
 

CFD Acceleration 
for Perforated 
Monopile Design 
Machine-learning based methods  
to accelerate design optimization  
of perforated monopiles 

Ruben Dekeyser 

For the TU Delft MSc in Offshore & Dredging Engineering (SDA)  

D
el

ft
 U

n
iv

er
si

ty
 o

f 
Te

ch
n

o
lo

gy
 



CFD
Acceleration for

Perforated
Monopile Design

Machine-learning based methods to accelerate
design optimization of perforated monopiles

by

Ruben Dekeyser

to obtain the Master of Science degree in
Offshore & Dredging Engineering

(Track: Structural Design and Analysis)
at Delft University of Technology,

Author: Ruben Dekeyser (student ID: 4804252)
Thesis committee: Dr. Oriol Colomés Gené TU Delft, Chairman & supervisor

Dr. Alexander Heinlein TU Delft, supervisor
Prof. Dr. Andrei Metrikine TU Delft, quality control
Dr. Eliz-Mari Lourens TU Delft, cum laude supervisor
Ir. Jan Modderman TU Delft, supervisor
Ir. Marco Vergassola TU Delft, supervisor

Project Duration November 2022 – June 2023

Cover picture: Oil & Gas Today, 2020
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Preface

This thesis was written in order to obtain the Master of Science degree in Offshore & Dredging Engineering (Track:
Structural Design and Analysis) at Delft University of Technology. The goal is to get a solid understanding of the
possibilities that Julia (Gridap.jl) based finite element methods for CFD provides in order to understand the mechanics
of turbulent fluid flow around perforated offshore wind turbine monopiles, and to which extent surrogate, machine
learning based, models can help in optimizing calculation costs. The report is written for readers who are looking for
a mainly technical analysis of the problem, and the associated computational challenges and opportunities.
The thesis was written under the supervision of Dr. O. Colomés, as well as Dr. A. Heinlein, Ir. J. Modderman and Ir. M.
Vergassola.

Ruben Dekeyser
Delft, 2023
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Abstract

To meet global green energy targets, the bottom founded offshore wind industry is looking for ways to economically
expand markets to deeper waters. A reduction of the hydrodynamic load is necessary to achieve this. One option is to
perforate the monopile around the splash zone. Here the related work of Q. Star (2022) is continued through the
implementation of a 2D Navier-Stokes based LES CFD model with VMS closure in Gridap.jl. The numerical
simulations are gathered to create a dataset on which a machine learning surrogate model is trained. The analysis
does not include secondary design aspects such as manufacturing, installation, noise mitigation, scour, corrosion,
acidification, or marine growth. Neither does it require secondary fluid phenomena such as 3D simulations, FSI, VIV,
and fatigue.
Analysis of 2D perforated cylinders, built up parametrically using the wall thickness, angle of attack, diameter, inflow
velocity, number of perforations and porosity as input parameters shows that the first two are of negligible influence,
and number three and four can, at least for their mean values, be modelled accurately using Morison equations. A
non-scaled diameter does prove important in reducing the random nature of frequency-based effects. The number
of perforations and the porosity provide complex interactions both from a design-force mean and variability
perspective, as well as for the frequencies and vibrations they generate. A 2D LES-VMS model gives the perfect
trade-off between cost and accuracy, predicting a possible drag reduction of more than 50% compared to a closed
cylinder with large diameter.
Different machine learning surrogate models are analysed with the goal of massively speeding up the analysis in the
future. This is achieved by a factor of 350 thousand using Random Forests, Gaussian Processes and Neural Networks.
Although the Gaussian Processes preliminary show the best accuracy, below 6% error for millisecond predictions,
further work on Neural Networks could give them the upper hand in future analyses.
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1
Introduction

In a changing geopolitical climate the need for self-sufficient, green energy generation has become a major point of
focus. Offshore wind energy is one of the key drivers in this process. As of December 2021 the worldwide offshore
wind capacity is around 56 GW (Statista, 2022), with 28 GW installed in European waters (Wind Europe, 2021). 81% of
these wind turbines are installed on monopile foundations. Additionally the EU has pledged to increase its capacity
to over 300 GW by 2050 (European Commission, 2022; Wind Europe, 2021). This ambition includes foreseen
problems with economic exclusion zones, in the Netherlands limiting the allowable development area to just 4% of
its national waters (Samira Keivanpour, 2017), and including a 30 km-to-shore logistics limit. Also internationally the
offshore wind energy market is getting more and more traction with the Biden administration for example having
pledged 30 GW of installed capacity by 2030 (US Department of Energy, 2021). Developments in the far-east are
bound to follow soon as well.

