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A B S T R A C T

Network hierarchy describes the relative arrangement of network elements and reflects its fun-
damental structure. We propose a multi-dimensional topology-based method for quantifying and
comparing the extent to which different Public Transport Networks (PTNs) exhibit a hierarchical
structure. The proposed method considers the uneven distribution of node importance with
different definitions (e.g., degree centrality and betweenness centrality) in a PTN, the clustering
of nodes and the node connection patterns. We apply the developed method on 63 high-capacity
PTNs worldwide using General Transit Feed Specification (GTFS) data. In addition to global
indicators, we use the goodness-of-fit between the probability density function of local indicators
and a skew-normal distribution to quantify the extent of PTN hierarchy. Results show that the
scale-free network structure and preferential attachment do not vary much across PTNs. In
contrast, stop accessibility and traffic intermediacy vary considerably across PTNs as reflected by
the closeness centrality and betweenness centrality distributions. Lastly, metro systems exhibit
a more hierarchical structure than their tram and Bus Rapid Transit (BRT) counterparts. This
work makes a first step towards a better mapping and comparison of different PTNs, which can
assist academics and practitioners in better (re)designing and planning the PTNs of the future.

1. Introduction

Hierarchy is an arrangement based on the relative status of elements of an organisation, a society or a system. Investigating
hierarchy is one of the fundamental approaches to capturing the structure and dynamics of complex systems, such as neural
networks [1], social networks [2], airline networks [3] and, in particular, Public Transport Networks (PTNs) [4]. Public transport
planners are interested in understanding the PTN hierarchy, which is a first step towards a better assessment to improve service
design, performance, scalability and cost-efficiency [5,6]. This is of paramount importance for high-capacity PTNs, which undertake
the majority of people’s mobility in a city with an exclusive right of way, including metro, tram and Bus Rapid Transit (BRT).

Multiple definitions and methods appear in the previous works that endeavour to identify the PTN hierarchy, which correspond-
ingly shows the complexity emerging from the extensive relationships among the elements of the public transport system. One
typical PTN hierarchy identification method relies on the attributes of a transportation network pertaining to mode, infrastructure
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function and trip distance. Gallotti and Barthelemy [7] and Aleta et al. [8] aggregate all the lines of the same mode (i.e., bus,
metro and tram) in a superlayer to study the interdependency among transport modes in a city. Similarly, the PTN hierarchy can
be distinguished according to the infrastructure function determined by the service mode, purpose and distance. Referring to two
different trip purposes, urban and interurban systems can be regarded as two interconnected subsystems in a PTN [4]. Following the
same stream, a multi-level PTN can be divided into (inter)regional (train) level, agglomeration (metro/light rail) level and urban
(tram) level [9]. Given the hierarchy from the infrastructure function, Gao et al. [10] further rank the links in a PTN using the
residential trip distance. All the above-mentioned studies assume that each public transport mode constitutes a level in the network
hierarchy as opposed to directly measuring and quantifying the degree of hierarchy.

An alternative and emerging approach pertains to the topological features of PTNs. A possible interpretation of a hierarchical
etwork arises with a combination of power-law degree distribution in various scale-free topologies and a high degree of
lustering [11,12]. Whereas scale-free networks are rare in reality [13], many commonly observed topological properties of networks
ollow a skew-normal distribution [14]. To unfold the topological characteristics of PTNs, the essential features of PTNs are
stablished by meaningful graph representations, including infrastructure and service dimensions. These two most deployed types
f graph representations are called the L-space topology and P-space topology, respectively [15]. In L-space, each node denotes a
top and a link is formed between two stops if these two stops are consecutively connected by an infrastructure segment [16–18]. In
-space, each node also denotes a stop while nodes are connected if at least one common route traverses them [16,17,19]. Generally,
he scale-free structure is prevailing in L-space public transport systems while the small-world property is more visible in P-space
han in L-space [20,21].

Most literature associates network hierarchy only with the distribution of degree centrality, which can merely explain the local
rganisation of spatial importance by node connection. However, other relevant local network indicators may reflect different node
mportance aspects. For instance, betweenness centrality can manifest the ability of node forming connections as a bridge [17,22,23]
nd is frequently used to identify critical links in a network [24–26]. Therefore, the distribution of betweenness centrality can
escribe the hierarchy of intermediacy – and therefore potential traversing and interchanging passenger flows – in a network.
ikewise, the distribution of travel time impedance [27] or closeness centrality [28] can characterise the difficulty of reaching a node
rom others in a network, representing the hierarchy of accessibility. Other studies aim to utilise global indicators for determining
he importance of a cluster of nodes as nodes at the same hierarchy level have denser inner-level interactions and sparse inter-
evel interactions with nodes at different hierarchy levels [29]. Indicators, such as eigenvector centrality [30], modularity [31],
lique [32], assortativity [33] and PageRank [34], are hence proposed to seek the strongly connected node clusters in the PTN.

