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Abstract
The dynamics of suspended two-dimensional (2D) materials has received increasing attention
during the last decade, yielding new techniques to study and interpret the physics that governs the
motion of atomically thin layers. This has led to insights into the role of thermodynamic and
nonlinear effects as well as the mechanisms that govern dissipation and stiffness in these resonators.
In this review, we present the current state-of-the-art in the experimental study of the dynamics of
2D membranes. The focus will be both on the experimental measurement techniques and on the
interpretation of the physical phenomena exhibited by atomically thin membranes in the linear
and nonlinear regimes. We will show that resonant 2D membranes have emerged both as sensitive
probes of condensed matter physics in ultrathin layers, and as sensitive elements to monitor small
external forces or other changes in the environment. New directions for utilizing suspended 2D
membranes for material characterization, thermal transport, and gas interactions will be discussed
and we conclude by outlining the challenges and opportunities in this upcoming field.
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1. Introduction

The exfoliation of a single layer of graphite [1],
and the demonstration of the unique properties of
graphene [1–4], marked the start of an era where
atomically thin crystalline materials can be studied
and used for next generation devices [5–10]. Soon
afterwards, this also led to the firstmechanicallymov-
able structures of one atom thick graphene, which
were shown to operate at high resonance frequencies
in the MHz range [11]. Since then, the research field,
focusing on the study of the dynamics of atomically
thin membranes, has grown steadily. Many different
2D materials have been explored [12, 13], the con-
trol over theirmechanical actuation and detection has
increased [14–17] and the understanding of the link
between high-frequency mechanics, material proper-
ties and physical interactions has improved [18–23].

The atomic thickness and high aspect-ratio of sus-
pendedmembranes of 2Dmaterials result in large dif-
ferences between their mechanical response in the in-
plane and out-of-plane directions. They are extremely
flexible out-of-plane as a consequence of their small
thickness, yet very stiff within the plane due to their
high Young’s modulus [24]. The ultra-thin nature of
2D membranes thus brings unique mechanical fea-
tures that are not easily attainable in their macro-
scopic counterparts. First of all, their flexibility res-
ults in low and tunable stiffness, making them highly
sensitive to forces [25]. As a result, already at low actu-
ation forces, the nonlinear regime is reached [12, 26].
This makes 2D material membranes excellent probes
for studying a variety of nonlinear dynamic effects,
including mode-coupling [27–30], high resonance-
frequency-tunability [14, 31], parametric [32, 33]
and internal resonances [34, 35]. Second, their mass
is extremely small, which increases resonance fre-
quencies yielding high sensitivity in sensing applic-
ations [10, 23, 36–38]. Third, their high surface-
to-volume-ratio makes them very sensitive to their
environment. For example, their membrane dynam-
ics is highly responsive to gases in the environment
[23, 39, 40] and to thermal fluctuations [38]. Finally,
the large stiffness difference between the in-plane and
out-of-plane directions, results in unique properties
via out-of-plane wrinkles and ripples [41–44] and
nonequilibrium thermodynamics of flexural and in-
plane phonons [45]. This interplay between thermal
properties and out-of-plane mechanical motion is
particularly strong, such that at room temperat-
ure the thermal ‘Brownian’ forces in the undriven
regime lead to significant motion amplitudes of
the order of the thickness [46]. Figure 1(a) illus-
trates the different regimes of motion for a circular
graphene drum, highlighting the increasing import-
ance of Brownian and nonlinear dynamics when scal-
ing down membrane radius. In fact, it shows that
for graphene membrane radii below R= 50 nm, the
linear regime disappears, and thermal fluctuations at

room temperature drive the membrane motion into
the nonlinear regime as discussed in appendix A.

In this review we will discuss and describe, from
an experimental point of view, the progress that has
beenmade in the study of the physics and dynamics of
2Dmaterial resonators, with a particular emphasis on
graphene as a model system. We will provide insight
into both the underlying concepts and the measure-
ment techniques, which build on know-how from the
fields of micro and nanoelectromechanical systems
(MEMS and NEMS) [47, 48], and which are crucial
for detecting motion at high-frequencies and small
displacements down to the picometer regime.We will
not focus on motion in the quantum regime [49],
Raman phonon excitations at THz frequencies [50],
static mechanical properties [51, 52] of 2D materi-
als nor on applications [10, 53], for which we refer
the reader to the provided references. The review aims
both at giving an introduction to new researchers in
the field, providing them with relevant information
and references on common methodologies, as well as
providing an overview for experts active in this emer-
ging field, by including recent developments and new
research directions.

To understand the dynamics of 2D membranes,
we start in section 1.1 by introducing the equations of
motion as central reference for describing the forces
and motion. Then in the subsequent sections, tech-
niques for detecting themotion of 2Dmembranes are
discussed (section 2), and the different types of actu-
ation methods for driving the membranes in motion
are summarized (section 3). Next, the solutions of the
equation of motion are outlined, in both the linear
and the nonlinear regime (sections 4 and 5.1). For
each of these regimes the types of solutions that can
occur are discussed, followed by a subsection where
the different terms in the equation of motion are
related to the underlying physics, both from a the-
oretical and an experimental point of view. We con-
tinue with outlining the emerging research direction
that uses the link between dynamics and physics of
2Dmaterials to quantify physical andmaterial related
parameters (sections 4.2 and 5.2). In section 6 this
concept—linking dynamics to underlying physics—is
taken a step further. It deals with the use of dynamics
of 2D resonators for the study of respectively electro-
magnetic order, external forces, gas flows and ther-
modynamics. Finally, we discuss and conclude with
some open research questions and future directions
in this exciting field.

1.1. General equations of motion
The dynamics of 2Dmaterial membranes is governed
by their equations of motion (EOM). In general, the
motion of a flat ultrathinmembrane (figure 1(b)) can
be described by a time-dependent displacement vec-
tor field r(x,y, t), where for small-amplitude out-of-
plane motion, the in-plane motion can be neglected
so that only the out-of-plane displacement function

3
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Figure 1. (a) Schematic indicating ranges of dynamic motion exhibited by circular graphene membranes of different radii R at
room temperature. The x-axis indicates the membrane’s maximum out-of-plane amplitude of the fundamental resonance mode.
Large membranes with a radius of 100 µm exhibit linear motion over a large range of out-of-plane amplitudes. When the
membrane radius reduces to 2.5 µm, the linear region shrinks and the membrane exhibits nonlinear response at amplitudes of
less than 10 nm. For very small membranes with R< 50 nm, the linear regime disappears completely, and the Brownian thermal
forces will drive the drum into the nonlinear regime. Details of the determination of the ranges can be found in appendix A.
(b) Schematic of a circular graphene membrane resonating in its fundamental mode with center displacement q(t). The cross
section in the top panel indicates the thickness h, membrane radius R and gap distance g. The bottom panel shows the suspended
part of the graphene in a top view sketch. (c) Scanning electron microscope image of a circular single-layer graphene resonator.
Reproduced from [33]. CC BY 4.0.

w(x, y, t) in the z-direction is of importance. The
motion can be expanded in terms of the linear
eigenmodes ϕi(x, y) of the membrane w(x,y, t) =∑N

i qi(t)ϕi(x,y), where qi(t) are defined as theN time
dependent generalized coordinates and i is the mode
number as can be derived from classical mechan-
ics [54, 55]. We will choose to normalize the eigen-
modes ϕi(x, y) to have a maximum absolute value
of 1, such that qi(t) represents the maximum deflec-
tion of mode i. In the linear free vibration case,
the motion has a sinusoidal time dependence, that
is qi(t) = ℜ

(
qi,0e iωit

)
, where ωi is the mode’s angu-

lar eigenfrequency and |qi,0| the amplitude. The total
motion of the membrane is therefore a superposition
of the different eigenmodes, where the generalized
coordinates qi(t) describe the motion of the points
of maximum deflection for each of the modes. For
convenience we order the coefficients i on ascend-
ing eigenfrequency, such that i= 1 corresponds to the
fundamental mode of the membrane.

This eigenmode decomposition allows obtaining
a set of N coupled EOMs, in terms of the N general-
ized coordinates qi as follows [56]:

m1q̈1 + c1q̇1 + k1q1+Fnl,1(qj, q̇j, . . .)

=Fext,1(qj, q̇j, . . . , t)− kp,1(t)q1,

. . .

miq̈i + ciq̇i + kiqi+Fnl,i(qj, q̇j, . . .)

=Fext,i(qj, q̇j, . . . , t)− kp,i(t)qi,

for all i, j= 1 . . .N. (1)

In these equations, the terms mi, ci and ki describe
the mode-dependent linear modal mass, damping
coefficient and linear stiffness, respectively. All non-
linear membrane forces that are intrinsic to the
membrane itself, e.g. due to material and geomet-
ric nonlinearities, are described by the term Fnl,i. On

the right side of the EOM there is the external for-
cing term Fext,i(qi, q̇i, t), which captures the extern-
ally applied forces on the membrane, that can depend
on time, position and membrane speed, and which
can, as we will see later on, also introduce nonlin-
ear effects. Finally there are the parametric terms
kp,i(t)qi, which might be also categorized as part of
Fext,i, but are specified separately to emphasize their
significance. We emphasize that equation (1) is con-
structed such that all force terms that are intrinsic to
the mechanical resonator itself are on the left side of
the equal sign and all other terms are on the right
side, even though this separation is not always eas-
ily made, for instance when the material properties
or membrane tension are modulated externally. Each
of the following sections will focus on specific terms
in these equations of motion, discussing both their
physical origins and their effect on the membrane
dynamics.

2. Readout methods

For studying the dynamics of 2D materials, readout
methods for measuring motion w(x, y, t) and actu-
ation methods for driving the membrane, via the
terms Fext,i(t) and kp,i(t) in the EOM, are essential.
Due to the high frequencies, small amplitudes and
small size of 2Dmaterial resonators, accurate readout
is challenging. Moreover, several conventional mech-
anical engineering actuation and detection methods
like modal hammers and accelerometers [59] are too
large or invasive to apply. This has rendered contact-
less optical and electronic readout and actuation tech-
niques to be most effective; notable exceptions are
atomic force microscope (AFM) based detection of
the dynamic motion of graphene membranes [60]
and base excitation methods (section 3.3).

4
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Figure 2. Readout methods. (a) Interferometric readout: the intensity of reflected laser light is modulated by the motion of the
membrane. (b) Transconductive/piezoresistive readout: the resistance of the membrane depends on deflection. (c) Capacitive
readout: the capacitance between the membrane and the gate electrode depends on membrane position. (d) Photograph of an
experimental setup using interferometric readout. The sample is mounted behind a window in a vacuum chamber; the laser is
focused on the sample through the objective in front. (e) Image of a graphene resonator suspended between a source (S) and
drain (D) above a local gate (LG) whose motion is read out using transconductance. Reprinted with permission from [57],
copyright (2018) American Chemical Society. (f) Electron microscope image of a few-layer graphene resonator suspended over a
gate electrode. The gate electrode is coupled to a microwave cavity, allowing motion detection through the capacitance.
Reproduced with permission from [58], copyright (2016) American Physical Society.

In this section 2 we will discuss the most import-
ant dynamic readout and detection methods for 2D
materials. These methods convert the position or
velocity of themembrane into an electrical signal that
is subsequently analyzed by measurement equipment
such as network, lock-in and/or spectrum analyzers.
Mostly, the out-of-plane motion of the membrane
w(x, y, t) is measured, since the in-plane dynamic
motion is usually much smaller and more diffi-
cult to detect, although techniques like Raman [61]
and piezoresistive [62] readout are able to probe it.
Figure 2 lists the three main readout methods for
studying the dynamics of 2D material membranes
that will be discussed in the following subsections:
optical, transconductive and capacitive readout.

2.1. Optical readout
The first studies of the dynamics of 2D materials
were performed using the interferometric technique
[11] shown in figures 2(a) and (d), where a laser
is reflected from the Fabry–Perot cavity formed by
the semi-transparent 2D material and the underly-
ing reflective substrate. In the presence of a reflect-
ing substrate, a standing wave electric field intensity
I(z) is obtained from the superposition of the incom-
ing and reflected optical wave as illustrated by the red
sinusoidal waves in figure 2(a). When the graphene
moves through this standing wave, it absorbs light
proportional to I(z) and thus modulates the reflec-
ted light beam. In addition, modulation also arises
from interference between the light reflected from
the graphene and from the substrate, but since the
reflectivity of graphene is very low, this contribution
is relatively small. The highest motion sensitivity is
achieved when the membrane resides at a distance
from the substrate withmaximum slope in the optical
field intensity dI(z)

dz , which can be calculated using

standard techniques if optical material properties and
geometry are known [46, 63].

Besides this type of interferometric readout, other
optical detection techniques have been developed,
such as the recent demonstration of a Michelson
interferometer setup [64], which has the advantage
that it requires just a free-hanging membrane and
not a reflective substrate behind it, and that the dis-
tance between the different paths in this Michel-
son set-up can be adjusted for calibration purposes.
On the other hand, a drawback is that this tech-
nique is more sensitive for relative vibrations between
the arms and requires more careful alignment. Fur-
thermore, a balanced homodyne technique has been
demonstrated to probe the phase fluctuations of the
light reflected from a graphenemembrane [30]. Laser
Doppler vibrometry (LDV) has also been used for
characterization of graphene membrane dynamics
using optical interferometry [65–67]. Another inter-
esting development is the use of Raman spectroscopy
to determine the dynamically induced strain in the
membrane, allowing one to obtain information on
the in-plane strain, in addition to the out-of-plane
motion [61].

2.2. Transconductive readout
Transconductive mechanical readout methods detect
motion via changes in the electrical resistance or
conductance of the suspended 2D material. In this
section we discuss both conduction variations due to
amotion-induced change in the electric gate field [68]
that causes changes in carrier density, as well as strain-
induced changes in the resistivity via the piezoresistive
material properties of the membrane. In a transcon-
ductive readout scheme, shown in figures 2(b) and
(e), a constant current Id runs through the 2D
material. When the resistance of the 2D material is

5
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displacement-dependent R(qi), and the membrane
moves, the voltage across thematerial is modulated as
Vd = R(qi)Id ≈ (R0 +

dR
dqi

qi)Id. The position depend-

ence of the resistance dR
dqi

can be the result of the
semiconducting nature of thematerial in a field-effect
transistor geometry, where for a constant voltage V g

on a bottom gate-electrode, the motion of the mem-
brane causes a variation of the electric field that causes
a variation in the charge carrier density in the semi-
conducting or semi-metallic 2D membrane, thereby
changing its resistance [14, 57]. A second effect that
can cause the resistance to change is the piezores-
istive effect. When the membrane moves out of the
flat equilibrium position, its strain and lattice spacing
increases, which causes the resistance of the mater-
ial to change [62, 69, 70]. Piezoresistance can either
be caused by strain-induced geometrical changes in
the conductor, or by changes in the material’s band-
structure that cause the charge carriers to move to
bands with different carrier mobilities.

2.3. Capacitive readout
Another form of electrical readout is the capacit-
ive method (figure 2(c)). In this configuration an
ac current is driven through the capacitor formed
by the suspended membrane and the gate electrode,
yielding a time-dependent gate capacitance, Cg(t) =´
A ε0dA/(g+w(x,y, t)), in the parallel plate config-
uration (g≪ R), where the capacitance is integrated
over the membrane area A and ε0 is the permittiv-
ity of vacuum. When the membrane center displace-
ment qi changes, this can be detected as a change in
the impedance of the capacitor ZC = 1/(iωCg(qi)) =
Vac/Iac. This change, for a 1 nm displacement of
a 5 µm diameter membrane, is [71] typically only
2 aF. Such small capacitance changes are challen-
ging to detect at low frequencies, at which ZC is very
high, and are thereforemore conveniently captured at
GHz range frequencies at which impedances are lower
[72], see also the example in figure 2(f).

The main advantage of capacitive readout com-
pared to transconductive schemes is that the capacit-
ance only depends on the membrane geometry and is
to a large extent independent of the material proper-
ties or contamination on themembrane [71]; a disad-
vantage is that parasitic capacitances, e.g. due to elec-
trical interconnects, are generally much larger than
the membrane capacitance changes themselves and
complicate accurate readout. Nevertheless, capacit-
ive readout has been successfully applied to measure
slow deflections of a single graphene drum [71], large
capacitive graphene sensor arrays [73, 74] and fast
capacitance changes in MEMS devices [72].