One of the main challenges of new developments are the issues associated with moving further offshore and into
deeper waters. The worldwide potential is estimated to be 10 times the current worldwide energy demand when
disregarding depth related issues (Wind Europe, 2021). This assumes the availability of floating wind options. Other
sources go even further stating that the energy demand can be met with depth limits of 60 m within 60 km from the
nearest shoreline (IEA, 2019). Technical limitations to go fully green then follow from production facilities and
financial aspects. Current short-term production of monopiles has box limits of around 2500 tons of weight, 120 m of
single-tube length, 15 m of diameter and 250 mm wall thickness (Steelwind Nordenham, 2022; Davis, 2019). Lifting
vessels have similar boundaries. Financial limitations are driven by the increasing cost for deeper and larger
foundations, where floating options are expected to become interesting for large scale investments from a LCoE of
60$/MWh or lower, which is unlikely to happen in the near future (ORE Catapult, 2021; Merrifield, 2018). Especially
for deeper waters the foundation structure becomes a major cost driver contributing, depending on the source,
between 8 and 15% to the LCoE (Jeanne Yacoubou, 2022; Wang et al., 2018; Lozano-Minguez et al., 2011), with scaling
often following an exponential relation of factor 2.3. Andersen et al. (2020) additionally state that for traditional
monopile designs the costs become uneconomical at 50 m of water depth, with depths of up to 60 m then still being
eligible for jacket and tripod structures. However their manufacturing process is labour heavy, increasing their cost
significantly.

It becomes clear that in order to economically increase the offshore wind capacity the cost of bottom founded
turbines for deeper waters should be reduced. The generally cheapest and most used option, namely monopiles,
suffers from large hydrodynamic loads in deeper waters, eventually requiring so much steel weight that they become
unfeasible, both technically and financially. In order to reduce this hydrodynamic loading Andersen et al. came up
with a perforation concept, as shown in Figure 1.1. They proved that for high Keulegan-Carpenter-number designs
over 20% reduction of the hydrodynamic loads could be obtained. Following this idea the TU Delft Offshore
Engineering Group continued with conceptual work on the design by van der Ploeg (2021) and modelling options by
Star (2022). The latter work forms the basis on which the expansion of the upcoming thesis is built. The goal of the
perforations is to reduce the hydrodynamic loading more than what one loses in structural rigidity from removing
material and introducing stress concentrations around the perforations. The end question is: “Can we move to
deeper waters with less material?”, since this is the main cost driver and indicates the general design limitations.
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Figure 1.1: Perforated monopile concept (Andersen et al., 2020)

In this thesis the first goal is to get a better understanding of the fluid mechanics surrounding these perforated
monopiles. To prevent the computationally expensive modelling that comes with the CFD (Computaitonal Fluid
Dynamics) simulations having to be redone in the future, the second goal is to provide a surrogate model that can
still grasp the most important aspects of the fluid simulations, at a fraction of the CPU-cost.
The research method for this thesis will be purely theoretical and computational, disregarding any form of physical
experiments. The concrete results should answer the research questions, with a road map on how to apply the results
in real world practice. The main question to be answered in this thesis is:

How can we apply surrogate models to reduce the CFD calculation cost of deep-water
perforated monopiles in offshore wind turbine design?

This question can be solved through the use of three subquestions:

1. Which design aspects and hydrodynamic effects are important in the determination of hydrodynamic loads on
perforated monopiles?

2. How can we apply Gridap.jl to accurately capture the fluid flows and pressure-force relations surrounding
perforated monopiles?

3. How can we apply machine learning as a surrogate model for improving the calculation cost over Gridap.jl based
CFD calculations?

From the initial introduction here in Chapter 1 the outline of the required topics to be studied already comes
forward. Firstly the hydrodynamic optimization should be correctly placed within the full wind turbine design
process and all of its related aspects. This is done in Chapter 2. The same chapter also gives a deeper understanding
of the hydrodynamics, and mainly turbulence effects which are at play. After that the second subquestion is
answered in Chapter 3. A deeper dive is made into the application of Gridap.jl for the design issues at hand, together
with an overview of results which can be directly applied in engineering practice. To eventually speed up the lengthy
simulations different surrogate models could be used. The options and their practical application are looked into in
Chapter 4. A recommendation is made on which model to apply for further work, and how to apply it. The work is
concluded in Chapter 5. Additionally a short discussion will be added on missing literature which falls out of the
scope of this thesis report, together with recommendations for future research.
All these concepts essentially come back in Figure 1.2, where the conceptual links, general procedural outlines and
implementation questions are highlighted.



