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Abstract

Federated Continual Learning (FCL) is a emerg-
ing field with strong roots in Image classification.
However, limited research has been done on its po-
tential in Natural Language Processing and Tab-
ular datasets. With recent developments in A.IL
with language models and the widespread use of
mobile devices, it becomes relevant to consider
FCL’s capabilities in dynamic environments. Our
paper discusses and evaluates the applicability of
FCL methods between the domains of Natural Lan-
guage Processing Tabular Data with Image Pro-
cessing as a baseline. We use Long-Short Term
Memory (LSTM) models, DNN’s and LeNet-5 as
models for Sentiment analysis, Tabular classifica-
tion and Image classification. Through our experi-
ments, we evaluate the average accuracy and back-
wards transfer of EWC, GEM, their federated vari-
ants and the state-of-the-art FCL method FedWEIT.
With these methods, sentiment analysis and tabu-
lar classification tasks show that image classifica-
tion reached over 17% higher average accuracy and
achieved a 99.5% average increase in Knowledge
Transfer between tasks. Furthermore, we observe
that non-federated continual learning methods on
average reach higher accuracies than their federated
counterparts as well as the state-of-the-art methods.

1 Introduction

In the modern world, the increased usage of mobile devices
and Internet of things (IoT) has led to vast amounts of data
being generated and consumed on a daily basis worldwide.
The abundance of rich data and increased computing power
provides a highly suitable environment to train advanced ma-
chine learning models such as speech recognition, image clas-
sification and text generation. However, in real-world scenar-
ios such data is often sensitive and private in nature leading to
legal and ethical restrictions [1]. Moreover, the ever chang-
ing nature of data and the ability to adapt to various tasks
is a requirement for A.L. in dynamic environments. To ad-
dress these problems, advances in machine learning has led
to the rise of Federated Learning (FL) and Continual Learn-
ing (CL).

Federated learning aims to solve the problem of privacy
while enabling a model to be trained on a much larger data
set [1]. It is a emerging machine learning paradigm where a
multitude of decentralized local models used by clients are
aggregated to form a global model in a centralized server.
Only model parameter values obtained by local training are
communicated to the server whereas the training data is
not, removing the need share sensitive and private informa-
tion.

Continual Learning is the process of learning from a se-
quence of tasks from a stream of data. This field aims to
solve the problem of catastrophic forgetting which occurs in
Deep Neural Networks (DNN’s) when tasks arriving sequen-

tially [2]. Older tasks face large drops in accuracy as newer
tasks are being trained which results in the network “forget-
ting”.

Combining these two concepts we get Federated Continual
Learning (FCL) . The local decentralized models are trained
on a private sequence of tasks after which they are aggregated
together to form a global model. Current state-of-the-art ar-
chitectures used for FCL include FedWeit architecture [3],
which uses the FedAvg aggregation method [1], and deriva-
tive method known as FedKNOWI[4]. Applications of FCL
have been seen with respect to image classification but lim-
ited research has observed its effects on natural language pro-
cessing (NLP) tasks and tabular datasets.

This research paper aims to explore the usability of FCL in
relation to natural language processing tasks and tabular data
sets. Natural language processing involves processing human
language and extracting data from it. This includes tasks such
as sentiment analysis, speech recognition and auto comple-
tion [5]. Applying FCL to real-world scenarios such as for
voice recognition systems like Siri and auto completion key-
boards can greatly benefit from the use of FCL based methods
to train their models. Furthermore, FCL can also be applied to
models that use tabular datasets such as patient records in hos-
pitals. In order for accurate prediction of medical conditions,
large amounts of sensitive patient data is required which can
be addressed by FCL based architectures.

Our paper will explore the research question How can FCL
(Federated Continual Learning) work in other tasks (NLP or
tabular data) apart from Image classification? The main con-
tributions from this paper are summarized below:

¢ Integration of various ML models with FCL methods for
NLP and Tabular tasks.

» Comparing average accuracies of NLP, Tabular and Im-
age domains.

* Comparing the stability and plasticity properties of ML
models in the Federated Continual Learning setting.

 Evaluating overall FCL method performance with re-
spect to the domains.

Subsequent sections are organized as follows. Section 2 we
introduce the federated and continual learning settings as well
as their respective challenges and the models to be used in the
paper. In Section 3 we discuss the FCL setting as well as the
state-of-the-art in Natural Language Processing and Tabular
Tasks. Our experimental methodology is described in Section
4, with a detailed account of our experimental setup and re-
sults in Section 5. An analysis and discussion is presented in
Section 7. Conclusions obtained from our discussion as well
as future explorations are detailed in Section 8.