2.4. Mixing techniques
Although in some works the high-frequency elec-
trical signals from 2D material resonators described

in sections 2.2 and 2.3 have successfully been meas-
ured directly [75], this can be challenging in prac-
tice, because the high-impedance of the sample causes
the motional signal to be small, whereas the para-
sitic cross-talk from the driving voltage is large. Dis-
tinguishing the small motional signal on the large
background parasitic signal of the same frequency
is difficult [76, 77]. This problem can be mitigated
using down-mixing schemes that convert the signal
to another frequency that is far away from the para-
sitic cross-talk signal. To down-mix transconductive
readout signals [14, 78–80], the membrane conduct-
anceG is modulated by the motion at a frequency ωm

and a modulated bias voltage Vsd at frequency ωc is
applied between the source and drain. The resistance
modulation causes the current through the sample
I= VsdG to consist of the product of the two sinus-
oidal functions, which results in a low-frequencymix-
ing term in the current at frequency∆ω = |ωc −ωm|.
In principle, ∆ω can be arbitrarily low and the tech-
nique can even be applied in the dc domain, mean-
ing that no high-frequency measurement equipment
is needed to read out the signal [81]. Typically, val-
ues of ∆ω are in the 0.1–10 kHz range to avoid low-
frequency noise. Several works have demonstrated
this downmixing technique in 2D materials resonat-
ors [57, 82]. A potential drawback of mixing tech-
niques is that the sideband signal may cause cross-
talk andmay also actuate the drum [14], in particular
when∆ω < ωm

2Q .
For capacitive radio-frequency (RF) readout of

2D membranes, a similar mixing technique can be
used. Essentially, the scheme resembles techniques
used in the cavity optomechanics community [83],
since in both cases an electromagnetic (EM) wave is
stored in an EM cavity resonance, whose EM reson-
ance frequency ωEM is modulated by the motion of
a mirror or capacitor plate. When an RF input sig-
nal with frequency ωc close to ωEM is sent into this
optical filter, it will be amplitude-modulated by the
movement of the mirror at frequency ωm, resulting
in mixed output signals at ωc ±ωm. For a sufficiently
high electromagnetic wave intensity, the mirror will
also be actuated by the radiation pressure forces of
the optical field, leading to optomechanical couplings
that are essential in the field of quantum optomech-
anics. This approach has been successfully carried out
with 2D material membranes, albeit at low temper-
atures using zero-loss superconducting transmission
lines [17, 84] and side-band resolved detection. Due
to the higher losses of the transmission lines, this
type of readout is difficult to apply at room temper-
ature. Moreover, since 2D material membranes have
not reached the ultrahigh mechanical and optical
quality factors of optical cavities made out of mater-
ials like high-tension silicon nitride [85], they are
presently less attractive to the quantum optomechan-
ics community.
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2.5. Position dependent readout andmode-shapes
With a relatively localized probe, like a laser beam,
the point at which the motion amplitude is meas-
ured can be laterally scanned over the drum, either by
moving the spot position or the sample. By analyzing
the position-dependent amplitude and phase of the
membrane motion, the complete motion w(x, y, t)
can be measured. By monitoring amplitude and
phase of the resonance peaks as a function of posi-
tion (figures 5(a) and (c)), the mode-shapes can be
determined [46, 60, 86]. In case the motion con-
sists of a superposition of eigenmodes, with mul-
tiple nonzero generalized coordinates qi(t), a projec-
tion procedure [87] can be applied to decompose the
measured motion w(x, y, t) into modal participation
factors [54] and generalized coordinates qi(t).

It is important to note that none of the previously
described readout methods can be used to meas-
ure the membrane deflection at exactly one point.
Instead, the readout signal is typically a weighed aver-
age of the deflection or speed over a certain area
of the membrane. For optical readout that area is
determined by the area of the optical focal spot and
for transconductive or capacitive readout, this area
depends on the area of the gate electrode below
the membrane. The effect of averaging caused by
the readout method, can be accounted for in so-
called reduced order parameter models [54, 55], and
can significantly affect the relative peak heights in
the frequency response spectrum. In some cases, for
example if half of the membrane moves up and the
other half moves down, the averaged motion over the
whole membrane can even add up to zero, making a
mode invisible or of very small amplitude, depend-
ing on the mode-shape and the measurement or
electrode position [46]. When analyzing the dynam-
ics of 2D materials, it is therefore of importance to
be aware of the position dependence of the applied
readout method. Position dependent characterisa-
tion of membrane dynamics and mode-shapes can
provide useful additional information on membrane
characteristics and imperfections (figure 5(b)), that is
hard to determine when characterising the motion at
a single point or with a single electrode.

2.6. Readout calibration
Relating the output signal of the readout system to
the actual amplitude of the membrane is not trivial
and requires accurate calibration. In some cases cal-
ibration is of less interest, for example if the topic of
study is the resonance frequency or Q-factor of the
membrane. However, in other cases, like the study of
the nonlinear dynamics, knowledge of the exact amp-
litude is essential. Three main methods of amplitude
calibration have been discussed in literature. The first
one is based on the measurement of the thermal
Brownian motion of a harmonic oscillator in the
undriven situation, which according to the equipar-
tition theorem corresponds to an energy per mode

of 1
2ki⟨q

2
i ⟩+ 1

2mi⟨q̇i 2⟩=miω
2
i ⟨q2i ⟩= kBT. Using this

equation, the measured voltage can be converted to a
displacement qi if the temperature T and the effect-
ive modal massmi or stiffness ki are known or can be
estimated from the geometry and material paramet-
ers of the structure [46, 88]. It should be noted that
such estimations can be risky, especially for mono-
layers, e.g. because the mass can significantly deviate
from the theoretical value due to contamination or
because the stiffness is affected by tension variations
and wrinkles; see also sections 4.2.1 and 4.2.2.

The second reported calibration method is based
on fitting the resonance frequency versus gate voltage
curve by a theoretical curve that has the mass-density
and tension as fit parameters [14]. This method is
based on the electrostatic reduction of the spring con-
stant as discussed in sections 3.1 and 3.5, and uses
a model for the electrostatic force and the expec-
ted membrane deflection to determine the deflection
amplitude. The third method is based on using the
optical wavelength as a measuring rod, driving the
membrane to large amplitudes, and analysing the har-
monics generated by the nonlinearities of the optical
readout method to calibrate the motion [15]. The
advantage of this method is that it does not require
knowledge about the mass nor the mechanical prop-
erties of the membrane. The origin of these readout
nonlinearities are discussed in the next subsection.

2.7. Readout nonlinearities and other artifacts
When driving the membranes to large amplitudes,
besides mechanical nonlinearities, that will be dis-
cussed in section 5, the readout voltage response func-
tion Vout(qi) can also become nonlinear, such that
higher harmonics are generated. When the response
function is well-known, measurement of the higher-
harmonics can be used to correct the output signal for
nonlinearities in the response function and in com-
bination with the calibration methods discussed in
the previous section, determine the time dependent
position [15]. Especially when studying the nonlin-
ear dynamics of 2D material membranes, assessing
the importance of these nonlinear readout effects is
important to distinguish intrinsicmechanical nonlin-
earities described by the equation of motion (1) from
nonlinearities caused by the readout mechanism.

We conclude the section on readout by noting
that for every readout method, effects of the readout
on the actually measured motion should be avoided.
For that reason it should be verified that variations
in the laser power and electrical readout currents
do not significantly affect the measured motion, via
effects like membrane heating that shift the reson-
ance frequency, or via feedback mechanisms in the
actuation that will be discussed later. Also, care must
be taken that spurious signals in the readout sys-
tem, due to instrumentation noise or cross-talk, are
minimized as much as possible to enable accurate
readout.

7
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Figure 3. Actuation mechanisms for 2D material
membranes. (a) Electrostatic actuation. (b) Optothermal
actuation and thermal actuation by resistive heating.
(c) Base excitation by high frequency vibrations of the
substrate. (d) Several mechanisms leading to parametric
actuation by stiffness modulation.

3. Actuationmethods

In equation (1), external actuation can either be
applied directly via the term Fext,i or parametrically
via the term kp,i that modulates the stiffness. Prefer-
ably, actuation should not be done by making mech-
anical contact to the suspended structure, since adhe-
sion forces significantly alter the membrane shape
and tension, and the mass of the contacting structure
significantly alters the dynamics. Actuation mechan-
isms that will be discussed in this section focus there-
fore on contactless methods, including electrostatic
actuation, thermal actuation and base excitation.
Finally, we discuss the effect of feedback forces and
methods to parametrically actuate 2D membranes.

3.1. Electrostatic actuation
When a voltageVact(t) is applied between the suspen-
ded 2D material and a gate electrode (figure 3(a)),
a time and position dependent electrostatic

membrane pressure is generated with this functional
form:

Pext(w, t) =
−ε0(Vact(t)−Voff)

2

2(g−w(x,y, t))2
. (2)

As indicated by the minus sign in this equation, this
force is always attractive towards the gate electrode
with a quadratic voltage dependence. The intrinsic
offset voltage Voff is usually zero or close to zero, but
can becomenonzero in the presence ofwork-function
differences or trapped charges [89]. By adjusting the
voltage Vact properly, the effect of this offset can
be eliminated; however, if the trapped charge dis-
tribution is non-uniform, this is not fully possible
[90]. In addition to trapped charge, Casimir forces
can also generate a permanent downward force. For
g= 100 nm, the Casimir pressure between two per-
fectly conducting mirrors is equal to that of the elec-
trostatic pressure at Vact −Voff = 0.17 V as calcu-
lated by equation (2). Since it cannot be avoided,
the Casimir force can become a factor limiting the
minimum gap distance beyond which the membrane
always collapses [91].

It is often desirable to eliminate nonlinear effects,
i.e. to have an electrostatic actuation force that is pro-
portional to an ac applied voltage Vac and independ-
ent of membrane position. Therefore, ideally, the gap
size g is small compared to the lateral radius of the
drum (g≪ R) and the displacements are much smal-
ler than the gap size (w≪ g) such that the denomin-
ator of equation (2) is almost constant. In that case
the electric field lines are parallel to the z-axis, and
the parallel-plate approximation holds for the capa-
citance between the 2Dmaterial and the bottom elec-
trode. Moreover, to achieve an actuation force on the
membrane at the same ac frequency ω as the driv-
ing voltage, often a sum of dc and ac voltages is used
with Veff(t) = Vact(t)−Voff = Vdc +Vac sinωt, with
Vdc ≫ Vac (see figure 3(a)). Using these approxima-
tions, quadratic terms in w and Vac can be neglected
and equation (2) becomes:

Pext(w, t)≈−(V2
dc + 2VdcVac sinωt)

ε0
2g2

(1+ 2
w

g
).

(3)

This equation implies that an electrostatic force
generates a static downward force proportional to
V2
dc, and a sinusoidal driving force proportional to

2VdcVac. The last term proportional to w
g effectively

acts as a negative spring constant, and thus reduces
the resonance frequencies at large V2

dc; this effect
is called spring softening and is discussed in more
detail in sections 3.5 and 6.2.1. Just as for readout
(section 2.5), the effective modal force that drives a
certain resonance mode, depends both on the elec-
trode configuration and on the mode shape to be
driven and can be calculated by a weighted integral of

8
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the pressure of equation (3) over the actuation sur-
face [55], which is usually the largest for the funda-
mental mode. Since the electrostatic energy is given
by Ues =

1
2CgV2, only mode shapes that significantly

changeCg can be efficiently excited using electrostatic
forces.

There are several additional aspects that one
should consider when using this form of actuation.
The first one is that since the ac voltage is applied
on a high-impedance capacitor (the 2D nanodrum)
and the voltage source (e.g. network analyzer) often
has a 50 Ω output impedance, the ac voltage across
the drum Vac will be almost twice as large as if the
source would be connected to a 50Ω load. The second
one is that the geometry, and finite thickness of the
electrodes underneath themembrane (e.g. a graphene
flake stamped on top of an electrode made of gold
with a circular hole in it) can significantly affect [46]
the electric field lines near the edge of the drum, such
that they deviate from the parallel plate approxim-
ation, leading to a lower effective electrostatic force
than predicted from equation (3). Thirdly, a high res-
istance of the membrane, in combination with cable
and device capacitances to ground, can result in RC-
times that can diminish the efficiency of the actuation
at high frequencies (section 6.2.1). Finally, quantum
capacitance effects [92] can decrease the efficiency of
capacitive readout and actuation of membranes.

3.2. Optothermal and electrothermal actuation
Due to their low heat capacitance and high thermal
conductivity, suspended 2D materials can be heated
very rapidly and efficiently, either by absorbing
optical power [11], by resistive electrical Joule heating
of the membrane itself or via a resistive heating ring
by which the membrane is suspended [93]. Although
electrothermal actuation of a large graphene/poly-
methyl methacrylate (PMMA) heterostructure mem-
brane has been demonstrated [94], to our know-
ledge high-frequency electrothermal actuation of res-
onances by Joule heating in a freestanding single 2D
material membrane has not been demonstrated. For
both optothermal and electrothermal actuation, the
basic principle is shown in figure 3(b). The black
line in the figure is the initial state and when the 2D
material membrane is heated, it thermally expands
(assuming a positive thermal expansion coefficient)
and moves upward to the red position; on the other
hand, when it cools, it contracts and moves to the
blue position. In the figure, the time-dependent heat-
ing power is provided by the blue power-modulated
laser, or by the red resistive Joule heaters near the
suspension points of the membrane. The cooling
of the membrane occurs via heat transfer towards
the substrate, surrounding gas, or by radiation. Even
though the heat capacitance of the membrane is
low, the temperature change will not occur instant-
aneously. This delay between heating power, mem-
brane temperatureT and thermal expansion can have

interesting effects on the membrane dynamics, as will
be discussed in more detail in section 6.1. The lin-
ear equation of motion of a mode in the presence of
an effective thermal expansion coefficientαi, a mode-
dependent device parameter, can be written as:

miq̈i + ciq̇i + ki(qi −αiT(t)) = 0. (4)

It is important to note that the initial membrane
shape (represented in black in figure 3(b)) has been
given an intentional offset from the flat position. The
reason for this is that if the membrane would be per-
fectly flat, a temperature change would not result in
an out-of-plane deflection. A consequence of this is
that both the magnitude and the direction of the res-
ulting out-of-plane thermal expansion forces depend
on the magnitude and direction of the initial deform-
ation. If the initial deformation is upward, the mem-
brane will move upward upon heating, and vice-versa
for downward initial deflection. Although the phys-
ical origin for these initial deformation related effects
has not been clarified, potential causes could be fab-
rication induced wrinkles, buckling, edge-adhesion,
electrostatic or Casimir forces. A large variation in
the magnitude and direction of the thermal expan-
sion force between different CVD graphene drums,
made by the same fabrication procedure, was recently
observed [45], suggesting that this thermal expan-
sion force is a very sensitive function of the mem-
brane properties and geometrical imperfections. The
exact determination of the effective thermal expan-
sion coefficient αi is therefore complex and can only
be estimated from measurements using the calibra-
tion methods discussed in section 2.6 in combin-
ation with fits or models for the linear membrane
parameters.

It is usually desirable to have a force that is at
the same frequency as the ac driving voltage Vac.
However, for resistive Joule heating it is known that
heating power in the membrane follows P∝ V2

act/R,
so similar to electrostatic actuation a voltage Vact =
Vdc +Vac sinωt, withVac ≪ Vdc is used to ensure that
there is a component in ∆T at frequency ω propor-
tional to Vac. Also for linear opto-thermal modula-
tion, to get a force of the same frequency of the driv-
ing voltage, the time-dependent laser power should be
modulated on top of a dc background power PL(t) =
Pdc + Pac sinωt, with Pac ≪ Pdc. This modulation is
usually done by running a constant dc current, IL,
through a diode laser, while modulating the voltage
around a certain bias point VL(t) = Vdc +Vac sinωt,
noting that the laser’s optical power is proportional
to PL(t) = IL ×VL(t). It is important to inspect the
IL −VL curve of the laser diode, to ensure that it is suf-
ficiently linear to prevent nonlinear terms in the actu-
ation force to appear. For opto-thermal actuation, it
should be noted that position dependent actuation
forces can emerge, because the optical field intensity
and optical absorption of the standing wave formed
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by the actuation laser is position dependent as dis-
cussed in section 3.4, causing feedback forces that can
affect damping and resonance frequency and can even
lead to self-oscillation (section 3.5).

Besides direct thermal actuation, parametric
thermal actuation by tension modulation is also pos-
sible as will be discussed in section 3.4. Finally, we
mention that instead of opto-thermal actuation a
modulated laser can also excite the membrane by
radiation pressure of light, given by the ratio of the
light intensity with the speed of light, Prad = Irad/c.
However, due to the relatively high optical absorp-
tion and low reflectivity of graphene membranes,
thermal expansion forces tend to exceed radiation
pressure forces. Other 2Dmaterials might offer better
opportunities for demonstrating radiation pressure
actuation.

3.3. Base actuation
Base excitation is a method where a piezoelectric res-
onator, or other type of shaker, is mounted below
the substrate to excite the substrate with the mem-
brane sinusoidally (see figure 3(c)). Acoustic waves
flow through the entire substrate and excite the reson-
antmembrane at its edges (base). The simplest model
for base excitation in the absence of damping is amass
at position qi that is connected via a spring to a base
at position qb(t) that moves in time. The equation of
motion in that case is given by:

miq̈i + ciq̇i + ki(qi − qb) = 0. (5)

This equation can be rewritten, such that it is identical
to equation (1) with an effective base excitation force
Fext,bi = kiqb(t). Like for other types of excitation, the
amplitude of the resonator at resonance, is a factorQi

higher than at low frequencies, such that at resonance
|qi|= Qi|qb|. Using SiN membranes with integrated
graphene membranes, base excitation was generated
around 4 MHz and was indeed observed [64] to res-
ult in motion amplification by a factor Q. In another
work, also off-resonant base excitation was used to
move graphene with respect to the base and detected
using transconductive readout [57], thus functioning
as an ultrasound detector.

When using a resonant actuation element, like a
piezoelectric resonator, for driving the base actuation,
it is important to note that when actuating at con-
stant voltage amplitude, both resonances of themem-
brane and resonances of the actuation element will be
observed in the motion qi(t). Another point to note
is that in equation (5) it is assumed that the mass and
stiffness of the base are infinitelymuch larger than the
mass and stiffness of the 2Dmembrane, such that the
membrane motion does not affect the motion of the
base. If this assumption does not hold anymore, the
combined membrane-base systems needs to be ana-
lyzed using coupled equations of motion for base and
membrane [64, 95].

