
 
 

Delft University of Technology

Stability of smooth periodic traveling waves in the Degasperis–Procesi equation

Geyer, Anna; Pelinovsky, Dmitry E.

DOI
10.1016/j.jde.2024.05.047
Publication date
2024
Document Version
Final published version
Published in
Journal of Differential Equations

Citation (APA)
Geyer, A., & Pelinovsky, D. E. (2024). Stability of smooth periodic traveling waves in the
Degasperis–Procesi equation. Journal of Differential Equations, 404, 354-390.
https://doi.org/10.1016/j.jde.2024.05.047

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jde.2024.05.047
https://doi.org/10.1016/j.jde.2024.05.047


Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 404 (2024) 354–390
www.elsevier.com/locate/jde

Stability of smooth periodic traveling waves in the 

Degasperis–Procesi equation

Anna Geyer a,∗, Dmitry E. Pelinovsky b,c

a Delft Institute of Applied Mathematics, Faculty Electrical Engineering, Mathematics and Computer Science, Delft 
University of Technology, Mekelweg 4, 2628 CD Delft, the Netherlands

b Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
c Department of Applied Mathematics, Nizhny Novgorod State Technical University, 24 Minin street, 603950 Nizhny 

Novgorod, Russia

Received 5 October 2022; revised 23 November 2023; accepted 26 May 2024

Abstract

We derive a precise energy stability criterion for smooth periodic waves in the Degasperis–Procesi (DP) 
equation. Compared to the Camassa-Holm (CH) equation, the number of negative eigenvalues of an asso-
ciated Hessian operator changes in the existence region of smooth periodic waves. We utilize properties of 
the period function with respect to two parameters in order to obtain a smooth existence curve for the family 
of smooth periodic waves with a fixed period. The energy stability condition is derived on parts of this exis-
tence curve, which correspond to either one or two negative eigenvalues of the Hessian operator. We show 
numerically that the energy stability condition is satisfied on either part of the curve and prove analytically 
that it holds in a neighborhood of the boundary of the existence region of smooth periodic waves.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The Degasperis-Procesi (DP) equation

ut − utxx + 4uux = 3uxuxx + uuxxx (1.1)
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has a special role in the modeling of fluid motion. It was derived in [10] as a transformation of 
the integrable hierarchy of KdV equations, with the same asymptotic accuracy as the Camassa–
Holm (CH) equation [2]. Although a more general family of model equations can also be derived 
by using this method [8,11], only the DP and CH equations are integrable with the use of the 
inverse scattering transform. It was shown in [4,26,28] that the DP and CH equations describe 
the horizontal velocity u = u(t, x) for the unidirectional propagation of waves of a shallow water 
flowing over a flat bed at a certain depth. A review of the applicability of these model equations 
for approximations of peaked waves in fluids was recently given in [40].

In the present paper, we are concerned with smooth traveling wave solutions, for which the 
DP and CH equations have been justified as model equations in hydrodynamics [4]. Existence 
of smooth periodic traveling waves has been well understood by using ODE methods [34,35]. 
However, stability of smooth periodic traveling waves was considered to be a difficult problem 
in the functional-analytic framework, even though integrability implies their stability due to the 
structural stability of the Floquet spectrum of the associated linear system [36]. Only very re-
cently in [19], we derived an energy stability criterion for the smooth periodic traveling waves of 
the CH equation by using its Hamiltonian formulation.

For smooth solitary waves, orbital stability was obtained for the CH equation in [5] and spec-
tral and orbital stability for the DP equation was obtained in [37,38]. The energy stability criterion 
for the smooth solitary waves was derived for the entire family of the generalized CH equations 
[32] and was shown to be satisfied asymptotically and numerically. A recent work [39] used the 
period function to show that the energy stability criterion is satisfied analytically for the entire 
family of smooth solitary waves.

The purpose of this work is to derive an energy stability criterion for the smooth periodic 
traveling waves in the DP equation.

Let us briefly comment on the various Hamiltonian formulations which exist both for the CH 
and DP equations. These two equations belong to a larger class of generalized CH equations, 
the so-called b-family, which reduces to CH for b = 2 and to DP for b = 3. As far as we know, 
only one Hamiltonian formulation exists for general b, which was obtained in [9] and used in 
the stability analysis of smooth solitary waves for b > 1 in [32]. There exists one additional 
formulation for b = 3 and two additional formulations for b = 2. In [19], we used these two 
Hamiltonian formulations to study spectral stability of the smooth periodic waves in the CH 
equation. Here we will only use one Hamiltonian formulation to complete the same task for the 
DP equation. The universal Hamiltonian formulation from [9] can also be adopted to the study 
of spectral stability of smooth periodic waves for the b-family with b > 1 and this has recently 
been addressed in [12].

We consider the DP equation (1.1) in the periodic domain TL := R\(LZ) of length L > 0. For 
notational simplicity, we write Hs

per instead of Hs(TL) for the Sobolev space of L-periodic func-
tions with index s ≥ 0. The DP equation (1.1) on TL formally conserves the mass, momentum, 
and energy given respectively by

M(u) =
∮

udx, (1.2)

E(u) = 1
∮

u(1 − ∂2
x )(4 − ∂2

x )−1udx, (1.3)

2
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and

F(u) = 1

6

∮
u3dx. (1.4)

We will be exploring the following Hamiltonian structure for the DP equation (1.1):

du

dt
= J

δF

δu
, J = −(1 − ∂2

x )−1(4 − ∂2
x )∂x, (1.5)

where J is a well-defined operator from Hs+1
per to Hs

per for every s ≥ 0 and δF
δu

= 1
2u2. 

The evolution problem (1.5) is well-defined for local solutions u ∈ C((−t0, t0), Hs
per) ∩

C1((−t0, t0), Hs−1
per ) with s > 3

2 , see [14], where t0 > 0 is the local existence time.
Smooth traveling waves of the form u(t, x) = φ(x − ct) with c −φ > 0 are obtained from the 

critical points of the augmented energy functional

�c,b(u) := cE(u) − F(u) − b

4
M(u), (1.6)

where b is a parameter obtained after integration of a third-order differential equation satisfied 
by the traveling wave profile φ, see Section 2. After two integrations with integration constants 
a and b, all smooth periodic wave solutions with the profile φ can be found from the first-order 
invariant

(c − φ)2(φ′2 − φ2 − b) + a = 0. (1.7)

The second variation of the augmented energy functional (1.6) is determined by an associated 
Hessian operator L : L2

per → L2
per given by

L := c − φ − 3c(4 − ∂2
x )−1. (1.8)

The operator L is self-adjoint and bounded as the sum of the bounded multiplication operator 
(c − φ) and the compact operator −3c(4 − ∂2

x )−1 in L2
per. Since c − φ > 0, the continuous spec-

trum of L is strictly positive, hence L has finitely many negative eigenvalues of finite algebraic 
multiplicities and a zero eigenvalue of finite algebraic multiplicity.

The first result of this paper is about the existence of smooth periodic traveling waves with 
profile φ satisfying the first-order invariant (1.7), and the number of negative eigenvalues of L
given by (1.8), see Fig. 1.1.

Theorem 1.1. For a fixed c > 0, smooth periodic solutions of the first-order invariant (1.7) with 
profile φ ∈ H∞

per satisfying c−φ > 0 exist in an open, simply connected region on the (a, b) plane 
enclosed by three boundaries:

• a = 0 and b ∈ (−c2, 0), where the periodic solutions are peaked,
• a = a+(b) and b ∈ (0, 18c2), where the solutions have infinite period,

• a = a−(b) and b ∈ (−c2, 1c2), where the solutions are constant,
8
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Fig. 1.1. The existence region of smooth periodic solutions of the first-order invariant (1.7) on the parameter plane (a, b)

for c = 1 enclosed by three boundaries (red lines). The blue line shows the curve a = a0(b) which separates the cases of 
one (n(L) = 1) and two (n(L) = 2) negative eigenvalues of L in (1.8). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

where a+(b) and a−(b) are smooth functions of b. For every point inside the region, the periodic 
solutions are smooth functions of (a, b) and their period is strictly increasing in b for every fixed 
a ∈ (0, 27

256c4). There exists a smooth curve a = a0(b) for b ∈ (− 2
9c2, 0) in the interior of the 

existence region such that the Hessian operator L in L2
per has only one simple negative eigenvalue 

above the curve and two simple negative eigenvalues (or a double negative eigenvalue) below 
the curve. The rest of its spectrum for a 	= a0(b) includes a simple zero eigenvalue and a strictly 
positive spectrum bounded away from zero. Along the curve a = a0(b) the Hessian operator L
has only one simple negative eigenvalue, a double zero eigenvalue, and the rest of its spectrum 
is strictly positive.

Remark 1.2. The three curves bounding the existence region of smooth periodic waves in The-
orem 1.1 are shown in Fig. 1.1 for c = 1. The curve in the interior of the existence region is the 
curve a = a0(b), which was found numerically by plotting the period function of the periodic 
solutions of Theorem 1.1 versus a for fixed b and detecting its maximum if it exists, see Lem-
mas 3.2 and 4.4 below. The regions with one and two negative eigenvalues of L are located above 
and below the curve a = a0(b), respectively.

Remark 1.3. The double zero eigenvalue of L existing at the curve a = a0(b) does not imply 
any bifurcations of periodic solutions with the profile φ because the Hessian operator L in (1.8)
is not related to the linearization of the differential equation (1.7), see also the discussion in 
Remark 2.5.

Remark 1.4. The transformation

φ(x) = cϕ(x), b = c2β, a = c4α (1.9)

normalizes the parameter c to unity with ϕ, β , and α satisfying the same equation (1.7) but 
with c = 1. Hence, the smooth periodic waves are uniquely determined by the free parameters 
357
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(a, b) and c = 1 can be used everywhere. Similarly, although we only consider the case of right-
propagating waves with c > 0, all results can be extended to the left-propagating waves with 
c < 0 by using the scaling transformation (1.9).

Spectral stability of smooth periodic traveling waves with respect to co-periodic perturbations 
is determined from the spectrum of the linearized operator JL in L2

per, with J given in (1.5). 
Since J is a skew-adjoint operator and L is self-adjoint, the spectrum of the linearized operator 
JL is symmetric with respect to iR [25,29]. Therefore, the periodic wave is spectrally stable if 
the spectrum of JL in L2

per is located on iR. The second result of this paper gives the energy 
criterion for the spectral stability of the smooth periodic waves in the DP equation (1.1).

