
 
 

Delft University of Technology

Qualitative and Quantitative Imaging in Electromagnetic Inverse Scattering Theory

Sun, Shilong

DOI
10.4233/uuid:edf396c5-5c3a-4b5c-9fc4-b8bb5ff6eeee
Publication date
2017
Document Version
Final published version
Citation (APA)
Sun, S. (2017). Qualitative and Quantitative Imaging in Electromagnetic Inverse Scattering Theory.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:edf396c5-5c3a-4b5c-
9fc4-b8bb5ff6eeee

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:edf396c5-5c3a-4b5c-9fc4-b8bb5ff6eeee
https://doi.org/10.4233/uuid:edf396c5-5c3a-4b5c-9fc4-b8bb5ff6eeee
https://doi.org/10.4233/uuid:edf396c5-5c3a-4b5c-9fc4-b8bb5ff6eeee


QUALITATIVE AND QUANTITATIVE IMAGING IN
ELECTROMAGNETIC INVERSE SCATTERING THEORY





QUALITATIVE AND QUANTITATIVE IMAGING IN
ELECTROMAGNETIC INVERSE SCATTERING THEORY

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T. H. J. J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 2 februari 2018 om 10:00 uur

door

Shilong SUN

Master of Science in Information and Communication Engineering
National University of Defense Technology, China,

geboren te Zhangqiu, Shandong, China.



Dit proefschrift is goedgekeurd door de

promotor: prof. dr. A. G. Yarovoy
copromotor: dr. ir. B. J. Kooij

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. G. Yarovoy Technische Universiteit Delft
Dr. ir. B. J. Kooij Technische Universiteit Delft

Onafhankelijke leden:
Prof. ir. F. le Chevalier Technische Universiteit Delft
Prof. dr. ir. E. C. Slob Technische Universiteit Delft
Prof. dr. ir. C. P. A. Wapenaar Technische Universiteit Delft
Prof. dr. T. Isernia Università Mediterranea di Reggio Calabria
Prof. dr. C. Pichot Université Nice Sophia Antipolis

This research was financially supported by the China Scholarship Council and the
EEMCS faculty of Delft University of Technology.

ISBN 978-94-028-0912-1
PhD Dissertation, Delft University of Technology.
Copyright © 2017 by Shilong Sun.

All rights reserved. No parts of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the author.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Dedicated to my family





CONTENTS

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Approaches. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Novelties and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Electromagnetic Scattering Theory 9

2.1 Electromagnetic Direct Scattering Problem . . . . . . . . . . . . . . . . . 9

2.1.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Finite Difference Frequency Domain . . . . . . . . . . . . . . . . 10

2.1.3 A Solver Package: “MaxwellFDFD” . . . . . . . . . . . . . . . . . . 13

2.2 Electromagnetic Inverse Scattering Problem . . . . . . . . . . . . . . . . 20

2.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Nonlinearity and Ill-posedness . . . . . . . . . . . . . . . . . . . 22

2.2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Inversion Techniques: State-of-the-art . . . . . . . . . . . . . . . . . . . 24

2.3.1 Contrast Source Inversion . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Linear Sampling Method. . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Cross-Correlated Contrast Source Inversion 31

3.1 Cross-Correlated Error and CC-CSI . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Cross-Correlated Error . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Formulation of CC-CSI. . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Multi-Frequency CC-CSI . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



viii CONTENTS

4 A Linear Model for Inverting Highly Conductive Scatterers 65
4.1 MMV Linear Inversion Model . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Solving the SMV Model: TM Case . . . . . . . . . . . . . . . . . . 67
4.1.3 Solving the MMV Model: TM Case . . . . . . . . . . . . . . . . . . 69
4.1.4 Solving the MMV Model: TE Case . . . . . . . . . . . . . . . . . . 70
4.1.5 CV-based Modified SPGL1 . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Synthetic and Experimental Data Inversion . . . . . . . . . . . . . . . . . 75
4.2.1 Synthetic Data Imaging . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Experimental Data Imaging . . . . . . . . . . . . . . . . . . . . . 82

4.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Linearized 3-D Contrast Source Inversion 87
5.1 Extension of the MMV Linear Method to 3-D Cases . . . . . . . . . . . . . 88

5.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Derivation of the Dual . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.3 Projection Operator . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Inverting the Contrast. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 GPR Imaging: Lossy Objects . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Through-the-Wall Imaging. . . . . . . . . . . . . . . . . . . . . . 96
5.3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 GMMV-based Linear Inversion 105
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 The GMMV-based Linear Method. . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 The GMMV Formulation . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Guideline of the Measurement Configuration . . . . . . . . . . . . 107
6.2.3 Solving the GMMV model . . . . . . . . . . . . . . . . . . . . . . 108
6.2.4 CV-based Modified SPGL1 . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Validation with Experimental Data . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 Dielectric Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Metallic Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Hybrid Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.4 Computation Time. . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Difference and relationship between GMMV and LSM . . . . . . . . . . . 121
6.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions and Recommendations for Future Work 123
7.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 125

A The Derivation of the Step Size in CC-CSI 127
A.1 Single Frequency CC-CSI . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Multi-frequency CC-CSI . . . . . . . . . . . . . . . . . . . . . . . . . . 128



CONTENTS ix

B The Sensing Matrix in Free Space 131
B.1 2-D Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.1 TM Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.1.2 TE Polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 3-D Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137

Acronyms 149

Summary 151

Samenvatting 153

Acknowledgements 155

List of Publications 157

About the Author 159





LIST OF FIGURES

2.1 Yee’s finite difference grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Geometry of the coaxially layered cylinder of the test cases for testing the

performance of the “MaxwellFDFD” solver package. . . . . . . . . . . . . . 13
2.3 |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 in Case

1. Left: results obtained by “MaxwellFDFD”; Right: analytical solutions
reported in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 in Case
2. Left: results obtained by “MaxwellFDFD”; Right: analytical solutions
reported in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Amplitude images of the x1- and x2-components of the electric field, E1,
E2 and the x3-component of the magnetic field H3, on the cross sectional
plane of the cylinders. Left: Case 1; Right: Case 2. . . . . . . . . . . . . . . . 16

2.6 |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 with
Nλ = 15. Left: Case 1; Right: Case 2. . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Configuration of the 3-D benchmark problem: an ideal electric dipole
located at (−0.0495 m, 0 m, 0 m) of a unlimited free space. . . . . . . . . . . 18

2.8 Real part of the three components of the analytical solution and the
numerical solution on the cross section of x1 = −0.1. Left: analytical
solution; Right: numerical solution. . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Computation error of the three components of the electric field on the
cross section of x1 =−0.1. (a) Ex1 ; (b) Ex2 ; (c) Ex3 . . . . . . . . . . . . . . . . 20

2.10 General configuration of the EM inverse scattering problem. . . . . . . . . 21
2.11 Geometry of the far-field LSM. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Geometry of the near-field LSM. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Original “Austria” profile contained in a region of [−4, 4] × [−4, 4] m2. The
boundaries of the four sides are terminated with PMLs. The two z-normal
boundaries are subject to PBCs. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Measurement configuration of Example 1. . . . . . . . . . . . . . . . . . . . 39
3.3 Comparison of the measurement data collected without scatterer and the

data obtained by modelling the incident fields in the TM case. (a) Real
part, 300 MHz; (b) Imaginary part, 300 MHz; (c) Real part, 400 MHz; (d)
Imaginary part, 400 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Reconstruction error curves of classical CSI, MR-CSI, and CC-CSI in the
TM case of Example 1. Left: 300 MHz; Right: 400 MHz. (a), (b): complex
contrast error, er rχ; (c), (d): permittivity error, er rε; (e), (f): conductivity
error, er rσ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



xii LIST OF FIGURES

3.5 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 1 with 2048 iterations. SNR= 30dB. TM-polarization data. . . . . . . . . 43

3.6 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 1 with 2048 iterations. SNR= 10dB. TM-polarization data. . . . . . . . . 44

3.7 Geometric illustration of the tangential component of the electric field in
TE cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Comparison of the tangential component of the measurement data col-
lected without scatterer and the one obtained by modelling the incident
fields in the TE case. (a) Real part, 300 MHz; (b) Imaginary part, 300 MHz;
(c) Real part, 400 MHz; (d) Imaginary part, 400 MHz. . . . . . . . . . . . . . 46

3.9 Reconstruction error curves of classical CSI, MR-CSI, and CC-CSI in the
TE case of Example 1. Left: 300 MHz; Right: 400 MHz. (a), (b): complex
contrast error, er rχ; (c), (d): permittivity error, er rε; (e), (f): conductivity
error, er rσ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 1 with 2048 iterations. SNR= 30dB. TE-polarization data. . . . . . . . . 48

3.11 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 1 with 2048 iterations. SNR= 10dB. TE-polarization data. . . . . . . . . 49

3.12 Measurement configuration of Example 2. . . . . . . . . . . . . . . . . . . . 50

3.13 Permittivity error curves of classical CSI, MR-CSI, and CC-CSI in the TE
case of Example 2. (a) TM, 300 MHz; (b) TE, 300 MHz; (c) TM, 400 MHz; (b)
TE, 400 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.14 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 2 with 2048 iterations. SNR= 30dB. (a-f) correspond to Fig. 3.13 (a); (g-l)
correspond to Fig. 3.13 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.15 Reconstructed relative permittivity, εr,con, and conductivity,σcon, in Exam-
ple 2 with 2048 iterations. SNR= 10dB. (a-f) correspond to Fig. 3.13 (a); (g-l)
correspond to Fig. 3.13 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.16 Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration
number in case 1 (∆εr = 2, ∆σ= 5 mS/m) by processing the TM-polarized
(a, c) and TE-polarized (b, d) data. Different frequency bands of 0.1-0.5
GHz (a, b) and 0.3-0.5 GHz (c, d) and different SNRs of 30 dB and 10 dB are
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.17 Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration
number in case 2 (∆εr = 9,∆σ= 10 mS/m) by processing the TM-polarized
(a, c) and TE-polarized (b, d) data. Different frequency bands of 0.1-0.5
GHz (a, b) and 0.1-0.2 GHz (c, d) and different SNRs of 30 dB and 10 dB are
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 Relative permittivity (left) and conductivity (right) of the inverted contrast
by processing the multi-frequency dataset FoamTwinDielTM (Line 1: MF-
CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data (Line 3: MF-
CC-CSI; Line 4: MF-MR-CSI) at 7 GHz, 8 GHz, 9 GHz, and 10 GHz with
2048 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xiii

3.19 Relative permittivity (left) and conductivity (right) of the inverted contrast
by processing the multi-frequency dataset FoamTwinDielTE (Line 1: MF-
CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data (Line 3: MF-
CC-CSI; Line 4: MF-MR-CSI) at 7 GHz, 8 GHz, 9 GHz, and 10 GHz with
2048 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.20 Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration
number in processing the multi-frequency perfect synthetic data of the
Fresnel datasets, FoamTwinDielTM and FoamTwinDielTE, at 7 GHz, 8
GHz, 9 GHz, and 10 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Probing the Pareto curve: the update of parameter τ. . . . . . . . . . . . . . 68
4.2 Measurement configuration of Simulations 1 and 2. . . . . . . . . . . . . . 77
4.3 Scatterer geometry and its reconstructed shapes in Simulation 1. (a) Scat-

terer geometry; Reconstructed shape by processing the TM-polarized data
with MMV (b), LSM (c), and the improved LSM with I = 7 (d), respectively.
Reconstructed shape by processing the TE-polarized data with MMV (e)
and LSM (f), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Reconstruction residual and CV residual curves of Simulation 1. (a) TM-
polarized data; (b) TE-polarized data. . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Scatterer geometry and its reconstructed shapes in Simulation 2. (a) Scat-
terer geometry; Reconstructed shape by processing the TM-polarized data
with MMV (b), LSM (c), and the improved LSM with I = 6 (d), respectively.
Reconstructed shape by processing the TE-polarized data with MMV (e)
and LSM (f), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Reconstruction residual and CV residual curves of Simulation 2. (a) TM-
polarized data; (b) TE-polarized data. . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Measurement configuration of the Fresnel data-sets: rectTM_cent, uTM_sh-
aped, and rectTE_8f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 (a) The rectangular highly conductive cylinder; (b) The “U-shaped” highly
conductive cylinder; (c) The dielectric object combined by two identical
circular cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Scatterer shape reconstructed by processing the TM-polarized data-set:
rectTM_cent at 16 GHz with MMV (a), LSM (b), and the improved LSM with
I = 9 (c), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Scatterer shape reconstructed by processing the TM-polarized data-set:
uTM_shaped at 8 GHz with MMV (a), LSM (b), and the improved LSM with
I = 8 (c), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Scatterer shape reconstructed by processing the TE-polarized data-set:
rectTE_8f at 16 GHz with MMV (a) and LSM (b), respectively. . . . . . . . . 84

4.12 Reconstruction residual curve and CV residual curve of the Fresnel data-
sets: rectTM_cent (a), uTM_shaped (b), and rectTE_8f (c), at 16 GHz, 8 GHz,
and 16 GHz, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 General geometry of 3-D inverse scattering problems. Sources and re-
ceivers are located on the surface S . Objects are located in the inversion
region D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xiv LIST OF FIGURES

5.2 Geometry of the GPR imaging experiment. Soil: εr = 3, σ = 0.001 S/m.
Sphere: εr = 2, σ= 0.05 S/m. Cube: εr = 6, σ= 0.01 S/m. 6 × 6 sources and
9 × 9 receivers are uniformly distributed on the square plane ([−3, 3], [−3,
3], 0.5) m. The 12 red receivers correspond to the CV measurements, and
the 69 green ones correspond to the measurements used for reconstructing
the contrast sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Residual curves of the GPR imaging experiment. Reconstruction residual
and CV residual curves for estimating the contrast sources using the
exact background model (a) and an inexact background model (1.25εbg)
(c). Data error and state error curves for reconstructing of the contrast
using the exact background model (b) and an inexact background model
(1.25εbg) (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 3-D shape of the reconstructed results in the GPR imaging experiment
at 200 MHz. 5% random white noise is added. (a): True objects. (b):
Reconstructed contrast sources. Reconstructed contrast permittivity (c)
and contrast conductivity (d) using the exact background model. Recon-
structed contrast permittivity (e) and contrast conductivity (f) using an
inexact background model (1.25εbg). . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Cross sections of the reconstructed dielectric parameters in the GPR imag-
ing experiment at 200 MHz. 5% random white noise is added. The unit of
the conductivity is S/m. (a): True contrast permittivity. (b): True contrast
conductivity. Reconstructed contrast permittivity (c) and contrast con-
ductivity (d) using the exact background model. Reconstructed contrast
permittivity (e) and contrast conductivity (f) using an inexact background
model (1.25εbg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Geometry of the TWI experiment. Wall: εr = 4, σ= 0.01 S/m. Object: εr = 2,
σ = 0.001 S/m and highly conductive material εr = 1, σ = 1 S/m. The wall
is in the region ([−3.5, 3.5], [−3.5, 3.5], [0, 0.5]). 6 × 6 sources and 9 × 9
receivers are uniformly distributed on the square plane ([−3, 3]; [−3, 3];
1.0) m. The 12 red dots represent the CV measurements, and the 69 green
dots are the reconstruction measurements. . . . . . . . . . . . . . . . . . . . 96

5.7 Residual curves of the TWI experiment with an EM penetrable object.
Reconstruction residual curves and CV residual curves for estimating the
contrast sources using the exact background model (a) and an inexact
background model (0.75εbg) (c). Data error and state error curves for
reconstructing the contrast using the exact background model (b) and an
inexact background model (0.75εbg) (d). . . . . . . . . . . . . . . . . . . . . 97

5.8 3-D shape of the reconstructed results in the TWI experiment at 200 MHz.
5% random white noise is added. (a): True objects. (b): Reconstructed
contrast sources. Reconstructed contrast permittivity (c) and contrast con-
ductivity (d) using the exact background model. Reconstructed contrast
permittivity (e) and contrast conductivity (f) using an inexact background
model (0.75εbg). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



LIST OF FIGURES xv

5.9 Cross sections of the reconstructed dielectric parameters in the TWI ex-
periment at 200 MHz. 5% random white noise is added. The unit of the
contrast conductivity is S/m. (a): True contrast permittivity. (b): True
contrast conductivity. Reconstructed contrast permittivity (c) and con-
trast conductivity (d) using the exact background model. Reconstructed
contrast permittivity (e) and contrast conductivity (f) using an inexact
background model (0.75εbg). . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10 Residual curves of the TWI experiment with highly conductive object.
Reconstruction residual and CV residual curves for estimating the contrast
sources using the exact background model (a) and an inexact background
model (a wall of 0.75 m thickness) (c). Data error and state error curves for
reconstructing the contrast using the exact background model (b) and an
inexact background model (a wall of 0.75 m thickness) (d). . . . . . . . . . 100

5.11 3-D shape of the reconstructed results in the TWI experiment at 200 MHz.
5% random white noise is added. (a): Real objects. (b): Reconstructed
contrast sources. Reconstructed contrast permittivity (c) and contrast con-
ductivity (d) using the exact background model. Reconstructed contrast
permittivity (e) and contrast conductivity (f) using an inexact background
model (a wall of 0.75 m thickness). . . . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Cross sections of the reconstructed dielectric parameters in the TWI ex-
periment at 200 MHz. 5% random white noise is added. The unit of the
contrast conductivity is S/m. (a): True contrast permittivity. (b): True
contrast conductivity. Reconstructed contrast permittivity (c) and con-
trast conductivity (d) using the exact background model. Reconstructed
contrast permittivity (e) and contrast conductivity (f) using an inexact
background model (a wall of 0.75 m thickness). . . . . . . . . . . . . . . . . 101

6.1 Measurement configuration of the data-sets: twodielTM_8f, rectTM_dece,
and uTM_shaped (a) and the data-sets: FoamDieIntTM and FoamMe-
tExtTM (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Normalized reconstruction residual curve and CV residual curve in Exam-
ple 1, Subsection 6.3.1. (a): Reconstruction with single frequency at 4 GHz;
(b): Reconstruction with multiple frequencies at 2 GHz, 4 GHz, 6 GHz, and
8 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Scatterer geometry (a) of Example 1 in Subsection 6.3.1, its GMMV image
(b), and LSM image (c) by processing the 4GHz data, and its GMMV image
(d) and LSM image (e) by processing the multiple frequency data at 2 GHz,
4 GHz, 6 GHz, and 8 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Normalized reconstruction residual curve and CV residual curve of Exam-
ple 2 in Subsection 6.3.1. The multi-frequency data-set FoamDieIntTM at
2 GHz, 4 GHz, 6 GHz, 8 GHz, and 10 GHz are jointly processed. . . . . . . . 115

6.5 Scatterer geometry (a) and its reconstructed shapes of the multi-frequency
data-set: FoamDieIntTM at 2 GHz, 4 GHz, 6 GHz, 8 GHz, and 10 GHz,
processed by GMMV (b) and LSM (c). . . . . . . . . . . . . . . . . . . . . . . 115



xvi LIST OF FIGURES

6.6 Normalized reconstruction residual curve and the CV residual curve in
Subsection 6.3.2. (a): The rectangular metallic cylinder at 10 GHz, 12 GHz,
14 GHz, and 16 GHz; (b): The “U-shaped” metallic cylinder at 4 GHz, 8
GHz, 12 GHz, and 16 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Scatterer geometry (a) of the rectangular metallic cylinder and its GMMV
image (b) and LSM image (c) obtained by processing the multiple fre-
quency data at 10 GHz, 12 GHz, 14 GHz, and 16 GHz. . . . . . . . . . . . . . 117

6.8 Scatterer geometry (a) of the “U-shaped” metallic cylinder and its GMMV
image (b) and LSM image (c) by processing the multiple frequency data at
4 GHz, 8 GHz, 12 GHz, and 16 GHz. . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Normalized reconstruction residual curve and the CV residual curve in
Subsection 6.3.3. The data-set FoamMetExtTM at 2 GHz, 3 GHz, · · · , 8 GHz
is processed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.10 Scatterer geometry (a) of the hybrid scatterers and their GMMV image (b)
and LSM image (c) obtained by processing the multiple frequency data at
2 GHz, 3GHz, · · · , 8 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



LIST OF TABLES

2.1 Simulation parameters of testing the performance of the “MaxwellFDFD”
solver package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Condition numbers of the sensing matrices of TM/TE-polarization at 300
MHz and 400 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Running times of the two numerical examples. . . . . . . . . . . . . . . . . 81

6.1 Running times of the experimental examples. . . . . . . . . . . . . . . . . . 120

xvii





1
INTRODUCTION

We live in a world full of waves, such as acoustic waves, ElectroMagnetic (EM) waves,
even the newly detected gravitational waves. The full grasp of the fundamentals govern-
ing the propagation of the variant waves and the effective perception and interpretation
of them have greatly extended the capability of human beings to unfold the mysteries
of the world from the micro-scale of an atom to the macro-scale of the whole cosmos.
Among all probing techniques, imaging science plays an important role in human’s
historical discoveries.

Knowing the principles of the wave propagation, it is possible to exactly determine
how waves are scattered based on relevant properties of the scatterer. However, due to
many reasons, such as the incompleteness of the measurement data and the inherent
ill-posedness, it is intractable to exactly determine the characteristics of an object based
on the collected data of how it scatters incident waves. The former problem is referred to
as direct scattering problem, and, in the contrary, the latter one is referred to as inverse
scattering problem. In essence, imaging is a procedure of reconstructing the scatterer’s
shape using different probing substances, such as acoustic fields, EM fields, neutrons,
etc. As it is too comprehensive to give a complete account of imaging science in a thesis
of a few hundred pages, efforts have been made in this thesis for the investigation of
the EM inverse scattering problem in the framework of classical scattering theory (as
opposed to quantum scattering theory).

The characteristics of EM scattering are dependent on the ratio of the targets’
dimensions to the wavelength of the incident wave and are ultimately determined by
Maxwell’s equations. In general, the frequency dependence can be categorized into
three overall regions: the Rayleigh region, the resonance region, and the optical region.
One way of defining these regions in terms of wavelength, λ, and the maximum body
dimension, L, is as follows [2]:

• Rayleigh or low-frequency region — The wavelength is large compared to the
target dimension (L/λ¿ 1);

1
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• Resonance region — The wavelength is on the same order as the target dimensions
(0.5 < L/λ< 10);

• Optical or high-frequency region — The wavelength is much smaller than the
target dimensions (L/λ> 10).

In the Rayleigh region, since the wavelength is much larger than the body size,
there is essentially no variation in phase of the incident wave over the scattering body;
all portions of the target are exposed to the same incident field level (magnitude and
phase) at the same time. Except for the temporal variations, this is almost the same
as a statics problem and is commonly referred to as a quasi-static problem. This
static approximation was recognized by Rayleigh. The quasi-static locally incident
field causes the charge on the body to polarize to the two ends of the body creating
a dipole moment. The strength of this induced dipole moment is a function of the
size of the body relative to the vector direction of the incident field. The scattered
field is then proportional to this dipole moment and to the square of the frequency.
In the optical or high-frequency scattering region, the scattering is not a result of the
field interacting with the total body, while it is more useful to think of the scattering
as coming from a collection of independent scattering edges and shadow boundaries
based on the linear physical optics approximation. The inverse scattering problem we
discussed herein is the one with frequencies in the resonance region, which turns out to
be nonlinear and improperly posed [3]. It is nonlinear because, given the incident field
and the measurement data of the scattered fields, both the total fields and the dielectric
parameters of the region under test are the unknowns, and the former are functions of
the latter; It is improperly posed because the scattering operator is compact and the
inverse of a compact operator cannot be continuous for both single-view problem and
multi-view problem [4].

The aim of research in this thesis is to retrieve not only the morphological infor-
mation but also the dielectric parameters of the targets using EM fields. The former is
referred to as qualitative imaging, and the latter is referred to as quantitative imaging.
Quantitative imaging is of much more importance for identifying the targets in the
applications of non-destructive detection, such as Ground Penetrating Radar (GPR) [5],
Through-the-Wall Imaging (TWI) [6], seismic exploration [7–10], and etc. As pointed out
in [11] concerning the problem of locating unexploded ordinance, “Target identification
is the great unsolved problem. We detect almost everything, we identify nothing.” One
more advantage of this imaging technique is the safety and security when applied to a
human body. In the field of medical diagnosis, the use of traditional X-ray systems is
limited to the sensitive group of patients due to the high doses of ionizing radiation.
For security application, the use of ionizing radiation is prohibited in the passengers
scanning devices at airport or railway station due to safety concerns. In the contrary,
imaging equipment using the microwave frequency (< 300 GHz) is less physically
detrimental on human bodies due to its safe level of radiation, and could be widely used
for assisting the present medical imaging devices, such as Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI), and the surveillance tools for various security
purposes, such as Concealed Weapon Detection (CWD).

In this thesis, imaging techniques are developed using EM field data in the frequency
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domain, in which we do not consider the assumptions of plane waves, far-field pattern,
or weak scattering phenomenon throughout all chapters. The EM scattering is numer-
ically modeled by means of the Finite Difference Frequency Domain (FDFD) method,
resulting in a versatile applicability of the proposed imaging techniques to not only far-
field but also intermediate and near-field imaging problems of both 2-Dimensional (2-
D) and 3-Dimensional (3-D) cases. More generally, it is also straightforward to apply the
inversion theory proposed herein to acoustic inverse scattering problems governed by
the Helmholtz Equation, which highly resembles the Transverse Magnetic (TM) case of
the EM inverse scattering problem.

1.1 RESEARCH OBJECTIVE

Recent developments in the field of inverse scattering problems are mainly focused on
the aspects of improving the computational efficiency (such as the study on linear model
and approach [12–14], and multi-resolution methods [15–19]), incorporation of a priori
information [20–23], and calibration to the real antenna radiating pattern especially in
near-field scenarios [24–26]. Specifically in this thesis, the main research objectives can
be primarily stated as the following:

1. To improve the robustness of the inversion methods based on the nonlinear
optimization techniques.

2. To develop a linear qualitative imaging approach which is able to efficiently
retrieve the morphology of the scatterers with higher resolution.

3. To develop an quantitative imaging method which is able to provide 3-D inversion
image with acceptable computational complexity.

4. To utilize the frequency diversity in the proposed imaging methods for achieving
better inversion performance.

5. To verify the proposed qualitative and quantitative imaging techniques with
experimental data.

Calibration to the real antenna radiating pattern will not be considered in this thesis.
For processing the experimental data, the incident fields are modelled approximately in
accordance with the antennas pattern, and the amplitude and phase are calibrated using
the measurement data of the incident fields.

1.2 CHALLENGES AND APPROACHES

The challenges of dealing with the inverse scattering problems arise from two aspects:
technical issues and theoretical issues. The former concerns the design of the imaging
system. One key issue when dealing with the inverse scattering problems is to ensure
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that the scattered field contains a sufficient amount of information about the targets.
Normally, more useful information is sought by exploitation of the angular diversity
of the incident/scattered fields. However, it is limited in some special configurations,
for instance, the half space configuration where the inversion domain can only be
illuminated by incident waves coming from one side and the scattered field data can
only be collected at the same side. Another challenge is that, since the scattered
field measurement data are normally extracted by subtracting the incident field (the
measurements without targets) from the total field (the measurements in the presence of
targets), the main difficulty encountered with weak scatterers is the low level of the signal
of interest in comparison with the measured field level. Any variations between the
two measurements can therefore completely disrupt the scattered field measurements.
In addition, to be able to realize quantitative inversion, i.e., reconstructions where the
shape of the target is not the only information extracted, but the dielectric characteristics
are also of interest, quantitative values of the fields, as well as the modelling of the
incident fields, are required. An accurate calibration procedure has therefore to be
applied.

In summary, the system design required by the quantitative inversion is of much
higher intricacy in comparison to the EM imaging system operated with frequencies in
the optical region, and the latter is out of the scope of this thesis.

The research work of this thesis has been mainly focused on theoretical issues. As
mentioned previously, solving the inverse scattering problem is full of challenges due
to both non-linearity and ill-posedness. Most of the existing iterative methods are local
optimization techniques, which are inherently prone to the occurrence of false solutions
[27]. For quantitative imaging, the total fields are required to be updated while recov-
ering the dielectric parameters of the scatterers. As a result, the inversion procedure
can be very time consuming when it comes to large-scale inversion domain. In such
cases, high performance computer and parallel computing technique are needed to
do the full inversion. Global optimization techniques [19, 28, 29] perform better in
avoiding the occurrence of local minima. However, it is still intractable due to the
huge computational complexity in real applications. Weak scattering approximations
enable us to linearize the inverse problem and achieve faster convergence. However,
the applicability is very limited when considering large contrast scenarios and/or large
electric size of the scatterer. An alternative is attempting the direct estimation of the
contrast source that is defined as the multiplication of the contrast and the total fields.
In doing so, a linearization of the inverse scattering problem is achieved. However, the
inversion accuracy and robustness of this approach are very poor due to the severe
inherent ill-posedness. Therefore, regularization methods are required for ensuring a
stable, approximate solution. Another challenge is the estimation of the noise level,
which is equivalent with the termination criterion in the iterative inversion methods or
the determination of the regularization parameter.

To deal with the aforementioned problems, we have considered the following ap-
proaches in this thesis:

• The direct scattering is modeled by means of the Finite Defference (FD) ap-
proach. The inversion domain is discretized into staggered grids which consist
of primal and dual meshes. The scheme based on the FDFD technique shows
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computational advantages compared to the Electric Field Integral Equation (EFIE)
formulation, especially when a non-homogeneous background, like the half-
space configuration in GPR, is involved.

• Propose a so-called cross-correlated error term and revolutionize the classical
formulation of the cost functional. Since the measurement matrix has typically
a large condition number, a minor state error in the field space may cause a
large error in the measurement space. However, this potential mismatch is totally
ignored in classical cost functional. In this thesis, a cross-correlated error term is
proposed and introduced to the cost functional. In doing so, the robustness of the
contrast source inversion method is obviously enhanced.

• Linearize the inverse problem by formulating it into a Multiple Measurement
Vectors (MMV) inverse source problem. If we consider the inverse scattering
problem of highly conductive scatterers, the ill-posedness can be successfully
overcome by exploiting the joint sparsity of the contrast sources. The idea is
implemented by reformulating the problem to a linear optimization problem
regularized by a sum-of-norm constraint.

• A statistical technique — Cross-Validation (CV) method is used to circumvent
the estimation of the noise level. Specifically, the original scattering matrix is
separated into a reconstruction matrix and a CV matrix. The measurement vector
is also separated accordingly to a reconstruction measurement vector and a CV
measurement vector. In doing so, every iteration can be viewed as two separate
parts: reconstructing the contrast sources and evaluating the outcome by the CV
technique. The iteration arrives at the optimal solution when the least CV residual
occurs.

• By exploitation of the frequency diversity, the MMV model is extended to non-
sparse targets based on the Generalized Multiple Measurement Vectors (GMMV)
model. The row-structure is utilized in the estimation of the contrast source
vectors, resulting in higher resolution images.

• Synthetic data are generated by solving the EM direct scattering problem using
a MATLAB-based 3-D FDFD package “MaxwellFDFD” [30]. Perfectly Matched
Layers (PMLs) are used to simulate the anechoic chamber environment. Periodic
Boundary Conditions (PBCs) are used to simulate the invariant axis in solving the
2-D scattering problem.