2 Background

In this section we provide an intuitive explanation of the back-
ground knowledge. First, we describe the Federated setting
in 2.1 and its challenges in 2.2. We then go on to detail the
continual setting in 2.3 and its respective challenges in 2.4.



Subsection 2.5 provides a detailed explanation of the func-
tionality of the LSTM, one of the models used in our experi-
mentation.

2.1 The Federated setting

The typical federated setting considers a centralized global
model with multiple local clients running a cloned model
[6]. Local models are trained to either maximize or minimize
their local objective function (typically empirical risk [6] us-
ing optimization algorithms such as SGD(Stochastic Gradi-
ent Descent), batch gradient descent and mini-batch gradient
descent. Clients model parameters are aggregated together
based on the following global objective function:

min F(0) where F(6) = p;fi(0) (eq.1)
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In this equation W is the set of all local models and their
parameters, while P represents the partitions of the data-
set, where 7 represents a client. The condition on p; is that
> icpPi = 1 and p; here is a weight corresponding to is the
size of the relative size of the partition to the total as used by
FedAvg [1].

2.2 Challenges in Federated Learning

There are several core challenges to federated learning due
to its distributed nature including high communication cost,
system heterogeneity and i.i.d data distributions

Communication challenges encompass the amount of data
being transferred between local and global models as updates
as well as the amount of time it takes. Model size is one
problem as larger models require more model parameters to
be updated on each communication round. This scales enor-
mously with a large number of connected clients as is today
with many modern networks [6]. Another consideration is the
total number of communication rounds between a client and
the central server as each training round of training adds pro-
portionally more costs. Depending on the type of network
whether it is asynchronous or synchronous can greatly af-
fect the time between communication rounds as the server
has to potentially wait for all clients to send updates. Latency
greatly affects this waiting time as certain clients maybe on
low bandwidth channels while others are not.

System Heterogeneity describes the variation in system
characteristics[6] across the network such as latency, com-
putational power, etc. This also includes the communication
method either synchronous or asynchronous. Synchronous
communication ensures that the global model is synchronized
with all local models ensuring that all communication is han-
dled uniformly and aids to its simplicity to implement. This
deviates from the asynchronous setting which must consider
faulty devices, major delays between devices and limited par-
ticipation by client devices in the training rounds.

L.I.D data means that each random variable, or data reading,
is independent from other samples and follows the same prob-
ability distributions. This assumption regarding data simpli-
fies the training process by assuming convergence via the

Central Limit Theorem and the Law of Large Numbers [6].
However it also reduces performance in real-world scenar-
ios where data is typically non i.i.d causing certain federated
algorithms to diverge such as FedAvg. In this research, the
focus will be on i.i.d data and future works can consider the
effect of non i.i.d on NLP and Tabular Tasks in FCL.

2.3 The Continual setting

Unlike the federated setting where multiple clients focus on
completing the same task, the continual setting focuses on
one model learning from a sequence of tasks. One aim of
a continual learning model is to learn from a dynamic data
distribution [2] .

One aim of continual learning is to learn from tasks dynam-
ically. Though each task contains a static distribution, the
dynamic nature of incoming tasks results in the overall dy-
namic distribution for the model to learn [6]. Such dynamic
data distributions during run-time mean that models will suf-
fer from accuracy losses as they are typically compiled for a
specific static model [7]. Cases where each task has the same
label but has a different data distribution is known as Domain-
Incremental Learning and for tasks with the same data distri-
bution as well it is known as Instance-Incremental Learning.
We will be focusing on Task-Incremental Learning meaning
each task contains a disjoint subset of classes.

2.4 Challenges in Continual learning setting

With sequential data, catastrophic forgetting is a major prob-
lem as models will overwrite previous knowledge of certain
tasks with new knowledge of the current task [8]. In the Con-
tinual learning setting, training data from previous tasks is
no longer available as tasks come sequentially. This problem
has two aspects to it known as learning plasticity and mem-
ory stability. Learning plasticity relates to the ability of the
model to adapt to new data while memory stability relates to
a models ability to retain old knowledge [2]. As one would
suspect, these two aspects are inversely proportional to each
other and need to be balanced to ensure optimal model per-
formance. There are multiple metrics used to measure the
stability-plasticity trade-off with each metric measuring one
aspect. With regards to memory stability, the most common
metrics are the backward transfer [9] and the forgetting mea-
sure [10]. Likewise for measuring learning plasticity, com-
monly used metrics are the forward transfer [9] and the in-
transience measure [10]. Countless models have been pro-
posed to counteract the effects of catastrophic forgetting in-
cluding Elastic Weight Consolidation (EWC) [11] and Gra-
dient Episodic Memory (GEM) [9]. EWC reduces the ef-
fect of catastrophic forgetting by selectively slowing down
the gradients of the weights of other tasks. GEM on the other
hand keeps a subset of the training data from previous tasks as
episodic memory to retrain the model. These models are the
baselines for state-of-the-art FCL models such as FedKNOW
[4] and FedWeit[3].