Theorem 1.5. For a fixed c > 0 and a fixed period L > 0, there exists a C1 mapping a 
→ b =
BL(a) for a ∈ (0, aL) with some L-dependent aL ∈ (0, 27

256c4) and a C1 mapping a 
→ φ =
	L(·, a) ∈ H∞

per of smooth L-periodic solutions along the curve b = BL(a). Let

ML(a) := M(	L(·, a)) and FL(a) := F(	L(·, a)),

where M(u) and F(u) are given by (1.2) and (1.4). The L-periodic wave with profile φ =
	L(·, a) such that B′

L(a) 	= 0 for some a ∈ (0, aL) is spectrally stable if

d

da

FL(a)

ML(a)3 < 0, (1.10)

and, for B′
L(a) < 0, if additionally M′

L(a) > 0. The stability criterion holds true for every point 
in a neighborhood of the boundary a = a−(b).

Remark 1.6. Fig. 1.2 shows the numerically computed mappings a 
→FL(a)/M3
L(a) and a 
→

ML(a) for four values of fixed L. The parameter a is chosen in (0, aL), where aL depends on 
L. It follows that the stability criterion of Theorem 1.5 is satisfied for all cases. This property has 
been analytically proven only near the boundary a = a−(b) by means of the Stokes expansion, 
see Lemma 5.9.

It is difficult to check the stability criterion of Theorem 1.5 near the other two boundaries 
of the existence region of Theorem 1.1 where the waves are either peaked or solitary. The per-
turbation theory becomes singular in these two asymptotic limits because c − φ vanishes for 
the peaked periodic waves and the period function diverges for the solitary waves. Nevertheless, 
some relevant results are available in these two limits:

• For the boundary a = 0 and b ∈ (−c2, 0), where the periodic solutions are peaked, the 
spectral stability problem for the DP equation (1.1) needs to be set up by using a weak 
formulation of the evolution problem. This setup was elaborated for a generalized CH equa-
tion in [31], building on previous work in [44], to show spectral instability of peaked solitary 
waves. Linear and nonlinear instability of peaked periodic waves with respect to peaked pe-
riodic perturbations was shown for the CH equation in [43]. Spectral and linear instability of 
peaked periodic waves for the reduced Ostrovsky equation was proven in [20,21]. Instability 
of peaked periodic waves in the DP equation or in the generalized CH equation is still open 
for further studies.
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Fig. 1.2. Top: Existence region on the (a, b) plane with four curves b = BL(a) for c = 1 and four values of period: 
L = π/2 (black), L = 3π/4 (yellow), L = π (cyan), and L = 3π/2 (green). Bottom: FL/M3

L
versus a (left) and ML

versus a (right) along the four curves.

• For the boundary a = a+(b) and b ∈ (0, 18c2), where the periodic solutions have infinite 
period, spectral stability of solitary waves over a nonzero background was shown for the 
general b-family in [32] and for the DP equation in [37]. The methods in [32,37] are not 
related to the energy stability criterion (1.10), and it remains open to show the equivalence 
of the three different stability criteria for smooth solitary waves over a nonzero background.

The analytical proof of the energy stability criterion of Theorem 1.5 in the interior of the 
bounded existence region is still open. Another interesting question is to explore the non-standard 
Hamiltonian formulation of the DP equation as a member of the b-family and to obtain a differ-
ent energy stability criterion for the smooth periodic waves, see [12]. Finally, there may exist a 
deep connection between the energy stability criterion and the physical laws for fluids since the 
mapping (1.10) involves a homogeneous function of degree zero in terms of the wave profile φ. 
Similarly, the energy stability criterion for the CH equation obtained in [19] involves a homoge-
neous function of degree zero given by EL(a)/ML(a)2, where ML(a) is the same as in (1.2)
and EL(a) is obtained from E(u) = ‖u‖2

H 1 , which is different from (1.3).

per
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The paper is organized as follows.

• In Section 2 we state and prove the existence result for the smooth periodic wave with profile 
φ, similar to [19] and [32]. The proof is given here to set the foundation for establishing the 
connection between the monotonicity of the period function and the index of the Hessian 
operator.

• Section 3 details the monotonicity properties of the period function for the smooth periodic 
solutions of DP with respect to both parameters a and b. The proofs rely on the classical 
works [3,16] but involve more complicated details of computations compared to [19,23] for 
the CH equation.

• Section 4 describes the number of negative eigenvalues and the multiplicity of the zero eigen-
value of the Hessian operator L. The count is obtained by a nontrivial adaptation of the 
Birman–Schwinger principle which is different from the study of a similar Hessian operator 
for solitary waves in [37]. The proof of Theorem 1.1 is achieved with the results obtained in 
Sections 2, 3, and 4.

• Finally, in Section 5 we extend the family of periodic waves with the profile φ along a curve 
with a fixed period L > 0 and give the proof of Theorem 1.5.

• Appendix A contains some auxiliary results on the period function which are used in the 
proofs of Section 3, based on previous work in [16,17,23].

Acknowledgment. This project was completed in June 2022 during a Research in Teams 
stay at the Erwin Schrödinger Institute, Vienna. The authors thank Yue Liu for many discussions 
related to this project. The earlier stage of the project was initiated in the MSc studies of Aigerim 
Madiyeva at McMaster University (2019-2021). D. E. Pelinovsky acknowledges the funding of 
this study provided by the grant No. FSWE-2023-0004 through the State task program in the 
sphere of scientific activity of the Ministry of Science and Higher Education of the Russian 
Federation and grant No. NSH-70.2022.1.5 for the State support of leading Scientific Schools of 
the Russian Federation.

2. Smooth traveling waves

Traveling waves of the form u(t, x) = φ(x − ct) with speed c and profile φ are found from 
the third-order differential equation

−(c − φ)(φ′′′ − φ′) − 3φφ′ + 3φ′φ′′ = 0, (2.1)

which is obtained from the DP equation (1.1). For notational convenience we denote φ = φ(x)

where x stands for the traveling coordinate x−ct . Integration of (2.1) in x gives the second-order 
equation

−(c − φ)(φ′′ − φ) + φ′2 − φ2 = b, (2.2)

where b is an integration constant. Another second-order equation can be obtained after multi-
plying (2.1) by (c − φ)2 and integrating,

−(c − φ)3(φ′′ − φ) = a, (2.3)
360
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where a is another integration constant. Both second-order equations (2.2) and (2.3) are compat-
ible if and only if φ satisfies the first-order invariant (1.7), which can be viewed as the first-order 
invariant for either (2.2) or (2.3).

The following lemma characterizes the family of periodic waves by using phase plane analy-
sis, and constitutes the existence part of Theorem 1.1.

Lemma 2.1. For a fixed c > 0, smooth periodic solutions to the first-order invariant (1.7) with 
the profile φ ∈ H∞

per satisfying c − φ > 0 exist in an open, simply connected region on the (a, b)

plane enclosed by three boundaries:

• a = 0 and b ∈ (−c2, 0), where the periodic solutions are peaked,
• a = a+(b) and b ∈ (0, 18c2), where the solutions have infinite period,

• a = a−(b) and b ∈ (−c2, 18c2), where the solutions are constant,

where a+(b) and a−(b) are smooth functions of b. The family of periodic solutions inside this 
region is smooth in (a, b).

Proof. For a fixed c > 0, the first-order invariant (1.7) represents the energy conservation (φ′)2 +
U(φ) = b for a Newtonian particle with mass m = 2 and the energy level b under a force with 
the potential energy

U(φ) := −φ2 + a

(c − φ)2 . (2.4)

The critical points of U on R\{c} are given by the roots of the algebraic equation

φ(c − φ)3 = a. (2.5)

The global maximum of φ 
→ φ(c − φ)3 occurs at φ = φc := c/4 for which a = ac := 27
256c4. We 

will now consider the three different cases a ∈ (−∞, 0], a ∈ (0, ac), and a ∈ [ac, ∞).

• If a ∈ (0, ac), the potential energy U has a local maximum φ1 and a local minimum φ2 which 
satisfy the ordering

0 < φ1 <
c

4
< φ2 < c, (2.6)

see the left panel of Fig. 2.1. The local maximum and minimum of U give the saddle point 
(φ1, 0) and the center point (φ2, 0) of the first-order planar system corresponding to the 
second-order equation (2.3). Smooth periodic solutions with the profile φ satisfying c −φ >

0 correspond to periodic orbits inside a punctured neighborhood around the center (φ2, 0)

enclosed by the homoclinic orbit connecting at the saddle (φ1, 0), see the right panel of 
Fig. 2.1. All other orbits are unbounded.

• If a ∈ (−∞, 0), the potential energy U has two local maxima, one is below the singularity 
at c and the other one is above the singularity at c with U(φ) → −∞ as φ → c. All orbits 
are either unbounded or hit the singularity at c for which φ′ is infinite. The same is true for 
a = 0, for which U(φ) = −φ2.
361
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Fig. 2.1. Left: U versus φ for c = 1, and a = 0.05. Right: the phase portrait of the second-order equation (2.3) constructed 
from the level curves of b = (φ′)2 + U(φ) on the phase plane (φ, φ′) for the same parameter values.

• If a ∈ [ac, ∞), the potential energy does not have local extremal points and U(φ) → +∞ as 
φ → c. All orbits of the second-order equation (2.3) are unbounded.

To summarize, bounded periodic solutions exist if and only if a ∈ (0, ac). Note that φ depends 
smoothly on the parameters a and b in view of smooth dependence of the first-order invariant 
(1.7) on φ, a, and b if c − φ > 0. It remains to characterize the three boundaries of the existence 
region, see Fig. 1.1. This is done next.

• If a = 0, the second-order equation (2.3) becomes φ′′ −φ = 0 and is solved explicitly by the 
L-periodic solution

φ(x) = c
cosh

(
L
2 − |x|)

cosh
(

L
2

) , x ∈
[
−L

2
,
L

2

]
,

which attains the singularity φ = c placed at x = 0. The L-periodic wave is peaked at x = 0
and smooth at x = ±L

2 with φ′ (±L
2

)= 0. It follows from b = (φ′)2 − φ2 that

b = −c2sech2
(

L

2

)
, (2.7)

so that b ∈ (−c2, 0) for L ∈ (0, ∞).
• If a ∈ (0, ac), the periodic orbit exists for the energy level b ∈ (b−, b+), where b− = U(φ2)

and b+ = U(φ1). On each respective boundary, a and b can be parameterized by φ2 ∈ (φc, c)
and φ1 ∈ (0, φc), where φc = c/4. The periodic solution along b = b−(a) is constant and we 
have

{
b = cφ2 − 2φ2

2 ,

a = φ2(c − φ2)
3,

⇒
{

db
dφ2

= c − 4φ2 < 0,
da
dφ2

= (c − φ2)
2(c − 4φ2) < 0.

(2.8)

Hence, in view of the chain rule, b = b−(a) is a monotonically increasing function, which 
can be inverted to obtain a function a = a−(b) for b ∈ (−c2, 1c2). Similarly, along b =
8

362



A. Geyer and D.E. Pelinovsky Journal of Differential Equations 404 (2024) 354–390
b+(a), the periodic solution degenerates into a homoclinic solution of infinite period and we 
have

{
b = cφ1 − 2φ2

1 ,

a = φ1(c − φ1)
3,

⇒
{

db
dφ1

= c − 4φ1 > 0,
da
dφ1

= (c − φ1)
2(c − 4φ1) > 0.