Recent studies applied data-driven methods to uncover the PTN hierarchy, benefiting from the ever-enriching passenger flow
ata sources. Bassolas et al. [35] utilise census and location history data to study the hierarchical organisation of urban mobility
nd its connection with key urban livability indicators. Yap et al. [36] use the extensively equipped Automatic Fare Collection data
i.e., smart card data) to identify and cluster significant transfer hubs in a PTN. Gallotti et al. [37] unravel that cities with a low flow
ierarchy have more direct connections between central and marginal areas using check-ins data. There are also approaches that
use data-driven and topology-based methods to simultaneously consider the dynamics of passengers and the intrinsic structure of
PTN. Wang et al. [31] identify a multi-level time-dependent PTN hierarchy using passenger transfer flow data as link weight and
odularity indicator. Moreover, an integrated topology- and flow-based hierarchy metric is developed to quantify the importance

f stations in the PTN [38].
None of the aforementioned studies has proposed a PTN hierarchy quantification method which is independent of the demand

ata and capable of capturing various aspects of element importance. To fill in such a research gap, we propose a multi-dimensional
opology-based unimodal PTN hierarchy quantification method to capture various aspects of importance in a PTN. This method
an reveal the network hierarchy embedded in the planning rather than in the usage of the system and can enable cross-system
omparison for which demand data are often unavailable. This method considers not only the scale-free network topology and
lustering of nodes as one critical definition of network hierarchy but also other unique essential features of PTN, including
ccessibility and intermediacy. We further apply the proposed method to 63 unimodal PTNs worldwide with several public transport
odes to compare the cross-system network hierarchy. The specific contributions of our paper are as follows:

• A definition of PTN hierarchy based on multiple aspects of node importance.
• A unimodal PTN hierarchy quantification method from 6 essential topological indicators, which directly allows for a

cross-system comparison.
• An analysis of PTN hierarchies with 63 cities worldwide and a variety of public transport modes.

The remainder of this study is structured as follows. We present our multi-dimensional topology-based PTN hierarchy quantifi-
ation and comparison method in Section 2. Then, Section 3 introduces the case studies of 63 urban regions worldwide. Lastly, we
nd our paper with conclusions and further research avenues in Section 4.

. Method

In this section, we start by describing the definition of PTN hierarchy in this study (Section 2.1). Following data collection and
rocessing steps, we construct the graph representation based on the acquired data as detailed in Section 2.2. Next, we quantify the
TN hierarchy through several topological indicators on the node scale and network scale in Sections 2.3 and 2.4. To enable the
omparison of hierarchy across PTNs, the probability distribution of node-based indicators is used to fit a skew-normal distribution.
ventually, the multi-dimension topology-based hierarchy quantification is encapsulated in a radar chart to compare PTN hierarchies
2

cross different cities worldwide in Section 2.5. A summary of the proposed methodology is illustrated in Fig. 1.
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Fig. 1. Overall workflow for quantifying and comparing PTN hierarchy using multi-dimensional topology-based indicators.

.1. PTN hierarchy

We conceptualise the PTN hierarchy as a network property that defines the relative organisation of elements by importance.
pecifically, this organisation leads to a high heterogeneity of PTN element importance, and the number of elements within each
evel of importance should gradually descend with the importance ascending. Moreover, the element importance can be reflected
y multiple aspects, proxying the various fundamental properties of a PTN. In this study, we consider the scale-free topology, node
ccessibility, node intermediacy, node clusters, high degree of clustering and the node connection pattern. Therefore, each element
mportance can shed light on the PTN hierarchy, forming one out of several dimensions of the PTN hierarchy.

.2. PTN representation

We choose directed and weighted L-space for representing the physical PTN networks 𝐺 = (𝑉 ,𝐸,𝑊 ). The node set 𝑉 denotes
tops (i.e., bus stops or rail stations), and the link set 𝐸 ⊆ 𝑉 × 𝑉 corresponds to the connection between two adjacent stops on
n infrastructure segment. In addition, there is at most one link between nodes. Further enrichment of the graph considers the
eight of a link 𝑤𝑖𝑗 which is specified as the impedance of connections represented by the average travel time 𝑡𝑖𝑗 or the efficiency

of connections which is regarded in this work as the inverse of the average travel time 1
𝑡𝑖𝑗

. Finally, 𝐴 is the adjacency matrix of
the weighted graph 𝐺 in which each entry 𝑎𝑖𝑗 in the matrix equals 𝑤𝑖𝑗 if there is a link connecting between two nodes 𝑖, 𝑗 ∈ 𝑉 and
equals zero otherwise.

2.3. Topological indicators on node scale

2.3.1. Degree centrality
The first used topological indicator is the degree centrality, which represents the number of links a node connects to. It is one

of the most basic indicators in network topology, describing node connectivity [39]. In a directed network, the node degree equals
the sum of both in-degree and out-degree. Although degree centrality is on the node scale, the degree distribution of a PTN can
characterise the network structure. If the degree distribution follows a skew-normal or power-law distribution, it implies a scale-
free network topology. We normalise the degree centrality by dividing the maximum possible degree of a network to exclude the
differences in the number of nodes among various PTNs. The normalised degree centrality is thus calculated as follows:

𝑘′𝑖 =
∑

𝑗∈𝑉 𝑎𝑖𝑗 +
∑

𝑗∈𝑉 𝑎𝑗𝑖
𝑘𝑚𝑎𝑥

∀𝑖 ∈ 𝑉 , (1)

here 𝑘′𝑖 is the normalised degree of node 𝑖 while 𝑘𝑚𝑎𝑥 is the maximum degree of the network.