2.5 Models

The LSTM or Long Short-term Memory is a specialized
recurrent neural network which aims to mitigate the vanish-



ing/exploding gradient problem [12]. The structure of a sin-
gle LSTM cell is described in the figure 1. The o represents
the Sigmoid function and the tanh represents the hyperbolic
tangent function [13]. The S(t-1) represents the short-term
memory from the previous iteration while the H(t-1) repre-
sents the long-term memory. Note that the long-term mem-
ory also acts as the output to the entire LSTM cell and con-
tains the final value. A multitude of these cells are used in a
single layer similar to the neurons in the multi-layer percep-
tron.
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Figure 1: LSTM Cell construction

3 Related Work

This section details the latest developments in the Federated
Continual Learning (subsection 3.1) including the state-of-
the-art. Additionally, an overview of the various tasks and ap-
proaches used in Natural Language Processing Tasks (subsec-
tion 3.2) and Tabular Tasks (subsection 3.3) is given.

3.1 Federated Continual Learning

Federated Continual Learning approaches continual learning
tasks in a federated way. Each client has a local model which
is trained on a sequence of tasks after which the global model
aggregates the clients local models.

Federated Continual Learning approaches continual learning
tasks in a federated way. Each client has a local model which
is trained on a sequence of tasks after which the global model
aggregates the clients local models. The naive approaches
aims to use the simple Fed Avg algorithm with existing con-
tinual learning techniques as discussed in [3]. There are
limitations to this approach namely inter-client interference
where the gradients from clients who trained on different
tasks results in accuracy loss for certain tasks.

FedWeit

Federated weighted inter-client transfer or FedWeit is widely
considered a state-of-the-art server-side solution for the task-
incremental learning setting as noted by [4], [6]. It ap-
proaches FCL by adopting additional model parameters
through decomposition which are then learned during the
training process. The model parameters are decomposed into
3 subgroups, global parameters 6, local base parameters B

and task-adaptive parameters A as well as an additional vec-
tor mask mto transform the local base parameters. For each
client c the local parameters for a task t are given as follows
eq.2

0. = Bgt) ® mgt) + Ag) Z Z Oti,jAgt) (eq.2)
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A regularization based loss function ensures that the parame-
ters B., m., A, and o are learned. A sparsity inducing reg-
ularization function €2 is used to reduce the total amount of
data that needs to be communicated the centralized server at
a time. The local client parameters are aggregated together
using the FedAvg equation described in eq.1.

3.2 Natural Language processing tasks

Natural language processing (NLP) concerns the understand-
ing of human language and processing it. There are a num-
ber of language processing tasks including Speech recog-
nition, speech tagging, named entity recognition, sentiment
analysis and natural language generation [5]. Speech recog-
nition converts voice data into text-data. A similar process
of converting text to speech or TTS is explored by Fed-
Speech [14] which employees its own aggregation algorithm
through the use of masks. The FedSpeech algorithm is tai-
lored specifically to text-to-speech conversion and certain
techniques explored by FedSpeech are only applicable in this
scenario.

Speech tagging aims to understand the grammatical structures
present in a sentence and tags each word with its correspond-
ing grammatical word. For example, the word “ran” in 1
ran” is a verb and is thus tagged as such by the model. Sim-
ilar to speech tagging, Named entity recognition is another
task where words/phrases are recognized as specific objects
and correlations between objects are understood and classi-
fied as objects. For example, in the sentence “The red car
was parked” can be classified as a car object with the color
attribute being red. Additionally, Natural Language genera-
tion is another well known task such as next word prediction
or generation of whole texts as popularly shown with GPT-4
[15]. Finally, there is semantic analysis which aims to extract
the meaning behind sentences such as whether a sentence is
happy, sad, angry, neutral.