3.4. Parametric actuation
Instead of direct actuation, where the force Fext,i(t)
only depends on time, it is also possible to externally
excite motion by force terms of the form −kp,i(t)qi,
which are the product of an externally modulated
time-dependent stiffness kp,i(t) and the membrane
position qi(t). This parametric actuation term can
originate from special (nonlinear) terms in the
excitation force, like [96] the term proportional to
Vac

w
g sinωt in equation (3), but can also be generated

by physical modulation of the linear mass, damping
and stiffness parameters in the equation of motion:
mi(t), ci(t) or ki(t). For example, when heating a 2D
membrane with amodulated laser, its tension reduces
when it thermally expands, and since the stiffness is
proportional to the tension, the stiffness will be mod-
ulated proportionally to the laser-induced temperat-
ure change [32, 33, 97–99]:

miq̈i + ciq̇i +(ki + kpT,i(T(t)))qi = 0. (6)

The modulated stiffness can be rewritten as a para-
metric force term −kp,i(t)qi in equation (1), with
kp,i(t) = kpT,i(T(t)).

This type of tension modulation, illustrated in
figure 3(d), is especially efficient in 2D materials,
since their temperature can be more efficiently opto-
thermally modulated at high frequencies than bulk
materials due to their small thickness. Parametric
terms in the equation of motion can result in inter-
esting effects like parametric oscillation (also called
parametric resonance) and noise squeezing or ampli-
fication as will be discussed in section 5.1.2. Finally,
it should be noted that when a parametric force
term is accompanied by a constant static offset qoff
that might be caused be a static force or fabrication
imperfection in the system, the parametric force term
−kp,i(t)(qi(t)− qoff) consists of a parametric and dir-
ect actuation force term (kp,i(t)qoff).

3.5. Feedback forces
In addition to the parametric terms discussed in the
previous section, that depend on time and position,
the actuation force Fext,i also contains terms that
depend on the position or speed of the membrane
but not on time, which are called feedback or back-
action forces. These force terms can originate from
an external feedback system, that e.g. measures a dis-
placement w and accordingly applies a force Fext,i(w),
but they can also originate from the intrinsic physics
of the actuation (section 3) or physical interactions of
themembrane with its environment (section 6). In its
simplest form Fext,i = kfbqi + cfbq̇i, the feedback force
is linearly proportional to the position and velocity
of the membrane. The feedback force can be merged
with the left side of equation (1), resulting inmodified
stiffness and damping [100] terms, keff,i = ki − kfb and
ceff,i = ci − cfb. Linear feedback terms thus provide a
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route to tune the damping, stiffness and resonance
frequency of the system:

ω 2
eff,i = ω 2

i −
kfb
mi

, (7)

1

Qeff,i
=

1

Qi
− cfb

ωimi
. (8)

By external control of the delay between force and
position, the feedback force can be brought in-phase
with either position or velocity [101], either enhan-
cing or diminishing ωeff,i or Qeff,i, thus providing a
route for tuning the resonators characteristics. For
1/Qeff,i < 0 it can even result in self-sustained oscil-
lations (section 4.1.3). Nonlinear feedback terms can
result in even more complex behaviour as will be dis-
cussed in section 5.1.

4. Vibration in the linear regime

In this section, we will consider the dynamics of
2D material membranes that follows from the linear
terms in the equation of motion (equation (1)) under
(a) free, (b) driven and (c) feedback conditions. In
the first subsection we will look at the solutions of
the EOMand in the second subsection at the underly-
ing physics that governs the values of the linear coef-
ficients mi, ci and ki, and their theoretical and exper-
imental determination.

4.1. Linear dynamic motion
For small displacements qi, the terms of quadratic and
higher order in qi and q̇i in equation (1) become neg-
ligible compared to the linear terms, such that the
equation of motion is linear. Although the solutions
of the linear equation of motion are well known and
discussed in textbooks on dynamics [54], we quickly
review them here for completeness, before focusing
on the specific mechanisms that determine the linear
dynamics of 2D materials.

4.1.1. Free vibration
When the forcing terms Fext,i(t) and kp,i(t) in
equation (1) are zero, the system exhibits free vibra-
tions that are the solutions of the well-known har-
monic oscillator equation:

miq̈i + ciq̇i + kiqi = 0. (9)

If we plug in a trial solution qi(t) = qi,0eλit, we obtain:

λ2
i mi +λici + ki = 0. (10)

Solving this quadratic equation for λi, and taking the
small damping approximation ci ≪

√
4kimi we find

the underdamped solutions for λi:

λi± =− ci
2mi

± i

√
ki
mi

−
c2i
4m2

i

≈− ωi

2Qi
± iωi, (11)

where ωi =
√

ki/mi is the (natural) resonance fre-
quency of mode i, with corresponding quality factor
Qi =

√
kimi/ci ≈ |ℑ(λ±)/(2ℜ(λ±))|. The imagin-

ary exponent represents the fast oscillatory part of
the motion and the negative real exponent repres-
ents the slowly decaying envelope of the motion,
which is called ringdown (see figure 4(a)). There
are two solutions qi±(t) to the equation of motion,
of which a superposition with suitable coefficients
qi,0± satisfies the initial conditions for position and
speed:

qi±(t) = qi,0±e
−ωi
2Qi

te±iωit. (12)

If the damping is increased such that Qi < 1/2, the
square-root in equation (11) changes sign, such that
the system becomes overdamped.

4.1.2. Driven motion
For the linear differential equation of motion, any
superposition of solutions is again a solution of
the differential equation. Any periodic driving force
Fext,i(t) can be written as a Fourier sum of sinusoidal
functions, so if we find the solution for a sinusoidal
driving force with complex amplitude Fext,i(ω) and
frequency ω, we can construct the solution for any
waveform, and Fext,i(ω) is the Fourier transform of√
2πFext,i(t). For the linear driven case, equation (1)

reads:

miq̈i + ciq̇i + kiqi = Fext,i(ω)e
iωt. (13)

The steady-state solutions are of the form qi(t) =
qi(ω)eiωt, and the frequency response function
FRF(ω) equals qi(ω)/Fext,i(ω) = (−ω 2mi + iωci +
ki)−1. Its magnitude |FRF(ω)|, which is also called its
compliance, is displayed in figures 5(c) and 9(a), and
obeys the equation:∣∣∣∣ qi(ω)

Fext,i(ω)

∣∣∣∣= 1√
(ki −miω 2)2 +(ciω)2

. (14)

A peak in the magnitude is found when the mem-
brane is driven at its resonance frequency (ω=ωi);
the full-width-half-maximum (FWHM) of the
peak in |FRF(ω)|2 is ∆ωFWHM = ωi/Qi (in the
small damping limit) and defines the linewidth
Γ =∆ωFWHM/(2π). The phase angle, by which the
motion lags behind with respect to the driving force,

is ϕi(ω) = arctan
(

−ℑ(FRF)
ℜ(FRF)

)
. Near the resonance

frequency, it changes abruptly from zero to π, and
equals ϕi =π/2 at resonance. Note that the lineshape
of FRF(ω) is not exactly identical to a Lorentzian. An
example of a measured resonance peak is shown in
figure 4(b).

When measuring the response of a membrane as
a function of driving frequency, one can findmultiple
peaks at different frequencies ωi, of which the funda-
mental mode typically shows the largest amplitude,
because the quality factor and the weighting integrals
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Figure 4. Linear vibration measured on a five layer MoS2 drum; the motion is actuated opto-thermally and read out using
Fabry–Perot interferometry. (a) Free vibration: measurement of the amplitude as a function of time after the optical drive is
switched off at t= 150 µs. The decay of the amplitude is exponential in line with equation (12). The inset shows an optical image
of the drum that was measured. (b) Driven motion: amplitude and phase of the driven response. A fit to the response using
equation (14) gives a resonance frequency of 7.52 MHz and a Q factor of 37.7. (c) Measured power spectrum of the undriven
membrane (same as in (b)), showing a peak due to Brownian motion. A Lorentzian fit to the data results in a resonance frequency
of 7.48 MHz and a Q factor of 38. Reprinted from [102], with the permission of AIP Publishing.

for actuation and readout (sections 2.5 and 3.1) tend
to be largest when all points on the membrane move
up and down in phase. Some of the highermodesmay
be degenerate, i.e. have the same resonance frequency,
although in practical experiments they often split and
become non-degenerate when symmetry is broken by
deviations from the ideal membrane shape such as
wrinkles [46].

4.1.3. Brownian motion cooling, amplification
and oscillation
Even without intentionally applying an external driv-
ing force, the membrane moves due to thermal or
quantum fluctuations. Although macroscopic mech-
anical resonators have been brought to the quantum
ground state [103], this has not yet been achieved for
2D material resonators. We therefore focus here on
the stochastic (random) thermal or Brownianmotion
forces that drive the mode, Fext,i = Fth, which are
sometimes called Langevin forces. They are a con-
sequence of the thermal coupling of the resonator to
the environment via for example the random colli-
sions of molecules in the gas surrounding it, or via
the phonons in the substrate that couple to the mem-
brane at the clamping points.

These thermomechanical forces have a white (fre-
quency independent) magnitude and random phase,
such that in equation (13), ⟨|Fext,i(ω)|2⟩= 4cikBT×
BW, where BW is the bandwidth in Hz over which
the force power spectral density (one-sided, so only
integrated over positive frequencies) is integrated and
where the brackets ⟨⟩ indicate the expected value
or long-time average. T is the ambient temperat-
ure and kB is the Boltzmann constant. The thermal
fluctuations lead to an amplitude that obeys ⟨q2i ⟩=
kBT/ki for all resonance modes, as follows from the
equipartition theorem [88] (see also appendix A).
This relationship can also be used to relate the meas-
ured signal to the actual motion amplitude (amp-
litude calibration), provided that T and ki are known
(see also section 2.6). An example of a measured

power spectral density due to Brownian motion is
shown in figure 4(c).

As mentioned in section 3.5, the damping coeffi-
cient of a mode can be affected by feedback forces.
Interestingly, this effect can be used to change the
effective temperature of the mode as follows: in
the presence of velocity proportional feedback forces
Fext,i = cf bq̇i, the effective damping coefficient of the
mode is altered to a value ceff = ci − cf b without affect-
ing the thermo-mechanical noise force ⟨|Fext,i(ω)|2⟩
(which only depends on the intrinsic damping ci).
Thus by increasing ceff the motion can be damped,
reducing ⟨q2i ⟩, such that it moves stochastically as if
it were in a system without feedback at a lower tem-
perature Teff. This type of feedback can thus be used
[18, 29, 101] for cooling (lowering) the effective tem-
perature Teff of a mode, below the ambient temperat-
ure T. Along a similar fashion, the effective damping
ceff can also be reduced, increasing the effective qual-

ity factor Qeff =
√
kimi

ceff
and amplifying the Brownian

motion until the effective damping becomes neg-
ative ceff < 0 such that it reaches the threshold for
self-sustained oscillation; beyond this threshold the
motion amplitude is amplified up to a level where
it is limited by nonlinear effects. Since the frequency
of this so-called limit-cycle is close to ωi, this kind
of oscillation behaviour can be used as a clock and
has been reported in graphenemembranes with opto-
thermal [18, 104] and electronic feedback [31].

4.2. Physical parameters determining the linear
dynamics
In conventional MEMS devices material proper-
ties are usually accurately known, and fabrication
induced mechanical stresses are usually uniform over
a wafer (the substrate on top of which the devices
are fabricated) and can be characterised with dedic-
ated test structures [105]. This makes it possible to
accurately estimate the modal mass and stiffness of
MEMS resonators from their geometry. In 2D mater-
ial membranes, however, it is much more challenging
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to determine these parameters since (a) the mater-
ial properties are more difficult to measure because
conventional characterisation techniques fail, and (b)
there is large variability and non-uniformity of the
suspended 2D material parameters caused by non-
reproducible material growth and device fabrication
methods. As a consequence, there is a large variation
in literature values of the relevant material and device
parameters, that are important to predict and under-
stand the dynamics of 2Dmaterial membranes. How-
ever, once fabricated, several of these parameters can
be deduced from the measured static and dynamic
motion, as will be outlined in this section.

The resonance frequency and quality factor can
be extracted relatively easily from experiments by fit-
ting equation (14) to the data and the amplitude
can be determined with some more effort using
the calibration methods described in section 2.6.
With the amplitude, resonance frequency, and qual-
ity factor determined accurately, the remaining coef-
ficients in equation (14) can be determined provided
that the force can also be determined either from
models or measurements. An example of this pro-
cedure is given in [14], where the mass increase of a
graphene membrane due to a small amount of penta-
cene (a small aromatic hydrocarbon molecule) is
studied.

An important point in determining the actual val-
ues of the physical parameters is to realize that e.g.
the modal mass coefficient mi is not the actual mass
of the system. Numerical coefficients, which depend
onmode shape, measurement position and resonator
geometry, that relate the actual mass tomi need to be
calculated. This can be done by evaluating the kinetic
and potential energy in the resonator [55, 56, 88]. For
a circular drum, the derivation is given in appendix B
and results in a simplified equation of motion that
resembles equation (1). Analytical expressions are
found for modal mass mi, modal stiffness ki, the
effective force coefficients and also the nonlinear
terms that will be discussed in the next section. Spe-
cifically, for the fundamental mode of a circular drum
one finds m1 = 0.2695m and k1 = 4.8967n0, where
m= ρhπR2 is the total mass of the membrane (ρ is
the mass density of the membrane material) and n0
its initial tension. For more complicated device geo-
metries, finite elementmethods can bemore conveni-
ent to determine themode-shapes. Using thesemode-
shapes, the stiffness and mass coefficients can be
determined by integrating elastic and kinetic energy
over the device volume [55]. If the damping mech-
anism is known, the modal quality factor can even be
estimated using finite elements for support losses [55]
and thermo-elastic damping [106] (see section 4.2.3).
In the following three subsections we will first discuss
experimental determination of the modal mass (mi)
and stiffness (ki), followed by a subsection on determ-
ining dissipation (ci) characterized by the quality
factor.

4.2.1. Modal mass
In principle, themodal mass of a resonancemode can
be determined experimentally from the relationmi =
ki/ω 2

i if the resonance frequency and modal stiff-
ness are known. Although the resonance frequency
ωi is straightforward to measure, the stiffness mainly
depends on the pretension in the membrane, a para-
meter that is difficult tomeasure or control directly as
will be discussed in the next subsection. One way to
circumvent this problem is to vary the pretension and
extract the modal stiffness from the resulting change
in resonance frequency. Along this line experimental
estimates [14, 107, 108] of the modal mass mi of a
graphene resonator were made by fitting the relation
between resonance frequency and applied pressure
curve, where the pressure was applied either by elec-
trostatic forces [14, 21] or by a gas pressure [107, 108].
The method relies on the fact that the modal stiff-
ness ki(∆P) and pretension in a membrane change
with the applied pressure difference ∆P across the
membrane.

By fitting the resultingωi(∆P)measurement both
mi and ki can be inferred, noting that the model
should include tension changes and for electrostatic
pressure also include electrostatic softening effects
[21] (see sections 3.1, 6.2.1 and equation (29)).

However, in practice models for ki and its pres-
sure dependence can be inaccurate due to the pres-
ence of wrinkles, tension non-uniformity or other
imperfections. To avoid this problem,mass determin-
ation based on the squeeze-film effect can be applied
[23], which uses the fact that the resonance frequency
of a graphene membrane, that is close to a counter
electrode at a distance g, depends on the ambient gas
pressure Pa by the relation ω 2

i (Pa)−ω 2
i = Pa

gρh (see
equation (31)). From this relation the mass dens-
ity per area ρh can be obtained directly by measur-
ing the resonance frequency versus ambient pressure
curve. Using this technique the mass mi of a 31 layer
graphene resonator was determined [23].

In table 1, we list the experimental mass dens-
ity of several single-layer graphene, MoS2 and WSe2
devices reported in literature. Although errors can be
expected since the mode shape can be uncertain in
some cases, it is clear that consistently a larger mass
is measured than theoretically expected. The cleanest
devices that are closest to the theoretical values are
either produced by mechanical exfoliation without
transfer polymers involved [107], or by cleaning the
device using Ohmic heating [109]. The table includes
methods where electrostatic softening or tensioning
are used; these two are differentiated, since electro-
static softening is independent of the mode-shape,
whereas electrostatic tensioning does depend on the
mode shape.

4.2.2. Modal stiffness
The stiffness of thin structures is determined both
by their bending rigidity, and by their tensile stress.
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Table 1. Table with mass density ρh determined in several single–layer 2D material membranes using different methods; the deviation
indicates the ratio between the measured and theoretically calculated mass.

