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A B S T R A C T

This paper presents a framework for the derivation of a noise budget and the subsequent utilization in the
optimization of the control design, using the laser frequency stabilization loop in the Virgo interferometer,
which is a complex nested feedback system, as an experimental case study. First, the system dynamics and
noise sources are modeled and experimentally verified to produce the noise budget, after which an optimization
problem using the 2 norm is formulated and tailored to the specific design requirements for the detector.
The structure of the synthesized controller is then used to produce an improved control design. Experimental
verification of the developed controller on the Virgo interferometer shows roughly a factor 3 reduction in
root-mean-square error, illustrating the effectiveness of the presented method.
1. Introduction

The laser frequency stabilization system, consisting of a set of com-
plex nested feedback loops, is an essential subsystem in the Advanced
Virgo Plus (AdV+) [1] Gravitational Wave detector as it is responsible
for reducing the laser frequency fluctuations by more than 7 orders
of magnitude. Optimizing such complex subsystems requires an accu-
rate noise budget, which shows the contribution of each disturbance
to the output of the system as a function of frequency content, see
e.g., [2,3]. The development of such a noise budget requires modeling
both the system dynamics as well as the external disturbances. For
complex subsystems with e.g., nested feedback loops such as the laser
frequency stabilization loop, the development of a noise budget can
be a complex and time-consuming procedure and it is furthermore not
necessarily straightforward how to incorporate the noise budget in the
optimization of the control design.

On the modeling side of the laser frequency stabilization loop, two
of the feedback loops have been individually modeled in [4,5] and a
noise budget has also been developed for one of these loops in [5].

∗ Corresponding author at: Eindhoven University of Technology, department of Mechanical Engineering, Control Systems Technology, Eindhoven, Postbus 513,
5600 MB, The Netherlands.

E-mail address: m.r.v.dael@tue.nl (M. van Dael).

The third feedback loop has also been modeled in [6], but a complete
system model integrating the three feedback loops as well as a noise
budget for the complete system is still missing. In terms of optimizing
control designs in Gravitational Wave detectors, Thomas et al. [7],
Schütte [8], Trozzo [9] and Beker et al. [10] have worked on using
synthesis methods to optimize the control design. In e.g., [8,11], mod-
ern control techniques such as 2 and ∞ are explored for a suspension
system, illustrating a systematic design procedure to improve the con-
trol design. The noise budgets are however not explicitly considered
in the optimization and instead, weighting functions are developed
using system insight, which is not necessarily optimal. In [10], the
noise budget is also incorporated in the optimization to synthesize
an Linear–Quadratic–Gaussian controller, showing promising improve-
ments in performance. The optimization does however not consider the
frequency-dependent coupling to the sensitivity of the detector, which
is essential to incorporate in the optimization for most subsystems.

Although parts of the laser frequency stabilization loop have al-
ready been modeled, a systematic approach is essential for meeting
vailable online 8 August 2024
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the performance requirements. The aim of this paper is to present a
systematic design procedure that incorporates the noise budget in the
optimization of the control design, where also frequency-dependent
design considerations are included in the optimization.

The main contributions of this paper are therefore three-fold. The
first contribution is the development and experimental verification of
the model and noise budget for this control system. The second contri-
bution is to utilize controller synthesis to derive an improved control
design, where the noise budget as well as other system requirements
are incorporated into the optimization. The final contribution is to
illustrate the potential of control design tools developed in the Control
community, in this case, controller optimization using 2 synthesis, for
challenges in the Gravitational Wave community and present them as
a systematic procedure.

The outline of this paper is as follows. In Section 2 an overview of
the detector and the control system for the laser frequency stabilization
in AdV+ is presented, as well as the problem formulation. The modeling
procedure for this subsystem is presented in Section 3, and the develop-
ment and verification of the noise budget is presented in Section 4. The
optimization of one of the controllers in the subsystem is presented in
Section 5, and experimental results on AdV+ using the new controller
are presented in Section 6. Section 7 finally contains the conclusion and
discussion.

2. System overview and problem formulation

This section presents an overview of the system and the problem
addressed in this paper is formalized.

2.1. System description

The AdV+ detector, shown in Fig. 1(a), is a dual-recycled Michelson
interferometer [1] with two 3 km long Fabry–Perot cavities (𝑥𝑊 , 𝑥𝑁 in
ig. 1(a)). In total, 5 so-called longitudinal Degrees of Freedom (DoFs)
12] are actively controlled. Of these, the Differential Arm (DARM)
oF, defined by

DARM = 𝑥𝑊 − 𝑥𝑁 , (1)

s the most important since this DoF changes in length with the passing
f a Gravitational Wave. Most of these DoFs are actively controlled
y using demodulated error signals to derive a locally valid error
ignal [13], which is subsequently used to apply small forces on one
r more of the mirrors and change the cavity lengths, see e.g., [12].

The Common Arm (CARM) of the Fabry–Perot cavities is given by

CARM =
𝑥𝑊 + 𝑥𝑁

2
, (2)

and requires a more convoluted control approach since a higher level of
attenuation is required over a broader frequency range. The resonance
condition for a Fabry–Perot cavity is given by

𝑥 = 𝑁 ⋅
𝜆
2
, (3)

with 𝑥 the cavity length, 𝜆 the wavelength of the laser and 𝑁 an integer
number. For the arm cavities to be in resonance, the arm lengths must
thus be an integer multiple of half the wavelength of the laser. Both
the cavity length and laser frequency fluctuations are orders higher
with respect to the design requirement, therefore requiring very fast
feedback loops that actively ensure that the resonance condition of the
Fabry–Perot cavities is satisfied. The strategy used in AdV+ to satisfy
(3) is explained next.

2.2. Control system for CARM

The objective of the control scheme for CARM is to stabilize the laser
frequency fluctuations by more than 7 orders of magnitude [4] as well
2

t

as to stabilize the root-mean-square (RMS) arm length fluctuations by
more than 2 orders of magnitude. Stabilization of the laser frequency
is required since CARM is the most sensitive DoF to frequency noise
and these fluctuations directly couple to the DARM degree of freedom
in the detection band (> 10Hz) due to asymmetries in the optics of
the detector. The minimization of the RMS arm length fluctuations
is needed to minimize the noise inside the detection band through
non-linear couplings [14].