3.3 Tabular Data based Tasks

Apart from computer vision and natural language process-
ing, a majority of fields make use of tabular data such as
the medical and financial industries. Tabular data heteroge-
neous features where each column represents a feature and a
row representing a data point. Each feature can have different
data types such as images, text,categorical values, geograph-
ical coordinates, etc. Common tasks in tabular data include
classification, regression (or prediction), generation and im-
putation [16] and have been explored in both the federated
and continual learning setting. Horizontal federated learning
is one such variant where the rows in different clients have
different sample spaces but have the same feature space [17].



Current state-of-the-art methods in the FCL such as Contin-
ual Horizontal Federated Learning (CHFL) [18] focus more
on addressing problems relating to unique heterogeneous data
rather than addressing the applicability of weighted FCL al-
gorithms on tabular data.

4 Methodology

Within this section, we provide a comprehensive overview of
the FCL and CL algorithms used in our experimentation (sub-
section 4.1). The metrics (subsection 4.2) and a description of
how domains will be compared (subsection 4.3) is provided.
Additionally, we talk about task specific details for each do-
main in subsections 4.4, 4.5 and 4.6.

4.1 Algorithms

In order to validate the performance of FCL models in the
Natural Language Processing setting and the Tabular setting,
a comparison has been made to Image classification as it is the
baseline for a majority of FCL algorithms. As both NLP and
Tabular tasks have been explored in the CL setting, baselines
are drawn with reference to existing literature. This base-
line is compared with FCL methods and their performance in
tasks. Each Task is tested with the following CL and FCL
frameworks:

Continual Learning
« EWC

* GEM

Federated Continual Learning
* FedAvg + EWC

* FedAvg + GEM

» FedWeit
Figure 2: FCL and CL methods used in experiments

4.2 Metrics

The metrics used to compare these frameworks will be av-
erage accuracy [2] and backward transfer[9]. For the below
metrics, we make the assumption that the test sets of each task
are available.

Average Accuracy

Average accuracy (ACC) is metric used to measure the gen-
eral performance of a model during incremental learning. It
is measured for the ith task where a; ; represents accuracy of
task i when evaluated on the test set of the jth task. Then the
ACC is given by the following equation:

1 J
ACC = }Zai_j

i=1

(eq.3)

Backward Transfer

Backward transfer measures the memory stability of the
model during training and observes the effect of the current
task on past tasks. It measures the impact that task j has on
a past task i. A negative value for backward transfer indi-
cates that the DNN is forgetting previously learned knowl-
edge about past tasks. The equation for BT is described below
as well:

-1
1 J
FT=-— > aij—aig (eq.4)
Jm A

4.3 Comparison of Domains

In order to perform a fair evaluation of the given domains,
each task is a form of classification, as it provides the sim-
plest and most effective basis for comparison. Furthermore,
considering that we are in the federated continual learning
setting, we consider the task-incremental learning paradigm
where each task contains a disjoint subset of classes. This
means that a class C' along with its training data is only
present in a single task 7" and not in other tasks. Additionally,
the total number of classes used in the experiment is given by
the lowest number of classes present in all the datasets. For
example, if the first dataset contains 4 classes and the sec-
ond dataset has 5 classes, only 4 classes from each dataset are
used for their respective experiments. This is done to ensure
that tasks are more comparable for data analysis.

Additionally , a crucial assumption that is made is that all
testing data is available for the algorithm which ensures that
the backward transfer and average accuracy can be calcu-
lated. Without this assumption, limited information regarding
the memory-stability and model accuracy deduced. Due to
the inverse relationship between memory-stability and learn-
ing plasticity, calculating backward transfer allows us to infer
plasticity proprieties as well. Each metric is implemented for
domain and its corresponding tasks.

Finally, each model is written with 2 variants, a non-
decomposed variant and a decomposed variant. The decom-
posed variant is implemented for the FedWeit algorithm as
each parameter must be separated as outlined in eq.2. The
non-decomposed variant is used for the other CL and FCL
algorithms.

4.4 Natural Language Processing

In order to provide a fair evaluation of FCL in an NLP setting
and the typical image classification setting, we evaluate FCL
frameworks on semantic analysis tasks. Semantic analysis is
a task which classifies sentences to abstract meaning. This
provides direct parallels towards the image classification set-
ting as both aim to solve classification problems. For this task
we use emotions dataset [19] which consists of 16,000 sen-
tences and provides 6 different classes of emotions including
sadness, joy, fear, anger, surprise and love.

For most NLP tasks, we cannot use words directly and they
must be converted to numerical values. The input vector is
given by size |V| represents the size of the vocabulary V
and each word is encoded with one-hot encoding, meaning
that each word is assigned a single position in the vector V
[20]. The LSTM model is prepended with an additional em-
bedding layer which transforms the input vector into word
embedding. these word embedding encode the lexicograph-
ical structure of the sentences which is then further passed
through the LSTM model.



