiffness Dijkl can be written as:

Dijkl = G(δijδkl + δilδjk) +

(
K − 2

3
G

)
δijδkl (13)

with K being the bulk modulus for the resin and G its shear modulus. Plastic strains develop when the yield

surface is reached. A paraboloidal surface is considered:

φp(σ, σc, σt) = 6J2 + 2I1(σc − σt)− 2σcσt ≤ 0 (14)

where σc and σt are the compression and tension yield stresses, respectively, J2 is the second invariant of

the deviatoric stress tensor and I1 is the first stress invariant. This yield surface consists of the classic von

Mises surface augmented with the pressure-dependent term 2I1(σc − σt).
The evolution of the yield surface due to hardening is dictated by the evolution of σc and σt with the

equivalent plastic strain ǫpeq. At each time step, the variation of the equivalent plastic strain is given by:

∆ǫpeq =
√

k∆ǫpij∆ǫpij ⇒ σc = σc(ǫ
p
eq), σt = σt(ǫ

p
eq) (15)

and the variation of the plastic strains is computed through a non-associative flow rule given by:

∆ǫpij = ∆γ

(
3Sij +

2

9
αI1δij

)
(16)

where Sij is the deviatoric stress tensor and α depends on the plastic Poisson ratio νp:

α =
9

2

1− 2νp
1 + νp

(17)

In order to determine the plastic multiplier increment ∆γ, an iterative elastic predictor/return mapping

algorithm is used until the computed stress state stops violating the yield surface (i.e. until φp = 0). Details

on the return mapping algorithm and on computing the consistent tangent matrix are left out of the present

discussion for the sake of compactness and can be found in [26].

When the material fracture strength is reached, the model switches to a continuum damage formulation

with secant unloading. After such point, the stress-strain relationship is given by:

ǫeij = ǫij − ǫpij =
1 + ν

E(1− dm)
σij −

νdm
E(1− dm)

σijδij −
ν

E
σkkδij (18)

where the plastic strain is still subtracted from the total strain but stops evolving after damage starts devel-

oping. A single damage variable dm is adopted and its evolution is dictated by the fracture surface defined

as:

φd(σ̃, r) = 6J̃2 + 2Ĩ1(Xc −Xt)− 2rXcXt ≤ 0 (19)

which is similar to Eq. (14) but with yield stresses substituted by the fracture strengths (Xc, Xt) and the

invariants are now computed with the effective stresses, calculated using the undamaged stiffness tensor of

Eq. (13).

In order to ensure that the stress state does not violate the fracture surface, the internal variable r at time

step tn is:

rtn = max

{
1, max

0≤t≤tn

{
3J̃ t

2

XcXt
+

Ĩt1(Xc −Xt)

XcXt

}}
(20)

and is related to the damage parameter dm by:

dm = 1− eA
(
3−

√
7+2r2

)

√
7 + 2r2 − 2

(21)

where the parameter A is computed through the classic Crack Band model by regularising the dissipated

energy with respect to the fracture toughness Gc and the characteristic length of the finite element le:

f(A) =

∫ ∞

1

∂U

∂dm

∂dm
∂r

dr =
Gc

le
(22)

with le computed as:

l2D
e =

6

π 4
√
3

√
γe l3D

e = 3
√
ωe (23)

and γe and ωe are the element area and volume, respectively. The consistent tangent matrix is obtained

through linearisation of the secant stress-strain expression of Eq. (18). Further details on the linearisation

process can be found in [22].
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2.3.2 Cohesive interface model

The occurrence of fibre-matrix interface debonding is simulated by incorporating a cohesive zone damage

model to interface elements generated around every fibre of the RVE. The chosen model is a mixed-mode

damage law developed by Turon et al. [23], with later improvements proposed by Van der Meer and Sluys

[27]. In the local frame of the interface element, the traction-separation law can be written as:

t = [I− diP]KdJuK (24)

where Kd is an initial stiffness, di is the damage variable associated with the model and the matrix P

prevents the development of cohesive tractions in compression by applying the operator 〈x〉 = (x+ |x|)/2:

P =




〈JuKn〉
JuKn

0 0

0 1 0
0 0 1


 (25)

where JuKn is the displacement jump in the direction normal to the interface surfaces.