In Fig. 1(a), the optical configuration of AdV+ is depicted together
with the control scheme used to stabilize the laser frequency fluctua-
tions and control the CARM DoF, where the purple blocks 𝐾PS, 𝐾MC,

SSFS and 𝐾RFC are controllers. The control system consists of three
ested loops that are highlighted by the colored, dashed, rectangular
oxes. The first loop, commonly referred to as the Pre-Stabilization
PS) loop, highlighted in orange, is used to stabilize the laser frequency
luctuations. This is done by locking the laser onto the Input Mode
leaner (IMC) cavity, where the photodiode in reflection of the IMC
rovides an error signal using the Pound–Drever–Hall technique [13]
ith demodulated signals to control the laser frequency with a Unity
ain Frequency (UGF) of roughly 110 kHz. The second loop, highlighted
y the blue rectangle and commonly referred to as the Second Stage of
requency Stabilization (SSFS) loop, subsequently locks the laser on the
rm cavities since one of the control objectives is the relative stability
etween the laser frequency and arm cavity lengths. To do so, the B4
hotodiode is used as an error signal (using the same method as for
he IMC error signal) and the actuation is done using two different
ctuation branches. At low frequencies (< 200Hz), a correction is
ent to the IMC mirror which changes the resonance frequency of the
avity and forces the inner PS loop to follow, hence adjusting the
aser frequency accordingly. Above 200Hz, the correction for the laser
requency is directly given as a setpoint to the PS loop. The UGF of the
SFS loop is around 7 kHz.

Above 10Hz, both the IMC and arm cavities provide a stable length
eference for the laser. However, below this frequency, the mirrors di-
ectly follow the ground motion, which is orders higher than the mirror
otions above 10Hz as the ground motion coupling to the mirrors is

ttenuated by more than 10 orders of magnitude above this frequency.
s a consequence of the two feedback loops, the laser directly follows

he cavity motions and hence the ground motion, thus introducing large
aser frequency fluctuations below 10Hz. To lower these fluctuations,
third loop is used that measures the laser frequency fluctuation using
photodiode in reflection of the Reference Cavity (RFC), which is a
onolithic cavity constructed from Ultra Low Expansion glass. Using

his error signal, a common correction is sent to the arm cavity end
irrors with a UGF of around 2Hz. This loop, commonly referred to as

he RFC loop, reduces the cavity length fluctuations and consequently
lso the laser frequency fluctuations.

Laser frequency fluctuations couple linearly to the detector sen-
itivity and the present control configuration reaches the design re-
uirements for this noise inside the detection band of AdV+ (10 to
0 kHz). The laser frequency fluctuations also couple non-linearly to
he detector sensitivity [15], i.e., low-frequency fluctuations (< 10Hz)
ay introduce noise in the detection band of the detector. To minimize

his noise affecting the sensitivity, either the non-linear coupling or the
MS laser frequency noise can be reduced. In AdV+, the non-linear
oupling is minimized through several methods, e.g., by optimizing
he alignment of the optics, which may go at the expense of the
ncreased coupling of other noise sources. Further reduction of the RMS
aser frequency fluctuations is therefore beneficial as this relaxes the
equirements on e.g., the alignment of the optics.

.3. Problem formulation

The dominant driver of the RMS of the laser frequency fluctuations
s the ground motion. The RFC loop has been introduced to mitigate

hese fluctuations, but the bandwidth of this loop is limited to roughly



Astroparticle Physics 164 (2025) 103028

3
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Fig. 1. (a) Part of the optical configuration of AdV+ for the next science run, including the control architecture for the laser stabilization and CARM loop. The B1 photodiode
measures the interference pattern between the two arms (𝑥𝑊 and 𝑥𝑁 ), which change in length with opposite signs when a Gravitational Wave passes. The two arms 𝑥𝑊 and 𝑥𝑁
are 3 km long in the case of AdV+. (b) Block diagram of the control scheme for the laser frequency stabilization and CARM. The purple blocks denote controllers, the red blocks
denote optical transfer functions and the yellow blocks denote mechanical transfer functions. The three nested loops, highlighted by the rectangular boxes, correspond to the same
loops as presented as in (a).
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Table 1
Overview of the variables used in the block diagram.

Variable Description

𝛿𝜈C Laser frequency fluctuations entering arm cavities [Hz]
𝛿𝜈MC Laser frequency fluctuations entering Input Mode Cleaner [Hz]
𝛿𝑥C Length fluctuations of arm cavities [m]
𝛿𝑥MC Length fluctuations of Input Mode Cleaner cavity [m]
𝛿𝜈resC Arm cavity resonance frequency fluctuations [Hz]
𝛿𝜈resMC Input Mode Cleaner resonance frequency fluctuations [Hz]
𝑢∙ Correction signals for actuators [V]
𝑃∙ Signals on photodiodes [W]
𝑒∙ Error signals [W]
𝑑l Free running laser frequency noise [Hz]
𝑑MC Seismic noise affecting IMC length [m]
𝑑C Seismic noise affecting arm cavity length [m]
𝜂MC Sensor noise on IMC photodiode [W]
𝜂C Sensor noise on B4 photodiode [W]
𝜂RFC Sensor noise on RFC photodiode [W]

2Hz to avoid introducing noise in the detection band, thus also lim-
iting the low-frequency attenuation of ground motion. The problem
addressed in this paper is therefore how to optimize the control design
of 𝐾RFC to further reduce the RMS laser frequency fluctuations.

The complete control system of the CARM DoF consists of a set of
ested loops, making it difficult to identify the different control design
onsiderations, i.e., how each of the noise sources couple to the output.
aving a noise budget that accurately models the couplings of the
ifferent noise sources to the output allows for easier optimization of
he control design. The first part of this paper will therefore present
he derivation and verification of a model and noise budget for the
omplete control system of CARM.

While noise budgets are often made to identify opportunities for
mproving the control systems, they are typically neglected in the actual
ontrol design, i.e., their insights are used to design a controller by hand
ut not explicitly used in the optimization. The second part of the paper
herefore addresses the problem of how to incorporate the developed
oise budget in the optimization of 𝐾RFC.

. System modeling

The first step in developing the noise budget is to model the dy-
amics of the system into a block diagram, from which the relations
etween the external inputs and output variable can be computed such
hat the external inputs can be projected onto the output. To this end,
he resonance condition is first rewritten such that it can be modeled
n a block diagram. The block diagram of the control scheme is then
resented as well as the derivation of the models for each block.

.1. Block diagram of control scheme

The main reason for using a block diagram to model the system
s that it allows the computation of the closed-loop relation between
nput and output as rational transfer functions and subsequently the
omputation of the individual contributions of the input to the output
n the frequency domain, i.e., producing a noise budget. The block
iagram and its closed-loop relations will furthermore also be used in
he controller synthesis in Section 5.