In the FCL setting, we must consider that the dataset must
be split into various tasks, and for each task there must be a
corresponding test set to evaluate the performance of the task.
We use task-increment learning where tasks consist disjoint
classes and data. Data and classes is split evenly so that each
task has similar number of data points.

4.5 Tabular Data

Tabular data consists of heterogeneous data where each col-
umn is a feature (possibly of a different data type) and each
row is an entry corresponding to the task. For the tasks
in the research, we use the Forest Cover Type [21] dataset
from the University of California Irvine which aims to clas-
sify geographical sites into 7 different forest coverages. The
dataset consists of 54 different geographical attributes as well
as 581012 rows in total.

As our classification model for the task, we make use of
an Deep Neural Network (DNN) with ReLU activation and
Softmax function for multi-class classification. CNN’s and
RNN’s are not suitable for this dataset as it provides no spa-
tial correlation between features and data points have no tem-
poral/sequential dependence on each other, thus the use of
simple DNN’s.

4.6 Image classification

Image classification is the baseline task which is typically
used in the Federated Continual Learning setting to evaluate
the performance of algorithms and models. For this classi-
fication task, the CiFAR100 dataset [22] consists of a total
of 100 classes each with 500, 32x32 pixel images providing
sufficient training material. Considering image classifications
prominence in FCL, it acts as a baseline comparison against
natural language processing tasks and tabular tasks.

Typically for Image classification, convolutional neural net-
works (CNN’s) are used as they can extract patterns between
neighbouring pixels to grasp deeper patterns in the data. For
this task, we use of LeNet-5 [23], a CNN based architecture
described in [3] due to its small size. This reduces the com-
munication overhead as well as the training time in compari-
son to more complex and deep convolutional neural network
such as ResNet-18 [24] used in [3].

5 Experimental setup and Results

A detailed description regarding the experimental setup is
given in this section. A general overview is given in sub-
section 5.1 and specific model parameters are discussed in
subsection 5.2. The experimental results as well as their anal-
ysis is detailed in 5.3.

5.1 Implementation overview

The FCL algorithms and the ML models were implemented in
python using the PyTorch library. The FedKNOW repository
[4] acted as the basis for code development. Each algorithm
is modified to include the metrics mentioned in section 4.2
as well as the LSTM, DNN and LeNet implementations for
their corresponding tasks. Experiments were run on a Nvidia

GeForce RTX 2060 Mobile GPU and an Intel Core i7 10th
gen Mobile processor.

For each domain described in sections 4.4, 4.5, 4.6 a total of
6 classes were selected from their respective datasets. Tasks
require a minimum of 2 classes for classification problems,
thus leading to a total of 3 tasks per experiment. In the fed-
erated setting, 5 clients were chosen each with 1 epoch of
training and a batch size of 1000 samples. Larger batch sizes
and number of clients were not chosen due to computational
limitations.

5.2 Model parameters

In this section we elaborate on the structure of the models
to be used for each domain including the LSTM, DNN and
LeNet model. The decomposed variants mentioned in section
4.3 consist of the same structure as their non-decomposed
counterparts. The LeNet-5 uses the same architecture de-
scribed in [3] and is detailed in the appendix B

Layers Output shape Parameters
Embedding Layer (batch, vocab size, size of vocabulary
128) 1350279  words,
128  embedding
features
LSTM Layer (batch, 128, 128, 128 embedding
1) features, 128
output features, 1
layer

Linear Layer (batch, 128, 6) 6 output classes
with log softmax

function

Table 1: Overview of model structure of an LSTM with layer spe-
cific details.

The LSTM model structure is given in Table 1. An embed-
ding layer is used to extract patterns in sentences and phrases
and encode them in an embedding vector. The vocabulary
size is given by the number of unique words present in the
dataset and is determined when pre-processing of the dataset.
128 embedding features and hidden layers are used, to reduce
communication costs with limited loss to performance. This
value was selected as state-of-the art models such as the mod-
els in [25] use values as small as 150 and 300 for significant
results.

For the DNN, the structure, described in Table 2 consists of
multiple layers with ReLU activation. Due to the limited
input size for this tabular dataset, a larger depth (multiple
layers) can be used effectively learn the underlying distribu-
tion.

