Partitionable
Decentralized Topic

Key Management

Bryan van Wijk

October 2019

~arfitionaple
Decentralized [opic Key

\Vanagement

by

Sryan van YWik

to obtain the degree of Master of Science in Computer Science
Data Science and Technology Track
with a specialisation in Cyber Security
at the Delft University of Technology
to be defended publicly on Thursday November 14, 2019 at 10:00 AM.

Student number: 4363329
Thesis committee: Dr. Ir. J.C.A. van der Lubbe, TU Delft, supervisor

Dr. Ir. J.H. Weber, TU Delft
Dr. T.B. Quillinan, Thales Research and Technology
Dr. M. Bjorkqgvist, Thales Research and Technology

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

In a military environment, tactical networks enable information sharing between all the dif-
ferent entities in the field. In this environment, multiple groups of people from different
organizations, and with different goals and policies have to share information. The infor-
mation has to be shared without the risk of leaking information to unauthorized entities.
Cryptography algorithms are used to encrypt information with a key to remain in control of
when, where and to whom it is shared. All information is encrypted based on the concept
of content-based encryption. In this unreliable environment, the cryptographic keys used to
secure the data have to be available to continue collecting and processing information.

A key management architecture should be in place, to facilitate the generation and distri-
bution of these keys. The purpose of this key management architecture is to provide the
entities in the field with specific keys such that information access policies can be enforced.
The challenge here is that in tactical networks, network partitionings are expected to happen.
Therefore, the same keys have to be redundantly available at multiple locations to prevent a
single point of failure. In a connected network, the keys can constantly be synchronized be-
tween these locations. However, the problem of key de-synchronization occurs if the network
is split for some time, keys are changed on both sides, and then the network is recombined.
This leads to possible conflicting keys because synchronization was temporarily not possi-
ble. The key management architecture must be able to handle such conflicts and reintegrate
them as necessary.

In this thesis, we present a decentralized key management architecture with a solution for
the key de-synchronization problem. We propose to use Conflict-free replicated data types
[22], to store the keys at multiple locations and prevent conflicts. Conflict-free replicated data
types is a concept to store and replicate data across multiple instances. This data type is
characterized by the possibility to update the data in all instances independently, and con-
currently, without coordination between the instances. Additionally, three approaches for
the coordination of key creation are proposed with different levels of consistency and avail-
ability. The architecture and the three approaches are compared in experiments to evaluate
the differences and prove the feasibility of the designs.

Preface

Before you lies my master thesis report submitted to obtain the degree of Master of Science
(MSc) in Computer Science. It concludes the master’s degree in Computer Science with a
specialisation in Cyber Security at the Delft University of Technology.

I would like to express my gratitude to a number of people, without whom this project could
not have been completed successfully. First of all, Jan van der Lubbe for his supervision
as university supervisor. Your meetings helped me to look from another perspective at my
work. I also want to thank Thomas Quillinan and Mathias Bjorkqvist from Thales for their
guidance and feedback during the project. Finally, I want to thank my family and friends for
their support in the last months. A special thanks to my sister, for proofreading parts of this
thesis report.

Bryan van Wijk
Delft, October 2019

Contents

Introduction 1
1.1 ProblemUseCase e 2
1.2 Research Question. e 3

1.21 Requirements. L 3
1.3 Contributions 4
1.4 ReportOutline e 4
Background 5
21 Key Management System 5
2.2 TopicConcept e 5
2.3 DomainConcept L 6
2.4 DataReplication 8

241 CAPTheorem e 8

242 Consistencylevels. 9
2.5 Conflict-free Replicated Data Types. o 9
Previous Work 1"
3.1 Decentralized Key Management. L 11
3.2 Distributed Group Key Management Service Architecture 12
3.3 Other Decentralized Group Key Management Schemes. 12

3.3.1 Hydra: A Decentralised Group Key Management 13

3.3.2 Dynamic Group Key Management Protocol. 14
Decentralized topic key management architecture 15
41 Context e e e 16
4.2 BasicConcept e e 17
4.3 KeyManagersCluster e 17

4.3.1 Initialization 18
4.4 Key Synchronization L 19

441 Partition Tolerance L 19

442 Conflict-free Replicated Key Set. 19
4.5 Key Retrieval Protocol 21
4.6 Decentralized Design Approaches forKeyRenewal 22

4.6.1 Single Master Approach L 22

4.6.2 MultiMaster Approach 24

4.6.3 Synchronized Key Creation 25
4.7 Confidentiality and Integrity between Key Managers. 26
Implementation and Analysis 29
5.1 Implementation Details. 29
5.2 Analysis of Implementation Aspects. Lo 30
53 Metric 31

viii Contents

54 UseCases v i i i e 32
5.5 Simulation Definition 32
551 Scenario1 e 33

5.5.2 Scenario2 e e 33

5.6 SimulationResults e 34
5.7 ReflectiononRequirements L e 40

6 Conclusion 41
6.1 Reflection onthe ResearchQuestion 41
6.2 DIiSCUSSION e e e e e e 43
6.3 Future Work. 44
List of Figures 47
List of Abbreviations 49

Bibliography 51

Introduction

In a military environment, tactical networks enable information sharing between all the dif-
ferent entities, such as the sensors, monitoring interfaces, ships, and other components in
the field. Communication using tactical networks leads to multiple challenges such as link
disruption, network partitioning, and limited resources. Another complicating factor is that
the network resources are shared between multiple groups of people that belong to different
organizations, and with different goals and policies. This multi-domain context requires the
information to be shared without the risk of leaking information to unauthorized entities.
Reliable information sharing is, however, important in a military environment to provide es-
sential intel during missions.

Cryptography algorithms are used to encrypt information with a key to remain in control
of when, where and to whom it is shared. All information is encrypted as individual objects
directly by the users who produced it such as sensors. Once the information is encrypted
it can be stored in a public location or shared over a public network, without compromising
confidentiality. This approach of directly securing the information instead of the connection
is called content-based encryption [27]. Access policies per group or organization can now
be enforced by only providing the keys that give access to information to authorized users.
This requires the keys to be generated, stored and distributed by a central key management
system independent of the users. In this manner, organizations retain control over access to
the information.

Different group key management architectures have been introduced in the literature. These
existing solutions are however not designed for tactical networks with their unreliable and
dynamic characteristics, in combination with shared resources. The problem is that if the
keys are distributed from a single location this leads to an easy single point of failure due to
network partitioning. Existing decentralized solutions either do not consider multi-domain
contexts with content-based encryption that requires keys to be managed in a central system
or did not consider the problem of key de-synchronization in a partitioned network. The key
de-synchronization problem arises if the network is split for some time, keys are changed on
both sides, and then the network is recombined. The key management architecture must be
able to handle such conflicts and reintegrate them as necessary.

1

2 1. Introduction

To the best of our knowledge, the first work that addresses the problem of key de-synchronization
is [15]. In this work, a distributed group key management service (GKMS) architecture is
proposed. They propose tackling the network partitioning problem and single point of failure
by connecting multiple GKMS instances. The connected instances form a network and keep
keys synchronized across all GKMS instances. The key de-synchronization problem is solved
by just creating a new version of all conflicting keys when the network is restored. However,
this is not ideal in terms of efficiency, because each new key has to be distributed again to
all users. The work also does not contain any experimentation of the proposed solution, this
would be necessary to evaluate the benefits and drawbacks, and to compare this solution
with other options. There are some parts of the architecture left open for interpretation,
such as: how to perform the synchronization of keys between instances?; How a master is
elected? Why was a single master architecture chosen and whether there are other possible
designs? In this thesis, we extend the ideas from the work done in [15] by proposing solu-
tions for these architectural decisions and proposing alternative designs.

In this thesis, we aim to design a decentralized key management architecture that is able
to handle conflicts between replicated key managers. Next to this, two different approaches
for the coordination of key creation compared to the single master architecture are proposed.
The implementation of this architecture and the different approaches is evaluated and dis-
cussed. In the next section, a concrete problem use case is presented where such an archi-
tecture would be useful.

1.1. Problem Use Case

We base our research on a military setting where information must be encrypted before it is
shared and stored. In this setting, network resources and data storage are shared between
multiple groups from different organizations. Encryption is therefore used to control who has
access to what information in a central system to be easily manageable and consistent. Due to
the challenging environment with frequent link failures and network partitioning, a single key
manager can expose a single point of failure. To give a concrete example: some navies require
that critical systems, including C4I (Command, Control, Communications, Computer, and
Intelligence) activities be supported in at least two physical locations onboard a ship. This
means that all critical activities must be available whenever there is a disconnect between
the compute services and sensors/actuators in different locations onboard. This means for
key management systems that they have to be distributed and replicated in more than one
physical location onboard. Network outage in this use case could result from accidental
or kinetic breakages. The expected duration of the outage in this use case ranges from
minutes to days. During this period the two disconnected partitions should be able to work
independently but also allow consolidation after the network is restored.

1.2. Research Question 3

1.2.

Research Question

The problem use case explains the need for a key management architecture that can perform

in a multi-domain environment. The key management architecture should be designed with-

out a single point of failure while maintaining a central system to ensure the manageability of
the keys. Additionally, the architecture needs to take into account the key de-synchronization
conflict.

Research Question: “How can a decentralized key management architecture for content-

based encryption be designed in a conflict-free way to tackle the key de-synchronization

problem that facilitates the needs of a multi-domain environment?”

This research question raises the following sub-questions:

“How to design a decentralized key management architecture for content-based encryp-
tion in a multi-domain environment?”

“How to prevent conflicts in a decentralized key management architecture to tackle the
key de-synchronization problem?”

“How can the performance of a decentralized key management architecture in handling
network partitioning be measured?”

1.2.1. Requirements
Based on the research question, a set of requirements has been created regarding the func-
tionality of the key management architecture:

1.

The keys should be stored in n locations and can be retrieved by users at all these
locations.

. The architecture should allow the delivery and generation of keys during a network

partitioning and recombine the keys as soon as the network is restored

. The key management should be independent of the users of the keys.
. Key rollovers should be requestable in all key managers.

. The key de-synchronization between key managers should be taken into account and

resolved automatically.

. Keys should be persistent and never get lost.

4 1. Introduction

1.3. Contributions

Our contributions are as follows:

1. We introduce a design to store keys in a decentralized way where conflicts are prevented
to solve the key de-synchronization problem.

2. We present three decentralized key management approaches providing different levels
of consistency and availability.

3. We provide an experimental comparison of the three approaches in terms of performance
to evaluate the differences and prove the feasibility of the designs.

1.4. Report Outline

The structure of this thesis report is composed in the following way. The next chapter dis-
cusses the background concepts that are used for the design of our solution. Chapter 3
focuses on existing solutions and related literature. In Chapter 4, the decentralized topic key
management architecture is presented. The basic idea is stated, followed by a detailed de-
scription of the different components. Chapter S provides an analysis of the proof-of-concept
implementation details and the simulation results of different test scenarios. Finally, in
Chapter 6 we discuss the research questions and provide an outlook for future work.

Background

In order to understand the decentralized key management architecture presented in this
thesis, it is necessary to present some background knowledge. In this chapter, background
knowledge on the used concepts and models of the key management system are provided.
Figure 2.1 presents a schematic representation of the important concepts in an example
environment of a single organization, four users and four topics.

2.1. Key Management System

The Key Management System (KMS) is responsible for storing, generating and renewing the
encryption keys. Users ask the KMS for the keys they need after which the KMS sends the
required keys if the user can prove it has the right permissions. Organizations remain in
charge of the data; that means they are in charge of when, how long, to what, and which
users have access to the data. This is accomplished by selectively handing out permissions
to users for periods in which they are allowed to access certain data. The goal of the KMS is
to make sure all authorized users can retrieve the latest keys. Users are, for example, sen-
sors producing data or monitoring interfaces consuming the data so they are not necessarily
actual people.