Authors Material Method Measured ρh (kgm−2) Deviation

Bunch et al [107] Exfoliated graphene Tension (gas) 9.6× 10−7 1.3
Singh et al [110] Exfoliated graphene Tension (electrostatic) 5.7× 10−6 7.4
Barton et al [18] CVD graphene Tension (electrostatic) 3.54× 10−6 4.6

2.23× 10−6 2.9
Song et al [111] Exfoliated graphene Electrostatic softening 7.47× 10−6 9.7
Chen et al [14] Exfoliated graphene Tension (electrostatic) 3.6× 10−6 4.7

Annealed by Ohmic heating Tension (electrostatic) 1.6× 10−6 2.1
Singh et al [64] CVD graphene Tension (electrostatic) 2.2× 10−5 29
De Alba et al [29] CVD graphene Tension (electrostatic) 8.4× 10−6 11

7.3× 10−6 9.5
Morell et al [109] WSe2 Electrostatic softening 15.6× 10−6 1.3
Manzeli et al [70] CVDMoS2 Tension (electrostatic) 3.8× 10−6 1.16

2.3× 10−5 7.1

If one of these effects dominates, the structure is in
the plate ormembrane limit respectively. The dynam-
ics in these limits are discussed in appendix B in
sections B.1 and B.2. When increasing the thick-
ness of the structure, a transition from the mem-
brane to the plate limit occurs [12], which can be
observed in the resonance frequencies and their ratios
(appendix B.3). For thicker flakes the bending rigidity
can be calculated from the material’s Young’s mod-
ulus, Poisson’s ratio and thickness, but in the mem-
brane limit the stiffness is mainly determined by the
pretension.

The pretension in 2D membranes is hard to con-
trol, because it depends strongly on the fabrication
method. As a result the modal stiffness of 2D reson-
ators is difficult to predict from models and requires
experimental determination. One route for this is
the measurement of the modal mass by one of the
techniques from the previous subsection and sub-
sequent calculation of the modal stiffness using the
relation ki =miω

2
i . However, often the methodolo-

gies discussed in the previous section are not eas-
ily applied, or the models on which they rely are
inaccurate due to device imperfections as discussed
below. A second route, thermomechanical motion for
determination of stiffness, is closely related to cal-
ibration, since if the measurement system is well-
calibrated (section 2.6), such that qi is known, the
modal stiffness ki can be determined from the thermal
motion using the relation 1

2kBT= 1
2ki⟨q

2
i ⟩. A third

method is characterization of the membrane’s pre-
tension by AFM or Raman methods and analytical
or finite element method (FEM) calculation of the
modal dynamic stiffness. Many studies have focused
on AFM and Raman spectroscopy for studying the
tension and stiffness of suspended 2D materials and
their uniformity [51, 52, 61, 113–115].

In addition to tension variation, some 2D mater-
ials naturally exhibit large mechanical anisotropy in
their bending rigidity, which in the plate limit can
significantly modify their mode shapes and reson-
ance frequencies with respect to those of isotropic

materials (see figures 5(e)–(f)) [112, 116]. It is
much more difficult to determine modal stiffness
and mode-shapes in the presence of these tension
uniformities or material anisotropies and building
a better understanding of these effects is an act-
ive topic of research. For this purpose mode shapes
need to be measured, using methods [46] discussed
in section 2.5, and shown in figures 5(a)–(c). Here,
the nonuniform tension in the resonator, causes the
modeshape of the second mode to become asymmet-
ric (figures 5(b) and (c)). Since all mode shapes are
affected by this nonuniform tension, deviations in
all other resonance frequencies of the membrane are
present as well (figure 5(d)).

A step beyond characterizing tension and its effect
on the modal stiffness and resulting dynamics, is the
ability to tune tension to change the dynamics of 2D
material membranes. One strategy is to apply an out-
of-plane force, by electrostatic actuation or gas pres-
sure [114, 118]. An alternative method is to adjust
the stress in the in-plane direction, which has the
advantage that it maintains a flat membrane config-
uration. To this end, thermal heater substrates have
been developed that consist of a metal ring on which
a graphene membrane is suspended [93]. Due to the
positive thermal expansion of the substrate and the
negative thermal expansion coefficient of graphene,
tension is induced in the membrane when heating
it by passing currents through the ring so that the
membrane flattens (figures 6(a) and (b)). Another
more invasive approach to thermal tuning is to pass
a large current through a suspended graphene mem-
brane and heat up the membrane directly by Joule
heating [119]. This leads to a nonuniform temperat-
ure and tension and only works for conductivemater-
ials, but does allow formuch higher temperatures and
therefore larger tuning range of resonance frequency.
Similarly, cooling down the material changes the ten-
sion, which can be used to study material proper-
ties like thermal expansion (see section 6.1.3). Even
more accurate control over tension is obtained using
MEMS actuators (figures 6(c) and (d)), which can
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Figure 5. (a) Characterization of the first mode shape of a circular graphene drum with a diameter of 5 µm and thickness of 5 nm
(scale bar is 1 µm). The bottom panel shows the mode shape predicted by theory (see appendix B). (b) and (c) Second and third
mode shape, showing larger deviations compared to theory due to nonuniformities in the tension of the drum. (d) Peaks in the
measured mechanical response of the drum in figures (a)–(c) deviate from the theoretical peaks (green dashed lines) due to
nonuniform tension. (e) Measurement of the resonance frequency of a rectangular shaped anisotropic As2S3 resonator, showing
its frequency depends on the crystal orientation. Inset: optical image of a star-like cavity used to charactize the anisoptropy (scale
bar is 4 µm). (e) Resonance frequency and Young’s modulus dependence on the angular orientation of the As2S3 resonator.
Figures (a)–(d) are reprinted with permission from [46], copyright (2016) American Chemical Society. Figures (e)–(f) are
reprinted from [112] licensed under CC-BY-NC-ND.

Figure 6. Engineering tension in 2D material resonators. (a) Schematic of a heater structure used to tension 2D material
membranes. (b) Frequency versus quality factor plot at different heater voltages. (c) Schematic of a comb-drive actuator to
tension 2D material membranes. (d) Resonance frequency tuning of a 3-layer MoS2 resonator using a comb drive actuator.
Figures (a) and (b) are reprinted from [93] licensed under CC-BY-NC-ND. Figures (c) and (d) are reprinted with permission
from [117], copyright (2020) Wiley-VCH GmbH.

tune 2D material resonance frequencies over a range
of more that 10% [82, 117].

4.2.3. Quality factor and dissipation
From experiments, the quality factor of a reson-
ance mode Qi, that is closely related to the damp-
ing coefficient ci =

√
kimi/Qi, can be determined in

a straightforward manner either from a frequency
response fit by equation (14) or from ring-down
measurements [34, 121]. In a ring-down experiment
the resonator is driven at resonance, after which the

driving is stopped and the slow decay of the envelope
of qi(t) is fit using equation (12). In particular when
the Q-factor is very high, the ring-down measure-
ment has the advantage that it is less sensitive to fre-
quency drifts and fluctuations that can lead to spec-
tral broadening [122]. However, although the total
losses can be determined from the measured Qi, it
is much more difficult to determine the microscopic
mechanism that causes these losses, because of the
large number of mechanisms that can contribute to
damping.
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Figure 7. (a) Quality factor as a function of temperature for a single layer graphene resonator and (b) for a WSe2 resonator. Figure
(a) is reprinted with permission from [120], copyright (2010) American Chemical Society. Figure (b) is reprinted with permission
from [109], copyright (2016) American Chemical Society.

The first measurements of single-layer graphene
resonators showed quality factors of Q= 50–100 at
room temperature [11]. In this work, the authors also
hinted at the fact that the quality factor increases
at lower temperatures, but the first systematic study
of the temperature dependence of Q was done by
Chen et al [14] a few years later, where the authors
observed an increase inQ by a factor ofmore than 200
when cooling the resonators down to 5 K. Moreover,
the trend of dissipation decrease was found to con-
sist of two regimes: a T3 dependence above 100 K
and a T0.3− 0.4 dependence below this temperature.
This trend is also observed in resonators from CVD
graphene (see figure 7(a)) [120].

These measurements sparked two questions that
led to a large number of studies in the years to fol-
low: (a) Why are the quality factors of graphene res-
onators so low at room temperature compared to, e.g.
their diamond NEMS (nanoelectromechanical sys-
tems) counterparts? (b) Why does the quality factor
increase so drastically with decreasing temperature
and what constitutes the two distinct regimes? Inter-
estingly, there was one known nanomechanical sys-
tem where similar trends were observed: suspended
carbon nanotubes [77, 123, 124]. It turned out later,
however, that these observations were not limited to
carbon-based NEMS, but were rather a characteristic
of van-der-Waals nanomechanical resonators regard-
less of their chemical composition. Q-factors of the
same magnitude have been observed in resonators
made of transition-metal dichalcogenides (TMDC)
(MoS2 [12, 125], WSe2 [109] (figure 7(b)), TaSe2
[126], TaS2 [127]), hBN [128, 129], b-P [130], MPS3
antiferromagnets [127] (FePS3, MnPS3, NiPS3) and
even in other ultrathin materials, such as membranes
of coordination polymers [131] and complex oxides
[132]. The temperature dependence of theQ-factor of
some of these resonators has also beenmeasured, and
has consistently shown a similar trend as graphene
[109, 125, 127, 129, 132] (figure 7).

An in-depth theoretical discussion on the differ-
ent damping mechanisms in graphene can be found
in Seoánez et al [133]. In the following we will out-
line the most relevant mechanisms that can limit the
Q-factor and their temperature dependencies.

Studies have shown that membrane diameter and
pre-tension are two parameters that are strongly cor-
related with theQ factor of 2D resonators [120, 134].
In SiN membrane resonators, it is well-known that
tension increases Q by a mechanism called dissipa-
tion dilution [135] and similar models were found
to apply in 2D materials [126, 136]. Tension increase
might also partly account for the increase in Q
with decreasing temperatures [110, 127]. When the
temperature decreases, the tension in the resonator
increases, flattening the membrane and this may
well be the main source of decreasing dissipation
when lowering temperature. Tensioning the drum in
a similar fashion at room temperature is challenging,
as using a backgate deforms the resonator out-of-
plane and introduces a strong electric field, which
is known to deteriorate the Q factor (section 6.2.1).
Efforts have been made to establish in-plane tension-
ing at room/elevated temperatures using a piezo crys-
tal [137] or a heater ring [93]which resulted in a small
increase of the Q factor.

Besides tension and geometry, there is strong
evidence that mechanical bending losses are import-
ant for determination of the Q-factor. The dynamic
modulus of a material at a certain frequency can phe-
nomenologically be represented [136, 138] by a com-
plex number E= E1 + iE2, where E1 and E2 are the
storage and loss modulus and their ratio is called the
loss tangent tanδ = E2

E1
. The effect of a nonzero loss

modulus on theQ factor of a resonator can be assessed
by using [55] from equation (12) that Qi =

ℜ(ωi)
2ℑ(ωi)

and substituting E= E1 + iE2 in equation (B.17) for
the resonance frequency ωi. Since ωmem,i for a cir-
cular membrane (equation (B.2)) does not depend
on the elastic modulus, theoretically a perfectly ideal
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membrane has zero loss (and infinite Q), independ-
ent of the loss modulus of the material. The reason
for this is that for strings and membranes in the lin-
ear regime the potential energy during resonance is
stored in the direction change in the tensile force
(from in-plane to out-of-plane) instead of in changes
in the material’s stress and strain. However, this is not
true for a bending circular plate, since its resonance
frequencies ωplate,i depend on E (see equation (B.14))
and the material of the plate is experiencing a time
variant strain during resonance. When both bend-
ing and membrane tension are taken into account
(section B.3) to a good approximation [12], ω 2

i =
ω 2
mem,i +ω 2

plate,i and we find, for E2 ≪ E1, for the fun-
damental mode an estimated Q-factor of:

Qi =
ℜ(ωi)

2ℑ(ωi)
≈
(
|ωmem,i|2

|ωplate,i|2
+ 1

)
E1
E2

. (15)

This equation shows first of all that by increas-
ing the tension in the material, the membrane reson-
ance frequency ωmem,i increases and this results in a
larger Q-factor, thus providing an illustration of the
dissipation dilution mechanism [135]. This dissip-
ation dilution mechanism hinges on storing energy
in ‘lossless’ membrane or string modes, thus redu-
cing the relative contribution of other loss mechan-
isms to the Q-factor, which can also be defined as
the ratio of 2π times the stored energy divided by the
energy loss per cycle. Secondly, equation (15) shows
that the Q-factor can also be increased by minimiz-
ing the material’s loss modulus E2 to reduce bending
losses. Finally, reducing the thickness h and increas-
ing the radius R of the membrane increases the ratio

|ωmem,i|2/|ωplate,i|2 ∝ R 2

h3 , which increases Qi.
A difficult question is: what mechanisms determ-

ine the loss modulus E2 in 2D materials? A number
of mechanisms is known to cause anelastic relaxation
losses in solids [139], most of which might play a role
in 2D materials. Information about the underlying
mechanism can to some extent be obtained by meas-
urements as a function of frequency and temperature.
By testing the bulk material using dynamic mechan-
ical analysis, E2 can be estimated, although it might
be different when thinned down to atomic thickness
and can also be frequency dependent.

An important anelastic loss mechanism affecting
E2 is thermoelastic damping [140] where the periodic
compression and expansion of the material causes
spatial temperature variations. When heat flows to
equilibriate these temperature variations, the mech-
anical energy is lost. The degree of internal friction
depends both on the thermoelastic properties of the
material [141] and on the geometry of the resonator.
The thermoelastic damping loss is proportional to the
product of temperature and heat capacitance cv and a
factor that depends on the geometry, mechanical fre-
quency and thermal diffusivity. The recently observed

large changes in loss close to phase transitions in 2D
materials [127], that approximately follow the trend
1
Q ∝ cvT, support the idea that thermodynamic effects
play a role in theQ-factor of 2D materials by demon-
strating that large changes in specific heat are accom-
panied by large changes in Q.

Instead of damping by converting mechanical
energy to heat, resonance losses can also occur when
acoustic waves leave the membrane, transporting
energy from themembrane resonator to the substrate
via the edge of the drum, an effect that is called acous-
tic radiation loss, which is known to play a role in
other NEMS and MEMS resonators [55]. At the edge
of the drum the 2D material often makes a kink due
to edge adhesion. Acoustic waves might travel across
this kink from the suspended to the unsuspended part
of the 2D material [142], contributing to such acous-
tic radiation losses. In some cases the energy does not
leave the resonancemode via the clamping points, but
is transferred to other resonance modes of the same
resonator via mode-coupling, which can lead to lin-
ear damping [143] but also to nonlinear damping as
will be discussed in section 5.

Another mechanism related to the edge of the
membrane, is adhesion loss, due to the repetitive
adhesion and delamination of the material during
resonance. Thismechanism is usually dismissed in lit-
erature as a lossmechanism for 2D resonators because
the energy density of a vibrating membrane at the
edges is not sufficient to break the hydrogen bonds
created between silanol groups (SiOH) at the inter-
face and the exfoliated flake [133]. The effect of the
edge can be studied via the effect of membrane geo-
metry on the Q-factor [144].

Besides the aforementionedmechanisms, also the
role of wrinkles, contamination and defects on the
Q-factor cannot be ruled out, and a large reduction
of Q might be expected when a polymer contamin-
ation layer goes through the glass-transition. In gen-
eral, more research is needed to obtain a full under-
standing of the loss mechanisms in 2D resonators and
their temperature, material, frequency and geometry
dependence.

5. Nonlinear dynamics of 2Dmembranes:
motion beyond the linear regime

Nonlinear dynamic effects are of paramount import-
ance in 2D material resonators, since they precip-
itate already at excitation forces of only a few pN,
and shrink the dynamic range over which the reson-
ator’s response is linear to span less than two orders
of magnitudes (see figure 1). 2Dmaterial membranes
exhibit a plethora of nonlinear dynamic phenomena
that cannot be easily obtained in other mechanical
systems. Many of these complex nonlinear dynam-
ical phenomena can be present in the same device as
shown in figure 8 for a multi-layer graphene nanod-
rum optothermally driven into resonance. In the first
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Figure 8.Measured nonlinear dynamic frequency response curves of a multi-layer graphene nanodrum (10 nm thick and 5 µm in
diameter); from the red to the blue curves the drive level increases (color bar on the right hand side). In a single set of
measurements the Duffing response, nonlinear damping, parametric resonance and internal resonance (mode-coupling) are
observed, by simultaneous application of both direct and parametric drive. The linear x-axis indicates the detection frequency in
terms of the fundamental resonance frequency ω=ω1, the logarithmic y-axis shows the measured mechanical compliance
|FRF(ω)|. At a frequency ωIR an internal resonance between a direct and parametric mode is observed. Reproduced from [35].
CC BY 4.0.

part of the following section,wewill discuss how these
complex frequency response curves arise from the
nonlinear force terms of Fnl,i and Fext,i in equation (1).
Then we will discuss the various physical effects from
which these force terms originate: geometric nonlin-
earity, nonlinear actuation forces, nonlinear damp-
ing, and mode coupling.

5.1. Nonlinear dynamic phenomena
5.1.1. Dynamics in the presence of nonlinear stiffness
and damping
The most well-known nonlinear equation of motion
in nonlinear structural dynamics is the Duffing
equation, which contains a nonlinear stiffness term
of the form Fnl,i = γq3i resulting in this equation of
motion:

miq̈i + ciq̇i + kiqi + γq3i = Fext,i0 cos(ωt−ϕ)+ F̃.
(16)

We will assume that the constant force term F̃ is
zero for now. As a consequence of the Duffing term,
the stiffness effectively becomes amplitude depend-
ent, as can be seen by writing the total restoring
force as Fk,i = (ki + γq2i )qi. From this equation it fol-
lows that for positive γ > 0 the time averaged modal
stiffness keff,i = ki + γ⟨q2i ⟩ will on average be larger
than ki. This effect is called spring hardening and
leads to an increase in the resonance frequency ωi ≈√

keff,i/mi with increased amplitude. For γ < 0 the
opposite effect, spring softening, occurs, resulting
in a decrease in the resonance frequency at higher
amplitudes.