5.3 Results

This section provides an overview of the results obtained on
in the FCL and CL algorithm in domains of natural language
processing, tabular data and image processing. Tabular data



Layers Output shape Parameters

Linear layer (batch, 54, 500) 54 input features,
500 hidden features
500 hidden input

features, ReLLU ac-

2 x Linear layer  (batch, 500, 500)

tivation

Linear Layer (batch, 500, 6) 6 output classes
with log softmax
function

Table 2: Overview of model structure of an DNN with layer specific
details.

is described in section 5.3, nlp is discussed in section 5.3 and
the image processing is described in section 5.3.

Tabular Results

In Figure 3, it is evident that each algorithm experiences a
significant decline in accuracy when the task changes every
30 rounds. The accuracy decrease correlates proportionally to
the number of tasks that have been learnt. This relationship is
further explained by the relative accuracy between each task
shown in Table 4, which is approximately given by % where
T is the number of tasks learnt by the model.

Tabular tasks - Classification accuracy - Forest Dataset
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Figure 3: Accuracy obtained on Forest dataset on EWC, FedAvg +
EWC, GEM, FedAvg + GEM and FedWEIT.

Furthermore, in Figure 3 we observe that the accuracy for
each task stays relatively constant for the majority of the CL
and FCL algorithms. The exception being GEM which shows
a progressive increase in accuracy as the rounds progress.
Constant accuracy implies that the DNN model’s loss func-
tion has been optimized within the first round and thus
shows limited fluctuation with an increase in the number of
rounds.

Moreover, GEM stands out by achieving an overall higher av-
erage accuracy in Task 2 and Task 3. This is in stark contrast
to its federated counterpart, which displays the lowest overall
performance in Task 2. EWC and FedAvg+EWC yield nearly

Tabular tasks - Classification backwards transfer - Forest Dataset

— EWC
—— FedAvg + EWC
— GEM

—— FedAvg+GEM
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Figure 4: Backward Transfer on Forest dataset on EWC, FedAvg +
EWC, GEM, FedAvg + GEM and FedWEIT.

identical results, while FedWeit exhibits the lowest overall ac-
curacy. However, it is worth noting that the FedWEIT algo-
rithm demonstrates lower negative backward transfer, indicat-
ing superior memory stability compared to other algorithms,
except for GEM.

Average Backwards Transfer
Domain | Task 1 Task 2 Task 3
NLP 0 -0.140 -0.02
Tabular 0 -0.441 -0.248
Image 0 -0.05 -0.02

Table 3: Table comparing the average backward transfer of all FCL
and CL methods from their respective domains

NLP results

As evident in Figure 5, the accuracy from sentiment anal-
ysis exhibits minimal variability between algorithms on the
initial two tasks. In relation to this, purely continual learn-
ing methods including EWC and GEM have shown to have
a lower accuracy in earlier tasks than their federated counter
parts. Additionally, it is clear that FedWEIT shows the fastest
convergence of its loss function, resulting in limited change
throughout the rounds for each task. The regularization based
methods including EWC and FedWEIT show limited vari-
ance in their accuracy during training due to the penalization
term in the loss function preventing the gradients from devi-
ating.

Regarding memory-stability, we observe that EWC, GEM
and their federated variants consistently maintain backward
transfer values close to 0, implying on average positive
knowledge transfer and stable memory. Similar to the tab-
ular results in Figure 4, the arrival of a new task causes large
drops in memory-stability and shows a significant increase
in knowledge loss. As opposed to the aforementioned tabu-
lar results, we observe that backward transfer values for most
algorithms (other than FedWEIT) revert back to their origi-
nal values in the second task and increase notably in the final
task.



Natural language processing - Sentiment analysis accuracy - Emotions Dataset
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Figure 5: Accuracy obtained on Emotions dataset on EWC, FedAvg
+ EWC, GEM, FedAvg + GEM and FedWEIT.
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Figure 6: Accuracy obtained on Emotions dataset on EWC, FedAvg
+ EWC, GEM, FedAvg + GEM and FedWEIT.

Image results

In Image classification, the accuracy of all CL and FCL al-
gorithms are above 20%. Unlike both the NLP and Tabular
setting, none of the methods converge to a stable accuracy
for every task but instead show a linear trend. The GEM al-
gorithm shows a progressive downward decrease in accuracy
throughout the learning process. In contrast, the other algo-
rithms show convergence to higher accuracy values for each
task. Additionally, more noise is present in image classifi-
cation tasks than in natural language processing and tabular
tasks.

The backward transfer of each algorithm gives insight into the
large variations found in their respective accuracies. EWC
and FedAvg + EWC exhibit the greatest memory-stability,
maintaining an average value greater than 0.01 while other
variants range from 0 to -0.2. FedWEIT experiences for-
getting, which, though not catastrophic, leads significant ac-
curacy losses across tasks when compared to the competi-
tors.