2.2. Topic Concept

Not all data is encrypted with the same key because this would mean a user could have ac-
cess to all data or not at all. The other extreme is using a different key for each data object
providing a finer granularity for access control, but it is not very scalable. Therefore, the
data users produce are separated into categories of related data called topics. In Figure 2.1,
the topics are indicated with a, b, c and d. A topic consists of related data about a subject
with the same access constraints. An example of two topics are the medicines patients use
and the address details of these patients. It is important information that should be shared
between a doctor and a pharmacy, but for example, the medicine delivery person should
only have access to the address details of a patient. All data belonging to the same topic is
encrypted with the same key called the Topic Key (TK). This means if a user has permission
for a certain period to a topic and he retrieves the key he can decrypt all data of this topic
created during this period. The shared key of a topic also changes from time to time. There

5

6 2. Background

are multiple reasons why a TK changes. The key needs to change when a new user is given
permission to a topic or the permission for a user expires. This is done to ensure a user is
not able to use the key to decrypt data from before it had access to the topic or after it has no
permission anymore. Keys are also changed in a regular interval to limit the damage when a
key is compromised. This means data from the same topic in the shared data space can be
encrypted with different versions of the TK. Therefore all old TKs are also stored in the case
authorized users need to access older data. All encrypted data is labeled with the version of
the TK used to encrypt it. This way the users can ask the right key from the KMS.

2.3. Domain Concept

A KMS hands out keys for only one domain, a domain is a superset of all topics. Every topic
belongs to exactly one domain. This means the keys for a topic can only be retrieved from one
KMS. As an example, in Figure 2.1 the KMS of Domain 1 can only hand out keys for Topic a
and Topic b. Keys for Topic ¢ and Topic d can only be retrieved from the KMS of Domain 2.

The circles with numbers in Figure 2.1 indicate a typical order of events to demonstrate
the concepts. User C can do a key request for Topic a and Topic b to KMS 1 (1). In this
request User C has to provide proof that it is allowed to obtain the keys of these Topics from
the KMS of this domain. User C can now use the key of Topic a to encrypt some data and
publish it in the shared data space (2). Another possibility is to retrieve a data object from
the shared data space that is encrypted with a Topic b key and use the key of Topic b to
decrypt it (3). User D can retrieve the just stored encrypted data from the shared data space
(5). For the decryption, User D has to obtain the correct key first from KMS 1 (4). The KMS
must have a high-availability, the keys regularly change, so the KMS should also be available
at all times. It must be resilient against disconnected networks/network partitioning. The
context of this research will be referred to as topic key management from now on.

2.3. Domain Concept 7

Y o s e h o s mm b ¢

i@ : Key for Topic i

: Data

G
: Encrypted Topic i data

KMS i : Key Management System of Domain i

b — m— m— e m— m— — — m— m— — —

% Shared data space

/1 Users from other organizations

% : Data from other topics and domains

Figure 2.1: Example illustration of the topic concept.

8 2. Background

2.4. Data Replication

Making this more abstract, key management can be seen as a service requiring a high avail-
ability of the data where the data are the keys. Providing services in a highly available manner
with high performance is a difficult problem which is well studied in different areas. An ap-
proach to achieve these requirements is by using replication techniques. Decentralized key
management requires eventually storing the keys in such a way they are accessible from
multiple instances. Copies of the same data (the keys) have to be kept in sync with each
other. In this section, data replication, in general, is discussed which provides insights into
the key storage system for a decentralized key management system.

Highly available data storage systems can broadly be categorized in a master-replica ar-
chitecture and multi master architecture [24]. In the traditional master-replica architecture
writes can only be processed by one instance: the master. Changes in the master are syn-
chronously or asynchronously applied to all replicas. The replicas are only used for load-
balanced data reading or as hot spares. There are no guarantees about the delay between
applying changes on the master and the propagation to the replicas. The replicas are always
behind and changes might be lost or incomplete when the master crashes. An automatic
fail-over mechanism can be used to promote a replica to a master when the master fails or
is unreachable due to a network partitioning.

In multi master architectures, all replicas are equal and can all be used for reading and writ-
ing. Changes of the data in a node are synchronously or asynchronously replicated across all
nodes. Implementation of this approach is more difficult and could decrease performance.
Changes cannot be replicated during network connection problems which could lead to con-
flicting changes in replicas. A possible solution to prevent conflicts is to only allow updates
if a majority of other replicas can be reached. An example of such a quorum based approach
is [12]. A disadvantage of a quorum based approach is the reduced availability during a net-
work partitioning as only the replicas in a majority part can make progress.

Optimistic replication techniques can be used to improve availability. Changes are allowed
to propagate to the other replicas in the background and disconnected replicas can make
progress on their own. The downside of this approach is the possible introduction of con-
flicts between replicas and the need to solve these conflicts. Important design considerations
of a replicated data storage are how and when the conflicts are resolved [7]. The best way to
solve conflicts depends on the meaning of data and is thus application-specific.

2.41. CAP Theorem

There are generally three properties that are desired when designing distributed services:
consistency, availability, and partition tolerance. According to the CAP theorem [10], not
all three of the properties can be guaranteed simultaneously. This means if you have two
nodes on opposites sides of a partition, allowing one node to update its state will make the
two nodes inconsistent violating the consistency property. Preserving consistency means the
nodes cannot individually make progress so during a partitioning they are unavailable violat-
ing the availability property. Communication is necessary to preserve both consistency and
availability, but this means partitions cannot happen. Only two of the three properties can
be guaranteed simultaneously. This does not mean the third property cannot be guaranteed
at all [3]. There can also a trade-off be made between the properties so there is a wide range of
different configurations of levels of the properties. During the design of the key management

2.5. Conflict-free Replicated Data Types 9

system, the specific requirements of the system should be taken into account to determine
and optimize the three properties.

In most real-world systems avoiding network partitions and disconnections is impossible.
Therefore a trade-off should be made between availability and consistency during a network
partitioning. Temporarily inconsistencies must be tolerated if availability cannot be sacri-
ficed. Allowing inconsistencies will improve the availability, but requires replicas to deal
with weaker notions of consistency. During a network partitioning, nodes on both sides keep
fulfilling queries by reading and writing data while possibly introducing inconsistencies.

2.4.2. Consistency Levels

The conflict between consistency, availability, and partition tolerance has led to a lot of re-
search to weaker levels of consistency. Three levels of consistency can be distinguished:
strong consistency, weak consistency, and eventual consistency [26]. Strong consistency
requires an update to be replicated to all replicas before it completes. This ensures any sub-
sequent read from any replica will return the updated value. Weak consistency means that
subsequent access is not guaranteed to return the updated value. The system thus contains
inconsistencies and does not provide any guarantees on when the system will be consistent
again. Eventual consistency is a specific form of weak consistency. It guarantees that when
no new updates are made eventually all replicas will converge to the same state. A real-world
example of an eventually consistent system is the domain name systems (DNS). A domain
name update is slowly distributed in a hierarchy and based on cache timeouts. Eventually,
all clients will see the update.

The advantage of eventual consistency over strong consistency is that every replica can make
progress on its own and does not have to wait when experiencing long network latencies.
Eventual consistency, however, makes reasoning about the state and development of the
complete system more difficult. A user might not be able to read the value it has just written,
because different replicas could be used for the read and write operation. Translating this
to the key management problem means information about a just required key renewal is not
present even though it was just requested. In [14] and [18], the authors propose a possible
solution to make programming with eventual consistency easier and provide more guaran-
tees by using vector logical clocks. The vector logical clocks are used to provide session
guarantees that are weaker than causal consistency but stronger than eventual consistency.
Causal consistency respects causal dependencies of updates and does not make an update
visible if some of the causal dependencies are not yet in the replica. This is a very useful
guarantee but it can cause significant performance overhead in partitioned systems.

2.5. Conflict-free Replicated Data Types

The Conflict-free replicated data type (CRDT) [22] is a concept to replicate data across mul-
tiple instances with eventual consistency. This data type is characterized by the possibility
to update the data in all instances independently, and concurrently, without coordination
between the replicas. This could be used to store the keys in key managers in a resilient
way, to solve the key de-synchronization problem. The concept of conflict-free replicated
data types was first introduced by Shapiro et al. [22] and more formally described in [9].
CRDTSs are a data structure that can be replicated in multiple locations and the replicas

10 2. Background

can be updated independently and concurrently without coordination. In traditional data
structures, conflicts between replicas are prevented by blocking updates if guarantees can-
not be satisfied or by implementing conflict resolution policies. The disadvantage of these
traditional solutions is the increased time overhead and, thus, longer response time for the
users. The idea of CRDTs is to optimistically allow all updates to go through, which possi-
bly can lead to inconsistencies between replicas. Consistency between replicas is eventually
achieved through merging the replicas. CRDTs ensure they converge to the same value, as
long as all updates are applied to each of them no matter their order. The goal is to avoid
coordination by ensuring actions taken independently by replicas can not conflict with each
other. A simple example of a replicated data type is a replicated counter that converges be-
cause its operations incrementing and decrementing commute. The special feature of this
data type is the fact that it is self-stabilizing after multiple replicas have diverged. All replicas
are guaranteed to eventually converge to a consistent state. This means all replicas could be
independently updated without synchronizing between the remote replicas beforehand. This
ensures better performance and scalability in distributed systems compared to a system that
first needs to synchronize before updates can be applied. Other systems promising eventual
consistency require consensus and/or roll-back on updates that conflict because they are
executed concurrently at different replicas. CRDTs provably converge to a correct common
state.

Although CRDTs provide some promising features it comes with some limitations on the
available data types and the operations possible. Next to some trivial data types, such as
registers and counters, there are some non-trivial CRDTs defined in literature [23]. Pre-
sented CRDTs designs are sets, graphs, and sequences. These can be used to construct
more complex data structures. Other data types can be constructed based on sets. The op-
erations add and remove on a set do not commute. Therefore a correct set cannot be a CRDT.
A CRDT set, therefore, approximates a set. There are different types of CRDT sets described.
One of these is the grow-only set. A Grow-Only Set is a set where the remove operation is
not permitted. A refinement of a Grow-Only Set is a Two-Phase Set (2P-Set). A 2P-Set is a
CRDT set where an element may be added and removed, however it can never be added again
after it is removed. It is constructed by combining two Grow-Only sets, one for adding and
the other for removing. Removing is only allowed if the element is in the set. The lookup
operation only returns the element if it is not in the removed set. There are more variations
possible with CRDTs sets but these examples show the potential of what is possible.

Previous Work

Different classes of key management have been researched in the past. The topic of this thesis
can best be classified as group key management. Group key management has been divided
into three main classes: centralized, decentralized and distributed approaches [17][20]. In
Section 3.1 we will discuss to which class the topic of this thesis belongs. In the rest of this
chapter, prior art regarding the topic of this thesis is discussed. Section 3.2 presents the key
management architecture presented in [15]. Our key management architecture is inspired
by this architecture. Section 3.3 discusses two group key management schemes that are
designed for a different purpose but still give some useful insights.

3.1. Decentralized Key Management

The architecture presented in this thesis can be regarded as a decentralized group key man-
agement scheme. The concept of decentralized schemes is to have multiple key managers
and let each key manager handle the key requests of a subgroup of all users [20]. An impor-
tant problem these schemes try to solve is the scalability of the number of users. Every time
a user joins or leaves a group, the group key should be rekeyed and distributed to all users
of that group. Some solutions, therefore, propose to divide a group into subgroups and use
an independent local group key for every subgroup, as discussed in [5][11]. This approach
is called the subgroup key approach, as opposed to the common group key approach, where
all group users use the same group key. The subgroup key approach reduces the impact of
rekeying to only a subset of all users of the group. The problem is, this solution requires de-
cryption and re-encryption of data transmitted from one subgroup to the others. It affects the
data path because the data has to be translated during transmission. This poses a security
risk in the environment of this thesis because the network resources are shared.

11

12 3. Previous Work

The decentralized architectures can be further divided into two sub-categories: membership-
driven and time-driven [5]. In membership-driven schemes, the group key is rekeyed after
each membership change. In time-driven schemes, the keys are updated after each prede-
fined time slot. Time-driven approaches would only allow users to join and leave at fixed
points in time or give users access to more data than possibly desirable. In the military con-
text presented earlier keys, however, have to change both after a predefined amount of time
and when the access policy changes.