Equation (16) can be solved analytically by
approximating the solution by a function of
the form qi(t)≈ qi0 sinωt. By substituting this
approximate solution in equation (16), balancing

the fundamental harmonics (sin ωt, cos ωt) on both
sides, and discarding higher-order harmonics (e.g.
sin3 ωt, cos3 ωt3), the frequency response function
reads:∣∣∣∣qi0F0

∣∣∣∣= 1√
(ki −miω 2 +

3γq 2
i0

4 )2 +(ωimiω
Qi

)2
. (17)

This function is plotted in figure 9(a). Compar-
ing equations (14) and (17), we note the pres-
ence of the Duffing constant γ in the denominator
of equation (17) that breaks the symmetry of the
Lorentzian-like peak around ω=ωi and bends the
frequency response curve. The bending direction of
the response curve depends on the sign of γ as dis-
cussed above.

In an experiment, when the driving frequency
ω is swept upward approaching a resonance fre-
quency, spring hardening causes the amplitude to
increase and the resonance frequency to shift to a
higher frequency (figures 9(a) and (b)). This pro-
cess continues until the driving frequency exceeds
the resonance frequency. Beyond this point, the
amplitude suddenly jumps to a lower value, which
also causes the resonance frequency to reduce (ωi ≈√
(ki + γ⟨q2i ⟩)/mi). When sweeping the drive fre-

quency downward, a hysteresis cycle is formed since
⟨q2i ⟩ remains small in the bi-stable region (figure 9(a))
until an upward jump towards higher amplitudes
occurs near ω =

√
ki/mi. Both of these jumps occur

at so-called saddle-node-bifurcation points (SNB) at
which the system becomes unstable because the fre-
quency response function (FRF) curve has an infin-
itely steep slope. At driving frequencies between the
two jump frequencies there is a bi-stable region,
that contains two stable solutions, with high and
low amplitude, and an unstable solution that is
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Figure 9. (a) Duffing hardening nonlinear response and
(c) softening nonlinear response. The response turns to
hardening at large amplitude oscillations. The solid line in
the two panels indicates stable solutions and dashed line is
the unstable solution. SNB in the upper panel stands for
Saddle-Node Bifurcation point. (b) Example of a Duffing
hardening response measured in a graphene resonator.
(d) Example of a measured softening response turning into
hardening at large amplitudes of a graphene resonator.
Figure (b) is reproduced from [20] licensed under CC BY
4.0. Figure (d) is reprinted with permission from [149],
copyright (2018) AIP Publishing LLC.

indicated by a dashed line in figure 9(a). This
typical Duffing response has often been observed
[11, 14, 20, 31] in experimental studies of 2D mater-
ial membranes at motion amplitudes of only a few
nanometers.

In the presence of externally applied stochastic
forces, but also of intrinsic sources, like thermo-
mechanical noise (section 4.1.3), the bi-stable regime
in a nonlinear resonator can enable stochastic switch-
ing between the two stable states (solutions) of the
resonator. The noise might then help to amplify weak
signals via a phenomenon called stochastic resonance
[145]. An advantage of graphene nanodrums is that
they can achieve stochastic switching rates as high as a
few kHz near room temperature [38], hundred times
faster than in conventional silicon resonators [146]
at effective temperatures that are 3000 times lower,
which could prove beneficial for enabling fast sensors
based on stochastic resonance.

It is also interesting to note that when a 2Dmater-
ial membrane is deformed by a constant distributed
pressure p or dc electrostatic force, the Duffing term
shifts its resonance frequency [21, 147]. To analyze
this effect, one needs to calculate the resonance fre-
quency of the membrane about the new equilibrium
position induced by the constant pressure. For this
purpose, the generalized coordinate qi is split into
a static qis and a dynamic qid component: qi = qis +
qid(t), with |qid| ≪ |qis|. Inserting this expression in
equation (16) gives:

kiqis + γiq
3
is = F̃, (18)

from which the static deflection qis due to F̃ can be
calculated. Once qis is known, the Duffing equation
becomes:

miq̈id + ci ˙qid + kiqid + 3γiq
2
isqid + 3γiqisq

2
id + γiq

3
id

= Fi0 cos(ωt−ϕ). (19)

It can be seen from the linear terms in qid in
equation (19) that the resonance frequency about the
deflected position becomes:

ωi =

√
ki + 3γiq2is

mi
. (20)

Besides the extra linear term in equation (19), a non-
linear term quadratic in qid arises due to F̃. This quad-
ratic term is a consequence of the direction of the
static force F̃ which breaks the symmetry [148] of
the system, and can significantly alter the dynamics.
The presence of quadratic nonlinearities can lead to
a combined softening-hardening response [149], like
the ones shown in figures 9(c) and (d). Similar effects
can occur when a Duffing system has an initial offset
qis from the flat position due to other reasons than
a static external force F̃. Such initial offsets can for
instance arise from edge adhesion and uneven tension
(wrinkling) during the fabrication process.

The damping force in equation (1) can also be
nonlinear, e.g. when Fnl,i = ηiq2i q̇i with ηi > 0, such
that the effective dissipation coefficient ceff,i = ci +
ηi⟨q2i ⟩ increases with an increase in the amplitude qi.
In practice, nonlinear damping can result from non-
linear stiffness, when a Duffing force term is com-
bined with viscous delay, which can e.g. arise in
materials where γi is proportional to the complex
Young’s modulus E= E1 + iE2 (see also equation (25)
and section 4.2.3). For high-Q resonators, this non-
linear damping term ηi, which in general can be both
positive and negative, changes the compliance and
speed of the resonator at high driving forces and amp-
litudes. As a result, by increasing the driving force,
the compliance (|qi/Fext,i0|) exhibits trends like the
ones shown in figures 8, 10(a) and (b), where with the
increase in driving force, the Duffing resonance peak
frequency increases due to spring hardening, while
the peak amplitude decreases due to nonlinear damp-
ing. Nonlinear damping can also strongly influence
parametric resonance, which will be discussed in the
next section.

Before proceeding, we note that although ana-
lytical solutions can be found for several exem-
plary cases, in general obtaining them for nonlin-
ear equations of motion is complicated, such that
numerical techniques are often needed. A common
technique in solving these equations is the use of
numerical continuation schemes [150] that system-
atically trace the solutions of a system of differential
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Figure 10. (a) Effect of positive nonlinear damping on the
Duffing response for increasing driving force in the
direction of the arrow, resulting in a reduction in peak
compliance (|qi/Fi|). (b) Measured compliance as a
function of driving power for a multilayer graphene
resonator, showing the effect of positive nonlinear
damping. (c) Parametric resonance in the presence and
absence of nonlinear damping. SNB stands for
Saddle-Node Bifurcation and PFB for Pitch-Fork
Bifurcation. The solid lines in (a) and (c) indicate stable
solutions and dashed lines the unstable solutions.
(d) Measurement of parametric resonance in multiple
mechanical modes in an opto-thermally excited single-layer
graphene resonator. Figure (b) is reproduced from [35]
licensed under CC BY 4.0. Figure (d) is reproduced from
[33] licensed under CC BY 4.0.

equations in a space consisting of the state variables
(displacements and velocities) and the parameter(s)
(e.g. driving force, amplitude, driving frequency)
over which continuation is performed and bifurca-
tion points are identified. Several software tools are
available for performing numerical continuation and
bifurcation analysis including AUTO [151] and Mat-
cont [152].

5.1.2. Parametric resonance
The parametric forcing term Fp,i(t) =−kp,i(t)qi
(section 3.4) in equation (1), can lead to interest-
ing dynamics and provides an alternative to direct
actuation via Fext,i for driving and amplification of
motion; it can even result in sustained oscillation or
squeezing of noise.We consider the case that the para-
metric drive and resonator motion has a sinusoidal
form kp,i(t) = kp,i0 sinωp,it and qi(t) = qi,0 sinωt.
Then, the parametric driving force Fp,i(t) =−kp,iqi
contains frequency components at |ωp,i ±ω|. There-
fore, when ωp,i ≈ 2ωi, it is found that Fp,i contains a
frequency contribution atωi that drives themotion of
mode i if the mode moves at its resonance frequency:
qi(t)≈ qi,0 sinωit.

Parametric driving is often compared to a child
on a swing, that periodically changes the length (and
thus stiffness) of the swing. To maximize the kinetic
and potential energy gain, the swing length should be
maximum in the middle position and minimum at

the end points. Since the swing passes the minimum
position twice during one period of oscillation, the
length should be modulated at twice the resonance
frequency to amplify the amplitude of the swing. If
the period of varying the stiffness is increased by an
integer factor n, the energy gain mechanism is still
synchronized with the motion (although less effi-
cient), such that for lower frequencies ωp,i ≈ 2ωi/n
with n= 1,2, . . . being a positive integer, the system
can still be driven parametrically [96, 153].

The basic model that describes the nonlinear
dynamics of membranes in the presence of paramet-
ric drive and a Duffing term is the Mathieu–Duffing
equation:

miq̈i + ciq̇1 +(ki + kp,i0 cos(ωpt−ϕ))q1 + γq31 = 0.
(21)

It can be shown from this equation, that at ωp = 2ωi

the energy added per cycle to the system by para-

metric drive is Eadd =
πkp,i0Estored

ki
, where Estored is the

stored energy. If this added energy exceeds the dis-
sipated energy per cycle (Ediss =

2πEstored
Qi

), then for
kp,i0
ki

> 2
Qi

the energy supplied to the system will keep
increasing indefinitely, unless it is limited by nonlin-
ear damping effects that reduce the effectiveQ-factor.
This condition is called parametric resonance [154]
or parametric oscillation. Parametric resonance can
also occur at frequencies that do not exactly obey
ωp = 2ωi, although the further the separation of the
driving frequency from this condition, the higher the
drive levels kp,i0 must be to reach parametric reson-
ance as can be depicted in parametric (in)stability
maps [33] (see equation (22)).

To obtain the frequency response curve of the
Mathieu–Duffing oscillator for the fundamental
(or principal) parametric resonance (ωp ≈ 2ωi) and
highlight the difference with equation (16), we again
assume the solution to be harmonic as a first approx-
imation, but since the principal resonance occurs
at ωi ≈ 1

2ωp, we change our assumed solution to
qi ≈ qi,0 sin(

1
2ωpt). By following an analysis [150]

similar to the one performed for the Duffing reson-
ator, i.e. balancing the fundamental harmonics and
discarding higher order ones after inserting the solu-
tion in equation (21), we obtain the trivial solution
qi,0 = 0 and the non-trivial solutions, of which 1 is
stable and the other unstable:

q2i,0 =
4ki
3γ

 ω 2
p

4ω 2
i

− 1± 1

2

√
k2p,i0
k2i

−
(

ωp

ωiQi

)2
 .

(22)

A number of solutions of this equation at dif-
ferent driving forces are shown in figure 10(c).
Equation (22) also shows that parametric resonance
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atωp = 2ωi exists only if kp,i0 >
2ki
Qi
. At parametric res-

onance, the solution branches with qi = 0 lose sta-
bility through the so-called pitch-fork bifurcations
(PFBs). These bifurcation points are the points where
the trivial (qi = 0) and non-trivial solutions meet in
the frequency amplitude response (see figure 10(c)).
Parametric resonances can be observed at different
driving frequencies in the same structure, either for
different values [96, 153] of the integer n with ωp,i ≈
2ωi/n, or when different eigenmodes of the struc-
ture are excited parametrically via the same mod-
ulation parameter, such as shown in figure 10(d)
[33]. 2D materials can exhibit record number of
parametric resonances when the parametric drive
kp,i0 is gradually increased by opto-thermal tension
modulation [33]; a phenomenon that has not been
observed in macro-mechanical systems due to the
high dissipation and the difficulty of modulating the
stiffness.

Equation (22) predicts that the amplitude of
the resonator will tend to infinity when sweep-
ing the driving frequency ωp upward. However,
in experiments it usually drops down to the low-
amplitude solution, after having followed the solu-
tion (equation (22)) up to a certain point. Nonlin-
ear damping can account for this drop in amplitude,
since it effectively causes a decrease ofQi with increas-
ing amplitude until the relation kp,i0 >

2ki
Qi

does not
hold anymore as shown in figure 10(d). Paramet-
ric resonance can therefore be used as a very sensit-
ive technique for characterizing nonlinear damping
[33, 35].

At driving levels that are not sufficient for para-
metric oscillation, kp,i0 <

2ki
Qi
, the parametric term in

equation (1) can result in parametric gain (ampli-
fication) and noise squeezing [83, 155]. Parametric
gain is the enhancement of a sinusoidal direct driv-
ing force Fext,i by supplementing it with a paramet-
ric drive. The parametric gain factor G= |qpi/qi| is
the ratio between the amplitude of the resonator in
the presence of parametric drive (|qpi|) and in the
absence of parametric drive (|qi|), and depends on
the phase difference between the parametric and dir-
ect forcing terms. For certain phases the paramet-
ric gain is larger than 1, but for other phases the
gain is reduced below 1, with a minimum gain of
G= 0.5, such that it reduces the resonator’s amplitude
(G< 1). If the signal Fext,i is due to noise, with ran-
dom phase, adding a parametric drive will therefore
reduce this noise for certain phases and amplify it for
other phases. This effect (for G< 1) is called noise
squeezing [64] and can be useful, when for example
the position of a resonator needs to be stabilized.
It should be noted that since velocity is 90 degrees
out of phase with position, the phase dependent gain
caused by a parametric drive will either amplify velo-
city while reducing position amplitude, or vice-versa,
so it is impossible to squeeze both position and velo-
city noise simultaneously.

5.1.3. Mode-coupling and internal resonance
Since the eigenmodes are orthogonal, there are no
linear coupling terms between the equations with
different mode number i in equation (1) and there-
fore mode coupling can only occur via nonlinear
terms in the EOM [156]. In particular, mode coup-
ling is caused by forces that are generated on one
mode by the motion of another and corresponds to
the terms in Fnl,i in equation (1) that involve products
of the generalized coordinates, like qiqj, with j ̸= i. Up
to cubic order Fnl,i can thus be written as [56, 157]:

Fnl,i =
N∑
j=1

N∑
k=j

α
(i)
jk qjqk +

N∑
j=1

N∑
k=j

N∑
l=k

γ
(i)
jkl qjqkql,

(23)

where N is the number of degrees-of-freedom, and

the coefficients α(i)
jk and γ

(i)
jkl are the quadratic and

cubic coupling terms that depend on the geometry,
elasticity, and curvature of the membrane, but can
also originate from e.g. electrostatic or optical forces,
resulting inmode coupling between 2Dmaterials and
SiNmembranes [158] or cavity modes [29], as will be
discussed later. Besides the nonlinear stiffness mode
coupling terms in equation (23), there is a similar
set of nonlinear damping mode coupling terms like

Fnl,i = ϕ
(i)
jk qiq̇j, which has received little attention up

to now.Mode coupling effects can be studied by driv-
ing both modes near their resonance frequency sim-
ultaneously, or by exciting one mode and study its
ringdown [34, 102] while monitoring the effects of
interactions with other modes. However, most com-
monly these coupling effects are studied [27, 35, 99,
159, 160] by driving one mode j directly or para-
metrically with an external sinusoidal force Fext,j =
Fext,j0 sin(ωt) while tuning its resonance frequency
until interactions with other modes become notice-
able. These interactions can be understood as fol-
lows: at sufficiently high driving force and when driv-
ing the mode close to its resonance frequency, the
motion qj(t) = qj,0 sinωjt reaches large amplitudes,
and as a consequence, mode i experiences a mode-

coupling force, e.g. of the form α
(i)
ij qiqj,0 sin(ωjt).

Interestingly, it is seen that when ωj = 2ωi, the force
has the same form of a stiffness modulated at 2ωi and
thus resembles parametric driving (section 5.1.2), but
since it is caused by the resonator itself instead of
an external modulation, it is called auto-parametric
excitation [159].More generally, this kind of resonant
excitation of a mode by driving another mode at res-
onance is called internal resonance, and can occur not
only at ωi/ωj = 1/2 but also at other ratios, where the
condition ωi/ωj = n/m is also called a (n:m) internal
resonance [154].

It is interesting to note that for intermodal coup-
ling, the quadratic and cubic nonlinear restoring
force terms of equation (23) have contributions that
depend on the type of internal resonance that exists
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between the modes. For instance, in case of two-
to-one (2:1) internal resonance [35] the domin-
ant coupling terms in two-degree-of-freedom system

are: Fnl,1 = α
(1)
12 q1q2 and Fnl,2 = α

(2)
11 q

2
1 , and for

three-to-one [34] (3:1) Fnl,1 = γ
(1)
112q

2
1 q2 and Fnl,2 =

γ
(2)
111q

3
1. This is a consequence ofmixing since e.g. driv-

ing at ω2 = 3ω1 is generated by the q31 term and driv-
ing at ω1 = ω2 − 2ω1 is generated by the q21 q2 term.