Image Processing - Classification accuracy - CIFAR100 Dataset
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Figure 7: Accuracy obtained on Image dataset on EWC, FedAvg +
EWC, GEM, FedAvg + GEM and FedWEIT.
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Figure 8: Backward Transfer obtained on Image dataset on EWC,
FedAvg + EWC, GEM, FedAvg + GEM and FedWEIT.

6 Responsible Research

With recent developments in NLP and Big Data, privacy has
grown to be more and more of a concern with large scale
text-generation models like GPT-4 [15] requiring enormous
amounts of training data. Naturally, data must collected and
used in accordance with local privacy laws and regulations
which have strict guidelines on collecting and storing per-
sonal data. The application of FCL based algorithms, which
is explored by our research, reduces such privacy concerns
as client data is kept decentralized. However, the federated
approach comes with its own set of risks as instead parame-
ters are shared which can be malicious used to manipulate the
global models [26].

Our research follows responsible and ethical practices to en-
sure the reproducible, reliable and valid results from our ex-
perimentation. The datasets used are all open source and
developed in published studies with strict data collection
methodologies. No sensitive private information is used dur-
ing experimentation. The code developed during experimen-
tation as well as its corresponding documentation and results
are made public on the TU Delft repository. The hyper pa-



Mean Accuracy per Task Relative Accuracy (RA) per Task
Domain | Task 1 Task 2 Task3 RA Task 1 RA Task 2 RA Task 3
NLP 50.84 25.33 20.05 1.0 0.50 0.39
Tabular | 56.43 29.12 19.34 1.0 0.52 0.34
Image 49.00 40.40 34.11 1.0 0.83 0.71

Table 4: Mean accuracy for the forest dataset across all algorithms for each task. Each tasks accuracy is compared to the initial task.

rameters used are detailed further in the appendix section 9
so readers may reproduce similar results during experimenta-
tion.

7 Discussion

The results from section 5.3 provide a basis for comparison
of the various domains. The tasks for each of the three do-
mains and their average accuracy are described in Table 4.
It is evident that the algorithms obtained maximum accuracy
on the first task in the NLP setting. However the mean task
accuracy is higher for Image Classification. Image classifi-
cation performed on average 17.7% than sentiment analysis
and 28.4% better than tabular classification. Notably, the di-
rect inverse proportionality observed in both sentiment analy-
sis and tabular classification as described in 5.3 is not present
in the image classification setting. The relative accuracy fol-
lows a more linear trend implying that memory stability and
learning plasticity of CL and FCL algorithms are more suited
to spatially correlated data such as images.

Moreover, NLP and tabular tasks converge quickly to a lo-
cal minima within the initial rounds of the task, preventing
the further loss reduction. This is in stark contrast to the
image classification setting. It can be concluded from that
NLP and tabular tasks are not as robust as image classifica-
tion tasks towards negative knowledge transfer. This is fur-
ther demonstrated in the average backward transfer for the
different tasks. The image classification task shows a 99.5%
decrease in knowledge loss in comparison to sentiment anal-
ysis and a 99.8% decrease in comparison to tabular classifi-
cation. This is directly correlated with its average accuracy
and thus also relates to the convergence of the loss function.
We can conclude that FCL algorithms show greater effective-
ness in the image processing domain than in natural language
processing and tabular data domain.

Furthermore, we notice that the Federated variants of con-
tinual learning methods including FedAvg+EWC and Fe-
dAvg+GEM show more consistent and less varied data. This
can be attributed to the increased number of clients who each
train on similar samples from I.I.D data. Averaging across
multiple clients not only reduces the noise from the train-
ing data but also converges the distribution faster. Addition-
ally, we observe that the state-of-the-art FCL algorithm Fed-
WEIT yields substandard performance in comparison to other
regularization-based and rehearsal based FCL methods. This
can be attributed to a decomposition of parameters described
in eq.2 which drastically raises the number of model param-
eters that need to be trained. This is particularly relevant in
the image processing scenario where a considerable number

of rounds are required per task to optimize model parame-
ters

8 Conclusions and Future work

We demonstrated the effectiveness of Federated Continual
Learning algorithms in Natural Language Processing tasks
and Tabular tasks, specifically sentiment analysis and tabu-
lar classification. An analytical comparison between baseline
continual learning algorithms, their federated counterparts
and the state-of-the art indicate that FCL methods perform
better in Image classification than in NLP or Tabular tasks.
This performance is directly correlated to their memory-
stability, where LSTM and DNN models exhibit much lower
stability but higher plasticity which contrasts with a CNN
models who demonstrate greater stability and limited plas-
ticity.