In Fig. 1(b) the block diagram of the control scheme for CARM
nd laser frequency stabilization is visualized. The three dash-dotted
ectangular boxes correspond to the same colored boxes as in Fig. 1(a)
nd represent the three nested control loops: the PS loop (orange),
he SSFS loop (blue) and RFC loop (green). Each block represents a
inear dynamic system, where the purple blocks represent controllers,
he yellow blocks represent mechanical transfer functions and the red
locks represent optical transfer functions. The signals 𝑃∙ are the error
ignals in Watts, 𝛿𝜈∙ the fluctuations of the laser frequency in Hertz,
𝑥 the changes in cavity length in meters and 𝑢 the control signals
4

∙ ∙
n Volts. The output of the control system is 𝛿𝜈C, which is the laser
requency circulating in the arm cavities. The system is furthermore
ubject to a set of disturbances, represented by the external signals,
ach of which is investigated in Section 4.1. An overview of the
ariables used in the block diagram is given in Table 1.

An important property of the model is the incorporation of the
esonance condition for the arm cavities as well as the IMC cavity since
oth their lengths and the laser frequency are actively controlled and
hese cavities require to be on resonance. The resonance condition is
efined in (3) as the difference between the length of the cavity and the
avelength. This relation cannot be directly used since we control the

aser frequency rather than its wavelength and we furthermore require
relation in terms of a difference between variables (i.e., a summation)

ather than a ratio.

.2. Modeling resonance condition

The objective of this section is to find an equation defining the
esonance condition as a difference between the cavity length and
he laser frequency circulating in this cavity. Controlling the laser
requency is equivalent to controlling the wavelength since

= 𝜆 ⋅ 𝜈, (4)

here 𝑐 is the speed of light, 𝜆 the laser wavelength and 𝜈 the laser
frequency in Hz. Assuming small fluctuations, the derivative of (3)
yields
𝛿𝜆
𝜆0

= 𝛿𝑥
𝑥0
, (5)

with 𝜆0 = 1064 nm the nominal laser wavelength, 𝑥0 the nominal cavity
length and 𝛿𝑥, 𝛿𝜆 the fluctuations of the cavity length and wavelength
respectively. The derivative of (4) yields
𝛿𝜆
𝜆0

= − 𝛿𝜈
𝜈0
, (6)

with 𝜈0 the nominal laser frequency and 𝛿𝜈 the fluctuations around this
nominal value. Combining (4), (5) and (6) then gives

𝛿𝜈 + 𝑐
𝜆0𝑥0

𝛿𝑥 = 𝛿𝜈 − 𝛾(𝑥0)𝛿𝑥 = 𝛿𝜈 − 𝛿𝜈res = 0, (7)

with

𝛾(𝑥0) = − 𝑐
𝜆0𝑥0

, (8)

and

𝛿𝜈res = 𝛾(𝑥0)𝛿𝑥. (9)

Eq. (7) can be interpreted as the cavity having a resonance frequency,
which is a function of the scaling factor 𝛾(𝑥0) and the fluctuations
around the nominal length of the cavity. The cavity is then on reso-
nance when the difference between the cavity resonance frequency and
laser frequency is zero.

In the control scheme, both the arm cavities and IMC cavity have
their length and circulating laser frequency controlled. The resonance
condition for the arm cavities is defined in the block diagram by the
relation

𝛿𝜈C − 𝛿𝜈resC = 𝛿𝜈C − 𝛽𝛿𝑥C, (10)

where according to (8) 𝛽 = 𝛾(3000) since the cavity is 3 km long. The
IMC cavity resonance condition is defined by the difference equation

𝛿𝜈MC − 𝛿𝜈resMC = 𝛿𝜈MC − 𝛼𝛿𝑥MC, (11)

with 𝛼 = 𝛾(144), since the IMC cavity is 144m long.

3.3. Derivation of models for blocks

Each block in the block diagram is modeled as a rational transfer

function (or a simple gain) which will later allow to compute closed-
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Fig. 2. Bode plot of the mechanical transfer function 𝐴MC ( ) and 𝐴C ( ).
he transfer functions are modeled as harmonic oscillators representing the suspension
ynamics and an additional pole pair is used to model the actuator dynamics.

oop contributions of each noise source to the output in the frequency
omain. The gray triangular blocks 𝛼 and 𝛽 have already been derived
n Section 3.2. The yellow blocks are the mechanical transfer functions
nd their models are based on internal models already available at
dV+. The mechanical transfer function 𝐴l for the laser is modeled as
gain and the transfer functions 𝐴MC, 𝐴C are modeled as harmonic

scillators relating the voltage sent to the actuators to a motion of the
irrors. The Bode plot of these transfer functions is depicted in Fig. 2.
ote that for 𝐴MC an additional pole-pair is present at 300Hz represent-

ng the actuator dynamics, while the harmonic oscillator represents the
ynamics of the suspension system translating a force on the mirror to
he corresponding mirror motion. The DC gains used in the models are
btained through experiments on the detector and are 0.75 μmV−1 for
C and 6.7 μmV−1 for 𝐴MC.

The optical transfer functions consist of only a single pole, i.e., the
avity pole, which is known in AdV+ from simulations or measure-
ents. Their DC gain, also known as the optical gain in WHz−1, is

lso of importance since this enables calibration of the error signals.
t is however difficult to obtain these from simulations since these
imulations do not include the imperfections of the interferometer,
hich the DC gain is very dependent on.

Instead, the optical gains of the three blocks 𝐺C, 𝐺RFC and 𝐺𝑟MC are
xperimentally determined using two dedicated measurements. Note
hat the optical gain of 𝐺𝑡MC is 1HzHz−1 since it is a transmission trans-
er function only containing the cavity pole. For the first measurement,
simplified control configuration is used, where the RFC error signal

s directly used to actuate on the IMC mirror and the arm cavities are
eft uncontrolled. Using this configuration (for which a block diagram
s omitted for brevity), the Frequency Response Function (FRF) of the
pen-loop transfer function is measured by injecting bandpass-filtered
hite noise and compared to the FRF of the model. The open-loop

ransfer function for this configuration is given by
𝑃RFC(𝑠)
𝑒RFC(𝑠)

=
𝐴l𝐾PS𝐺𝑟MC

1 + 𝐴l𝐾PS𝐺𝑟MC
⋅ 𝛼𝐴MC𝐾MC𝐺RFC𝐺

𝑡
MC

≈ 𝛼𝐴MC𝐾MC𝐺RFC𝐺
𝑡
MC, (12)

with 𝑃RFC(𝑠) = {𝑃RFC(𝑡)} and 𝑒RFC(𝑠) = {𝑒RFC(𝑡)} the Laplace
transforms of their respective time domain signals and the last equality
furthermore holds since
𝐴l𝐾PS𝐺𝑟MC