3.2. Distributed Group Key Management Service Architecture

In 2018 F. Poltronieri et al. proposed a decentralized approach for group key management
services [15]. Their paper introduces a solution to enable secure and efficient information
sharing in multi-domain tactical networks.

They propose a decentralized approach for group key management distribution from a high
level of abstraction. Multiple key manager instances are connected to form a network and
keep the keys synchronized across all instances. The synchronization is managed with one
master instance that makes all decisions. The master key manager is elected collectively by
the key managers. When a group of key managers is disconnected from the master, a new
master is elected among these key managers automatically. This is a key feature to make
the system resilient against network partitioning. On a reconnection of two disconnected
network partitions with their own master key manager, the keys in the two master instances
must be realigned. The two conflicting master key managers perform the re-election of the
master. The new master generates and distributes a new version of all keys. All users can
contact any key manager to retrieve the keys, but if the key manager is not the master, it
delegates key changes to its master.

The authors mention that further research will entail the in-the-field experimentation of the
proposed solution to evaluate the benefits and drawbacks and to investigate possible im-
provements. The ideas can not directly be used because some parts of the architecture are
left open and no other design options are considered. It is, for example, unclear why for
a single master architecture was chosen and whether other setups are possible. It is also
unclear how key manager instances detect if they are connected and disconnected from the
other instances. It is important to understand that this solution does not elegantly solve the
key de-synchronization problem. After a network partitioning, for all the conflicting keys a
new version is created which means this new key has to be distributed to all users from each
partition. This is not ideal in terms of efficiency because the generation and distribution of
new keys takes time and possibly lead to more different keys instead of less. If during the
distribution of the new key the network is partitioned again in another configuration, the
new key cannot be distributed to all users and yet another key will be used by some of the
users.

3.3. Other Decentralized Group Key Management Schemes

Other group key management architectures are designed to collectively agree on a common
group key instead of the key distribution. These schemes focus on specific use cases, such as
wireless, ad hoc networks, and IoT [1][6][8][28]. In these papers specific requirements such
as computational limitations, mobility, storage, and bandwidth are important. They are less

3.3. Other Decentralized Group Key Management Schemes 13

relevant for this research, but can still give some insights on how to handle key management
in a decentralized way. There are multiple reasons why these other solutions are not satis-
fying the requirements of Section 1.2.1. These solutions do not consider the multi-domain
military context that is considered in this thesis. In this context, it is required to have a cen-
tral distribution system managing the keys instead of all users participating in generating
a new key together. This is required because the users themselves can not determine the
access policy of the keys. Secondly, the key de-synchronization problem is not considered
because the keys are used to encrypt the direct communication channel. They are not used
to encrypted stored information and decrypt it at a later point in time. This means the keys
are only used for a single communication session. Since direct communication is not possi-
ble between users from different parts of a network partitioning, keys never conflict. As soon
as a network partitioning is restored and users from previously different network partitions
start to communicate a new group communication session is set up with new keys.

These other decentralized group key management schemes are thus not directly a solution for
the topic of this thesis. The following two subsections describe two of these decentralized key
management solutions that use some useful concepts in the rekeying and synchronization
process which could be used for the design of our key management architecture.

3.3.1. Hydra: A Decentralised Group Key Management

The first scheme is described in Hydra: A decentralised group key management [16] where a
decentralized group key management scheme is presented. The key management scheme is
referred to as Hydra. Hydra is a scalable decentralised architecture to create and distribute
symmetric cryptographic keys to encrypt I[P-multicast messages. Instead of a central server
handing out these keys to all users the users are divided into smaller subgroups. Each sub-
group has its own key manager handing out keys. These key managers work independently
from each other after the initialization of a central group manager. Only key managers par-
ticipating in a group communication session keep the keys synchronized between them. The
main idea described in this work is to use a group communication system SPREAD, that
provides totally ordered delivery of messages between the key managers. This communica-
tion system must guarantee that if two key managers receive the same messages, they are
delivered in the same order. It also generates notifications when the network is partitioned,
and when it is recombined. The protocol to renew the keys is executed when the network
is recombined to ensure all members of a group are using the same key again. Each key
manager is equal and can start the rekeying process. Conflicts between key updates are
prevented because all key managers will receive these updates in the same order.

The problem with the key management scheme Hydra is that it is based on the concept of a
group communication session. Keys for a group communication session are only available
in a subgroup of all key managers and only while the group members are connected. The
key for a session is changed if the members change which means the data encrypted with
this key is connected to a session instead of the actual access policies which could change
over time. In a multi-domain military environment, this could lead to a problem as data is
not always shared during a single communication session. Data is generated and encrypted
independently of when and who will receive the encrypted data. This means keys should be
available in all key managers in case an authorized user asks for it.

14 3. Previous Work

3.3.2. Dynamic Group Key Management Protocol

The second scheme is the Baal protocol described in Dynamic Group Key Management Proto-
col [4]. Keys are handed out by multiple local key managers to a subgroup of all users. This
protocol is closely related to the underlying infrastructure as group members are grouped
per subgroup network. The key concept is to have one head key manager with the ability to
create local key managers. During the initialization, there is a single point of failure in the
form of the head key manager. After the initialization, all key managers can generate new
keys and distribute them. The new keys are multi-cast to the other key managers. It ensures
consistency between key managers by assigning a priority number to every key manager. The
changes from a key manager with the highest priority will be applied. The communication of
new keys between key managers works in rounds so all key managers will make the decision
based on the same information.

The communication between key managers in rounds prevents conflicts, however, it is ex-
pected to have an impact on the latency and thus the overall availability of the system. The
problem with this protocol is that it like the Hydra scheme is focused on group communica-
tion sessions instead of creating keys per topic. This protocol is also specific to the underlying
infrastructure and thus does not present a general solution.

Decentralized topic key management
architecture

In this chapter, we propose our key management architecture, the CRDT-based decentral-
ized key management architecture. The idea of the architecture is based on the scheme
introduced in [15], which is discussed in Section 3.2. The architecture is however built
around the concept of Conflict-free replicated data types to manage the replication of keys
between multiple key manager instances. Next to this, two different approaches for the key
creation coordination compared to the single master architecture from [15] are proposed.
These approaches are multi master and synchronized key renewal. This chapter is organized
as follows. First, the basic concepts of the architecture are discussed. Followed by the key
synchronization in Section 4.4 and the key retrieval protocol in Section 4.5. The last Section,
Section 4.6 describes the three key creation coordination approaches. First, the single mas-
ter approach is described. The following two subsections present the two other approaches:
multi master and synchronized key creation.

15

16 4. Decentralized topic key management architecture

4.1. Context

The key management architecture has to provide users an access point to retrieve symmetric
keys for encryption and decryption. The keys are rolled over when the keys are expired and
the key is requested. This means the key managers should be contacted regularly by all
users to access the keys. Users are in this case the entities that need a key for their opera-
tions. The key manager is in charge of verifying the request and send back a valid key. The
authentication and authorization of requests and the distribution of this information to all
key managers are out of scope for this research. They are assumed to be available because
decentralized access control mechanisms have been researched in the past, and can be used
for this [2].

At the basis, the architecture consists of multiple key managers located in physically dif-
ferent locations. The stored keys are kept in sync but the key managers work independently
of each other. From the perspective of a user, the system looks like a single system. Multiple
key managers complicate the process of key rollover compared to a single key manager due
to concurrent changes at different locations. Even if not all key managers are connected,
the individual key managers keep functioning independently. They provide older keys and
generate new ones as required. The advantage is that during a network partitioning when
some key managers are not reachable by a user there is the possibility that another key
manager is reachable. This improves the availability of the keys and the resilience against
network partitioning. However, as we have seen in Section 2.4.1, there is always a trade-off
between availability and consistency if a system has to be partition tolerant. This means that
keys created during a network partitioning can not be available in all key managers and thus
introduces some inconsistencies.

During a stable scenario, all keys stored in every key manager are kept in sync. This ensures
that it does not matter which key manager a user contacts, it will be able to get the requested
key from each connected key manager. In a connected network, there is no problem since the
key managers can just exchange messages to stay in sync with each other. During a network
partitioning, however, this is not possible. Users have to keep performing their operations
and new keys will have to be generated on both sides of the network partitioning. Keys for
the same topic will differentiate from each other on both sides of the network partition and
have to be recombined as soon as the network partitioning is healed. Therefore, we propose
to use conflict-free replicated data types to store the keys which prevents the keys on both
sides of the network partition to conflict. The proposal is designed in such a way that it does
not have a single point of failure. The number of concurrently used keys for the same topic
is considered and the authorized users are able to retrieve all past keys.

4.2. Basic Concept 17

4.2. Basic Concept

The basis of the architecture is simple, it consists of n redundant key managers where n > 1:

(KM, KM,, ..., KM,}

The subscripts indicates the id of the Key Manager (KM). The other entities in this architecture
are the m users:
{U, Uy, ... Up}

Where m > 1 is the total number of users. The users are the entities producing or consuming
encrypted data. The data is encrypted per topic as introduced in Section 2.2. A topic key is
defined as:

TKY, = (T1,V,VP,KEY)

TI is the ID of the topic this key belongs to. Each key contains a unique version string V
to be able to uniquely identify every key. The version in contrast to the key does not have
to be kept private. It is used to find the right key of encrypted data. The topic key consists
further of the Validity Period (VP) of the key, and the key itself KEY. To do the encryption,
the users ask for the latest key of a topic by sending a message to any of the key managers.
For the decryption, the users ask any of the key managers for the specific key used for the
encryption. The capabilities of all the key managers are the same. All are assumed to have
access to a method to generate new keys:

TKY, « generateNewKey(TI)
as well as a method to verify if a user is allowed to obtain the requested key:
isAuthorized(U,TK)

This method returns true if the user proved it has permission to obtain the topic key TK. The
key managers communicate with each other to synchronize their state:

S = {TKSl, TKSZ, }

The state consists of a set of Topic Key Sets (TKS). A topic key set is the set with all versions
of the keys for a topic and is defined as:

TKSp; = {TK}, TKZ, ..}

In Figure 4.1 an example with n = 4 key managers and m = 5 users is shown.

4.3. Key Managers Cluster

Key managers have to keep track of which key managers are currently reachable and which
are not. To accomplish this the key managers form a cluster with all key managers that are
connected. When a partition in the network occurs the unreachable nodes will be automati-
cally detected and marked as unreachable. If they do not come back up within a predefined
timeout they will be removed from the cluster. The key managers in the cluster monitor each
other by sending heartbeats to detect if a key manager is unreachable. As soon as a net-
work partitioning is healed the different clusters have to be recombined into a single cluster.
Therefore we detect if some other key managers get connected again and a new larger cluster
can be created. This is done by regularly testing if a missing key manager is reachable again.

18 4. Decentralized topic key management architecture

4.3.1. Initialization

At startup, a key manager first tries to join an already existing cluster of key managers. It
accomplishes this by sending a join request to all other key managers which IP addresses
are given to the key manager on startup. If there does not exist a cluster of key managers
yet or if they are not reachable a key manager will start a new cluster with initially only itself
as a member. Other key managers who are not a member of any cluster and are reachable
can now join this node. As long as all known key managers are not in the same cluster there
will be a regular check to see if they are reachable. If a key manager detects that another key
manager is reachable again it will send a join request containing its id and the number of
currently connected key managers. If a key manager receives such a message it will decide
deterministically based on this information whether it should leave its own cluster or wait
because the other node will leave its cluster and join.

% : Access control management system

O : Key Generator
g : Data
@ : Encrypted data

Figure 4.1: Example scenario of all entities involved in the decentralized key management architecture. In this scenario with four
key managers and five users.