Hence b = b+(a) is a monotonically increasing function, which can be inverted to obtain a 
function a = a+(b) for b ∈ (0, 18c2).

All together, all statements of Lemma 2.1 have been proven. �
Next we show that the periodic traveling wave with profile φ is a critical point of the aug-

mented energy functional �c,b defined in (1.6).

Lemma 2.2. Let φ ∈ H∞
per be an L-periodic solution of the first-order invariant (1.7) for some 

(a, b) inside the existence region specified in Lemma 2.1 for fixed c > 0. Then, φ is a critical 
point of the augmented energy functional �c,b.

Proof. It follows from the second-order equation (2.3) that

c(1 − ∂2
x )φ − (4 − ∂2

x )

(
1

2
φ2
)

− b = 0.

Inverting the linear operator (4 − ∂2
x ) : H 2

per ⊂ L2
per → L2

per yields

c(1 − ∂2
x )(4 − ∂2

x )−1φ − 1

2
φ2 − b

4
= 0, (2.9)

which is the Euler–Lagrange equation for �c,b in (1.6). By Lemma 2.1, the periodic solutions 
of the first-order invariant (1.7) are smooth, so that they are also smooth solutions of the Euler–
Lagrange equation (2.9), and hence they are critical points of �c,b. �
Remark 2.3. The statement of Lemma 2.2 does not work in the opposite direction, since critical 
points of �c,b are solutions of the Euler–Lagrange equation (2.9) which are only defined in the 
weak space L∞(TL). In particular, the set of critical points of �c,b includes the peaked periodic 
waves which occur at the boundary a = 0 of the existence region for smooth periodic waves in 
Lemma 2.1.

Remark 2.4. In the variable v := (4 − ∂2
x )−1u, the DP equation (1.1) can be rewritten in local 

form as

vt − vtxx + uux = 0.

The traveling wave reduction v(t, x) = ν(x − ct) with ν = (4 − ∂2
x )−1φ satisfies

c(ν′ − ν′′′) − φφ′ = 0.
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Integration yields

c(ν − ν′′) − 1

2
φ2 = d, (2.10)

where d is an integration constant. Since 4ν − ν′′ = φ, we obtain from (2.10) that

ν = 1

3
φ − 1

6c
φ2 − d

3c
. (2.11)

Substituting (2.11) into φ = 4ν − ν′′ and expressing φ′′ and (φ′)2 by using (1.7) and (2.3) gives 
us the relation d = b/4 between the integration constants. These considerations will be useful in 
the proof of Lemma 4.5 below.

Remark 2.5. The Hessian operator L = �′′
c,b(φ) given by (1.8) is not related to the linearization 

of the second-order equations (2.2) and (2.3). It is related to the linearization of the second-order 
equation (2.10) in the sense that the derivative of (2.10) in x yields

c(1 − ∂2
x )ν′ − φφ′ = 0

which implies Lφ′ = 0 in view of the fact that c(1 − ∂2
x )(4 − ∂2

x )−1 = c − 3c(4 − ∂2
x )−1.

3. Period function

Here we shall study monotonicity properties of the period function for the smooth periodic 
solutions of Lemma 2.1 with respect to parameters a and b for fixed c > 0. For a ∈ (0, ac), where 
ac := 27

256c4, we let φ+ and φ− be the turning points for which U(φ±) = b for each b ∈ (b−, b+). 
It follows from the proof of Lemma 2.1, see Fig. 2.1, that the turning points fit into the ordering 
(2.6) as follows:

0 < φ1 < φ− <
c

4
< φ2 < φ+ < c.

The period function L(a, b) assigns to each smooth periodic solution of the first-order invariant 
(1.7) its fundamental period L =L(a, b). Rewriting (1.7) in the form

(φ′)2 + U(φ) = b

with U(φ) given by (2.4) and integrating it along the periodic orbit φ, it follows that the period 
function is given by

L(a, b) := 2

φ+∫
φ−

dφ√
b − U(φ)

(3.1)

for every point (a, b) inside the existence region of Lemma 2.1.
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Fig. 3.1. The potential function V (x) plotted for η = 0.5.

3.1. Monotonicity of the period function with respect to the parameter b

We shall prove that the period function L(a, b) is a strictly increasing function of b for fixed 
c > 0 and a ∈ (0, ac). This gives the second result of Theorem 1.1.

Lemma 3.1. Fix c > 0 and a ∈ (0, ac) The period function L(a, b) is strictly increasing as a 
function of b.

Proof. Recall that φ2 is the local minimum of U and hence the second root of the algebraic 
equation a = φ2(c − φ2)

3, see the algebraic equation (2.5) and the ordering (2.6). We use φ2 to 
replace the parameter a. Then, using the transformation {x = φ−φ2

φ2
, y = φ′

φ2
}, we can write the 

second-order equation (2.3) as the planar system

{
x′ = y,

y′ = 1 + x − η3

(η−x)3 ,
(3.2)

associated with the Hamiltonian

H(x,y) = y2

2
+ V (x), V (x) := −x2

2
− x − η

2
+ η3

2(η − x)2 , (3.3)

where η = c−φ2
φ2

∈ (0, 3). The potential V is smooth away from the singular line x = η, has a 
local minimum at x = 0 and a local maximum at x1 < 0, see Fig. 3.1.

The center at the origin is surrounded by periodic orbits γh, which lie inside the level curves 
H(x, y) = h with h ∈ (0, h∗) and h∗ = V (x1). Denote by x2 the unique solution of V (x1) = V (x)

such that x1 < 0 < x2 < η, see Fig. 3.1. Finally, define the period function of the center (0, 0) of 
system (3.2) by

�(h) =
∫
γh

dx

y
for each h ∈ (0, h∗).

Note that b = 2φ2
2h + φ2(c − 2φ2) and L(a, b) = �(h) for fixed a ∈ (0, ac) and c > 0. Since φ2

is fixed, we have ∂bL(a, b) > 0 if and only if �′(h) > 0.
To prove that �′(h) > 0, we shall use a monotonicity criterion by Chicone [3] for planar 

systems with Hamiltonians of the form (3.3), where V is a smooth function on (x1, x2) with a 
365



A. Geyer and D.E. Pelinovsky Journal of Differential Equations 404 (2024) 354–390
nondegenerate relative minimum at the origin. According to the main theorem in [3] the period 
function �(h) is monotonically increasing in h if the function

W(x) := V (x)

(V ′(x))2

is convex in (x1, x2). Hence, we have to prove that W ′′(x) > 0 for every x ∈ (x1, x2). A straight-
forward computation shows that

W ′′(x) = − 3(η − x)2Rη(x)

(η2(3 − η) + 3η(η − 1)x + (1 − 3η)x2 + x3)4 ,

where

Rη(x) = (η − 1)x6 + 10η(1 − η)x5 + 5η2(7η − 9)x4 + 20η3(5 − 3η)x3

+5η3(11η2 − 22η − 1)x2 + 2η4(9 + 28η − 13η2)x + 5η5(η2 − 2η − 3).

We need to show that Rη(x) < 0 for x ∈ (x1, x2) and η ∈ (0, 3). The case η = 1 has to be consid-
ered separately, for which we find that

R1(x) = −10(x − 1)4 − 2(5 − 4x) < 0 for x ∈ (−∞,1),

and, in particular, R1(x) < 0 on (x1, x2) since x1 < 0 < x2 < η = 1. For η ∈ I := (0, 3) \ {1} we 
have to ensure that the polynomial R does not change sign on the interval � := (x1, x2) when 
varying the parameter η. To achieve this we will use a result which allows one to control the sign 
of univariate polynomials depending on a parameter, see Lemma A.1 in Appendix A. In what 
follows, Resx(f, g) stands for the multipolynomial resultant of two polynomials f and g in x
(see for instance [6,15]).

The assumptions of Lemma A.1 essentially ensure that the number of roots of the one-
parametric polynomial Rη(x) are constant on (x1, x2) when varying η ∈ (0, 3), since they depend 
continuously on the parameter η and prevent the bifurcation of roots at the boundary or appear-
ance of double roots in the interior of the interval. We will now check the assumptions one by 
one.

• Assumption (i) clearly holds for all η ∈ I .
• For assumption (ii) we compute the discriminant of Rη with respect to x,

Discx(Rη) = −6400000η23(η + 1)4(η − 1)(27η2 + 14η + 3)(η3 − 5η2 + 11η + 1)

and see that it is different from zero on I since the term η3 − 5η2 + 11η + 1 has only a 
negative real root and all other terms do not have any real roots on I .

• For assumption (iv) we need to show that Rη does not vanish in the boundary points x1, x2
of �. Since we do not have explicit expressions for these points we will compare Rη with 
other polynomials with explicitly known roots since x1 is the nontrivial zero of V ′(x) and x2
is the unique zero of V (x1) − V (x) in (x1, η). Since

Resx(Rη,V
′) = 5η15(η + 1)2(η − 3)2(27η2 + 14η + 3)2 	= 0,
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for η ∈ I , the polynomials Rη and V ′ do not have a common root, so in particular Rη(x1) 	= 0
for η ∈ I . For the other boundary point x2, we define

Pη(x) := Resy(V
′(y),V (y) − V (x))

and compute

Resx(Rη,Pη) = 25η45 (η + 1)7 (η − 3)6
(

9η2 + 21η + 16
)(

27η2 + 14η + 3
)2

Q(η),

where Q is a polynomial of degree 34 whose expression we omit. We use Sturm’s method, 
see [48, Theorem 5.6.2], to prove that it has one root at η = η1 ≈ 1.083, and find the rational 
lower and upper bounds

η1 ∈ [η1, η̄1] :=
[

277

256
,

555

512

]
⊂ I.

This proves that Rη(x2) 	= 0 for η ∈ I \ {η̄}. Therefore, the number of zeros of Rη(x) on � is 
constant for η ∈ I \ {η1}. The value η = η1 is treated separately in the last item of the proof.

• For assumption (iii) we have to show that there exists some η in each of the subintervals of 
I \ {η1} such that Rη(x) 	= 0. For η = 1

2 ∈ (0, 1),

R 1
2
(x) = 1

128

(
−64x6 + 320x5 − 880x4 + 1120x3 − 740x2 + 316x − 75

)
.

Using again Sturm’s method we can show that R 1
2

has two real roots ri , i = 1, 2, for which 
we can find rational lower and upper bounds such that ri ∈ [ri , ̄ri] =: Ii , i = 1, 2, for instance

r1 ∈ I1 =
[

327

512
,

655

1024

]
and r1 < r2 ∈ I2 =

[
991

1024
,

31

32

]
.

To show that the two roots are outside of � we use Sturm’s method once more for the 
polynomial P 1

2
(x) to find rational bounds for

x2 ∈ [x2, x̄2] :=
[

94993

131072
,

23749

32768

]
.