𝑟 ≈ 1 ∀ 𝜔 ≪ 2𝜋110 kHz, (13)
5

1 + 𝐴l𝐾PS𝐺MC
Fig. 3. Comparison between the modeled ( ) and measured ( ) FRF of
the open-loop system in (12), measured on AdV+. The FRF is used to identify the
optical gain of 𝐺RFC and to verify whether the overall dynamics between the model
and measurement match. After adjusting the optical gain of 𝐺RFC, the modeled and
measured FRF match well.

because the UGF of the PS loop is at 110 kHz and |

|

|

𝐴l𝐾PS𝐺𝑟MC
|

|

|

≫ 1 below
this frequency. The only unknown gain in the last equality of (12) is the
optical gain of 𝐺RFC, which is determined by correcting its value such
that the model and measurement of (12) match. A comparison of the
model and measured FRF is shown in Fig. 3, where the optical gain
of 𝐺RFC is determined using the aforementioned procedure. The model
and measurement are in good correspondence between 10 and 500Hz.
The discrepancies outside this frequency range stem from the fact
that band-limited white noise has been injected in the aforementioned
frequency range and the FRF is computed by directly computing (12),
which is 1 at frequencies where the injected noise is zero.

The optical gains of 𝐺𝑟MC and 𝐺C are determined by matching the
FRF of the modeled and measured open-loop transfer function of the
SSFS (the blue + orange system in Fig. 1(b)). This open-loop is given
by
𝑃C
𝑒C

= 𝐺C𝐺
𝑡
MC𝑆PS𝐹l𝐾PS

(

𝐾SSFS + 𝐺𝑟MC𝛼𝐴MC𝐾MC
)

=

𝐺C𝐺
𝑡
MC

(

𝑆PS𝐹l𝐾PS𝐾SSFS + 𝑇PS𝛼𝐴MC𝐾MC
)

, (14)

with

𝑆PS = 1
1 + 𝐹l𝐾PS𝐺𝑟MC

, 𝑇PS = 1 − 𝑆PS. (15)

As mentioned in Section 2.2, the SSFS loop uses two different control
paths to lock the laser on the arm cavities, at low frequencies by
controlling the IMC length and at high frequencies by acting on the
setpoint of the PS loop. These two control paths are represented in (14)
by the two terms in between the brackets. Below a certain frequency,
the gain of the 𝐾MC path is high and the gain of 𝐾SSFS is low and
above this frequency the opposite holds. The ratio in terms of gain
between the two determines the crossover frequency and therefore also
the shape of the open-loop FRF. Note that only 𝐺𝑟MC is present in the
term in between the brackets in the first equality and the optical gain
of 𝐺𝑟MC can thus be adjusted until the modeled and identified FRF
match in terms of shape. The optical gain of 𝐺C is then obtained by
shifting the modeled FRF up or down until the gains of the modeled
and measured FRF match. This procedure is applied to find the gains
of 𝐺𝑟MC and 𝐺C using the FRFs presented in Fig. 4. The modeled and
identified dynamics match well in the identified frequency range, albeit
with small discrepancies in the phase which have only a limited effect
on the resulting noise budget.

Using these procedures, the optical gains as noted in Table 2 are

found and all blocks are modeled and experimentally verified.
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Fig. 4. Comparison between the modeled ( ) and measured ( ) FRF of the
open-loop system in (14), measured on AdV+. The FRF is used to identify the optical
gains of 𝐺𝑟

MC and 𝐺C and to verify whether the overall dynamics between the model
and measurement match. After adjusting the optical gains of 𝐺𝑟

MC and 𝐺C, the modeled
and measured FRF match well.

Table 2
The optical gains of the optical transfer functions as measured on AdV+.

Optical transfer function Optical gain

𝐺C 0.033WHz−1

𝐺MC 4.12 × 10−5 WHz−1

𝐺RFC 1.52 × 10−8 WHz−1

4. Noise budget

For this noise budget, two critical assumptions are made. The first
assumption is that the system is Linear Time-Invariant. The linearity
assumption is valid since the system behaves predominantly linear
due to its static operating point. The time-invariance assumption does
not necessarily hold in practice since the optical response varies over
time due to thermal transients as well as changes in the alignment of
the optics. These fluctuations are however assumed to be sufficiently
small compared such that they do not significantly affect the noise
budget. The second assumption is that all noises are stationary, which
for almost all noises holds. This is observed through the stationary
behavior of the sensitivity, which would otherwise also fluctuate as a
result of the non-stationary behavior of the noises. The non-stationary
assumption is however not true for seismic noise. The assumption is
nevertheless made that the non-stationary behavior is sufficiently small
such that this does not influence the noise budget in the sense that for
each frequency the limiting noise can still be confidently identified in
the noise budget.

In the first part, the derivation of the models for the different dis-
turbances as well as the closed-loop equations from the disturbances to
the laser frequency fluctuations are presented. Then, the noise budget is
presented and experimentally validated using the measured frequency
fluctuations on AdV+.

.1. Modeling disturbances

There are many disturbances affecting the different loops through
ifferent disturbance paths. A conscious choice has been made to model
nly a subset of these disturbances, which from experience are expected
o be the most limiting. This choice follows from the objective of the
oise budget in this paper, which is to characterize the system and
ptimize the controller rather than to use it in the design phase of the
etector. For this objective, a noise budget that models only the limiting
6

disturbances at each frequency is sufficient. The presented framework
to derive the noise budget can however readily be used to include more
disturbances, given that the disturbance models and the location at
which they enter the loops are known.

The disturbances are modeled as filtered white noise, i.e.,

(𝑤𝑖) = |

|

𝐻𝑖(𝑗𝜔)||
2 ⋅ (𝜖), (16)

ith (⋅) the Power Spectral Density (PSD) of a disturbance, 𝐻𝑖(𝑗𝜔) the
ransfer function that colors the noise and 𝜖 unit-power white noise. All
isturbances are grouped in a single vector 𝑤

=
[

𝑑𝑙 𝜂MC 𝑑MC 𝜂C 𝑑C 𝜂RFC
]𝑇 , (17)

here 𝜂∙ are noises for the respective sensors of each loop, 𝑑C, 𝑑MC
epresent seismic noise affecting the cavity lengths and 𝑑l represents
he free running laser frequency fluctuations. The derivations of these
oise models are addressed next.