4.4. Key Synchronization 19

4.4. Key Synchronization

Within each cluster of key managers, keys are synchronized using the gossip protocol de-
scribed in Amazon’s Dynamo system [7]. The current state of the cluster gossips randomly
within each cluster of key managers. Every key manager contacts every predefined time-
out another key manager and merge their state with all the keys. Merging is done with the
following algorithm:

Algorithm 1 Merging two states
procedure mergeState(S1, 52)

1:

2 result « {}

3 for each TKS; € S1 do

4: for each TKS; € S2 do

5 if i = j then

6 result « result U {TKS; UTKS;}

7: return result

4.4.1. Partition Tolerance

The key feature of the designed architecture is the fact that it is partition tolerant. This means
that every key manager instance can keep functioning even if the network connecting the
key managers and users is partitioned. During a network partitioning, the synchronization
of keys between the key managers from different partitions is not possible. This means that
when the network is restored, the state of the key managers from both sides of the partitioning
should be merged. If on both sides of the partition a new key is generated for the same topic,
the current key for a topic conflicts. Longer periods of a disconnected network means not
only the current key conflicts but all keys generated after the network problems started are
different.

To guarantee eventual consistency the usual data types require consensus and/or roll-
back on updates that conflict because they are executed concurrently at different replicas.
Conflict-free replicated data types are found to provide partition tolerant storage of data.
Conflict-free replicated data types (CRDTs) are specially defined data types preventing these
kind of conflicts [9][22]. CRDTs are used for the storage of keys such that changes on different
sides of a partitioning do not lead to conflicts when the network is restored.

4.4.2. Conflict-free Replicated Key Set

The set of keys per topic is defined as a CRDT, this means it is possible to add a key without
coordination between the different key managers. Every topic has an individual topic key set
(TKS) containing all topic keys for this topic. The topic key set is the data type that is repli-
cated in all key managers. A topic key set is a set with all versions of keys for a certain topic.
Conflicts are prevented because every topic key is uniquely identifiable. Since the topic key
set is defined as a set and all topic keys are unique, concurrently adding topic keys will not
lead to conflicts. Removing a topic key from the set is not allowed because removing a key
could lead to data loss as this would make decrypting data in the future impossible without
the key. The topic key sets will eventually converge to the same state in all key managers as
long as all updates are eventually applied to each of them. The current topic key is defined
as the latest created key and if there are multiple keys created at the same time the one with

20 4. Decentralized topic key management architecture

the lowest id of the key manager who created it is the current key. This means that as long
as all key managers receive all updates they will eventually have the same current key for
that topic. When the network is partitioned and the current keys have diverged, the current
topic key will converge as soon as all the updates to the topic key set are synchronized. The
only requirement, in this case, is all updates eventually are received by all key managers.
Every key manager stores all the topic key sets in a persistence data store to make sure all
keys persist after a restart and to prevent the loss of keys.

Figure 4.2 show a typical timeline of two replicas of the same topic key sets in two key
managers. Both key managers start with only key TK;-' in their topic key set of Topic 1. At
some point in time, the two topic key sets diverge because both key managers independently
generate a new key because TK;-" is expired. The topic key set of Key Manager 1 now con-
tains TK;-' and TK;-*. The topic key set of Key Manager 2 contains TK;-' and TK:-'. Until
both exchange the topic key sets they return a different key for the same topic. As soon as
the key managers exchange their state the topic key sets converge again to the same state.
The key sets of both key managers now contain three keys TK:-*, TK;-* and TK>-.

(TK]-") (TK|-'.TK|-*) {TK!-'. TK!?.TK-"})
R T ® x J

renewTopicKey

renewTopicKey
KM_2 -------emmemoooonees ® > @

—
{TK~'} (TK!-',. TK}") (TK)-', K2, TK>)

Figure 4.2: Timeline of two replicated topic key sets of Topic 1 in key managers KM, and KM,, illustrating the concept of CRDTs.

4.5. Key Retrieval Protocol 21

4.5. Key Retrieval Protocol

Users send requests for keys to any of the key managers. The key managers process these
according to Algorithm 2 to obtain the latest key. On arrival of a key request, the latest key
of the requested topic is retrieved from internal memory. If the key is not valid anymore
a new key has to be generated. The key manager verifies whether the requesting user is
authorized to obtain the requested key before sending the requested key to the user. The
protocol getNewKey(TI) to generate new keys is different per approach and these will be
explained in Section 4.6.

Algorithm 2 Receiving a get key request from user U;
1: upon receipt of getTopicKey(TI) do
2 TKr; < getlatestKey(TI)
3 if not isValid(TKr;) then
4: TKy; < getNewKey(TI)
5
6

if isAuthorized(U;, TKy;) then
Send TKy; to U;

Users can also ask the key management system for keys with a specific version V: Algorithm
3. This is for example used to decrypt data from the past. For older keys, the authorization of
the requesting user has to be checked for the time the key was valid. Keys are synchronized
between the key managers continuously and not only when a request for a certain topic
key is made. This ensures that at the time a key is requested the key can be delivered
directly without any contact between the key managers. There are only short gaps in which
key managers might not possess the requested key. Just after a new key is generated, the
key might still have to be replicated to the other key managers depending on the protocol.
Also, after the reconnection of two network partitions when they still have to synchronize to
make all keys available everywhere inconsistencies between the available keys can exist. If
a requested key is not available the request will timeout and the user has to decide whether
it repeats the request or requests another key.

Algorithm 3 Receiving a get specific key version request from user U;
1: upon receipt of getTopicKey(T1,V) do
2 TKY, « getKey(T1,V)
3 if isAuthorized(U;, TKY,) then
4 Send TKY, to U;

22 4. Decentralized topic key management architecture

4.6. Decentralized Design Approaches for Key Renewal

In the following subsections, three different approaches to design the key renewal protocol
in the decentralized topic key management architecture are proposed. The first is the single
master approach as described in [15]. The second is the multi master approach which just
allows all key managers to generate new keys. The third approach is the synchronized key
creation in which the key manager instances first synchronize between them who can create
anew key. In the next chapter, the result of an experimental comparison of these approaches
is presented.

4.6.1. Single Master Approach

In this approach, new keys are generated by a single master key manager instance per con-
nected cluster. It prevents multiple connected key managers from generating new keys con-
currently. The non-master key managers will have to wait for the master to respond with a
new key instead of just generating a new key themselves. This requires to elect or determine
a master within the cluster. This is defined as the oldest member currently in the cluster.
All key managers keep track of the age of the other key managers. As soon as the current
master key manager is marked as unreachable all key managers directly know who will be
the new master. A non-master key manager will only ask the master for a new key if the cur-
rent latest key it knows about has expired. When the network is partitioned a new master is
defined in the same way in each partition as the oldest member in these new clusters. This
means during a network partitioning multiple masters exists as long as some key managers
are disconnected from the others. On a reconnection of two disconnect partitions, the oldest
master of the two will be the only master again. As soon as a non-master key manager needs
a new topic key it sends a topic key request to the master. The master generates a new key
or returns a valid key if it already generated a new key for this topic. New keys are written to
a majority of other key managers before it is returned to a user to ensure keys are not lost ifa
single key manager crashes. Being the master key manager is only a role which means that
if the key manager is not available another key manager can easily take over. This limits the
time in which no new keys can be generated and thus improves the availability of the whole
system.

Algorithm 4 Generate new key - Single Master Approach

1: procedure getNewKey(TI)

2 Master_ID « getMasterID()

3 if OWN_ID = Master_ID then

4: TKY, « generateNewKey(TI)

5 else

6 TKY, <—askMasterForNewKey(TI)
7

Return TKY,

4.6. Decentralized Design Approaches for Key Renewal 23

In Figure 4.3 a typical scenario is shown for an example with four key managers and five

users. KM 3 is asked for the black topic (1) but the current black key it has is expired. KM 3
asks the master KM 1 for the black key (2). KM 1 generates a new key and returns this key
to KM 3 (3). In the last step, the new black topic key is returned to the user who requested
this key (4).
This approach limits the complexity and theoretically limits the number of keys generated
during normal operations in exchange for some reduced availability. The theoretical per-
formance in terms of messages is for this approach constant but the expected delay will be
higher compared to a centralized key management solution. The reason for this is the mes-
sage exchange required when a key is requested from a non-master key manager and it is
expired.

Domain 1 . KM; : Key Manager i

KM, KMy | ? {? : Topic key

MASTER v |
% @ Q g : Encrypted data
: g : Data

A control mar

Return new black key

Request black ke\

KM, i @
\:\Return new black key

[
|
|
|
|
(o
|
|
|
|
|
i
!
Us l % Q
-)
|
i

Figure 4.3: Example scenario of the Single master approach.
In this case with four key managers and five users. The current black topic key in KM, is expired and a new key
has to be requested from the leader KM, .

24 4. Decentralized topic key management architecture

4.6.2. Multi Master Approach

In this approach, all key managers are allowed to generate new keys. As soon as a key man-
ager receives a topic key request but the latest key is expired the key manager will generate
a new key. This happens independently without first contacting any other key manager.
Created keys are written to a majority of other key managers before it is returned to a user
to ensure keys are not lost if a single key manager crashes. The new key is communicated
to all other key managers with the earlier described gossip protocol after the key request
from the user is answered. The potential downside of this approach is that at the same time
another key manager could also be generating a new key for the same topic. This leads to a
short period in which two different topic keys are used concurrently by different users. This
will be solved as soon as the new keys are synchronized to all key managers because of how
the topic key set is defined. It however also requires to notify all users about the fact that
the current key is changed. The key is not expired yet so they will otherwise keep using the
just obtained key (assuming the users cache the keys) leading to more data encrypted with
different keys.

Using multiple keys for the same topic will not lead to any conflicts because of how the data
types are defined. It could, however, have a negative impact on the overall system. Users who
want to read data from the same topic but the data is generated by two different users who
used other keys will also need two different keys to decrypt the data. The user has to retrieve
two keys and potentially have to wait until both keys are available in all key managers. It
also requires extra storage, since as soon a key is used for some data, it has to be kept. Data
could otherwise be lost because it could not be decrypted anymore. During network parti-
tionings, it might be impossible to prevent different topic keys to be concurrently used for the
same topic. It is impossible to sync the topic keys between two different network partitions.
It is however desirable for these reasons to reduce the number of concurrently used keys for
the same topic as soon as possible. The advantage of the multi master approach is that it
will theoretically have the best performance in terms of latency for the users. There is only
a bit added latency due to writing the keys to a majority of other key managers during a key
request compared to a centralized key management solution without redundancy.

Algorithm 5 Generate new key - Multi Master Approach
1: procedure getNewKey(TI)
2: TKY, « generateNewKey(TI)
3. Return TKY,

4.6. Decentralized Design Approaches for Key Renewal 25

4.6.3. Synchronized Key Creation

Besides the approaches of a single and multi master the third considered approach is syn-
chronized key creation. The idea to synchronize between key managers before performing
an update comes from [16]. The authors in [16] use a group communication system that
provides totally ordered delivery of messages between key managers. For this thesis, we only
use synchronized creation of keys. Key managers first have to notify all other key managers
in the connected cluster about the fact that they want to renew a key. Only if the other key
managers acknowledge this the key manager will generate a new key. This protocol prevents
key managers connected to the same cluster to generate new keys at the same time and thus
improves on consistency compared to the multi master approach. It improves on availability
compared to the single master approach by not only allowing one key manager per connected
cluster but all of them to generate new keys. The disadvantage of this approach is the in-
creased complexity of generating new keys.

New keys can be obtained in any key manager with Algorithm 6, a key manager starts with
sending the message renewKeyRequest to all other key managers in the cluster. This mes-
sage contains the timestamp of the request and the id of the requesting key manager. The
other key managers can respond with an acknowledgment (renewAck) or wait with replying
because it is renewing the key of this topic itself. Only when a key manager has received
an acknowledgment from more than half of the key managers in the connected cluster it
will create a new key. As soon as a key manager has sent an acknowledgment it will not
send a renewKeyRequest itself till it has received a newly created key. This new key will be
received as soon as the key manager where the acknowledgment is sent to has generated a
new key and this key is distributed. This decision is based on whether it has an outstanding
request with an earlier timestamp itself to renew this topic key. If a key manager has an
earlier outstanding request it assumes it will be able to renew the topic key itself first so it
will not send an acknowledgment. This prevents the other key manager from also creating
a new redundant key at the same time. The request to renew a topic key will, in this case,
be answered by sending the newly created key to the requesting key manager. This makes
any outstanding request to renew a topic key unnecessary and the key manager can answer
the users who requested the topic key. Keys are written to a majority of other key managers
before they are returned to a user. This ensures keys are not lost if a single key manager
crashes.