• The experimental data provided by the Institut Fresnel, France [31, 32] are se-
lected and processed for validating the proposed methods. The scattered field
is extracted from the subtraction of the total field and the incident field. Post-
processing is applied to the measurement data with one single complex coefficient
which multiplies the computed fields to match energy and phase to the measured
ones. This calibration factor is simply derived from the ratio of the measured
incident field and the simulated one at the receiver located at the opposite of the
source.
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1.3 NOVELTIES AND MAIN RESULTS

The novelties and main results presented in this thesis are listed as follows:

• I have demonstrated that, in some challenging situations where the initial guess is
far from the real solution, the Multiplicative Regularized Contrast Source Inversion
(MR-CSI) method shows poor performance, and the introduction of the Total
Variation (TV) constraint even disrupts the convergence. Meanwhile, a new cost
functional is proposed for the first time, which cross-correlates the mismatch of
the contrast sources in the field domain with the data error in the measurement
domain. Based upon this new error term, a Cross-Correlated Contrast Source
Inversion (CC-CSI) method is developed, which shows less dependence on the
initial guess and better inversion results.

• A multi-frequency version of the CC-CSI method, referred to as Multi-Frequency
Cross-Correlated Contrast Source Inversion (MF-CC-CSI), is developed. By simul-
taneous processing of the multi-frequency data, this algorithm presents higher
reliability and inversion accuracy. It is also demonstrated that the additional ro-
bustness brought by introducing the cross-correlated error term is still significant
in the multi-frequency cases.

• A linear shape reconstruction method has been developed based on the MMV
model for solving the inverse scattering problem of highly conductive scatterers.
The exploitation of the joint sparsity of the induced currents makes it possible to
estimate the contrast sources with linear optimization techniques. The intensity
of the estimated contrast sources is able to indicate the position and profile of the
highly conductive scatterers.

• 3-D inverse scattering problem in a half-space configuration is a realistic problem
encountered in real applications. With partial measurements, the nonlinear
iterative inversion methods are prone to false local optimal solutions, while global
optimization inversion can hardly be done due to the huge demand for the
computation resources. In this thesis, I have proposed an approach by transferring
this problem to a cascade of inverse source problems and a linear optimization
problem. With the proposed method, lots of computation time has been saved in
comparison to the nonlinear iterative methods. In addition, the proposed method,
to some extent, circumvents the occurrence of false local optimal solutions when
only partial measurement data are available.

• A multi-frequency version of the MMV-based linear shape reconstruction method
has been proposed based on the GMMV model. By exploiting the frequency
diversity, the proposed GMMV-based linear inversion method shows good in-
version performance for a variety of scatterers, including dielectric, lossy, and
metallic scatterers. Due to the exploitation of the sum-of-norm constraint, the
row-structure information of the contrast source vectors is exploited, which plays
an extra focusing role. Therefore, the proposed method possesses higher resolving
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ability in comparison to existing shape reconstruction methods, such as Linear
Sampling Method (LSM).

1.4 OUTLINE OF THE THESIS

The rest of the thesis is organized as follows:

• Chapter 2 — Electromagnetic scattering theory. This chapter introduces the rudi-
ments of EM direct/inverse scattering theory. The FDFD method is introduced and
a MATLAB-based solver package, “MaxwellFDFD”, and its companion C program,
“FD3D”, are tested in both 2-D and 3-D configurations. The inverse scattering
problem is formulated using the FDFD scheme. Considering the important roles
of the following concepts in the field of inverse scattering problem, Singular
Value Decomposition (SVD), nonlinearity, ill-posedness, and regularization are
discussed. Finally, reviews of the state-of-the-art of inversion techniques are
presented in the end of this chapter.

• Chapter 3 — Cross-correlated contrast source inversion. This chapter focuses
on the development of a CC-CSI method which is more robust than the known
ones. The classical cost functional is a superposition of the data error and the
state error. In this chapter, we defined a cross-correlated error term which is
the mapping of the state error in the measurement domain. Subsequently, we
changed the classical cost functional by introducing this new error term and
develop a novel inversion method, referred to as CC-CSI. The extended version
of this novel method for processing the multi-frequency data, MF-CC-CSI, is also
given in this chapter. Numerical and experimental results demonstrate that the
proposed method is more robust than both classical Contrast Source Inversion
(CSI) and MR-CSI.

• Chapter 4 — Linear model for solving highly conductive inverse scattering problem.
This chapter aims to develop a linear model for reconstructing the boundary of
the highly conductive scatterers. Considering the sparsity of the induced currents
generated on the surface of the highly conductive scatterer when illuminated
by external fields, I reformulate the inverse problem as an MMV inverse source
problem, and a joint sparsity of the contrast sources is exploited by introducing
the sum-of-norm regularization constraint. The proposed linear method turns out
to be of higher resolving ability than LSM.

• Chapter 5 — Linearized 3-D inversion. This chapter aims to develop a linearized
inversion method for solving 3-D inverse scattering problem. The linearized 3-D
inversion method is a cascade of two steps: 1) an extended 3-D version of the MMV
method proposed in Chapter 4; and 2) a linear optimization process. Since the
solution to the direct scattering problem is required only once, it is therefore more
efficient in comparison to the nonlinear iterative inversion methods. In addition,
this method is robust against the occurrence of local optimal solutions, especially
in half space configurations, such as GPR, TWI, etc.
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• Chapter 6 — GMMV linear inversion. In this chapter, a linear shape reconstruction
method based on the GMMV model is proposed. The contrast source vectors
with respect to different incident angles and different operating frequencies are
estimated jointly by exploitation of the row-structure information. It has been
demonstrated that the regularized solutions of the contrast sources sought by the
GMMV method are sufficient to indicate the spatial profile of non-sparse targets,
including both metallic scatterers and dielectric scatterers.

• Chapter 7 — Conclusions and recommendation for future work. This chapter
presents the conclusions of this thesis and recommendations for future research.



2
ELECTROMAGNETIC SCATTERING

THEORY

In classical scattering theory, the propagation of ElectroMagnetic (EM) waves is per-
fectly governed by Maxwell’s equations. Therefore, in this chapter, an introduction to
Maxwell’s equations is first given in Subsection 2.1.1. In this thesis, the background
medium and the material of the targets are assumed to be isotropic. Finite Difference
Frequency Domain (FDFD) is considered as a numerical method for solving the direct
scattering problem and a discretization approach for solving the inverse scattering
problem. Details of FDFD are introduced in Subsection 2.1.2. In Subsection 2.1.3, a
“MaxwellFDFD” solver package and its companion C program, “FD3D”, for solving the
EM direct scattering problems are introduced and tested using 2-Dimensional (2-D)
and 3-Dimensional (3-D) benchmark problems. The EM inverse scattering problem
is formulated subsequently in Subsection 2.2.1 based upon the FDFD scheme. Some
important concepts — nonlinearity, ill-posedness, and regularization are discussed in
Subsection 2.2.2 and Subsection 2.2.3. Section 2.3 gives a review of the state-of-the-art
of the inversion techniques.

2.1 ELECTROMAGNETIC DIRECT SCATTERING PROBLEM

2.1.1 MAXWELL’S EQUATIONS

Suppose the time factor is exp(iωt ), where i2 = −1, and let #–x = [x1, x2, x3]T denotes the
position vector, Maxwell’s equations in the frequency domain can be written as follows[

−iωε−σ ∇×
∇× iωµ

] [#–
E
#–
H

]
=

[ #–
J

−#–
M

]
, (2.1)

9



2

10 2. ELECTROMAGNETIC SCATTERING THEORY

where,
#–
E = [

Ex1 ,Ex2 ,Ex3

]T and
#–
H = [

Hx1 , Hx2 , Hx3

]T are the electric and magnetic fields,

respectively;
#–
J = [

Jx1 , Jx2 , Jx3

]T and
#–
M = [

Mx1 , Mx2 , Mx3

]T are the electric and magnetic

current source densities, respectively; σ, ε and µ are the rank-2 tensors (in other
words, 3× 3 matrices) of the electric conductivity, dielectric permittivity and magnetic
permeability, respectively. All these quantities are functions of the position vector, #–x ,
and the angular frequency, ω.

Given the dielectric parameters and the sources, the EM direct scattering problem is
to find the solutions to Maxwell’s equations,

#–
E and

#–
H . Like any differential equation,

boundary conditions and initial conditions are necessary for the uniqueness of the
solution, which is however not easily obtained [33]. And the analytical solutions
to most of the direct scattering problems in inhomogeneous medium do not even
exist. Numerical methods for differential equations can be used to approximately solve
Maxwell’s equations when an exact solution is not available, such as the Finite Element
(FE) method [34] and Finite Defference (FD) method [33, 35]. In this thesis, we selected
the FDFD method to formulate the EM direct/inverse scattering problem, which enables
a straightforward incorporation of complicated background medium. We assume that
the scattering problems considered in this thesis only involve isotropic background

medium and scatterers. In doing so, the dielectric parameters, σ, ε and µ, are reduced
to scalar variables, σ, ε and µ. For simplicity, we neglect σ by including it into a complex
permittivity defined as ε= ε− iσ/ω .

2.1.2 FINITE DIFFERENCE FREQUENCY DOMAIN

The FDFD method is a numerical method based on the FD approximations of the
derivative operators in the differential equations to be solved. The basic idea is that,
by eliminating the E-field and the H-field respectively from Eq. (2.1), we first obtain the
differential equations of the E-field and the H-field given by

∇×µ−1∇× #–
E −ω2ε

#–
E =−iω

#–
J −∇×µ−1 #–

M , (2.2)

and
∇×ε−1∇× #–

H −ω2µ
#–
H =−iωε

#–
M +∇×ε−1 #–

J , (2.3)

respectively. Then the FD approximation (second-order or higher orders) is used to
implement the curl operator in a discretization manner, yielding a system of linear equa-
tions. Finally, the electric/magnetic fields can be numerically calculated by inverting a
so-called stiffness matrix.

Specifically, in the Cartesian coordinate system, let us write the frequency domain
Maxwell’s equations, Eqs. (2.1), in the form of

∂x2 Ex3 −∂x3 Ex2 =−iωµHx1 −Mx1 , (2.4a)

∂x3 Ex1 −∂x1 Ex3 =−iωµHx2 −Mx2 , (2.4b)

∂x1 Ex2 −∂x2 Ex1 =−iωµHx3 −Mx3 , (2.4c)

and

∂x2 Hx3 −∂x3 Hx2 = iωεEx1 + Jx1 , (2.5a)
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Figure 2.1: Yee’s finite difference grid.

∂x3 Hx1 −∂x1 Hx3 = iωεEx2 + Jx2 , (2.5b)

∂x1 Hx2 −∂x2 Hx1 = iωεEx3 + Jx3 . (2.5c)

Using Yee’s staggered grids (see Fig. 2.1) and a second-order FD approximation, Eqs. (2.4)
and (2.5) can be approximately discretized as follows

E i , j+1,k
x3

−E i , j ,k
x3

∆
j
x2

− E i , j ,k+1
x2

−E i , j ,k
x2

∆k
x3

=−iωµi , j ,k H i , j ,k
x1

−M i , j ,k
x1

, (2.6a)

E i , j ,k+1
x1

−E i , j ,k
x1

∆k
x3

− E i+1, j ,k
x3

−E i , j ,k
x3

∆i
x1

=−iωµi , j ,k H i , j ,k
x2

−M i , j ,k
x2

, (2.6b)

E i+1, j ,k
x2

−E i , j ,k
x2

∆i
x1

− E i , j+1,k
x1

−E i , j ,k
x1

∆
j
x2

=−iωµi , j ,k H i , j ,k
x3

−M i , j ,k
x3

, (2.6c)

and

H i , j ,k
x3

−H i , j−1,k
x3

∆̃
j
x2

− H i , j ,k
x2

−H i , j ,k−1
x2

∆̃k
x3

= iωεi , j ,k E i , j ,k
x1

+ J i , j ,k
x1

, (2.7a)

H i , j ,k
x1

−H i , j ,k−1
x1

∆̃k
x3

− H i , j ,k
x3

−H i−1, j ,k
x3

∆̃i
x1

= iωεi , j ,k E i , j ,k
x2

+ J i , j ,k
x2

, (2.7b)

H i , j ,k
x2

−H i−1, j ,k
x2

∆̃i
x1

− H i , j ,k
x1

−H i , j−1,k
x1

∆̃
j
x2

= iωεi , j ,k E i , j ,k
x3

+ J i , j ,k
x3

, (2.7c)

where, εi , j ,k and µi , j ,k are the complex dielectric permittivity and magnetic permeability

evaluated at the locations where E i , j ,k
γ and H i , j ,k

γ are defined, respectively, and ∆̃l
γ =(

∆l
γ+∆l−1

γ

)/
2 with γ ∈ {x1, x2, x3}.
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The three difference equations, Eqs. (2.6), are obtained for each grid cell. We collect
them from all grid cells to construct

C sc
e e =−iωDµh −m, (2.8)

where,

C sc
e =

 0 −De
x3

De
x2

De
x3

0 −De
x1

−De
x2

De
x1

0

 , Dµ =
diag

{
µ

}
0 0

0 diag
{
µ

}
0

0 0 diag
{
µ

}
 ,

e =
ex1

ex2

ex3

 , h =
hx1

hx2

hx3

 , m =
mx1

mx2

mx3

 .

Similarly, collecting Eq. (2.7) from all grid cells produces

C sc
h h = iωDεe + j , (2.9)

where,

C sc
h =

 0 −Dh
x3

Dh
x2

Dh
x3

0 −Dh
x1

−Dh
x2

Dh
x1

0

 ,

Dε =
diag{ε} 0 0

0 diag{ε} 0
0 0 diag{ε}

 , j =
 jx1

jx2

jx3

 .

Corresponding to Eqs (2.6) and (2.7), De
γ and Dh

γ are the first order curl matrices, which
are highly sparse. Now, by eliminating h from Eqs. (2.8) and (2.9), we can easily formulate
the FD approximation of Eq. (2.2) as follows(

C sc
h D−1

µ C sc
e −ω2Dε

)
e =−iω j −C sc

h D−1
µ m, (2.10)

which is simply a system of linear equations of the form

Ae = b, (2.11)

where, A is referred to as the stiffness matrix; e represents the E-field we solve for; b is a
column vector determined by a given electric current source density. Inverting A yields
the E-fields, and the H-field can be obtained by

h = D−1
µ

(
C sc

e e +m
)/

(−iω) . (2.12)

Note that C sc
e and C sc

h represent the discretized curl operators on the electric field and
the magnetic field, respectively. The superscript “sc” means that the scattering domain
is truncated by the stretched-coordinate Perfectly Matched Layers (PMLs). In the FD
method, PMLs are used to truncate the computational region, which can strongly absorb
the outgoing waves from the interior of a computational region without reflecting them
back into the interior. We refer to [33] for the design of PMLs.
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Figure 2.2: Geometry of the coaxially layered cylinder of the test cases for testing the performance of the
“MaxwellFDFD” solver package.

Table 2.1: Simulation parameters of testing the performance of the “MaxwellFDFD” solver package.

Parameter

Value Case
Case 1 Case 2

r1, cm 7.9 9.4

r2, cm 15 15

εr,1 72 54

εr,2 7.5 5.7

σ1, S/m 0.9 1.4

σ2, S/m 0.048 0.05

f , MHz 100 300

2.1.3 A SOLVER PACKAGE: “MAXWELLFDFD”

The “MaxwellFDFD” solver [36] is a MATLAB-based package that solves the frequency-
domain Maxwell’s equations. In this package, a second order FD approximation is
used (see Eqs. (2.6) and (2.7)). In addition, “FD3D”, a companion C program of
“MaxwellFDFD”, allows the users of “MaxwellFDFD” to solve the frequency-domain
Maxwell’s equations in a 3-D domain. “FD3D” uses iterative methods to avoid the large
memory requirement of direct methods for 3-D problems. Since the “MaxwellFDFD”
solver package and the companion C program are essential tools for the research work
throughout the thesis, a performance test is first introduced with benchmark problems.

2-D BENCHMARK PROBLEM

In this subsection, 2-D benchmark problems, which have already been tested in refer-
ence [1], are used to test the “MaxwellFDFD” solver package. Fig. 2.2 shows the geometry
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Figure 2.3: |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 in Case 1. Left: results obtained
by “MaxwellFDFD”; Right: analytical solutions reported in [1].

of the coaxially layered cylinder of the two test cases, and the simulation parameters are
given in Table 2.1. The x1- and x2-normal boundaries are covered by PMLs to simulate
the anechoic chamber environment. In order to simulate 2-D scattering model, the two
x3-normal boundaries are subject to Periodic Boundary Conditions (PBCs). A uniform
plane wave is used as the incident wave propagating along the x1 axis, with the unit
electric field vector parallel to the x2 axis. Let E inc

1 , E inc
2 , and E inc

3 represent the three
components of the incident electric field, then we have∣∣E inc

1

∣∣= 0,
∣∣E inc

2

∣∣= 1,
∣∣E inc

3

∣∣= 0. (2.13)



2.1. ELECTROMAGNETIC DIRECT SCATTERING PROBLEM

2

15

-0.15 -0.1 -0.05 0 0.05 0.1
x2 axis

0

0.1

0.2

0.3

0.4

0.5

0.6
jE

2
j

(a) (b)

-0.15 -0.1 -0.05 0 0.05 0.1
x1 axis

0

0.1

0.2

0.3

0.4

0.5

0.6

jE
2
j

(c) (d)

-0.15 -0.1 -0.05 0 0.05 0.1
x2 axis

0

0.1

0.2

0.3

0.4

0.5

0.6

jE
1
j

(e) (f)

Figure 2.4: |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 in Case 2. Left: results obtained
by “MaxwellFDFD”; Right: analytical solutions reported in [1].

Since the time factor used in this package is exp(iωt ), the complex permittivity is defined
as follows

ε= εrε0 − iσ/ω , (2.14)

where, εr denotes the relative permittivity of the object; the background medium is
lossless and homogeneous with permittivity ε0; and σ denotes the electric conductivity
of the object.

Fig. 2.3 and Fig. 2.4 give the comparison of the FDFD results and the analytical
solutions given by [1]. Fig. 2.5 shows the amplitude images of the x1- and x2-components
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Figure 2.5: Amplitude images of the x1- and x2-components of the electric field, E1, E2 and the x3-component
of the magnetic field H3, on the cross sectional plane of the cylinders. Left: Case 1; Right: Case 2.

of the electric field, E1 and E2, and the x3-component of the magnetic field, H3, in both
cases. From Fig. 2.3 and Fig. 2.4, one can see that the results obtained by this FDFD solver
coincide exactly with the analytical solution, demonstrating the good accuracy for high
contrast and lossy medium cases.

For FD methods, grid point number per wavelength must satisfy Nλ ≥ 15 so as to
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Figure 2.6: |E2| on the planes of x1 = 0 and x2 = 0 and |E1| on the plane of x1 = 0 with Nλ = 15. Left: Case 1;
Right: Case 2.

circumvent the numerical dispersion. To test the performance of “MaxwellFDFD” with
coarse grids, we consider the lower limit N = 15. Fig. 2.6 gives the results with coarse
grid points in both cases. By comparison of Fig. 2.6, Fig. 2.3 and Fig. 2.4, only a slight
degradation of the accuracy can be observed. 3-D configuration can be easily realized
by replacing the two x3-normal boundaries with PMLs.
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Figure 2.7: Configuration of the 3-D benchmark problem: an ideal electric dipole located at (−0.0495 m, 0 m,
0 m) of a unlimited free space.

3-D BENCHMARK PROBLEM

“FD3D” is a companion C program of the “MaxwellFDFD” solver package. It allows
the users of “MaxwellFDFD” to solve the frequency-domain Maxwell’s equations in a
3-D domain. “FD3D” uses iterative methods to avoid the large memory requirement in
direct methods for solving 3-D scattering problems. To test the accuracy of the “FD3D”
package, an ideal electric dipole in a homogeneous unlimited space is considered as a
benchmark problem because the analytical solution of its 3-D electric field can be easily
obtained. Without loss of generality, we assume the polarization of the ideal electric
dipole is #–q = (1,0,0) (for other orientations, the solutions can be obtained by a rotation
operation), then the electric field has an analytical expression of

#–
E ( #–x , #–y , #–q ) =− i

4πk


− ∂2

∂x2∂x2
− ∂2

∂x3∂x3
∂2

∂x1∂x2
∂

∂x1∂x3

 exp(−ikr )

r
, (2.15)

where, r = ∥∥#–x − #–y
∥∥

2. Here, k represents the wave number. Further, without loss of
generality, let us assume #–y = (0,0,0) (for other locations, the solutions can be obtained
by a simple shift operation), then we obtain

#–
E ( #–x ,0, #–q ) =− iexp(−ikr )

4πk


2ik
r 2 + k2(x2

2+x2
3 )+2

r 3 − 3ik(x2
2+x2

3 )

r 4 − 3x2
2+3x2

3
r 5

− k2x1x2
r 3 + 3ikx1x2

r 4 + 3x1x2
r 5

− k2x1x3
r 3 + 3ikx1x3

r 4 + 3x1x3
r 5

 . (2.16)

See Appendix B for the derivation.
Let us now use “FD3D” to solve the 3-D EM direct scattering problem discussed

in the previous subsection. The linear system of equations is solved iteratively. The
termination condition is

‖Aê −b‖2

‖b‖2
≤ 10−6, (2.17)
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-4 -2 0 2 4
x2/m

-3

-2

-1

0

1

x
3
/
m

-5

0

5

#10-6

(b) Ex2

-4 -2 0 2 4
x2/m

-3

-2

-1

0

1

x
3
/
m

-5

0

5

#10-6

(e) Êx2
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Figure 2.8: Real part of the three components of the analytical solution and the numerical solution on the cross
section of x1 =−0.1. Left: analytical solution; Right: numerical solution.

where, A is the FDFD stiffness matrix, b represents the source, and ê is the electric field
to be calculated. The geometry of the test domain is shown in Fig. 2.7. The ideal dipole
is located at (−0.0495 m, 0 m, 0 m), oscillating along x1-axis at 200 MHz.

For comparison, the real part of the analytical solution and the numerical solution
are shown in Fig. 2.8 on the cross section of x1 = −0.1 m, from which we can see the
analytical solution and the numerical solution match well, indicating that the direct
scattering problem has been accurately solved by “FD3D”. To evaluate the computation
accuracy quantitatively, let us define the computation error as follows

er r = ∣∣Eγ− Êγ
∣∣/∣∣Eγ∣∣ , γ ∈ {x1, x2, x3} , (2.18)

where, Eγ represents the analytical solution, and Êγ represents the numerical solution.
Fig. 2.9 shows the computation error images, from which we observe that the largest
computation error remains no greater than 10%. Most of the relatively large errors are
near the boundaries, and the errors in the central region are much less. Empirically, such
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Figure 2.9: Computation error of the three components of the electric field on the cross section of x1 = −0.1.
(a) Ex1 ; (b) Ex2 ; (c) Ex3 .

a level of numerical errors does not have a significant effect to the method proposed in
Chapter 5.

2.2 ELECTROMAGNETIC INVERSE SCATTERING PROBLEM

In contrast to the direct scattering problem, the inverse scattering problem is inherently
nonlinear and, more seriously from the viewpoint of numerical computations, improp-
erly posed. Unless regularization methods are used, small variations in the measured
data can lead to large errors in the inverted results. Nevertheless, the inverse scattering
problem is basic in areas such as radar, sonar, geophysical exploration, medical imaging
and nondestructive testing. Indeed, it is safe to say that the inverse problem is at least of
equal interest as the direct problem [37].

2.2.1 FORMULATION

We consider a scattering configuration as depicted in Fig. 2.10, which can be a 2-D or 3-
D configuration. The scattering configuration consists of a bounded, simply connected,
inhomogeneous domain of interest, D, located in an inhomogeneous background
medium. The domain of interest, D, contains an object, B, whose location and index of
refraction are unknowns. According to Eq. (2.2), and meanwhile assuming the magnetic
permeability is a constant, i.e., µ = µ0, the total electric fields,

#–
E tot

p , and the incident
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Figure 2.10: General configuration of the EM inverse scattering problem.

electric fields,
#–
E inc

p , satisfy the following equations

∇×µ−1
0 ∇× #–

E tot
p −ω2ε

#–
E tot

p =−iω
#–
J p −∇×µ−1

0
#–
M p , (2.19a)

∇×µ−1
0 ∇× #–

E inc
p −ω2εbg

#–
E inc

p =−iω
#–
J p −∇×µ−1

0
#–
M p , (2.19b)

respectively, where p ∈ {1,2,3, · · · ,P } represents the p-th position of the transmitting
antenna. The scattered electric fields,

#–
E sct

p , are defined as follows

#–
E sct

p = #–
E tot

p − #–
E inc

p p = 1,2,3, · · · ,P. (2.20)

Subtracting Eq. (2.19a) from Eq. (2.19b), and using the definition in Eq. (2.20), we obtain

∇×µ−1
0 ∇× #–

E sct
p −ω2εbg

#–
E sct

p =ω2χ
#–
E tot

p , p = 1,2,3, · · · ,P, (2.21)

in which the contrast function, χ, is defined as

χ= ε−εbg. (2.22)

Eq. (2.21) have the same form as Eq. (2.2), which means the scattered fields,
#–
E sct

p , can
be solved by means of the FDFD scheme. Specifically, we have

Aesct
p =ω2χisoetot

p , p = 1,2,3, · · · ,P, (2.23)

where,

A =µ−1
0 C sc

h C sc
e −ω2Dεbg , esct

p =
esct

p,x1

esct
p,x2

esct
p,x3

 , etot
p =

etot
p,x1

etot
p,x2

etot
p,x3

 . (2.24)

Since the problems we consider are isotropic, the contrast, χiso, is defined as follows

χiso = [
χT χT χT ]T

. (2.25)
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Note that the multiplication of two vectors is defined in default as Hadamard product
in the remainder of this thesis. Then it is easy to get the solution to Eq. (2.23) by esct

p =
A−1ω2χisoetot

p , and we obtain the data equations

yp =MS ,p A−1ω2χisoetot
p , p = 1,2,3, · · · ,P, (2.26)

and the state equations

etot
p = e inc

p + A−1ω2χisoetot
p , p = 1,2,3, · · · ,P, (2.27)

where, MS ,p is an operator that interpolates field values defined at the FD grids to the
appropriate receiver positions. Let us now define a new matrix as follows

Φp =MS ,p A−1ω2, (2.28)

which is referred to as the sensing matrix throughout this thesis. Then Eq. (2.26) is
simplified as

Φpχ
isoetot

p = yp , p = 1,2,3, · · · ,P. (2.29)

The inverse scattering problem considered in this thesis is to solve the contrast, χ,
using measurements of the scattered fields, y1, y2, y3, · · · , yP . The reconstruction of
the profile of the scatterer, i.e., the support of the contrast is referred to as qualitative
imaging, and the inversion of the dielectric properties of the scatterer, i.e., the values of
the contrast, is referred to as quantitative imaging.

2.2.2 NONLINEARITY AND ILL-POSEDNESS

Let us first rewrite the discretized formulation of the direct and inverse scattering
problems

Ae = b, (2.30)

Φpχ
isoetot

p = yp , p = 1,2,3, · · · ,P. (2.31)

respectively, where, A =µ−1
0 C sc

h C sc
e −ω2Dεbg and b =−iω j −C sc

h D−1
µ m. By noting that the

total fields, etot
p , are functions of the contrast, χ, it is obvious that the discretized inverse

scattering problem is a nonlinear problem.
A well-posed problem in the Hadamard’s sense [3] is given by:

• Existence of the solution;

• Uniqueness of the solution;

• The solution depends continuously on the data.

The third postulate is motivated by the fact that in all applications the data will be
measured quantities. Therefore, one wants to make sure that small errors in the data
will cause only small errors in the solution. A problem is said ill-posed if it does not
satisfy at least one of the three Hadamard’s criteria.
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Since the scattering operator has an analytical kernel, it is completely continuous (or
compact). As the inverse of a compact operator cannot be continuous [38], the inverse
scattering problem is ill-posed. In fact, the analyticity of the radiation operator kernel
implies that its singular values have a step-like behavior with an exponential decay after
the knee. It can also be proved that the larger the scatterer is, the steeper the transition
[4].

2.2.3 REGULARIZATION

Methods for constructing a stable approximate solution to an ill-posed problem are
referred to as regularization methods. We shall now introduce the classical regularization
concepts for linear equations of the first kind. In the sequel, we shall assume that the
linear operator A : X → Y is injective. This is not a significant loss of generality since
uniqueness for a linear equation always can be achieved by a suitable modification of
the solution space X.

We wish to approximate the solution ϕ to the equation Aϕ= y from a knowledge of
a perturbed right hand side yδ with a known error level∥∥∥yδ− y

∥∥∥
2
≤ δ. (2.32)

When y belongs to the range A(X ) := {Aϕ : ϕ ∈ X }, there exists a unique solution ϕ to
Aϕ= y . For a perturbed right hand side, in general, we cannot expect yδ ∈ A(X ). Using
the erroneous data, yδ, we want to construct a reasonable approximation, ϕδ, to the
exact solution, ϕ, to the unperturbed equation Aϕ = y . Therefore, our task requires
finding an approximation of the unbounded inverse operator, A−1 : A(X ) → X , by a
bounded linear operator, R : Y → X .

Definition 2.2.1. Let X and Y be normed spaces and let A : X → Y be an injective bounded
linear operator. Then a family of bounded linear operators, Rα : Y → X ,α > 0, with the
property of point-wise convergence

lim
α→0

RαAϕ=ϕ, (2.33)

for allϕ ∈ X is called a regularization scheme for the operator A. The parameterα is called
the regularization parameter.

One of the most classical regularization methods is the Tikhonov’s regularization
[39]. To give preference to a particular solution with desirable properties, a regulariza-
tion term can be included in this minimization:∥∥Aϕ− y

∥∥2
2 +

∥∥Γϕ∥∥2
2 , (2.34)

for some suitably chosen Tikhonov matrix, Γ. In many cases, this matrix is chosen as
a multiple of the identity matrix (Γ = αI ), giving preference to solutions with smaller
norms; this is known as `2-norm regularization. Another group of regularization
methods is designed by exploiting the sparsity of the scatterer in a certain domain [40–
42]. We refer to [37, 43–45] for more introduction to regularization methods. In the
following chapters, we shall see that the inversion methods developed in this thesis
essentially belong to the family of regularization methods.
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2.3 INVERSION TECHNIQUES: STATE-OF-THE-ART

Inversion techniques are developed mostly in the research of acoustic and EM inverse
scattering problem. There are, of course, important differences in the practical imple-
mentation in each of these efforts. For example, some methods are based on the far
field assumption, while sometimes near field condition is of more interest; In addition,
the optimization scheme is numerically solved by different methods. However, the basic
ideas embodied in the inversion techniques to be mentioned below and developed in
this thesis are more general and are not restricted by the variety of the waves or the
far/near field assumptions.

Initial efforts in this field attempted to linearize the problem by reducing it to the
problem of solving a linear integral equation of the first kind. The main techniques
used to accomplish this were the Born or Rytov approximation for the inverse scattering
problem of penetrable scatterers, which is referred to as inverse medium problem, and
the Kirchhoff, or physical optics, approximation of the solution to the inverse scattering
problem of impenetrable scatterers, which is referred to as inverse obstacle problem
[46–48]. While such linearized models are attractive because of their mathematical
simplicity, they have the defect of ignoring the basic nonlinear nature of the inverse
scattering problem, e.g., multiple reflections are essentially ignored.