Then it is straightforward to see that V (x̄2) − V (r1) < 0, which implies that x2 < x̄2 < r1 <

r1 < r2 since V is monotone increasing for x > 0. Hence R 1
2
(x) 	= 0. Similarly, we show 

that Rη 	= 0 for η = η1 ∈ (1, η1) and η = 2 ∈ (η̄1, 3). Then, by Lemma A.1, Rη(x) 	= 0 on �
for all η ∈ I \ {η1} and one can easily check that Rη(x) < 0 on � in each of the subintervals 
of I \ {η1}.

• To ensure that also Rη1(x) < 0 we prove that Rη is monotone in a neighborhood of η1, 
i.e. we show that R′

η(x) 	= 0 on � for η ∈ (η1, η̄1) using again Lemma A.1. Indeed, similarly 
as above we show that Rη(x1)Rη(x2)Discx(R

′
η) 	= 0 for η ∈ (η1, η̄1) and evaluating R′

η(x)

in one value, for instance η = 1083/1000 ∈ (η1, η̄1), we find using Sturm’s method that 
R′ (x) 	= 0 on � for η ∈ (η1, η̄1).
η
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This concludes the proof that W ′′(x) > 0 for x ∈ (x1, x2) and η ∈ I , which yields �′(h) > 0
by the main theorem in [3]. �
3.2. Monotonicity of the period function with respect to the parameter a

We shall study monotonicity properties of the period function L(a, b) as a function of a for 
fixed c > 0 and b ∈ (−c2, 18c2). This result will be used to prove the last assertion of Theorem 1.1, 
see Corollary 4.7.

Lemma 3.2. Fix c > 0 and b ∈ (−c2, 18c2). The period function L(a, b) satisfies the following 
properties:

• It is strictly monotonically increasing in a if b ∈ (−c2, − 2
9c2];

• It has a unique critical point in a, which is a maximum, if b ∈ (− 2
9c2, 0);

• It is strictly monotonically decreasing in a if b ∈ [0, 18c2).

Remark 3.3. The proof of Lemma 3.2 follows very closely the one carried out in [23] for the 
period function of the CH equation and relies strongly on the tools developed in [16].

In contrast to the previous subsection, where periodic smooth traveling waves are charac-
terized as solutions of the second-order equation (2.3), we now regard the traveling waves as 
solutions of the equivalent second-order equation (2.2). For convenience, we rewrite (2.2) as a 
planar system such that its center is located at the origin. This is obtained via the change of 
variables

{
x = φ − c√

�
+ θ, y = φ′

√
�

}
,

where � := c2 − 8b > 0 and θ := 1
4

(
3c√
�

− 1
)

> 0. Periodic orbits are obtained from the planar 
system

⎧⎨
⎩

x′ = y,

y′ = x + 2x2 − y2

x − θ
,

(3.4)

which is analytic away from the singular line x = θ and has the analytic first integral

H(x,y) = A(x) + C(x)y2,

with A(x) = − 1
6x2(3x2 +2x(1 −2θ) −3θ) and C(x) = 1

2 (x − θ)2. The first integral satisfies the 
hypotheses in Proposition A.2 with B(x) = 0. Moreover, its integrating factor K(x) = (x − θ)2

depends only on x. The function A(x) satisfies A(0) = 0 and has a minimum at x = 0, which 
yields a center at (0, 0), and two local maxima at x = θ and x = − 1

2 , the latter one yielding a 
saddle point at (− 1

2 , 0). The period function associated to the center of the differential system 
(3.4) can be written as
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Fig. 3.2. A sketch of the period annulus P of the center at the origin of system (3.4) for θ ∈ (0, 12 ) (left) and θ ∈ [ 1
2 , ∞)

(right).

�(h) =
∫
γh

dx

y
for h ∈ (0, h∗),

where γh is the periodic orbit inside the energy level {(x, y) : H(x, y) = h} with either h∗ =
A(− 1

2 ) for θ ∈ [ 1
2 , ∞) or h∗ = A(θ) for θ ∈ (0, 12 ).

When θ ≥ 1
2 , we find that A(θ) ≥ A(− 1

2 ), in which case the period annulus P is bounded 
by the homoclinic orbit at the saddle point, see the right panel of Fig. 3.2. When θ ∈ (0, 12 ) the 
outer boundary of P consists of a trajectory with α and ω-limit in the straight line {x = θ} and 
the segment between these two points, see the left panel of Fig. 3.2. In view of these structural 
differences, we will study the monotonicity of the period function separately for θ ∈ (0, 12 ) and 
for θ ≥ 1

2 .
Recall that a mapping σ is said to be an involution if σ ◦ σ = Id. The function A defines an 

involution σ satisfying A = A ◦ σ . We find that

A(x) − A(z) = −1

6
(x − z)S(x, z), (3.5)

where

S(x, z) := 3x3 + (3z + 2 − 4θ)x2 + (3z2 + 2z − 4θz − 3θ)x + 3z3 + 2z2 − 4θz2 − 3 θz,

such that S
(
x, σ(x)

)= 0. Let (x�, xr) be the projection onto the x-axis of the period annulus P
around the center at the origin of the differential system (3.4). Given an analytic function f on 
(x�, xr) \ {0} one can define its σ -balance to be

Bσ

(
f
)
(x):= f (x) − f

(
σ(x)

)
.

2
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The number of zeros of the sigma balance of certain polynomials gives upper bounds for the 
number of critical points of the period function, see [16] and Appendix A.2, as we will study 
below. The proof of the following auxiliary result is a straightforward computation of the first 
coefficients in the Taylor expansion of the period function �(h) using standard techniques (see 
for example [18]).

Lemma 3.4. The first two period constants of the period function �(h) are given by

�1 = π(4θ + 1)(5θ − 1)

6θ
,

�2 = − π

288θ2

(
−48θ6 − 144θ5 − 1808θ4 + 1152θ5/2 + 1096θ3 + 741θ2 + 322θ + 13

)
,

such that the expansion of � is given by �(h) = 2π
√

θ + �1h
2 + �2h

4 +O(h5).

We are now in position to prove monotonicity of the period function �(h) for θ ≥ 1
2 .

Lemma 3.5. If θ � 1
2 , then the period function �(h) is monotonically increasing.

Proof. For θ � 1
2 , the projection of the period annulus on the x-axis is (− 1

2 , xr), where A(xr) =
A(− 1

2 ). To prove that the period function �(h) has no critical points we will use Proposition A.2, 
which gives an upper bound on the number of critical periods in terms of the number of zeros of 
the sigma balance Bσ (�1) of �1. Our goal is to prove that Bσ (�1) 	= 0 on (0, xr). Note that since 
Bσ (f ) ◦ σ = −Bσ (f ) and σ maps (0, xr) to (x�, 0), we may for convenience study the latter 
interval, which in our case is (− 1

2 , 0). The function �1 is defined in terms of A, C and K , and 
takes the form

�1(x) =
√

2

6

(4θ + 1)(x + 1)

(2x + 1)3(x − θ)
.

We find that L
(
x, �1(x)

)≡ 0 with

L(x, y):= (4 θ + 1) (x − y) (−8x − 8) y3 +
(

8xθ − 8x2 + 8 θ − 20x − 12
)

y2

+
(

8 θ x2 − 8x3 + 20xθ − 20x2 + 12 θ − 18x − 6
)

y

+ 8 θ x2 − 8x3 + 12xθ − 12x2 + 5 θ − 6x − 1.

We find that

Resz

(
L(x, z),L(y, z)

)= 8192(θ + 1)(4θ + 1)8(x − y)4T (x, y)4,

with T a bivariate polynomial of degree 12 in x and y, which also depends polynomially on θ . 
Finally

R(x):= Resy

(
S(x, y), T (x, y)

)= (2x + 1)12(x − θ)4(θ + 1)3(4θ + 1)4R(x)4,
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where R is a univariate polynomial of degree 10 in x depending polynomially on θ , and S was 
defined in (3.5).

Let us denote by Z(θ) the number of roots of R on (− 1
2 , 0) counted with multiplicities. We 

claim that Z(θ) = 0 for all θ � 1
2 . For θ = 1

2 this can be easily verified by applying Sturm’s 
method, see [48, Theorem 5.6.2]. To prove it for θ > 1

2 note that

R(0) = (5θ − 1)(θ + 1)(64θ3 + 48θ2 + 21θ + 1)

and

R

(
−1

2

)
= 9

2
(2θ − 1)(1 + 2θ)4,

which do not vanish for θ > 1
2 . The discriminant of R with respect to x, Discx(R), is a polyno-

mial of degree 70 in θ with no real roots for θ > 1
2 . Choosing one value of θ > 1

2 and applying 
Sturm’s method, we find that Z(θ) = 0 for all θ ∈ ( 1

2 , +∞) using Lemma A.1. Therefore, R
does not vanish on (− 1

2 , 0) for any θ � 1
2 . In view of (a) in Proposition A.3 this implies that 

Bσ

(
�1
) 	= 0 on (− 1

2 , 0). Since by Proposition A.2 the number of critical periods is bounded 
above by the number of roots of Bσ (l1) it follows that the period function is monotonous. Fi-
nally, the result follows by noting that, thanks to Lemma 3.4, the first period constant �1 is 
positive for θ � 1

2 . �
Now we study the period function �(h) for θ ∈ (0, 12 ). The following lemma describes the 

behavior of the period function near its outer boundary.

Lemma 3.6. If θ ∈ (0, 12 ), then the period function �(h) satisfies lim
h→hm

�′(h) = −∞, where hm =
A(θ) is the energy level of the outer boundary of P .

Proof. It was proven in [23] that the derivative of the period function �(h) can be written as

�′(h) = 1

h

∫
γh

R(x)
dx

y
,

where

R= 1

2C

(
KA

A′

)′
− K(AC)′

4A′C2 .

Taking into account the respective definitions of these quantities, we find that

R(x) = x(x + 1)(4θ + 1)

6(2x + 1)2(x − θ)
.

For θ ∈ (0, 12 ) and h ∈ (0, hm), we have that h − A(x) = (x − x−
h )(x − x+

h )(x − x�
h)(x − xr

h), 
where x� < − 1 < x� < x− < 0 < x+ < θ < xr , see Fig. 3.3. In particular, the projection of γh
h 2 h h h
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Fig. 3.3. The distribution of roots of the function h − A(x) in the proof of Lemma 3.6 for θ ∈ (0, 1
2 ).

onto the x-axis is [x−
h , x+

h ] so that we split the integral into two parts,

�′(h) = 2

h
[I1(h) + I2(h)] ,

where

I1(h) =
0∫

x−
h

f (x,h)dx and I2(h) =
x+
h∫

0

f (x,h)dx

with

f (x,h) = R(x)
√

C(x)√
h − A(x)

= −(4θ + 1)x(x + 1)

6
√

2(2x + 1)2
√

(x − x−
h )(x − x+

h )(x − x�
h)(x − xr

h)

.