The damage variable di is given by:

dtni = max
0≤t≤tn





0, JuKeq ≤ JuK0eq
JuKfeq(JuKeq−JuK0eq)

JuKeq(JuKfeq−JuK0eq)
, JuK0eq < JuKeq < JuKfeq

1, JuKeq ≥ JuKfeq

(26)

where the equivalent displacement jump (JuKeq), the displacement jump at the onset of damage (JuK0eq) and

the jump after damage has completely developed (JuKfeq) are given by:

JuKeq =
√

〈JuKn〉2 + JuK2sh JuK2sh = JuK2s + JuK2t (27)

JuK0eq =

√
(JuK0n)

2 + χη

[
(JuK0s)

2 − (JuK0n)
2
]

(28)

JuKfeq =
JuK0nJuKfn + χη

[
JuK0sJuKfs − JuK0nJuKfn

]

JuK0eq
(29)

where η is the Benzeggagh-Kenane mode interaction parameter [28] and χ is the ratio between the shear

energy dissipation and the total dissipation:

χ =
JuK2sh

JuK2sh + 〈JuKn〉2
(30)

Finally, the single-mode displacement jumps at damage onset depend on the fracture strength of the inter-

face while the final interface openings depend on its fracture toughness:

JuK0n =
Xn

Kd
JuK0s =

Xs

Kd
JuKfn =

2GIc

Xn

JuKfs =
2GIIc

Xs

(31)

The formulation is completed with the definition of the material tangent stiffness matrix T of Eq. (11)

through consistent linearisation of the traction-separation law of Eq. (24). Details of the linearisation pro-

cedure can be found in [27].

2.3.3 Loads and boundary conditions

In the present model, periodic boundary conditions are adopted in the micromodel in order to represent the

behaviour of a macroscopic bulk material point. Figure 2 shows a schematic representation of the node

groups involved in enforcing the boundary conditions. The origin of the RVE coordinate system is fixed at

node 0 and its displacement is fixed:

u0 = 0 (32)

The corner nodes with displacements given by uc
j , where j ranges from 1 to the number of spatial di-

mensions of the RVE, will be prescribed based on the macroscopic strain values at the point according to
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Figure 2: Periodic RVE with controlling nodes and boundary surfaces.

the scale transitions discussed in Section 2.4. Finally, the displacements of nodes on opposing boundary

surfaces are related by:

uγ+
j = uγ−

j + uc
j (33)

where the constraints are handled using the master-slave method, which means that the degrees of freedom

of the slave nodes will be condensed out of the microscopic global stiffness matrix.

Resin elements are allowed to swell based on the current water concentration of the micromodel. The

swelling is applied as a strain contribution at each material point:

ǫtotalij = ǫij − cαswδij (34)

where αsw is the swelling coefficient of the resin. Since the fibres do not take water and are therefore not

allowed to swell, differential swelling stresses will be generated. If the RVE is free to swell, the volume

average of such stresses will be zero. However, the presence of prescribed macroscopic strains on the RVE

implies that the micromodel cannot swell freely, and the resultant modified stress field may bring changes

to its failure behaviour.

2.3.4 Concentration-dependent properties

Experimental evidence shows a significant drop in mechanical properties of the resin and interface after

water uptake [7, 2]. In order to realistically predict the effects of the ageing process, such degradation

caused by plasticization and interfacial bond weakening must be incorporated in the micromodel. Here,

resin and interface properties are linearly dependent on the water concentration of the micromodel using a

single degradation factor:

dw =
d∞w
c∞

c (35)

where c∞ and d∞w are respectively the water concentration and associated material degradation at saturation,

obtained experimentally.