.3.2. Closeness centrality
The closeness centrality originates from the concept that two nodes in a network are topologically close if they share a direct

onnection whereas they are distant if tied indirectly through many intermediate nodes in a topological fashion [40]. The topological
istance between two nodes can therefore be defined as the number of links on the shortest path 𝑑𝑖𝑗 between them. More formally,
he shortest path minimises the sum of the weights of its constituent links from a set of paths 𝑃𝑖𝑗 ∈ 𝑉 × 𝑉 × ⋯ × 𝑉 that contains

all possible sequences of adjacent nodes between two nodes 𝑖 and 𝑗. As a result, a more central node can interact with many
network elements via only a few links, i.e., having a short average path length and better accessibility. In this sense, the closeness
3
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centrality 𝑐𝑖 of node 𝑖 can be defined as the reciprocal of its average shortest path length. In this work, we consider the impedance
of connections between two nodes as the weight to compute closeness centrality. The average shortest path results in a normalised
closeness centrality and enables the comparison of nodes in PTNs of different sizes:

𝑐′𝑖 =
𝑁 − 1

∑

𝑖≠𝑗∈𝑉 𝑑𝑖𝑗
∀𝑖 ∈ 𝑉 , (2)

where 𝑐′𝑖 is the normalised closeness centrality of node 𝑖 and 𝑁 is the number of nodes in the network. The distribution of node
closeness centrality over the entire PTN can reflect the hierarchy of network accessibility and efficiency as it captures the passed
intermediate stops and induced travel costs.

2.3.3. Betweenness centrality
Unlike degree centrality and closeness centrality which try to quantify the importance of a node itself, betweenness centrality 𝑏𝑖

measures the proportion of the shortest paths a node has been traversed [41]. Suppose that services or passengers flow through a
PTN via the shortest path, nodes that lie on more shortest path undertake a higher proportion of traffic and become more central in
the network. Betweenness centrality can be particularly useful to apprehend the role of a bridge in a PTN, for instance, a peripheral
stop connecting two sub-networks. This bridging node may be regarded as a terminal hub or a passage in a PTN, having significant
intermediacy. Since the value of betweenness centrality depends inherently on the number of nodes, we divide it by the number of
pairs of nodes, not including the considered node 𝑖 for normalisation. This division is done by (𝑁 −1)(𝑁 −2) for the directed graph
in our study. When acquiring the shortest path, the impedance of connection is included as weight. The computation of normalised
betweenness centrality is hence presented as follows:

𝑏′𝑖 =
1

(𝑁 − 1)(𝑁 − 2)
∑

𝑗≠𝑘∈𝑉

𝜎𝑗𝑘(𝑖)
𝜎𝑗𝑘

∀𝑖 ∈ 𝑉 , (3)

here 𝑏′𝑖 is the normalised betweenness centrality of node 𝑖. 𝜎𝑗𝑘 is the total number of weighted shortest paths from node 𝑗 to node
, and 𝜎𝑗𝑘(𝑖) is the number of those paths that travel through node 𝑖.

.3.4. Eigenvector centrality
One natural extension of degree centrality is eigenvector centrality, which accounts for both the centrality of the considered node

nd the centrality of adjacent nodes that it connects to [39]. Often, the importance of a node is increased by connecting to other
ritical nodes in the network. Instead of assigning the same point to every neighbour like degree centrality, eigenvector centrality
ffers each node a score proportional to the total score of its neighbours. Consequently, a higher eigenvector centrality entails a
igher importance level of network-wide connectivity via a highly connected node cluster. This high-degree cluster concentrated in
small area implies a mono-centric structure of a PTN.

The determination of eigenvector centrality is an iterative process as the value of the immediate neighbours of each node
nfluences it. In the first step, all nodes are evenly assigned the same value. Then, the total eigenvector centrality is reassigned
ased on the adjacency matrix 𝐴 until reaching the convergence or a chosen number of iterations. Furthermore, the efficiency
f connections is taken as the link weight and the eigenvector centrality is already a normalised indicator with the following
xpressions:

𝑒𝑖 =
1
𝜆

∑

𝑖≠𝑗∈𝑉
𝑎𝑖𝑗

1
𝑡𝑖𝑗

𝑒𝑗 ∀𝑖 ∈ 𝑉 , (4)

𝜆𝐞 = 𝐴𝐞, (5)

where 𝜆 is a constant and 𝐞 is the eigenvector that contains the eigenvector centrality values such as 𝑒𝑖 and 𝑒𝑗 . For directed
networks like the ones addressed in this study, the calculation of eigenvector centrality only considers the in-links of nodes to
avoid duplication.

Given the definition of eigenvector centrality, we can assume that a relatively higher eigenvector centrality represents a preferred
transfer stop in a PTN. All else being equal, stops with a higher eigenvector centrality are expected to be a more essential node
cluster served as a centre in a network, benefiting from their connections with highly connected neighbours.

2.3.5. Goodness-of-fit
For all the aforementioned local topological indicators on the node scale, we derive their probability density distributions and

compare how well these distributions that represent one aspect of the four node organisations follow the nature of a hierarchical
network, namely how well these distributions fit a skew-normal distribution. The underlying reason is to seek a single value to
quantify the degree of hierarchy from one aspect of importance and become comparable across different networks. Additionally,
we choose the skew-normal distribution to estimate and test as it represents the nature of hierarchy: the presence of hubs and large
numbers of nodes with few connections. We prefer skew-normal distribution over power-law distribution as the real-world networks
are mostly finite, and thus a power-law network is hardly observed [13].