The earliest attempts to treat the inverse scattering problem without linearizing it
were due to [49] and [50], in which the inverse obstacle problem was studied with
acoustic wave and EM wave, respectively. Then, beginning in the 1980’s, a number
of methods were given which explicitly acknowledged the nonlinear and ill-posed
nature of the problem. The inverse obstacle problem, in particular, was formulated
by either integral equations or Green’s formulas as a nonlinear optimization problem
that required the solution to the direct scattering problem for different domains at
each step of the iteration procedure used to arrive at a solution [51–60]. Approaches
which avoid the problem of solving a direct scattering problem at each iteration step
and, furthermore, attempt to separate the ill-posedness and non-linearity of the inverse
obstacle problem were introduced and theoretically and numerically analyzed by Kirsch
and Kress in [61] and Colton and Monk in [62–64]. A method that is closely related to
the approach suggested by Kirsch and Kress was also introduced by Angell, Kleinman
and Roach [65]. These methods are collectively called decomposition methods and their
main idea is to break up the inverse obstacle scattering problem into two parts: the first
part deals with the ill-posedness by constructing the scattered wave from its far field
pattern; and the second part deals with the nonlinearity by determining the unknown
boundary of the scatterer as the location where the boundary condition for the total
field is satisfied in a least-squares sense. A more recently developed decomposition
method is the point source method of Potthast [66]. The hybrid method suggested by
Kress and Serranho [67] combines ideas of the method of Kirsch and Kress with Newton
type iterations as mentioned above.

To deal with the inverse medium problem, one approach is to use Linear Sampling
Method (LSM) together with a knowledge of the first transmission eigenvalue [68] or
with several so-called “virtual experiments” [13, 69–72]. Another group of methods seek
for a solution of the contrast, χ, and the total fields, etot

p , such that both Eq. (2.29) and
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Eq. (2.27) are satisfied. This is done by reformulating the inverse problem as a nonlinear
optimization problem in which Eq. (2.27) is considered as a regularization constraint.
Variations of this category of methods include the Newton-Kantorovich (NK) method
[51, 73–75], the Conjugate Gradient (CG) method [76], the Modified Gradient (MG)
method [74, 77–79], the Born Iterative Method (BIM) and the Distorted Born Iterative
Method (DBIM)) [80–83], the Contrast Source Extended Born (CS-EB) method [84], and
the Contrast Source Inversion (CSI) method (including its variations) proposed by van
den Berg et al. for solving EM inverse scattering problems [85–87]. A second method for
solving the acoustic inverse medium problem was introduced by Colton and Monk [88–
90] and can be viewed as a decomposition method for approaching the inverse medium
problem. Alternate methods of modifying the method of Colton and Monk than that
described above can be found in [91–93]. The theoretical basis of this decomposition
method for EM waves has been developed in [91, 94, 95].

Alternative methods have been developed which, as apposed to nonlinear optimiza-
tion techniques, only seek limited information about the scattering objects. Among
them are LSM [96–99], the factorization method [100, 101], and the method of singular
sources [102, 103], which determine the shape of the scattering obstacle but in general
provide only limited information about the material properties of the scatterer. In
addition, the quantitative inverse scattering methods based on LSM and CSI have also
been studied in [13, 69–72, 104].

Since the CSI method and the LSM method are considered for comparison in
Chapter 3, Chapter 4, and Chapter 6, and the ideas of both methods are closely related
to the novel methods proposed in this thesis, we shall now briefly outline the CSI
method and the LSM method respectively in the following two subsections, in which
the Multiplicative Regularized Contrast Source Inversion (MR-CSI) method and the idea
of “virtual experiments” are also introduced.

2.3.1 CONTRAST SOURCE INVERSION

CLASSICAL CSI
Classical CSI is an iterative method of solving the inverse scattering problem by minimiz-
ing a cost functional which is defined as the superposition of the data error and the state
error. Specifically, let us first give the data equation and the state equation as follows

yp =Φp jp , (2.35a)

jp =χisoe inc
p +χisoMDA−1 jp , (2.35b)

where, p = 1,2,3, · · · ,P , MD is an operator that selects fields only inside the field
domain, D, andχiso is given by Eq. (2.25). Note that the angular frequency,ω, is included
into matrix A and therefore does not appear in the above equation. In classical CSI
iterations, the contrast sources are first updated and then the contrast. The data error
and the state error equation for updating the contrast sources are defined as

ρp,`−1/2 = yp −Φp jp,`−1, (2.36a)

γp,`−1/2 =χiso
`−1e inc

p +χiso
`−1 A−1 jp,`−1 − jp,`−1, (2.36b)
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respectively. Here, `−1/2 means the update of the contrast sources taking place after the
(`−1)-th iteration and before the `-th update of the contrast. Since MD always exists
together with the stiffness matrix, A, it is neglected for better readability in the remainder
of this thesis. Let us first define the cost functional, CCSI,`−1/2, as follows

CCSI,`−1/2 = ηS
P∑

p=1

∥∥ρp,`−1/2
∥∥2
S +ηD`−1

P∑
p=1

∥∥γp,`−1/2
∥∥2
D , (2.37)

where, ηS and ηD
`

are defined as

ηS = 1∑P
p=1

∥∥yp
∥∥2
S

(2.38)

and

ηD` = 1∑P
p=1

∥∥χiso
`

e inc
p

∥∥2
D

, (2.39)

respectively. Here, ‖·‖S and ‖·‖D represent the norms on the measurement space L2(S)
and the field space L2(D), respectively.

Suppose both χ`−1 and jp,`−1 are known, the contrast sources are first updated by

jp,` = jp,`−1 +αnνp,`, (2.40)

where, α` is the step size, and

νp,` =


0, `= 0,

gp,`+
∑

p′
〈

gp′ ,`,gp′ ,`−gp′ ,`−1

〉
D∑

p′
∥∥∥gp′ ,`−1

∥∥∥2

D

νp,`−1, `≥ 1,
(2.41)

in which 〈·〉D represents the inner product defined in the field space, L2(D), and gp,` is
the gradient (Fréchet derivative) of CCSI,`−1/2 with respect to jp by setting jp = jp,`−1,
followed by the update of the contrast by minimizing the cost functional

CCSI,` = ηS
P∑

p=1

∥∥ρp,`
∥∥2
S +ηD`−1

P∑
p=1

∥∥γp,`
∥∥2
D , (2.42)

where,
ρp,` = yp −Φp jp,`, (2.43)

and
γp,` =χiso

`−1etot
p,`− jp,`, (2.44)

with
etot

p,` = e inc
p + A−1 jp,`. (2.45)

If no a priori information about the scatterer is available, Eq. (2.42) is minimized when

χ` =
∑P

p=1
∑
γ jp,γ,`etot

p,γ,`∑P
p=1

∑
γ etot

p,γ,`etot
p,γ,`

, (2.46)

where, γ ∈ {x1, x2, x3}, and (·) represents the conjugate of a complex scalar/vector/matrix.
More details of classical CSI can be found in [85, 86, 105]
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Figure 2.11: Geometry of the far-field LSM.

MULTIPLICATIVE REGULARIZED CSI
MR-CSI is the regularized CSI method with a multiplicative weighted Total Variation
(TV) constraint, which was first introduced by van den Berg et al. [45]. In comparison to
CSI, the contrast, χ, in MR-CSI is updated by minimizing the cost functional of the form

CCSI,`×
1

V

∫
D

∥∥∇χ∥∥2 +δ2
`−1∥∥∇χ`−1

∥∥2 +δ2
`−1

d #–x . (2.47)

Here, V = ∫
D d #–x , and δ2

`−1 are introduced for restoring the differentiability of the TV
factor [45]. The value of δ2

`−1 is chosen to be large in the beginning of the optimization
and small towards the end, which is given by

δ2
`−1 =Cχ

CSI,`−1/2∆
2, (2.48)

where,∆ denotes the mesh size of the discretized domain D. More details of MR-CSI can
be found in [45, 86, 105].

2.3.2 LINEAR SAMPLING METHOD

LINEAR SAMPLING METHOD

Far field LSM transforms the nonlinear inverse scattering problem to a linear one.
It was originally proposed in [96], and has recently received considerable attention
in dealing with inverse scattering problems [13, 106]. LSM avoids incorrect model
assumptions, however it requires more measurement data than the iterative methods.
Now we define the far field operator F : L2[0,2π] → L2[0,2π] by (see Fig. 2.11)(

Fφz
)(

#–s s
)

:=
∫
S2

#–
E ∞

(
#–s s ,

#–

d
)
φz

(
#–

d
)

d #–s d = #–
E e,∞

(
#–s s , #–z , #–q

)
, #–s s ∈S2, (2.49)

where, S2 is the unit circle in R3, #–z ∈ R3 denotes a sampling grid,
#–

d ∈ S2 represents all

possible directions of the incident plane waves,
#–
E ∞

(
#–s s ,

#–

d
)

is the far field pattern of the
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Figure 2.12: Geometry of the near-field LSM.

scattered field,
#–
E e,∞

(
#–x , #–z , #–q

)
is the far field pattern of an electric dipole, of which the

electric field is as follows

#–
E e

(
#–x , #–z , #–q

)
:= i

k
∇x ×∇x × #–qΦ

(
#–x , #–z

)
, (2.50)

where, #–q is the polarization of the electric dipole placed at #–z , and Φ
(

#–x , #–z
)

is the
fundamental point solution to Maxwell’s equations. Explicitly, for a 3-D homogeneous
space with the wave number k > 0 and the time factor exp(iωt ), we have

Φ
(

#–x , #–z
)= 1

4π

exp
(−ik

∥∥#–x − #–z
∥∥

2

)∥∥#–x − #–z
∥∥

2

, #–x ∈R3, (2.51)

and
#–
E e,∞

(
#–s s , #–z , #–q

)= −ik

4π

(
#–s s × #–q

)× #–s s e ik #–s s · #–z . (2.52)

Near field Subsequently, Fata and Guzina generalized LSM to near field for solving the
near-field inverse problems in elastodynamics [98]. Analysis of LSM in EM near field can
be found in [107]. Now we give an introduction to LSM based on a near field operator.
Assume the incident field is radiated from sources located on a bounded planar domain,
Γ1, and the scattered field is measured on a bounded planar sub-domain, Γ2 (see
Fig. 2.12). The inverse scattering problem is to determine Ωc from the knowledge of the
tangential components #–ν × #–

E
(·, #–x t,

#–p
)

and #–ν × #–
H

(·, #–x t,
#–p

)
measured on the surface Γ2

for all the point sources at #–x t ∈ Γ1 and two linearly independent polarizations #–p tangent
to Γ1. Here #–ν

(
#–x r

)
is the outward unit normal vector of the measurement surface, Γ2.

The near-field operator, N : L2(Γ1) → L2(Γ2), is defined as follows

(
Nφz

)(
#–x r

)
:=

∫
Γ1

#–ν
(

#–x r
)× (

#–
E sct (#–x r, #–x t

)
φz

(
#–x t

)− #–
E sct

bg

(
#–x r, #–x t

)
φz

(
#–x t

))
d #–x t

= #–ν
(

#–x r
)×G

(
#–x r, #–z

)
#–q , #–x t ∈ Γ2,

(2.53)

where, G
(

#–x r, #–z
)

is the Green’s tensor with respect to a source point #–z ,
#–
E sct

bg

(
#–x r, #–x t,φz

(
#–x t

))
is the scattered electric field due to the background medium in the absence of scatterer
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Ωc , and #–q is the polarization of the electric dipole placed at #–z ∈Ω. The scattered field
is observed at #–x r ∈ Γ2, and φz

(
#–x t

)
is a tangential field at #–x t ∈ Γ1 with #–ν ·φz

(
#–x t

) = 0
corresponding to the sampling grid #–z . LSM is based on numerically determining φz

and hence the scattering object according to [107, Theorems 3.1 and 3.2], which is as
follows:

1. Select a grid of “sampling points” in a region Ω known to contain the scattering
objects.

2. Use regularization methods to compute an approximate solution, φz (·), to the
near field equation (2.53) for each sampling grid, #–z .

3. Plotting the indicator function Iq
(

#–z
)= 1

/∥∥φz (·)∥∥L2(Γ1) for all #–z ∈Ω.

As pointed out by [108], a generalized indicator function considering different polariza-
tions can be defined as

I ( #–z ) =
∑

#–q
1

‖φz (·)‖L2(Γ1)

max

(∑
#–q

1
‖φz (·)‖L2(Γ1)

) . (2.54)

LSM INVERSION VIA “VIRTUAL EXPERIMENTS”
Now let us take a look at the basic principle of LSM as a way of quantitative inversion
based on the concept of “virtual experiments”. For the sake of simplicity, we consider
a scalar field instead, i.e., the Transverse Magnetic (TM) polarization, and the linear
sampling equation can be simply written to the form of

G
(

#–x s, #–x r
)= ∫

Γ1

φ
(

#–x t
∣∣#–x s

)
E sct (#–x r, #–x t

)
d #–x t. (2.55)

The scattered field can be formulated as follows

E sct (#–x r, #–x t
)= ∫

D
G

(
#–x r, #–x

)
E tot (#–x , #–x t

)
χ

(
#–x

)
d #–x . (2.56)

Substitution of Eq. (2.56) into Eq. (2.55) and swap of the two integrals yield

G
(

#–x s, #–x r
)= ∫

D
G

(
#–x r, #–x

){∫
Γ1

φ
(

#–x t
∣∣#–x s

)
E tot (#–x , #–x t

)
d #–x t

}
χ

(
#–x

)
d #–x

=
∫
D

G
(

#–x r, #–x
){∫

Γ1

φ
(

#–x t
∣∣#–x s

)
E inc (

#–x , #–x t
)

d #–x t +G
(

#–x s, #–x
)}
χ

(
#–x

)
d #–x .

(2.57)

If P sampling points at #–x s , can be selected to well indicate the profile of the scatterer,
then each term ∫

Γ1

φ
(

#–x t
∣∣#–x s

)
E inc (

#–x , #–x t
)

d #–x t +G
(

#–x s , #–x
)

with respect to the sampling point at #–x s, can be viewed as one “virtual experiment”. The
contrast, χ

(
#–x

)
, is then estimated by solving the P “virtual experiments” as a least-square

problem or by the Singular Value Decomposition (SVD) method [13].
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As the optimization techniques discussed above belong to local optimization meth-
ods, all of them are prone to the occurrence of false solutions [27]. A priori information of
the scatterers, such as a good initial guess, the position and the quantity of the scatterers,
etc., is normally required for ensuring the inversion performance. Hybrid inversion
methods [104, 109–111] were also proposed, in which the support of the scatterers is
first determined by qualitative inversion methods and then used as a priori information
for quantitative inversion.

2.4 CONCLUSIONS

In this chapter, the EM direct scattering problem is formulated by means of the FDFD
scheme, and the computing accuracy of a solver package, “MaxwellFDFD”, and its
companion C program, “FD3D”, is tested numerically with 2-D and 3-D benchmark
problems. Based on the FDFD scheme, the EM inverse scattering problem is formulated
and introduced. Finally, a review of the challenges and the state-of-the-art of inversion
techniques is presented. The fundamentals presented in this chapter are important for
introducing the following chapters.



3
CROSS-CORRELATED CONTRAST

SOURCE INVERSION

In iterative inversion methods, the cost functional to be minimized generally consists
of two additive terms: the data error term and the state error term [37]. On one hand,
the data error term ensures that the model fits the measurements; On the other hand,
the state error term ensures that the model satisfies Maxwell’s equations. For iterative
inversion methods, a good initial guess is required such that the iterative inversion
process departs on the right track leading to the global optimal solution. In classical
nonlinear iterative inversion algorithms, the contrast is sought by minimizing not only
the data error but also the state error. In doing so, the estimated solution is monitored by
Maxwell’s equations in the field domain during the whole inversion process. However,
the state error still needs to be monitored in the measurement domain. Otherwise, the
mapping of the state error to the measurement domain may run out of control. Inspired
by this fact, a so-called cross-correlated error term is proposed in this chapter. The name
comes from the fact that it is an interrelation between the state error term and the data
error term. By introducing this novel error term to the cost functional, the state error
and the data error are cross-correlated, leading to a more robust inversion method, the
Cross-Correlated Contrast Source Inversion (CC-CSI) method.

The remainder of this chapter is organized as follows: this cross-correlated error
term and the novel inversion method are introduced in Section 3.1, from which one
can see how the gradient of the new cost functional is calculated without significantly
increasing the computational complexity. The performance of the proposed method
is investigated based on a 2-Dimensional (2-D) benchmark problem excited by both
Transverse Magnetic (TM)- and Transverse Electric (TE)-polarized waves. The proposed
CC-CSI method turns out to be more robust, and it is also of higher inversion accuracy

Parts of this chapter have been published in [112] and submitted to [113].
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compared to both classical Contrast Source Inversion (CSI) and Multiplicative Regu-
larized Contrast Source Inversion (MR-CSI). In Section 3.2, a multi-frequency version
of CC-CSI, referred to as Multi-Frequency Cross-Correlated Contrast Source Inversion
(MF-CC-CSI), is proposed, which exploits the frequency diversity by inverting multi-
frequency data simultaneously. A numerical simulation is presented in Section 3.2.2,
and an example of the experimental data inversion is given in Section 3.2.3. It is
demonstrated that the advantage brought by the new error term is still significant in the
multi-frequency cases. As Maxwell’s equations are formulated with a 3-Dimensional (3-
D) Finite Difference Frequency Domain (FDFD) formulation, it can be straightforwardly
applied to the reconstruct 3-D scattering objects.

3.1 CROSS-CORRELATED ERROR AND CC-CSI

3.1.1 MOTIVATION

As mentioned before, a good initial guess is critical for the iterative methods to success-
fully converge to the global optimal solution. This can be explained firstly by the fact
that there are two unknown variables — the contrast and the contrast sources. Secondly,
although classical CSI is able to minimize the data error by constraining the state error at
the meantime, a global optimal solution is still not guaranteed because of the severe ill-
posedness. For simplicity, let us first define the measurement matrix asΦp := MS ,p A−1.
The condition number of matrixΦp is further defined as

κ(Φp ) := σmax
(
Φp

)/
σmin

(
Φp

)
, (3.1)

where, σmax
(
Φp

)
and σmin

(
Φp

)
are maximal and minimal singular values of Φp ,

respectively. As discussed in Subsection 3.1.4, the measurement matrix has a large
condition number, which means a minor state error in the field space, L2(D), may cause
a large error in the measurement space, L2(S). This potential mismatch is neglected
in the classical formulation of the cost functional. Inspired by the above analysis, a
cross-correlated error term is proposed in the following. By introducing it to the cost
functional, a novel inversion scheme, CC-CSI, is developed.

3.1.2 CROSS-CORRELATED ERROR

Recall Eq. (2.35) in Chapter 2, Eq. (2.36a) is the data equation in the measurement
domain and Eq. (2.35b) is the state equation in the field domain. Eq. (2.35b) is used to
monitor the behavior of the solution in the field domain and check if it satisfies Maxwell’s
equations. Since Eq. (2.35b) is always not perfectly satisfied, the “=” is supposed to be a
“≈”. Note that the solution is monitored only in the field domain, the mismatch in the
field domain should also be monitored back in the measurement domain. Otherwise,
the inversion scheme is not complete. In order to fill this gap, we define a new equation
in the measurement domain as follows

yp =Φp

(
χisoe inc

p +χiso A−1 jp

)
. (3.2)
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In doing so, the solution is monitored not only in the field domain by the state error term
but also in the measurement domain by the new equation, Eq. (3.2), which is actually a
nonlinear data equation. Subsequently, the new error equation is formulated as follows

ξp = yp −Φp

(
χisoe inc

p +χiso A−1 jp

)
. (3.3)

And the new error term is defined as

ηS
P∑

p=1

∥∥ξp
∥∥2
S , (3.4)

where, ηS is a normalization factor given by Eq. (2.38). We refer to this novel error term
as the cross-correlated error.

3.1.3 FORMULATION OF CC-CSI

FORMULATION OF THE COST FUNCTIONAL

By introducing this error term to the cost functional, a novel inversion method, CC-
CSI, is proposed. Specifically, the cross-correlated error equation for reconstructing the
contrast sources is defined as follows

ξp,`−1/2 = yp −Φp

(
χiso
`−1e inc

p +χiso
`−1 A−1 jp,`−1

)
. (3.5)

Note that if the state error is zero, then theoretically we have ρp = ξp . Sufficiently
minimizing the cost function of Eq. (2.37) does not necessarily mean that the cross-
correlated error has been sufficiently minimized. Therefore, the cost functional for
updating the contrast source is modified as a superposition of three error terms, i.e.,

CCC-CSI,`−1/2 = ηS
P∑

p=1

∥∥ρp,`−1/2
∥∥2
S +ηD`−1

P∑
p=1

∥∥γp,`−1/2
∥∥2
D+ηS

P∑
p=1

∥∥ξp,`−1/2
∥∥2
S , (3.6)

where, ρp,`−1/2 and γp,`−1/2 are defined in Eq. (2.36a) and Eq. (2.36b), respectively.

UPDATING THE CONTRAST SOURCES

The gradient (Fréchet derivative) of the modified cost functional, CCC-CSI,`−1/2, with
respect to the contrast sources, jp , is

gp =−2ηSΦH
p ρp,`−1/2 +2ηD`−1

(
χiso
`−1 A−1 − I

)H
γp,`−1/2−

2ηS
(
Φpχ

iso
`−1 A−1)H

ξp,`−1/2.
(3.7)

In the following part of the thesis, I represents the identity matrix, and (·)H is the
conjugate transpose operator. Now suppose jp,`−1 and χ`−1 are known, then we update
the contrast sources by

jp,` = jp,`−1 +αp,`νp,`, (3.8)
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where,αp,` is constant, and the update directions,νp,`, are the update directions chosen
to be the Polak-Ribière conjugate gradient directions, given by

νp,` =


0, `= 0,

gp,`+
∑

p′
〈

gp′ ,`,gp′ ,`−gp′ ,`−1

〉
D∑

p′
∥∥∥gp′ ,`−1

∥∥∥2

D

νp,`−1, `≥ 1,
(3.9)

where,
gp,` = gp

∣∣
jp= jp,`−1

. (3.10)

The step size, αp,`, can be explicitly found as

arg min
αp

CCC-CSI,`−1/2
∣∣

jp= jp,`−1+αpνp,`
. (3.11)

See Appendix A.1 for its derivation.

UPDATING THE CONTRAST

Once the contrast sources are updated, we update the contrast by

χiso
` =χiso

`−1 +β`νiso
` , (3.12)

where, β` is the step size and the update direction, νiso
`

, is in the formulation of

νiso
` =

[
ν
χ

`

T
ν
χ

`

T
ν
χ

`

T
]T

, (3.13)

where, (·)T represents the transpose operator, νχ
`

are the Polak-Ribière conjugate gradi-
ent directions, given by

ν
χ

`
=


0, `= 0,

gχ

`
+

〈
gχ
`

,gχ
`
−gχ

`−1

〉
D∥∥∥gχ

`−1

∥∥∥2

D

ν
χ

`−1, `≥ 1,
(3.14)

where, gχ

`
is the preconditioned gradient of the contrast cost functional

CCC-CSI,` = ηD`−1

P∑
p=1

∥∥γp,`
∥∥2
D+ηS

P∑
p=1

∥∥ξp,`
∥∥2
S , (3.15)

in which, γp,` is defined by Eq. (2.44), and ξp,` is defined as

ξp,` = yp −Φp

(
χiso
`−1e inc

p +χiso
`−1 A−1 jp,`

)
. (3.16)

Specifically, gχ

`
is found to be

gχ

`
=

2ηD
`−1

∑P
p=1

∑
γ etot

p,γ,`γp,γ,`−2ηS
∑P

p=1
∑
γ etot

p,γ,`Φ
H
p ξp,γ,`∑P

p=1
∑
γ etot

p,γ,`etot
p,γ,`

∣∣∣∣∣∣
χ=χ`−1

. (3.17)
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The step size, β`, is determined by minimizing

P∑
p=1

∥∥∥(
χiso
`−1 +βνiso

`

)
etot

p,`− jp,`

∥∥∥2

D

P∑
p=1

∥∥∥(
χiso
`−1 +βνiso

`

)
e inc

p

∥∥∥2

D

+ηS
P∑

p=1

∥∥∥yp −Φp
(
χiso
`−1 +βνiso

`

)
etot

p,`

∥∥∥2

S
. (3.18)

This is a problem of finding the minimum of a single-variable function, and can be
solved efficiently by the Brent’s method [114, 115].

INITIALIZATION

If no a priori information is available, the contrast sources are initialized by (see [85, 116])

jp,0 =

∥∥∥ΦH
p yp

∥∥∥2

D∥∥ΦpΦ
H
p yp

∥∥2
S
ΦH

p yp , (3.19)

which are obtained by back-propagation, multiplied by a weight to ensure that the data
error is minimized. The contrast is initialized by (see [45])

χ0 =
(

P∑
p=1

∑
γ

jp,γ,0etot
p,γ,0

)
®

(
P∑

p=1

∑
γ

etot
p,γ,0etot

p,γ,0

)
, (3.20)

with etot
p,0 = e inc

p + A−1 jp,0. Note that “®” represents the element-wise division in the
following of this thesis.

The CC-CSI method is given in Algorithm 1, where ℜ{·} represents the real part
operator and, correspondingly, the imaginary part operator is represented by ℑ{·}. Since
the objects are assumed to be isotropic, we average the two components of the contrast
for TE cases, and the three components of the contrast for 3-D case, after each update of
the contrast.

CONSTRUCTION OF THE SENSING MATRIX,Φp

In this subsection, we show that the CC-CSI method can be implemented without
significantly increasing the computational complexity compared to the classical CSI
method. Since the selecting matrix, MS ,p ∈ CM×N , has only M << N rows, the sensing
matrix,Φp , can be calculated iteratively by solving M linear systems of equations,

ATϕm,p = M m
S ,p

T , m = 1,2,3, · · · , M , (3.21)

where, M m
S ,p

is the m-th row of the selecting matrix MS ,p . The sensing matrix is then

assembled by Φp = [
ϕ1,p ,ϕ2,p , · · · ,ϕM ,p

]T . Since M << N , it is computationally much
more efficient than the Lower Upper (LU) decomposition of the stiffness matrix A (if LU
decomposition is used). This feature also makes it suitable to be computed and stored
beforehand, which is of great importance for real applications, especially for 3-D inverse
scattering problems. Although CC-CSI requires more matrix-vector multiplications, the
extra computational cost is not significant as long as M << N .
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Algorithm 1: Cross-correlated Contrast Source Inversion.

Input : A,Φp , jp , e inc
p

Output: χ

1 Initialize the contrast sources, jp ;

2 Initialize the total fields by etot
p = esct

p +e inc
p , where esct

p = A−1 jp ;

3 ηS =
(∑P

p=1

∥∥yp
∥∥2
S

)−1
, gχ = 0, νp = 0, νχ = 0;

4 Initialize the contrast, χ, by Eq. (3.20);

5 Set the maximum number of iterates, Nmax, and set `= 1;

6 begin

7 If `> Nmax, then break;

8 ηD ←
(∑P

p=1

∥∥∥χisoe inc
p

∥∥∥2

D

)−1

;

9 ρp ← yp −Φp jp . compute the data error;

10 ξp ← yp −Φpχ
isoetot

p . compute the cross-correlated error;

11 γp ←χisoetot
p − jp . compute the state error;

12 g old
p ← gp , and calculate the gradient gp by Eq. (3.7);

13 νp ← gp +
∑

p′
〈

gp′ ,gp′−g old
p′

〉
D∑

p′
∥∥∥g old

p′
∥∥∥2

D

νp . Polak-Ribière conjugate gradient;

14 Compute the step sizes, αp , by Eq. (A.22) . compute the step size αp ;

15 jp ← jp +αpνp . update the contrast sources;

16 etot
p ← etot

p +αp eνp , where eνp ← A−1νp . update the total fields;

17 γp ←χisoetot
p − jp . update the state error;

18 ξp ← yp −Φpχ
isoetot

p . update the cross-correlated error;

19 gχ

old ← gχ, and gχ is calculated by Eq. (3.17);

20 νχ← gχ+
〈

gχ,gχ−gχold

〉
D∥∥∥gχold

∥∥∥2

D

νχ;

21 The step size, β, is determined by minimizing Eq. (3.18) . compute the step

size β;

22 χ←χ+βνχ . update the contrast;

23 `← `+1;

24 end

25 return χ;
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Figure 3.1: Original “Austria” profile contained in a region of [−4, 4] × [−4, 4] m2. The boundaries of the four
sides are terminated with PMLs. The two z-normal boundaries are subject to PBCs.

In a simple case where the background is homogeneous medium, the sensing
matrices can be analytically given. Take the TM-polarization case as an example, Φp

is analytically formulated as follows

Φp [q,n] = iωiµ0

4
H (1)

0

(−k
∥∥#–x p,q − #–x n

∥∥
2

)
, (3.22)

where, Φp
[
q,n

]
is the entry in the q-th row and n-th column of matrix Φp ; H (1)

0 (·) is
the Hankel function of the first kind; #–x p,q is the position vector of the q-th receiver
corresponding to the p-th source; #–x n is the n-th position vector in the discretized
inversion domain. The construction of the sensing matrix in homogeneous background
medium for the TE-polarization case and the 3-D case is given in Appendix B.

3.1.4 NUMERICAL SIMULATION

CONFIGURATION

In this section, the proposed algorithm is tested with a 2-D benchmark problem —
the “Austria” profile, which was also used in [105, 117–119]. Based on the benchmark
problem, the performance of CC-CSI is analyzed in comparison to classical CSI and MR-
CSI. Specifically, the objects to be inverted consist of two disks and one ring. Let us first
establish our coordinate system such that the z-axis is parallel to the axis of the objects.
The disks of radius 0.2 m are centred at (−0.3, 0.6) m and (0.3, 0.6) m. The ring is centred
at (0, −0.2) m, and it has an exterior radius of 0.6 m and an inner radius of 0.3 m. The
geometry of the “Austria” profile is shown in Fig. 3.1.

The ElectroMagnetic (EM) direct scattering problem is solved by a MATLAB-based 3-
D FDFD package “MaxwellFDFD” [30]. The x- and y-normal boundaries are covered
by Perfectly Matched Layers (PMLs) to simulate the anechoic chamber environment
(see the gray layers of Fig. 3.1 at the boundaries of the test domain), while the two
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z-normal boundaries are subject to Periodic Boundary Conditions (PBCs) to simulate
the 2-D configuration. Line sources parallel to the z-axis are used to generate TM-
polarized and TE-polarized incident waves. Non-uniform meshes are used to generate
the scattered data, which means the testing domain is discretized with different mesh
sizes determined by the distribution of the permittivity, viz., coarse meshes for low
permittivity and fine meshes for high permittivity. The accuracy of the FDFD scheme
is ensured by the following criterion [35]

∆≤ λ0

15
p
εr

, (3.23)

where, λ0 is the wavelength in the free space. Non-uniform meshes greatly reduce the
computational burden for solving the direct scattering problem. In contrast, uniform
meshes are used to invert the scattered data, since the distribution of the permittivity is
unknown beforehand. A criterion to guarantee the inverting accuracy is

∆≤ λ0

15
p

max{εr}
. (3.24)

In our simulation, the electric line source (TM polarization) and the magnetic line source
(TE polarization) are considered simultaneously since there are no interactions with
each other. The three components of the incident fields (in the absence of the scatterers)
and the total fields (in the presence of the scatterers) are collected at the positions of
the receivers. The x- and y-components correspond to the TE polarization and the z-
component corresponds to the TM polarization. The measurement data of the scattered
fields are obtained by subtracting the incident fields from the total fields.