1. Introduction 3

Figure 1.2: Calculation and workflow outline
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2
Calculation, Design and Fluid schemes

In this chapter the general outline of the offshore wind turbine design process is given (Section 2.1). The focus lies
on the place of hydrodynamic load optimization and the factors contributing to that. Additionally some different
options for fluid modelling are discussed in Section 2.2. Both sections show which elements are, at this stage, relevant
and which are not. This includes a deeper mathematical dive into the application of the here best-chosen model.

2.1. Offshore wind support structure (OWSS) design
Offshore wind turbines are built up of three main parts: The rotor, the nacelle, and the support structure. The last
of these three can be split in the tower and the foundation or substructure, the latter often defined as starting from
the waterline down to the seabed, and even containing the structure’s foundations below the seabed. To connect the
tower to the substructure a transition piece (TP) is often used. This TP allows boat landings and facilitates connection
and force transfer, mainly overturning moment and weight of the rotor, nacelle and tower, to the foundation, which
runs through the water and into the seabed. The hydrodynamic loads act on the region of the foundation from the
water line down to the seabed.
This is visualized in Figure 2.1.

Figure 2.1: Wind turbine component overview (Jaax, 2016)
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2.1.1. Primary OWSS design considerations
Morison and force determination
The hydrodynamic loads on monopiles are a consequence of constant velocity current and variable velocity wave
flow (Journée and Massie, 2008). Simplifying the circular wave motions to a horizontal flow the hydrodynamic forcing
can be calculated in a number of different ways. Other than doing physical or numerical experiments, theory-based
approaches based on diffraction theory are also possible. More often however design follows the vision of “close
enough is good enough”, and so design standards are based on the Morison Equation, which has an empirical basis
through the use of drag and inertia coefficients (Sumer and Fredsoe, 2006; Chakrabarti, 2005).
The Morison equation reads:

F =CMρ
π

4
D2u̇ +CD

1

2
ρDu|u| (2.1)

with ρ, D and u being the fluid density, pile diameter and flow velocity respectively. A similar approach can be used for
the lift determination. The Keulegan-Carpenter (KC) based inertia (CM ), drag (CD ) and lift (perpendicular to flow, CL)
coefficients can be seen in Figure 2.2. Some flow regimes do allow one of the coefficients to be neglected, but general
design procedures provide box rules for their applications. When deleting some constant terms, the main value that
we are looking for in the, for monopiles at high Reynolds numbers, drag-coefficient is 0.2.

(a) CM (b) CD

(c) CL

Figure 2.2: Morison coefficients for a smooth cylinder (Chakrabarti, 2005)

The combination of waves and currents is mainly important in the wave-affected region. As depth increases the
influence of wave motions approaches zero. The North Sea is one of the most used water areas for offshore wind
(IEA, 2019). While being a current- and tidal-sensitive water body, she only experiences a maximum of around 2.4 kts
or 1.3 m/s of current (Waterkaart.net, 2023). Wave motions on the North Sea, assuming Airy waves and thus using
orbital velocities of umax = 2πa

T , with a the wave amplitude and T the period in seconds, can give flows of up to
5.36 m/s (O’Boyle et al., 2015). This indicates that any optimization of hydrodynamic forces can best be performed
around the waterline or splash zone, since the waves provide the highest loads, especially considering the quadratic
velocity relations in Equation 2.1. If optimizations are to be done in the splash zone, it could be possible to include
optimization-techniques not in the monopile itself, but rather in the transition piece. The main loading in this splash
zone additionally indicates that the structural weakening from perforations or similar hydrodynamic force reduction
solutions may be acceptable since the critical overturning moments will only come up below the heavily wave loaded
area.

Structural considerations
Once the loads have been determined the structural analysis can begin. However, when including fluid-structure
interaction, this becomes an expensive, iterative process since the Morison equation relies on relative flow velocities.
In most design standards the structure can be assumed rigid. Simplified structural models are most often based on



2. Calculation, Design and Fluid schemes 6

Rayleigh Stepped Towers (Hermans and Peeringa, 2016). For deep water applications this simplification is in good
accordance (<4% error) with elaborated FEM models (van der Ploeg, 2021). For the remainder of the thesis the
structural modelling of perforated towers lies out of the scope. However structural considerations will be taken into
account when further determining relevant perforated designs in order to smartly allocate computational resources.