We first categorise the values of each indicator in a network into bins, following Scott’s rule that considers the size and variance
of data [42]:

𝛿 = 3.49𝜎
3
√

, (6)
4

𝑛
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where 𝛿 indicates the bin width, 𝜎 is the standard deviation of the data, and 𝑛 is the size of the data. Using Scott’s rule, the number
f bins is proportional to an estimate of the standard deviation and inversely proportional to the cube root of the sample size. As a
esult, a larger network will be penalised for its size. Second, we use the midpoints of bins as the independent variable 𝑥 and the
eight of the bins as the dependent variable 𝑦 to derive the skew-normal probability density function as follows [43]:

𝜙(𝑥) = 1
𝜔𝜋

𝑒−
(𝑥−𝜉)2

2𝜔2
∫

𝛼( 𝑥−𝜉𝜔 )

−∞
𝑒−

𝑡2
2 𝑑𝑡, (7)

where 𝑥 ranges from negative infinity to positive infinity and real numbers 𝜉, 𝜔 and 𝛼 denote the location, scale and shape of
he distribution, respectively. In the end, we adopt the coefficient of determination as a goodness-of-fit measure to compare the
egressed value and the observed value (i.e., the ground truth). Rather than comparing the distribution parameters, the goodness
f fit can deal with PTNs of different sizes and facilitate the comparison in a relative way. A larger fitness value 𝑓 signifies a better
it of the skew-normal distribution and therefore a more hierarchical organisation of the PTN element along the tested dimension.
he fitness 𝑓 value lies in the ranges from negative infinity to 1, which is calculated as:

𝑓 = 1 −
∑𝑛

𝑖 (𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖 (𝑦𝑖 − �̄�)2
, (8)

where the set of observed values has 𝑛 values marked as 𝑦𝑖, each associated with a fitted value 𝑦𝑖 and the average value of the
observation is �̄�.

2.4. Topological indicators on network scale

2.4.1. Network modularity
A graph can be partitioned into communities of nodes. These communities exhibit different strengths of connections inside and

outside, which are quantified by modularity. Networks with high modularity have denser connections between nodes of the same
group, while sparse connections between nodes in different communities. Such a phenomenon can be leveraged to measure the
degree of clustering, the inter- and inner-connections among formed communities of nodes of a PTN. This community structure has
substantial importance in understanding the dynamics of the PTN. A more hierarchical PTN should comprise a closely connected
community, having a faster rate of transporting passengers than a loosely connected community. In particular, a large number of
widely distributed high-degree nodes increase the value of optimal network modularity, which tends to manifest a multi-centric
structure.

Modularity is the fraction of the links that belong to the same communities minus the expected fraction if links were distributed
randomly, and is shown as follows:

𝑄 = 1
2𝑚

∑

𝑖𝑗
(𝑎𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚

)𝛿(𝑐𝑖, 𝑐𝑗 ) ∀𝑖, 𝑗 ∈ 𝑉 , (9)

where 𝑄 is the modularity and 𝑘𝑖 and 𝑘𝑗 are the degree centrality of nodes 𝑖 and 𝑗. 𝑚 is the total number of links in the network and
hence 2𝑚 is the number of endpoints of all the links. 𝑐𝑖 and 𝑐𝑗 represent the community to which nodes 𝑖 and 𝑗 belong to, respectively.
𝛿(𝑐𝑖, 𝑐𝑗 ) is the Kronecker delta of the communities of 𝑐𝑖 and 𝑐𝑗 . Specifically, 𝛿(𝑐𝑖, 𝑐𝑗 ) equals 1 if 𝑐𝑖 and 𝑐𝑗 are the same community
and equals 0 otherwise. The value of modularity ranges from − 1

2 to 1 and is influenced mainly by the compositions of communities.
e apply the Leiden algorithm, a heuristic method to seek the optimal community composition in directed networks [44]. This

lgorithm starts by assigning each node in the network to a community and then these communities are aggregated or reassigned to
ew communities until they converge to the maximum modularity. Finally, the optimal modularity of a PTN is used to investigate
he ability to form communities and their interactions in our work.

.4.2. Network assortativity
Different from modularity which assesses the connection pattern of a network via communities, network assortativity indicates

he connection pattern that is based on the node characteristic. Assortativity describes a preference for the nodes in a network
o attach to others that are similar in some way, mostly through degree centrality. Positive assortativity refers to the tendency of
odes to connect with similar nodes, namely, high-degree nodes connecting to high-degree nodes and low-degree nodes connecting
o low-degree nodes. This appears in a network with a dense core of high-degree nodes surrounded by a periphery of lower-degree
nes. In contrast, negative assortativity means disassortativity and dissimilarity where the high-degree nodes tend to connect with
ow-degree nodes similar to a star-like structure. As proposed by [39], degree assortativity corresponds to a Pearson correlation
oefficient of the node degree:

𝑟 =

∑

𝑖𝑗 (
𝑎𝑖𝑗−𝑘𝑖𝑘𝑗

2𝑚 )𝑘𝑖𝑘𝑗
∑

𝑖𝑗 (
𝑘𝑖𝛿𝑖𝑗−𝑘𝑖𝑘𝑗

2𝑚 )𝑘𝑖𝑘𝑗
∀𝑖, 𝑗 ∈ 𝑉 , (10)

here 𝑟 is the assortativity and ranges from −1 to 1. The Kronecker delta here designates whether the degrees of two connected
odes are the same. Essentially, assortativity has the covariance between nodes 𝑖 and 𝑗 as the numerator and the product of their
ariances as the denominator. A higher assortativity is obtained when the connected nodes are similar in their degree values.
5
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Fig. 2. Map displaying the selected high-capacity PTNs with a variety of modes and population size.