When two mechanical modes of the resonator
interact in the vicinity of internal resonance, part of
the mechanical energy is transferred to vibrations at
other frequencies, which can be seen as a kind of non-
linear damping [34, 35, 143], since in an uncoupled
(orthogonal) undamped system of eigenmodes, each
mode is expected to maintain its energy forever,
whereas coupling can lead to a distribution (equipar-
tition) of energy over all modes. It has therefore been
suggested that the nonlinear terms in the equation of
motion can play a role in this equipartition [143, 161].
An experimental example of this type of damping by
mode coupling, whichwill be discussed inmore detail
in section 5.2.3 can be seen in figure 8, where near
frequency ωIR, the peak amplitude of the parametric
mode reduces.

Besides the nonlinear mode-coupling described
in this section, it is also possible that the eigenmodes
of different 2D material membranes are coupled (or
hybridized) by connecting themmechanically or elec-
trically, or by tuning them, such that the coupled
system has different eigenmodes from the individual
unconnected membranes [162–164].

5.2. Physical origin of nonlinear effects
After having discussed the different types of phe-
nomena that can be caused by the nonlinearities in
the equation of motion, we now discuss the phys-
ics and mechanics from which these nonlinear terms
originate. We can distinguish two types of origins
for the nonlinear coefficients in equation (1), the
mechanical nonlinearities in Fnl,i and the nonlinear-
ities induced by the actuation terms Fext,i or kp,i.
Both material nonlinearities and geometric nonlin-
earities can contribute to the mechanical nonlinear-
ities. For capturing the nonlinearities in actuation,
the physics behind the actuation mechanism needs to
be analysed. Finally, the output signal can be distor-
ted by nonlinearities in the readout, however, since
these nonlinearities do not affect the dynamics of the
device, they can be calibrated and corrected for in a
rather straightforward manner [15] and will not be
discussed in detail here.

5.2.1. Mechanically induced nonlinear terms
Geometric nonlinearity is a primary cause of the non-
linear dynamic response of free-standing 2D mater-
ials. Its effect on a suspended 2D membrane under
tensile stress can be intuitively understood by consid-
ering, as an example, a straight string at zero tension,
that is deflected in the middle by a distance x from

its equilibrium position, thus forming a triangular
shape. The length change of the string increases pro-
portionally to x2 for small x according to Pythagoras’
theorem, and the tension force in the string increases
proportional to this length increase. Moreover, after
multiplication by another factor x, that is obtained by
taking the tension force component perpendicular to
the string, which is approximately proportional to the
small angle by which the string is deflected, it is found
that the geometric nonlinear force required to deflect
the string is a cubic function of the center deflection
x, i.e. Fgeom,nl ∝ x3. As a consequence of the geometric
nonlinearity, the tension in the string increases, and
therefore the system exhibits spring hardening such
that its dynamics is described by the Duffing equation
with γ > 0 (section 5.1.1).

Geometric nonlinear terms are often difficult to
compute analytically, however numerical [20] and
finite element model [157] based methodologies
have been developed to determine the coefficients in
equation (23). Some of these methodologies are dis-
cussed in appendix C. Once calculated, a fit of the
nonlinear frequency response function, can provide
high-frequency information about device and mater-
ial properties, such as its Young’s modulus [20] and
loss tangent [33] that cannot be obtained with quasi-
static techniques like atomic force microscopy. An
interesting question is if these methodologies might
be used to study differences between the static and
dynamic material properties. Geometric nonlinearit-
ies can also result in nonlinear damping in a viscous
material that will be discussed in section 5.2.3. In the
presence of large rotations, inertia nonlinearities in
the mass term of the equation of motion might also
play a role [165], however, in membranes this effect
is usually negligible. Besides geometric nonlinearities,
also material nonlinearities, caused by nonlinearities
in the stress–strain curve of the material, can induce
nonlinear terms in the equation of motion. Up to
now, no experimental evidence of the observation of
effects of material nonlinearities in 2D materials on
their nonlinear dynamics has been reported to our
knowledge.

5.2.2. Actuation induced nonlinear terms
All types of actuation forces Fext,i, including electro-
static forces [21, 29] and opto-thermal forces [22, 33,
38, 104], are nonlinear to a certain degree. In general
the effect of nonlinear actuation terms can be ana-
lyzed by performing a series expansion of the force
around the equilibrium position. As an example one
can expand the electrostatic actuation force discussed
in section 3.1, equation (3) around w= qi = 0 for
qi ≪ 1 to obtain:

Fext =
ε0A

2
(Vdc +Vac cos(ωt))

2(
1

g2
+

2qi
g3

+
3q2i
g4

+
4q3i
g5

)
. (24)
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From this equation it can be seen that the different
powers of qi in the actuation force add to the different
mechanical linear and nonlinear terms on the left side
of the equation of motion, equation (1). In this case
the term proportional to 2qi/g is a softening term that
reduces the linear stiffness, and the terms 3q2i /g

4 and
4q3i /g

5 are quadratic and cubic spring softening terms
that can be used for tuning nonlinear stiffness of 2D
materials [149, 166]. In addition to these nonlinear
terms, it is noted that the static actuation term 1/g2, in
combination with the geometric nonlinear terms, can
induce nonlinearities as discussed in equation (18).
For other types of actuation forces a similar analysis of
nonlinearities via actuation terms can be performed.

Tuning of the nonlinear terms in the mechanical
equation ofmotion via the actuation force can be use-
ful. For instance, it was shown that by adjusting the
cavity depth g and the dc bias voltage, the electrostatic
softening by the electrostatic force can compensate
for the hardening geometric nonlinearity and thus
increase the dynamic range over which 2D material
resonators operate linearly [167]. On the other hand,
the nonlinear terms in the actuation force do com-
plicate the analysis and control over the intrinsic non-
linearities in 2D material resonators.

5.2.3. Nonlinear damping terms
As has been shown in figure 8 and discussed in
section 5.1.2, signatures of nonlinear damping have
been observed in frequency response and ringdown
measurements of 2Dmaterial resonators [26, 33–35].
Figures 10(a) and (b) show how nonlinear damping
manifests itself in direct and parametrically driven
resonators, and how it can be modelled by a term of
the form Fnl,i = ηiq2i q̇i in which ηi is the the nonlinear
damping coefficient.

Although the presence of nonlinear damping has
been detected in 2D materials, its origin is still a
subject of debate, and different physical phenom-
ena are believed to lie at its root including a com-
bination of geometric nonlinearity and viscoelasti-
city [33, 168], coupling between the flextural modes
and the in-plane phonons [169], Akhiezer damping
[170], and nonlinear mode coupling [34, 35, 143,
171], of whichwewill discuss the first and last inmore
detail.

An anelastic (viscous) material can be described
by a complex Young’s modulus E= E1 + iE2 (see
section 4.2.3). Since the geomtrically induced Duff-
ing term γ of 2D material membranes explicitly
depends on the Young’s modulus of the material (see
equation (C.8)), the real part of the nonlinear stiff-
ness near resonance for harmonic motion qi = q0eiωt

becomes [33, 172]:

γq3i =
πh

f(ν)R2
(E1q

3
i + E2

q2i q̇i
ω

), (25)

with f(ν) = (1.27− 0.97ν− 0.27ν 2), which directly
yields a nonlinear damping term in the equation

of motion proportional to the loss modulus E2.
Although this type of damping in viscousmembranes
in the presence of geometric nonlinearities is thought
to be important in 2D materials, to our knowledge
equation (25) has not been tested experimentally.

Nonlinear damping via mode-coupling
[34, 35, 143] is based on the notion that energy can
leave the driven mode via the coupling terms in
equation (23). This occurs in particular near internal
resonances where the driven mode actuates another
mode auto-parametrically, as is supported by exper-
imental evidence [34, 35]. Strictly, the energy is not
lost because it is not converted into heat, but inmech-
anical motion of another mode. Under certain cir-
cumstances the energy can return into the driven
mode, an effect found in the work of Fermi, Pasta
and Ulam [173]. However, practically, the energy
usually does not return, such that the coupling con-
tributes to nonlinear damping of the main mode at
high amplitudes during driven motion [35] or dur-
ing ringdown [34], which might even be tuned by
adjusting the driving amplitude. Nonlinear damping
terms might also contribute to our understanding of
linear damping [143], heat transfer and equipartition
between coupled modes. For instance, for two mech-
anical modes with generalized coordinates q1 and q2
and modal stiffnesses k1 and k2, nonlinear damp-
ing forces Fd12 =−η12q22 q̇1 can arise, resembling
equation (25). At a finite temperature T equiparti-
tion holds, such that the motion of mode 2 is given
by ⟨q22 ⟩= kBT/k2. This could result in a temperat-
ure dependent average damping force on mode 1
Fd12,av =−η12⟨kBT/k2⟩q̇1.

6. Physical Interactions

The dynamics of suspended 2D materials is affected
both by the internal membrane physics and by
external processes that affect the membrane’s sur-
face and edges. As such, the membrane’s motion is
not only sensitive to the internal thermal, electric
and magnetic processes in the membrane, but also to
external forces from gases, liquids, charge and elec-
tromagnetic fields. A deeper understanding of the
effects of these physical interactions on the mechan-
ical motion and internal and external membrane pro-
cesses can provide new methods for material charac-
terization of atomically thin membranes, while at the
same time offering a platform for enabling novel and
improved environmental and force sensing applica-
tions, as has recently been reviewed [10].

In this section we review the effect of both the
internal and external physical interactions on the
dynamics of 2Dmaterials. Some of the basic mechan-
isms have already been introduced in earlier sections,
since these interactions also provide routes for actuat-
ing and detecting the motion of the membranes. We
nowprovide amore in-depth discussion of the under-
lying physics, the possibilities for using interactions
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for material characterisation, and their importance
for sensing external forces from the environment.

6.1. Thermodynamic and electromagnetic
interactions
Heat in 2D materials can be stored in phononic lat-
tice vibrations, as well as in electronic and magnetic
degrees of freedom. There are not many techniques
available to characterize these thermodynamic prop-
erties in suspended ultrathinmembranes. In this sub-
section we will present several methodologies that
utilize the coupling between membrane dynamics
and thermodynamics for characterizing thermal and
electromagnetic properties, that are difficult to obtain
otherwise.

6.1.1. Thermal characterization via opto-thermal
response
The high-frequency temperature modulation by a
modulated laser does not only provide a route
for contactless actuation of suspended 2D materi-
als (section 3.2), but can also be exploited to learn
more about their thermal properties. When heating
a 2Dmembrane with a power-modulated laser at fre-
quency ω, the absorbed laser power, P(t) = P0eiωt,
causes its temperature T(t) = T0eiωt to be modulated
at an amplitude T0 which can be expressed in the fre-
quency domain as T0 =

RthP0

iωτth+1 . Here Rth and Cth are
the membrane’s thermal resistance and heat capacity
respectively, and τth = RthCth is themembrane’s char-
acteristic thermal time constant. The resulting effect-
ive thermal expansion force is Fext = αeffT, where αeff

is an effective thermal expansion coefficient of the
device (see section 3.2). Its frequency dependence can
be written as:

Fext = αeffRthP0
1

1+ω 2τ 2
th

−αeffRthP0
iωτth

1+ω 2τ 2
th

.

(26)

This frequency dependence of the real (in-phase)
and imaginary (out-of phase) parts of the force Fext,i
can be characterised via the motion qi, using the rela-
tion qi = Fext,i/ki, which holds far below the funda-
mental resonance frequency. Equation (26) matches
experiments well and fits can be used to obtain the
thermal time-constant τth of themembrane [19, 174].
This is illustrated in figure 11(a), which shows an
example of the measured real and imaginary part of
the frequency dependent amplitude in a suspended
single-layer MoS2 drum with a fit to equation (26).
The imaginary part shows an extremum at ω = 1/τth
= 1/227 ns. By combining the thermal delay time τth
with calculated values of Cth, it is possible to determ-
ine the thermal conductivity 1/Rth, which was found
to be 24.7 WmK−1 for 8 µm diameter MoS2 drums
[174], in accordance with estimates from literature.
Thus, dynamic characterisation of the thermal time

Figure 11. (a) Complex amplitude of the mechanical
motion of MoS2 and graphene as a function of the
frequency of the photothermal heating. (b) Left figure:
resonance frequency of a WSe2 resonator as a function of
temperature, compared to a theoretical prediction of the
thermal expansion coefficient (red line and right figure). (c)
Tuning of the linewidth of a single layer graphene resonator
as a function of incident laser power. The left plot uses a
laser with a wavelength of 568 nm, while the right plot used
a wavelength of 633 nm. The sign of the linewidth change
∆Γ changes because the optical gradient∇P has a
different sign for both wavelengths. Figure (a) (left)
reprinted with permission from [174], copyright 2018
American Physical Society. Figure (a) (right) reproduced
from [45] licensed under CC BY 4.0. Figure (b) is reprinted
with permission from [109], copyright (2016) American
Chemical Society. Figure (c) is reprinted with permission
from [18], copyright (2012) American Chemical Society.

constant of 2D membranes can be used as a contact-
less tool to probe their thermal properties.

Recently, experimental evidence [45] was found
for the theoretical hypothesis [175] that for graphene
equation (26) is incomplete, because the out-of-plane
flexural acoustic phonons are effectively decoupled
from the in-plane (longitudinal and transverse)
acoustic phonons. This causes the in-plane and out-
of-plane phononic baths to have different thermal
time constants. Since the time constants correspond-
ing to in-plane phonons are estimated to be much
smaller than that of the out-of-plane flexural phon-
ons, the slow time-constant τth measured in [19] is
attributed to flexural phonons in combination with
phonon boundary scattering effects at the boundary
of the suspended drum [142]. Evidence for heat trans-
port by fast in-plane phonons, with time-constants
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below the experimental detection limit, was obtained
from observations of an experimental offset (see right
panel of figure 11(a)), in comparison to the real part
of equation (26).

6.1.2. On-resonance thermal characterisation
An alternative methodology for determining the
membrane’s thermal properties is by characteriz-
ing the effect of the gradient in the laser intens-
ity on the line width and frequency of the reson-
ance peak. To do this, one exploits the optical gradi-
ent of the electric field in the Fabry–Perot cavity
formed between the membrane and the substrate
(section 2.1), which causes a position dependent
optical absorption P(qi) = (P0 +

dP
dqi

qi). Because the
thermal expansion force is delayed with respect to
the power absorption, part of the resulting gradi-
ent in the opto-thermal force dFext/dqi ∝ dP/dqi in
equation (26) will be in phase with the velocity q̇i,
such that both the squared resonance frequency and
linewidth change by respectively∆ω 2

i =−kfb/mi and
∆Γi =−cfb/(2πmi) (see section 3.5, equations (7)
and (8)). This effect was first observed on single-
layer graphene resonators with optical readout of the
motion [18], as shown in figure 11(c). The damping
can become larger or smaller when changing the laser
wavelength, which can be attributed to the sign of the
optical gradient.

By combining the effect of opto-thermal backac-
tion on the resonance frequency and damping, the
thermal time-constant can be determined [176] with
this equation:

τth =
∆Γi

∆ω 2
i

=
1

ωi

ℑ[dFext/dqi]
ℜ[dFext/dqi]

. (27)

The expression on the right side of the equation
is valid more generally and can also be applied to
extract electrical or gas permeation time constants
(sections 6.2.1, 6.2.2 and figure 15). The appeal-
ing feature of this equation is that the prefactors of
equation (26) drop out by taking the ratio. Since
uncertainties increase when one has to distinguish
very small shifts in line width or resonance frequency,
which can occur according to equations (26) and (27)
if ωτth ≫ 1 or ωτth ≪ 1, this methodology works
most accurately when 1/τth is of the same order of
magnitude as the resonance frequency and not much
smaller than the intrinsic line width of the resonance
peak.

Thus, there are two complementary methods for
determining the thermal time constant: the fitting
procedure outlined in section 6.1.1 that works well at
frequencies far belowωi, and equation (27) that com-
plements this technique by providing the possibility
to study the thermal time constant at higher frequen-
cies, for which 1/τth is of the order of the resonance
frequency.

6.1.3. Thermal expansion characterisation
Finally, besides the presented high-frequency temper-
ature modulation techniques, it is also possible to
learn about the thermal properties of the membrane
material by characterizing changes in resonance fre-
quency due to a static temperature change ∆T. Due
to thermal expansion, the tension in the membrane
changes due to thermal strain ε:

n(T) =
Eh

1− ν

[
ϵ(T0)−

ˆ T

T0

α(T ′)dT ′

]
. (28)

Singh et al [110] used this concept to measure the
temperature dependent thermal expansion coeffi-
cient of graphene by tracking the resonance fre-
quency as a function of the environmental tem-
perature, utilizing equation (28) in combination
with ωmem,i ∝

√
n(T). This methodology has also

been applied to other 2D materials such as WSe2
(figure 11(b)) [109]. When applying equation (28),
corrections have to be made for the thermal expan-
sion of the substrate. Vice-versa, after having per-
formed an independent calibration measurement of
ωi(T), the resonance frequency can also be used to
sense the membrane temperature, for instance if the
membrane is locally heated by a laser with power P,
under the assumption that differences in temperat-
ure distributions across the membrane can be neg-
lected. The obtained temperature can be used to cal-
culate the thermal resistance Rth =∆T/P, and then
calculate the thermal conductivity from the geometry
[176, 177]. By determining Rth with a static meas-
urement or from literature estimates, and τth with
a dynamic measurement, the heat capacity can be
estimated using Cth = τth/Rth, as was done [176] for
MoSe2 and for [33] MoS2. As shown in the previ-
ous sections, the dynamics of suspended 2Dmaterials
coupled to an optical field that acts as a heat source,
has proven itself as a versatile probe to study the
thermal properties of these materials. In the future,
these dynamical characterisation methods are expec-
ted to further contribute to an improved understand-
ing of heat transport in ultra thin materials.