Belkebir and Tijhuis [117] and Litman et al. [118] have used 64 sources and 65
receivers on a circle of radius 3 m centred at (0, 0), while the inverting domain was
discretized into 30 × 30 cells. Van den Berg et al. [105, 119] have taken 48 source/receiver
stations, while the inverting domain was discretized into 64 × 64 cells. In our simulation,
we considered a 2-D bistatic measurement configuration similar to the one used in the
experiments of the Fresnel datasets [31, 32]. For a fair comparison, the contrast sources
are initialized by Eq. (3.19), and the contrast is initialized by Eq. (3.20) for all the three
algorithms. Two examples in a free space with different measurement configurations
are considered. The positivity of the real part of the contrast and the negativity of the
imaginary part of the contrast are enforced in the inversion by setting the negative real
part and the positive imaginary part zero.

EXAMPLE 1
The measurement configuration of the first example is shown in Fig. 3.2. One transmitter
and one receiver are positioned on a circle of radius 3 m centred at the origin (0, 0).
For the sake of simplicity, let us consider the polar coordinate system. Let φT and φR

represent the angular components of the transmitter position vector and the receiver
position vector, respectively. In the first round of measurement, φT = 0◦ and the receiver
rotates such that φR varies from 60◦ to 300◦ in steps of 5◦. In the second round of
measurement, φT = 30◦ and the receiver rotates such that φR varies from 90◦ to 330◦
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Figure 3.2: Measurement configuration of Example 1.

Table 3.1: Condition numbers of the sensing matrices of TM/TE-polarization at 300 MHz and 400 MHz.

Polarization

κ
(
Φp

)
Frequency

300 MHz 400 MHz

TM 3.49×1015 2.04×1015

TE 1.17×1016 7.58×1015

in steps of 5◦. In this way, the transmitter rotates from 0◦ to 330◦ in steps of 30◦, and 12
rounds of measurements are carried out in total.

In this example, lossy scatterers are tested. The conductivity of the three cylinders is
10 mS/m, and the relative permittivity is 3.0. The measurements are carried out at two
operating frequencies, 300 MHz and 400 MHz. The corresponding values of the contrast
are χ = 2.0− 0.6i at 300 MHz and χ = 2.0− 0.45i at 400 MHz. The inversion domain is
restricted to the region [−1.5, 1.5] × [−1.5, 1.5] m2. The dimension of the mesh grid is 30
× 30 mm2. As the receiver rotates along a circle, there are 72 different receiving positions,
and we have a sensing matrix Φp ∈ C49×10000 for TM polarization, and Φp ∈ C98×20000

for TE polarization. The positions on the arc where the receiver does not work are not
considered in the inversion by the three methods. The condition numbers of the sensing
matrices of the two polarization at 300 MHz and 400 MHz are listed in Table 3.1. As one
can see the condition numbers of the sensing matrices for both TM and TE polarization
are of large values, indicating that an error in the contrast sources, jp , may cause an
increased error in the measurement data, yp . It is worth noting that in the formulation
of TE scattering problems, the operators involved have the same form, but one spatial
dimension lower, compared to full 3-D scattering problems. Hence, the performance
gain with CC-CSI in future 3-D inversion problems can be compared to the performance
gain in TE cases.

To simulate the inevitable measurement error in real experiments, additive Gaussian
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random noise, np , is added directly to the scattered field data. The power of the
scattered field data matrix is measured before adding noise. In addition, the noise is also
added to the total field data and the incident field data by y tot

p + np
/

2 and y inc
p − np

/
2 ,

respectively. In doing so, the disturbance of the noise is reflected not only in the scattered
field data but also in the modelling of the incident fields, which better approaches the
real situation. To appraise the inversion performance (inversion accuracy and rate of
convergence) quantitatively, let us define the reconstruction errors as follows

er rχ =
∥∥χ− χ̂∥∥

D
/∥∥χ∥∥

D , (3.25a)

er rε =
∥∥ℜ{

χ− χ̂}∥∥
D

/∥∥ℜ{
χ

}∥∥
D , (3.25b)

er rσ = ∥∥ℑ{
χ− χ̂}∥∥

D
/∥∥ℑ{

χ
}∥∥

D , (3.25c)

where, χ and χ̂ are the true contrast and the inverted contrast, respectively; er rχ, er rε,
and er rσ are respectively the complex contrast error, the permittivity error and the
conductivity error. Three of the errors enable us to appraise the inversion accuracy from
different perspectives.

TM-polarized data Let us first consider the inversion of the TM data. Since the
incident fields in the Region Of Interest (ROI) is not available in real applications, we
consider the modelling of the incident fields, although actually the numerical solutions
of the incident fields are known in our simulations. We use the approach reported in
[120] to model the incident fields. Specifically, the transmitting antenna is approximated
by line source parallel to the cylindrical objects. The amplitude and phase are calibrated
by multiplying a complex ratio which is calculated using only the value of the field
when the transmitting and the receiving antennas are in opposite directions. For each
frequency and each source position, one complex calibration factor is determined.
The incident field measurement data and the modelling data are shown in Fig. 3.3 for
comparison with disturbance of different Signal to Noise Ratios (SNRs), 30 dB (a, b) and
10 dB (c-d), respectively.

From Fig. 3.3 (a) we observe that, in the inversion of the 300 MHz TM data, the
three methods obtain approximately an equal complex contrast error (about 0.4) after
2048 iterations. Classical CSI and CC-CSI have similar complex contrast error curves,
while the one of MR-CSI decreases faster in the first 1000 iterations, indicating the Total
Variation (TV) regularization indeed speeds up the rate of convergence in this case.
However, when the SNR of the 300 MHz data decreases to 10 dB, the complex contrast
error curve of MR-CSI does not decrease anymore. In addition, we can also see from
Fig. 3.3 (a) that, in the inversion of the 10 dB SNR data, the complex contrast error curves
of classical CSI and CC-CSI start to increase after about 700 iterations, which tells us that
a good termination condition is required for both classical CSI and CC-CSI, otherwise,
the inversion accuracy may deteriorate after a mount of iterations when the disturbance
of noise to the measurement data is not negligible. Now let us switch further to 400
MHz. From Fig. 3.3 (b) we observe that, for both 30 dB SNR data and 10 dB SNR data, the
complex contrast error curves of both MR-CSI and classical CSI do not decrease either,
while the one of CC-CSI is still going down although with a slower rate of convergence
compared to the 300 MHz case and finally reaches a complex contrast error around
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Figure 3.3: Comparison of the measurement data collected without scatterer and the data obtained by
modelling the incident fields in the TM case. (a) Real part, 300 MHz; (b) Imaginary part, 300 MHz; (c) Real
part, 400 MHz; (d) Imaginary part, 400 MHz.

0.7. From Figs. 3.3 (c) and 3.3 (d) we observe the same phenomena as Figs. 3.3 (a) and
3.3 (b), because the permittivity dominates the contrast in this example. From Fig. 3.3 (e)
we observe that 1) the reconstruction of the conductivity is not as good as that of the
permittivity; 2) classical CSI and CC-CSI arrive at an approximately equal conductivity
error around 0.7; 3) the TV regularization further reduces the conductivity error by about
0.2 in the 300 MHz case; 4) all the methods fail to obtain a reasonable conductivity error
in the 400 MHz.

As a summary of the above results, we first analyze the reason for the unstable
performance of MR-CSI. As is well known, the TV regularization was originally proposed
for the noise removal in digital image processing [121]. Obviously, the feasibility
condition for applying the TV regularization is that one must first have an image which
is suitable for processing. This is apparently not the case in classical CSI, because the
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Figure 3.4: Reconstruction error curves of classical CSI, MR-CSI, and CC-CSI in the TM case of Example 1.
Left: 300 MHz; Right: 400 MHz. (a), (b): complex contrast error, er rχ; (c), (d): permittivity error, er rε; (e), (f):
conductivity error, er rσ;
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Figure 3.5: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 1 with 2048
iterations. SNR= 30dB. TM-polarization data.
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Figure 3.6: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 1 with 2048
iterations. SNR= 10dB. TM-polarization data.
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Figure 3.7: Geometric illustration of the tangential component of the electric field in TE cases.

contrast image in classical CSI is optimized iteratively. In the beginning of MR-CSI,
the TV constraint is applied to an image that may have nothing to do with the true
image. Therefore, it may mislead and degrade the optimization process. Benefits can be
possibly obtained from MR-CSI only if the contrast can be reliably reconstructed without
using the TV constraint. In other words, benefits from MR-CSI cannot be guaranteed in
general situations.

The inversion results get worse when switching to a higher frequency because a high
frequency means more complicated unknown total fields to estimate and more local
minima the algorithms may encounter. There are at least two reasons for the higher
conductivity error in comparison to the permittivity error: 1) The real part of the contrast
is larger than the imaginary part, which means the permittivity dominates the contrast;
2) The existence of a conductivity suppresses the propagation of the EM wave. If the total
field attenuates in the interior of the objects, its estimation gets more difficult.

The reconstructed permittivity and conductivity images are also given in Fig. 3.5
(SNR= 30 dB) and Fig. 3.6 (SNR= 10 dB) for a better view of the inverted results.

TE-polarized data In the TE case, the modelling of the incident fields is realized in the
same way. Since there are two components involved — the x- and y-components, the
complex calibration factor is determined using the tangential component of the incident
field data, Etan. As illustrated in Fig. 3.7, the calculation formula of Etan is

Etan = Ex cos(θ+π/2)+Ey sin(θ+π/2) . (3.26)

Figs. 3.8 (a-b) and 3.8 (c-d) show the tangential components of the measurement data
and the modelling data at 300 MHz and 400 MHz, respectively, for comparison.

Fig. 3.9 gives the comparison of the three reconstruction errors, from which one can
get the same conclusions as for the TM case. By comparison of the TM results and the
TE results, we can see that it is slightly more reliable to invert the TE data than inverting
the TM data. The reason is due to the reduced degree of non-linearity for TE cases
as compared to TM cases. We refer to [122] for more discussion about this problem.
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Figure 3.8: Comparison of the tangential component of the measurement data collected without scatterer and
the one obtained by modelling the incident fields in the TE case. (a) Real part, 300 MHz; (b) Imaginary part,
300 MHz; (c) Real part, 400 MHz; (d) Imaginary part, 400 MHz.

Fig. 3.10 and Fig. 3.11 give the inverted permittivity and conductivity images by inverting
the 30 dB SNR and 10 dB SNR TE-polarized data, respectively.

EXAMPLE 2
In the second example, let us consider the objects having the same geometry as in
Example 1. The three cylinders are made of dielectric material (εr = 3.0, σ = 0 mS/m).
The difference is that the interior of the ring is now filled with dielectric material (εr = 1.5,
σ = 0 mS/m). The measurement configuration is shown in Fig. 3.12, which is similar
to that of Example 1, except for the rotation steps of the transmitter and the receiver.
Specifically, in the first round of measurement,φT = 0◦ and the receiver rotates such that
φR varies from 60◦ to 300◦ in steps of 3◦. In the second round of measurement, φT = 30◦
and the receiver rotates such that φR varies from 90◦ to 330◦ in steps of 3◦. In this way,
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Figure 3.9: Reconstruction error curves of classical CSI, MR-CSI, and CC-CSI in the TE case of Example 1. Left:
300 MHz; Right: 400 MHz. (a), (b): complex contrast error, er rχ; (c), (d): permittivity error, er rε; (e), (f):
conductivity error, er rσ;
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Figure 3.10: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 1 with 2048
iterations. SNR= 30dB. TE-polarization data.
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Figure 3.11: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 1 with 2048
iterations. SNR= 10dB. TE-polarization data.
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Figure 3.12: Measurement configuration of Example 2.

the transmitter rotates from 0◦ to 330◦ in steps of 30◦, and 12 rounds of measurements
are performed in total.

The incident fields are modeled using the aforementioned approach, and the TM-
and TE-polarized data at both 300 MHz and 400 MHz are inverted by CC-CSI, MR-
CSI, and classical CSI, respectively, with 2048 iterations. The permittivity error curves
are given in Fig. 3.13, and the conductivity error curves are not given because the
objects are dielectric. The reconstructed relative permittivity and conductivity images
by inverting the 30 dB SNR 300 MHz TM-polarized data and the 10 dB SNR 400 MHz
TE-polarized data are shown in Fig. 3.14 and Fig. 3.15, respectively. Figs. 3.13 (a) and
3.13 (d) demonstrate that CC-CSI is of better robustness in comparison to MR-CSI and
classical CSI. Fig. 3.13 (c) shows that CC-CSI also fails in the inversion of the 400 MHz
TM-polarized data, because 1) the hollow cylinder is filled with dielectric material in this
example, which is more complicated than that in Example 1; 2) CC-CSI still belongs to
the local optimization algorithms and the convergence to the optimal solution can still
not be guaranteed. However, from Fig. 3.13 (d) we observe that by using the TE-polarized
data of a 30 dB SNR and a 10 dB SNR, CC-CSI successfully converges to a good result,
which can be observed from Fig. 3.15 as well. The reason is due to the reduced degree of
non-linearity for TE cases as compared to TM cases [122]. We remark in the end that one
can also benefit from the use of both TM and TE polarization in a cascade algorithm or
simultaneously. We refer to [123–125] for more discussion about these ideas.

3.2 MULTI-FREQUENCY CC-CSI

3.2.1 FORMULATION

The multi-frequency inversion problem discussed in this section is assumed to be non-
dispersive, i.e., the contrast to be inverted is independent of frequency. Let us use the
subscript i to represent the i -th frequency. In the update of the contrast sources, the
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Figure 3.13: Permittivity error curves of classical CSI, MR-CSI, and CC-CSI in the TE case of Example 2. (a) TM,
300 MHz; (b) TE, 300 MHz; (c) TM, 400 MHz; (b) TE, 400 MHz.

data error equation, the state error equation and the cross-correlated error equation
corresponding to the p-th source are defined respectively as follows

ρp,i ,`−1/2 = yp,i −Φp,i jp,i , (3.27)

γp,i ,`−1/2 =χiso
i ,`e inc

p,i +χiso
i ,`A−1

i jp,i − jp,i , (3.28)

ξp,i ,`−1/2 = yp,i −Φp,i

(
χiso

i ,`e inc
p,i +χiso

i ,`A−1
i jp,i

)
, (3.29)

with p = 1,2,3, · · · ,P , i = 1,2,3, · · · , I , where

Ai =µ−1
0 C sc

h C sc
e −ω2

i Dεbg . (3.30)
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Figure 3.14: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 2 with 2048
iterations. SNR= 30dB. (a-f) correspond to Fig. 3.13 (a); (g-l) correspond to Fig. 3.13 (d).
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Figure 3.15: Reconstructed relative permittivity, εr,con, and conductivity, σcon, in Example 2 with 2048
iterations. SNR= 10dB. (a-f) correspond to Fig. 3.13 (a); (g-l) correspond to Fig. 3.13 (d).
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Here, ωi represents the i -th angular frequency. The cost functional for updating the
contrast sources is defined as follows

CMF-CC-CSI,`−1/2 =
I∑

i=1
ηSi

P∑
p=1

∥∥ρp,i ,`−1/2
∥∥2
S +

I∑
i=1

ηDi ,`−1

P∑
p=1

∥∥γp,i ,`−1/2
∥∥2
D+

I∑
i=1

ηSi
P∑

p=1

∥∥ξp,i ,`−1/2
∥∥2
S ,

(3.31)

where, ηSi and ηDi ,` are defined as

ηSi =
P∑

p=1

∥∥yp,i
∥∥2
S , ηDi ,` =

P∑
p=1

∥∥∥χiso
i ,`e inc

p,i

∥∥∥2

D
,

respectively.

UPDATING THE CONTRAST SOURCES

The gradient (Fréchet derivative) of the modified cost functional with respect to the
contrast sources is

gp,i =−2ηSi Φ
H
p,iρp,i ,`−1 +2ηDi ,`−1

(
χiso

i ,`−1 A−1
i − I

)H
γp,i ,`−1−

2ηSi
(
Φp,iχ

iso
i ,`−1 A−1

i

)H
ξp,i ,`−1.

(3.32)

Now suppose jp,i ,`−1 andχi ,`−1 are known, then we update the contrast sources, jp,i ,`−1,
by

jp,i ,` = jp,i ,`−1 +αp,i ,`νp,i ,`, (3.33)

where,αp,i ,` are the step sizes, and the update directions, νp,i ,`, are chosen as the Polak-
Ribière conjugate gradient direction, which is given by

νp,i ,` =


0, `= 0,

gp,i ,`+
∑

p′
〈

gp′ ,i ,`,gp′ ,i ,`−gp′ ,i ,`−1

〉
D∑

p′
∥∥∥gp′ ,i ,`−1

∥∥∥2

D

νp,i ,`−1, `≥ 1.
(3.34)

where

gp,i ,` = gp,i
∣∣

jp,i= jp,i ,`−1
. (3.35)

The step sizes, αp,i ,`, are the minimizers of the cost functional

CMF-CC-CSI,`−1/2
∣∣

jp,i= jp,i ,`−1+αp,iνp,i ,`
. (3.36)

See Appendix A.2 for the derivation of αp,i ,`.
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UPDATING THE CONTRAST

Suppose χiso
i ,`−1 is known and consider the relation

χiso
1,`−1 =ℜ

{
χiso

i ,`−1

}
+ ω1

ωi
ℑ

{
χiso

i ,`−1

}
, i = 1,2,3, · · · , I , (3.37)

we therefore define χiso = χiso
1 . Once the contrast sources, jp,i ,`, are determined, we

update the contrast, χiso
`−1, by

χiso
` =χiso

`−1 +β`νiso
` , (3.38)

where, β` is the step size and the update direction, νiso
`

, is given by

νiso
` =

[
ν
χ

`

T
ν
χ

`

T
ν
χ

`

T
]T

, (3.39)

where, νχ
`

is chosen to be the Polak-Ribière conjugate gradient directions, which is given
by

ν
χ

`
=


0, n = 0,

gχ

`
+

〈
gχ
`

,gχ
`
−gχ

`−1

〉
D∥∥∥gχ

`−1

∥∥∥2

D

ν
χ

`−1, n ≥ 1.
(3.40)

Here, gχ

`
is the preconditioned gradient of the contrast cost functional

CMF-CC-CSI,` =
I∑

i=1
ηDi ,`−1

P∑
p=1

∥∥γp,i ,`
∥∥2
D+

I∑
i=1

ηSi
P∑

p=1

∥∥ξp,i ,`
∥∥2
S , (3.41)

where,
γp,i ,` =χiso

i ,`−1e inc
p,i +χiso

i ,`−1 A−1
i jp,i ,`− jp,i ,`, (3.42)

ξp,i ,` = yp,i −Φp,i

(
χiso

i ,`−1e inc
p,i +χiso

i ,`−1 A−1
i jp,i ,`

)
. (3.43)

Specifically, gχ

`
is given by

gχ

`
=

2ℜ
{∑I

i=1 gχ

i ,`

}
∑I

i=1

∑P
p=1

∑
γ etot

p,i ,γ,`etot
p,i ,γ,`

+ i
2ℑ

{∑I
i=1

ω1
ωi

gχ

i ,`

}
∑I

i=1

(
ω1
ωi

)2 ∑P
p=1

∑
γ etot

p,i ,γ,`etot
p,i ,γ,`

, (3.44)

where,

gχ

i ,` = ηDi ,`−1

P∑
p=1

∑
γ

etot
p,i ,γ,`γp,i ,γ,`−ηSi

P∑
p=1

∑
γ

etot
p,i ,γ,`Φ

H
p,iξp,i ,γ,`. (3.45)

The step size, β`, is determined by minimizing the updated cost function in the
formulation of

I∑
i=1

∑P
p=1

∥∥∥(
χiso

i ,`−1 +βχiso
i ,`

)
etot

p,i ,`− jp,i ,`

∥∥∥2

D∑P
p=1

∥∥∥(
χiso

i ,`−1 +βχiso
i ,`

)
e inc

p,i

∥∥∥2

D

+
I∑

i=1
ηSi

P∑
p=1

∥∥∥yp,i −Φp,i

(
χiso

i ,`−1 +βχiso
i ,`

)
etot

p,i ,`

∥∥∥2

S
.

(3.46)
This is a problem of finding the minimum of a single-variable function, which can be
solved efficiently by the Brent’s method [114, 115].
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INITIALIZATION

If no a priori information about the objects is available, the contrast source is initialized
using the values obtained by back-propagation

jp,i ,0 =

∥∥∥ΦH
p,i yp,i

∥∥∥2

D∥∥∥Φp,iΦ
H
p,i yp,i

∥∥∥2

S

ΦH
p,i yp,i , (3.47)

and the starting value of the total field is

etot
p,i ,0 = e inc

p,i + A−1
i jp,i ,0. (3.48)

The contrast is initialized by (see [120])

χ1,0 =
ℜ

{
I∑

i=1

P∑
p=1

∑
γ

jp,i ,γ,0etot
p,i ,γ,0

}
I∑

i=1

P∑
p=1

∑
γ

etot
p,i ,γ,0etot

p,i ,γ,0

+ i

ℑ
{

I∑
i=1

ω1

ωi

P∑
p=1

∑
γ

jp,i ,γ,0etot
p,i ,γ,0

}
I∑

i=1

(
ω1

ωi

)2 P∑
p=1

∑
γ

etot
p,i ,γ,0etot

p,i ,γ,0

. (3.49)

Since free space is considered in the following examples, the contrast must have non-
negative real part and non-positive imaginary part. Such properties are enforced in the
following examples by simply setting the negative real part and the positive imaginary
part of the contrast to zero following each update of the contrast for both MF-CC-CSI and
Multi-Frequency Multiplicative Regularized Contrast Source Inversion (MF-MR-CSI). In
addition, the contrast sources and the contrast are initialized by Eq. (3.47) and Eq. (3.49),
respectively, for fair comparison.

3.2.2 NUMERICAL SIMULATION

In this subsection, both MF-CC-CSI and MF-MR-CSI are tested for comparison with a 2-
D benchmark problem — the “Austria” profile, which was also used in Subsection 3.1.4.
The objects consist of two disks and one ring. Let us first establish our coordinate system
such that the z-axis is parallel to the axis of the objects. The disks of radius 0.2 m are
centred at (−0.3, 0.6) m and (0.3, 0.6) m. The ring is centred at (0,−0.2) m, and it has an
exterior radius of 0.6 m and an inner radius of 0.3 m. We assume that the three cylinders
are made of same material. Two sets of dielectric parameters are considered, which are
εr = 3, σ = 5 mS/m, and εr = 10, σ = 10 mS/m, respectively. Since we assume a free
space environment, the contrast values are ∆εr = 2, ∆σ = 5 mS/m, and ∆εr = 9, ∆σ =
10 mS/m, respectively. The direct scattering problems are solved by a MATLAB-based
“MaxwellFDFD” package [35] with a fine and non-uniform grid size of λ

/
(45

p
εr) .

MEASUREMENT CONFIGURATION

In order to approach the realistic situation, we selected a measurement configuration
which is similar to the experiment conducted by the Remote Sensing and Microwave
Experiments Team at the Institut Fresnel, France [31]. An emitter is fixed on the circular
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rail, while a receiver is rotating with the arm around a vertical cylindrical target. The
targets rotated from 0◦ to 330◦ in steps of 30◦, and the receiver rotated from 60◦ to 300◦
in steps of 5◦. The distance from the emitter/receiver to the origin is 3 m. Simulation is
sequentially done in the absence/presence of the objects at five frequencies of 0.1 GHz,
0.2 GHz, 0.3 GHz, 0.4 GHz, and 0.5 GHz. Selection of the five frequencies considered
the dimension of the targets and the wave number of the EM wave in the interior of the
targets. Scattered field data are obtained by subtracting the incident field data, y inc

p , from

the total field data, y tot
p .

Although the incident fields in the inversion domain can be easily obtained in
numerical simulations, it is not available in real applications. Therefore, we consider
the modelling of the incident fields using the collected incident field data. We select
the approach reported in [120]. Specifically, the transmitting antenna is approximated
by line source parallel to the cylindrical objects. The incident field by the line source
is calibrated by multiplying a complex ratio which is calculated using only the value of
the field when the transmitting and the receiving antenna are in opposite directions.
For each frequency and source position, one complex calibration factor is determined.
To simulate the inevitable measurement error in real experiments, additive Gaussian
random noise, np , is added directly to the scattered field data. The power of the scattered
field data matrix is measured before adding noise. In addition, the noise is also added to
the total field data and the incident field data by y tot

p +np
/

2 and y inc
p −np

/
2 , respectively.

In doing so, the disturbance of the noise is reflected not only in the scattered field data
but also in the modelling of the incident fields. To appraise the inversion accuracy, let us
define the reconstruction error as follows

er r := ∥∥χ̂−χ∥∥
2

/∥∥χ∥∥
2 . (3.50)

where, χ̂ and χ are the reconstructed contrast and the exact contrast, respectively. Since
large values of frequency tolerates large reconstruction errors of the conductivity (see
Subsection 3.2.3 for more discussion), χ̂ and χ in Eq. (3.50) correspond to the highest
frequency to ensure that the imaginary part of the contrast error is not over amplified
in the evaluation of the inversion accuracy. In the following two cases, the inversion
domain is restricted to [−1.20, 1.20] × [−1.20, 1.20] m2 and discretized into uniform grids
with a size of 0.30×0.30 mm2.

INVERSION RESULTS

Case 1: ∆εr = 2, ∆σ = 5 mS/m Let us first consider the lower contrast case, i.e.,
∆εr = 2, ∆σ = 5 mS/m. MF-CC-CSI and MF-MR-CSI are used to process the TM-
and TE-polarized numerical data respectively with 2048 iterations. Different frequency
bands of 0.1-0.5 GHz and 0.3-0.5 GHz and different SNRs of 30 dB and 10 dB are tested.
Fig. 3.16 shows the reconstruction error curves in term of the iteration number, which
indicates obviously that MF-CC-CSI shows smaller reconstruction errors compared to
MF-MR-CSI. It is also easy to observe that noise indeed leads to a degradation of the
inversion accuracy (see the error curves of MF-CC-CSI shown in Figs. 3.16 (b) and
3.16 (d) when processing the 10 dB SNR data). As the frequency increases up to 0.3-0.5
GHz, the reconstruction error of MF-MR-CSI remains close to 1, indicating that MF-MR-
CSI completely fails to invert the data in this frequency band.
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Figure 3.16: Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration number in case 1 (∆εr =
2,∆σ= 5 mS/m) by processing the TM-polarized (a, c) and TE-polarized (b, d) data. Different frequency bands
of 0.1-0.5 GHz (a, b) and 0.3-0.5 GHz (c, d) and different SNRs of 30 dB and 10 dB are considered.

Case 2: ∆εr = 9, ∆σ = 10 mS/m In this case, the contrast increases to ∆εr = 9, ∆σ =
10 mS/m, which is supposed to be more challenging. We have also considered the
frequency band 0.1-0.5 GHz, and from Fig. 3.17 we observe that both MF-CC-CSI and
MF-MR-CSI show large reconstruction errors. However, the former obtained smaller and
more smoothly decreasing reconstruction error curves than the latter. Now let us remove
the high-frequency data and consider the frequency band 0.1-0.2 GHz, one can see from
the bottom two subfigures of Fig. 3.17 that the inversion accuracy of MF-CC-CSI has
been improved; The reconstruction error curve of MF-MR-CSI started to decrease when
processing the 0.1-0.2 GHz 30 dB synthetic data. Both of the two cases demonstrate that
MF-CC-CSI is a more reliable inversion method in comparison to MF-MR-CSI.
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Figure 3.17: Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration number in case 2 (∆εr =
9, ∆σ = 10 mS/m) by processing the TM-polarized (a, c) and TE-polarized (b, d) data. Different frequency
bands of 0.1-0.5 GHz (a, b) and 0.1-0.2 GHz (c, d) and different SNRs of 30 dB and 10 dB are considered.

3.2.3 EXPERIMENTAL DATA

CONFIGURATION

In this section, we consider the experiment carried out by Institut Fresnel in the year of
2005 [32]. In this experiment, the receiver stays in the azimuthal plane (xoy) and rotates
along two-thirds of a circle from 60◦ to 300◦ with the angular step being 1◦. The source
antenna stays at the fixed location (θ = 0◦). The targets are rotated to obtain different
illumination incidences. The distance from the transmitter and receiver to the centre of
the target domain is 1.67 m.
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To avoid the redundancy of our discussion, let us select the most complicated
configuration that corresponds to the datasets FoamTwinDielTM and FoamTwinDielTE.
The targets consist of one larger circular dielectric cylinder with a smaller one embedded
insider and a smaller adjacent one outside (see Fig. 5 (c) in [32]). Two smaller circular
dielectric cylinders have relative permittivity value of εr = 3±0.3 while the larger one is
of a relative permittivity εr = 1.45±0.15. In this configuration, the targets are rotated from
0◦ to 340◦ in steps of 20◦. 241×18 measurements are obtained at each frequency (in TE
polarization, only the component orthogonal to both the invariance axis of the cylinder
and the direction of illumination is measured). The measurement configuration is given
in Fig. 1 of [32]. To increase the inversion difficulty, let us assume the data in the low-
frequency band is not available anymore, and we only have the measurement data at 7
GHz, 8 GHz, 9 GHz, and 10 GHz.

INVERSION RESULTS

First, let us model the incident fields with the same approach as we did in the numerical
simulation. To reduce the computational burden, we restrict the inversion domain to
[−82.5, 82.5] × [−97.5, 67.5] mm2. The inversion domain is discretized with a grid size of
1.5 × 1.5 mm2. The multi-frequency datasets, FoamTwinDielTM and FoamTwinDielTE,
at 7 GHz, 8 GHz, 9 GHz, and 10 GHz were processed by MF-CC-CSI and MF-MR-CSI,
respectively. Both of them were terminated after 2048 iterations. In addition, we also did
a simulation to generate the perfect data of the same targets in the same configuration.
The only thing different is that the distance between antennas and the centre of the
inversion domain was shortened from 1.67 m to 0.20 m. Otherwise, the scattering
domain with the frequency up to 10 GHz is too huge for a standard desktop.

Fig. 3.18 (FoamTwinDielTM) and Fig. 3.19 (FoamTwinDielTE) show the inverted
results by processing the multi-frequency datasets (Line 1: MF-CC-CSI; Line 2: MF-MR-
CSI) and the noise-free synthetic data (Line 3: MF-CC-CSI; Line 4: MF-MR-CSI) at 7 GHz,
8 GHz, 9 GHz, and 10 GHz. One can see that MF-CC-CSI successfully reconstructed
the three cylinders with a good reconstruction accuracy from both the experimental
data and the noise-free perfect synthetic data, while MF-MR-CSI only obtained good
inversion results from the noise-free perfect TE-polarized synthetic data. The artefacts of
the inverted contrast conductivity (see the right figure in Line 3 of Fig. 3.18) is inevitable
and so far can only be explained as a reconstruction error to the best of our knowledge.
The higher the frequency is, the larger such artefacts will be. This is easy to understand
by noting that χi = ∆εr − i∆σ

/
ωi , i.e., a large value of the angular frequency, ωi ,

tolerates a large reconstruction error of the contrast conductivity, ∆σ. The synthetic
data enables us to obtain the reconstruction error curves of both methods, which are
shown in Fig. 3.20. The error curves show us the inversion performance of both methods
during the whole inversion process, demonstrating again the advantage of MF-CC-CSI
in more complicated scenarios. One can also see that the multiplicative regularization
can improve the inversion accuracy indeed when the contrast can be reconstructed to a
reasonable accuracy. The reason has been fully discussed in [112].