Algorithm 6 Generate new key - Synchronized Approach

1: procedure getNewKey(T'I)

2 Send renewKeyRequest to all n key managers in the cluster
3 Wait for n/2 renewAck or reception of new key for topic T1

4 if new key for topic TI received then

5: TKY, «received key

6 if #renewAck > n/2 then

7 TKY, « generateNewKey(TI)

8

Return TKY,

26 4. Decentralized topic key management architecture

Messages between key managers could get lost or key managers could be disconnected
during this key renewal procedure. To prevent the system from getting stuck into waiting for
other key managers to create new keys a predefined timeout is used. If the timeout expires
any key manager can start the key renewal procedure itself again although they already send
an acknowledgment. It will have an impact on the response time to start the key renewal
process again but at least the long term availability is not affected. Two key managers could
send a renewKeyRequest at the same time to all key managers. There is only one key man-
ager who will send an acknowledgment in this case, the one that received a message with the
lowest timestamp or if they are equal the one with the lowest id.

The number of messages that have to be exchanged before a key can be renewed is for this
approach the highest. This will have an impact on the response time, especially in a situation
with a relatively high network delay. With n key managers the order of messages required is
0o(n).

Figure 4.4 illustrates the protocol with an example with four key managers and five users.
User U, requests the black topic key from KM;. KM; has to renew the key for this topic be-
cause it is expired. KMj; is only allowed to renew this key if the other connected key managers
have acknowledged this action. KM; sends a renewKeyRequest to all other key managers (2).
The other key managers respond with a renewAck message (3).

Domain 1 KM; : Key Manager i

C[? ? : Topic key

@: Encrypted data
g : Data

% : Access control management system

renewAck

| @
@ : Key Generator

renewAck reneL.pKeyRequest

renewKeyRequest @ I
!
L v !
KM3 |

7
[
|
|
|
%
|
|
|
|
|
|
i
| @
@/g) % @ reggmuk % @ iReturn new black key >
|
i
i
\
~

—
{renewl(é,g{equest | Requecs;>b|30k key

Figure 4.4: Example scenario of the Synchronized key creation.
In this case with four key managers and five users. KM, renews a topic key by first notifying the other key man-
agers.

4.7. Confidentiality and Integrity between Key Managers

Keys are important assets for cryptographic solutions, their exposure compromises the com-
plete security of a cryptographic solution [19]. The key managers possess all keys making
them an attractive target for attackers. By decentralizing the key management the attack

4.7. Confidentiality and Integrity between Key Managers 27

surface of the keys also increases. There are more locations with all the keys and only one
of them has to be compromised to obtain all keys. There exist many solutions such as hard-
ware security modules (HSMs) to protect the keys at all these locations. Another risk is the
synchronization of keys between the key managers. The communication of keys between key
managers has to be secure. The key managers verify each other’s identity using pre-installed
certificates. Transport Layer Security (TLS) with mutual authentication is used to securely
encrypt the communication between the key managers. The only way to compromise the
communication is by breaking the encryption algorithm or compromising a valid certificate
in any of the key managers. Mutual authentication means that both sides of the connection
verify the certificate of the other side. This is necessary to make sure keys are only received
from and sent to legitimate other key managers. It prevents an attacker from impersonating
key managers and stealing all cryptographic keys.

Implementation and Analysis

In Chapter 4, the design of our decentralized key management architecture where users can
retrieve topic keys is presented. Additionally, three different approaches for key renewal are
proposed. In this chapter, a validation of the requirements set in Section 1.2.1 is provided.
We also show the feasibility by creating a proof-of-concept implementation. We look at the
performance of the complete system as well as compare the different approaches with each
other. The proofs-of-concept are tested on a simplified simulation scenario of the problem
use case introduced in the introduction as well as a different more dynamic use case. This
chapter starts with the implementation details of the proof-of-concept. Then to be able to
compare the different approaches different metrics have to be defined. Finally, we briefly
discuss the results of the analysis of the decentralized key management architecture and
check whether it fulfills the requirements.

5.1. Implementation Details

We created a proof-of-concept implementation of the relevant elements of the architecture.
The focus of the architecture is on partition tolerance and not on the key generation and au-
thentication. Therefore only the relevant parts necessary to compare the different approaches
are implemented.

The architecture is implemented in the Java programming language (version 8). Building
everything from scratch would be out of scope for this project, therefore, the implementation
is based on AKKA' a framework to build resilient distributed applications. AKKA is a Java
framework to simplify the construction of concurrent and distributed applications. It pro-
vides tools to build highly concurrent, distributed and resilient message-driven applications.

For the execution of different test scenarios Docker? and Docker Compose® are used. Docker
is used to virtualize the operating system on which the key managers run. Docker Compose
provides some tools to configure and start multiple Docker containers at once and connect

"https://akka.io/
2https://www.docker.com/
3https://docs.docker.com/compose/

29

30 5. Implementation and Analysis

them with a virtual network. With Docker Compose we limit the resources to simulate more
realistic network delays. The key point of the architecture is to be able to handle situations
in which the network is partitioned and there is no communication possible between key
managers. To be able to simulate this during the test scenarios we used Blockade*. Block-
ade is a utility to simulate network partitionings and failures in distributed applications. It
manipulates the virtual network created by Docker Compose in any possible partitioning.

5.2. Analysis of Implementation Aspects

The architecture uses several concepts that are open for interpretation or assumed to be
implemented. These concepts could have an impact on the simulation results presented in
the next section. They can also be adjusted to improve the performance but this will depend
on external factors such as the network conditions, the expected number of partitions and
the maximum acceptable delay. For the experiments, we keep all conditions the same to
have a fair comparison.

The gossip interval can, for example, be defined such that keys are synchronized between
key managers more quickly. A smaller interval however also means an increased load on the
network as more messages have to be exchanged between the instances.

Another variable is the timeout before a key manager is marked as unreachable. A lower
timeout might lead to more false positives of key managers who were just slow in responding
but are not disconnected. A higher timeout makes the system less responsive to failures and
could lead to increased delays.

The results are influenced by the validity period of keys because a short validity time means
the keys have to be renewed more often. Renewing a key is slower than just returning the
latest key from storage especially with the single master and synchronized approach because
communication between the key managers is required. It also influences the total number
of keys created during the simulation. For every experiment, we keep the key validity period
the same to be able to compare the different approaches. The key validity period is assumed
to always be longer than the time it takes from creating the key to delivering it to a user
otherwise the delivered key cannot be used.

“4https://blockade.readthedocs.io/

5.3. Metric 31

5.3. Metric

Evaluating the performance and resilience of the key management architecture is important
to be able to compare the trade-offs between availability and consistency of the different ap-
proaches. The results can also be used to prove the fulfillment of the requirements.

To come up with some metric we looked at how the performance is measured in decentralized
distributed data systems. In [21] a framework is presented to compare the availability of dif-
ferent distributed data management systems. The availability is affected by two conditions:
Number of requests made by clients concurrently and failures impacting the network connec-
tivity or availability of data items. Input parameters used in [21] to evaluate the availability
are single vs multi master, partitioning, number of replicas, requests per second, number
of data items and the recovery specification. The metrics to measure the experienced avail-
ability are time until the failure is being masked, the amount of failed requests due to data
unavailability, the latency of requests and accessibility. This framework is built upon the
concepts of [25]. The idea from this work is to improve resilience by increasing the frequency
and variety of failures, accomplished by manually introducing failures regularly to simulate
real-world failures. The goal is to practice the response and identifying the results. The idea
is that by having these failures all the time in the background they blend in without any
impact. The concept is to have “monkeys” (autonomous agents) introduce different kinds of
failures. They can, for example, introduce network partitions such that no communication
is possible between partition, terminate some random instances or delay messages.

In [13] the effectiveness of different data replication solutions is evaluated using the following
metrics: (1) the average system throughput, defined as the average number of transactions
that are completed per unit of time. (2) the average transaction response time which depends
on if the requested data is already available in a replica or it has to wait until it is available.
(3) the average storage space.

Based on the ideas described in this section, we can define three metrics to test the dif-
ferences between different approaches in our decentralized key management architecture:

1. Response time of key requests
2. Number of different keys for the same topic
3. Time until all key managers are synchronized after a network partitioning

The first metric: Response time of key requests indicates the availability of the topic keys.
It is measured by the time it takes to retrieve a topic key from the perspective of a user. This
response time is measured from requesting a key until a response is received. The average
response time per key manager is taken as a measurement to have an overall indication of
how long users have to wait for a key. When a user is disconnected from any key manager
the response time will be at least as long as the duration of the disconnection. Low response
time is preferred as this means users have to wait for a shorter period before they receive a
key and can continue the encryption or decryption. This should both be measured under
different failure conditions and with a varying number of replicated key managers.

The second metric: Number of different keys for the same topic measures the consis-
tency. It is tested by counting the number of different keys for the same topic under different
conditions. It will be measured through the number of keys for the same topic that are cre-
ated in the complete system over a certain period. In the ideal case, all key managers have

32 5. Implementation and Analysis

the same view of existing keys all the time. The total number of keys created in period t is
then equal to the duration of period t divided by the validity period of keys. There will never
be a new key created if there is still a valid key somewhere in the system. This is however in
a real system not possible as we have to deal with network partitioning. It is impossible to
use the same keys in all key managers when the network is partitioned referring to the CAP
Theorem [10]. Ensuring consistency all the time is not possible and some inconsistencies
have to be accepted. During a network partitioning on both sides of the partitioning new
keys have to be created to continue the encryption of new data.

The third metric: Time until all key managers are synchronized after a network par-
titioning indicates how resilient the architecture is. The time it takes to restore from the
network partitioning and time until all keys in every key manager are in sync again after a
partitioning is measured. This is an important metric as it will directly impact the availability
and consistency if it takes a long time before the keys are synced again to all key managers.

5.4. Use Cases

In Section 1.1, we introduced the problem use case this thesis is based on. It presents a
real-world use case where the proposed key management architecture would be useful. We
will refer to this use case as the Naval “Two Island” problem. To test whether the proposed
architecture presents a general solution that could also be used in other use cases, a second
use case is introduced in this section. Both these use cases are used to base the simulation
scenarios presented in the next section on.

The second use case is the intra-vehicle information sharing use case. Vehicles for mili-
tary and civil crisis management are being connected to increase interoperability, informa-
tion sharing and to enhance situational awareness. More specifically unmanned drones are
connected to armored personnel carriers to share information such as video, locations, and
other sensor data. In this potentially adversarial situation, information must be kept confi-
dential. Key management is therefore required to be able to encrypt and decrypt the data.
The network in this use case is frequently changing what makes the key lifecycle difficult to
manage. A central key management system is therefore undesirable. The key management
system must ensure keys to remain available for the entire lifetime of the information.

5.5. Simulation Definition

Experimenting with the proposed approaches of the key management architecture in a real
environment is not possible. In a real environment, there is a lack of ability to control the
environment and obtain reproducible results. It is also difficult to keep track of what events
occurred when. Therefore we defined two simplified simulation scenarios based on the two
use cases described in the previous section. In the simulations, a virtual network is set up
with the key managers. This network is changed in a specific order to simulate network
disconnects. During the experiments, users are simulated by constantly doing requests to
a specific key manager. This triggers the key managers to create new keys if the keys are
expired. If possible, the key managers will synchronize the keys to the other key managers.
For the first simulations, we used a setup with four key managers indicated as KM 1, KM 2,
KM 3, and KM 4. We choose to test with four key managers although we could have used any
number of key managers as long as there are enough resources available to run all docker

5.5. Simulation Definition 33

containers.

The different elapsed times are measured with the Java System.currentTimeMillis() method
and extracted from the logs from the Docker instances running the key managers. In the next
two subsections, the specifications of the two simulation scenarios are described.