2.5. Multi-dimension PTN hierarchy

In the last step, we encapsulate all the aforementioned dimensions into a radar chart to represent the multi-dimensional property
of the PTN hierarchy. This multi-dimension comparison of the PTN hierarchy leads to a comprehensive assessment. Since the selected
indicators have different ranges across different PTNs along the same dimension, we use the min–max normalisation to re-scale them
between 0 and 1 for avoiding biases in interpretation and facilitating the relative comparison:

𝐻 ′ =
𝐻 − min(𝐻)

max(𝐻) − min(𝐻)
, (11)

where the original hierarchy value of the chosen dimension is 𝐻 , the normalised PTN hierarchy value is 𝐻 ′, max(𝐻) and min(𝐻)
represent the maximum and minimum values of the PTN hierarchy in each dimension, respectively. To this end, each axis of the
radar chart represents one PTN hierarchy dimension out of the several chosen aspects. The size of the area enclosed by the axes
denotes the overall multi-dimension hierarchy of a PTN. When comparing goodness-of-fit related to a specific local indicator or a
selected global indicator of two PTNs, we label the PTN with the higher value as more hierarchical than the other one. In other
words, we directly map goodness-of-fit and global indicator values into hierarchical relationships across PTNs.

3. Results

The method presented in the previous section is applied to selected case study PTNs in this section. After describing these case
studies and the implementation process in Section 3.1, we report the PTN hierarchy radar charts of the case study PTNs and compare
them per city (Section 3.2), dimension (Section 3.3), and mode (Section 3.4).

3.1. Case study and implementation description

We select 63 high-capacity PTNs worldwide for applying the proposed method due to data availability and quality. These PTNs
comprise 37 metro, 15 tram and 11 BRT systems, covering 6 continents. Except for Berlin, which has both tram and metro systems
with approximately the same usage, the unimodal PTN with the highest annual ridership is investigated for each of the remaining 61
urban regions. Fig. 2 displays a map showing the locations of the selected PTNs and a relative indication of the population size. The
largest urban region is Buenos Aires with more than 15 million people, while the smallest is Hartford with approximately 120,000
people. The population median of the case study areas is about 1 million.

We use GTFS data mostly from the second half of 2022 or the latest date possible in this study, which are generated during the
public transport operations and collected by either OpenMobilityData1 or service providers. The raw GTFS data usually include the
transit information of all modes in the city, such as stop coordinates, service frequency, and arrival and departure times at stops. We
filter the data to obtain the relevant information for the unimodal PTN in question using mode ID for metro and tram while turning
to route ID or operator ID for BRT. We refer interested readers in the L-space of metro networks to the curated dataset.2 Furthermore,

1 https://transitfeeds.com/
2 https://data.4tu.nl/articles/dataset/A_curated_data_set_of_L-space_representations_for_51_metro_networks_worldwide/21316824
6
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we reduce the data size by employing the most representative date closest to the data release date that contains over 90% of the
maximum single-day trips. The operating hours of this date are from 5 AM to midnight, thereby excluding public transport night
services.

With the filtered data, we obtain the temporal network through a Python package called gtfspy specialised in analysing public
ransport timetable data provided in the GTFS format [45]. Additional processing has been done for unrecognised or duplicated
tops and missing link information. The processed resulting networks are topologically analysed using the Python extension module
f the iGraph library [46].

.2. City-wise multi-dimensional PTN hierarchy discussion

Fig. 3 summarises the results of the proposed multi-dimensional PTN hierarchy quantification and cross-system comparison in
he form of a radar chart per case study PTN. It is worth noting that the first subplot is an empty radar chart as a legend. When
omparing the PTN hierarchy of two instances, higher values along the node degree dimension depict a more significant scale-free
etwork structure as the degree distribution fits well with the skew-normal distribution. A higher network assortativity dimension
eflects a more pronounced rich-getting-richer effect since a node connection pattern in which high-degree nodes tend to connect
an be observed. For example, the metro network in Athens is more hierarchical than the tram network in Amsterdam with respect
o both a scale-free network structure and a rich-getting-richer effect as can be seen in the top-left corner of Fig. 3. A larger fitness 𝑓
alue in terms of closeness centrality and betweenness centrality indicates a high heterogeneity of importance in node accessibility
nd traffic load intermediacy, respectively. For instance, the metro network in Naples is more hierarchical than the BRT network
n Nashville regarding stop accessibility and potential traversing and interchanging passenger flow as displayed in the sixth row
f Fig. 3. Hence, the metro network in Naples has a clearer ranking of the easily-reached stops and the transfer stops than the
RT network in Nashville. This could possibly affect the passenger flow distribution and the resulting public transport operation
erformance since both closeness and betweenness are related to paths, which can influence the route choice of passengers. As
or eigenvector centrality and network modularity dimensions, a higher value based on these two dimensions implies a powerful
entre and a high degree of clustering. The tram network of Saint Petersburg has a smaller 𝑓 for eigenvector centrality but larger
odularity than the BRT network of San Diego which appears to its side in Fig. 3. Consequently, a multi-centric network and a
ono-centric network can be expected from Saint Petersburg and San Diego, respectively.