We finally remark that, for the multi-frequency data inversion, a good termination
condition is required for MF-CC-CSI as well. Otherwise, the inversion accuracy may
deteriorate after a number of iterations when the noise disturbance to the measurement
data is not negligible.
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Figure 3.18: Relative permittivity (left) and conductivity (right) of the inverted contrast by processing the multi-
frequency dataset FoamTwinDielTM (Line 1: MF-CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data
(Line 3: MF-CC-CSI; Line 4: MF-MR-CSI) at 7 GHz, 8 GHz, 9 GHz, and 10 GHz with 2048 iterations.
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Figure 3.19: Relative permittivity (left) and conductivity (right) of the inverted contrast by processing the multi-
frequency dataset FoamTwinDielTE (Line 1: MF-CC-CSI; Line 2: MF-MR-CSI) and its perfect synthetic data
(Line 3: MF-CC-CSI; Line 4: MF-MR-CSI) at 7 GHz, 8 GHz, 9 GHz, and 10 GHz with 2048 iterations.
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Figure 3.20: Inversion error curves of MF-CC-CSI and MF-MR-CSI in terms of iteration number in processing
the multi-frequency perfect synthetic data of the Fresnel datasets, FoamTwinDielTM and FoamTwinDielTE, at
7 GHz, 8 GHz, 9 GHz, and 10 GHz.

3.3 CONCLUSIONS

In this chapter, a novel error term, the cross-correlated error, and a novel inversion
method, the CC-CSI method, are proposed. The introduction of the novel error term in-
terrelates the state error and the data error. It is shown that CC-CSI can be implemented
without significantly increasing the computational burden. The proposed algorithm is
tested with a 2-D benchmark problem. Numerical simulations with both TM-polarized
wave and TE-polarized wave show that CC-CSI outperforms classical CSI and MR-CSI
in the aspects of robustness and inversion accuracy. Subsequently, a multi-frequency
version of CC-CSI, MF-CC-CSI, is proposed, which is able to process the multi-frequency
data simultaneously. Numerical and experimental results show that it is more robust
than the MF-MR-CSI method.

The proposed inversion approach is versatile, because 1) as Maxwell’s equations are
formulated within a 3-D FDFD scheme, it is straightforward to extend the proposed
inversion scheme to future 3-D inverse scattering problems; 2) one can benefit from the
cross-correlated error term as long as the classical cost functional is involved.
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To overcome the ill-posedness of the inverse scattering problem, regularization con-
straints are always considered in the formulation of the cost functional. For instance, the
state error cost functional in classical Contrast Source Inversion (CSI), the multiplicative
Total Variation (TV) constraint in Multiplicative Regularized Contrast Source Inversion
(MR-CSI), and the cross-correlated error cost functional in Cross-Correlated Contrast
Source Inversion (CC-CSI). In this chapter, the highly conductive inverse scattering
problem is considered and a linear model is proposed, which, to some extent, enables
us to overcome the ill-posedness by exploiting the joint sparsity of the contrast sources.
In comparison to non-linear iterative inversion methods, the proposed linear model
is computationally more efficient since a solution to the direct scattering problem is
not needed anymore. Specifically, the inverse scattering problem is first formulated
by means of Finite Difference Frequency Domain (FDFD) [35]. The cost functional is
formulated equivalently as the superposition of the data error and the sum-of-norm of
the contrast sources. For the highly conductive scatterers, the induced currents excited
by the incident fields only exist on the boundaries (the ElectroMagnetic (EM) field is
almost zero in the interior), therefore, the contrast source shows sparsity. Consequently,
the reconstruction methods in Compressive Sensing (CS) [126] can be used to solve the
linear model. If incident fields illuminate from different angles, more than one contrast
source is involved and more importantly the contrast sources are of joint sparsity, which
can be exploited by reformulating the problem to a Multiple Measurement Vectors
(MMV) [127] model (an extension of the Single Measurement Vector (SMV) model). A
spectral projected gradient method, referred to as Spectral Projected Gradient for `1-
norm minimization (SPGL1) [128, 129], is used to search the optimal solutions regarding

Parts of this chapter have been published in [42].
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the sum-of-norm constraint. Sketching the superposition of the intensity of the contrast
sources ends up with the profile of the targets.

In a nutshell, major differences of the proposed approach in comparison to other
existing methods are as follows:

1. In comparison to linear methods with a linear model of weak scattering as-
sumptions (such as Born/Rytov approximations), the proposed model is more
applicable since no weak scattering approximation has been made.

2. In comparison to linear methods with a linear model of no weak scattering ap-
proximations (such as Linear Sampling Method (LSM)), the joint sparse structure
of the contrast sources is enforced in the proposed approach by use of sum-of-
norm regularization constraint, resulting in higher resolving ability.

3. In comparison to the linear iterative algebra of multiple levels with a non-linear
model (such as CSI), calculation of the total fields for the proposed approach is
not needed, resulting in higher imaging efficiency.

4. In comparison to super-resolution methods based on the pseudo-spectrum anal-
ysis (such as Time-reversal MUltiple SIgnal Classification (MUSIC)), the proposed
approach does not need to estimate the scatterer number, nor does it need to care
about how the imaging domain is discretized.

We verified the validity of the proposed method with both 2-Dimensional (2-D)
synthetic data generated by a MATLAB-based “MaxwellFDFD” package [30], and the 2-
D Fresnel experimental data of both Transverse Magnetic (TM) wave and Transverse
Electric (TE) wave [31]. The remainder of the chapter is organized as follows: In
Subsection 4.1.1, the proposed linear model is introduced; Subsection 4.1.2, 4.1.3,
and 4.1.4 introduce the algorithms of solving the TM-polarized SMV model, the TM-
polarized MMV model, and the TE-polarized MMV model, respectively; Subsection 4.1.5
introduces a termination criterion based on the Cross-Validation (CV) technique; The
inverted results with synthetic data and experimental data are given in Section 4.2.
Finally, Section 4.3 ends this chapter with conclusions.

4.1 MMV LINEAR INVERSION MODEL

4.1.1 FORMULATION

First, let us formulate the inverse problem following the vector form of the FDFD scheme
in [35], and rewrite the data equations, Eqs. (2.35a) as follows

yp =Φ jp , p = 1,2,3, · · · ,P, (4.1)

where, Φ is the sensing matrix. Note that, in this chapter, we assume the measurement
configuration does not change for difference incident angles. In the numerical simula-
tions and experimental data inversion, some measurement data close to the transmitting
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antenna are omitted. However, the probing positions do not change and we represent
the different measurements with the same sensing matrix and treat them with a specific
trick in the inversion process. Normally, the state equations are also required which, for
inverse scattering problems of highly conductive scatterers, can be written as

e inc
p =−A−1ω2 jp , #–x ∈ ∂Γ, p = 1,2,3, · · · ,P. (4.2)

One feasible approach to solving the inverse scattering problem of highly conductive
scatterers is that one can first make an initial guess of ∂Γ, then find the contrast sources
by solving the state equations, Eqs. (4.2). Substitute the contrast sources into the
data equations, Eqs. (4.1), and the boundary ∂Γ can be optimized with Gauss-Newton
iteration method. A fast convergence can be achieved in this way. However, a priori
information on the positions and quantity of the scatterers is required, which has a
crucial influence on the inversion performance.

In the rest of this chapter, a simple linear model, referred to as the MMV linear
inversion model, is constructed and solved by a sum-of-norm optimization method.
In doing so, the nonlinear inverse scattering problem can be simplified and addressed
linearly without considering the state equations. Specifically, in order to exploit the joint
sparsity of the contrast sources, the linear data model, Eq. (4.1), is reformulated as a
linear inverse source model, given by

Y =ΦJ +U , (4.3)

where, J = [
j1, j2, · · · , jP

]
is the contrast source matrix, and Y = [

y1, y2, · · · , yP
]

is the
measurement data matrix, and U represents the additive complex measurement noise
matrix. It is referred to as an MMV model when P > 1. If there is only one source, i.e.,
P = 1, Eq. (4.3) reduces to a SMV model. In the following, a sum-of-norm of the contrast
source matrix is considered as a constraint for solving the linear inversion model.

4.1.2 SOLVING THE SMV MODEL: TM CASE

First, consider the single source configuration illuminated by a TM-polarized wave. The
inverse scattering problem is formulated as a Basis Pursuit Denoise (BPσ̃) problem [130]:

SMVTM BPσ̃ : minimize
∥∥ jp

∥∥
1 subject to

∥∥Φ jp − yp
∥∥

2 ≤ σ̃. (4.4)

where, σ̃ represents the noise level, and the contrast source is regularized with the `1-
norm constraint. Solving this problem means searching for a solution of jp which is of
the smallest `1-norm and meanwhile satisfies the inequality condition. Although the
BPσ̃ problem is straightforward for understanding the inverse problem, it is not easy to
solve directly even if we exactly know the value of σ̃. An equivalent problem that is much
simpler to solve is the Lasso (LSτ) problem [131], which is formulated as

SMVTM LSτ : minimize
∥∥Φ jp − yp

∥∥
2 subject to

∥∥ jp
∥∥

1 ≤ τ. (4.5)

The LSτ problem can be solved using a Spectral Projected Gradient (SPG) method that is
proposed based on convex optimization theory [132–134]. Details of the SPG method for
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SMV

11 BP220 00

Figure 4.1: Probing the Pareto curve: the update of parameter τ.

solving the LSτ problem (4.5) is given by [128, Algorithm 1], in which Pτ[·] is a projection
operator defined as

Pτ

[
jp

]
:=

{
argmin

x

∥∥ jp −x
∥∥

2 subject to ‖x‖1 ≤ τ
}

. (4.6)

Pτ[·] gives the projection of a vector jp onto the one-norm ball with radius τ.
In practice, τ is usually not available. For solving this problem, a Pareto curve is

defined in SPGL1 algorithm [128] by

φSMVTM (τ) = ∥∥Φ jp,τ− yp
∥∥

2 , (4.7)

where, jp,τ is the optimal solution to the LSτ problem. It is easy to find that the BPσ̃
problem is equivalent to the LSτ problem when φSMVTM (τ) = σ̃ is satisfied. The Pareto
curve is proved to be differentiable under some conditions, and the root of the nonlinear
equation φSMVTM (τ) = σ̃ can be reached by Newton iterations [128]

τh+1 = τh + σ̃−φSMVTM (τh)

φ′
SMVTM

(τh)
, (4.8)

where,

φ′
SMVTM

(τh+1) =−
∥∥ΦH rp,τh

∥∥∞∥∥rp,τh

∥∥
2

. (4.9)

where, rp,τh =Φ jp,τh − yp is the residual vector. The update of τ by probing the Pareto
curve is illustrated in Fig. 4.1. This procedure requires computing successively more
accurate solutions to LSτ. The Newton root-finding framework for solving the SMVTM

BPσ̃ problem is given in [129, Algorithm 1].
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4.1.3 SOLVING THE MMV MODEL: TM CASE

Let us now first consider the 2-D multi-source configuration with TM-polarized illumi-
nation. As all the contrast sources are focused on the boundary of the scatterers, the
contrast source matrix, J , shows a row-sparsity. Therefore, the inverse scattering prob-
lem with multi-source configurations can be formulated as an MMVTM BPσ̃ problem
regularized by a sum-of-norm constraint

MMVTM BPσ̃ : minimize κ(J ) subject to ‖ΦJ −Y ‖F ≤ σ̃, (4.10)

where, κ(J ) is the mixed (α,β)-norm defined as

‖J‖α,β :=
(

N∑
i=1

∥∥∥J T
i ,:

∥∥∥α
β

)1/α

, (4.11)

with Ji ,: denoting the i -th row of J , and ‖ · ‖β the conventional β-norm. ‖ · ‖F is the
Frobenius norm which is equivalent to the mixed (2,2)-norm ‖ ·‖2,2. In this problem, we
consider α= 1 and β = 2, which is a sum-of-norm constraint. Accordingly, the MMVTM

LSτ problem is reformulated as

MMVTM LSτ : minimize ‖ΦJ −Y ‖F subject to ‖J‖1,2 ≤ τ, (4.12)

and the Pareto curve for the MMV model is defined as

φMMVTM (τ) = ‖ΦJτ−Y ‖F , (4.13)

where, Jτ is the optimal solution to the LSτ problem (4.12).
According to [129, Theorem 2.2] and [135, Chapter 5], φMMVTM (τ) is continuously

differentiable and

φ′
MMVTM

(τh) =−
∥∥ΦH

(
ΦJτh −Y

)∥∥∞,2∥∥ΦJτh −Y
∥∥

F

, (4.14)

where, ‖ · ‖∞,2 is the dual norm of ‖ · ‖1,2 [129, Corollary 6.2]. Similarly, the root of the
nonlinear equation φMMVTM (τ) = σ̃ can also be reached by Newton iterations

τh+1 = τh + σ̃−φMMVTM (τh)

φ′
MMVTM

(τh)
. (4.15)

The projection operator Pτ[·] is replaced with orthogonal projection onto ‖ · ‖1,2 balls,
Pτ,MMVTM [·], which is defined as follows

Pτ,MMVTM [J ] :=
{

argmin
X

‖J −X ‖F subject to ‖X ‖1,2 ≤ τ
}

. (4.16)

We refer to [129, Theorem 6.3] for the implementation of the projection operator. The
MMVTM BPσ̃ problem is solved by Algorithm 2 and Algorithm 3 with the Pareto curve,
φMMVTM (τ), its derivative with respective to τ, φ′

MMVTM
(τ), and the projection operator,

Pτ,MMVTM [·], defined by Eq. (4.13), Eq. (4.14), and Eq. (4.16), respectively. Note that Tr
represents the trace of a matrix.
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Algorithm 2: Spectral projected gradient for MMVTM LSτ problem.

Input :Φ, Y , J , τ
Output: Jτ, Rτ

1 Set minimum and maximum step lengths 0 <αmin <αmax;
2 Set initial step length α0 ∈ [αmin,αmax] and sufficient descent parameter

γ ∈ (0,0.5);
3 Set an integer line search history length M ≥ 1;

4 J0 =Pτ,MMVTM [J ], R0 = Y −ΦJ0, G0 =−ΦH R0, `= 0;
5 begin

6 δ`←
∣∣∣‖R`‖F − Tr

{
Y H R`

}−τ‖G`‖∞,2
‖R`‖F

∣∣∣ . compute duality gap;

7 If δ` ≤ ε, then break;
8 α←α` . initial step length;
9 begin

10 J ←Pτ,MMVTM [J`−αG`] . projection;

11 R ← Y −ΦJ . update the corresponding residual;

12 if
∥∥∥R

∥∥∥2

F
≤ max

h∈[0,min{`,M−1}]
‖R`−h‖2

F +γℜ
{

Tr

{(
J − J`

)H
Gp,`

}}
then

13 break;
14 else
15 α←α/2;
16 end
17 end

18 J`+1 ← J , R`+1 ← R , G`+1 ←−ΦH R`+1 . update iterates;
19 ∆J ← J`+1 − J`, ∆G ←G`+1 −G`;

20 if ℜ{
Tr

{
∆J H∆G

}}≤ 0 then
21 α`+1 ←αmax . update the Barzilai-Borwein step length;
22 else

23 α`+1 ← min
{
αmax,max

[
αmin,

Tr
{
∆J H∆J

}
ℜ{Tr{∆J H∆G}}

]}
;

24 end
25 `← `+1;
26 end
27 return Jτ← J`, Rτ← R`;

4.1.4 SOLVING THE MMV MODEL: TE CASE

For the TE polarization case, the electric field is not a scalar anymore. Care must be
taken in the formulation of the MMV BPσ̃ problem. Considering the two components of
electric field, Ex and Ey , the inverse scattering problem for the TE case can be formulated
as

MMVTE BPσ̃ : minimize κTE(J ) subject to ρ (ΦJ −Y ) ≤ σ̃, (4.17)
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Algorithm 3: Newton root-finding framework.

Input :Φ, Y , σ̃
Output: Jσ̃

1 J0 ← 0, R0 ← Y , τ0 ← 0, h ← 0;
2 begin
3 If |‖Rh‖F − σ̃| ≤ ε, then break;
4 Solve the MMVTM LSτ problem for τh using Algorithm 2;
5 Rh ←ΦJh −Y ;

6 τh+1 ← τh + σ̃−φMMVTM (τh )

φ′
MMVTM

(τh )
.Newton update;

7 h ← h +1;
8 end
9 return Jσ̃← Jh ;

where,

κTE(J ) :=
N∑

n=1

∥∥∥[
J2n−1,: J2n,:

]T
∥∥∥

2
, (4.18)

and
ρ(·) := ‖·‖F , (4.19)

are gauge functions, since κTE and ρ satisfy the following properties [136]

1. κTE and ρ are nonnegative, κTE(X ) ≥ 0, ρ(X ) ≥ 0;

2. κTE and ρ are positive homogeneous, κTE(αX ) =ακTE(X ), ρ(αX ) =αρ(X );

3. κTE and ρ vanish at the origin, κTE(0) = 0, ρ(0) = 0;

4. κTE and ρ are convex.

The MMVTE LSτ problem is formulated accordingly as

MMVTE LSτ : minimize ρ (ΦJ −Y ) subject to κTE(J ) ≤ τ. (4.20)

Different from the TM case, the TE mixed-norm, κTE(J ), is defined by summing up the
`2-norms of N vectors. The elements of each vector come from two adjacent rows of
matrix J . The two adjacent rows represent the two spatially orthogonal components, x
and y , respectively, and each `2-norm is physically the square root of the power of all
the contrast sources induced by multiple transmitters on one discretized grid. Before
using Algorithm 2 and Algorithm 3 to solve the MMVTE LSτ problem, we must answer
the following questions:

1. Is the Pareto curve,φMMVTE (τ), strictly decreasing and continuously differentiable?

2. If so, what is the explicit expression of the derivative?

3. How to implement the projection operator, Pτ,MMVTE [·]?
In the following, Questions 1 and 2 are answered in the derivation of the dual, G(Z ,λ),
and Question 3 is answered in the introduction of the projection operator, Pτ,MMVTE [·].
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Derivation of the dual Let us rewrite Eq. (4.20) in terms of J and an explicit residual
term R as follows

minimize
J ,R

ρ(R) subject to ΦJ +R = Y , κTE(J ) ≤ τ. (4.21)

The dual to this equivalent problem is given by [137, Chapter 5]

maximize
Z ,λ

G(Z ,λ) subject to λ≥ 0, (4.22)

where Z ∈ C(2M)×P and λ ∈ C are dual variables, and G is the Lagrange dual function,
given by

G(Z ,λ) := inf
J ,R

{
ρ(R)−Tr

{
Z H (ΦJ +R −Y )

}+λ (κTE(J )−τ)
}

. (4.23)

By separability of the infimum over J and R we can rewrite G in terms of two separate
suprema,

G(Z ,λ) = Tr
{

Y H Z
}−τλ−sup

R

{
Tr

{
Z H R

}−ρ(R)
}−sup

J

{
Tr

{
Z H (ΦJ )

}−λκTE(J )
}

. (4.24)

It is easy to see that the first supremum is the conjugate function of ρ and the second
supremum is the conjugate function of κTE [137, Chapter 3.3], by noting that

Tr
{

Z H R
}= vec{Z }H vec{R}, ρ(R) = ρ(vec{R}), (4.25)

and
Tr

{
Z H (ΦJ )

}= vec
{

Z̃
}H

vec{J }, κTE(J ) = κTE(vec{J }), (4.26)

respectively. Here, vec{·} is the vectorization of a matrix, Z̃ = ΦH Z ∈ C(2N )×P , and
κTE (vec{J }) is defined equivalently as κTE(J ) in Eq. (4.18). Therefore, we have

Tr
{

Z H R
}−ρ(R) =

{
0 ρo(Z ) ≤ 1

∞ otherwise
, (4.27)

and

Tr
{

Z H (ΦJ )
}−λκTE(J ) =

{
0 κo

TE(Z̃ ) ≤λ
∞ otherwise

, (4.28)

where, the polar of ρ and κTE are defined by

ρo(Z ) := sup
R

{
Tr

{
Z H R

}∣∣ρ(R) ≤ 1
}

, (4.29)

and
κo

TE(Z̃ ) := sup
J

{
Tr

{
Z H (ΦJ )

}∣∣κTE(J ) ≤λ}
, (4.30)

respectively. If the gauge function is a norm, the polar reduces to the dual norm [137,
Section 3.3.1], i.e., ρo(Z ) = ‖Z ‖F and

κo
TE(Z̃ ) =

(
N∑

n=1

∥∥[
Z̃2n−1,: Z̃2n,:

]∥∥∞
2

)1/∞
= max

{∥∥[
Z̃2n−1,: Z̃2n,:

]∥∥
2

∣∣n = 1,2,3, · · · , N
}

(4.31)
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(for more details see [129, Corollary 6.2]). Substitution of (4.27) and (4.28) into (4.24)
yields

maximize
Z ,λ

Tr
{

Y H Z
}−τλ subject to ρo(Z ) ≤ 1, κo

TE(Z̃ ) ≤λ. (4.32)

In the case ρ(·) = ‖·‖F , the dual variable Z can be easily derived from

sup
R

Tr
{

Z H R
}−‖R‖F = 0, if ‖Z ‖F ≤ 1, (4.33)

which is Z = R
‖R‖F

. To derive the optimal λ, we can observe from Eq. (4.32) that as long

as τ > 0, λ must be at its lower bound κo
TE(Z̃ ), otherwise one can increase the objective

Tr
{

Y H Z
}−τλ. Therefore, we obtain

λ= κo
TE

(
ΦH R

)
‖R‖F

. (4.34)

According to [135, Theorem 5.2], we know that, on the open interval τ ∈ (0,τ0), where

τ0 = min

{
τ≥ 0

∣∣∣∣φMMVTE (τ) = min
J

ρ(R)

}
,

the Pareto curve,

φMMVTE (τ) = ρ(R)
∣∣

J=Jτ
, (4.35)

is strictly decreasing and continuously differentiable with the derivative given by

φ′
MMVTE

(τ) =−λ=−κ
o
TE

(
ΦH R

)
‖R‖F

. (4.36)

Projection operator The projection operator Pτ[·] is replaced with orthogonal projec-
tion onto κTE(·) balls, Pτ,MMVTE [·], which is defined as follows

Pτ,MMVTE [J ] :=
{

argmin
X

‖J −X ‖F subject to κTE(X ) ≤ τ
}

. (4.37)

With a simple matrix transformation of J n,: =
[

J2n−1,: J2n,:
]

and X n,: =
[

X2n−1,: X2n,:
]
, we

can rewrite Eq. (4.37) as follows{
argmin

X

∥∥∥J −X
∥∥∥

F
subject to

∥∥∥X
∥∥∥

1,2
≤ τ

}
=Pτ,MMVTM

[
J
]

. (4.38)

In doing so, the projection operator in TE case satisfies [129, Theorem 6.3].
Now the MMVTE BPσ̃ problem can be solved by Algorithm 2 and Algorithm 3

with the Pareto curve, φMMVTE (τ), its derivative with respective to τ, φ′
MMVTE

(τ), and
the projection operator, Pτ,MMVTE [·], defined by Eq. (4.35), Eq. (4.36), and Eq. (4.38),
respectively.



4

74 4. A LINEAR MODEL FOR INVERTING HIGHLY CONDUCTIVE SCATTERERS

4.1.5 CV-BASED MODIFIED SPGL1

In real applications, the noise level, i.e., the parameter σ̃, is generally unknown, which
means the termination condition,φMMV(τ) = σ̃, does not work anymore. In order to deal
with this problem, we modified the SPGL1 method based on the CV technique [138, 139],
in which σ̃ is set 0 and the iteration is terminated using the CV technique. In doing so, the
problem of estimating the noise level, i.e., the parameter σ̃, can be well circumvented.

CV is a statistical technique that separates a data-set into a training (estimation) set
and a testing (CV) set. The training set is used to construct the model and the testing
set is used to adjust the model order so that the noise is not over-fitted. The basic idea
behind this technique is to sacrifice a small number of measurements in exchange for
prior knowledge. Specifically, when CV is utilized in SPGL1 method, we separate the
original scattering matrix to a reconstruction matrix, Φp,rec ∈ CQrec×N , and a CV matrix,
Φp,CV ∈ CQCV×N with Q = Qrec +QCV. The measurement vectors, yp , are also separated
accordingly to a group of reconstruction measurement vectors, yp,rec ∈ CQrec , and a
group of CV measurement vectors, yp,CV ∈ CQCV . The reconstruction residual and the
CV residual are defined as

rrec =
(

P∑
p=1

∥∥yp,rec −Φp,rec jp
∥∥2

2

)1/2

(4.39)

and

rCV =
(

P∑
p=1

∥∥yp,CV −Φp,CV jp
∥∥2

2

)1/2

, (4.40)

respectively. In doing so, every iteration can be viewed as two separate parts: re-
constructing the contrast sources by SPGL1 and evaluating the outcome by the CV
technique. The trend of the CV residual in iteration behaves abruptly different (turns
from decreasing to increasing) comparing to that of reconstruction residual, as soon as
the reconstructed signal starts to overfit the noise. The reconstructed contrast sources
are selected as the output corresponding to the smallest CV residual. To find the smallest
CV residual, we consider an alternative termination condition which is given by

NIter > Nopt +∆N , (4.41)

where, NIter is the current iteration number, Nopt is the iteration index corresponding
to the smallest CV residual — the optimal solution. The idea behind this criterion is
that the CV residual is identified as the smallest one if the CV residual keeps increasing
monotonously for ∆N iterations. In the following experimental examples, this termina-
tion condition works well with ∆N = 30.

Once the normalized contrast sources are obtained, one can achieve the shape of the
scatterers defined as

γMMVTM,n =
P∑

p=1

∣∣ jp,n
∣∣2 , n = 1,2,3, · · · , N , (4.42)

or

γMMVTE,n =
P∑

p=1

(∣∣ jp,2n−1
∣∣2 + ∣∣ jp,2n

∣∣2
)

, n = 1,2,3, · · · , N , (4.43)
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where jp,n , γMMVTM,n , and γMMVTE,n represent the n-th element of the vectors jp ,
γMMVTM , and γMMVTE , respectively.

4.2 SYNTHETIC AND EXPERIMENTAL DATA INVERSION

In this section, the proposed method is tested with both synthetic data and experimental
data. In the meanwhile, we have also processed the same data using LSM for compari-
son. Since the background of the experiments is free space, LSM consists in solving the
integral equations of the indicator functions (see Fig. 2.12)∫

Γ1

E3
(

#–x r, #–x t
)

g3
(

#–x t
∣∣#–z

)
d #–x t = E3,3

(
#–x r

∣∣#–z
)

, (4.44)

and ∫
Γ1

[
E1 0
0 E2

](
#–x r, #–x t

)[g1,1 g1,2

g2,1 g2,2

](
#–x t

∣∣#–z
)

d #–x t =
[

E1,1 E1,2

E2,1 E2,2

](
#–x r

∣∣#–z
)

, (4.45)

for the TM and TE cases, respectively, where, E1
(

#–x r, #–x t
)
, E2

(
#–x r, #–x t

)
, and E3

(
#–x r, #–x t

)
represent x-, y-, and z-components of the scattered field probed at #–x r corresponding
to the transmitter at #–x t, respectively; #–z is the sampling point in the inversion domain;
Ei , j

(
#–x r

∣∣#–z
)

is i -th component of the electric field at #–x r generated by an ideal electric
dipole located at #–z with the polarization vector parallel to x j -axis, which are given by

E3,3 = 1

4
ωµ0H (1)

0 (−kR), (4.46a)

E1,1 = −k

4ωε0

(
H (1)

1 (−kR)

R
+ kx2

2

R2 H (1)
2 (−kR)

)
, (4.46b)

E1,2 = k2x1x2

4ωε0R2 H (1)
2 (−kR), (4.46c)

E2,1 = k2x1x2

4ωε0R2 H (1)
2 (−kR), (4.46d)

E2,2 = −k

4ωε0

(
H (1)

1 (−kR)

R
+ kx2

1

R2 H (1)
2 (−kR)

)
, (4.46e)

where, R = ∥∥#–z − #–x r
∥∥

2 (See Appendix B for the derivation). Eq. (4.44) and Eq. (4.45) can
be reformulated as a set of linear systems of equations

Y g #–z = f #–z , (4.47)

where, Y is the measurement data matrix, g #–z is the indicator function of the sampling
point #–z in the form of a column vector, f #–z is the right side of Eq. (4.44) in the form of a
column vector. Following the same approach to solving Eq. (4.47) in [13, 140], the shape
of the scatterers is defined by

γLSM( #–z ) = 1
/∥∥g #–z

∥∥2 , (4.48)
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where,
∥∥g #–z

∥∥2 is given by

‖g #–z ‖2 =
D∑

d=1

(
sd

s2
d +a2

)2 ∣∣uH
d f #–z

∣∣2
, (4.49)

where, sd represents the singular value of the data matrix, Y , corresponding to the
singular vector ud , D = min{P,Q}, and a = 0.01×max

d
{sd }.

We have also considered, in the TM cases, the improved LSM proposed in [106] in the
comparison of the proposed method and LSM. The indicator function of the improved
LSM is defined as

γLSM,I ( #–z ) =

 I∏
i=1

∥∥∥g x
i , #–z

∥∥∥2

∥∥g #–z

∥∥2

∥∥∥g y
i , #–z

∥∥∥2

∥∥g #–z

∥∥2


1

2I

, I = ka, (4.50)

where, a is the radius of the smallest ball that covers the targets, the power 1
2I is

a normalization factor, and g x
i , #–z

and g y
i , #–z

are obtained by replacing E3,3
(

#–z , #–x r
)

in

Eq. (4.44) with ϕx
i

(
#–z , #–x r

)
and ϕy

i

(
#–z , #–x r

)
, respectively, the formulae of which are

ϕx
i = 1

4
ωµ0H (1)

i (−kR)cos
(
i (φr −φs)

)
, (4.51a)

ϕ
y
i = 1

4
ωµ0H (1)

i (−kR)sin
(
i (φr −φs)

)
, (4.51b)

where, φr and φs are the angular components of the polar coordinates of #–z and #–x r,
respectively. It is worth mentioning that both the contrast sources, jp , and the indicator
function, g #–x , are proportional to the amplitude of the electric field. According to the
definition in Eq. (4.42), Eq. (4.43), and Eq. (4.48), γMMV and γLSM are proportional and
inversely proportional to the power of the electric field, respectively. Therefore, the dB
scaling used in the following examples is defined as

γdB = 10× log10

(
γ

max
{
γ

})
. (4.52)

4.2.1 SYNTHETIC DATA IMAGING

In this subsection, the proposed method is first tested using synthetic data. The
transmitting antenna is simulated for simplicity with an ideal electric dipole (TM-
polarization case) and an ideal magnetic dipole (TE-polarization case). Coordinate
system is established such that the dielectric parameters are variable along the x- and
y-axes, but invariable along z-axis. The transmitting antenna rotates with a step of 10◦
on a circular orbit of 3 m radius centring at the origin (0,0). The receiving positions are
taken on the same orbit with a step of 5◦ without any position close than 30◦ from the
transmitting antenna. The measurement configuration of Simulation 1 and 2 is shown in
Fig. 4.2, in which the selection of CV measurements and reconstruction measurements
is illustrated. Empirically, an arc length ≥λ/3 is a good selection. The number of the CV



4.2. SYNTHETIC AND EXPERIMENTAL DATA INVERSION

4

77

-3 -2 -1 0 1 2 3
x/m

-3

-2

-1

0

1

2

3

y
/
m

Current Transmitter
Rec. Receiver
CV Receiver
Next Transmitter

Figure 4.2: Measurement configuration of Simulations 1 and 2.

receivers on each arc depends on the density of the receiver positions, and the total CV
receiver number is around 20% of the total measurement number [139]. The operating
frequency is 500 MHz for both configurations. Two configurations of different objects are
considered. One is combined with two circular metallic cylinders and the other one is a
metallic cylinder with a “crescent-shaped” cross section. The radius of the circular cross
section is 0.2 m (=λ/3), and the centres of the two circles are (−0.45, 0.6) and (0.45, 0.6),
respectively. The crescent is the subtraction of two circles of radius 0.6 m (= λ) centring
at (0, 0) and (0.4, 0), respectively. See Fig. 4.3 (a) and Fig. 4.5 (a) for their true geometry.
The EM direct scattering problem is solved by a MATLAB-based 3-Dimensional (3-D)
FDFD package “MaxwellFDFD” [30]. The technique of non-uniform staggered grids is
used to reduce the computational burden, while for inverting the measurement data,
we consider uniform discretization such that an inverse crime is circumvented. In the
forward solver, we consider a coarse grid size of λ/(15

p
εr) and the computational error

brought by the coarse discretization plays the role of the noise disturbance. The data
for inversion is obtained by subtracting the incident field from the total field. Periodic
Boundary Conditions (PBCs) are imposed on the design of the FDFD stiffness matrix in
order to simulate the 2-D configuration. Perfectly Matched Layers (PMLs) are used to
simulate an anechoic chamber environment.