5.5.1. Scenario 1

This scenario is based on the Naval “Two Island” problem use case described in Section 1.1.
In this use case, the expected time between network partitionings is in the range of days or
weeks and the expected duration ranges from minutes to days. During the simulation sce-
nario, there will be only one network partitioning that takes fifty seconds, this is long enough
for the system to stabilize. This means the key managers in both partitions are functioning
such that there are two independent key management systems. The keys in the key managers
in each partitioning are synced with each other. During the complete simulation, we send
every five seconds a key request for the same topic to all key managers. The keys are valid
for five seconds, this means new keys have to be generated for every request. Unless another
key manager generated a new key and this key already arrived at the other key managers.
This simulates the fact that users will request a new key as soon as the key they currently
have is expired. We chose five seconds as we determined experimentally that this is long
enough for a new key to be generated and arrive at the user when the network is connected.
A longer period was not chosen as this would increase the total duration of the experiment
and thus the number of repetitions we could do within the duration of this project.

During this simulation, the network partitioning is created after fifty seconds such that there
are first some keys created and distributed between the key managers during a connected sit-
uation before the partitioning. The network is partitioned such that half of the key managers
are in one partitioning and the other half are in the other partition. This could have been any
other configuration but this nicely shows how after a network partitioning two independent
systems are created. The duration of network partitioning is defined as fifty seconds. This
is enough time to stabilize after the partitioning occurred and it shows how some new keys
are generated independently on both sides of the partitioning. After another 125 seconds,
the simulation is stopped which makes the total duration of the simulation 225 seconds. We
will refer to this scenario as Scenario 1.

5.5.2. Scenario 2

This scenario is based on the Intra-vehicle Information Sharing use case described earlier.
In this use case, partitionings occur in the range of minutes and last for seconds or minutes.
During the simulation, the network configuration is changed every 15 seconds. We choose
15 seconds as this is in most cases just enough for the system to reestablish a cluster with
the still connected key managers. If the frequency of network connection changes would be
higher most of the key managers are constantly operating on their own as they do not have
enough time to stabilize. At the start, all key managers are connected. After every next 15
seconds, the key managers that are connected with each other are randomly selected. This is
done by randomly picking a number of partitions and randomly selecting which key managers
are connected both from a uniform distribution. In this way, a highly dynamic environment is
simulated where the connections between key managers are constantly changing. The total
duration of the complete simulation is the same as in the previous scenario so the simulation
is stopped after 225 seconds. This means the network connections are changed 14 times.

34 5. Implementation and Analysis

The keys are again valid for five seconds, and every five seconds we send a key request for the
same topic to all key managers. A uniform random delay of at most thousand milliseconds
is added to each request. This is done to make the simulation more realistic and to give the
system some time to synchronize the keys. The same network partition configurations are
used in every run of the simulations to make a fair comparison between the results. We will
refer to this scenario as Scenario 2.

5.6. Simulation Results

Figure 5.1 shows the number of keys created per key manager as well as the total number
of keys visible from the perspective of every key manager for one run of Scenario 1. For this
experiment, four key managers are used indicated as KM 1, KM 2, KM 3 and KM 4. The three
plots of the different approaches verify the correct behavior during the network partitioning
and after the network is restored. In the multi master approach, all key managers are creating
new keys. The graph shows that some are creating more keys as others what can be explained
by the fact that keys are synchronized between them. If one key manager has already created
a new key that was distributed to another key manager before a new request came in this
key manager is not required to create a new key. For the single master approach, the graph
shows that only during the network partitioning two key managers are creating new keys.
As soon as all key managers are connected again there is only one of them continuing with
creating new keys. The first vertical line indicates the creation of the partitioning of KM 1
and KM 2 in one partition and KM 3 and KM 4 in the other partition. The second vertical
line indicates the moment when the network is restored. The last vertical line is the moment
when all the keys are synchronized again in all key managers.

In the period between restoring the network and the moment all keys are available in all
key managers, there is a relatively large increase of visible keys in all key managers. This is
due to the keys created in the other partition of the network that could not be synchronized
before. For the single master approach, we see that after the network is restored there are
only new keys created by KM 1 as expected. During the network partitioning, there are
only keys created by KM 1 and KM 3, the masters in each partition. In the synchronized
approach keys are created in every key manager but not concurrently. It shows nicely that
the key managers alternate in creating new keys. Comparing the total number of keys in the
three approaches reveals a difference between the multi master approach (69) and the other
two approaches, synchronized key creation (42) and single master (50).

5.6. Simulation Results 35

Multi master, Number of keys visible per key manager Multi master, Keys created per key manager

80 45
70 40
35
250 i
2 © 30
<50 g
0
> 225
Zao 2
; - KM1 ©20
£30 —— KM2 g o7
g g15
E —— KM 3 E
20 —— KM 4 10 ,...r"'
— Insync >
10 Network partitioned 5
fffff Network restored _.-,
0 0-
0 50000 100000 150000 200000 0 50000 100000 150000 200000
-> time (ms) -> time (ms)

(a) Multi Master

Single master, Number of keys visible per key manager Single master, Keys created per key manager

80 45
—& KM 1
70{ —@— KM2 40
—k— KM 3
60| —— KM4 L
% — Insync %
250 Network partitioned [30
o
o | Network restored "
) =25
<40 g
° 520
230 3 ‘
€ €15
> S
%20 z
10
10 5
o g o P w SN
0 50000 100000 150000 200000 0 50000 100000 150000 200000
-> time (ms) -> time (ms)
(b) Single Master
80 Synchronized, Number of keys visible per key manager 5 Synchronized, Keys created per key manager
—& KM 1
70 —o— KM2 40
—k— KM 3
60 - KM 4 - 35
% —— Insync %
a., Network partitioned g30
> o
L O e Network restored "
) 225
[}
L40 ~
-
g 8 20
£30 3
£ €15
2 S
Z20 =
10 r‘_'_q—-—i—
10 5 4—, ——60—0—0—0—
4 |
0 ol o e P
0 50000 100000 150000 200000 0 50000 100000 150000 200000

-> time (ms) -> time (ms)

(c) Synchronized key creation

Figure 5.1: Keys created per node during Scenario 1.

The single master and synchronized approach are, thus, able to reduce the number of
created keys significantly. The advantage of fewer keys is greater consistency over the whole
system and between the users. There is, however, a trade-off for this consistency: Figure 5.2
shows the average response time for the three approaches during Scenario 1. This response
time is measured from requesting a key until a response was received. The test scenario is
executed ten times with eight users for every approach. The average response time from the
perspective of every user is taken as a measurement. The average response time for the multi

36 5. Implementation and Analysis

master approach is 292 ms, single master 742 ms, and the synchronized approach 1530 ms.
Lower response times to retrieve a key are preferred as this means users are blocked for a
shorter period before encryption or decryption can continue. The increased response time for
the synchronized approach is significant and can be explained by the fact that key managers
have to wait on all other key managers to respond before a new key is created. In the single
master approach, a key manager only has to wait for one other key manager to create a
new key before it can respond to the user. The lowest response time is for the multi master
approach as expected since there is no waiting required before new keys can be created.

Response time for the three approaches scenario 1 Time until all key managers are synchronized scenario 1
2500 4 -T- 6000 o
))
5000
£ 2000 { %
CD
E i
=1 € 4000 q
L o
@ 1500 4 ‘I' £
S 2
& >
2 & 3000 1
o 1000 4 = -
3 El
5 -1 @ 2000
z £
< 5001 g = J_
T 10001 1

T T T T T T
Multi master Single Master Synchronized Multi master Single Master Synchronized

Figure 5.2: Average response time of the three approaches in Figure 5.3: Time until all key managers are synchronized in Sce-
Scenario 1. nario 1.

In Figure 5.3, the time it took for all key managers to be synchronized after the network
was restored in Scenario 1 is plotted. The scenario is executed ten times for every approach.
The time it took to synchronize after a network partitioning is determined based on the logs.
All keys created before the network is restored are noted. The key managers are assumed
to be synchronized when all these keys are visible in every key manager. The difference in
results for the different approaches is not significant. This is expected as communication
takes some time but the key synchronization settings are the same for all approaches. The
multi master approach contains a greater number of different keys and thus more data to
synchronize between key managers but since the total duration of the simulation is low this
had no impact. For future research, it would be interesting to look at the differences after
longer simulation periods.

Up to now, we looked at the results for the different approaches applied to Scenario 1. We
hypothesize that the results of the different approaches will differ depending on the use case.
In Figure 5.4 the average response time for the three approaches during Scenario 2 are pre-
sented. The response time is measured in the same way as for Scenario 1. The average
response time for the multi master approach is 484 ms, single master 8272 ms, and the
synchronized approach 8187 ms. The interesting part to notice is that the single master
approach and synchronized approach have almost the same average response time during
Scenario 2. During Scenario 1 the average response time for the synchronized approach was
almost twice the average response time for the single master approach. This difference can
be explained by the dynamic network behavior in Scenario 2; this will result in a constantly
changing master, which leads to higher response times. It takes some time to determine the
new leader while for the synchronized approach a key manager can directly start the process
to renew a topic key on its own. Also for this scenario, the multi master approach has the

5.6. Simulation Results

37

best performance in terms of response time.

Average response time (ms)

Response time for the three approaches scenario 2

30000

25000 -

20000 -

15000

10000

5000 1

[e]

[e]

o

[1

- 1 -

Time until synchronized (ms)

Time until all key managers are synchronized scenario 2

80000 -

70000 A

60000 -

50000 A

40000 -

30000 1

20000 -

T

1

o

1

1

10000 -

T T T T T T
Multi master Single Master Synchronized Multi master Single Master Synchronized

Figure 5.5: Time until all key managers are synchronized in Sce-
nario 2.

Figure 5.4: Average response time of the three approaches in
Scenario 2.

Again the average response time is not the only relevant metric when comparing the three
approaches. In Figure 5.6 the number of keys used per approach and scenario are plotted.
The average number of keys for Scenario 1 are 84, 44 and 46 for multi master, single master
and synchronized respectively. For Scenario 2 the average number of keys are 257, 112 and
100 in the same order. The difference between the single master approach and synchronized
approach is not very large for both scenarios, but based on the result on the number of keys,
the single master approach is the best option for Scenario 1. For Scenario 2 the synchronized
approach is the better option with these criteria.

Selecting the best option considering both the average response time as well as the number
of keys will depend on the required consistency versus the required availability. The multi
master approach provides a lower response time but also introduces more inconsistencies by
using more different keys for the same topic. The single master approach is a simple manner
to introduce some synchronization between the key managers, but might be too simple for
the highly dynamic network behavior from Scenario 2. The synchronized approach is more
complex, but might be a better fit for use cases like simulated in Scenario 2. It keeps the
number of keys low and does introduce the lowest delay compared to the other approaches.

Number of keys per approach Scenario 1 Number of keys per approach Scenario 2

=

2754

80 1

70 1

Number of keys

60

50 1

40 -

=

[e]

==}
o

Multi master

Figure 5.6: The number of keys used per scenario and approach.

Single Master

Synchronized

100 A
250 A
90 A

Number of keys

2254

200 A

175 A

150

1254

100 A

-

=

Multi master

Single Master

Synchronized

38 5. Implementation and Analysis

We also examined the relationship between the number of key managers deployed to the
total number of keys used and the average response time for the two scenarios. In Figure
5.7 the results are plotted. The scenarios are the same as before but this time we have a
fixed number of ten users attempting to obtain a new key every five seconds. The users are
individual instances in the simulated network. They start by asking a random key manager
for keys and switch to the next key manager if that request fails. For Scenario 1, half of the
users are connected to half of the available key managers during the network partitioning.
This means that when there is only one key manager, half of the users are disconnected from
every key manager. This explains the relatively large average response time for the first mea-
surement in the graph of Scenario 1. Half of the users have to wait for the complete duration
of the partitioning before they receive a new key. With at least two key managers there is at
least one key manager in each partition during Scenario 1. The large peak for the single key
manager is not visible in Scenario 2 because the network partitioning took less time, so they
had to wait less for new keys.