6.1.4. Coupling to electronic and magnetic phases
Interestingly, clear changes in the slope and curvature
of the ωi(T) curve were recently observed [127] when
crossing the antiferromagnetic Neél temperature in
the thin layered 2D materials FePS3, MnPS3, and
NiPS3 (figure 12(a)). These were, similarly as in the
previous section, attributed to changes in the thermal
expansion coefficient. In fact, the thermal expansion
coefficient also holds information on a more fun-
damental material parameter, the specific heat cV,
which, according to thermodynamic models, is pro-
portional to the thermal expansion coefficient and
shows a discontinuity (jump) at second order phase
transitions, that can account for the observed changes
in ωi(T) near the phase transition temperature. This
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Figure 12.Measured resonance frequency as a function of
temperature (solid blue line) and line–temperature
derivative of f 20 (solid magenta line) of a (a) FePS3 and a
(b) 2H-TaS2 nanodrum showing prominent features at the
phase transition of the materials. Reproduced from [127].
CC BY 4.0.

demonstrates that the dynamics of 2D materials can
be used to probe phase transitions which are diffi-
cult to study by conventional methods, because ultra
thin materials do not respond strongly to conven-
tional electronic and magnetic probes.

To demonstrate the potential of the technique, in
two studies [127, 178] a significant effect of strain
on the magnetic order in suspended 2D materials
was observed by applying electrostatic force on the
membrane while monitoring its mechanical reson-
ance frequency. Since anomalies in the specific heat
are quite universal signatures of phase transitions, the
methodology is not only applicable to probe mag-
netic order, but also to electronic phase transitions,
as was demonstrated by probing the charge density
wave transition [179] in 2H-TaS2 (figure 12(b)). Fur-
thermore, it was observed that the phase transition
has a large effect on the quality factor, which was
also attributed to the change in the specific heat and
its effect on the energy dissipation mechanisms like
thermo-elastic damping [127].

Similar to the previously discussed opto-thermal
actuation, the actuation mechanism can also be used
to probe electronic, magnetic and optical properties

of 2D materials via other routes. For example, in the
electronic band structure of 2D materials like MoS2,
the K and K ′ valleys form an electronic binary sys-
tem, whose symmetry is broken if strong spin–orbit
coupling is present. It was shown [180] that this effect
can be used to actuate the vibration of single-layer
MoS2 in a magnetic field gradient induced by the
substrate.

6.2. External interactions
In this section we discuss how external electrostatic
fields and the gaseous environment of 2D material
membranes can influence their dynamics, and in par-
ticular the Q-factor and resonance frequency.

6.2.1. Electrostatic interactions
Suspended 2D materials are often coupled to an elec-
tric field, especially when driven electrostatically (see
section 3.1). For a perfectly conducting membrane,
the electrostatic force is in-phase with the applied
voltage. However, in practice, 2D materials have a
substantial resistance R due to their low thickness,
which in combinationwith the gate capacitanceC res-
ults in an electrical RC-circuit that causes the voltage
and electrostatic force on themembrane to be delayed
by a characteristic charge relaxation time τel = RC,
with respect to the externally applied voltage. Similar
to the case of on-resonant thermal interaction, this
leads to a time-delayed position dependent part of
the electrostatic force with real and imaginary parts,
that modify stiffness and damping terms [111] in
the equation of motion, respectively (section 3.5).
In the limit 1/ωi ≪ τel, which is applicable for a
good electrical conductor such as graphene, the res-
onance frequency and quality factor can be written
as:

ω 2
i = ω 2

i,int −
ε0V2

dc

ρh

1

g3
, (29)

Q−1
i = Q−1

i,int +
ε0V2

dc

ρhωi

τel
g3
, (30)

where ωi,int and Qint are the intrinsic resonance fre-
quency and quality factor when Vdc = 0. Applying a
dc voltage to the back gate thus lowers the resonance
frequency (spring softening) and at the same time
introduces additional damping and Q-factor reduc-
tion, an example of this can be seen in figures 13(a)
and (b). This effect has been reported in several works
[16, 17, 25, 34, 109, 111, 181] and the voltage depend-
ence given by equations (29) and (30) can be used to
extract the mass and τel.

Equation (29) is obtained by assuming a con-
stant capacitance, however, in certain situations this
is not valid. The electrostatic force coupled to the
membrane results in an effective stiffness keff =
1
2V

2
DCd

2C/dz2. In 2D materials, quantum capacit-
ance effects can be important, which directly alters keff
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Figure 13. Effect of an external electric field on the
resonance of suspended 2D materials. (a) Resonance
frequency of a graphene/NbSe2 heterostructure membrane
as a function of gate voltage, showing a quadratic
dependence as predicted by equation (29). (b) Quality
factor of the same membrane as (a) as a function of gate
voltage, showing a quadratic dependence on it in agreement
with equation (30). Reprinted with permission from [181].
Copyright (2017) American Chemical Society.

through the ‘d2C/dz2’ term and this results in a res-
onance frequency shift. This effect has been modeled
and measured in detail by Chen et al [182].

Besides the electrostatic softening in
equation (29), electrostatic forces can also cause
an electrostatic tensioning effect, where tension is
proportional to the square of the force perpendicu-
lar to the membrane that causes a static deflection
qis ∝ V2

dc, and a tension n∝ q2is, such that approxim-
ately ω 2

i ∝ n∝ V4
dc. The combination of this effect

with electrostatic softening equation (29) leads to
typicalW-shaped or U-shaped graphs [14, 183] when
plotting the resonance frequency versus the applied
gate voltage Vdc, with the exact shape depending on
parameters like pre-tension.

For applications in the optomechanics com-
munity one wants to apply high Vdc to achieve high
frequency tuning, without significantly reducing the
quality factor. Therefore, according to equations (29)
and (30), it is of interest to minimize τel. The most
successful approach towards this is to use heterostruc-
tures of 2Dmaterials to improve the electronmobility
and reduce resistive dissipation [181].

6.2.2. Interaction with gas molecules
When an unsealed graphene drum moves at low fre-
quencies in a gas at an ambient pressure Pa, the
gas molecules will enter and leave the gap region
with height g, such that the pressure stays constant.
However, this situation changes when the membrane
moves at a high resonance frequency, because in that
case viscous forces effectively prevent the gas from
flowing back and forth during an oscillation period.
If the resonance frequency is much higher than the
characteristic time (τgas) it takes the gas to escape
the cavity, the gas is compressed by the motion of
themembrane (the squeeze-film effect), which results
in a stiffness and corresponding resonance frequency
increase given by:

ω 2
i,sq = ω 2

i +
Pa
gρh

(31)

The squeeze-film effect has been demonstrated
using multi-layer graphene devices [23] as illustrated
in figure 14(a). The device consists of a dumbbell
shaped cavity which is 400 nm deep, and a graphene
flake (31 layers) that only covers half of this dumb-
bell. This half covering ensures the existence of a
venting channel that keeps the average pressure in
the cavity equal to that of the environment. The res-
onance frequency rises to higher values as the pres-
sure is increased, as expected from equation (31),
that is is fitted to the data using only the reson-
ance frequency at vacuum ωi as a fit parameter, and
assuming that ωiτgas ≫ 1. Excellent agreement with
the experimental data is found up to 200 mbar, but
a significantly lower stiffness is observed above this
pressure, which is likely due to the breakdown of
the assumption that gas does not escape above this
pressure.

Thin films of gas have also been used to pneu-
matically couple two graphene resonators by connect-
ing them via a channel [185] (see figure 14(b)). In
this figure, the drum on the left is actuated, push-
ing gas through the channel and actuating the other
drum on the right which responds with opposite
sign. By observing the delay between the response
of the opposite drum, the gas flow induced by these
graphene pumps can be studied, making it an inter-
esting platform to study gas flow and thermodynam-
ics at these length scales.

The pressure relaxation time, τgas, can also be dir-
ectly measured by studying the vibration of a mem-
brane with a nanopore perforation below the res-
onance frequency [40]. Similar to the opto-thermal
response, an extremum in the imaginary part of
the complex amplitude is expected when ωτgas = 1,
which can be seen in the measurement shown in
figure 14(c). The blue arrows indicate this extremum
due to gas permeation, the frequency of which
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Figure 14. (a) Optical image of a 31 layer graphene squeeze-film pressure sensor and its measured pressure dependent resonance
frequency. (b) Pneumatic coupling between two graphene nanodrums. (c) Measurement of τgas and τth in a graphene drum with
a milled nanopore. Figure (a) reprinted with permission from [23], copyright (2016) American Chemical Society. Figure (b)
reproduced with permission from [184], copyright (2018) IEEE. Figure (c) is reproduced from [40] licensed under CC BY 4.0.

changes as different gases are brought in the envir-
onment. In addition, the red arrows indicate the
extremum due to the thermal time constant dis-
cussed in section 6.1.1), which occurs due to the
opto-thermal actuation and does not change position
when different gasses are used. The gas dependence of
τgas agrees well with a model for effusion through the
milled nanopore, an effect that can potentially enable
new types of gas sensors.

6.3. Single relaxation timemodels
In sections 6.1.1, 6.2.1 and 6.2.2, we have shown
that the interactions of 2D material membranes with
their environment can well be modelled by a single
relaxation time model, with relaxation times like τth,
τel, τgas. In this subsection we shortly highlight the
commonalities between these model and underlying
physics. A more extensive discussion of single relax-
ation time models can be found in appendix D. In
figure 15 we summarize the dynamics that is observed
when 2D materials resonators interact with temper-
ature, electrical RC-circuits and gases. In each case,
the relaxation time emerges due to a delay between
the membrane motion and the force action on the
membrane. In the case of opto-thermal interaction

this occurs due to heat diffusion, in the case of electro-
static interaction due to Joule dissipation and in the
case of gas interaction due to friction. Figures 15(a)–
(c) illustrate these mechanisms and the real and ima-
ginary parts of the frequency dependent interaction
forces and transfer functions hω (figures 15(d)–(f))
that can be accurately measured by the dynamic
motion of 2D material membranes using the meth-
ods described in this section. The similarities between
these interactions can be found in their dependence
on the frequency of the oscillation ω. As shown in
figures 15(d)–(f), the effect of damping is the largest
when ω= 1/τ and furthermore a transition between
stiffness regimes occurs at this frequency. In figure 15
we also cite typical values of the time constant τ ,
this reveals the main difference between the differ-
ent types of interaction as they occur on quite differ-
ent timescales. Although single-relaxation timemod-
els are often only approximately valid, since multiple
timescales can play a role, we note that in practice they
provide quite a good model of the observed effects of
interactions on membrane dynamics. Moreover the
models can be extended to analyze more intricate and
new types of physics, characterized via the motion of
2D material membranes.

28

https://creativecommons.org/licenses/by/4.0/


2D Mater. 8 (2021) 042001 P G Steeneken et al

Figure 15. Overview of physical interactions that result in position and velocity-dependent forces on the membrane, discussed in
detail in appendix D. (a) Opto-thermal interaction. The position dependence of the force occurs due to the optical gradient, the
thermal diffusion in the membrane causes a phase delay of the force that alters the damping. (b) Electrostatic interaction. Due to
the capacitor configuration, charges are stored on the membrane, resulting in a stiffness force. The diffusion of these charges
results in a phase shift of the force, resulting in damping. (c) Gas interaction, shown here is the squeeze-film effect where the
membrane is suspended over a thin gap. Due to the membrane motion, gas is trapped resulting in a stiffness force. The lateral gas
flow causes a phase delay that damps the motion of the membrane. (d) hω in the case of opto-thermal interaction and a plot of
the real and imaginary part of hω as a function of ωτth. Some typical values of τth from literature (DollemanA [19, 45],
DollemanB [142], MorellA [176]) are cited below the figure. See also figures 11(a) and (c) for experimental results on
opto-thermal interactions. (e) hω in the case of electrostatic interaction. Typical values from the literature (Song [111], MorellB
[109], Will [181]) are calculated by taking the reported effective resistance and multiplying by the geometric capacitance. See also
figures 13(a) and (b) for experimental results on this interaction. (f) hω in the case of the squeeze-film effect, typical measured
values (Roslon [40]) can also be seen in figure 14(c). Note that either fits from equation (26) or equation (27) are used to obtain
the reported time constants.

7. Discussion and outlook

Experimental investigations of the dynamics of 2D
materials have progressed from phenomenological
studies of the motion of 2D materials to studies that
utilize the high-frequency motion of 2D materials as
a probe for gaining a deeper and more quantitative
understanding of the physics of this class of materi-
als. In the future, we expect that 2D membranes will
continue to evolve as a tool to study the physics and
properties of 2Dmaterials. Let us summarize the areas
where we anticipate that the dynamics of 2D mem-
branes can contribute to advance our understand-
ing of 2D materials. First, mechanical techniques can
contribute to the study of electronic and magnetic
phases of matter in 2D materials that are insulating
or are difficult to couple to an electronic lead (for
example, due to Schottky barrier formation), such
that electronic characterisation methods fail. Second,
the methodologies presented in section 6 can con-
tribute to studies of transient heat transport which

happens in the nanosecond range and is difficult to
study by other means. Third, further study of elec-
trostatically coupled 2D materials can help to under-
stand what ultimately limits the ultrafast relaxation
times of these systems. Finally, we expect that smart
engineering of mechanical resonators from hetero-
structures of 2D materials, can enable deeper insight
and control over interactions at interfaces, which can
bring significant improvements in device perform-
ance and lead to new functionalities [10].

We conclude the review with some open research
questions, highlighting promising directions for the
study of the dynamics of 2D materials.

• Unravelling the Q-factor of 2D resonators.
Although many effects have been linked to dis-
sipation in 2D resonators, a quantitative picture of
the different components contributing to damping,
and their temperature dependence is still missing.
Clamping, surface, contamination, bending and
thermo-elastic losses all limit the Q-factor of 2D

29



2D Mater. 8 (2021) 042001 P G Steeneken et al

materials, whereas dissipation dilution by high-
tension increases Q. How can these individual
factors and their dependence on geometry, con-
tamination, material and temperature be distin-
guished and quantified?

• Understanding the nonlinear coefficients in the
equation of motion. The nonlinear (cubic) spring
constant in the motion of 2Dmaterials can be used
to extract their Young’s modulus. However, many
of the nonlinear coupling and dissipation terms
have not been quantified yet. Can these coefficients
be extracted and be used to characterize geomet-
ric nonlinearities and material properties such as
the specific heat, thermal expansion coefficient or
viscoelasticity?

• Frequency-dependent material properties. Many
studies focusing on static properties of 2D materi-
als have been carried out. Some of these properties,
like the Young’s modulus, can host a strong ima-
ginary component which makes the measurement
dependent on the frequency at which the materials
are characterized. Are properties like Young’s mod-
ulus and loss tangent frequency dependent, and if
so why?

• Dynamic characterisation of wrinkles. Morpho-
logical imperfections have been haunting the field
of 2D nanomechanics since its inception. Wrinkles
affect almost all aspects of the dynamics of 2D
materials, including their vibrational mode shapes,
their resonance frequency and their thermal prop-
erties. Can methodologies be developed to detect
and characterize static and dynamic wrinkles in 2D
resonators, such that the relation between wrinkles
and membrane dynamics can be unravelled?

• Measurement and control over phonons in sus-
pended 2D membranes. Although initial studies
have revealed that phononic and thermal transport
in 2D membranes is significantly different from
that in bulk materials, is it possible to actuate and
detect phonons in 2D materials more accurately to
elucidate their role in sound and heat transport?

• Nonlinear dynamic sensing with 2Dmembranes.
The limited dynamic range of 2D material mem-
branes puts a barrier on the sensing performance of
these devices, since at low amplitudes their dynam-
ics is affected by thermomechanical noise and at the
upper end by nonlinearities (figure 1(a)). Can 2D
resonant sensors be operated in the nonlinear range
effectively, and can their nonlinearities be used for
increasing sensitivity?

• Extending 2D resonators as probes of condensed
matter physics. Initial evidence of the detec-
tion of phase transitions and thermodynamics has
shown the potential of 2D resonators for prob-
ing non-mechanical effects. Could these tech-
niques be improved in accuracy and scope to
facilitate quantitative characterisation of material
properties?
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Appendix A. Dynamic regimes of motion

In figure 1(a) the different ranges of motion for
circular graphene membranes are shown, indicat-
ing that when scaling down the graphene mem-
brane radius, the nonlinear and thermal motion
become increasingly important. In this appendix we
present the equations used to estimate the motion
amplitudes that separate the different regimes of
motion in figure 1(a). To determine the boundar-
ies between the ranges, we use typical parameters
for a graphene membrane: a constant pretension n0
= 0.03 Nm−1, density ρ= 2260 kgm−3, graphene
thickness h= 0.335 nm, Young’s modulus Y = 1012

Nm−2 and Poisson’s ratio ν = 0.16.
Starting from the smallest scale, the ultimate

detection limit for motion detection by interfero-
metric readout is [186] the standard quantum limit
⟨z2SQL⟩1/2 =

√
ℏ/(2mωi) which, for a fundamental

resonance frequency f1 = ω1/2π = 30 MHz, of a
5 micron diameter graphene membrane, gives an
imprecision of ⟨z2SQL⟩1/2 = 0.3 pm, where we use
that the fundamental mode has a modal mass [88]
m1 of 0.27 times the total mass πR2 hρ according to
equation (B.7). Brownian, or thermal motion of the
membrane corresponds, according to the equiparti-
tion theorem, to an energy kBT per mode and a root
mean squared motion amplitude ⟨z2th⟩1/2 given by:

⟨z2th⟩1/2 =
√

kBT/(miω 2
i ). (A.1)
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At room temperature (T= 293K) and for a resonance
frequency of ω1/(2π)= 30MHz, this results in a pos-
ition standard deviation of ⟨z2th⟩1/2 = 0.17 nm, which
is significantly higher than the quantum motion.
Therefore quantum motion effects can be neglected
at room temperature.