With the definition of the degradation factor, the resin properties are modified as:

Ew = (1− dw)E, σw
c = (1− dw)σc, σw

t = (1− dw)σt (36)

Xw
c = (1− dw)Xc, Xw

t = (1− dw)Xt, Gw
c = (1− dw)

2Gc (37)

and the interface properties as:

Xw
n = (1− dw)Xn, Xw

s = (1− dw)Xs, Gw
Ic = (1− dw)

2GIc, Gw
IIc = (1− dw)

2GIIc (38)

It is important to note that applying the degradation factor to the yield stresses σc and σt implies a degrada-

tion of the hardening curve for every value of equivalent plastic strain. For fracture toughness, the squared

degradation factor was adopted for the sake of numerical stability and implies reductions in both the strength

and the strain (or displacement jump) level at which the softening is completely developed.
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2.4 Scale transitions

With the formulations of the models in both macro- and microscales, it is necessary to define the interaction

between scales. Following the scheme presented in Figure 1, such interactions comprise a macro-to-micro

downscaling procedure, where strain and water concentration are passed to the micromodels, and a micro-

to-macro upscaling procedure, with the recovery of the macroscopic stress and tangent stiffness.

Starting with the downscaling procedure, the displacement field of the micromodel can be decomposed

in a linear displacement field related to the macroscopic strain and a fluctuation field ũ caused by micro-

scopic inhomogeneities:

um
i = ǫMijx

m
j + ũm

i (39)

It is important to note that such linear dependency on the macroscopic strain is only allowed because the

principle of separation of scales mentioned in Section 2.3 is considered valid. For water concentration,

since it is directly linked to strains through swelling (Equation 34), bringing concentration gradients to the

microscale would make it necessary to also bring strain gradients. This approach is not followed here and

the concentration is therefore considered constant over the entire microscopic domain, a hypothesis also

adopted by Terada and Kurumatani [18]:

cm = cM(xM) (40)

When making the transition to the microscale, the volume average of the microscopic strain must be

equal to the macroscopic strain at a particular material point:

ǫMij (x
M) =

1

|ω|

∫

ω

ǫmij(x
m)dω =

1

|ω|

∫

γ

(um
i nj + um

j ni)dγ (41)

where the volume integral was substituted by one in the RVE surface γ using the Gauss theorem and n is

the vector normal to γ. Substituting Eq. (39), we obtain:

1

|ω|

∫

γ

(ũm
i nj + ũm

j ni)dγ = 0 ⇒ ǫMij =
1

|ω|

∫

ω

ǫmijdω (42)

which dictates that the strain averaging is only satisfied if the fluctuation displacement field cancels at the

RVE boundary.

After solving the microscopic boundary value problem, the macroscopic stress tensor must be recovered

from the micro solution. For this part of the upscaling procedure, the Hill-Mandel principle is applied:

σM
ij ǫ̇

M
ij =

1

|ω|

∫

ω

σm
ij ǫ̇

m
ijdω =

1

|ω|

∫

γ

tmi u̇
m
i dγ (43)

The principle postulates that the macroscopic stress power must be equal to the volume average of the

microscopic one. The volume integral can be substituted by a boundary integral of the product between the

traction and the variation of the displacement field. Substituting Eq. (39), we obtain a result similar to the

one in Eq. (42):
1

|ω|

∫

γ

tmi
˙̃u
m

i dγ = 0 ⇒ σM
ij =

1

|ω|

∫

ω

σm
ijdω (44)

which means that the microscopic fluctuation field must have zero resultant work at the boundaries.

Considering the periodic boundary conditions shown in the previous section and imposing the additional

requirement that the geometry of the RVE must be symmetric, it can be shown that:

ũm+
i = ũm−

i n+
i = −n−

i tm+
i = −tm−

i (45)

from which the following equalities arise:

∫

γ−

(ũm−
i n−

j + ũm−
j n−

i )dγ = −
∫

γ+

(ũm+
i n+

j + ũm+
j n+

i )dγ (46)

∫

γ−

˙̃u
m−
i tm−

i dγ = −
∫

γ+

˙̃u
m+

i tm+
i dγ (47)