In order to study I1, let us write f (x, h) = g1(x,h)√
x−x−

h

, where

g1(x,h):= −(4θ + 1)x(x + 1)

6
√

2(2x + 1)2
√

(x − x+
h )(x − x�

h)(x − xr
h)

.

Note that g1 is a continuous function on (− 1
2 , 0] ×(0, hm). Consequently there exists M1 ∈ R

such that M1 := sup
{
g1(x, h) : (x, h) ∈ [xr , 0] ×[ 1

2hm, hm]}. In addition, observe that M1 > 0 for 
− 1

2 < x < 0. Thus for h ∈ ( 1
2hm, hm) we have that

I1(h) =
0∫

x−
h

g1(x,h)dx√
x − x−

h

� M1

0∫
x−

dx√
x − x−

h

h
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= 2M1

√
−x−

h

<
√

2M1.

In order to study I2 let us write f (x, h) = g2(x,h)√
(x−x+

h )(x−xr
h)

, where

g2(x,h):= −(4θ + 1)x(x + 1)

6
√

2(2x + 1)2
√

(x − x−
h )(x − x�

h)

.

Since g2 is continuous on [0, ∞) ×(0, hm), there exists M2 := sup
{
g2(x, h) : (x, h) ∈ [0, θ ] ×

[ 1
2hm, hm]} and we observe that M2 < 0 for 0 < x < θ . Consequently, if h ∈ ( 1

2hm, hm), then

I2(h) =
x+
h∫

0

g2(x,h)dx√
(x − x+

h )(x − xr
h)

� M2

x+
h∫

0

dx√
(x − x+

h )(x − xr
h)

= M2 ln

⎛
⎜⎝
√

xr
h/x

+
h + 1√

xr
h/x

+
h − 1

⎞
⎟⎠ ,

where the upper bound diverges to −∞ as h → hm since M2 < 0 and x+
h , xr

h → θ as h → hm. 
Since �′(h) = 2

h

(
I1(h) + I2(h)

)
, the bound on I1(h) and the divergence of I2(h) as h → hm

imply the result. �
We are now ready to prove the monotonicity result of the period function �(h) in the case that 

θ ∈ (0, 12 ).

Lemma 3.7. For θ ∈ (0, 12 ) the period function �(h)

(a) is monotonically decreasing for θ ∈ (0, 15 ],
(b) has a unique critical period, which is a maximum, for θ ∈ ( 1

5 , 12 ).

Proof. For θ ∈ (0, 12 ) the projection of the period annulus onto the x-axis is (x�, θ), where 
A(x�) = A(θ) = hm, see Fig. 3.3. We proceed in exactly the same way as we did for θ > 1

2 , 
i.e. applying Propositions A.2 and A.3 which bound the number of critical periods from above 
by the number of roots of the sigma balance of certain functions.

Let us now denote by Z(θ) the number of roots of R on (0, θ) counted with multiplicities and 
let R be defined as in the proof of Lemma 3.5. We find that R(0) has a root at θ = 1

5 ∈ (0, 12 ), 
while
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R(θ) = (θ + 1)3(2θ − 1)3(1 + 2θ)4

does not have a real root for θ ∈ (0, 12 ). The discriminant of R with respect to x, Discx(R), is 
a polynomial of degree 70 that has only one real root on (0, 12) in θ = 1

5 . Therefore, Z(θ) is 
constant on I1 := (0, 15 ) and on I2 := ( 1

5 , 12 ). Choosing θ = 1
10 ∈ I1 we find that R does not 

vanish on (0, 1
10 ) and hence Z(θ) = 0 for all θ ∈ (0, 15 ). For θ = 1

5 , we find that R 	= 0 on (0, 15 )

as well by applying Sturm’s method. Hence, it follows from Proposition A.2 that Bσ

(
�1
) 	= 0

on (0, θ), and we may conclude that the period function is monotonous for θ ∈ (0, 15 ]. On the 
other hand, choosing θ = 3

10 ∈ I2 we find that R vanishes once, which implies that the criterion 
in Proposition A.2 does not apply. Therefore, we move on to studying Bσ

(
�2
)
, where

�2 =
√

2

36

(4θ + 1)P (x)

(x − θ)3(2x + 1)5
,

and L(x, �2(x)) ≡ 0 with P and L polynomials which we omit for the sake of brevity. As before, 
we compute Resz

(
L(x, z), L(y, z)

)= T (x, y), with T a bivariate polynomial which also depends 
polynomially on θ , and R(x) := Resy

(
S(x, y), T (x, y)

) = 12
√

2x(−x + θ)3(4θ + 1)3(2x +
1)5R(x), where R is a univariate polynomial of degree 30 in x depending polynomially on θ , 
and S was defined in (3.5).

Let us denote by Z(θ) the number of roots of R on (0, θ) counted with multiplici-
ties. We claim that Z(θ) = 1 for all θ ∈ ( 1

5 , 12 ). We find that in that parameter interval, 
R(0)R(θ)Discx(R) 	= 0 and hence Z(θ) is constant. Evaluating in θ = 3

10 ∈ ( 1
5 , 12 ) and using 

Sturm’s method we find that R(x) has exactly one real root in (0, 3
10 ) and hence Z(θ) = 1 for 

all θ ∈ ( 1
5 , 12 ). In view of Proposition A.2 for i = 2 > 1 = n we may conclude that the number of 

critical periods is at most 1.
Recall from Lemma 3.6 that �′(h) → −∞ as h tends to hm for all θ ∈ (0, 12 ). Since the first 

period constant �1 computed in Lemma 3.4 is negative for θ ∈ (0, 15 ) and positive for θ ∈ ( 1
5 , 12 ), 

we conclude that the period function �(h) is monotonous decreasing near both endpoints of 
(0, hm) for all θ ∈ (0, 15 ), while it is increasing near h = 0 and decreasing near h = hm for θ ∈
( 1

5 , 12 ). For θ = 1
5 we have that �1 = 0 and �2 < 0, and hence the period function is decreasing 

near the endpoint h = 0. Taking into account the upper bounds derived above, we may conclude 
that the period function �(h) is monotonous decreasing for θ ∈ (0, 15 ] and it has a unique critical 
period which is a maximum for θ ∈ ( 1

5 , 12 ). �
Remark 3.8. For the sake of completeness we give the limiting value of the integral defining the 
period function at the right endpoint of its interval of definition:

�hm = 1

2
ln

(
(θ + 1)(1 − 2θ)

4θ + 1 + 3
√

θ(1 + 2θ)

)
.

Hence �hm is positive and finite on (0, 12).

We finish this section with the proof of Lemma 3.2.
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Fig. 3.4. The period function L(a, b) versus a for c = 1 and three values of b: b = 0 (left), b = −0.2 (middle), and 
b = −0.4 (right).

Proof of Lemma 3.2. The smooth periodic solutions of the second-order equation (2.2) are pe-
riodic orbits of system (3.4), which are parametrized by h ∈ (0, hm) and whose periods are 
assigned by the period function �(h). A straightforward computation shows that L(a, b) = �(h)

and

a = −
(√

� − 3c

4

)2 (
2h

�

θ
+

√
� − 3c

4

(√
� − 3c

4
+ c

))
.

Therefore, da
dh

< 0 and so for fixed b ∈ (−c2, 18c2) and c > 0 we have that

sign(∂aL(a, b)) = −sign(�′(h)),

which means that the monotonicity properties of �(h) imply those of L(a, b). More precisely, in 
view of the definition of θ , the parameter regime θ ≥ 1

2 corresponds to values b ∈ [0, 18c2) for 
which ∂aL(a, b) < 0 in view of Lemma 3.5. On the other hand, the value θ = 1

5 corresponds to 
b = − 2

9c2 and we infer from Lemma 3.7 that ∂aL(a, b) > 0 for b ∈ (−c2, − 2
9c2) whereas L(a, b)

has a unique critical point in a, which is a maximum, for b ∈ (− 2
9c2, 18c2). This concludes the 

proof. �
Remark 3.9. Fig. 3.4 illustrates the result of Lemma 3.2 for c = 1. The period function L(a, b)

is monotonically decreasing in a for b = 0, is non-monotone in a with a single maximum for 
b = −0.2, and is monotonically increasing in a for b = −0.4. The range of a values depends on 
the values of b as is clear from Fig. 1.1. Note that the colors do not correspond to the colors of 
Fig. 1.2, where the values of L = L(a, b) are fixed.

4. Spectral properties of the Hessian operator L

Here we shall consider the spectral properties of the Hessian operator L given by (1.8). Since 
L : L2

per → L2
per is self-adjoint, its spectrum σ(L) consists of the absolutely continuous part, 

denoted by σc(L), and the point spectrum, denoted by σp(L). Since c − φ is a bounded multi-
plicative operator in L2

per and −3c(4 − ∂2
x )−1 is a compact operator in L2

per, Kato’s theorem [30]
implies that

σc(L) = σ(c − φ) = Range(c − φ)
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Since c − φ > 0 by Lemma 2.1, there exists

λ0 := c − max
x∈TL

φ(x) > 0

such that σp(L) admits only finitely many eigenvalues of finite multiplicities below λ0.
The following lemma gives an efficient technique to count the negative and zero eigenvalues 

of L. It is an analogue of the Birman–Schwinger principle used in quantum mechanics [24, 
Section 5.6]. A similar criterion was developed in our previous work [22].

Lemma 4.1. For every λ ∈ (−∞, λ0) with λ0 > 0, let the Schrödinger operator K(λ) : H 2
per ⊂

L2
per → L2

per be defined by

K(λ) := −∂2
x + c − 4φ − 4λ

c − φ − λ
. (4.1)

Then, we have

#{λ < 0 : Lw = λw, w ∈ L2
per} = #{μ < 0 : K(0)v = μv, v ∈ H 2

per}, (4.2)

where #{·} denotes the number of eigenvalues, taking into account their multiplicities.