It is of interest to note that when scaling down
the drum size, while keeping its mechanical pre-
tension n0 constant, the amplitude of the thermal
Brownian fluctuations remains constant because the
mass increases proportional to the square of the
radius R, but the resonance frequency ω1 decreases
inversely proportional to R (equation (B.2)), such
that the product miω

2
i in equation (A.1) stays

constant.
Since nonlinearities exist at any membrane amp-

litude, there is not a sharp boundary between lin-
ear and nonlinear regimes. Here, we define the non-
linear regime as the amplitude region for which the
nonlinear component of the membrane elastic force
exceeds 10% of the linear membrane force. To estim-
ate this point, we utilize the equation [187] that relates
the center deflection wc of a circular membrane to
the applied uniform pressure P and the related force
Fp = πR2P:

Fp = k1wc + k3w
3
c = 4n0wc +

8Yhw3
c

3R2(1− ν)
. (A.2)

Thus, the system is found to be in the nonlinear
regime for center amplitudes that exceed wc,nl as
found from this equation:

wc,nl =

√
0.1

k1
k3

=

√
0.1

3n0R2(1− ν)

2Yh
. (A.3)

If the amplitude of the membrane becomes even lar-
ger, it can rupture. For this yield strain we take a con-
servative value of breaking strain [188]: ϵb = 1.2 %.
By rewriting equation (A.2) in terms of an effective

deflection induced tension, neff =
2Yhw 2

c
3R 2(1−ν) such that

Fp = 4(n0 + neff)wc, and using neff,b = Yhϵb/(1− ν),
we obtain as rough estimate for the breaking strain
amplitude wc,b:

wc,b =

√
3

2
ϵbR2. (A.4)

Using these equations and the above-mentioned con-
stants we find ⟨z2th⟩1/2 = 0.17 nm for all drumdiamet-
ers. For the drum radii of 50 nm, 2.5 µm and 100 µm,
we find wc,nl = 0.17 nm, 8.4 nm and 340 nm and wc,b

= 7.0 nm, 349 nm and 14µmrespectively as indicated
in figure 1.

Appendix B. Resonant motion of circular
membranes and plates

In this appendix we review the linear theory gov-
erning the undamped resonances of a circular drum

Figure 16. The four lowest mode shapes of a circular
membrane. Reprinted from [189].

resonator, deriving the modal masses mi, stiffnesses
ki and resonance frequencies ωi, in membrane, plate
and intermediate regime.

B.1. Membrane dynamics
If the membrane is very thin, the pre-tension domin-
ates the restoring force and we will assume this pre-
tension is uniform over the membrane surface. For
the out-of-plane deflectionw of themembrane in cyl-
indrical coordinates r, θ we can write the following
equation of motion:

∂ 2w

∂r2
+

1

r2
∂ 2w

∂θ 2
+

1

r

∂w

∂r
=

ρh

n0

∂ 2w

∂t2
, (B.1)

The solution to this equation gives the resonance
frequency and eigenmodes:

ωmem,αn =
γαn
R

√
n0
ρh

, (B.2)

W(1)
αn (r,θ) = R(r)T(θ) = Jα(γαnr/R)cosαθ, (B.3)

W(2)
αn (r,θ) = Jα(γαnr/R) sinmθ, (B.4)

whereα= 0, 1, 2,… and n= 1, 2, 3,…. The constants
γαn are found by solving the frequency equation:

Jα(γαn) = 0, (B.5)

which for the first four modes gives: γ01 = 2.405,
γ11 = 3.832, γ21 = 5.135 and γ02 = 5.520. The first
four modes of a circular membrane are shown in
figure 16.

An important property of vibrational modes is
that their shape is fixed, therefore if one knows the
deflection of a certain point of the membrane at a
resonance, one automatically knows the deflection of
all the other parts of the membrane. As discussed in
section 1.1, a mode is therefore a single degree of free-
dom that can describe the motion by a single general-
ized coordinate qi. It is this property that allows one to

31



2D Mater. 8 (2021) 042001 P G Steeneken et al

formulate the vibration at a resonance as an equation
of motion with a single degree of freedom:

miq̈i + kiqi = Fi, (B.6)

where mi is the effective (or modal) mass, ki is
the modal stiffness and Feff the effective force,
where the modal mass, stiffness and force depend
on the vibrational mode under consideration and
the choice of generalized coordinate. We choose as
generalized coordinate the maximum deflection of
the membrane. In that case, for the fundamental
mode (figure 16(a)) the modal mass of a circu-
lar membrane compared to its real total mass mtot

is:

m(0,1)

mtot
= 0.2695, (B.7)

while for the second mode (1,1) in figure 16(b) this
ratio is:

m(1,1)

mtot
= 0.2369. (B.8)

An overview of modal masses and how to calculate
them for various geometries can be found in [88].
Once the modal mass is determined, the modal stiff-
ness follows directly from equation (B.2):

kαn =
γ 2
αn

a2
n0
ρh

mαn. (B.9)

B.2. Plate dynamics
If the membrane becomes thicker or if the tension is
small, tension effects can be neglected and the restor-
ing force in themembrane is generated by the internal
bending moments in the material. This is called the
plate limit. Taking into account this bending rigidity,
the equation that governs the dynamics of the circular
plate becomes:

ρh
∂ 2w(r,θ, t)

∂t2
+D∇2

r ∇2
r w(r,θ, t) = 0, (B.10)

where∇2
r =

∂ 2

∂r 2 +
1
r
∂
∂r +

1
r 2

∂ 2

∂θ 2 and D is the bending
rigidity:

D=
Eh3

12(1− ν 2)
. (B.11)

Equation (B.11) is valid for a continuous uniform
material, however for a 2D material that assump-
tion breaks down in the direction perpendicular tot
the plane. Nevertheless, single-layer 2Dmaterials also
have a bending rigidity [190], but equation (B.11)
is not valid anymore, because the bending rigidity is
dominated by the electron orbitals that resist bend-
ing, such that D needs to be calculated by other
means [87]. Theory even suggests that for single-layer
materials the bending rigidity can be temperature

dependent [191]. Equation (B.10) can also be solved
by separation of variables and this leads to the follow-
ing eigenmodes and resonance frequencies:

W(1)
αn (r,θ) = (Jα(λαnr)Iα(λαnR)

− Jα(λαnR)Iα(λαnr))cos(αθ), (B.12)

W(2)
αn (r,θ) = (Jα(λαnr)Iα(λαnR)

− Jα(λαnR)Iα(λαnr)) sin(αθ), (B.13)

ωplate,αn = λαn

√
Dρh, (B.14)

where λαn is the solution to the frequency equation:

Iα(λαnR)Jα−1(λαnR)− Jα(λαnR)Iα−1(λαnR) = 0.
(B.15)

The first four roots of this equation are: λ01R= 3.196,
λ11R= 4.611, λ21R= 5.906 and λ02R= 6.306.

B.3. Plates under tension
When increasing the thickness of suspended 2D
materials, their dynamics can be described by the
membrane equation of motion (section B.1) in the
single-layer limit and transforms [12] to plate dynam-
ics (section B.2) for multi-layer membranes where
bending rigidity quickly becomes dominant, since the
bending rigidity D∝ h3. In the intermediate regime
both the bending rigidity and the tension contrib-
ute to the restoring force, resulting in the equation of
motion:

D∇2
r ∇2

r w(r,θ, t)+ n0∇2
r w(r,θ, t) = ρh

∂ 2w

∂t2
.

(B.16)

The resonance frequency is:

ωtot,αn =

√
ζ 2
αn

n0
ρh

+ ζ4αn
D

ρh
. (B.17)

The procedure to determine ζαn, the resonance fre-
quencies and mode shapes can be found in references
[192, 193]. ζαn only depends on the dimensionless
number R2 n0

D . This also gives a useful test to determ-
ine whether the lower modes of a circular membrane
can be described using membrane or plate theory.

Since the evaluation of the resonance frequency is
quite complicated in this case, often [12] the approx-
imation ω 2

tot,αn ≈ ω 2
mem,αn +ω 2

plate,αn is used.

Appendix C. Derivation of the nonlinear
reduced order model of a circular drum

After having considered the linear dynamics in the
previous appendix, we show here how a nonlinear
reduced order model for the fundamental mode of
a circular membrane can be derived, leading to the
Duffing equation. The resulting analytic expression
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for the nonlinear Duffing term was used in [20] to
extract the Young’s modulus of graphene from the
experimental nonlinear frequency response curves.
The demonstrated procedure can be extended to
include other modes and evaluate mode-couplings as
well, and variants of it have been implemented with
FEM techniques [157].

The Lagrange equations of a tensioned circular
2D membrane are given by

d

dt
(
∂Tk

∂q̇i
)− ∂T

∂qi
+

∂U

∂qi
=

∂W

∂qi
, i= 1,2, . . . , N̄,

(C.1)

in which Tk is the kinetic energy, U is the potential
energy,W is the virtual work done by external forces,
and qi are the generalized coordinates that are used to
define the motion of the drum. The potential energy
of a circular drum for an isotropic material is

U=

ˆ 2π

0

ˆ R

0

Eh

2(1− ν 2)

(
ϵ2rr + ϵ2θθ

+ 2νϵrrϵθθ +
1− ν

2
γ 2
rθ

)
rdrdθ, (C.2)

where E is the Young’s modulus, ν is the Poisson’s
ratio, h is the thickness and R is the radius of the
drum. Moreover, ϵrr , ϵθθ are the normal strains and
γrθ is the shear strain that can be written in terms of
the drum’s deflection as follows [56]:

ϵrr =
∂u

∂r
+

1

2

(∂w
∂r

)2
, (C.3a)

ϵθθ =
∂v

r∂θ
+

u

r
+

1

2

( ∂w

r∂θ

)2
, (C.3b)

γrθ =
∂v

∂r
− v

r
+

∂u

r∂θ
+
(∂w
∂r

)( ∂w

r∂θ

)
. (C.3c)

In equation (C.3) u, v, and w are the radial, tangen-
tial and transverse membrane deflections. The quad-
ratic terms in equation (C.3) are commonly known
as von Kármán nonlinear terms and shall be included
for studying the nonlinear dynamic response of the
drum.

The kinetic energy of the drum can be calculated
by neglecting in-plane inertia (u̇= v̇= 0), because
the in-plane resonance frequencies are much higher
than the considered out-of-plane dynamics and is
found to be:

Tk =
1

2
ρh

ˆ 2π

0

ˆ R

0
ẇrdrdθ, (C.4)

where the overdot indicates differentiation with
respect to time, t. For a membrane subjected to trans-
verse distributed pressure consisting of a constant

part p0 and a harmonic component Fcos(ωt−ϕ), the
virtual work done can be calculated as:

W=

ˆ 2π

0

ˆ R

0

(Fcos(ωt−ϕ)

πR2
+ p0

)
wrdrdθ. (C.5)

To obtain the governing equations of motion, one
would first need to discretize equations (C.2), (C.4),
and (C.5) using a set of admissible functions that
satisfy the boundary conditions. 2D material mem-
branes stampedon topof cavities have fixed boundary
conditions due to the strong adhesion force that exists
between the substrate and the membrane. For this
type of boundary condition u= v= w= 0 at r=R.
Moreover, for axi-symmetric deflection/oscillations,
strain-displacement relations (equation (C.3)) can be
further simplified since for this type of motion v= 0,
and ∂u/∂θ = ∂v/∂θ = ∂w/∂θ = 0. Thus, for a drum
driven into its first resonance mode, one can use the
following set of functions for discretization:

w= q1(t)J0
(
γ01

r

R

)
, (C.6a)

u=
n0(1− ν)

Eh
r+ r(R− r)

N̄∑
k=2

qk(t)r
k−2. (C.6b)

Eventually inserting the discretized U, T and W in
Lagrange equations leads to a system of nonlinear
equations comprising a single differential equation
associated with the out-of-plane generalized coordin-
ate q1 and N̄− 1 algebraic equations in terms of the
in-plane generalized coordinates q2, . . . ,qN̄. By solv-
ing the N̄− 1 algebraic equations in terms of q1, and
adding a damping term, it is then possible to reduce
the number of equations to the following 2nd order,
Duffing type (equation (16)) differential equation
describing the out-of-plane dynamics of the funda-
mental mode:

m1q̈1 + c1q̇1 + k1q1 + γq31 = Fext,1 cos(ωt−ϕ)+ F̃1.
(C.7)

According to the described procedure, the para-
meters in this equation are obtained as:

m1 = 0.2695ρhπR2, (C.8)

k1 = 4.8967n0, (C.9)

γ =
πEh

(1.27− 0.97ν− 0.27ν 2)R2
, (C.10)

Fext,1 = 0.432F, (C.11)

F̃1 = 1.3567p0R
2. (C.12)
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Here, γ is the cubic spring constant or Duffing con-
stant. In section 5.1 the role of this constant on the
nonlinear phenomena that are commonly observed
in 2D material membranes is highlighted.

Appendix D. Single relaxation-time
models

In this appendix the single relaxation-time models
presented in section 6 and figure 15 are discussed in
more detail.

Many physical phenomena resemble the phys-
ics of an electrical RC circuit, consisting of a capa-
citor in parallel to a resistor. When a current Iin(t) =
Iin(ω)eiωt is run through this circuit, the voltage Vout

across the capacitor is governed by the following dif-
ferential equation:

Iin(t) =
Vout

R
+C

dVout

dt
=

Vout(ω)

R
(1+ iωRC)eiωt,

(D.1)

which can be rewritten as:

Vout(ω) = βhωIin(ω) = βIin(ω)
1

1+ iωτ
, (D.2)

where the transfer [194] function hω = 1
1+iωτ cap-

tures the time delay τ =RC between current and
voltage, indicative of the time taken to charge the
capacitor and β=R is a characteristic transduction
constant. Since this relaxation time is fully described
by the time constant τ , it is called a single relaxation
time model.

In the dynamics of 2D material membranes we
encounter three types of systems that can be described
as single relaxation time models. The first is an opto-
thermally actuated systemwith a heat capacitanceCth

and thermal resistance Rth, that is quite analogous to
the electrical system we just discussed. In this case we
find a thermal expansion force of the form:

Fext,th = αeffTout(ω) = βPin(ω)
1

1+ iωτth
, (D.3)

where P(t) is the modulated optical power absorbed
by the membrane, Tout(ω) is the membrane temper-
ature and τth = RthCth is the thermal time-constant.

When the force is position dependent, the real and
imaginary parts of Fext in equation (D.3) can alter
the effective stiffness and damping coefficient as dis-
cussed in section 3.5. These changes in stiffness and
damping can also be used to determine the value of
τ , like in equation (27).

The circuit of an electrostatically actuated mem-
brane consists of a capacitor (themembrane) in series
with a resistor (the interconnect). The circuit acts as
a voltage divider, where only the part of the input
voltage Vin across the capacitor contributes to the
electrostatic force. For such a voltage divider it is

straightforward to show that we get a single relaxa-
tion time model of the form:

Fext,el = β1Vout(ω) = β2Vin(ω)
1

1+ iωτel
, (D.4)

where Vin is the applied ac voltage, and the con-
stants β depend on the voltage, electrical component
values and geometry. τel = RC is the electrical time-
constant, which is the product of the electrical resist-
ance and capacitance of the electrostatically actuated
membrane.

The third type of relaxation time model is used
to capture the squeeze-film effect, where the pressure
difference across the drum reduces both due to gas
flow out of the enclosing cavity with time-constant
τgas at a rate proportional to the pressure difference
∆p, and due to membrane motion with a speed q̇1, as
indicated by the following differential equation [40]:

d∆p

dt
=− 1

τgas
∆p+ γ

dq1
dt

, (D.5)

where γ is a proportionality constant. For a sinusoidal
pressure variation ∆p(t) = ∆p(ω)eiωt, this becomes:

∆p(ω) =
iωτgas

1+ iωτgas
γq1(ω), (D.6)

where we again obtain a single relaxation time model
of a slightly different form between the pressure and
membrane position. The pressure across the mem-
brane drives the dynamics of the drum, and can
be coupled to the mass spring system, ignoring the
intrinsic damping of the resonator:

−m1ω
2q1 + k1q1 = β∆p. (D.7)

If we substitute equation (D.6) into this equation, and
rewrite β and γ using the well known solution in the
high-frequency limit (ωτgas) and using ω 2

1 = k1/m1,
we obtain:

ω 2 = ω 2
1 +

p

g0ρh

ω 2τ 2
gas

ω 2τ 2
gas + 1

+ i
p

g0ρh

ωτgas
ω 2τ 2

gas + 1
.

(D.8)

For high frequencies, ωτgas > 1 the resonance fre-
quency becomes equation (31). When ωτgas < 1, the
membrane is not oscillating fast enough to compress
the gas, and the stiffness reduces. The imaginary part
describes the damping, and this is maximum when
ωτgas = 1.
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