.1.1. Sensor noise
For AdV+, the photodiodes are typically limited by shot noise,

hich is why only this sensor noise is modeled for the PS and SSFS loop.
he shot noise is frequency independent and is computed according
o Cahillane and Mansell [16]

(𝜂shot ) =
√

ℎ𝑐𝑃𝐷𝐶
𝑛𝜆

[

W
√

Hz

]

, (18)

with ℎ = 6.626 × 10−34 J Hz−1 being the Planck constant, 𝑃𝐷𝐶 the DC
power on the respective photodiode, 𝑛 the quantum efficiency of the
photodiode (which is assumed to be 0.95) and 𝜆 the wavelength of the
laser. For all three sensors, the shot noise is computed by using the
DC power measured when the interferometer is in its final operating
state. The DC powers used in the noise budget for the photodiodes are
49mW for the B4 photodiode used for the SSFS loop, 630mW for the
IMC photodiode and 200mW for the RFC photodiode.

4.1.2. RFC thermal noise
The RFC, used to estimate the laser frequency fluctuations, is sub-

ject to thermal effects that translate into length fluctuations. This is
considered to be a sensor noise and is modeled as [5,17]

(𝜂lengthRFC ) = 0.1
√

𝑓

[

Hz
√

Hz

]

. (19)

This noise is additionally incorporated for 𝜂RFC as it will show to be a
dominant disturbance.

4.1.3. Seismic noise
The mirrors in AdV+ are isolated from ground motion by large

uspension systems that use an actively controlled Inverted Pendulum
ollowed by a chain of pendula to provide attenuation at 10Hz of more
han 10 orders of magnitude [18]. The effect of seismic noise on the
irrors is modeled as a product of two terms, i.e.,

(𝑑∙) = 𝑋mir (𝜔) =
|

|

|

𝑋susp(𝑗𝜔)
|

|

|

⋅𝑋ground(𝜔), (20)

here the first term in the last equality represents the suspension
ynamics and the second term represents the seismic motion. The sus-
ension dynamics are modeled as the product of 𝑀 damped harmonic
scillators

susp(𝑗𝜔) =
𝑀
∏

𝑖=1

𝜓2
𝑖

(𝑗𝜔)2 + 2𝜁𝑖𝜓𝑖𝑗𝜔 + 𝜓2
𝑖

, (21)

in which 𝜓𝑖 represents the eigenfrequency and 𝜁𝑖 the damping factor
of the respective harmonic oscillator. A damped harmonic oscillator is
chosen here since feedback control is used in the suspensions to damp
the typically lowly damped suspension modes. For the noise model of
the arm cavities 𝑑 𝑀 = 7 is used and for the IMC noise model 𝑑
C MC
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𝑀 = 5 is used. The suspension frequencies 𝜓𝑖 are placed between 0.07
and 2Hz since they are known to be in this frequency range.

The seismic noise is estimated using measured percentile ground
spectra at the AdV+ site [19], which is approximated by

ground(𝜔) =
2 ⋅ 10−6

𝜔2
. (22)

n important simplification made here is that the length fluctuations
f a single cavity are modeled here by the motion of a single mirror,
hile in practice the cavity length fluctuations are a function of the

ombined relative motion of the cavity mirrors. Modeling the combined
tochastic effect of ground motion on a cavity is complicated, but, as
t will be experimentally shown in Section 4.3, the assumption of a
ingle mirror model proves to be sufficiently accurate to describe the
ominant dynamics.

.1.4. Laser frequency fluctuations
The frequency fluctuations of the uncontrolled laser are obtained

rom the specification sheet of the supplier and are given by

(𝑑𝑙) = 104 ⋅ 𝑓

[

Hz
√

Hz

]

. (23)

.2. Derivation of projection equations

The next step is to derive the projection equations, i.e., the closed-
oop transfer functions from the disturbances 𝑤 to the output of the
ystem 𝛿𝜈C. These equations are derived using the block diagram in
ig. 1(b) and are given by

(𝛿𝜈C) =
|

|

|

𝐺𝑡MC𝑆RFC𝑆PS
|

|

|

2
⋅ (𝑑𝑙)

+ |

|

|

𝐺𝑡MC𝑆RFC𝑆PS𝐴l𝐾PS
|

|

|

2
⋅ (𝜂MC)

+ |

|

|

𝐺𝑡MC𝑆RFC𝑆PS𝐴l𝐾PS𝐺
𝑟
MC𝛼

|

|

|

2
⋅ (𝑑MC)

+ |

|

|

𝐺𝑡MC𝑆RFC
|

|

|

2
⋅ (𝜂C)

+ |

|

|

𝐺𝑡MC𝑆RFC𝐺𝐶𝛽
|

|

|

2
⋅ (𝑑C)

+ |

|

|

𝐺𝑡MC𝑆RFC𝐺𝐶𝛽𝐴C𝐾RFC
|

|

|

2
⋅ (𝜂RFC),

(24)

with

𝑆RFC = (1 + 𝑆PS𝐴l𝐾PS
(

𝐾SSFS + 𝐺𝑟MC𝛼𝐴MC𝐾MC
)

𝐺𝐶 (1 + 𝛽𝐴C𝐾RFC𝐺RFC)𝐺𝑡MC)
−1, (25)

and

 = 𝑆PS𝐴l𝐾PS(𝐾SSFS + 𝐺𝑟MC𝛼𝐴MC𝐾MC). (26)

Using (24) with the models of the disturbances derived in Section 4.1
then yields the closed-loop contribution of each noise source to the laser
frequency fluctuations.

4.3. Noise budget for laser frequency fluctuations

In Fig. 5, the noise budget for the laser frequency fluctuations is
depicted. It combines the frequency domain models of the disturbances
as derived in Section 4.1 with the projection equations of Section 4.2
to obtain the closed-loop contribution of each disturbance 𝑤 to the
output 𝛿𝜈C in the frequency domain. The sum of all the disturbances,
i.e., the expected spectrum of 𝛿𝜈C based on the modeled disturbances,
is represented by the gray dash-dotted line.

To verify the noise budget, a measurement of 𝛿𝜈C is also shown.
There is no sensor available in AdV+ that directly measures 𝛿𝜈C so the
RFC sensor is used instead to obtain a measured reconstruction of 𝛿𝜈C.

his measured reconstruction is obtained through

𝜈̂ = 𝐺−1 𝑒 , (27)
7

C RFC RFC 1
Fig. 5. Noise budget for the control system of CARM with ( ) measurement of
𝛿𝜈C; ( ) 𝜂C; ( ) 𝑑l; ( ) 𝑑C; ( ) 𝑑MC; ( ) 𝜂MC; ( ) 𝜂RFC in-
oop; ( ) 𝜂RFC out-of-loop; ( ) sum of disturbances 𝑤. The seismic noise 𝑑C is
ominating the RMS through its low frequency contribution.

here 𝑒RFC is the measurement of the RFC photodiode obtained from
AdV+, 𝐺RFC the model of the RFC optical response as found in Sec-
tion 3.3 and 𝛿𝜈̂C the estimate of the laser frequency based on the
measurements.