SIMULATION 1
In the first simulation, two identical circular metallic cylinders are considered. The
radius of the circular cross section is 0.2 m (= λ/3), and the centres of the two circles
are (−0.45, 0.6) and (0.45, 0.6), respectively. The true size and positions are shown in
Fig. 4.3 (a). To reduce the computational cost, we restrict the inversion domain to [−1.0,
1.0] × [−0.4, 1.6] m2. The inversion domain is uniformly discretized with a grid size of
0.01 m (= λ/60). Let us first consider the TM-polarized data. The residual curves are
shown in Fig. 4.4 (a). The trend of the residual curves is like staircases, and each step
corresponds to one update of the parameter τ. The CV residual starts to increase after 38
iterations, and ∆N = 30 more iterations are performed before termination. The solution
of the minimum CV residual is the optimal solution. The scatterer shape reconstructed
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Figure 4.3: Scatterer geometry and its reconstructed shapes in Simulation 1. (a) Scatterer geometry; Recon-
structed shape by processing the TM-polarized data with MMV (b), LSM (c), and the improved LSM with
I = 7 (d), respectively. Reconstructed shape by processing the TE-polarized data with MMV (e) and LSM (f),
respectively.
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Figure 4.4: Reconstruction residual and CV residual curves of Simulation 1. (a) TM-polarized data; (b) TE-
polarized data.

by MMV, LSM, and the improved LSM with I = 6 is shown in Figs. 4.3 (b), 4.3 (c) and
4.3 (d), respectively. By comparison of Figs. 4.3 (c) and 4.3 (d), it is observed that
the artefacts between the two circular cylinders are suppressed by the improved LSM.
However, the average amplitude of the sidelobes in the region of no targets increases
from −20 dB to −15 dB. From Fig. 4.3 (b) we observe that the reconstructed boundary
of the two identical circular cylinders shows higher resolution and lower sidelobes
in comparison to 4.3(c) and (d), indicating that the resolving ability of the proposed
method is better than LSM. Now let us process the TE-polarized data. Fig. 4.4 (b) gives
the residual curves, and Figs. 4.3 (e) and 4.3 (f) show the scatterer shape reconstructed
by MMV and LSM, respectively, from which we demonstrate again that in the aspect of
resolving ability the proposed method outperforms both LSM and the improved LSM.

SIMULATION 2
To further test the inversion performance of the proposed method, we consider in the
second simulation a metallic cylinder with a “crescent-shaped” cross section. The exact
scatterer geometry is shown in Fig. 4.5 (a). We restrict the inversion domain to [−1.0, 1.0]
× [−1.0, 1.0] m2, in which the target is fully covered. The inversion domain is uniformly
discretized with a grid size of 0.01 m (= λ/60). First, we process the TM-polarized data
by MMV and LSM, respectively. Figs. 4.5 (b), 4.5 (c), and 4.5 (d) show the reconstructed
shape by MMV, LSM, and the improved LSM, respectively, from which we can see the
boundary at the left side is well reconstructed by the three methods, while the arc at the
right side shows more artefacts in both Fig. 4.5 (b) and Fig. 4.5 (c), because the arc at
the right side is concave and therefore the multi-path scattering is more serious than
the boundary at the left side which is convex. Comparison of Figs. 4.5 (c) and 4.5 (d)
demonstrates again the suppression to artefacts brought by the improved LSM is at the
cost of increasing the average level of image noise. The scatterer shape reconstructed by
processing the TE-polarized data with MMV and LSM is shown in Figs. 4.5 (e) and 4.5 (f),
respectively, from which we see the same phenomenon in the discussion of Figs. 4.3 (e)
and 4.3 (f). From the results, we demonstrate again that the proposed method shows
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Figure 4.5: Scatterer geometry and its reconstructed shapes in Simulation 2. (a) Scatterer geometry; Recon-
structed shape by processing the TM-polarized data with MMV (b), LSM (c), and the improved LSM with
I = 6 (d), respectively. Reconstructed shape by processing the TE-polarized data with MMV (e) and LSM (f),
respectively.
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Figure 4.6: Reconstruction residual and CV residual curves of Simulation 2. (a) TM-polarized data; (b) TE-
polarized data.

Table 4.1: Running times of the two numerical examples.

Example Polarization MMV [s] LSM [s]
Improved
LSM [s]

1
TM 16.1 0.0404 0.6900
TE 80.1 0.0999 /

2
TM 14.7 0.0429 1.2583
TE 59.2 0.0877 /

a higher resolving ability than both LSM and the improved LSM. The corresponding
residual curves of the TM and TE cases are given in Figs. 4.6 (a) and 4.6 (b), respectively.

COMPUTATION TIME

Since the sensing matrices can be computed (or analytically given for a homogeneous
background) and stored beforehand, the MMV-based linear method only involves a
number of matrix-vector multiplications. The codes for reconstructing the contrast
sources are written in MATLAB language. We ran the codes on a desktop with one
Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz, and we did not use parallel computing.
Table 4.1 lists the running times of the proposed method, LSM, and the improved LSM in
the two simulations. As one can see that the computation time of the proposed method
is hundreds of times longer than that of LSM and tens of times longer than the improved
LSM. The most time-consuming part of the proposed method is the matrix-vector
multiplication in each iteration, while LSM only calls Singular Value Decomposition
(SVD) to the measurement data matrix for once. However, the running times of the
proposed method are still acceptable in view of the gain of resolving ability.
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Figure 4.7: Measurement configuration of the Fresnel data-sets: rectTM_cent, uTM_shaped, and rectTE_8f.

4.2.2 EXPERIMENTAL DATA IMAGING

In this subsection, we applied our method to the experimental data provided by the
Remote Sensing and Microwave Experiments Team at the Institut Fresnel, France, using
an HP8530 network analyzer [31]. The experimental setup consists of a large anechoic
chamber, 14.50 m long, 6.50 m wide and 6.50 m high, with a set of three positioners to ad-
just antennas or target positions. Fig. 4.7 gives the measurement configuration, in which
the selection of CV measurements and reconstruction measurements is illustrated. The
time dependence in this experiment is exp(iωt ). Therefore, after subtracting the incident
field from the total field, the measurement data can be directly used for inversion. The
targets we consider here are a rectangular metallic cylinder and a “U-shaped” metallic
cylinder, which are shown in Figs. 4.8 (a) and 4.8 (b). Three data-sets are processed:
rectTM_cent, uTM_shaped, and rectTE_8f.

First, let us process the TM-polarized data-set: rectTM_cent at 16 GHz. The inversion
domain for imaging the rectangular metallic cylinder is restricted to [−50, 50] × [−50, 50]
mm2, and the inversion domain is uniformly discretized with a grid size of 0.5 mm (=
λ/37.5). Figs. 4.9 (a), 4.9 (b), and 4.9 (c) show the scatterer shape reconstructed by MMV,
LSM, and the improved LSM, respectively, from which we observe that Fig. 4.9 (a) shows
a higher resolution and less artefacts than Figs. 4.9 (b) and 4.9 (c). Now let us consider the
“U-shaped” metallic cylinder. The inversion domain is restricted to [−100, 100] × [−100,
100] mm2, and the inversion domain is uniformly discretized with a grid size of 1 mm
(= λ/37.5). Figs. 4.10 (a), 4.10 (b), and 4.10 (c) give the scatterer shape reconstructed by
MMV, LSM, and the improved LSM, respectively. In this experiment, the artefacts inside
the “U-shaped” cylinder is better suppressed by the improved LSM, while the increase of
the noise level is obvious as well (from −18 dB of Fig. 4.10 (b) to −13 dB of Fig. 4.10 (c)).
The boundary of the “U-shaped” cylinder is well reconstructed by the proposed method,
while the occurrence of artefacts is inevitable in this case. Finally, let us process the TE-
polarized data-set: rectTE_8f at 16 GHz. The scatterer shape reconstructed by MMV
and LSM is shown in Figs. 4.11 (a) and 4.11 (b), respectively. It is easy to see that the
boundary of the rectangular metallic cylinder is not distinguishable in Fig. 4.11 (b), while
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Figure 4.8: (a) The rectangular highly conductive cylinder; (b) The “U-shaped” highly conductive cylinder; (c)
The dielectric object combined by two identical circular cylinders.
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Figure 4.9: Scatterer shape reconstructed by processing the TM-polarized data-set: rectTM_cent at 16 GHz with
MMV (a), LSM (b), and the improved LSM with I = 9 (c), respectively.
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Figure 4.10: Scatterer shape reconstructed by processing the TM-polarized data-set: uTM_shaped at 8 GHz
with MMV (a), LSM (b), and the improved LSM with I = 8 (c), respectively.
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Figure 4.11: Scatterer shape reconstructed by processing the TE-polarized data-set: rectTE_8f at 16 GHz with
MMV (a) and LSM (b), respectively.
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Figure 4.12: Reconstruction residual curve and CV residual curve of the Fresnel data-sets: rectTM_cent (a),
uTM_shaped (b), and rectTE_8f (c), at 16 GHz, 8 GHz, and 16 GHz, respectively.

in Fig. 4.11 (a) the rectangular boundary can be well distinguished, demonstrating the
higher resolving ability of our method in comparison to LSM. Figs. 4.12 (a), 4.12 (b), and
4.12 (c) show the residual curves of the proposed method in the three experiments.

4.3 CONCLUSIONS

In this chapter, a linear model based on the MMV model is proposed for addressing the
nonlinear inverse scattering problem of highly conductive objects. The sum-of-norm
of the contrast source matrix is used for the first time as a regularization constraint. A
CV-based modified SPGL1 method is proposed for solving the proposed model, which
circumvents the noise level estimation. Numerical results and experimental results
demonstrate that the proposed method is able to reconstruct the boundary of the highly
conductively targets with a higher resolution than both LSM and the improved LSM,
even in some cases where the latter two methods fail to reconstruct the correct shape.
The running time of the proposed method is hundreds of times longer than LSM and
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tens of times longer than the improved LSM, but it is still acceptable and promising
in view of the gain of resolving performance and the linear relationship between the
computational complexity and the size of the inversion domain. A drawback of the
proposed method is that it might fail in the presence of not conductive scatterers. One
way of overcoming this limitation will be discussed later in Chapter 6.



5
LINEARIZED 3-D CONTRAST

SOURCE INVERSION

Although the 3-Dimensional (3-D) inverse scattering problem is the most close-to-
life model, it generally requires a huge amount of computational resources to achieve
a valuable solution. In this chapter, a linearized 3-D ElectroMagnetic (EM) contrast
source inversion method is proposed and successfully applied to two typical half-space
configurations: 1) Ground Penetrating Radar (GPR) imaging and 2) Through-the-Wall
Imaging (TWI). Specifically, the linear method proposed in Chapter 4 is extended to 3-D
configuration. Then the total fields are calculated with the estimated contrast sources.
Finally, an estimation of the contrast can be obtained by minimizing a cost functional
which is a superposition of the data error and the state error. The contrast is estimated
as the least square solution to the state equations, and the range constraints on the real
part and imaginary part of the contrast are considered as a priori information.

The proposed method is capable to reconstruct not only the shape but also a coarse
estimation of the dielectric parameters of the objects. Since the total fields in the inver-
sion domain are updated only once, it is far more efficient than the nonlinear iterative
inversion methods, e.g., Contrast Source Inversion (CSI) and Born Iterative Method
(BIM). We have applied the proposed method to two typical half-space configurations:
GPR imaging and TWI, and successfully obtained a coarse estimation of the contrast.
The EM direct scattering problems are solved by a 3-D Finite Difference Frequency
Domain (FDFD) solver — “MaxwellFDFD”, and its companion C program — “FD3D”
[30]. Moreover, we have also discussed the performance of the proposed linearized
inversion method when the dielectric parameters of the background are not exactly
known. It is worth noting that a similar strategy was considered by Caorsi et al. [142–144].
The limitations of this strategy were discussed by Chew, Bolomey et al. [145]. However,

Parts of this chapter have been published in [141].
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Figure 5.1: General geometry of 3-D inverse scattering problems. Sources and receivers are located on the
surface S . Objects are located in the inversion region D.

the exploitation of the joint information of the equivalent currents via the sum-of-norm
constraint term distinguishes our method from their strategy.

This chapter is organized as follows: In Section 5.1, the Multiple Measurement Vec-
tors (MMV) linear method proposed in Chapter 4 is extended to 3-D inverse problems.
The inversion of the contrast is introduced in Section 5.2. The inverted results of the
numerical experiments of GPR imaging and TWI are given in Section 5.3 with the exact
and an inexact background model. Finally, Section 5.4 summarizes this chapter.

5.1 EXTENSION OF THE MMV LINEAR METHOD TO 3-D CASES

5.1.1 FORMULATION

We consider a scattering configuration as depicted in Fig. 5.1, in which sources and
receivers are located on the surface S , and the objects are located in the background
medium B ⊂ R3. The region D ⊂ B is the imaging domain which contains the objects.
The sources are denoted by the subscript p in which p ∈ {1,2,3...,P }, and the receivers
are denoted by the subscript q in which q ∈ {1,2,3, ...,Q}. The electric field corresponding
to each source is measured by all the receivers.

Considering a constant permeability µ0, we can write the electric field equation in
frequency-domain based on Maxwell’s equations. By recalling Eq. (4.17), the formulation
of the inverse scattering problem for the 3-D case can be formulated to a MMV3D Basis
Pursuit Denoise (BPσ̃) problem as follows

MMV3D BPσ̃ : minimize κ3D(J ) subject to ρ (Φ · J −Y ) ≤ σ̃, (5.1)

where,

κ3D(J ) :=
N∑

n=1

∥∥∥[
J2n−2,: J2n−1,: J2n,:

]T
∥∥∥

2
. (5.2)
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The equivalent MMV3D Lasso (LSτ) problem is formulated accordingly as follows

MMV3D LSτ : minimize ρ (Φ · J −Y ) subject to κ3D(J ) ≤ τ. (5.3)

5.1.2 DERIVATION OF THE DUAL

To avoid redundancy, we refer to Subsection 4.1.4 for most of the derivation of the dual
of the 3-D inverse problem. The polar of κ3D is given as follows

κo
3D(Z̃ ) =

(
N∑

n=1

∥∥[
Z̃2n−2,: Z̃2n−1,: Z̃2n,:

]∥∥∞
2

)1/∞

= max
{∥∥[

Z̃2n−2,: Z̃2n−1,: Z̃2n,:
]∥∥

2

∣∣n = 1,2,3, · · · , N
}

.

(5.4)

The derivative of the Pareto curve is

φ′
MMV3D

(τ) =−κ
o
3D

(
ΦH ·R

)
‖R‖F

. (5.5)

5.1.3 PROJECTION OPERATOR

The projection operator Pτ[·] is replaced with orthogonal projection onto κ3D(·) balls,
Pτ,MMV3D [·], which is defined as follows

Pτ,MMV3D [J ] :=
{

argmin
X

‖J −X ‖F subject to κ3D(X ) ≤ τ
}

. (5.6)

With a simple matrix transformation of

J n,: =
[

J2n−2,: J2n−1,: J2n,:
]

and

X n,: =
[

X2n−2,: X2n−1,: X2n,:
]

,

we can rewrite Eq. (5.6) as follows{
argmin

X

∥∥∥J −X
∥∥∥

F
subject to

∥∥∥X
∥∥∥

1,2
≤ τ

}
=Pτ,MMVTM

[
J
]

. (5.7)

In doing so, the projection operator in 3-D case satisfies [129, Theorem 6.3].

5.2 INVERTING THE CONTRAST

Assuming we have reconstructed the contrast sources, the scattered fields can be
calculated. Then if we know the incident fields, it is easy to obtain the total fields. In
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order to solve the contrast, we define the data equations and the state equations as
follows

fp =Φp êtot
p χ, p = 1,2,3, · · · ,P ; (5.8a)

ĵp = êtot
p χ, p = 1,2,3, · · · ,P. (5.8b)

The contrast can be obtained by iteratively minimizing a cost functional, C(χ), which
is defined as the sum of the data error and the state error

minimize
χ

C(χ) :=
∥∥ f −Ψχ∥∥2

2∥∥ f
∥∥2

2

+

∥∥∥ ĵ − êtot
p χ

∥∥∥2

2∥∥ê inc
p χ

∥∥2
2

, (5.9)

where
f = [

f T
1 f T

2 . . . f T
P

]T
, (5.10)

j = [
j T

1 j T
2 . . . j T

P

]T
, (5.11)

and

Ψ=


Φ1D êtot

1

Φ2D êtot
2

...
ΦP D êtot

P

 . (5.12)

Specifically, the contrast is updated via

χ` =χ`−1 +α`νχ,`, (5.13)

where, αn is a constant, and the update directions, νχ,`, are chosen to be the Polak-
Ribière conjugate gradient directions given by

νχ,0 = 0

νχ,` = gχ,`+
〈

gχ,`, gχ,`−gχ,`−1
〉

2∥∥gχ,`−1
∥∥2

2

νχ,`−1 `≥ 1,
(5.14)

where, gχ,` is the gradient of the contrast cost functional C(χ) given by

gχ,` =
−2ΨH

(
f −Ψχ`−1

)∥∥ f
∥∥2

2

+
−2êtot

p

(
ĵ − êtot

p χ`−1

)
∥∥ê inc

p χ`−1
∥∥2

2

. (5.15)

Here, 〈·, ·〉2 represents the inner product of two vectors, (·)H represents the conjugate
transpose of a matrix. The step size αn is determined by minimizing the cost function as
follows

C`(α`) =
∥∥ f −Ψ(

χ`−1 +α`νχ,`
)∥∥2

2∥∥ f
∥∥2

2

+

∥∥∥ ĵ − êtot
p

(
χ`−1 +α`νχ,`

)∥∥∥2

2∥∥ê inc
p

(
χ`−1 +α`νχ,`

)∥∥2
2

, (5.16)
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which is a problem of finding the minimum of a single-variable function, and can be
solved efficiently by using the Brent’s method [114, 115].

The contrast is initialized using the least square solution to the state equations
Eq. (5.8b), i.e.,

χ0 =
(
êtot

p j
)
®

(
êtot

p êtot
p

)
, (5.17)

where, ® represents the element-wise division.
By considering the relation,χ= ε−εbg, where ε and εbg are the complex permittivity

of the test domain and the background, and noting the fact that

ℜ {ε} º 1, ℑ{ε} ¹ 0, (5.18)

we can simply obtain

ℜ{
χ

}º 1−ℜ{
εbg

}
, ℑ{

χ
}¹−ℑ{

εbg
}

. (5.19)

Here, ℜ{·} and ℑ{·} represent the real part and imaginary part of a scalar/vector/matrix;
“º” and “¹” represent the component-wise inequality between the elements of a vector
and a constant. Therefore, range constraints are considered in the iterations as a priori
information, which is done by setting the real part to 1−ℜ{

εbg
}

whenever ℜ{
χ`

} < 1−
ℜ{
εbg

}
, and setting the imaginary part to −ℑ{

εbg
}

whenever ℑ{
χ`

} > −ℑ{
εbg

}
. In our

experiments, the contrast is assumed to be isotropic, i.e., χ3n−2 =χ3n−1 =χ3n . Therefore,
we use the mean of the three components as the final estimation of the contrast.

5.3 NUMERICAL EXPERIMENTS

5.3.1 CONFIGURATION

In this section, the proposed linearized 3-D contrast source inversion method is applied
to two typical 3-D half-space inverse problems — GPR imaging and TWI. The EM direct
scattering problem is solved by a MATLAB-based 3-D FDFD package ’MaxwellFDFD’ and
its companion C program “FD3D” [30]. Considering a 3-D Cartesian coordinate system,
the x-, y-, and z-normal boundaries of a rectangular region are covered by Perfectly
Matched Layers (PMLs) to simulate the anechoic chamber environment. Non-uniform
meshes are used to generate the scattered data, which means the testing domain is
discretized with different mesh sizes according to the distribution of the permittivity,
viz., coarse meshes for low permittivity and fine meshes for high permittivity. The
accuracy of the FDFD scheme is ensured by the following criterion [35]

∆≤ λ0

15
p
εr

, (5.20)

where, λ0 is the wavelength in free space, and εr is the relative permittivity of the testing
domain. Non-uniform meshes greatly reduce the computational burden for solving the
direct scattering problem. In contrast, uniform meshes are used to invert the scattered
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data since the distribution of the permittivity is unknown beforehand. In order to
guarantee the inversion accuracy, we make sure the following condition is satisfied

∆≤ λ0

15
p

max{εr}
. (5.21)

The source used in the numerical experiments consists of an x-polarized electric
dipole and a y-polarized one. A circularly polarized wave is generated at 200 MHz by
introducing a π/2 phase shift between the two dipoles. The x- and y-components of the
electric fields are measured at several positions simultaneously. For the two half-space
configurations, 6 × 6 sources are uniformly distributed on the xoy plane ([−3.0, 3.0],
[−3.0, 3.0], z) m, and 9 × 9 receivers are uniformly distributed in the same region. The
distance between the receivers both along the x- and y-axis is λ0

/
2 = 0.75 m. Here, λ0

is the wavelength of the generated wave in free space.
The measurement data used for inversion consist of the scattered fields obtained by

subtracting the incident fields from the probed total fields. Random white noise is added
to the measurement data following the similar procedure in [119],

fp,noi se = fp +ζ×max
m

{∣∣ fp,m
∣∣} (n1 + in2) , p = 1,2,3, · · · ,P, m = 1,2,3, · · · , M , (5.22)

where, n1 and n2 are two vectors consisting of random numbers varying from −1 up
to 1, ζ representing the amount of noise, and max

m
{| fp,m |} represents the largest value

among the amplitudes of the M measurement data, which means the noise is scaled
by the largest amplitude of the measurement data. In the following examples, the
measurement data are disturbed according to Eq. (5.22) with ζ= 0.05.

5.3.2 GPR IMAGING: LOSSY OBJECTS

In this subsection, we consider the inversion of two lossy objects, a sphere (εr = 2, σ =
0.05 S/m) of radius 0.3 m and a cube (εr = 6, σ = 0.01 S/m) of side length 0.6 m, buried
in soil (εr = 3, σ = 0.001 S/m, corresponding to a dry sandy soil). The testing domain is
([−3.5, 3.5], [−3.5, 3.5], [−2.5, 1.0]) m. Sources and receivers are uniformly located on the
square plane ([−3, 3], [−3, 3], 0.5) m, and the half space −2.5 m < z < 0 m is filled with
soil. The sphere is centred at ([0.7, −0.7, −1.0]) m, and the cube is in the region ([−1.0,
−0.4], [0.4, 1.0], [−1.3, −0.7]) m. Fig. 5.2 gives the geometry of this experiment, in which
the 9 × 9 receivers are shown with different colours — 69 receivers in green colour and
12 receivers in red colour. The green ones represent the reconstruction measurements
and the red ones represent the Cross-Validation (CV) measurements for estimating the
contrast sources.

For creating the sensing matrix, we discretize the test domain with uniform mesh
resolution determined by Eq. (5.21), and assemble it with the vectors ϕm obtained
by solving the M linear system of equations, Eqs. (3.21). In order to decrease the
computational burden, we constrain the inversion domain in the region ([−2.0, 2.0],
[−2.0, 2.0], [−2.5, 0.0]) m. As a matter of fact, more meshes are used due to the
introduction of the PMLs. In our simulations, iterative solvers are used in solving the 3-D
direct scattering problems and the scattering matrix. The computation was accelerated
by parallel computing programming with 16 cores.
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Figure 5.2: Geometry of the GPR imaging experiment. Soil: εr = 3, σ= 0.001 S/m. Sphere: εr = 2, σ= 0.05 S/m.
Cube: εr = 6,σ= 0.01 S/m. 6 × 6 sources and 9 × 9 receivers are uniformly distributed on the square plane ([−3,
3], [−3, 3], 0.5) m. The 12 red receivers correspond to the CV measurements, and the 69 green ones correspond
to the measurements used for reconstructing the contrast sources.

Fig. 5.3 (a) gives the reconstruction residual and the CV residual in the iterative pro-
cess of estimating the contrast sources, from which we can see that the reconstruction
residual curve and the CV residual curve have a stair-like shape. As a matter of fact, the i -
th stair corresponds to the LSτ problem with the parameter τi . See [128] for more details
about the updating criterion of the parameter τ. From the sub view in Fig. 5.3 (a), we can
see that the CV residual starts to increase at the 179-th iteration, while the reconstruction
residual can still be minimized further. This indicates that the iteration process starts
to overfit the noise. Therefore, the contrast sources are supposed to be chosen as the
approximate solution corresponding to the smallest CV residual. Fig. 5.3 (b) shows the
data error curve and the state error curve. From Fig. 5.3 (b) we can see a relatively large
state error 22% has been preserved and cannot be minimized after 40 iterations due to
the inexact estimation of the contrast sources, while, in this experiment, the data error
has been minimized to a relatively small one 9%.

The shape of the reconstructed results is given in Fig. 5.4. Since the contrast is
assumed to be isotropic, the shape of the original contrast is defined as

In =
∣∣∣χ3n−2 +χ3n−1 +χ3n

3

∣∣∣ , n = 1,2,3, · · · , N , (5.23)

and is shown in Fig. 5.4 (a). The shape of the contrast sources is defined as

In =
P∑

p=1

√∣∣ jp,3n−2
∣∣2 + ∣∣ jp,3n−1

∣∣2 + ∣∣ jp,3n
∣∣2, n = 1,2,3, · · · , N , (5.24)

and shown in Fig. 5.4 (b), from which we can see that the 3-D image of the contrast
sources is elongated along the z-axis, indicating a good resolution along x- and y-axis
and a poor resolution along z-axis. This can be explained by the planar distribution of
the sources and receivers. Due to the limited aperture in the half-space configurations,
the nonuniqueness of the inverse problem gets worse. Thus, it is extremely difficult to
achieve an exact reconstruction. Figs. 5.4 (c) and (d) show the shape of the reconstructed
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Figure 5.3: Residual curves of the GPR imaging experiment. Reconstruction residual and CV residual curves
for estimating the contrast sources using the exact background model (a) and an inexact background model
(1.25εbg) (c). Data error and state error curves for reconstructing of the contrast using the exact background
model (b) and an inexact background model (1.25εbg) (d).

contrast permittivity and the reconstructed contrast conductivity, from which we can see
that the location and the basic shape of the buried objects can be well distinguished.

To study the estimation accuracy of the dielectric parameters, Fig. 5.5 shows the
cross sections (x = 0.7 m, y = 0.7 m, and z = −1.15 m) of the reconstructed contrast
permittivity and conductivity, together with those of the real ones. By comparing
Fig. 5.5 (a) and Fig. 5.5 (c), we see that the reconstructed contrast permittivity has
negative values down to -1.7 (the real on is -2) in the top region of the sphere, while the
one for the cube has positive values up to 2.4 (the real one is 3). Although the estimation
of the dielectric parameters is not very accurate, it consists well with the real situation.
From Fig. 5.5 (b) we see that the sphere has larger conductivity than the cube, this is well
presented in the reconstructed results shown in Fig. 5.5 (d), and the maximum value of
the estimated contrast conductivity is 0.04 S/m which is very close to the real value 0.05
S/m.

In order to study the influence of the background mismatch to the inversion per-
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(a) (c) (e)

(b) (d) (f)

Figure 5.4: 3-D shape of the reconstructed results in the GPR imaging experiment at 200 MHz. 5% random
white noise is added. (a): True objects. (b): Reconstructed contrast sources. Reconstructed contrast
permittivity (c) and contrast conductivity (d) using the exact background model. Reconstructed contrast
permittivity (e) and contrast conductivity (f) using an inexact background model (1.25εbg).

(a) (c) (e)

(b) (d) (f)

Figure 5.5: Cross sections of the reconstructed dielectric parameters in the GPR imaging experiment at 200
MHz. 5% random white noise is added. The unit of the conductivity is S/m. (a): True contrast permittivity.
(b): True contrast conductivity. Reconstructed contrast permittivity (c) and contrast conductivity (d) using
the exact background model. Reconstructed contrast permittivity (e) and contrast conductivity (f) using an
inexact background model (1.25εbg).
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Figure 5.6: Geometry of the TWI experiment. Wall: εr = 4, σ = 0.01 S/m. Object: εr = 2, σ = 0.001 S/m and
highly conductive material εr = 1, σ = 1 S/m. The wall is in the region ([−3.5, 3.5], [−3.5, 3.5], [0, 0.5]). 6 × 6
sources and 9 × 9 receivers are uniformly distributed on the square plane ([−3, 3]; [−3, 3]; 1.0) m. The 12 red
dots represent the CV measurements, and the 69 green dots are the reconstruction measurements.

formance of the proposed method, we process the same measurement data with an
inexact background model. Specifically, we assume the geometry of the ground is exactly
known, but the dielectric parameters of the soil are estimated higher than the exact
value by 25%. It is worth noting that the incident fields, as well as the sensing matrix,
Φp , need to be recalculated according to the inexact background model. In addition,
the contrast must be restricted according to the newly estimated dielectric parameters
of the soil. Figs. 5.4 (e) and 5.4 (f) give the shape of the inverted results obtained
by processing the same measurement data with the inexact dielectric parameters of
the soil (1.25 × εbg). From Figs. 5.4 (e) and 5.4 (f) we can see that more artefacts are
reconstructed due to the mismatch of the background model. The resolution in the x-
and y-dimension is still acceptable, but the resolution in the z-dimension gets worse.
Figs. 5.5 (e) and 5.5 (f) give the cross sections (x = 0.7 m, y = 0.7 m, and z =−1.15 m) of
the reconstructed contrast permittivity and conductivity, from which we can see that the
mismatch seriously degrades the reconstruction accuracy of the dielectric parameters of
the objects.

5.3.3 THROUGH-THE-WALL IMAGING

In this subsection, we consider the inversion of a cross object placed behind a wall
(εr = 4, σ = 0.01 S/m). The testing domain is ([−3.5, 3.5], [−3.5, 3.5], [−3.0, 1.5]) m. 6
× 6 sources and 9 × 9 receivers are uniformly located on the square plane ([−3, 3], [−3,
3], 1.0) m, and the wall is in the region ([−3.5, 3.5], [−3.5, 3.5], [0, 0.5]) m. The cross
object is combined with two rectangular blocks in the region ([−1.0, 1.0], [−0.25, 0.25],
[−1.5, −1.0]) m and ([−0.25, 0.25], [−1.0, 1.0], [−1.5, −1.0]) m. The geometry of the TWI
experiment is shown in Fig. 5.6. The receivers are shown with different colours, of which
the green ones represent the reconstruction measurements and the red ones represent
the CV measurements. The inversion domain is constrained in the region ([−2.0, 2.0],
[−2.0, 2.0], [−2.5, 0.0]) m.
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Figure 5.7: Residual curves of the TWI experiment with an EM penetrable object. Reconstruction residual
curves and CV residual curves for estimating the contrast sources using the exact background model (a) and
an inexact background model (0.75εbg) (c). Data error and state error curves for reconstructing the contrast
using the exact background model (b) and an inexact background model (0.75εbg) (d).