Proof. The spectral problem Lw = λw with w ∈ L2
per can be rewritten in the variable v :=

(4 − ∂2
x )−1w as the spectral problem K(λ)v = 0 with v ∈ H 2

per. Since the operator

(4 − ∂2
x ) : H 2

per ⊂ L2
per → L2

per

is invertible with a bounded inverse in L2
per, the correspondence v = (4 − ∂2

x )−1w implies that if 
λ < 0 is an eigenvalue of L, then K(λ) admits a zero eigenvalue of the same multiplicity. Because 
of the compact embedding of H 2

per into L2
per, we have

σ(K(λ)) = σp(K(λ)) for λ ∈ (−∞, λ0),

that is, the spectrum of K(λ) consists of eigenvalues as long as

A(x,λ) := c − 4φ(x) − 4λ

c − φ(x) − λ

is bounded in x. Since

∂λA(x,λ) = − 3c

(c − φ(x) − λ)2 < 0,

the eigenvalues of K(λ) are monotonically decreasing functions of λ. Since

lim A(x,λ) = 4,

λ→−∞
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Fig. 4.1. The lowest five eigenvalues of K(λ) versus λ for a = 0.04, b = 0 (left) and a = 0.001, b = −0.3 (right) with 
c = 1. Eigenvalues are strictly decreasing in λ.

there exists λ∞ ∈ (−∞, 0) such that A(x, λ) > 0 for all x ∈ R and λ < λ∞, and hence 
σp(K(λ)) > 0 for λ ∈ (−∞, λ∞). Each eigenvalue of K(λ), say μ(λ), is decreasing and pos-
itive for large negative λ, and therefore crosses the horizontal axis at most once in (−∞, 0). 
If there exists λ ∈ (−∞, 0) such that μ(λ) = 0, then μ(0) < 0, i.e. it corresponds to a negative 
eigenvalue of K(0). Therefore, the number of negative eigenvalues of K(0) equals the number of 
λ for which K(λ)v = 0. In view of the correspondence with the number of negative eigenvalues 
of L, this proves the equality (4.2). �
Remark 4.2. Because Lφ′ = 0, we have K(0)ν′ = 0 so that 0 is an eigenvalue of K(0).

Remark 4.3. Fig. 4.1 illustrates the criterion in Lemma 4.1 with numerical approximations of 
the eigenvalues of K(λ) in L2

per versus λ for two different values of (a, b) with c = 1. The left 
panel corresponds to the choice (a, b) = (0.04, 0) above the curve a = a0(b) shown on Fig. 1.1. 
Only the first eigenvalue of K(λ) crosses the zero level (dotted line) in (−∞, 0), whereas the 
second eigenvalue crosses the zero level at λ = 0. The right panel corresponds to the choice 
(a, b) = (0.001, −0.3) below the curve a = a0(b) shown on Fig. 1.1. The first two eigenvalues 
of K(λ) cross the zero level in (−∞, 0) and the third eigenvalue, which is close to the second 
eigenvalue, crosses the zero level at λ = 0. The zero eigenvalue of K(0) exists in both cases, in 
accordance with Remark 4.2.

The next result uses the criterion in Lemma 4.1 to relate the number of negative eigenvalues 
and the multiplicity of the zero eigenvalue of L to the monotonicity of the period function L(a, b)

defined in (3.1).

Lemma 4.4. The linearized operator L : L2
per → L2

per given by (1.8) admits

• two negative eigenvalues and a simple zero eigenvalue if ∂aL > 0;
• a simple negative eigenvalue and a double zero eigenvalue if ∂aL = 0;
• a simple negative eigenvalue and a simple zero eigenvalue if ∂aL < 0,

where L(a, b) is given by (3.1), and the rest of its spectrum in L2
per is strictly positive.

The idea of the proof of Lemma 4.4 is to view the operator K(0) as a Schrödinger operator 
with an even L-periodic smooth potential and to analyze the solutions of K(0)v = 0. In the final 
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step of the proof we use the following result from Floquet theory, see for instance [27, Lemma 
4.2], [42, Theorem 3.1], and also the classical results in [13,41].

Proposition 4.5. Let M := −∂2
x + Q(x) be the Schrödinger operator with the even, L-periodic, 

smooth potential Q. Assume that Mw = 0 is satisfied by a linear combination of two solutions 
ϕ1 and ϕ2 satisfying

ϕ1(x + L) = ϕ1(x) + θϕ2(x)

and

ϕ2(x + L) = ϕ2(x)

with some θ ∈ R. Assume that ϕ2 has two zeros on the period of Q. The zero eigenvalue of M
in L2

per is simple if θ 	= 0 and double if θ = 0. It is the second eigenvalue of M if θ ≥ 0 and the 
third eigenvalue of M if θ < 0.

Proof of Lemma 4.4. By Lemma 4.1, we need to control the negative and zero eigenvalues of 
the linear operator K(0) : H 2

per ⊂ L2
per → L2

per given by (4.1). Using the change of variables 
w = (4 − ∂2

x )v, the second-order differential equation K(0)v = 0 can be written as

c(v − v′′) − φw = 0.

This equation has the two solutions v1 = ν′ and v2 = ∂aν, which follows by differentiating (2.10)
in x and a since c and d = b/4 are independent of x and a. In other words,

Lφ′ = ∂x�c,b(φ) = 0 and L∂aφ = ∂a�c,b(φ) = 0

yield

K(0)ν′ = 0 and K(0)∂aν = 0.

Let {y1, y2} be the fundamental set of solutions associated to the equation K(0)v = 0 in 
H 2(0, L) such that

{
y1(0) = 1,

y′
1(0) = 0,

{
y2(0) = 0.

y′
2(0) = 1.

(4.3)

We set φ(0) = φ(L) = φ+ and φ′(0) = φ′(L) = 0, where φ+ is the turning point for the maxi-
mum of φ in x satisfying the equation

(c − φ±)2(b + φ2±) = a, (4.4)

in view of the first-order invariant (1.7). It follows from (2.11) that we can define

ν± := 1
φ± − 1

φ2± − b
(4.5)
3 6c 12c

378



A. Geyer and D.E. Pelinovsky Journal of Differential Equations 404 (2024) 354–390
as the corresponding turning points of ν = (4 − ∂2
x )−1φ. We compute from (2.10) and (4.5) that

ν′′(0) = 1

3c
(cφ+ − 2φ2+ − b) = 1

3c
(c − φ+)φ′′(0)

and

∂aν+ = 1

3c
(c − φ+)∂aφ+,

which are both nonzero since c − φ+ > 0, ∂aφ+ 	= 0, and φ′′(0) 	= 0. Moreover, differentiating 
(4.4) in a yields

2(c − φ+)(cφ+ − 2φ2+ − b)∂aφ+ = 1,

from which, together with (2.2), we obtain

φ′′(0)∂aφ+ = 1

2(c − φ+)2 > 0.

Due to the normalization (4.3), we can then define

y1(x) := ∂aν(x)

∂aν+
, y2(x) := ν′(x)

ν′′(0)
,

and obtain y1(L) = y1(0) = 1, y′
1(0) = 0, and

y′
1(L) = − ∂aL

∂aν+
ν′′(0) = − ∂aL

∂aφ+
φ′′(0) = − ∂aL

2(c − φ+)2(∂aφ+)2 ,

where we have differentiated ν′(L) = 0 with respect to a and used that L =L(a, b). On the other 
hand, y2(L) = y2(0) = 0 and y′

2(L) = y′
2(0) = 1. If we denote θ := y′

1(L), then y1(x + L) =
y1(x) + θy2(x). Note that the sign of θ is opposite to that of ∂aL. Hence, by Proposition 4.5, 
the zero eigenvalue of K(0) is simple if ∂aL 	= 0 and double if ∂aL = 0. Moreover, it is the 
second eigenvalue if ∂aL ≤ 0 and the third eigenvalue if ∂aL > 0. This proves the assertion of 
the Lemma. �
Remark 4.6. In the case of smooth solitary waves on a constant background, the Schrödinger 
operator K(λ) : H 2(R) ⊂ L2(R) → L2(R) for λ ∈ (−∞, λ0) admits a finite number of simple 
isolated eigenvalues and an absolutely continuous spectrum located in [μ∞, ∞), where μ∞ :=

lim|x|→∞A(x, λ). Since φ(x) → φ1 as |x| → ∞ on the top boundary of the region of Lemma 2.1, 

we have

lim|x|→∞A(x,0) = c − 4φ1

c − φ1
> 0

and K(0)ν′ = 0 with ν′ ∈ H 2(R). By Sturm’s nodal theorem, since ν′ has only one zero on R, 
we have
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#{μ < 0 : K(0)v = μv, v ∈ H 2(R)} = 1

so that

#{λ < 0 : Lw = λw, w ∈ L2(R)} = 1

by the criterion in Lemma 4.1. Thus, L : L2(R) → L2(R) has a simple negative eigenvalue and a 
simple zero eigenvalue in the case of smooth solitary waves. This yields a much simpler argument 
compared to the theory developed in [37].

We use the monotonicity properties of the period function in Lemma 3.2 and the criterion in 
Lemma 4.4 to prove the last assertion of Theorem 1.1 stated as the following corollary.

Corollary 4.7. For a fixed c > 0, there exists a smooth curve a = a0(b) for b ∈ (− 2
9c2, 0) inside 

the existence region of smooth periodic waves in Lemma 2.1 such that the linear operator L in 
L2

per has only one simple negative eigenvalue above the curve and two simple negative eigen-
values (or a double negative eigenvalue) below the curve, the rest of its spectrum for a 	= a0(b)

includes a simple zero eigenvalue and a strictly positive spectrum bounded away from zero. Along 
the curve a = a0(b), the linear operator L in L2

per has only one simple negative eigenvalue, a 
double zero eigenvalue, and the rest of its spectrum is strictly positive.

Proof. Let n(L) denote the number of negative eigenvalues of L, taking into account their multi-
plicities. By Lemma 3.2, ∂aL > 0 for every a if b ∈ (−c2, − 2

9c2] so that n(L) = 2 by Lemma 4.4. 
Similarly, ∂aL < 0 for every a if b ∈ [0, 18c2) so that n(L) = 1. For b ∈ (− 2

9c2, 0), there exists 
exactly one a = a0(b) for which the mapping a 
→ L(a, b) has the maximum point. This curve 
is shown on Fig. 1.1. Hence, ∂aL > 0 for a < a0(b) with n(L) = 2 and ∂aL < 0 for a > a0(b)

with n(L) = 1. Combining the results in these three regions, we conclude that n(L) = 1 above 
the curve and n(L) = 2 below the curve inside the existence region. Along the curve a = a0(b), 
∂aL = 0 so that n(L) = 1 and the zero eigenvalue of L is double. �
Proof. The proof of Theorem 1.1 is complete with the results of Lemma 2.1 Lemma 3.1, and 
Corollary 4.7. �
5. Energy stability criterion

To study the stability of the smooth periodic traveling waves with the profile φ with respect 
to co-periodic perturbations, we consider the decomposition

u(t, x) = φ(x − ct) + w(t, x − ct).

When this is substituted into the DP equation (1.1) and quadratic terms in w are neglected, we 
obtain the linearized equation in the form

wt − wtxx − cwx + cwxxx + 4φwx + 4wφ′ = 3φ′wxx + 3wxφ
′′ + φwxxx + wφ′′′,

where x stands for the traveling wave coordinate x − ct . The linearized equation can be written 
in the Hamiltonian form
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wt = −JLw, (5.1)

where J is the same as in (1.5) and L is the same as in (1.8). Indeed, the equivalence of the 
linearized equations follows from the relation

∂x(4 − ∂2
x )
[
(c − φ)w − 3c(4 − ∂2

x )−1w
]

= (c − 4φ)wx − (c − φ)wxxx − 4φ′w + 3φ′wxx + 3φ′′wx + φ′′′w.