For Scenario 2, the ten users and a varying number of key managers are partitioned in a
random number of network partitions every 15 seconds. This means that during the simula-
tion there could be users disconnected from every key manager, but the chance this happens
decreases with the increasing number of key managers. To which users key managers were
connected during the simulation was random. This explains the non-decreasing response
time for the increased number of key managers. The key managers were not evenly dis-
tributed over the partitions with users. In an actual real-world scenario, the key managers
would be placed at strategic physical locations, but the network can be partitioned in any
way. This also means that in a real situation the key managers will not be evenly distributed
over all network partitions.

For both scenarios, the multi master approach has again the largest number of keys. The
difference for Scenario 2 is, however, the increase in the number of keys when the number
of key managers increases. For Scenario 1, it also increases slightly, but not as much as for
Scenario 2. The constantly changing network configuration in Scenario 2 is causing slower
synchronization between the key managers. New keys are, thus, not available as quickly in
the other key managers as during optimal circumstances. Key managers then have to gen-
erate a new key instead of using one that was previously generated by another key manager.
This leads to an increase in the total number of keys during Scenario 2, with an increasing
number of key managers.

Another interesting result is the increase in the response time for all approaches during Sce-
nario 1 for more than four key managers. Scenario 1 is the scenario with just one partition
for a longer period. If the key managers are placed strategically in the network the availability
can be guaranteed with just two key managers, one in each partition. The increased response
time is caused by the increased overhead of more key managers. All the key managers have
to form a cluster and synchronize the keys to all other key managers. The synchronized and
single master approach also have an increased delay due to more communication before keys
can be created.

5.6. Simulation Results 39

Scenario 1 Scenario 2
35000 —&— multi 35000 —&— multi
— single — single
= 30000 —— synchronized = 30000 —»— synchronized
E £
GJ [
£ 25000 £ 25000
=1 =
2 a
¢ 20000 ¢ 20000
o [=}
Q Q
a a
215000 215000
] [}
j=2] (=
o o
© 10000 © 10000
> >
< <
5000 5000
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of key managers Number of key managers
120 Scenario 1 120 Scenario 2
@ multi @ multi 0
110 ®- single 1101 -m- single . A
- synchronized - synchronized
5100 <100 . ®
Q @
I} a . -
2 90 . ° 2 9 e’
woy e 1
> .. g > ad
~ - X
s 80 ; 5
@ @
o 70 a
£ €
= 2 ..
£ 60 £ N
B B ¢
3 5
[= LB
50 -
40
30 30
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of key managers Number of key managers

Figure 5.7: Total number of keys and average response time for the two scenarios.

Concluding the analysis of the three approaches, we have shown there is a trade-off be-
tween availability and consistency within the three approaches. For partition tolerant key
management more consistency means there are fewer different keys used during the same
period. The availability is expressed in terms of the response time from the key managers
on key requests. A better availability means a lower average response time. The multi mas-
ter approach has the best availability for both scenarios. It, however, performed the worst
in terms of consistency in both scenarios. The single master approach performed worse in
terms of availability compared to the multi master approach but offers better consistency.
The same holds for the synchronized approach. The difference between the synchronized
and single master approach became clear with the second scenario. The combination of the
response time and the number of keys used for Scenario 1 is better with the single master
approach. During Scenario 2, the performance was better for the synchronized approach.
This difference can be explained by the more dynamic behavior of the synchronized approach.
During Scenario 2 the network is constantly changing, which means having a static single
master is less beneficial. During Scenario 1 there is just one network partitioning which
takes a longer period giving the system more time to adapt and continue. The synchronized
approach has the advantage that every key manager can create new keys directly if everyone
in the connected cluster agrees. Finally, we looked at the performance with a varying number
of key managers. We started with a single key manager which mimics the current central-
ized situation. Especially in Scenario 1, it showed clearly that the long waiting time for users
in the other partition as the key manager. These users had to wait for the partitioning to
be healed before they could receive a new key. In Scenario 2, this is less clear because the
duration of the partitioning is shorter.

40

5. Implementation and Analysis

5.7. Reflection on Requirements
This section presents how the requirements from Section 1.2.1 are fulfilled by the function-

ality of the key management architecture.

1.

The keys should be stored in n locations and can be retrieved by users at all these loca-
tions:

The presented architecture consists of n replicated key managers which all store all
keys. They provide all the same functionality to the user. The keys created in one
location are synchronized to the other key managers as soon as possible.

The architecture should allow the delivery and generation of keys during a network par-
titioning and recombine the keys as soon as the network is restored:

All key managers can work independently. This means, during a network partitioning
keys can be created and delivered even if the individual key managers are not connected.
Section 4.4 provides the protocol to recombine the keys when the network is restored.

. The key management should be independent of the users of the keys:

The key management architecture is designed such that the management of the keys
is accomplished by a separate infrastructure independent of the users. The users have
no influence on the generation and delivery of the keys. This ensures access policies
can easily be enforced and adapted.

. Key rollovers should be requestable in all key managers:

This requirement is fulfilled by allowing all key managers to generate new keys. In the
synchronized and single master approach this is more complicated as it first requires
some synchronization but eventually they are all able to generate new keys.

The key de-synchronization between key managers should be taken into account and
resolved automatically:

The de-synchronization between key managers is solved by using Conflict-free replicated
data types. These data types prevent conflicts between the key managers and allow
concurrently generation of new keys.

. There should be no single point of failure during normal operations:

All components of the architecture are available in at least two locations. The keys are
stored in n locations and the initialization and formation of the cluster of key managers
are accomplished without any central component.

. Keys should be persistent and never get lost:

The definition of the data type of the topic key set does only allow adding keys and not
removing. This automatically ensures keys are not lost. After generating the keys they
are stored in persistent storage of the key managers before they are sent to the users.

Conclusion

Key management is a critical link in sharing data between all entities in a military environ-
ment in a secure way. In tactical networks, key management becomes challenging due to
link disruption and network partitioning. In this thesis, we researched the field of key man-
agement architectures in this environment. We presented a decentralized key management
architecture based on Conflict-free replicated data types. By using Conflict-free replicated
data types conflicts between the key managers are prevented and the availability of keys is
ensured.

In this chapter, we reflect on the research questions and discuss how the research goal is
achieved by answering the research question. Lastly, we discuss improvements and possible
future work is identified.

6.1. Reflection on the Research Question

The main research question presented in Section 1.2, is as follows:

“How can a decentralized key management architecture for content-based encryption be de-
signed in a conflict-free way to tackle the key de-synchronization problem that facilitates the
needs of a multi-domain environment?”

We broke the research question down into 3 sub-questions:

* “How to design a decentralized key management architecture for content-based encryp-
tion in a multi-domain environment?”

* “How to prevent conflicts in a decentralized key management architecture to tackle the
key de-synchronization problem?”

* “How can the performance of a decentralized key management architecture in handling
network partitioning be measured?”

For the remainder of this subsection, we will answer the research sub-questions which to-
gether answer the main research question. To answer the first sub-question, we looked at the
different types of key management schemes described in the literature. They are categorized

41

42 6. Conclusion

as centralized, decentralized and distributed key management schemes. A decentralized key
management scheme is the most appropriate in a multi-domain environment where infor-
mation must be shared over a tactical network. A decentralized architecture ensures the
access policy can be managed by an organization and decouples the key management from
the users. To the best of our knowledge, the only work that proposes a key management
architecture addressing a multi-domain environment and network partitioning is in the pa-
per of F. Poltronieri et al. [15]. The architecture consists of multiple key managers located at
physically different locations. The keys stored in the key managers are redundantly stored in
every key manager. The key managers can generate and deliver existing keys independently
which ensures the resilience against network partitioning. New keys are generated at a single
master key manager and when the network is partitioned a new master in each partition is
elected. However, the solution from [15] lacked considering any alternative designs and did
not perform any experimentation to evaluate the benefits and drawbacks. We extended the
work from [15] by proposing the use of Conflict-free replicated data types. Additionally, two
different approaches for the synchronization of key creation compared to the single master
architecture from [15] are proposed. These approaches are multi master (Section 4.6.2) and
synchronized key creation (Section 4.6.3). In the multi master approach, there is not only
one key manager allowed to generate new keys but all key managers can generate new keys
independently. In the synchronized approach any key manager is allowed to generate new
keys but they first have to receive a confirmation from the other key managers before doing so.

The second sub-question is answered in Chapter 4 by defining the storage of keys as CRDT.
The topic keys and the topic key set are defined as CRDTs to prevent conflicts when they
change in different key managers. The architecture needs to be partition tolerant, this means
we have to deal with a trade-off between consistency and availability as we cannot have both.
For the decentralized key management architecture, this means the keys used for the same
topic cannot always be the same in the complete system. When new keys have to be available
at all times during a network partitioning new keys are generated on both sides. The defini-
tion of the topic key set makes the storage of keys to be defined as a conflict-free replicated
data type. This data type is specifically defined to prevent conflicts when updated simulta-
neously on different replicas. It avoids the need for coordination by ensuring actions taken
independently by replicas can not conflict with each other. All replicas converge to the same
value as long as all updates are applied to each of them eventually no matter the order in
which they are applied. This ensures that during a network partitioning all key managers
can keep creating new keys for every topic. During network reconnection, keys created on
both sides which would otherwise conflict can now without any problems be merged such
that all key managers are in the same state again. In this way, the key de-synchronization
problem is solved.

The last sub-question is answered in Chapter 5, we measured three different metrics during
the experiments. The first one is consistency in terms of the total number of keys used. The
second is the availability measured by the average response time from a user requesting a
key to receiving a new key. This is important as it says something about the availability of
the key managers. The last metric we looked at is the time it takes before all keys in every
key manager are in sync again after a partitioning. The approaches are tested on a specific
scenario based on the use case introduced in the Introduction as well as on a scenario based
on a more dynamic use case introduced in Section 5.4.

6.2. Discussion 43

In the first scenario, one network partitioning occurs between the key managers during the
simulation. To evaluate if the presented architecture can also be used in a more dynamic
scenario the second scenario is introduced with a constantly changing network environment.
Key managers and users are connected and disconnected constantly. The results made clear
there is a trade-off between availability and consistency within the three approaches. More
consistency means there are fewer different keys used during the same period. The availabil-
ity is expressed in terms of the response time of key requests. A better availability means a
lower average response time. The multi master approach has relatively the best availability
for both scenarios. It, however, performed the worst in terms of consistency in both sce-
narios. The single master approach performed worse in terms of availability compared to
the multi master approach but offers better consistency. The same holds for the synchro-
nized approach. There is a difference however between the synchronized and single master
approach. The single master approach performed better during Scenario 1 while the synchro-
nized approach performed better during Scenario 2. The results of the experiments provide
a basis to start further research on to optimize a decentralized key management solution for
a specific use case. The experiments can also be repeated with other solutions to compare
them against the solutions proposed in this research.

In conclusion, the CRDT-based decentralized key management architecture is able to per-
form in a multi-domain environment and solves the key de-synchronization problem. It is
shown that our solution answers the research question.

6.2. Discussion

In this thesis, we extended the work done in [15] in which from a more zoomed out level of
abstraction an architecture is proposed to do decentralized key management. In this thesis,
we proposed to use conflict-free replicated data types to store the keys in a decentralized
way. Next to this, two other approaches on the key creation coordination are proposed and
we did an experimental comparison of the three approaches. We have shown how conflict-
free replicated data types which are designed to provide eventually consistent data storage
can be used in a key management architecture.

The architecture proposed in Section 4 is designed as a general solution for different prob-
lems. Based on this architecture a proof-of-concept implementation to identify the differences
between the different approaches is constructed. There are several optimizations possible for
our naive implementations that can improve the presented results. These results, first of all,
are depending on the following variables which could be tweaked to improve the performance.

* Gossip interval, the interval with which the new keys are synchronized with the other
key managers.

* Write consistency when creating a new key can be varied from writing only to the local
storage, to a majority or all key managers.

* The number of key managers used.
* The number of requests for keys made to the key managers.
* The distribution of the key requests.

* The validity period of the keys.

44 6. Conclusion

* The timeout before a key manager is marked as unavailable and it is not considered as
a member of the cluster anymore.

* Initial delay before creating a new cluster of key managers.
* The timeout before a request times out and a new key manager is tried to obtain a key.