Furthermore, we have discover that non-federated continual
learning methods achieve an overall accuracy greater than
their federated counterparts in all domains. This is due to
the statistical averaging of federated methods on clients and
their varying model parameters. The state-of-the art model
FedWEIT suffers in all domains due to the drastic increase in
model parameters caused by parameter decomposition lead-
ing to lower accuracy and knowledge retention.

Lastly, in this work we have utilized relatively shallow mod-
els with at most 5 layers for the various tasks due to compu-
tational and time constraints. Extensions to this work include
deeper models which can be used to achieve higher accuracy
at the cost of increased training time. Large language mod-
els such as BERT and transformers [27] can be used for NLP
tasks, and deeper and more advanced DNN’s can be used for
Tabular tasks. Such models can be adapted for a larger range
of tasks including natural language generation, speech tag-
ging and named entity recognition for NLP. The applicability
of these FCL models in the Horizontal Federated Learning
setting for tabular data can also analysed to provide a more
comprehensive evaluation.
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A Accuracy Tables

Avg Accuracy per Task Relative Accuracy per Task
Method | Task 1 Task 2 Task3 RA Task 1 RA Task 2 RA Task 3
EWC 57.82 28.61 19.07 1.0 0.50 0.33
FedEWC | 57.82 28.61 19.07 1.0 0.50 0.33
GEM 57.20 40.06 21.67 1.0 0.70 0.38
FedGEM | 56.61 21.60 19.07 1.0 0.38 0.34
FedWEIT | 52.71 26.71 17.81 1.0 0.51 0.34
Average | 56.43 29.12 19.34 1 0.52 0.34

Table 5: Mean accuracy for the forest dataset across all algorithms
for each task. Each tasks accuracy is compared to the initial task.

Avg Accuracy per Task Relative Accuracy per Task
Method | Task 1 Task 2 Task3 RA Task 1 RA Task 2 RA Task 3
EWC 50.35 24.96 21.53 1.0 0.50 0.43
FedEWC | 50.67 24.58 20.89 1.0 0.49 0.41
GEM 50.68 24.72 19.70 1.0 0.49 0.39
FedGEM | 49.79 25.65 20.24 1.0 0.52 0.41
FedWEIT | 52.72 26.71 17.87 1.0 0.51 0.34
Average | 50.84 25.33 20.05 1 0.50 0.39

Table 6: Mean accuracy for the Emotions dataset across all algo-
rithms for each task. Each tasks accuracy is compared to the initial

task.
Avg Accuracy per Task Relative Accuracy per Task
Method | Task 1 Task 2 Task3 RA Task 1 RA Task 2 RA Task 3
EWC 61.46 45.69 38.37 1.0 0.74 0.62
FedEWC | 46.53 450.9 40.13 1.0 0.97 0.86
GEM 47.39 30.84 26.61 1.0 0.65 0.56
FedGEM | 42.06 41.96 38.87 1.0 0.99 0.92
FedWEIT | 47.54 38.43 26.55 1.0 0.81 0.56
Average | 48.99 40.40 34.11 1 0.84 0.71

Table 7: Mean accuracy for the CiFAR100 dataset across all algo-
rithms for each task. Each tasks accuracy is compared to the initial
task.

B Model Structure

\ Layers \ Output shape \ Parameters \
Convolution Layer 1 (batch size, 20, 32, 32) 20 channels, stride 1, padding 2 and kernel size 5x5
Max Pool Layer 1 (batch size, 20, 16, 16) 2 stride, padding 1 and kernel size 3x3
Convolution Layer 2 (batch size, 50, 16, 16) 50 channels, stride 1, padding 2, kernel size 5x5
Max Pool Layer 2 (batch size, 50, 8, 8) 2 stride, padding 1, kernel size 3x3
Linear Layer 1 (batch size, 800, 800) 800 inputs, 800 outputs
Linear Layer 2 (batch size, 800, 500) 800 inputs, 500 outputs
Linear Layer 3 (batch size, 500, num classes) 500 inputs and output is the number of classes

Table 8: LeNet-5 architecture used for Image classifcation
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Hyper Parameter | value

Number of classes 6
Number of clients 5
Number of rounds 30
Number of tasks 3
Batch Size 1000

Learning Rate 0.01

Training Data split | 0.9

Testing Data split 0.1
local epochs 1

Table 9: Hyper Parameters used during training
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