Linearization of the mass and energy functionals (1.2) and (1.4) at the traveling wave with the 
profile φ using a co-periodic perturbation with the profile w yields the constrained subspace of 
L2

per of the form

X0 :=
{
w ∈ L2

per : 〈1,w〉 = 0, 〈φ2,w〉 = 0
}

. (5.2)

The following lemma shows that the two constraints are invariant in the time evolution of the 
linearized equation (5.1).

Lemma 5.1. Let w ∈ C(R, Hs
per) ∩C1(R, Hs−1

per ) be the global solution to the linearized equation 

(5.1) with s > 3
2 for initial data w(0, ·) = w0 ∈ Hs

per. If w0 ∈ X0, then w(t, ·) ∈ X0 for every 
t ∈R.

Proof. Since J is skew-adjoint and J1 = 0, we obtain

d

dt
〈1,w〉 = −〈1, JLw〉 = 〈J1,Lw〉 = 0.

Similarly, since L∗ = L, Jφ2 = −2cφ′, and Lφ′ = 0, we obtain

d

dt
〈φ2,w〉 = −〈φ2, JLw〉 = 〈Jφ2,Lw〉 = −2c〈φ′,Lw〉 = −2c〈Lφ′,w〉 = 0.

It follows from the invariance of the two constraints under the time evolution of the linearized 
equation (5.1) that if w0 ∈ X0, then w(t, ·) ∈ X0 for every t ∈R. �
Remark 5.2. Formal differentiation of the second-order equation (2.10) with d = b/4 in b and c
yields

L∂bφ = 1

4
, L∂cφ = − b

4c
− φ2

2c
. (5.3)

The relations (5.3) allow us to characterize 1 ∈ Range(L) and φ2 ∈ Range(L) in L2
per provided 

that we can take derivatives in b and c of the family of periodic waves with the profile φ ∈ H∞
per

along a curve with fixed period L =L(a, b).

The following lemma uses the fact that the period function is monotone in b, see Lemma 3.1, 
to guarantee the existence of a unique curve in the (a, b) parameter space for which the smooth 
periodic solutions with the profile φ ∈ H∞ have a fixed period L for every L ∈ (0, ∞).
per
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Lemma 5.3. Fix c > 0 and L > 0. There exists a C1 mapping a 
→ b = BL(a) for a ∈ (0, aL)

with some aL ∈ (0, 27
256c4) and a C1 mapping a 
→ φ = 	L(·, a) ∈ H∞

per of smooth L-periodic 
solutions along the curve b = BL(a).

Proof. It follows from (2.7) that the mapping b 
→ L = L(0, b) ∈ (0, ∞) is one-to-one and onto 
at the boundary a = 0, where b ∈ (−c2, 0). The limiting L-periodic wave has a peaked profile φ
on the boundary a = 0.

Similarly, at the boundary b = b−(a), the limiting L-periodic wave corresponds to the con-
stant wave φ = φ2 and the period L is found from the linearization of the second-order equation 
(2.3) at φ = φ2. A simple computation for ϕ := φ − φ2 yields the linearized equation in the form

ϕ′′ +
(

3a

(c − φ2)4 − 1

)
ϕ = 0.

Since a = φ2(c − φ2)
3 on the boundary b = b−(a), see (2.8), it follows that the mapping

φ2 
→ ω2 := 3φ2

c − φ2
− 1 ∈ (0,∞) (5.4)

is one-to-one and onto for φ2 ∈ (c/4, c). Therefore, the mapping a 
→ L = L(a, b−(a)) ∈ (0, ∞)

is one-to-one and onto at the boundary b = b−(a). For every L ∈ (0, ∞), there exists a unique 
root of L = L(a, b−(a)), which we denote by aL.

Thus, for every fixed c > 0 and L > 0, there exists exactly one L-periodic solution on the left 
and right boundaries of the existence region, see Lemma 2.1. Since L(a, b) is smooth in (a, b)

and it is strictly increasing in b by Lemma 3.1, the existence of the C1 mapping a 
→ b = BL(a)

for a ∈ (0, aL) follows by the implicit function theorem for L(a, b) = L for every fixed L > 0. 
Indeed, ∂aL +B′

L(a)∂bL = 0 and since ∂bL > 0, B′
L(a) is uniquely defined for every a ∈ (0, aL). 

Since φ is smooth with respect to parameters by Lemma 2.1, the mapping a 
→ φ = 	L(·, a) ∈
H∞

per is C1 along the curve b = BL(a). �
Remark 5.4. The mapping b 
→ φ = �L(·, b) ∈ H∞

per may not be C1 along the curve b = BL(a)

because of the non-monotonicity of L(a, b) with respect to a shown in Lemma 3.2. In particular, 
the mapping b 
→ φ = �L(·, b) ∈ H∞

per is not C1 at the point where B′
L(a) = 0, which corre-

sponds to ∂aL = 0.

We next characterize the negative and zero eigenvalues of the Hessian operator L under the 
two constraints defining X0 given by (5.2). The restriction of L onto X0 is denoted by L|X0 with 
the corresponding notations n(L|X0) for the number of negative eigenvalues, taking into account 
their multiplicities, and z(L|X0) for the multiplicity of the zero eigenvalue. The following lemma 
gives the count of negative and zero eigenvalues under the two constraints.

Lemma 5.5. Let a 
→ b = BL(a) and a 
→ φ = 	L(·, a) ∈ H∞
per be the C1 mappings of 

Lemma 5.3. Assume that B′
L(a) 	= 0 and denote

ML(a) := M(	L(·, a)) and FL(a) := F(	L(·, a)),
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where M(u) and F(u) are given by (1.2) and (1.4). Then, n(L|X0) = 0 and z(L|X0) = 1 if and 
only if

d

da

FL(a)

ML(a)3 < 0 (5.5)

and, for B′
L(a) < 0, if additionally, M′

L(a) > 0.

Proof. Recall that the counting formulas for the negative and zero eigenvalues of L|X0 , see 
e.g. [33,45,46] and references therein, are given by

{
n(L|X0) = n(L) − n0 − z0,

z(L|X0) = z(L) + z0,
(5.6)

where n0 and z0 are the numbers of negative and zero eigenvalues (counting their multiplicities) 
of the matrix of projections

S :=
[ 〈L−11,1〉 〈L−1φ2,1〉
〈L−11, φ2〉 〈L−1φ2, φ2〉

]
. (5.7)

It follows from (5.3) with φ = 	L(·, a) being the smooth L-periodic solution along the curve 
b = BL(a) with B′

L(a) 	= 0 that

L−11 = 4∂bφ, L−1φ2 = −2c∂cφ − 2b∂bφ. (5.8)

For each part of the curve b = BL(a) for which B′
L(a) 	= 0 we introduce the inverse mapping a =

B−1
L (b) and redefine 	L(·, B−1

L (b)) ≡ �L(·, b), ML(B−1
L (b)) ≡ ML(b), and FL(B−1

L (b)) ≡
FL(b). Due to (1.2), (1.4), and (5.8), matrix S in (5.7) can be rewritten in the form

S =
[

4∂bML −2c∂cML − 2b∂bML

8∂bFL −4c∂cFL − 4b∂bFL

]
,

so that we obtain

det(S) = 16c [∂cML∂bFL − ∂bML∂cFL] . (5.9)

Due to the scaling transformation (1.9), we can write

b = c2β, 	L(·;b) = c	̂(·;β), ML(b) = cM̂L(β), FL(b) = c3F̂L(β), (5.10)

where β and the hat functions are c-independent. Substituting the transformation (5.10) into (5.9)
yields

det(S) = 16c2
[
M̂L(β)F̂ ′

L(β) − 3F̂L(β)M̂′
L(β)

]

= 16c2M̂L(β)4 d

dβ

[
F̂L(β)

M̂L(β)3

]
.

383



A. Geyer and D.E. Pelinovsky Journal of Differential Equations 404 (2024) 354–390
Recall that ∂aL + B′
L(a)∂bL = 0 and ∂bL > 0 by Lemma 3.1. For the part of the curve b =

BL(a) with B′
L(a) > 0, we have ∂aL < 0 so that n(L) = 1 and z(L) = 1 by Lemma 4.4. If

d

dβ

[
F̂L(β)

M̂L(β)3

]
< 0, (5.11)

then det(S) < 0 so that S has one positive and one negative eigenvalue. Then, n0 = 1 and z0 = 0
so that the counting formulas (5.6) give n(L|X0) = 0 and z(L|X0) = 1. Since B′

L(a) > 0 for this 
part of the curve b = BL(a), the criterion (5.11) is equivalent to (5.5).

For the part of the curve b = BL(a) with B′
L(a) < 0, we have ∂aL > 0 so that n(L) = 2 and 

z(L) = 1 by Lemma 4.4. If

d

dβ

[
F̂L(β)

M̂L(β)3

]
> 0 and

d

dβ
M̂L(β) < 0, (5.12)

then det(S) > 0. Since the first diagonal entry of S is negative, the symmetric matrix S with 
det(S) > 0 has two negative eigenvalues. Then, n0 = 2 and z0 = 0 so that the counting formulas 
(5.6) give n(L|X0) = 0 and z(L|X0) = 1. Since B′

L(a) < 0 for this part of the curve b = BL(a), 
the criterion (5.12) is equivalent to the conditions (5.5) and M′

L(a) > 0. �
Remark 5.6. It is well-known (see, e.g., [25,29]) that if n(L|X0) = 0 and z(L|X0) = 1, then the 
spectrum of JL in L2

per is located on the imaginary axis, which implies that the L-periodic wave 
is spectrally stable. Indeed, let w ∈ Dom(JL) ⊂ L2

per be the eigenvector of the spectral problem 
JLw = λw for the eigenvalue λ ∈ C. By the same computations as in Lemma 5.1, we have 
w ∈ X0 if λ 	= 0. For every w ∈ Dom(JL) ∩ X0, we obtain

λ〈Lw,w〉 = 〈LJLw,w〉 = −〈Lw,JLw〉 = −λ̄〈Lw,w〉,

so that

(λ + λ̄)〈Lw,w〉 = 0.

Since w ∈ X0 ⊂ L2
per, the conditions n(L|X0) = 0 and z(L|X0) = 1 imply that 〈Lw, w〉 = 0 can 

be satisfied if and only if w ∈ Ker(L) which contradicts λ 	= 0. Hence, 〈Lw, w〉 > 0, which 
implies that λ + λ̄ = 0 and so λ ∈ iR.