Expected results from previous work
The focus here lies on the perforated monopile concept as introduced by Andersen et al. (2020), shown in Figure 1.1.
Alternative concepts for exploration of deeper waters for wind energy, such as the variety of floating concepts or
tri-piles, are omitted. The Andersen concept has experimentally shown a reduction of the hydrodynamic load
compared to a closed cylinder is possible of up to 20%, with even more reductions foreseen for higher KC numbers.
The experiments were carried out in irregular wave basins and compared to the experimental and theoretical
(Morison) closed-cylinder results. The last two were within a few percents of each other, well within the
measurement uncertainty.

The concept was more practically looked into by van der Ploeg (2021) who, using 0-120 m water depths, determined
that fatigue limits would be critical for both traditional and perforated monopiles. Using CFD modelling and
structural analysis he showed a possible increase of monopile foundation depths to 87 m under DNV design rules. At
this point the foundation would contribute up to 25% of the turbine costs. It was shown that a 27% weight and 17%
cost reduction could be obtained compared to the non-perforated variants at the same depth. One of the other key
conclusions of the hydrodynamic design was to avoid resonance and to adapt the structure so that the first natural
frequency would lie around the 0.2 Hz mark. This frequency is one to pay attention to in further hydrodynamic and
turbulence analysis. Structurally he showed the stress concentration factor and dynamic amplification factor to
contribute to stress increases by a factor of 3, assuming a damping of 5%.

The main line of work on which this thesis is built is that of Star (2022). Instead of using OpenFOAM or other prebuilt
solvers the focus was to develop a FEM CFD model in Julia using the Gridap.jl package. The applied flow theory used
was Stokes creeping flow, which disregards inertia and turbulence. The advantage is the linear nature, which speeds
up calculations. Accurate Stokes flow only applies to low Reynolds number situations. However, this is not the case
for XXL monopiles. It is mentioned that the use of this model as an initial condition for more elaborate solvers could
reduce the number of iterations needed, thereby reducing the computation time. This will be implemented in the full
transient solution later. The CFD database he created, based on parametric design of the perforated monopiles
(diameter D , number of perforations n, porosity β) was used to train a CNN surrogate model. An additional design
parameter was the angle of attack of the first perforation α. For n ≥ 4 this was found to not be of influence. Since the
indicated design by Andersen et al. said that low numbers of perforations would be too structurally inefficient, this
constraint will most likely not pose any problems. However, this should be verified in more complex, transient flow
simulations.
The linear calculations showed hydrodynamic reductions of up to 40% for large values of β and n ≥ 3. The surrogate
model sped up the calculations by a factor of almost 400 (386), which is expected to increase even further for
turbulence-inclusive models.

2.1.2. Secondary OWSS design considerations
The secondary design considerations are design aspects which, following a variety of literature, are of influence in
hydrodynamic load optimization, but which are not key-determinants. For full scale design they should be taken into
account. Most design aspects are even legally required to be considered to obtain official design approval and
certification. However, in this proof of concept phase the following considerations can be excluded in force
determination projects. Some of these aspects are currently being studied in parallel theses at TU Delft.
For now we can disregard:

• Manufacturing: size limitations, wall thickness optimization, lifting capacity, hole-cutting solutions

• Installation and noise mitigation: hammering techniques, buckling prevention, up-ending schemes, dbA
limitations

• Scour: horseshoe vortices with perforations, DNV updates for XXL piles, temporal evolution modelling using
RANS or LES

• Corrosion and acidification: sustainability concerns, longevity

• Marine growth: wall roughness and turbulence, detrimental steel effects, hole-reduction in oxygen rich splash
zones
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2.2. Fluid modelling for monopiles
The perforated monopiles will have large amounts of water passing through them. It is expected that this flow will
be nonlinear and nonlaminar. A complex interaction of eddies and vortices similar to the flow through an orifice
meter or a double-sided submerged jump is likely. To solve these vortices, not only a flow equation will be needed,
but turbulence modelling will make up the bulk of the required work. To model this the Navier-Stokes equation, only
requiring assumption of a Newtonian and non-compressible fluid, is most common (Elger et al., 2016). To this day, no
closed solution in 3D has been found. This makes that even numerical solvers rely on varying degrees of simplification.