Substituting Eqs. (46) and (47) into Eqs. (42) and (41), it can be seen that both requirements for the fluctu-

ation field are satisfied.
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Finally, the scale transitions can be formulated in Voigt notation for ease of implementation. For a

given macroscopic strain tensor ǫM, the displacements uc
j of the controlling nodes shown in Figure 2 are

computed as:

uc
j = HT

j ǫ
M, Hj =

1

2




2x 0 0
0 2y 0
0 0 2z
y x 0
0 z y
z 0 x




j

, ǫM =




ǫMxx
ǫMyy
ǫMzz
2ǫMxy
2ǫMyz
2ǫMxz




(48)

where the matrix H is filled with the coordinates of each controlling node. After solving the microscopic

equilibrium equations and obtaining the internal forces at the controlling nodes, the macroscopic stresses

are recovered:

σM =
1

|ω|
[
H1 H2 H3

]


fm1
fm2
fm3


 =

1

|ω|Hfmc (49)

The final step in the upscaling procedure is to compute the tangent macroscopic stiffness matrix δσM =
DM

u δǫM from Eq. (8). Here, the procedure follows the formulation presented by Nguyen et al. [14] but

is rewritten for the case of homogenization towards a bulk macroscopic point. The procedure starts by

partitioning the global stiffness matrix of the micromodel as follows:

[
Km

ii Km
id

Km
di Km

dd

] [
δum

i

δum
d

]
=

[
rmi
rmd

]
(50)

with d representing the dependent nodes from the slave surfaces (Figure 2) and i the remaining ones, includ-

ing the controlling corner nodes. Representing the constraints by a coefficient matrix C, the displacement

vector is given by: [
δum

i

δum
d

]
=

[
I

C

]
δum

i = Tδum
i (51)

Pre-multiplying both sides of Eq. (50) by TT and substituting the displacement vector by the one in

Eq. (51), the dependent displacements are condensed out and a reduced system is obtained:

[
K

m
0

0 I

] [
δum

i

δum
d

]
=

[
rm

δum
d

]
, K

m
= TTKmT, rm = TTrm (52)

The system is further partitioned by separating the controlling nodes (c) from the rest (a):

[
K

m

aa K
m

ac

K
m

ca K
m

cc

] [
δum

a

δum
c

]
=

[
0

δfmc

]
(53)

where the variation of the external force on the controlling nodes used in the stress upscaling of Eq. (49)

now appears in the right-hand side. From this reduced system, the macroscopic tangent stiffness matrix can

be evaluated in a columnwise manner by using a probing technique:

DM
u =

[
DM

1 DM
2 · · ·DM

n

]
, DM

j =
1

|ω|H(ξ − λ) (54)

where each column j = 1, ..., n gives the stiffness contribution of one of the n strain components. The ma-

trix H is given in Eq. (48) and the vectors ξ and λ are given by a sequence of matrix-vector multiplications:

ξ = K
m

ccβ, β = Hej , λ = K
m

caκ, (55)

with ej being the j-th row of an identity matrix of size n and λ is obtained by solving the linear system:

[
K

m

aa K
m

ac

K
m

ca K
m

cc

] [
κ

0

]
=

[
K

m

acβ

0

]
(56)

which completes the definition of the macroscopic tangent stiffness without the need to invert the micro-

scopic global stiffness matrix.
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2.5 Solution methods

Using the multiphysics/multiscale numerical framework presented in the previous sections requires robust

and efficient solution methods. For the diffusion analysis, a time stepping procedure is necessary, while a

non-linear path-following method has to be used in the FE2 stress analysis.

To solve the transient diffusion problem, the linear 3-step method developed by Park [29] is used. The

water concentration field at time t is computed as [30]:

ct = hβ ċt + ht (57)

where hβ is the scaled time step and h is a history vector that depends on the concentration fields of the

three previous steps.

For the stress analysis, a Newton-Raphson solver is applied. During the ageing process, the non-linear

equilibrium problem is solved for each time step and a path-following algorithm is not needed. For every

macroscopic iteration, the microscopic equilibrium problem has to be solved at every material point. Since

the points are independent from one another, they are solved in parallel in a shared-memory environment.