Remark 5.7. In the context of the generalized KdV equation, it was shown in [1] that the spectral 
stability of the periodic waves can be determined by the variation of conserved quantities with 
respect to the free parameters of the traveling wave solutions. This is very similar to the stability 
characterization in Lemma 5.5, where the matrix S is shown to be related to the variation of 
the two conserved quantities M(u) and F(u) of the DP equation (1.1) with respect to the free 
parameters b and c of the traveling wave solution with the same period L > 0, for which the third 
parameter a is determined along the existence curve on Fig. 1.2.
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Remark 5.8. Spectral stability of traveling periodic waves of the generalized KdV equation was 
addressed in [7,47]. We note that the structure of the Hamiltonian formulation of the DP equa-
tion (1.1) given by (1.5) is the same as in the Hamiltonian formulation of the generalized KdV 
equation, where just like here the operator J is skew-adjoint and has a finite-dimensional kernel, 
see also [29, Chapter 6.1.2].

Finally, we confirm the validity of the stability criterion of Lemma 5.5 for every point in a 
neighborhood of the boundary a−(b) where the periodic solution is constant.

Lemma 5.9. Fix c > 0 and denote aL := a−(b) for fixed period L = 2π
ω

, where b is given by (2.8)
and ω2 is given by (5.4). There exists ε > 0 such that for every a ∈ (aL − ε, aL), the conditions 
(5.5) and M′

L(a) > 0 are satisfied.

Proof. Let us parameterize the boundary a = a−(b) by φ2 ∈ (c/4, c) as in (2.8). We substitute

φ = φ2(1 + ϕ), a = φ2(c − φ2)
3(1 + α) (5.13)

for a function ϕ and a scalar α into (2.3) and obtain

ϕ′′ − ϕ + 1 + α

(1 − η−1ϕ)3 − 1 = 0, (5.14)

where η := (c−φ2)/φ2 ∈ (0, 3) as in the proof of Lemma 3.1. The period L > 0 is fixed for fixed 
c > 0 and φ2 ∈ (c/4, c) by L = 2π

ω
, where ω2 is given by (5.4). We use the Stokes expansion for 

even, L-periodic solutions with their maximum at x = 0, see also [45,46],

ϕ(x) = A cos(ωx) + A2ϕ2(x) + A3ϕ3(x) +O(A4), α = A2α2 +O(A4),

where A > 0 and ϕ2, ϕ3 are even, L-periodic functions. Substituting this expansion into the 
linearization of (5.14) and using the definition of ω in (5.4), we obtain a sequence of compatibility 
conditions at each order,

O(A2) : ϕ′′
2 + ω2ϕ2 + 6η−2 cos2(ωx) + α2 = 0,

O(A3) : ϕ′′
3 + ω2ϕ3 + 12η−2 cos(ωx)ϕ2 + 10η−3 cos3(ωx) + 3α2η

−1 cos(ωx) = 0,

from which the correction terms can be found. The solution to the inhomogeneous equation at 
the order O(A2) is given by

ϕ2(x) = −3η−2 + α2

ω2 + η−2

ω2 cos(2ωx),

where the solutions of the homogeneous equation ϕ′′
2 + ω2ϕ2 = 0 have been set to zero due to 

the arbitrariness of the parameter A. To ensure that the solution to the inhomogeneous equation 
at the order O(A3) is L-periodic and not unbounded, we have to remove the term cos(ωx) from 
the source term. After substituting the solution ϕ2 found in the previous step and recalling that
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2 cos(θ) cos(2θ) = cos(3θ) + cos(θ),

4 cos3(θ) = cos(3θ) + 3 cos(θ),

we find that this is the case if and only if α2 = − 5
2η2 .

Note that if a ∈ (aL − ε, aL) and the period L > 0 is fixed along a curve in the (a, b)-plane, 
see Fig. 1.2, then the small deviation in a implies a small deviation in α = A2α2 +O(A4) in view 
of (5.13), which yields the corresponding value of A since α2 = − 5

2η2 is fixed. The value of b
also deviates from the boundary value in (2.8) but this deviation is not needed for computations.

The next step is to expand ML(a) and FL(a) in terms of A2. Note that we can write these 
expressions in terms of the new variable ϕ given by (5.13) as follows:

ML(a) = φ2

(
L +

∮
ϕdx

)
,

FL(a) = 1

6
φ3

2

(
L + 3

∮
ϕdx + 3

∮
ϕ2dx +

∮
ϕ3dx

)
.

After straightforward computations we obtain that the expansions of ML(a) and FL(a) in terms 
of small A2 are given by

ML(a) = φ2L

(
1 − 1

2η2ω2 A2 +O(A4)

)
,

FL(a) = 1

6
φ3

2L

(
1 + 3

2
(1 − η−2ω−2)A2 +O(A4)

)
,

so that

FL(a)

ML(a)3 = 1

6L2

[
1 + 3

2
A2 +O(A4)

]
.

Since α2 < 0, we have da
dA2 < 0. It follows from d

dA2 ML(a) < 0 so that M′
L(a) > 0. Similarly, 

d
dA2

FL(a)

ML(a)3 > 0 so that the condition (5.5) is satisfied. �
Remark 5.10. The proof of Theorem 1.5 is complete with the results of Lemma 5.3, Lemma 5.5, 
Remark 5.6, and Lemma 5.9.

Remark 5.11. It is tempting to conjecture, similarly to what was proven for the CH equation 
[19], that the monotonicity of the mapping (5.5) along the entire curve with b = BL(a) is the only 
energy stability criterion needed for Theorem 1.5, whereas the information on the monotonicity 
of the mapping a 
→ ML(a) is unnecessary and the exceptional point B′

L(a) 	= 0 is irrelevant. 
However, we are not able to prove this conjecture by only using properties of the Hessian operator 
L, which is related to the differential equation (2.10). The successful strategy in [19] relies on 
the linearized operator for the second-order equation (2.3). However, this linearized operator is 
not related to the Hamiltonian formulation of the DP equation. As a result, positivity of this 
operator under two constraints no longer implies spectral stability of smooth periodic waves. For 
this reason we have not replicated the strategy of [19] here, but instead rely on the Hamiltonian 
formulation (1.5) of the DP equation (1.1).
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Data availability

No data was used for the research described in the article.

Appendix A. Some auxiliary results

We summarize some auxiliary results used in the proofs of Lemmas 3.1, 3.2, 3.5 and 3.7.

A.1. Controlling the number of roots of parametric polynomials

The following result allows one to control the number of roots of a family of one-parametric 
polynomials Gb(x). A variant of this can be found in [17, Lemma 8.1].

Lemma A.1. Consider an interval � ⊂ R and a family of real polynomials whose coefficients 
depend continuously on a real parameter b,

Gb(x) = gn(b)xn + gn−1(b)xn−1 + · · · + g1(b)x + g0(b).

Suppose there exists an open interval I ⊂ R such that:

(i) For all b ∈ I , gn(b) 	= 0.
(ii) For all b ∈ I , the discriminant of Gb with respect to x is different from zero.

(iii) There is some b0 ∈ I , such that Gb0(x) has exactly k simple roots on �.

Then for all b ∈ I , Gb(x) has exactly k simple roots on �.
Moreover, if � = �b := ((c(b), ∞) ⊂ R for some continuous function c(b) the same result holds 
if we add the hypothesis:

(iv) For all b ∈ I , Gb(c(b)) 	= 0.

The key idea of the proof is that the roots of Gb(x) depend continuously on the parameter b
since gn(b) 	= 0 in view of assumption (i). The hypothesis (ii) prevents the appearance of double 
roots in �. Hypotheses (i) and (iv) ensure that no roots enter into � from infinity or from the 
boundary of �. Therefore, the number of real roots of Gb is constant for any b ∈ I . Since Gb0(x)

has exactly k simple roots on � by hypothesis (iii), this is true for all b ∈ I .

A.2. Tools to determine the number of critical periods

The proof of monotonicity of the period function in Lemma 3.5 follows closely the one in 
[23] and strongly relies on the tools developed in [16]. In this paper the authors consider analytic 
planar differential systems

{
x′ = p(x, y),

y′ = q(x, y),
(A.1)

satisfying the following hypothesis:
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(H)
The differential system (A.1) has a center at the origin and an analytic 
first integral of the form H(x, y) = A(x) +B(x)y+C(x)y2 with A(0) =
0. Moreover its integrating factor K depends only on x.

Let (x�, xr) be the projection onto the x-axis of the period annulus P around the center at 
the origin of the differential system (A.1). Note that x� < 0 < xr . Then, by Lemma 3.1 in [16], 
the hypothesis (H) implies that M := 4AC−B2

4|C| is a well defined analytic function on (x�, xr) with 
M(0) = 0 and xM ′(x) > 0 for all x ∈ (x�, xr) \ {0}. Accordingly, there exists a unique analytic 
function σ on (x�, xr) with σ(x) = −x +o(x) such that M ◦σ = M . Note that σ is an involution
with σ(0) = 0. (Recall that a mapping σ is said to be an involution if σ ◦ σ = Id.) Given an 
analytic function f on (x�, xr) \ {0} we define its σ -balance to be

Bσ

(
f
)
(x):= f (x) − f

(
σ(x)

)
2

.

Taking these definitions into account, the statement (b) of [16, Theorem A] asserts the following:

Proposition A.2. Suppose that the analytic differential system (A.1) satisfies the hypothesis (H). 
Setting μ0 = −1, define recursively

μi :=
(

1

2
+ 1

2i − 3

)
μi−1 +

√|C|M
(2i − 3)K

(
Kμi−1√|C|M ′

)′
and �i := Kμi√|C|M ′ for i � 1.

If the number of zeros of Bσ (�i) on (0, xr), counted with multiplicities, is n � 0 and it holds that 
i > n, then the number of critical periods of the center at the origin, counted with multiplicities, 
is at most n.

In particular, we note that the period function is monotonous if n = 0.
We point out that it can be difficult to apply Proposition A.2 to determine the number of 

zeros of Bσ

(
li
)
, due to the fact that it is in general not possible to compute the involution σ

explicitly. If σ and �i are algebraic functions, then one can overcome this difficulty by using 
multipolynomial resultants Res (see for instance [6,15]). More specifically, we use the following 
result, see [16, Theorem B].

Proposition A.3. Let σ be an analytic involution on (x�, xr) with σ(0) = 0 and let � be an 
analytic function on (x�, xr) \ {0}. Assume that � and σ are algebraic, i.e., that there ex-
ist L, S ∈ C[x, y] such that L

(
x, �(x)

) ≡ 0 and S
(
x, σ(x)

) ≡ 0. Let us define T (x, y) :=
Resz

(
L(x, z), L(y, z)

)
and R(x) := Resy

(
S(x, y), T (x, y)

)
. Finally let s(x) and t (x) be, re-

spectively, the leading coefficients of S(x, y) and T (x, y) with respect to y. Then the following 
hold:

(a) If Bσ

(
�
)
(x0) = 0 for some x0 ∈ (x�, xr) \ {0}, then R(x0) = 0.

(b) If s(x) and t (x) do not vanish simultaneously at x0, then the multiplicity of Bσ

(
�
)

at x0 is 
not greater than the multiplicity of R at x0.
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