Using the RFC sensor to obtain the reconstructed laser frequency
fluctuations has an important consequence. The projection equations
in Section 4.2 are all computed from 𝑤 to 𝛿𝜈C, while the plot shows
̂RFC, which is the only frequency noise witness available. Computing
the closed-loop equations from 𝑤 to 𝑒RFC and using (27) to obtain
the closed-loop transfer function from 𝑤 to 𝛿𝜈C will yield (24) for all
disturbances 𝑤, except for 𝜂RFC. From (24) the coupling from 𝜂RFC to
𝛿𝜈C is
𝛿𝜈C
𝜂RFC

= 𝐺𝑡MC𝑆RFC𝐺𝐶𝛽𝐴C𝐾RFC = 𝑆RFC𝐿RFC𝐺
−1
RFC = 𝑇RFC𝐺

−1
RFC, (28)

here 𝐿RFC is the open-loop transfer function of the complete control
ystem and where 𝑇RFC denotes the complementary sensitivity, i.e.,

RFC =
𝐿RFC

1 + 𝐿RFC
= 1 − 𝑆RFC. (29)

omputing the coupling from 𝜂RFC to 𝑒RFC yields
𝑒RFC
𝜂RFC

= 𝑆RFC, (30)

hich is different from the coupling of 𝜂RFC to 𝛿𝜈C as in (28). This
ifference in coupling is a consequence of using an in-loop error signal
a feedback loop is closed on this error signal). The coupling of 𝜂RFC to

the true 𝛿𝜈C and the reconstructed measurement are therefore plotted in
Fig. 5, where the dashed yellow line is the coupling of 𝜂RFC to the used
error signal 𝑒RFC, i.e., the in-loop contribution of 𝜂RFC as formulated in
(30), and the thick yellow line is the contribution of 𝜂RFC to the true
laser frequency fluctuations based on (28) (and thus also (24)).

Comparing the measured 𝛿𝜈C (black line) to the modeled contribu-
ions shows that the system is completely understood at all frequencies
n terms of the limiting disturbances. The noise budget furthermore
hows that 𝜂RFC limits the spectrum between 4Hz and 5 kHz, but
his is thus an artifact of how the estimate of the laser frequency
luctuations are obtained on the system since a sufficiently sensitive
ut-of-loop sensor is not available. In fact, 𝜂RFC is only expected to
e limiting between 4 and 20Hz, above which the shot noise of the
rm cavity photodiode will limit the spectrum. Below 4Hz, the seismic
oise coupling to the arm cavity mirrors is limiting the laser frequency
luctuations and this is also limiting the total RMS of 𝛿𝜈C, which is
xpected considering the lack of attenuation of seismic motion below

0Hz.
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5. 𝟐-based controller design

The noise budget shows that the RMS of 𝛿𝜈C is dominated by seismic
oise coupling to the arm cavity mirrors. To minimize the RMS, the
FC controller is re-tuned since this controller is the only one with
hich the seismic motion-induced laser frequency fluctuations can be
ttenuated. In this section, a systematic design procedure is presented
hat uses the noise budget to synthesize a norm optimal controller for
RFC. First, a background on 2 optimal control is given, after which

he plant used for synthesis is derived. Finally, an 2 optimal controller
is synthesized and a manual control design based on the 2 optimal
controller is presented.

5.1. Control objectives

It has been noted in Section 2 that the main objective of 𝐾RFC is
to minimize the RMS of 𝛿𝜈C. If that were the sole design objective
then any type of controller optimization would give a controller with
the highest attainable UGF. The coupling to DARM is however also of
critical importance since the DARM spectrum directly determines the
sensitivity of the detector. For the RFC loop, the actuators on the end
mirrors are used, which send a common voltage to both mirrors. Small
imbalances between the actuator gains will directly induce a motion
in DARM, since this is the difference in length between the two arms
(and thus directly influenced by differential end mirror motions). The
coupling from the RFC loop to DARM is written as

𝑥C→D = 𝐴C ⋅ 𝜌 ⋅ 𝑢RFC, (31)

where 𝑥C→D is DARM motion resulting from the actuation on the end
mirrors of the RFC loop and 𝜌 ∈ R is a constant coupling factor. Based
on past experiences, a worst-case 𝜌 = 0.01 is chosen, which equals
1 percent of coupling between CARM and DARM. Since Gravitational
Waves are detected above 10Hz, the goal is to minimize 𝑥C→D above
this frequency, which is equivalent to minimizing the actuation signal
𝑢RFC above 10Hz.

The controller synthesis thus requires finding the optimal controller
that minimizes 𝛿𝜈C while keeping the spectral contributions of 𝑢RFC
above 10Hz under a certain bound. Note that the exact bound for 𝑢RFC
is not yet known so the controller design requires an iterative procedure
between the implementation of a synthesized controller and its update,
depending on whether the bounds on 𝑢RFC are met.

5.2. Controller synthesis using the 2 norm

Controller design for control loops in a Gravitational Wave detec-
tor is typically a complex and time-consuming endeavor due to the
stringent RMS requirements combined with a variety of disturbances,
some of which vary over time. Structured design methods for these
controllers are thus desired, where ideally the controller is synthesized
based on some system-based design criterion. The approach taken in
this paper is therefore to synthesize a 2 norm optimal controller,
which, as it will be shown later in this section, minimizes the RMS of
the output which is our design objective.

The drawback of this approach is two-fold. First, it is not possible
to incorporate the time-varying behavior in the optimization, leading
to a controller that is not necessarily optimal for all time instances.
An example is the seismic motion, where a simple model is used in
(22), which for example does not model the microseismic peaks [20]
that vary as a function of the weather. Second, a 2 synthesized
controller has no guarantees on stability margins [21], meaning the
margins can be arbitrarily small. The approach taken in this paper
is therefore to use 2 synthesis on a nominal model and to derive a
manual feedback controller based on the 2 synthesized controller. The
proposed approach allows to quickly iterate on the control design and
simultaneously incorporate knowledge of the time-varying effects as
well as sufficient stability margins in the design.
8

The first step for the controller synthesis is to formulate the control
problem in the generalized plant form, i.e., formulate the plant 𝑃 such
that
[

𝑧
𝑦

]

= 𝑃
[

𝑤
𝑢

]

, (32)

where 𝑤 are the external disturbances, 𝑧 the outputs to be minimized
and 𝑢, 𝑦 the respective inputs and outputs of the controller blocks that
are to be synthesized. The 2 synthesis then minimizes [22]

‖𝐹 (𝑠)‖2 =

√

1
2𝜋 ∫

∞

−∞
tr(𝐹 (𝑗𝜔)𝐹 (𝑗𝜔)𝐻 )𝑑𝜔, (33)

here 𝐹 (𝑠) is the closed-loop function

(𝑠) ∶ 𝑤 → 𝑧. (34)

hen the inputs 𝑤 are unit-power white noise, minimization of the 2
orm of 𝐹 (𝑠) then minimizes the RMS of 𝑧 [22].