For material points close to the surfaces exposed to water, saturation happens in one time step, which can

make convergence difficult. In order to mitigate this issue, the substepping algorithm proposed by Sommer

et al. [31] is applied. Here, the method is modified by splitting not only the macroscopic strains but also

the water concentration in two consecutive substeps. If no convergence is obtained for any of the substeps,

the process is repeated recursively.

At the end of the ageing process, it is interesting to assess the strength degradation caused by water

immersion by loading each material point to failure and obtaining their failure envelopes. For this type of

analysis, the dissipation-based arclength method developed by Gutiérrez is used [32]. The method con-

strains the dissipated energy during one time step by imposing the constraint:

1

2

(
λ0∆uTq−∆λuT

0 q+∆uTf∗0

)
= ∆U (58)

where λ is the load factor, q is the unit load vector and the subscript 0 indicates values from the last

converged time step. The term ∆uTf∗0 was proposed by Van der Meer et al. [33] and accounts for the

presence of permanent plastic deformations and swelling strains. The dissipated energy ∆U is adjusted

during the analysis by an efficient adaptive stepping algorithm [34].

Since a continuum damage model regularised using the Crack Band method is used for the epoxy at

the microscale, additional convergence problems arise as the Newton-Raphson solver struggles to identify

which band of elements is damaging and gets trapped in an oscillatory response. To restore convergence

in such cases, the modified Newton-Raphson scheme proposed by Van der Meer [34] is used, in which the

oscillating points are identified and their secant stiffness is used instead of the consistent tangent one. After

the residual decreases for a certain number of consecutive steps, the algorithm switches back to using the

consistent tangent.

3 Results

The presented numerical framework is used to model the hygrothermal ageing behaviour of unidirectional

composite laminates. In the examples presented in this section, a glass/epoxy material system used in wind

turbine design (EPIKOTE RIMR135/1366 resin and PPG Hybon 2002 glass fibre rovings) is considered.

The material properties for each of the constituents (fibre, matrix and interface) are shown in Table 1.

For the resin, most properties were obtained experimentally on neat resin specimens tested in tension

and compression. The resultant stress-strain curves were also used to extract the plastic hardening curves,

shown in Figure 3. Properties for the glass fibre and fibre/matrix interface were obtained from literature. The

maximum uptake c∞ and diffusivity (D) for the unidirectional composite material were obtained through an

immersion experiment in water at 50◦C, with weight measurements performed periodically [35]. Finally,

the maximum property degradation at saturation (d∞w ) was obtained from mechanical tests on saturated

tension specimens.

The proposed model for concentration dependency of Section 2.3.4 was validated using experimental

results on saturated epoxy. Figure 4 shows results of 1-element models, where the purple and red curves

were obtained using the hardening curves extracted from compression and tension tests on dry resin spec-

imens, respectively. For these two cases, a good agreement between experiments and models is expected

since the original curves were used to calibrate the model. The blue curve was obtained by degrading the

dry model using dw = 0.2. The good agreement with the experimental curve of a saturated specimen
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Figure 6: Transverse tension strength changes with RVE size.

shows that using a single degradation factor for stiffness, yield stress and strength is effective for describing

the degradation in the material response, although no conclusion can be drawn about the adopted fracture

toughness degradation due to the sudden failure behaviour of the specimens.

3.1 RVE study

In applying the proposed formulation, it is important to choose a suitable RVE size. In order to be represen-

tative, the RVE should be large enough to ensure that the micromodel response does not change considerably

if the size is further increased. In this work, two-dimensional micromodels with random fibre distributions

are used. Simplification of the presented three-dimensional formulations of Section 2 for a 2D analysis is

trivial and will not be presented.

The models were generated using the discrete element package HADES, starting with a regular grid of

circles representing the fibres, bounded by a periodic box. A pseudo-random velocity vector is assigned

to each circle and a contact model is executed, letting the circles get rearranged as they collide, while the

bounding box shrinks over time. The process is stopped when the desired fibre volume fraction is reached.