Optimization of these variables was not done during this thesis since optimizing the solution
for a specific use case was not the goal of this research. Optimization and selection of the most
appropriate approach could be the subject of future research extending the work presented in
this research. It would also be interesting to look at a more realistic environment by running
the different key managers on physical different devices. This would also mean the network
disruptions could be simulated by just unplugging a cable instead of simulating the network
partitioning.

6.3. Future Work

It is always important to determine what is feasible to achieve within the available time and
define the scope of a thesis. In this section directions interesting to investigate further are
discussed.

The first direction might be to look at existing implementations of decentralized database
systems such as Cassandra which could provide data synchronization and conflict resolu-
tion strategies for the keys. The advantage of using an existing database system is that
they are well tested and already used in production environments. It would be interesting to
investigate if these solutions provide better or the same performance compared to the proof-
of-concept implementation used in this research. For this research is only chosen to look
at a simple implementation of CRDTs to keep the protocol simple and easy to test with. In
extending work this could, therefore, be a good direction to go in.

Building a synchronized protocol on an asynchronous distributed system is not a trivial
task. For this research, we achieved some synchronization in the synchronized key creation
approach by using our own implementation. As proof-of-concept implementation only used
during the experiments this works well. In the future, it might be worth it to experiment
with other well-known synchronization algorithms to achieve even better results. There can
also be looked at other forms of synchronization between distributed nodes such as using a
token-based algorithm.

The same holds for other algorithms to elect the master in the single master approach. It
could be interesting to compare other election algorithms to the one used during this re-
search.

It can be investigated how the IP addresses of the key managers which are static from startup
can be made dynamic. These addresses are used by the key managers to contact each other
and form a cluster. The advantage of having dynamic addresses of key mangers is that not all
key managers have to be redeployed if just one of the addresses of the key managers changes.
This would be especially useful in highly dynamic environments where it might be needed to
scale up and down the number of key managers.

The scalability is something else that could be investigated further. It should be verified
if the proposed protocols also work if there are tens or hundreds of key managers. A larger

6.3. Future Work 45

number of key managers could give problems due to the rapidly increasing number of mes-
sages that have to be exchanged between the key managers. A solution could be to build
a tree-like structure of key managers. This limits the number of messages that have to be
exchanged by all key managers. The key managers would then only send new keys to its
direct neighbors who distribute the keys further.

We have seen there are multiple directions in which this research could be extended in the
future. Combining different well studied research directions makes decentralized topic key
management an exciting topic to work on.

2.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

List of Figures

Example illustration of the topic concept. 7
Example scenario of all entities involved in the architecture. 18
Timeline of two replicated topickey sets. 20
Example scenario of the Single master approach. 23
Example scenario of the Synchronized key creation. 26
Keys created per node during Scenario 1. 35
Average response time of the three approaches in Scenario 1. 36
Time until all key managers are synchronized in Scenario 1. 36
Average response time of the three approaches in Scenario2. 37
Time until all key managers are synchronized in Scenario 2. 37
The number of keys used per scenario and approach. 37
Total number of keys and average response time for the two scenarios. 39

47

List of Abbreviations

CRDT Conflict-free replicated data type. 9, 19, 41
GKMS group key management service. 1

KM Key Manager. 17

KMS Key Management System. 5

TK Topic Key. 5

TKS Topic Key Sets. 17

VP Validity Period. 17

49

[1]

(2]

[3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

Bibliography

Mohammed Riyadh Abdmeziem and Francois Charoy. Fault-tolerant and scalable key
management protocol for iot-based collaborative groups. In Xiaodong Lin, Ali Ghorbani,
Kui Ren, Sencun Zhu, and Aiqing Zhang, editors, Security and Privacy in Communication
Networks, pages 320-338, Cham, 2018. Springer International Publishing. ISBN 978-
3-319-78816-6.

J. Arakawa and K. Sasada. A decentralized access control mechanism using authoriza-
tion certificate for distributed file systems. pages 148-153, 01 2011. ISBN 978-1-4577-
0884-8.

Eric Brewer. Cap twelve years later: How the “rules” have changed.(2012). URL:
http://www. infoq. com/articles/cap-twelve-yearslater-how-the-rules-have-changed,
2012.

Ghassan Chaddoud, Isabelle Chrisment, and André Schaff. Dynamic group key manage-
ment protocol. In Vladimir I. Gorodetski, Victor A. Skormin, and Leonard J. Popyack,
editors, Information Assurance in Computer Networks, pages 251-262, Berlin, Heidel-
berg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45116-7.

Y. Challal, A. Bouabdallah, and H. Seba. A taxonomy of group key management proto-
cols: Issues and solutions. In Proceedings - Wec 05: Fourth World Enformatika Confer-
ence, volume 6, pages 5-17, 2005. Cited By :5.

H. Dahshan and J. Irvine. A robust and redundant key management for mobile ad hoc
networks. In 2009 6th International Symposium on Wireless Communication Systems,
pages 433-437, Sep. 2009. doi: 10.1109/ISWCS.2009.5285290.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst.
Rev., 41(6):205-220, October 2007. ISSN 0163-5980. doi: 10.1145/1323293.1294281.
URL http://doi.acm.org/10.1145/1323293.1294281.

Orhan Ermi, Erif Bahtiyar, Emin Anarm, and M. Ufuk alayan. A secure and efficient
group key agreement approach for mobile ad hoc networks. Ad Hoc Netw., 67(C):24-39,
December 2017. ISSN 1570-8705. doi: 10.1016/j.adhoc.2017.10.003. URL https:
//doi.org/10.1016/73.adhoc.2017.10.003.

Fabio Gadducci, Hernan Melgratti, and Christian Roldan. On the semantics and im-
plementation of replicated data types. Science of Computer Programming, 167:91 —
113, 2018. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2018.06.003. URL
http://www.sciencedirect.com/science/article/pii/S0167642318302429.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51-59, June 2002.

51

http://doi.acm.org/10.1145/1323293.1294281
https://doi.org/10.1016/j.adhoc.2017.10.003
https://doi.org/10.1016/j.adhoc.2017.10.003
http://www.sciencedirect.com/science/article/pii/S0167642318302429

52

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

ISSN 0163-5700. doi: 10.1145/564585.564601. URL http://doi.acm.org/10.1145/
564585.564601.

Junbeom Hur, Youngjoo Shin, and Hyunsoo Yoon. Decentralized group key man-
agement for dynamic networks using proxy cryptography. In Proceedings of the 3rd
ACM Workshop on QoS and Security for Wireless and Mobile Networks, Q2SWinet '07,
pages 123-129, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-806-0. doi:
10.1145/1298239.1298261. URL http://doi.acm.org/10.1145/1298239.1298261.

A. Lakshman and P. Malik. Cassandra - a decentralized structured storage system. In
Operating Systems Review (ACM), volume 44, pages 35-40, 2010. Cited By :1159.

P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman. A survey of data repli-
cation techniques for mobile ad hoc network databases. VLDB Journal, 17(5):1143-1164,
2008. Cited By :74.

K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou: Replicated database ser-
vices for world-wide applications. In Proceedings of the 7th Workshop on ACM SIGOPS
European Workshop: Systems Support for Worldwide Applications, EW 1996, pages 275-
280, 1996. Cited By :31.

F. Poltronieri, L. Campioni, R. Lenzi, A. Morelli, N. Suri, and M. Tortonesi. Secure multi-
domain information sharing in tactical networks. In MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), pages 1-6, Oct 2018. doi: 10.1109/MILCOM.
2018.8599693.

S. Rafaeli and D. Hutchison. Hydra: a decentralised group key management. In Pro-
ceedings. Eleventh IEEE International Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 62-67, June 2002. doi: 10.1109/ENABL.2002.
1029990.

Sandro Rafaeli and David Hutchison. A survey of key management for secure group
communication. ACM Comput. Surv., 35(3):309-329, September 2003. ISSN 0360-0300.
doi: 10.1145/937503.937506. URL http://doi.acm.org/10.1145/937503.937506.

Mohammad Roohitavaf, Jung-Sang Ahn, Woon-Hak Kang, Kun Ren, Gene Zhang, Sami
Ben-Romdhane, and Sandeep S. Kulkarni. Session guarantees with raft and hybrid log-
ical clocks. In Proceedings of the 20th International Conference on Distributed Computing
and Networking, ICDCN ’19, pages 100-109, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6094-4. doi: 10.1145/3288599.3288619. URL http://doi.acm.org/10.
1145/3288599.3288619.

Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., New York, NY, USA, 1995. ISBN 0-471-11709-9.

R. Seetha and R. Saravanan. A survey on group key management schemes. Cybern. Inf.
Technol., 15(3):3-25, September 2015. ISSN 1314-4081. doi: 10.1515/cait-2015-0038.
URL https://doi.org/10.1515/cait-2015-0038.

Daniel Seybold, Christopher B. Hauser, Simon Volpert, and Jérg Domaschka. Gib-
bon: An availability evaluation framework for distributed databases. In Hervé

http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1298239.1298261
http://doi.acm.org/10.1145/937503.937506
http://doi.acm.org/10.1145/3288599.3288619
http://doi.acm.org/10.1145/3288599.3288619
https://doi.org/10.1515/cait-2015-0038

Bibliography 53

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Panetto, Christophe Debruyne, Walid Gaaloul, Mike Papazoglou, Adrian Paschke, Clau-
dio Agostino Ardagna, and Robert Meersman, editors, On the Move to Meaningful Inter-
net Systems. OTM 2017 Conferences, pages 31-49, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-69459-7.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. Conflict-free replicated data types,
volume 6976 LNCS of Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2011.

Marc Shapiro, Nuno M. Preguica, Carlos Baquero, and Marek Zawirski. A comprehensive
study of convergent and commutative replicated data types. 2011.

R. Shrestha. High availability & performance of database in the cloud: Traditional
master-slave replication versus modern cluster-based solutions. In CLOSER 2017 - Pro-
ceedings of the 7th International Conference on Cloud Computing and Services Science,
pages 385-392, 2017. Cited By :1.

Ariel Tseitlin. The antifragile organization. Commun. ACM, 56(8):40-44, 2013.

Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40-44, January 2009. ISSN
0001-0782. doi: 10.1145/1435417.1435432. URL http://doi.acm.org/10.1145/
1435417.1435432.

K. Wrona and S. Oudkerk. Content-based protection and release architecture for future
nato networks. In MILCOM 2013 - 2013 IEEE Military Communications Conference, pages
206-213, Nov 2013. doi: 10.1109/MILCOM.2013.44.

Chang N. Zhang and Zheng Li. An efficient group key management scheme for secure
multicast with multimedia applications. In Sokratis K. Katsikas, Stefanos Gritzalis,
and Javier Lopez, editors, Public Key Infrastructure, pages 364-378, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg. ISBN 978-3-540-25980-0.

http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432

	Introduction
	Problem Use Case
	Research Question
	Requirements

	Contributions
	Report Outline

	Background
	Key Management System
	Topic Concept
	Domain Concept
	Data Replication
	CAP Theorem
	Consistency Levels

	Conflict-free Replicated Data Types

	Previous Work
	Decentralized Key Management
	Distributed Group Key Management Service Architecture
	Other Decentralized Group Key Management Schemes
	Hydra: A Decentralised Group Key Management
	Dynamic Group Key Management Protocol

	Decentralized topic key management architecture
	Context
	Basic Concept
	Key Managers Cluster
	Initialization

	Key Synchronization
	Partition Tolerance
	Conflict-free Replicated Key Set

	Key Retrieval Protocol
	Decentralized Design Approaches for Key Renewal
	Single Master Approach
	Multi Master Approach
	Synchronized Key Creation

	Confidentiality and Integrity between Key Managers

	Implementation and Analysis
	Implementation Details
	Analysis of Implementation Aspects
	Metric
	Use Cases
	Simulation Definition
	Scenario 1
	Scenario 2

	Simulation Results
	Reflection on Requirements

	Conclusion
	Reflection on the Research Question
	Discussion
	Future Work

	List of Figures
	List of Abbreviations
	Bibliography