In this TWI experiment, we investigate the inversion performance of the proposed
method not only to the EM penetrable object but also to the highly conductive object.
For the latter, the morphological information is of more interest. The exact and inexact
wall models are all considered for calculating the sensing matrix,Φp , and modelling the
incident fields.

PENETRABLE OBJECT

Let us first use the cross object whose relative permittivity εr = 2 and conductivity
σ = 0.001 S/m. The TWI measurement data was disturbed by 5% random white noise
according to Eq. (5.22), and was then inverted with the incident fields and the sensing
matrix calculated with the exact wall model. Fig. 5.7 (a) shows the reconstruction
residual curve and the CV residual curve for recovering the contrast sources. The CV
residual reaches the smallest value at the 90-th iteration where we obtain the optimal
solution of the contrast sources. Fig. 5.7 (b) shows the data error curve and the state error
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(a) (c) (e)

(b) (d) (f)

Figure 5.8: 3-D shape of the reconstructed results in the TWI experiment at 200 MHz. 5% random white
noise is added. (a): True objects. (b): Reconstructed contrast sources. Reconstructed contrast permittivity
(c) and contrast conductivity (d) using the exact background model. Reconstructed contrast permittivity (e)
and contrast conductivity (f) using an inexact background model (0.75εbg).

(a) (c) (e)

(b) (d) (f)

Figure 5.9: Cross sections of the reconstructed dielectric parameters in the TWI experiment at 200 MHz. 5%
random white noise is added. The unit of the contrast conductivity is S/m. (a): True contrast permittivity.
(b): True contrast conductivity. Reconstructed contrast permittivity (c) and contrast conductivity (d) using
the exact background model. Reconstructed contrast permittivity (e) and contrast conductivity (f) using an
inexact background model (0.75εbg).
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curve for reconstructing the contrast. The iterative process converges after 10 iterations,
however, there is a relatively large data error of 0.27 and a state error of 0.67 that cannot
be minimized anymore. This is due to the inexact estimation of the contrast sources
which can be obviously seen from Figs. 5.8 (a) and 5.8 (b) in which the shape of the real
object and the reconstructed contrast sources are shown.

As a matter of fact, due to the limited amount of independent measurement data,
a good inversion can hardly be achieved with just the back-scattered fields. In our
method, the contrast sources and the total fields are fixed while reconstructing the
contrast, such that the iterative process can be prevented from converging to a local
optimal solution that might be far away from the real solution. Figs. 5.8 (c) and 5.8 (d)
give the shape of the reconstructed contrast permittivity and the reconstructed contrast
conductivity, and the corresponding cross sections (x = 0 m, y = 0 m, and z = −1.15
m) are shown in Figs. 5.9 (c) and 5.9 (d). For better comparison, the cross sections of
the exact parameters are given as well in Figs. 5.9 (a) and 5.9 (b). We can see from
Figs. 5.8 (a), 5.8 (c) and 5.8 (d) that the shape of the cross is nicely reconstructed.
The shown artefacts in the reconstructed contrast conductivity are actually very weak
compared to the reconstructed object, which can be seen from Fig. 5.9 (d). If we average
the reconstructed parameters in the cross region, then we have a coarse estimation of
the contrast ∆ε̂r ≈ 0.2 and ∆σ̂≈ 0.002 S/m.

Assume that the dielectric parameters of the wall are underestimated by 25%, the
incident fields and the sensing matrix need to be recalculated correspondingly. However,
since the object is surrounded by free space, the range constraints given by Eq. (5.19)
keep the same. We do inversion to the same disturbed measurement data. Fig. 5.7 (c)
shows the reconstruction residual curve and the CV residual curve for recovering the
contrast sources. Fig. 5.7 (d) shows the data error curve and the state error curve for
reconstructing the contrast. The CV residual starts to increase at the 79-th iteration
where we obtain the optimal solution of the contrast sources. By comparison of
Figs. 5.7 (b) and 5.7 (d) we can see that the inexact wall model results in larger data
error (0.45) and state error (1.65) compared to those with the exact background model.
The shape of the reconstructed contrast permittivity and the contrast conductivity with
the inexact wall model is shown in Figs. 5.8 (e) and 5.8 (f), respectively. And the
corresponding cross sections are given in Figs. 5.9 (e) and 5.9 (f). An obvious cross ghost
above the real object can be observed in the reconstructed contrast permittivity, while
the reconstructed contrast conductivity is still good enough to identify the object. By
comparison of Figs. 5.9 (c) and 5.9 (d) and Figs. 5.9 (e) and 5.9 (f), we see that after
introducing the background model error, the reconstructed contrast conductivity stays
at the same order of magnitude, while the reconstructed contrast conductivity is lower
than the exact value by around one order of the magnitude.

HIGHLY CONDUCTIVE OBJECT

To study the performance of the proposed method for the inversion of highly conductive
objects, let us now test a cross object of the same size but made of a highly conductive
material (εr = 1, σ = 105 S/m). Firstly, let us process the measurement data using the
exact background model. Namely, we do the same thing as that of the previous cross
object, but just replacing the measurement data. Figs. 5.10 (a) and 5.10 (b) give the
residual curves of recovering both the contrast sources and the contrast. We can see
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Figure 5.10: Residual curves of the TWI experiment with highly conductive object. Reconstruction residual and
CV residual curves for estimating the contrast sources using the exact background model (a) and an inexact
background model (a wall of 0.75 m thickness) (c). Data error and state error curves for reconstructing the
contrast using the exact background model (b) and an inexact background model (a wall of 0.75 m thickness)
(d).

that the data error and the state error are larger than those of inverting the penetrable
cross object, indicating that the contrast sources are reconstructed with a larger error.
Figs. 5.11 (a) and 5.11 (b) show the shape of the real cross object and the shape of the
inverted contrast sources, from which we can see that the contrast sources have a basic
cross-like shape extending along the z-axis from z1 =−0.5 m to z2 =−1.5 m. As a matter
of fact, for highly conductive objects, the contrast sources are supposed to distribute
on the top surface of the object, and the EM fields in the interior are zero due to the
serious attenuation of the electric fields. This nicely explains why the middle of the
contrast sources is exactly the top surface of the real object, i.e., (z1 + z2)

/
2 =−1 m. The

reconstructed contrast permittivity and contrast conductivity are shown in Figs. 5.11 (c)
and 5.11 (d), and the corresponding cross sections are shown in Figs. 5.12 (c) and 5.12 (d).
We can see a ghost of the contrast permittivity with a maximum value of 1, and the
reconstructed contrast conductivity is more focused on the top surface of the cross



5.3. NUMERICAL EXPERIMENTS

5

101

(a) (c) (e)

(b) (d) (f)

Figure 5.11: 3-D shape of the reconstructed results in the TWI experiment at 200 MHz. 5% random white
noise is added. (a): Real objects. (b): Reconstructed contrast sources. Reconstructed contrast permittivity (c)
and contrast conductivity (d) using the exact background model. Reconstructed contrast permittivity (e) and
contrast conductivity (f) using an inexact background model (a wall of 0.75 m thickness).

(a) (c) (e)

(b) (d) (f)

Figure 5.12: Cross sections of the reconstructed dielectric parameters in the TWI experiment at 200 MHz. 5%
random white noise is added. The unit of the contrast conductivity is S/m. (a): True contrast permittivity.
(b): True contrast conductivity. Reconstructed contrast permittivity (c) and contrast conductivity (d) using
the exact background model. Reconstructed contrast permittivity (e) and contrast conductivity (f) using an
inexact background model (a wall of 0.75 m thickness).
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object due to the higher conductivity compared to the penetrable cross object. Although
the estimation of the dielectric parameters is not accurate in the inversion of highly
conductive objects, we get the basic morphological information of the objects, which
is of more importance in real applications.

In the inversion with an inexact wall model, we changed the thickness of the wall
to 0.75 m while using the exact dielectric parameters. The residual curves are shown in
Figs. 5.10 (c) and 5.10 (d). Obviously, the data error and the state error are larger than
those of the inversion using the exact wall model (see Figs. 5.10 (a) and 5.10 (b)). The
corresponding inverted results are given in Figs. 5.11 (e) and 5.11 (f) and Figs. 5.12 (e)
and 5.12 (f), from which we can see that the 3-D image of the contrast permittivity is
lifted up by 0.25 m, and the one of the contrast conductivity is lowered by 0.5 m. This
is a very interesting phenomenon because the mismatch of the background model is
reflected by the mismatch of the 3-D images of the contrast permittivity and the contrast
conductivity.

5.3.4 PERFORMANCE ANALYSIS

To summarize this section, we remark that the linearized 3-D inversion method gives
good inverted results for the inversion of a lossy object in GPR imaging and an EM
penetrable object in TWI. It is also able to provide the morphological information of
highly conductive objects. The quality of the background estimation is critical for
ensuring the accuracy of the inverted results. This method leaves a large data error and
a large state error for solving the 3-D half-space inverse scattering problems. However,
it helps to prevent the iterative process from converging to a totally false local optimal
solution in the cases where only back-scattered fields are available.

In the numerical experiments, the program for reconstructing the contrast sources
and the contrast is realized by MATLAB codes. We ran the codes on a desktop with one
Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz, and we did not use parallel computing. The
running time of each iteration is 3.1 s and 2.0 s respectively for the GPR case, and 3.5 s
and 2.2 s respectively for the TWI case. The codes of solving the total fields are written
with C language and PETSc. We run the codes on a server with two Intel(R) Xeon(R)
CPUs E5-2650 v2 @ 2.60GHz containing 16 cores totally. Parallel computing was used
with 16 cores. The running time of solving the total field for each source is 48 s for
the GPR case and 25 s for the TWI case. In the GPR case, we ran 200 iterations for
recovering the contrast sources and 20 iterations for recovering the contrast, the total
running time is about 40 min. ( (200×3.1+20×2.0+36×48)/60 ). In the TWI case, we
ran 150 iterations for recovering the contrast sources and 20 iterations for recovering the
contrast, the total running time is about 27.4 min. ( (150×3.5+20×2.2+36×25)/60 ).
If we implement the MATLAB codes using parallel computing technique with 16 cores,
the running time can be reduced by at least 8 times. In doing so, the total running time
can be further reduced to 30 min and 16.5 min, respectively. For conventional iterative
inversion methods, such as CSI and BIM, the update of the total fields in each iteration
requires at least 57.6 min. ( (2×36×48)/60 ) and 30 min. ( (2×36×25)/60 ), respectively.
The total running times are at least a multiple of the above times, where the multiple is
determined by the required iteration number. Obviously, the proposed method is more
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efficient in comparison to conventional iterative inversion methods.

5.4 CONCLUSIONS

In this chapter, it has been proposed that the 3-D inverse scattering problem of half-
space configuration can be transferred to a cascade of a sum-of-norm regularized linear
inverse source problem and a linear optimization problem. The regularized solutions of
the contrast sources are sought by solving a linear sum-of-norm optimization problem,
with which the total fields are calculated and the contrast is estimated. The proposed
method is tested successfully in a GPR configuration and a TWI configuration. The
inversion quality with both exact and inexact background models is discussed and its
sensitivity to the accuracy of the background modelling is shown as well. Results show
that this method is not only efficient but also robust with respect to the reconstruction
quality when the amount of the retrievable data is limited by the one-side probing
configuration. In the cases where the scattering objects extend over a large region,
the influence of the regularization constraint becomes less significant. However, this
problem can be, to a very large extent, overcome by a multi-frequency version of the
proposed method.
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GMMV-BASED LINEAR INVERSION

In this chapter, the Multiple Measurement Vectors (MMV) linear method proposed
in Chapter 4 is extended to process the multi-frequency data based on the Generalized
Multiple Measurement Vectors (GMMV) model [127, 147]. In our method, the sum-
of-norm of the contrast sources is used as a regularization constraint to address the
ill-posedness. Finite Difference Frequency Domain (FDFD) [35] is used to construct
the scattering operator which enables a simple incorporation of the complicated back-
ground medium, and the Spectral Projected Gradient for `1-norm minimization (SPGL1)
method [128, 129], is selected to estimate the contrast sources by solving a sum-of-norm
minimization problem. In the literature, sparse scatterer imaging has been studied in
[40], in which Single Measurement Vector (SMV) model was used, but the joint structure
of the contrast source matrix was not considered. The application of joint sparsity in the
field of medical imaging has been reported in [148], which is actually a hybridization of
Compressive Sensing (CS) [126] and the MUltiple SIgnal Classification (MUSIC) method
based on a generalized MUSIC criterion. In the aforementioned work, sparse targets
(original or equivalently transformed) and their sparsest solutions are considered, and
the problems of defining the best discretization grid and estimating the target number
are critical for ensuring that the level of sparsity is recoverable. In [41], equivalence
principles were considered for reconstructing the boundary of dielectric scatterers. In
this chapter, we demonstrate that, by exploiting the frequency diversity, a regularized
solution of the contrast sources obtained by solving the GMMV model is sufficient
to indicate the spatial profile of the non-sparse targets of both metallic material and
dielectric material.

The remainder of this chapter is organized as follows: The problem statement is
given in Section 6.1; The GMMV-based linear method is introduced in Section 6.2; The
validity of the proposed method is demonstrated with experimental data in Section 6.3,

Parts of this chapter have been submitted to [146].
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in which three configurations: dielectric scatterers, metallic scatterers and hybrid scat-
terers, are considered; In Section 6.4, the difference and relationship between GMMV
and Linear Sampling Method (LSM) is discussed; Finally, we ends this chapter with the
conclusions given in Section 6.5.

6.1 PROBLEM STATEMENT

For the sake of simplicity, we consider the 2-Dimensional (2-D) Transverse Magnetic
(TM)-polarized ElectroMagnetic (EM) inverse scattering problem. A bounded, simply
connected, homogeneous/inhomogeneous background domain D contains unknown
objects. The domain S contains the sources and receivers. The sources are denoted by
the subscript p in which p ∈ {1,2,3, · · · ,P }, and the receivers are denoted by the subscript
q in which q ∈ {

1,2,3, · · · ,Q
}
. We use a right-handed coordinate system and the unit

vector in the invariant direction points out of the paper.
Assume the background is known, and the permeability of the background and

unknown objects is constant, denoted by µ0. The contrast corresponding to the i -th
frequency is defined as χi = εi − εbg,i , where εi = ε− iσ

/
ωi and εbg,i = εbg − iσbg

/
ωi

are the complex permittivity of the inversion domain in the presence/absence of the
targets respectively. Here, ε and εbg are the permittivity of the inversion domain in
the presence/absence of the targets respectively, σ and σbg are the conductivity of the
inversion domain in the presence/absence of the targets respectively; ωi is the i -th
angular frequency, and i represents the imaginary unit. The time factor is exp(iωi t ). For
the 2-D TM-polarized scattering problem, the electric field is a scalar and the scattering
wave equation with respect to the scattered field can be easily derived from Maxwell’s
equations, which is given by

−∇2E sct
p,i −k2

i E sct
p,i =ω2

i µ0 Jp,i , p = 1,2,3, · · · ,P, i = 1,2,3, · · · , I , (6.1)

where, ∇2 is the Laplace operator, ki = ωi
p
εbgµ0 is the i -th wavenumber, Jp,i = χi E tot

p,i

is the contrast source corresponding to the p-th source and the i -th frequency, E sct
p,i

and E tot
p,i are the scattered electric field and the total electric field at the i -th frequency,

respectively. The inverse scattering problem discussed in this chapter is to retrieve the
geometrical features of the scatterers from a set of measured scattered fields.

6.2 THE GMMV-BASED LINEAR METHOD

6.2.1 THE GMMV FORMULATION

Following the vector form of the FDFD scheme in [35], we discretize the 2-D inversion
space with N grids and recast the scattering wave equation, Eq. (6.1), into the following
matrix formalism

Ai esct
p,i =ω2

i jp,i , p = 1,2,3, · · · ,P, i = 1,2,3, · · · , I , (6.2)



6.2. THE GMMV-BASED LINEAR METHOD

6

107

where Ai ∈ CN×N is the FDFD stiffness matrix of the i -th frequency, which is highly
sparse; esct

p,i ∈ CN and jp,i ∈ CN are the scattered electric fields and the contrast sources

in the form of a column vector, respectively. Obviously, the solution to Eq. (6.2) can
be obtained by inverting the stiffness matrix Ai , which yields esct

p,i = A−1
i ω2

i jp,i . In the

inverse scattering problem, the scattered fields are measured with a number of receivers
at specified positions, yielding the data equations given by

yp,i =Φp,i j ic
p,i , p = 1,2,3, · · · ,P, i = 1,2,3, · · · , I , (6.3)

where, Φp,i =MS
p A−1

i ωi ∈ CQ×N is the sensing matrix for the measurement yp,i , j ic
p,i =

ωi jp,i is the normalized contrast source proportional to the induced current iωiµ0 jp,i .

Here, MS
p is a measurement matrix selecting the values of the p-th scattered field at the

positions of the receivers.
In the rest of this subsection, a GMMV model [147] is constructed and solved by

exploiting the joint sparsity of the normalized contrast sources. In doing so, the contrast
sources can be well estimated by solving a sum-of-norm minimization problem, and the
solution can be consequently used to indicate the shape of the scatterers. To do so, we
reformulated the data equations Eq. (6.3) as

Y =Φ · J +U , (6.4)

where
Y = [

y1,1 y2,1 · · · yP,1 y1,2 · · · yP,I
]

, (6.5)

J = [
j ic

1,1 j ic
2,1 · · · j ic

P,1 j ic
1,2 · · · j ic

P,I

]
, (6.6)

andΦ · J is defined by

Φ · J = [
Φ1,1 j ic

1,1 Φ2,1 j ic
2,1 · · · ΦP,I j ic

P,I

]
, (6.7)

and correspondingly,ΦH ·Y is defined as

ΦH ·Y = [
ΦH

1,1 y ic
1,1 ΦH

2,1 y ic
2,1 · · · ΦH

P,I y ic
P,I

]
. (6.8)

Here, Y ∈ CQ×PI is the measurement data matrix, and the columns of J ∈ CN×PI are
the multiple vectors to be solved. U ∈ CQ×PI represents the complex additive noises
satisfying certain probability distribution. It is worth noting that for a single frequency
inverse scattering problem, if the positions of the receivers are fixed, i.e., Φ1,1 =Φ2,1 =
·· · =ΦQ,1, Eq. (6.4) reduces to the standard MMV model [127].

6.2.2 GUIDELINE OF THE MEASUREMENT CONFIGURATION

Although the joint sparsity is used here as a regularization constraint instead of for an
exact recovery, an investigation on the uniqueness condition is still of much importance
at least for two reasons: 1) It is of interest to know how much we could benefit from
the joint recovery; 2) It provides us with a guideline of designing the measurement
configuration that can make the most of the joint processing.
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According to the work of Chen and Huo [149] and Davies and Eldar [150], a necessary
and sufficient condition for the measurements, Y =ΦJ , to uniquely determine the row
sparse matrix J is that

∣∣supp(J )
∣∣< spark(Φ)−1+ rank(Y )

2
, (6.9)

where, supp(J ) denotes the index set corresponding to non-zero rows of matrix J ,∣∣supp(J )
∣∣ denotes the cardinality of supp(J ), the spark of a given matrix is defined as

the smallest number of the columns that are linearly dependent. Thereafter, Heckel and
Bölcskei have studied the GMMV problem and showed that having different measure-
ment matrices can lead to performance improvement over the standard MMV case [147].
The above work about the uniqueness condition implies specifically in our method
that in order to make the most of the joint processing, the column number of matrix
Y ∈ CQ×(P×I ) is supposed to be no less than the number of receivers, i.e., P × I ≥ Q.
Moreover, with the same measurement configuration, the inversion performance can
be further improved by exploiting the frequency diversity even for the case of P >Q. The
latter is further demonstrated in Subsection 6.3.1.

The determination of the receiver number depends not only on the measurement
geometry but also on the spatial bandwidth of the scattered field. We refer to [4] for
a theoretical analysis of the retrievable information and the measurement strategies of
the EM inverse scattering problems by considering very particular canonical cases and
applying the Nyquist sampling criterion. This provides us with a lower bound of the
essential measurements, however, more measurements are normally needed for at least
two reasons: 1) the scattered fields are much more complicated and unpredictable in
real-life applications; 2) extra measurements are needed for the Cross-Validation (CV)
technique (see Chapter 4 and the following subsection).

6.2.3 SOLVING THE GMMV MODEL

GMMV BASIS PURSUIT DENOISE PROBLEM

Suppose the noise level is known beforehand, the approach to find the multiple vectors
is based on solving the convex optimization problem referred to as GMMV Basis Pursuit
Denoise (BPσ̃) problem

minimize κ(J ) subject to ‖Φ · J −Y ‖F ≤ σ̃, (6.10)

where, σ̃ represents the noise level; κ(J ) is the mixed (α,β)-norm defined as

‖J‖α,β :=
(

N∑
n=1

∥∥J T
n,:

∥∥α
β

)1/α

, (6.11)

where, Jn,: denotes the n-th row of J ; ‖ · ‖β is the conventional β-norm; (·)T is the
transpose operator; ‖ · ‖F is the Frobenius norm which is equivalent to the mixed (2,2)-
norm ‖·‖2,2. Here, we select the mixed norm ‖·‖1,2 as a regularized constraint. Although
‖ · ‖1,2 tends to enforce the row-sparsity of the matrix J , sparsity is not a premise for
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this approach. The key point is the utilization of the joint structure of the contrast
source matrix for improving the focusing ability. As demonstrated in the following
experiments, this approach is able to image objects which are not sparse by exploitation
of the frequency diversity.

MULTIPLE GMMV LASSO PROBLEMS

Since it is not straightforward to solve the GMMV BPσ̃ problem, we consider the GMMV
Lasso (LSτ) problem formulated as [128]

minimize ‖Φ · J −Y ‖F subject to ‖J‖1,2 ≤ τ. (6.12)

The GMMV LSτ problem is equivalent to the GMMV BPσ̃ problem when τ = τσ̃. As the
exact value of τσ̃ is not available, a series of GMMV LSτ problems with different values of
τ must be solved. Now let us first introduce the Pareto curve defined as

φGMMV(τ) =
∥∥∥Φ · J opt

τ −Y
∥∥∥

F
, (6.13)

where, J opt
τ is the optimal solution to the LSτ problem given by Eq. (6.12). When the

optimal solution J opt
τh

to the GMMV LSτ problem is found, τh is updated to τh+1 by
probing the Pareto curve. The searching procedure is terminated when φGMMV(τ) = σ̃.
At the meantime, τ reaches τσ̃.

UPDATING THE PARAMETER, τ
As the Pareto curve is proven to be a non-increasing convex function, Newton iteration
is used for updating the parameter, τ. Specifically, τ is updated by

τh+1 = τh + σ̃−φGMMV(τh)

φ′
GMMV(τh)

, (6.14)

where,

φ′
GMMV(τh) =−

∥∥∥ΦH ·
(
Φ · J opt

τh
−Y

)∥∥∥∞,2∥∥∥Φ · J opt
τh

−Y
∥∥∥

F

. (6.15)

Here, ‖ ·‖∞,2 is the dual norm of ‖ ·‖1,2. The searching procedure is illustrated in Fig. 4.1.
Unless a good estimate of τσ̃ can be obtained, we choose τσ̃ = 0, yielding φ(0) = ‖Y ‖F

and φ′(0) = ∥∥ΦH ·Y
∥∥∞,2. With Eq. (6.14), it holds immediately that the next Newton

iteration is

τ1 = σ̃−‖Y ‖F∥∥ΦH ·Y
∥∥∞,2

. (6.16)

Since the extension of the projection operator to the GMMV problem is straightforward,
we refer to [128, 129] and Chapter 4 for more details of the derivation of the dual and the
algorithm for solving the GMMV problem by SPGL1.
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6.2.4 CV-BASED MODIFIED SPGL1

In real applications, the termination condition,φGMMV(τ) = σ̃, is not applicable, because
the noise level, i.e., the parameter, σ̃, is unknown in general. In order to deal with this
problem, we modified the SPGL1 method based on the CV technique [138, 139], in which
σ̃ is set 0 and the iteration is terminated using CV technique. In doing so, the problem of
estimating the noise level, i.e., the parameter, σ̃, can be well circumvented.

Specifically, when CV is utilized in the SPGL1 method, we separate the original
scattering matrix to a reconstruction matrix,Φp,i ,rec ∈CQrec×N , and a CV matrix,Φp,i ,CV ∈
CQCV×N with Q = Qrec + QCV. The measurement vectors, yp,i , are also separated
accordingly, to a group of reconstruction measurement vector, yp,i ,rec ∈ CQrec , and a
group of CV measurement vectors, yp,i ,CV ∈ CQCV . The reconstruction residual and the
CV residual are defined as

rrec =
(

I∑
i=1

P∑
p=1

∥∥yp,i ,rec −Φp,i ,rec jp,i
∥∥2

2

)1/2

(6.17)

and

rCV =
(

I∑
i=1

P∑
p=1

∥∥yp,i ,CV −Φp,i ,CV jp,i
∥∥2

2

)1/2

, (6.18)

respectively. In doing so, every iteration can be viewed as two separate parts: re-
constructing the contrast sources by SPGL1 and evaluating the outcome by the CV
technique. The CV residual curve turns to increase when the reconstructed signal starts
to overfit the noise. The reconstructed contrast sources are selected as the output on the
criterion that its CV residual is the least one. To find the least CV residual, we initialize σ̃
as 0 and terminate the iteration when

NIter > Nopt +∆N , (6.19)

is satisfied, Here, NIter is the current iteration number, Nopt is the iteration index
corresponding to the least CV residual — the optimal solution. Namely, the CV residual
is identified as the least one if the CV residual keeps increasing monotonously for ∆N
iteration. In the following experimental examples, this termination condition works well
with ∆N = 30.

Once the normalized contrast sources are obtained, one can achieve the shape of the
scatterers defined as

γGMMV,n =
I∑

i=1

P∑
p=1

∣∣∣ j ic
p,i ,n

∣∣∣2
, n = 1,2,3, · · · , N , (6.20)

where j ic
p,i ,n and γGMMV,n represent the n-th element of the vectors j ic

p,i and γGMMV,

respectively.
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6.3 VALIDATION WITH EXPERIMENTAL DATA

In order to validate the proposed GMMV-based linear method, we have applied it to
the experimental database provided by the Remote Sensing and Microwave Experiments
Team at the Institut Fresnel, France, in the year 2001 [31] and 2005 [32], respectively.
Three different cases of dielectric scatterers, metallic scatterers (convex and nonconvex),
and hybrid ones of both are considered, respectively. To guarantee the accuracy of the
FDFD scheme, the inversion domain is discretized with a grid size ∆2 satisfying

∆≤ min{λi }

15
, i = 1,2,3, · · · , I , (6.21)

where λi is the wavelength of the i -th frequency.
We have also processed the same data by LSM for comparison. Since the background

of the experiments is free space and only TM wave is considered, the LSM method
consists in solving the integral equation of the indicator function gi

(
#–x t

∣∣#–z
)

at the i -th
frequency (see Fig. 2.12)∫

Γ1

E sct
i

(
#–x r, #–x t

)
gi

(
#–x t

∣∣#–z
)

d #–x t = ωiµ0

4
H (1)

0

(−ki
∥∥#–z − #–x r

∥∥
2

)
, (6.22)

where, E sct
i

(
#–x r, #–x t

)
is the scattered field probed at #–x r corresponding to the transmitter at

#–x t and the i -th frequency, #–z is the sampling point in the inversion domain, H (1)
0 (·) is the

Hankel function of the first kind, ki is the wavenumber of the i -th frequency. Eq. (6.22)
can be reformulated as a set of linear systems of equations

Yi gi , #–z = fi , #–z , i = 1,2,3, · · · , I , (6.23)

where, Yi is the measurement data matrix, gi , #–z is the indicator function of the sampling
point #–z in the form of a column vector, fi , #–z is the right side of Eq. (6.22) in the form of a
column vector, the index i represents the i -th frequency. Following the same approach
to solving Eq. (6.23) in [13, 140], the indicator function gi , #–z is sought to be

∥∥gi , #–z

∥∥2
2 =

D∑
d=1

(
si ,d

s2
i ,d +a2

i

)2 ∣∣uH
d fi , #–z

∣∣2
, (6.24)

where, si ,d represents the singular value of matrix Yi corresponding to the singular
vector ud , (·)H is the conjugate transpose operator, D = min

{
P,Q

}
, and ai = 0.01 ×

max
d

{
si ,d

}
. The shape of the scatterers is defined by

γLSM
(

#–z
)= 1∥∥∥g MF

#–z

∥∥∥2

2

, (6.25)

where,
∥∥∥g MF

#–z

∥∥∥2

2
is a multi-frequency modified indicator defined as the average of the

normalized modified ones computed at each frequency [151]

∥∥g MF
#–z

∥∥2 = 1

I

I∑
i=1

∥∥gi , #–z

∥∥2
2

max
#–z ∈D

(∥∥gi , #–z

∥∥2
2

) . (6.26)
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Figure 6.1: Measurement configuration of the data-sets: twodielTM_8f, rectTM_dece, and uTM_shaped (a) and
the data-sets: FoamDieIntTM and FoamMetExtTM (b).

It is worth mentioning that the absolute value of the normalized contrast sources
and the `2-norm of the indicator functions are proportional and inversely proportional
to the amplitude of the electric field, respectively. According to the definition in Eq. (6.20)
and Eq. (6.25), both γGMMV and γLSM are proportional to the power of the electric field
respectively. Therefore, the dB scaling shown in the following examples is defined as

γdB = 10× log10

(
γ

max{γ}

)
. (6.27)

6.3.1 DIELECTRIC SCATTERERS

EXAMPLE 1
In the first example, we consider the twodielTM_8f data-set provided in the first opus of
the Institut Fresnel’s database [31]. The targets consist of two identical circular cylinders,
which are shown in Fig. 6.3 (a). All the cylinders have a radius of 1.5 cm and relative
permittivity 3± 0.3. The emitter is placed at a fixed position on the circular rail, while
a receiver is rotating around the centre of the vertical cylindrical target. The targets
rotated from 0◦ to 350◦ in steps of 10◦ with a radius of 720 ± 3 mm, and the receiver
rotated from 60◦ to 300◦ in steps of 5◦ with a radius of 760± 3 mm. Namely, we have
49 × 36 measurement data at each frequency when all the measurements are finished.
The measurement configuration is shown in Fig. 6.1 (a), from which we can see 9 red
dots representing the CV measurements and 40 circles representing the reconstruction
measurements. The inversion domain is restricted to [−75, 75] × [−75, 75] mm2, and the
discretization grid size is 2.5 × 2.5 mm2.

Let us first process the single frequency data at 4 GHz by the GMMV-based linear
method and the LSM method. The data matrix, Yi , for LSM is a 72 × 36 matrix in
which the data entries that are not available are replaced with zeros. The reconstruction
residual curve and the CV residual curve are shown in Fig. 6.2 (a), from which we see the
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Figure 6.2: Normalized reconstruction residual curve and CV residual curve in Example 1, Subsection 6.3.1.
(a): Reconstruction with single frequency at 4 GHz; (b): Reconstruction with multiple frequencies at 2 GHz, 4
GHz, 6 GHz, and 8 GHz.