The resultant geometry is then meshed with triangular finite elements using Gmsh [36]. Based on loss-on-

ignition measurements and microscopic observations on the adopted material system, the fibre diameter was

randomly generated between 13µm and 16µm and a target volume fraction of 0.6 was adopted. Interface

elements are generated at runtime around every fibre.

Figure 5 shows homogenised stiffness values for micromodels with a number of fibres ranging from 4

(2 x 2) to 49 (7 x 7), including a unit cell with one fibre and surrounding matrix. Values for both dry and

saturated micromodels are shown and each point shows the average and standard deviation obtained using

30 different micromodels (with the exception of unit cell values).
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Epoxy Interface Fibre Diffusion

E [kPa] a 3130 Kd [kPa] b 5 · 107 E [kPa] [37] 73000 c∞ [%] a 3.4

ν [-] a 0.37 Xn [kPa] [38] 60.0 ν [-] [37] 0.22 D [µm2/s] a 0.500

νp [-] a 0.32 Xs [kPa] [38] 60.0

Xt [kPa] a 70.7 GIc [N/mm] [38] 0.87

Xc [kPa] a 88.5 GIIc [N/mm] [38] 1.72

Gc [N/mm] [22] 0.09 η [-] b 1.0

αsw [%−1] a 0.002 d∞w [-] b 0.2

d∞w [-] a 0.2

aValues experimentally obtained by the authors.
bAssumed values.

Table 1: Material Properties used in the examples.

As the size of the RVE is increased, average stiffness values for both dry and wet models tend to

decrease. The standard deviation also decreases, although significant scatter is still observed even for the

largest RVE size considered, which is partly due to fluctuations in the obtained fibre volume fraction after

the discrete element contact analysis.

It is interesting to note that the difference between wet and dry stiffness values increases as the RVE

grows in size, with a 17% reduction obtained for the unit cell model and a 23% one for 7 x 7 models, on

average. The difference in the rate of stiffness reduction with RVE size is caused by failure events driven by

the combination of swelling and degradation of the resin and interface properties. These failure events are

not fully captured in smaller micromodels, making the convergence to a stable stiffness value slower when

compared to dry micromodels.

The micromodels were also loaded in transverse tension (σ22), with changes in strength as the RVE

size increases shown in Figure 6. A behaviour similar to the one obtained for stiffness is observed, with

a decrease in strength as the RVE size increases, although the convergence rate is now similar for both

dry and wet micromodels. In general, a representive initial stiffness can be achieved with a relatively

small RVE size, while correctly representing its failure behaviour both in terms of distributed and localised

damage requires larger RVE sizes. Nevertheless, since significant scatter is still present for both stiffness

and strength even for the largest RVE size considered in the present study, it cannot be claimed that a truly

representative micromodel was found.

It is also interesting to investigate changes in failure behaviour after ageing for stress states other than

uniaxial transverse tension. Figure 7 shows biaxial failure envelopes in both dry and wet conditions of a

7 x 7 RVE. Each point in the envelope was obtained by applying a horizontal load of λ cos θ to controlling

node 1 and a vertical load of λ sin θ to controlling node 2 (see Figure 2), with θ ranging from 0◦ to 345◦ in

steps of 15◦. The load scale factor λ is resolved in every time step using the arc length method. For each

direction, the strength was identified as the point that maximises
√
σ2
22 + σ2

33.

Comparing the obtained envelopes, it is interesting to note the differences in the wet material behaviour

in tension and compression. For tension, a strength reduction of approximately 27% was obtained af-

ter ageing. In compression, however, the strength reduction falls to 15% due to the effect of differential

swelling. This effect is particularly relevant for the case of biaxial compression (θ = 225◦), for which the

wet strength is actually higher than the dry one, in spite of the weakening effect caused by plasticization

and interface weakening. The resultant change in envelope shape after ageing can therefore be interpreted

as the combination of shrinkage caused by water degradation and a shift caused by differential swelling.

It can therefore be concluded that in order to realistically model the hygrothermal ageing phenomenon

in composites, it is important to take into account the contributions of both differential swelling and phys-

ical/chemical degradation. In isolation, neither mechanism is enough to represent the complex changes in

failure behaviour after ageing.