Moreover, we identify two interesting clusters: The metro networks of Athens, Cairo, Oslo, Rome and Vienna and the tram
etwork of Manchester show high 𝑓 values in closeness centrality, betweenness centrality and eigenvector centrality dimensions.
hese radar charts display values close to 1 on the left side. On the other hand, they present considerably lower values on the right
ide for assortativity and modularity. This cluster arguably stems from three factors that include a ring at the centre of the network
ith a few concentrated high-degree nodes in the central area, limited direct connections between high-degree nodes within the

ing, and a few branch lines developed from the mono-centre. These networks are planned to develop one leading urban pole with
elated suburban areas in the vicinity of this core, yielding the benefits of agglomeration. Another imbalanced shape towards the
ottom-right corner of the radar chart with high values in closeness centrality and network modularity dimensions can be observed
or the Amsterdam tram network, Hartford BRT network, and London metro networks. These highly inner-connected multi-centric
etworks have widely distributed high-degree nodes and a hierarchical organisation of stop accessibility such that passengers can
ccess stops with less detouring. The large number of end nodes on the long branch lines incorporate a large number of low-degree
nd low-intermediacy nodes. Accordingly, these nodes are less hierarchical in terms of their degree centrality, betweenness centrality
nd assortativity dimensions. The networks belonging to this second cluster focus on building multi-urban poles.

Lastly, PTNs in North America have similar degree centrality and network assortativity dimensions compared with their European
ounterparts. They generally show a higher 𝑓 value in the eigenvector centrality dimension but lower values in the other dimensions.

We present a radar chart of the median of each hierarchy dimension for these two continents in Fig. 4. This result is likely coupled
with the modal composition of these two continents where the case studies include 10 metros, 9 BRTs and 1 tram from North America
versus 21 metros and 13 trams from Europe. The preferred rail-bound services in the European PTNs lead to a more hierarchical
organisation of stop cluster, stop accessibility and traffic intermediacy. Therefore, the European PTNs exhibit a clearer structure and
their nodes perform distinctive functions, such as centres, hubs and bridges. They generally show an urban development towards a
multi-centric network design instead of a strong and dense centre.

3.3. Dimension-wise PTN hierarchy comparison

In this subsection, the computational results are presented and discussed per dimension. In Fig. 5, each sub-figure displays the
distribution of one of the several chosen PTN hierarchy dimension indicators amongst the 63 PTNs included in our analysis. The
distributions of 𝑓 based on node degree centrality and assortativity coefficient exhibit a right-skewed distribution. The mean value
and median values of 𝑓 based on node degree centrality are 0.386 and 0.373 respectively. Most of the 𝑓 values are between 0.25
to 0.45 and therefore more PTNs tend to have a relatively low 𝑓 value along the degree centrality dimension. The assortativity
coefficient ranges from −0.184 to 0.551 with median and mean values of 0.041 and 0.066, respectively. One-third of the selected
PTNs have a negative assortativity coefficient and three-quarters of the chosen PTNs have an assortativity coefficient between −0.1
to 0.2. In contrast to findings reported in the literature [34], a large number of low-degree nodes and rare high-degree nodes in the
PTNs lead to low heterogeneity in the node connectivity and connection pattern. Therefore, a scale-free network that relies on the
7

degree distribution following a power law or skew-normal distribution and a rich-club effect where nodes with high degrees tend
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Fig. 3. Radar charts of considered PTNs with all chosen hierarchy quantification dimensions.

to connect to each other are not found to be prevalent among PTNs. The traditional way of assessing network hierarchy may not
be applicable in PTNs since the vast majority of nodes in most PTNs are planned to provide nearly the same number of connections
instead of a few important nodes having a huge number of connections.
8
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Fig. 4. Radar chart of the median from each PTN hierarchy dimension in Europe and North America.

Fig. 5. Distribution of the chosen PTN hierarchy dimension indicators for 63 case studies.

Conversely, the distributions of 𝑓 based on closeness centrality and betweenness centrality are left-skewed. Both indicators are
computed using the shortest paths between node pairs. A wide distribution ranging from −1.94 to 0.948 can be observed for the
closeness centrality dimension with a median of 0.564 and a mean of 0.32. Nearly 20% of the PTNs have a negative value as
9



Physica A: Statistical Mechanics and its Applications 634 (2024) 129479Z. Wang et al.

w
t

T
o
m
l
d
l
b
a
n
c
p

Fig. 6. Scatter plot of 𝑓 based on eigenvector centrality distribution and modularity coefficient with the fitted line.

small-size PTNs tend to have few transfer nodes and a large proportion of nodes with similar accessibility on branch lines without
transfer stops. This results in a small number of categorised bins and a poor fitting with the skew-normal distribution. Nonetheless,
more than half of the studied PTNs have an 𝑓 above 0.5 based on closeness centrality, which implies a hierarchical organisation of
stop accessibility is common in PTNs. In terms of betweenness centrality, the distribution of 𝑓 spans between 0.57 and 0.99 with a
median of 0.886 and a mean of 0.866. The difference in the 𝑓 of betweenness centrality also owes to the number of branch lines

ithout transfer stops and the number of end nodes with a low betweenness centrality, leading to a relatively worse fitting with
he skew-normal distribution. Almost 80% of the PTNs have an 𝑓 higher than 0.8, indicating an obvious hierarchy concerning the

traffic load intermediacy of PTNs. Thus, most of the PTNs present a hierarchical structure with respect to closeness centrality and, in
particular, betweenness centrality. Hubs in PTNs appear to have significant accessibility or traffic intermediacy, and both indicators
could influence passenger flow distribution [17].