.3. Formulating the generalized plant

This section presents the steps to formulate the generalized plant
for this particular control problem. Based on the block diagram

f Fig. 1(b), the relation between the inputs and outputs for the
eneralized plant is determined. Rather than using the complete block
iagram, the input–output relation can be reduced to a few blocks
nder the assumption that the PS and SSFS loop are closed with a signif-
cantly higher UGF than the RFC loop. The advantage of this reduction
n blocks is that it greatly reduces the computational complexity. Since
he PS and SSFS loop are closed with UGFs of respectively 7 kHz and
10 kHz, this assumption holds. Computing the transfer function from
RFC to 𝑒RFC then gives
𝑒RFC
𝑢RFC

= 𝑄eq
RFC =

𝐺C𝐺RFC𝑆SSFS𝐺
𝑡
MC𝑆PS𝐴l𝐾PS(𝐾SSFS + 𝐺𝑟MC𝛼𝐴MC𝐾MC)𝛽𝐴C, (35)

ith

SSFS =
(

1 + 𝐺C𝐺
𝑡
MC𝑆PS𝐴l𝐾PS

(

𝐾SSFS + 𝐺𝑟MC𝛼𝐴MC𝐾MC
))−1 . (36)

q. (35) is rewritten to
eq
RFC = 𝛽𝐺RFC𝐴C𝑇SSFS ≈ 𝛽𝐺RFC𝐴C (37)

ince

SSFS(𝑗𝜔) = 1 − 𝑆SSFS(𝑗𝜔) ≈ 1 ∀ 𝜔 ≪ 2𝜋7 kHz. (38)

nly the blocks 𝛽, 𝐺RFC and 𝐴C are therefore required in the synthesis.
The next step is to define the inputs and outputs of the generalized

lant. The control variables 𝑢, 𝑦 are respectively the output and input
f the controller 𝐾RFC. For the external disturbances 𝑤, only the
isturbances 𝑑C and 𝜂RFC are required from the noise budget since
hese disturbances are limiting the spectrum while the coupling of
hird limiting disturbance 𝜂C is not influenced by a change of 𝐾RFC.
or the performance variable 𝑧, the laser frequency fluctuations 𝛿𝜈C is
hosen since the goal is to minimize its RMS. Additionally, as noted
n Section 5.1, the coupling to DARM should be kept under a certain
requency-dependent threshold so the correction signal 𝑢RFC is also used
s a performance variable 𝑧 that has to be minimized and this variable
s denoted by 𝑢𝑧RFC.

Using the defined inputs and outputs for the generalized plant, the
eneralized plant itself is formulated as

𝛿𝜈C
𝑢𝑧RFC
𝑒RFC

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝛽 0 𝛽𝐴C
0 0 1

−𝐺RFC𝛽 −1 −𝐺RFC𝛽𝐴C

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎡

⎢

⎢

⎣

𝑑C
𝜂RFC
𝑢RFC

⎤

⎥

⎥

⎦

. (39)
=𝑃
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Fig. 6. Bode plot of the 2 synthesized controller ( ) and the controller manually
designed based on the 2 optimal controller for 𝐾RFC ( ) The manually tuned
controller has significantly larger stability margins, at the expense of some low
frequency gain and high frequency roll-off.

The final step is to introduce the weighting filters that determine the
relative weighting of each input and output in the optimization. The
weighting filters are defined as

𝑃 = 𝑊 ⋅ 𝑃 ⋅ 𝑉 , (40)

where 𝑃 is the weighted generalized plant and 𝑊 , 𝑉 are the input
nd output weightings respectively. For the input weighting, the noise
odels derived in Section 4.1 are used, i.e.,

= diag([𝐻𝑑C 𝐻𝜂RFC 1]). (41)

or the output weighting, a frequency-dependent weighting filter on the
orrection signal 𝑢RFC is used, which enforces roll-off of the correction
ignal above a certain frequency and therefore minimizes the coupling
o DARM. This weighting filter 𝐻𝑢 is defined as the inverse of an

order lowpass filter with its cut-off frequency at 3Hz to enforce
ufficient roll-off above 10Hz and obtain a UGF of at most 2Hz. The
utput weighting filter is defined as

= diag([𝜅 𝐻𝑢 1]), (42)

here 𝜅 ∈ R is used to scale the relative weighting of the RMS
uppression of 𝛿𝜈C with respect to the correction signal 𝑢RFC.

The optimal controller 𝐾opt
RFC is then found by solving

opt
RFC = arg min

𝐾RFC

= ‖𝑙(𝑃 , 𝐾RFC)‖2, (43)

here 𝑙 denotes the left Linear Fractional Transformation [22]. The
olution to this optimization problem follows from two Riccati equa-
ions [23].

.4. Control design based on optimization

The control objectives as well as the optimization criterion have
ow been defined. Since there is no hard criterion on the output
pectrum 𝑢RFC, the synthesis requires the manual tuning of the output
eighting filter 𝑉 until a satisfactory trade-off between the RMS error
f 𝛿𝜈C and the control effort 𝑢RFC above 10Hz is found. Eq. (43) is thus
teratively solved with different weighting until a satisfactory trade-off
s found. For the final optimization, a fourth-order lowpass filter is used
nd 𝜅 = 2 ⋅ 10−4.

A manual controller is then tuned based on the synthesized con-
roller to deal with the time-varying seismic disturbance as well as the
9

Fig. 7. Simulated laser frequency fluctuations with ( ) original controller, ( )
2 based manually tuned controller and ( ) 2 synthesized controller. Top plot:
Auto spectral density; Bottom plot: Cumulative PSD integrated from 1 kHz to DC.

lack of stability margins. A comparison of the two controllers is shown
in Fig. 6. The synthesized controller is shown to have very low stability
margins as the phase margin is roughly 10 degrees. The manual control
design therefore takes the synthesized controller as a baseline and
two adjustments are made to obtain a 6 dB modulus margin, i.e., a
maximum of 6 dB peak in the sensitivity function, which guarantees
a sufficient stability margin. The first change is the shift of the two
zeros from 0.5 to 0.3Hz since the seismic motion is overestimated in
22) with respect to a typical measured seismic spectrum. Second, the
oles at 4Hz are shifted to 5Hz, which increases the stability margin
t the expense of the roll-off. This is nevertheless not expected to be a
roblem considering a worst case scenario was taken for the coupling
o DARM. With these two changes, a controller with a 6 dB modulus
argin is obtained that maintains the structure of the synthesized 2

ptimal controller.
In Fig. 7 the simulated laser frequency fluctuations 𝛿𝜈C for the

ifferent controllers are compared. An optimal control design leads to
flat spectrum, which the synthesized controller indeed produces. The
anually tuned controller has significantly less performance due to

he required changes improving the stability margins. It has however
ncreased performance in the 0.1 to 0.7Hz range where the majority
f the RMS motion comes from. An expected improvement of roughly
factor 3 in RMS is therefore simulated for the new controller with

espect to the original controller. This number may however vary
n practice due to the time-varying behavior of the seismic motion.
ote furthermore that the new controller, aside from the 0.3Hz due to

overestimation of ground motion in the model, provides a flatter error
spectrum compared to the original controller, which indicates a more
optimal control performance.