3.2 Ageing example

The numerical framework presented in this work is demonstrated by simulating the hygrothermal ageing

process in a unidirectional glass/epoxy composite specimen immersed in water at 50◦C. The specimen di-
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Figure 8: Modelling hygrothermal ageing in a unidirectional composite short-beam.

mensions and fibre direction are shown in Figure 8a, consisting in a short-beam typically used to evaluate

the interlaminar shear strength of unidirectional composites in a three-point bending setup. Here, the vir-

tual specimen is not mechanically loaded, and only the material degradation caused by the hygrothermal

conditioning is simulated.

Figure 8b shows an idealised model of the ageing problem, where only the transverse plane of the

specimen is modelled in plane strain and symmetry along the x and y axes is exploited in order to reduce

the computational effort. With this modelling approach, it is assumed that diffusion and swelling do not

occur along the z-axis. The latter assumption is reasonable since the specimen is significantly stiffer in the

fibre direction, while the former leads to an underestimation of the water concentration field at any given

time step, which is an acceptable drawback in exchange for computational efficiency. The specimen is

initially dry and the immersion environment is simulated by prescribing the water concentration of pure

resin at saturation to the top and left edges, while the bottom and right edges are mechanically constrained.

A 5 x 5 RVE with strength response close to the average shown in Figure 6 was chosen to represent the

material microscopic response.

The transient FE2 problem is solved from t = 0 h to t = 750 h, when saturation occurs, with a time step

h = 15 h. Figure 9 shows concentration and stress fields of the macromodel at three different time steps.

The full field solution can be recovered from the symmetric model through mirroring along the x and y
axes.

As expected, water concentration gradients along the specimen create transient tension, compression

and shear stresses. These stresses attain peak values of 5 MPa in shear, 9 MPa in tension and 17 MPa

in compression. The stress fields are consistent with the ones experimentally observed by Pitarresi et al.

[10]. As diffusion progresses and the concentration gradients decrease, start to subside, vanishing upon

saturation, as expected.

The effect of transient swelling in the microscopic material state can be visualised by tracking micro-

scopic deformations throughout the ageing process. Figure 10 shows displacements and transverse stress

fields (σ22) of three distinct material points at three different time steps. Since the points are located close

to the specimen surface, near-instant saturation is expected. However, the micromodels are constrained by

the macroscopic compatibility requirement: Points 1 and 3 are constrained by neighboring dry points and

can therefore only swell in one direction, while point 2 undergoes a combination of shear and swelling. At
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Figure 12: Spatial distribution of transverse tension strength in the macro specimen after ageing.

longer immersion times (750 h), the macroscopic stresses vanish and the points attain a similar deformed

shape. However, because of the distinct strain history, equally saturated points can have different residual

stress fields due to differences in local material state, as shown in Figure 11.

Besides tracking the material state during the ageing process in terms of stiffness degradation and dis-

tributed failure phenomena, it is also interesting to assess the strength degradation caused by exposure to

water by mechanically loading the macroscopic specimen to failure. However, such analysis involves a

number of incompatibilities with the presented numerical framework. Firstly, as the micromodel starts to

exhibit global softening due to strain localisation, it can be proven that an RVE ceases to exist and the

material response becomes more brittle as the micromodel size is increased [39]. Secondly, the periodic

boundary conditions applied to the micromodels may impose additional constraints in the formation of a

strain localisation band, depending on the direction of the external loading.

In this work, a simplified approach is taken in order to circumvent such incompatibilities. After the

ageing analysis is completed (i.e. after the macromodel saturates), the displacement fields and material

history of the micromodels are saved and used as the starting point of new analyses where mechanical loads

are applied to the controlling nodes and the models are loaded until failure. Since an arc length method is

used instead of resorting to displacement control, biaxial stress states can be simulated while keeping stress

ratios constant. Stress values are then computed by averaging the nodal forces along the edges of the RVE.