We further observe an approximately normal distribution for the 𝑓 based on eigenvector centrality and network modularity.
he 𝑓 of eigenvector centrality distribution takes a median of 0.7 and a mean of 0.685, ranging from 0.379 to 0.955. The majority
f the PTNs have a value ranging between 0.5 and 0.9, revealing a hierarchical organisation of the node clusters and therefore a
ono-centric network structure. Intriguingly, we find that large-size PTNs with abundant and dispersed high-degree nodes have a

arge range of eigenvector centrality, however, the 𝑓 based on the eigenvector centrality distribution is not significant and therefore
oes not follow a hierarchical organisation. On the other hand, PTNs with a few but concentrated high-degree nodes form a higher
evel of importance while the rest are gradually less important. This results in a clearer hierarchy. Regarding modularity, it varies
etween 0.621 and 0.898 with a median of 0.775 and a mean of 0.77. About 80% of the PTNs have optimal modularity between 0.7
nd 0.85, signifying a high-clustering network structure. Given the modularity definition, the number and variance of high-degree
odes in a PTN influence the inner-similarity and inter-difference and determine the clusters. Opposite to the findings on eigenvector
entrality, higher modularity is realised when a large number of high-degree nodes (e.g., transfer hubs) is widely distributed and
resents a multi-centric network structure.

The non-trivial contrasting relationship between the 𝑓 for eigenvector centrality and modularity is further investigated using
a scatter plot in Fig. 6. This figure demonstrates a negative relationship between these two indicators with an 𝑓 of 0.832. The
eigenvector centrality dimension reflects a mono-centric network structure with a small number and concentrated high-degree nodes
while the modularity dimension denotes a multi-centric network structure with a large number and widely distributed high-degree
nodes, respectively. Hence, public transport planners can utilise this information to identify centres for regional planning and make
a trade-off between enhancing the influence of a powerful centre and adding strategic nodes along the lines between centres to
develop and connect sub-centres.

3.4. Mode-wise PTN hierarchy comparison

This subsection is dedicated to analysing the modal effect on the multi-dimensional PTN hierarchy. Since the dataset size of each
mode is uneven, we list the median values of each chosen indicator in Table 1. It can be seen from the table that no transport mode
has the highest value in all hierarchy dimensions and the differences between modes are relatively small. Nevertheless, we find
that the metro networks have the highest hierarchy in the dimensions of degree centrality, betweenness centrality and eigenvector
centrality while the tram networks are more hierarchically organised in the closeness centrality and network modularity dimensions.
Conversely, the BRT networks show a higher hierarchy along the network assortativity dimension than the other two modes. Overall,
10

the metro demonstrates a higher PTN hierarchy than the tram and the BRT PTNs.
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Table 1
Table of medians of PTN hierarchy in each dimension for the three public transport modes.

𝑓
(Degree
centrality)

𝑓
(Closeness
centrality)

𝑓
(Betweenness
centrality)

𝑓
(Eigenvector
centrality)

Modularity
coefficient

Assortativity
coefficient

BRT 0.221 0.846 0.452 0.557 0.595 0.477
Metro 0.373 0.862 0.901 0.652 0.427 0.286
Tram 0.259 0.927 0.733 0.282 0.768 0.355

Fig. 7. Box plots of mode-wise PTN hierarchy comparison across the chosen dimensions.

Fig. 7 presents the detailed mode-wise PTN hierarchy comparison per chosen dimension. Starting from the degree centrality, the
metro networks generally have the highest hierarchy among all three modes in line with the median comparison. The distribution
of the 𝑓 for degree centrality of tram networks is concentrated between 0.2 and 0.4 while more spreading is seen for BRT networks.
Even though one BRT network has the highest 𝑓 based on degree centrality distribution (i.e., Bogota), most of the BRT networks have
relatively low values. This originates from the large number of low-degree nodes located on the branch lines without intersecting
with other nodes and the lack of high-degree nodes. In contrast, the low-degree nodes of the metro systems on these branch lines
are due to a larger stop spacing. Furthermore, a high-degree node in a network is often a transfer hub for multiple lines, leading to
a high degree centrality at these stops. On the contrary, for tram and BRT networks, the number of lines crossing at the same stop
is limited.

In terms of closeness centrality, the highest 𝑓 value among all modes is similar while the distribution range of the metro networks
is the largest among the three public transport modes, nearly two times larger than that of tram networks. Given the differences in
stop and line spacings, tram networks are more likely to form connections between lines such that only a few tram networks have
poor accessibility. Conversely, the metro and BRT networks have connections only around the central areas, resulting in a division
of high- and low-accessibility without a gradual hierarchical structure.

Metro networks are characterised by a high traffic intermediacy with a median that ranges from 0.9 to 1, higher than for the
other modes. As the stop and line spacings of the metro are generally wider, the density of nodes is accordingly smaller. This
contributes to a higher intermediacy around the central areas, which gradually decreases in the suburbs. Different from rail-bound
networks, BRT lines are relatively more independent from each other and have fewer transfer stops between lines, resulting in a
large number of low-intermediacy nodes that are not traversed by traffic. Therefore, BRTs show a relatively low 𝑓 value in the
etweenness centrality dimension.