CV residual decreases in the first 52 iterations and increases thereafter. The solutions
at the turning point correspond to the optimal ones. In addition, the reconstruction
residual corresponding to the turning point gives an estimation of the noise level σ̃ ≈
0.05‖Y ‖F . Figs. 6.3 (b) and 6.3 (c) show the images achieved by the two methods at 4
GHz with a dynamic range of 25 dB. As we can see the GMMV image is more clear than
the LSM image. However, there is obvious shape distortion in the former one. Note that
Q = 49, P = 36 and I = 1, we have P × I <Q. Recalling the guideline of the measurement
configuration discussed in Subsection 6.2.2, the reconstruction performance can be
further improved via exploiting the frequency diversity. An obvious mismatch on the
positions of the true objects and the reconstructed result can be observed. The reason
is very likely to be the minor displacement and tilt occurred in the placement of the
objects while doing this measurement, because the same phenomenon can be observed
from the inverted results reported in [120] as well.

Now let us process the data at 2 GHz, 4 GHz, 6 GHz, and 8 GHz, simultaneously.
The residual curves are shown in Fig. 6.2 (b) and the reconstructed images are shown
in Figs. 6.3 (d) and 6.3 (e). By comparison of Figs. 6.3 (b) and 6.3 (d), one can see the
reconstruction performance of the proposed GMMV-based linear method is improved
by exploiting the frequency diversity. One can also observe that the GMMV-based
linear method achieves lower sidelobes than the LSM method in the case of dielectric
scatterers.

EXAMPLE 2
In the second example, we consider the FoamDieIntTM data-set provided in the second
opus of the Institut Fresnel’s database. The targets consist of a circular dielectric cylinder
with a diameter of 30 mm embedded in another circular dielectric cylinder with a
diameter of 80 mm. The smaller cylinder has a relative permittivity value of εr = 3±0.3,
while the larger cylinder has a relative permittivity value of εr = 1.45±0.15. Fig. 6.5 (a)
shows the true objects, and we refer to [32] for more description of the targets. The
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Figure 6.3: Scatterer geometry (a) of Example 1 in Subsection 6.3.1, its GMMV image (b), and LSM image (c) by
processing the 4GHz data, and its GMMV image (d) and LSM image (e) by processing the multiple frequency
data at 2 GHz, 4 GHz, 6 GHz, and 8 GHz.
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Figure 6.4: Normalized reconstruction residual curve and CV residual curve of Example 2 in Subsection 6.3.1.
The multi-frequency data-set FoamDieIntTM at 2 GHz, 4 GHz, 6 GHz, 8 GHz, and 10 GHz are jointly processed.
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Figure 6.5: Scatterer geometry (a) and its reconstructed shapes of the multi-frequency data-set: FoamDieIntTM
at 2 GHz, 4 GHz, 6 GHz, 8 GHz, and 10 GHz, processed by GMMV (b) and LSM (c).

.
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Figure 6.6: Normalized reconstruction residual curve and the CV residual curve in Subsection 6.3.2. (a): The
rectangular metallic cylinder at 10 GHz, 12 GHz, 14 GHz, and 16 GHz; (b): The “U-shaped” metallic cylinder at
4 GHz, 8 GHz, 12 GHz, and 16 GHz.

experiment was carried out in 2005, in which the receiver stays in the azimuthal plane
(xoy) and is rotated along two-thirds of a circle from 60◦ to 300◦ with the angular step
being 1◦. The source antenna stays at the fixed location (θ = 0◦), and the object is rotated
to obtain different illumination incidences from 0◦ to 315◦ in steps of 45◦. Namely,
we have 241× 8 measurements at each frequency. The distance from the transmitter
or receiver to the centre of the target was increased to 1.67 m. The measurement
configuration is shown in Fig. 6.1 (b), in which the diamond represents the emitter, the
4 × 9 red dots are the CV measurements, and the black circles are the reconstruction
measurements.

The inversion domain is restricted to [−60, 60] × [−60, 60] mm2, and the discretiza-
tion grid size is 2.5 × 2.5 mm2. Let us process the multi-frequency data at 2 GHz, 4 GHz,
6 GHz, 8 GHz, and 10 GHz simultaneously by the GMMV-based linear method and the
LSM method, respectively. The data matrix, Yi , for LSM is a 360×8 matrix in which the
data entries that are not available are replaced with zeros. The reconstruction residual
curve and the CV residual curve are shown in Fig. 6.4, from which we see the CV residual
decreases in the first 62 iterations and increases thereafter. Figs. 6.5 (b) and 6.5 (c) show
the reconstructed images by the GMMV-based linear method and LSM, respectively.
One can observe that the profile of the objects is reconstructed by the proposed method
with a high resolution, while in the LSM image the objects cannot be distinguished at all.

6.3.2 METALLIC SCATTERERS

In this subsection, we applied the proposed method to the rectTM_dece and uTM_shaped
data-sets in the first opus of the Institut Fresnel’s database [31], which correspond to a
convex scatterer — a rectangular metallic cylinder, and a non-convex scatterer — a “U-
shaped” metallic cylinder, respectively. The dimensions of the rectangular cross section
are 24.5 × 12.7 mm2, while those of the “U-shaped” cylinder are about 80 × 50 mm2. The



6.3. VALIDATION WITH EXPERIMENTAL DATA

6

117

(a)

20 30 40 50 60
y/mm

-20

-10

0

10

20

x
/
m

m

-25

-20

-15

-10

-5

0

(b)

20 30 40 50 60
y/mm

-20

-10

0

10

20

x
/
m

m

-25

-20

-15

-10

-5

0

(c)

Figure 6.7: Scatterer geometry (a) of the rectangular metallic cylinder and its GMMV image (b) and LSM image
(c) obtained by processing the multiple frequency data at 10 GHz, 12 GHz, 14 GHz, and 16 GHz.

.

measurement configuration is same as that in Subsection 6.3.1. More details about the
description of the targets can be found in [31].

For the rectangular cylinder, the inversion domain is restricted to [−25, 25] × [15,
65] mm2 and the multiple frequency data at 10 GHz, 12 GHz, 14 GHz, and 16 GHz
are processed simultaneously. While for the larger “U-shaped” cylinder, the inversion
domain is restricted to [−70, 70] × [−70, 70] mm2 and the multiple frequency data at
4 GHz, 8 GHz, 12 GHz, and 16 GHz are processed simultaneously. The discretization
grid size is 1.3 × 1.3 mm2. Figs. 6.6 (a) and 6.6 (b) give the residual curves and the
reconstructed images are shown in Fig. 6.7 and Fig. 6.8, respectively, from which we can
see that the focusing performance of LSM is poor in the rectangular cylinder case and it
is even worse in retrieving the shape of the non-convex “U-shaped” cylinder, while the
rectangular shape and the “U” shape are well reconstructed by the proposed GMMV-
based linear method, indicating that the latter shows higher resolving ability than the
former in both the convex metallic target case and the non-convex metallic target case.
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Figure 6.8: Scatterer geometry (a) of the “U-shaped” metallic cylinder and its GMMV image (b) and LSM image
(c) by processing the multiple frequency data at 4 GHz, 8 GHz, 12 GHz, and 16 GHz.

.

6.3.3 HYBRID SCATTERERS

In this subsection, we applied the proposed method to hybrid scatterers consisting of a
foam circular cylinder (diameter = 80 mm, εr = 1.45±0.15) and a copper tube (diameter
= 28.5 mm, thickness = 2 mm), which was considered in the FoamMetExtTM data-set
provided in the second opus of the Institut Fresnel’s database. We refer to [32] for more
description of the targets. The measurement configuration is shown in Fig. 6.1 (b). In
contrast to the FoamDieIntTM data-set, this data-set is obtained using 18 transmitters,
while other settings are kept the same. Specifically, the source antenna stays at the fixed
location (θ = 0◦), and the object is rotated to obtain different illumination incidences
from 0◦ to 340◦ in steps of 20◦.

Let us first restrict the inversion domain to [−90, 60] × [−75, 75] mm2 and discretize
this domain with a grid size of 2.5 × 2.5 mm2. The data at 7 frequencies, 2 GHz, 3 GHz,
· · · , and 8 GHz, are jointly processed. The data matrix, Yi , for LSM is a 360×18 matrix
in which the data entries that are not available are replaced with zeros. Fig. 6.9 gives the
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Figure 6.9: Normalized reconstruction residual curve and the CV residual curve in Subsection 6.3.3. The data-
set FoamMetExtTM at 2 GHz, 3 GHz, · · · , 8 GHz is processed.
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Figure 6.10: Scatterer geometry (a) of the hybrid scatterers and their GMMV image (b) and LSM image (c)
obtained by processing the multiple frequency data at 2 GHz, 3GHz, · · · , 8 GHz.
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Table 6.1: Running times of the experimental examples.

Data-set
Frequency

number
GMMV /s LSM /s

twodielTM_8f 1 2.5 0.0145

twodielTM_8f 4 12.7 0.0270

FoamDieIntTM 5 3.8 0.0693

rectTM_dece 4 2.7 0.0225

uTM_shaped 4 41.0 0.0498

FoamMetExtTM 7 15.6 0.0911

normalized residual curves of the GMMV-based linear method, and the reconstructed
images by both methods are shown in Fig. 6.10. As we can see both the metallic cube
and the circular foam cylinder can be well reconstructed by the GMMV-based linear
method with a high resolution, but for a slight part lost in between. In addition, one
can also see from the GMMV image that the metallic cube obviously has larger intensity
than the foam cylinder, showing a potential ability to distinguish dielectric objects and
metallic objects. In contrast, LSM shows a poor focusing ability in the hybrid scatterer
case, indicating once again that the proposed GMMV-based linear method is able to
achieve higher resolution images than the LSM method.

6.3.4 COMPUTATION TIME

In this subsection, we discuss the computational complexity of the GMMV-based linear
imaging method. Since the sensing matrices can be computed (or analytically given
for the experiments in homogeneous backgrounds) and stored beforehand, the GMMV-
based linear method only involves a number of matrix-vector multiplications. The
program was realized with MATLAB. We ran the program on a desktop with one Intel(R)
Core(TM) i5-3470 CPU @ 3.20 GHz, and we did not use parallel computing. The running
times of the GMMV-based linear method and LSM are listed in Table 6.1, from which
we see that, on one hand, all the reconstructions by the GMMV-based linear method
require less than 1 minute (or even a couple of seconds for some examples); on the other
hand, LSM shows overwhelmingly higher efficiency in comparison to the GMMV-based
linear method, because Singular Value Decomposition (SVD) in LSM is done once for
all, and all of the indicator functions can be obtained simultaneously by several matrix-
matrix multiplications. However, in view of the higher resolving ability of the proposed
method, the extra computational cost is worth to pay. It is also worth mentioning that
the proposed method is faster than the iterative shape reconstruction methods for which
the direct scattering problem is solved in each iteration. In addition, parallel computing
can be straightforwardly applied to the proposed method for acceleration.
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6.4 DIFFERENCE AND RELATIONSHIP BETWEEN GMMV AND

LSM

In this section, let us have a discussion on the difference and relationship between
GMMV and LSM from the perspective of theoretical analysis. For conciseness, let us
formulate both the GMMV-based linear inversion method and LSM with the FDFD
scheme as follows

ΦJ = Y , (6.28a)

Φ= Y G , (6.28b)

where, G is the indicator function matrix given by

G = [
g1,1 g1,2 · · · gN ,I

]
, (6.29)

and other notations remain consistent with the previous sections. Note that Eq. (6.28)
applies to both the scalar waves and the vectorial waves. Obviously, Eq. (6.28a) is a direct
formulation of the wave propagation, while Eq. (6.28b) is another formulation with the
contrast source matrix removed from the left side and the measurement data matrix right
multiplied by an indicator function matrix. Both of them share the merit that there is no
weak scattering restriction. However, in the GMMV-based method, the sum-of-norm of
matrix J is used as a regularized constraint, which means that the unknown vectors, jp,i ,
with respect to both different incident angles and different frequencies are estimated
jointly. Therefore, the joint row-structure of the contrast source vectors is exploited,
which suppresses the level of the artefacts especially for the high-frequency solutions.
In other words, it plays a supplementary but also important role in its focusing ability.
In the contrary, LSM conducts the estimation of the indicator functions separately.
This explains the better resolving ability of the GMMV method. Since the SVD of the
measurement matrix is done once for all in LSM, the indicator functions are calculated
through several matrix-matrix multiplications. Compared to the iterative process in the
GMMV method, LSM is more efficient.

6.5 CONCLUSIONS

In this chapter, a novel linear method for shape reconstruction based on the GMMV
model is proposed. The sum-of-norm of the contrast sources is exploited as a regu-
larization constraint in solving inverse scattering problems. We applied this method
to process 2-D TM experimental data, and the results demonstrate that an estimated
solution of the contrast sources regularized by the sum-of-norm constraint is sufficient
to recover the spatial profile of the non-sparse targets. By comparison to LSM, it is
demonstrated that the GMMV-based linear method outperforms LSM in the cases of
dielectric scatterers, convex and non-convex metallic scatterers, and hybrid scatterers
when the shape reconstruction quality and the level of the sidelobes are concerned.
In view of the resolving ability and computational efficiency, the proposed method
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looks very promising in the application to 3-Dimensional (3-D) imaging problems. In
addition, the output of the GMMV-based linear method — the contrast sources, can
be directly used for quantitative imaging when the incident fields are known or can be
modelled with a reasonable accuracy.

In the future work, there are at least two limitations of the proposed method worth
of studying: 1) For the dielectric scatterers with complicated geometries and strong
scattering in their interior, although the basic profiles can be reconstructed, the details,
such as the concave corners and the voids, are not distinguished well; 2) For 3-D inverse
problems with lots of transmitters and receivers, the contrast source matrix demands
huge memory resources.



7
CONCLUSIONS AND

RECOMMENDATIONS FOR FUTURE

WORK

This chapter gives the conclusions of the thesis and the recommendations for future
work.

7.1 CONCLUSIONS

The major results of the thesis are the following

• The state-of-the-art of the contrast source inversion method is the Multiplicative
Regularized Contrast Source Inversion (MR-CSI) method using a Total Variation
(TV) constraint. In this thesis, it is demonstrated that, in some challenging
situations of high contrasts and poor initial guesses, this method shows poor
performance and even fails. Subsequently, a new error term is proposed which
cross-correlates the mismatch between the data error and the state error. Based
upon this new error term, a Cross-Correlated Contrast Source Inversion (CC-CSI)
method has been developed, in which the novel cost functional is designed to
interrelate the state error and the data error. We have also shown that CC-CSI can
be implemented without significantly increasing the computational burden. The
proposed algorithm is tested with a 2-Dimensional (2-D) benchmark problem.
Numerical simulations with both Transverse Magnetic (TM)-polarized wave and
Transverse Electric (TE)-polarized wave show that CC-CSI outperforms classical
Contrast Source Inversion (CSI) and MR-CSI in the aspects of robustness and
inversion accuracy. As Maxwell’s equations are formulated within a 3-Dimensional

123
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(3-D) Finite Difference Frequency Domain (FDFD) scheme, it is straightforward to
extend the proposed inversion scheme to future 3-D inverse scattering problems.
Finally, a multi-frequency version of CC-CSI is proposed, which is able to process
multi-frequency data simultaneously. Numerical and experimental results show
that it is more robust than the multi-frequency version of MR-CSI.

• A linear model is proposed for addressing the nonlinear inverse scattering prob-
lem of highly conductive objects. The Multiple Measurement Vectors (MMV)
model is exploited and a sum-of-norm of the contrast source matrix is used as a
regularization constraint. The intensity of the estimated contrast sources is able
to indicate the position and profile of the highly conductive scatterers. In the
reconstruction scheme, the Cross-Validation (CV) technique is used to circumvent
the estimation of the noise level. Numerical results and experimental results
demonstrate that the proposed method is able to reconstruct the boundary of
the highly conductive targets with a higher resolution than both Linear Sampling
Method (LSM) and the improved LSM, even in some cases where the latter two
methods fail to reconstruct the correct shape. The running time of the proposed
method is hundreds of times longer than LSM and tens of times longer than
the improved LSM, but it is still acceptable and promising in view of the gain
in the imaging resolution and the linear relationship between the computational
complexity and the number of unknowns. In comparison to nonlinear iterative
methods, it is very efficient because the solution to the direct scattering problem
is not needed anymore.

• The linear model has been further considered in solving the 3-D inverse scattering
problem in a half-space configuration. By solving a cascade of a group of inverse
source problems and a linear optimization problem, lots of computation time has
been saved in comparison to the nonlinear iterative methods. The fact is that an
object in 3-D space shows higher sparsity than its projection onto a 2-D space.
The proposed linear contrast source inversion method is able to circumvent the
occurrence of false local optimal solutions when only partial measurement data
are available. The proposed method is tested successfully in a Ground Penetrating
Radar (GPR) configuration and a Through-the-Wall Imaging (TWI) configuration.
The inversion quality with both an exact and an inexact background model is
discussed and its sensitivity to the background estimation accuracy is shown as
well. Results show that this method is not only efficient but also robust with
respect to the reconstruction quality when the measurement data amount is
limited by the one-side probing configuration. In the cases where the scattering
objects extend over a large region, the influence of the regularization constraint
becomes less significant. However, this problem can be, to a very large extent,
overcome by a multi-frequency version of the proposed method.

• A multi-frequency version of the MMV-based linear shape reconstruction method
has been proposed based on the Generalized Multiple Measurement Vectors
(GMMV) model. By exploiting the frequency diversity, the proposed GMMV-
based linear inversion method shows a good inversion performance for a variety
of scatterers, including dielectric, lossy, and metallic scatterers. The exploitation
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of the sum-of-norm constraint brings a supplementary focusing effect and leads
to a higher resolving ability in comparison to the existing shape reconstruction
methods, such as LSM. In view of the resolving ability and the computational
efficiency, the proposed method looks very promising in the application to 3-D
imaging problems. Besides, the output of the GMMV-based linear method — the
estimation of the contrast sources, can be directly used for quantitative imaging if
the incident fields are known or can be modelled with a reasonable accuracy.

7.2 RECOMMENDATIONS FOR FUTURE WORK

The work presented in this thesis can be continued or considered in some interesting
topics and directions worth of studying in future work:

• The modelling of transmitting/receiving antenna radiating pattern. On one hand,
for reconstructing the dielectric parameters, the exact values of the electric fields
must be probed. Therefore, the measurement data are supposed to be interpreted
to the field values. The exact interpretation depends on the modelling of the
receiving antenna radiating pattern; On the other hand, seeking for the dielectric
parameters requires the knowledge of the incident fields. It is safe to say that the
inversion accuracy is closely related to the modelling quality of the transmitting
antenna radiating pattern.

• The estimation of the average dielectric properties of the background medium. In
an ideal homogeneous background medium, the measurement matrices (equiv-
alently, the Green function) can be analytically given. However, in some real
applications, the background is inhomogeneous and its dielectric properties are
not exactly known. Therefore, the measurement matrix must be calculated
numerically. A feasible approach is to estimate the average dielectric properties
of the background. It is also interesting to consider the idea of using self-adaptive
measurement matrices during the inversion process.

• Untangling the non-linearity of the inverse scattering problem in the data domain.
Most of the research is focused on untangling the non-linearity of the inverse
scattering problem in the inversion approaches. It is an interesting idea to think
about this problem inversely, which is to untangle the non-linearity in the data
domain. Some research work has been done [152], which shows promising results
and deserves more attention in the future.

• The sparse representation of the targets. In this thesis, we have considered
the sum-of-norm of the contrast source matrix as a regularization constraint.
Since this norm tends to generate a sparse solution, if we can find a sparser
representation of the solution in another domain, a better inversion performance
can be expected.

• The extension of the proposed methods to other approaches and applications. For
example, it is interesting to modify the already existing methods that are based on
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the “data error + state error” cost functional by considering the newly-proposed
cross-correlated error term. Or one can also apply the proposed methods to
the acoustic inverse scattering problems and test the feasibility with more real
measurement data.

• The development of a fast inversion approach. Inverting the dielectric properties
of the targets involves the calculation of the total fields, which is computationally
expensive. To promote the application of inversion techniques to solve the real
inverse scattering problems, efficient inversion algorithms need to be developed
without sacrificing too much inversion accuracy.
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THE DERIVATION OF THE STEP

SIZE IN CC-CSI

A.1 SINGLE FREQUENCY CC-CSI

First, let us rewrite the cost function CCC-CSI,`−1/2
∣∣

jp= jp,`−1+αpνp,`
as follows

CCC-CSI,`−1/2
∣∣
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(A.1)

Obviously, it can be further simplified in the form of

CCC-CSI,`−1/2
∣∣

jp= jp,`−1+αpνp,`
=

2∑
j=0

(
ap, j +bp, j + cp, j

)
α

j
p . (A.2)

Therefore, we have

αp,` = arg max
αp

{
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∣∣
jp= jp,`−1+αpνp,`

}
=−1

2
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. (A.3)

Note that
ap,2 = ηS
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∥∥2
S , (A.4)

ap,1 = −2ηSℜ
{
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p,`Φ
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jp= jp,`−1

, (A.5)

127



A

128 A. THE DERIVATION OF THE STEP SIZE IN CC-CSI

bp,2 = ηDn−1

∥∥νp,`−χMDA−1νp,`
∥∥2
D , (A.6)

bp,1 = 2ηDn−1ℜ
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, (A.7)
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and
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it is easy to obtain

αp,` =− ℜ{〈
gp,`,νp,`

〉
D

}
2
(
ap,2 +bp,2 + cp,2

) , (A.11)

where, ap,2, bp,2, and cp,2 are given by Eq. (A.4), Eq. (A.6), and Eq. (A.8), respectively.

A.2 MULTI-FREQUENCY CC-CSI

First, let us rewrite the cost function CMF-CC-CSI,`−1/2
∣∣

jp,i= jp,i ,`−1+αp,iνp,i ,`
as follows
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Obviously, it can be further simplified in the form of

CMF-CC-CSI,`−1/2
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Therefore, we have
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Note that
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and
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it is easy to obtain

αp,i ,` =− ℜ{〈
gp,i ,`,νp,i ,`

〉
D

}
2
(
ap,i ,2 +bp,i ,2 + cp,i ,2

) , (A.22)

where, ap,i ,2, bp,i ,2, and cp,i ,2 are given by Eq. (A.15), Eq. (A.17), and Eq. (A.19), respec-
tively.





B
THE SENSING MATRIX IN FREE

SPACE

B.1 2-D FREE SPACE

In a 2-Dimensional (2-D) space, the partial Maxwell’s equations can be simplified as

∂x2 Ex3 =−iωµHx1 , (B.1a)

−∂x1 Ex3 =−iωµHx2 , (B.1b)

∂x1 Ex2 −∂x2 Ex1 =−iωµHx3 , (B.1c)

and

∂x2 Hx3 = iωεEx1 + Jx1 , (B.2a)

−∂x1 Hx3 = iωεEx2 + Jx2 , (B.2b)

∂x1 Hx2 −∂x2 Hx1 = iωεEx3 + Jx3 . (B.2c)

Here, the magnetic current is not considered.

B.1.1 TM POLARIZATION

Let us first suppose Jx3 = δ
(

#–x − #–y
)
, Jx1 = Jx2 = 0, then we have Ex1 = Ex2 = Hx3 = 0, and

∇2Ex3 +k2Ex3 = iωµ0δ
(

#–x − #–y
)

, (B.3)

where, k2 =ω2εµ.
Note that the 3-Dimensional (3-D) and 2-D solutions to the equation

∇2U +k2U =−δ(
#–x − #–y

)
(B.4)
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are
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and
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respectively, where r = ∥∥#–x − #–y
∥∥

2,
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)
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2
. Then we

can simply obtain the 2-D solutions to Eq. (B.3) as follows
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B.1.2 TE POLARIZATION

Now let us suppose Jx3 = 0, we have Hx1 = Hx2 = Ex3 = 0, and(
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+∂2
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)
Hx3 +k2Hx3 =−∂x1 Jx2 +∂x2 Jx1 , (B.8)

where, k2 =ω2εµ.
For the specific case Jx1 = δ
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Using the following formula

d H (1)
n (z)

d z
= nH (1)

n (z)

z
−H (1)

n+1(z), (B.10)
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Then, the 2-D solution of the electric field can be obtained according to the following
equations
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Correspondingly, if Jx2 = δ
(
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)
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B.2 3-D FREE SPACE

First, we choose the time factor exp(iωt ), then we have
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where, #–q is the polarization of the electric dipole placed at the location #–y , and
Φ

(
#–x , #–y

)
is the fundamental point solution to Maxwell’s equations, Explicitly, for a 3-D

homogeneous space with the wave number k > 0, we have
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2.
For simplicity, we assume #–q = #–q 1 = (1,0,0) (for other orientations, the solutions

can be easily obtained by the rotation operation), then substitution of Eq. (B.18) into
Eq. (B.17) yields
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(B.19)

Further assuming #–y = (0,0,0) (for other locations, the solutions can be easily obtained
by the shift operation), we have
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Substitution of Eq. (B.22), Eq. (B.23), Eq. (B.24), and Eq. (B.25) into Eq. (B.19) yields
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Correspondingly, for #–q 2 = (0,1,0) and #–q 3 = (0,0,1), we have
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and
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respectively.
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GMMV Generalized Multiple Measurement Vectors.
GPR Ground Penetrating Radar.

LSτ Lasso.
LSM Linear Sampling Method.
LU Lower Upper.

MF-CC-CSI Multi-Frequency Cross-Correlated Contrast Source Inversion.
MF-MR-CSI Multi-Frequency Multiplicative Regularized Contrast Source

Inversion.
MG Modified Gradient.
MMV Multiple Measurement Vectors.
MR-CSI Multiplicative Regularized Contrast Source Inversion.
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MRI Magnetic Resonance Imaging.
MUSIC MUltiple SIgnal Classification.

NK Newton-Kantorovich.

PBC Periodic Boundary Condition.
PML Perfectly Matched Layer.

ROI Region Of Interest.

SMV Single Measurement Vector.
SNR Signal to Noise Ratio.
SPG Spectral Projected Gradient.
SPGL1 Spectral Projected Gradient for `1-norm minimization.
SVD Singular Value Decomposition.

TE Transverse Electric.
TM Transverse Magnetic.
TV Total Variation.
TWI Through-the-Wall Imaging.



SUMMARY

The inverse scattering problem is inherently nonlinear and improperly posed. Relevant
study, such as the existence and uniqueness of the solution, the completeness of the
far field pattern, etc., involves an abstruse mathematical theory. In our daily life, the
inversion techniques play a significant role in areas such as radar, sonar, geophysical
exploration, medical imaging and nondestructive testing. This thesis is focused on
the qualitative and quantitative reconstruction of shape and medium parameters of
scattering objects in electromagnetic inverse scattering theory.

The major contributions of this thesis are 1) the proposal of a novel cross-correlated
error term and 2) the proposal of the sum-of-norm regularized reconstruction algorithm.
The significance of the former lies in the fact that the proposed error term fills up a gap
hidden in the classical “state error + data error” cost functional. In the optimization
approaches, the data error term tends to recover the unknown properties of the objects
directly from the measurement data, while the state error term attempts to ensure
that the recovered results satisfy Maxwell’s equations in the field domain. In other
words, the solution must behave well in both the measurement domain and the field
domain. However, there is still a gap in between because the minor mismatch in
the field domain is not monitored in the measurement domain. The proposed cross-
correlated error is a constraint which tends to get the mismatch in the field domain
under control in the measurement domain. Therefore, one can say that this novel
error term revolutionizes the formulation of the minimization functional of inversion
techniques based on optimization theory. The significance of the latter is that the
proposed reconstruction scheme enables us to excavate the joint information hidden in
the formulation of multiple inverse source problems, without any significant additional
computational effort.

Although the sum-of-norm regularization is not necessarily the best regularization
constraint for some complicated scatterers, it demonstrates at least two points: 1) for
an inverse source problem, benefits can be obtained from use of different incident
fields; 2) the sum-of-norm regularization brings better resolving ability due to the joint
processing of the multiple contrast source vectors.

The research results in this thesis are also applicable to the acoustic inverse scatter-
ing problems. Application of the qualitative and quantitative reconstruction approaches
developed in this thesis to the experimental data in different areas of wave-field inver-
sion would be very interesting as future work.

151





SAMENVATTING

Het inverse verstrooiingsprobleem is inherent niet-lineair en onvolledig gesteld. Re-
levante studie, zoals het bestaan en de uniciteit van de oplossing, de volledigheid
van het verre veldpatroon, enz., behelst een ingewikkelde onderliggende wiskundige
theorie. In ons dagelijks leven spelen inversietechnieken een belangrijke rol op gebieden
zoals radar, sonar, geofysische exploratie, medische beeldvorming en niet-destructief
testen. Dit proefschrift richt zich op de kwalitatieve en kwantitatieve reconstructie
van de geometrische vorm en medium parameters van verstrooiings-objecten in de
elektromagnetische inverse verstrooiingstheorie.

De belangrijkste bijdragen van dit proefschrift zijn 1) de introductie van een nieuwe
“cross-correlated error” term en 2) de introductie van het “sum-of-norm” geregula-
riseerde reconstructie algoritme. De betekenis van de eerste ligt in het feit dat de
voorgestelde foutterm een aanvulling vormt op de vrijheidsgraad die verborgen zit in de
klassieke “state error + data error” functionaal. In de optimaliseringsbenaderingen heeft
de “data error” term de neiging om de onbekende eigenschappen van de objecten direct
uit de meetgegevens aan te passen, terwijl de “state error” term tracht te waarborgen dat
de herstelde resultaten voldoen aan Maxwell’s vergelijkingen in het velddomein. Met
andere woorden, de oplossing moet zowel in het meetdomein als in het velddomein een
geschikte oplossing zijn. Er is echter nog steeds een vrijheidsgraad, omdat een kleine
mismatch in het velddomein niet is gerelateerd in het meetdomein. De voorgestelde
“cross-correlated error” is een begrenzing die het effect heeft de mismatch in het
velddomein onder controle te krijgen in het meetdomein. Daarom kunnen we zeggen
dat deze nieuwe foutterm een omwenteling teweegbrengt in de formulering van de
minimalisatie functionaal in inversietechnieken op basis van de optimalisatietheorie.
Het belang van het laatste is dat het voorgestelde reconstructie schema ons in staat stelt
om de gezamenlijke informatie die verborgen is in de formulering van meerdere inverse
bronproblemen op te diepen, zonder enige significante additionele rekenkracht.

Hoewel de “sum-of-norm” regularisatie niet noodzakelijkerwijs de beste regularisa-
tiebegrenzing is voor sommige gecompliceerde verstrooiers, vertoont deze ten minste
twee verbeteringspunten: 1) voor een invers bronprobleem kunnen voordelen worden
verkregen door het gebruik van verschillende invallende velden; 2) de “sum-of-norm”
regularisatie leidt tot een beter oplossend vermogen als gevolg van de gezamenlijke
verwerking van de meervoudige contrastbronvectoren.

De onderzoeks-resultaten in dit proefschrift zijn ook van toepassing op akoestische
inverse verstrooiingsproblemen. Toepassing van de kwalitatieve en kwantitatieve recon-
structie technieken die in dit proefschrift zijn ontwikkeld op de experimentele data in
andere gebieden van de inversie van golfvelden zou zeer interessant zijn als toekomstig
onderzoekswerk.
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