Since only the maximum stress is of interest, incompatibilities of the strain localisation band direction with

the applied periodic boundary conditions have limited influence.

Such analysis approach can be used to obtain the spatial strength distribution of the macroscopic spec-

imen after ageing, as can be seen in Figure 12 for uniaxial transverse tension σ22. During ageing, the

additional constraints imposed by transient swelling stresses and the consequent differences in develop-

ment of distributed resin and interface failures create a non-uniform strength distribution. Although the

difference in strength between the weakest and strongest points is small (approximately 200 kPa), the tran-

sient swelling effectively creates weak spots where damage is likely to initiate and propagate from. Such

effect can only be captured by combining macroscopic diffusion with a fully-coupled multiscale mechanical

analysis.
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4 Conclusions

This work presented a coupled multiscale/multiphysics numerical analysis framework suitable for mod-

elling of hygrothermal ageing in laminated composites. The proposed model consists of a macroscopic

transient diffusion analysis coupled with a multiscale (FE2) mechanical model in order to account for mi-

croscopic degradation mechanisms and failure events.

At the macroscale, diffusion is considered isotropic with constant diffusivity, while no mechanical con-

stitutive model is explicitly defined. The mechanical response is instead obtained through homogenisation

of the microscopic material response. At the microscale, diffusion is modelled as steady-state with constant

water concentration. An elasto-plastic epoxy model with damage is combined with cohesive zones at the

fibre/matrix interfaces in order to model failure caused by swelling, plasticization and interface weakening

after water ingression. Detailed formulations for every constituent of the framework were presented.

While properties for the interfaces were obtained from literature, the calibration of the epoxy model has

been performed based on experimental investigations in both dry and saturated pure resin specimens. It was

shown that the water degradation model with a single degradation factor was capable of correctly predicting

the experimental stress-strain material response after ageing.

An RVE size study was conducted, ranging from a unit cell model with a single fibre to 7 x 7 fibres

micromodels with random fibre distribution. While the mean dry stiffness response stabilised with relatively

small RVE sizes, the saturated stiffness and both dry and wet transverse strengths required larger sizes.

Nevertheless, an RVE with representative behaviour could not be obtained in the investigated size range,

since significant scatter was still present for both stiffness and strength. Biaxial transverse failure envelopes

of both dry and saturated micromodels were also compared. After ageing, the failure envelope tends to

shrink due to plasticization and interface weakening as well as shift towards the compression bisector due

to differential swelling.

The capabilities of the model were demonstrated through the simulation of the hygrothermal ageing pro-

cess of a unidirectional composite short-beam immersed in water at 50◦C. Transient swelling stresses due to

water concentration gradients were correctly predicted. Through the FE2 scale coupling, the macroscopic

compatibility requirement acted as constraints to the micromodels and influenced their final homogenised

stiffness and strength. Although such transient effects were found to bring limited impact to the final ma-

terial stiffness and strength, they effectively create weak spots where damage can initiate and propagate

from.
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[7] Naya F, González C, Lopes CS, van der Veen S, Pons F. Computational micromechanics of the trans-

verse and shear behaviour of unidirectional fiber reinforced polymers including environmental effects.

Composites Part A - Applied Science and Manufacturing 2016; .

[8] Haynes RA. Hygrothermally stable laminated composites with optimal coupling. PhD thesis, Georgia

Institute of Technology, 2010.

[9] Koniorczyk M, Gawin D, Schrefler BA. Modeling evolution of frost damage in fully saturated porous

materials exposed to variable hygro-thermal conditions. Computer Methods in Applied Mechanics and

Engineering 2015; 297:38–61.

[10] Pitarresi G, Scafidi M, Alessi S, Di Filippo M, Billaud C, Spadaro G. Absorption kinetics and swelling

stresses in hydrothermally aged epoxies investigated by photoelastic image analysis. Polymer Degra-

dation and Stability 2015; 111:55–63.

[11] Geers MGD, Kouznetsova VG, Brekelmans WAM. Multi-scale computational homogenization:

Trends and challenges. Journal of Computational and Applied Mathematics 2010; 234:2175–2182.
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