Over a quarter of the metro networks included in our analysis have a higher hierarchy than all tram and BRT networks with
espect to eigenvector centrality. The reason is that the number of high-degree nodes is relatively small mostly around the centre
sed for forming a mono-centric structure. Besides, the operating speed also influences the PTN hierarchy based on eigenvector
entrality. A higher operating speed reduces the average travel times on links and increases the importance of the node clusters.
onversely, the small line and stop spacings increase the number of relatively high-degree nodes widely spread in a tram network,
hich shows high-clustering and multi-centric structures reflected by the highest modularity coefficient among all modes.

As for the network assortativity dimension, rail-bound systems exhibit the lowest hierarchy while the BRT system shows the
11

ighest hierarchy with the widest range from negative values to over 0.5. A high-degree transfer hub usually covers a wider area
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and is thus distant from other high-degree nodes, which reduces the rich-club phenomenon. On the other hand, the flexible line
planning of BRT networks is more inclined to offer high-degree connection patterns since the stops are flexible during different
periods of the day, which is quite often seen in our dataset.

The results pertaining to the difference in PTN hierarchy dimensions can be concluded as follows: First, the stop spacing differs
mong these modes, leading to various shortest path values. In practice, the average stop spacing of metro networks is larger than
he other two modes and the tram networks have the shortest stop spacing. Second, the typical operating speed of the metro is
sually higher than the tram and BRT with the latter two having a similar speed. Therefore, the travel time on the links varies
mong these modes. Third, the stop service coverage of the metro system is commonly larger than the other two. Correspondingly,
t allows the metro transfer stop to have more line intersections and thus form a hub. Lastly, it is more likely that the BRT systems
ave flexible line planning than the metro and tram systems. Using the same infrastructure, BRT systems tend to have a range of
ines with different stop spacings while instead, trams often serve at every stop, providing a more local accessibility.

As different public transport modes show distinctive characteristics in their network hierarchy, PTN planners can leverage these
atterns to decide the complementary mode or intermodal hub in an evolving multi-modal PTN. For instance, a tram with a multi-
entric network and a hierarchical organisation of stop accessibility can be supplementary to a metro network that presents a more
entralised network and a clear hierarchy of potential passenger flow. At the same time, planners can also choose to build an
ntermodal hub based on the node with high closeness centrality or high betweenness centrality, which has a high hierarchy in a
etwork.

. Conclusion

We propose a multi-dimensional topology-based PTN hierarchy quantification method that enables cross-system comparison. The
ethod is independent of passenger demand data which are often unavailable and unravels the network hierarchy as embedded

n the planning. It considers both the scale-free network topology with clustering of nodes and the hierarchical organisation
f nodes with multiple importance-related dimensions. These dimensions correspond to connectivity, accessibility, intermediacy,
ono- or multi-centric network structure and node connection pattern as measured by degree centrality, closeness centrality,

etweenness centrality, eigenvector centrality, modularity coefficient and assortativity coefficient, respectively. The goodness-of-
it value between the probability density function of the local indicators and the regressed skew-normal distribution is used for
uantifying the network-wide hierarchy. With the infrastructure graph representation of PTNs that explicitly incorporates travel
imes or the connection efficiency according to the planned services contained in GTFS data, we are able to compare the hierarchy
f 63 high-capacity highly-used PTNs with a variety of modes worldwide.

Our main findings from comparing 63 PTNs worldwide are summarised as follows: The scale-free network structure and the
referential attachment are relatively insignificant for most PTNs in the study because of the large number of low-degree nodes, the
ack of high-degree nodes and the limited connection between high-degree nodes. Therefore, the assumption of network hierarchy
ased on the skew-normal distribution of degree centrality may not be applicable in PTNs. In contrast, the goodness-of-fit value
ased on closeness centrality and betweenness centrality reveals a relatively high hierarchy along these two dimensions. PTNs
end to present a hierarchical organisation of node closeness centrality and intermediacy. Hubs of a PTN can also be determined
rom nodes with high closeness or betweenness centrality since they are positioned at a higher level of importance with respect to
top accessibility and traffic intermediacy. In addition, a negative relationship is found between the goodness-of-fit value based on
igenvector centrality and optimal modularity. Planners can utilise this information to plan the growth of a network towards a mono-
entric network with a powerful centre or a multi-centric network with strongly connected node clusters. Among the chosen three
igh-capacity public transport modes, metro networks exhibit an overall more hierarchical structure across the chosen dimensions of
ierarchy, however, no single mode has the highest PTN hierarchy in every single dimension. Such differences in the PTN hierarchy
mong modes pertain to the number of nodes, the connection between nodes and the travel time on links. These factors are influenced
y stop spacing, line spacing, stop infrastructure, operating speed and line planning of different modes. Nevertheless, different modes
an be complementary to each other in a multimodal PTN development due to their unique hierarchy characteristics.

The network hierarchy assessment proposed in this study can provide a quantitative point of reference for network planners
n identifying pros and cons across different PTNs and a variety of modes. It supports public transport authorities and operators
n defining where to invest in the network from a specific or multi-dimensional aspect of importance. The resulting method offers
fficient scanning of the PTN hierarchy without the need for ex-post empirical passenger flow data or computationally expensive
ransport modelling tools.

This study opens avenues for further research along the following directions. First, disruption data from PTNs can be incorporated
o correlate the vulnerability and the hierarchy to extend the practical implication of this study. Second, the proposed method can
e applied to multi-modal PTN systems by choosing suitable modifications and adopting multi-layer network analysis principles.
inally, adding passenger demand data to the analysis can quantify the PTN hierarchy in system usage and correlate with the
roposed method that quantifies the PTN hierarchy embedded in the planning.
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