6. Experimental results

Experimental results of the designed controller on AdV+ are pre-
sented in this section to evaluate its performance compared to the orig-
inal controller. The coupling to DARM is also measured to determine
whether the new controller achieves the roll-off requirements.

6.1. Controller performance

The new 𝐾RFC controller derived in Section 5.4 is implemented in
dV+ to compare its performance with the original controller. In Fig. 8,
easurements of 𝛿𝜈C for the two controllers from AdV+ are depicted. A
easurement of the signal 𝑒RFC, calibrated in Hertz using the estimate

f 𝐺 , is again used to obtain an estimate of 𝛿𝜈 at low frequencies.
RFC C
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Fig. 8. Measured laser frequency fluctuations on AdV+ with ( ) controller off,
) original controller, ( ) 2 based controller. Top plot: Auto spectral density;

ottom plot: Cumulative PSD integrated from 5 kHz to DC. The new controller achieves
roughly a factor 3 better RMS and improves the attenuation in the 0.1 to 0.7Hz range.

The top plot shows the Auto Spectral Density (ASD) of 𝛿𝜈C. The
ew controller reduces the ASD by roughly a factor 3 between 0.1 and
.7Hz and the spectrum is indeed more flat compared to the original
ontroller. There are however still several peaks visible in the 0.1 and
Hz range, which is a consequence of the time-varying behavior of
eismic motion.

The bottom plot in Fig. 8 shows the square root of the cumulative
SD, i.e., the PSD integrated from the highest frequency to DC, where
he lowest frequency bin gives the total RMS. The 2 based controller
erforms roughly a factor 3 better in terms of RMS with respect to the
ld controller, resulting from the improved gain in the 0.1 and 0.7Hz
egion. In terms of further improvements, the bulk of the contribution
o the RMS is above 0.7Hz, in which it is very difficult to increase the
ain due to the restriction of the UGF to at most 2Hz. Further reduction
f the RMS would therefore require increasing the UGF.

.2. Measured coupling to DARM

The coupling of CARM noise to DARM is also measured and a
rojection is made of CARM noise to the sensitivity of the detector for
oth controllers, which is depicted in Fig. 9. The original controller
s exactly on the target sensitivity between 10 and 40Hz, while the
ew controller spoils the sensitivity below 20Hz and afterward rolls
ff significantly.

It is important to note that the coupling is measured before ad-
itional measures are taken to reduce the coupling. The reduction
f this coupling is done in two steps. First, the mirror actuators are
alanced by adjusting their relative gains, after which a subtraction
echnique is used to subtract CARM noise in DARM [14,24]. With
hese two additional measures, the coupling is from experience reduced
y at least a factor 10 across the 10 to 40Hz range, since actuator
alancing reduces the frequency-independent coupling factor 𝜌 and the
oise subtraction is designed to be optimal in this frequency range.
his leaves the coupling of both the original controller and the new
ontroller below the target sensitivity by a small factor across the
ntire frequency range. The choice of 1 percent of coupling between
ARM and DARM is thus conservative and the roll-off could be slightly
educed in favor of more robustness margins or a lower RMS if deemed
ecessary.

It furthermore has to be noted that only the mechanical coupling
s assessed in the projection of Fig. 9. The optical coupling due to
10

symmetries in the optics of the detector is not considered here but
Fig. 9. Measured coupling of CARM noise onto the sensitivity of AdV+. ( ) target
sensitivity for O4 science run; ( ) projection of CARM noise using the original
controller; ( ) projection of CARM noise using the 2 based controller.

is likely the next dominant coupling, particularly above 100Hz. The
shape of 𝐾RFC does however not influence this coupling, hence why
the optical coupling is not considered in Fig. 9.

7. Conclusion

In this paper, a systematic procedure for the derivation of a noise
budget for the laser stabilization loop in AdV+ is presented. The
dynamics of the system are modeled using first-principles and a method
is given to derive the optical gains of the optical transfer functions
experimentally. Combined with the modeled external disturbances, the
propagation paths of these disturbances are derived and a noise budget
is presented and experimentally verified using data from AdV+. The
noise budget allows the identification of the limiting disturbances as
well as the effect of the different nested controllers on the propagation
of these disturbances to the output of the system. The provided model
can furthermore be used to add other disturbances or change current
disturbances to determine how these would affect the total noise in the
system at each frequency.

Although these noise budgets are indeed used to identify the lim-
iting disturbances as well as how to retune the controller, they are
also often under-utilized in this process as the tuning is done by hand
based only on insights of the noise budget. This paper therefore also
presents a systematic control design procedure that uses 2 synthesis
to derive a 2 norm optimal controller, in which the noise budget
is explicitly used as a weighting function in the optimization. The
practical drawbacks of directly using the synthesized controller are
solved by using the structure of the 2 controller and by manually
altering the controller until a satisfactory performance is attained. This
provides a significantly more structured approach to the control design,
which can also be quickly iterated on. Experimental data from the
AdV+ detector shows a performance increase of roughly a factor 3 in
RMS for the controller derived from the presented method compared
to the original manually tuned controller.

The following recommendations are considered relevant for future
extensions. The first is to deal more optimally with the lack of stability
margins by the controller synthesis. Coping with these still requires
design choices that may not necessarily be optimal. Second, imple-
menting hard constraints on for example the controller roll-off could
be considered. Presently, the roll-off is manually adjusted using the
weighting, but a hard constraint is available once the coupling to
the sensitivity is known and a controller could be synthesized to this
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constraint. Third, alternative methods of dealing with the time-varying
behavior of seismic motion could be considered. Currently, a basic low-
order model is used, but more advanced models that are based on
e.g., the worst case or mean percentile seismic motion measured on
the AdV+ site could be considered.
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