2.2.1. The correct simplification fluid model
There are five main ways of modelling fluids, with increasing amounts of computational cost. This is shown in
Figure 2.3a.

1. RANS: Reynolds Averaged Navier-Stokes
By averaging small scale pressure and velocity fluctuations the technique gets rid of some nonlinear effects
(Reynolds stress). Lower order turbulence models (closure models) use kinetic energy to solve the unresolved
terms (k −ω or k − ϵ). The technique assumes that the unresolved scales only contribute marginally to the
overall flow, following the Kolmogorov energy cascade. This is visualized in Figure 2.3b.
As a drawback, RANS solvers are known to be mathematically inaccurate for reversing flows (Launder and
Spalding, 1974). In engineering this excludes them from detailed modelling of flows with Reynolds numbers
over 1 million (Duan et al., 2019). For a 1 m/s water flow this thus excludes any and all cylinders with a
diameter exceeding 1 m: Re =U ·D/ν with ν= 1e-6 being the dynamic viscosity of water .

2. URANS: Unsteady RANS
A RANS adaptation better suited for periodic effects or moving structures.

3. DES: Detached Eddy Simulations
A RANS solver with LES-solved cells near the boundary layers.

4. LES: Large Eddy Simulations
The flow field is split into a resolved and unresolved part using a certain kernel filter (Deardorff, 1970). A lower
order sub-scale-model approximates the flows within the cells. LES can solve actual turbulence, but it comes
at a computational cost over RANS. Closure models depend on empirical relations or, more recently, numerical
artefacts.

5. DNS: Direct Numerical Simulations
This is the most accurate but also most expensive simulation type. All time and spatial scales are resolved. No
turbulence model is used (Orszag, 1970). However DNS modelling is not often used in full scale engineering
applications due to the cubed scaling of computational costs for increasing domain sized or mesh refinements.

(a) Computational cost comparison for different fluid models (b) Energy level in turbulent fluid flows

Figure 2.3: Fluid modeling technique comparison (Ideal Simulations, 2020)

Which one is the right solver depends entirely on the application of the model to be made. Ideally results should
be compared using multiple solvers. For engineering RANS is generally sufficient. However, in case of questions
concerning actual turbulence the eddy-viscosity closure models from RANS are unreliable. LES is then needed for
its added accuracy and relative cheapness compared to DNS. While combination techniques such as DES or newer
developments such as, for now less accurate, RSM could be applied as well, LES is the safest choice for this study.
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2.2.2. LES details and application
The LES simplification is based on filtering certain smaller effects and simplifying the solutions of the filtered,
non-resolved, sub-scales. Filtering can be done implicitly or explicitly. Explicit filters are built into the Navier-Stokes
equation directly using a specific kernel function G . The most known is the box filter, filtering eddies smaller than a
given size. The filter cutoff is immediate through the use of a Heaviside function. Alternatively a normalized
Gaussian filter can be applied. While the continuous bell-shape can give better stability in the domain the
computational cost is also considerably larger (Greenshields and Weller, 2022). More often however implicit filtering
takes place through the selection of the grid size. Grid-size filtering is in essence the implicit variant of box filtering,
cutting off any and all effects that take place within a single cell (φ′). The non-filtered flows φ̄ are than the only
resolved ones. In formulas this becomes:

φ(x, t ) =φ(x, t )+φ′(x, t ) =
∫ ∞

−∞

∫ ∞

−∞
φ(r,τ)G(x− r, t −τ)dτdr+φ′(x, t ) (2.2)

withφ the full spatial and temporal flow field, x the spatial coordinate and t the temporal one. G is the kernel functio:n

G(ζ) = 1

∆
H

(
1

2
∆−|ζ|

)
(2.3)

with ∆ the filter size, implicitly equal to the grid cell size, and H being the Heaviside function. In practice G can be
expanded to include the time with cutoff time scale τc as well.

Once the small effects (φ′) have been filtered out the Navier-Stokes equation will have difficulty closing, having no
stable solution. For this a closure model is needed. These are mostly based on empirical relations. Originally
Boussinesq proposed the use of eddy-viscosity models (Launder and Spalding, 1974). These were adapted by Prandtl
to convey the concept of “turbulence added viscosity”. Physically this adds a mixing length and boundary layer for
wall-bounded flows (Prandtl, 1928). With the rise of numerical simulations these were expanded even further. The
most commonly used closure models are:

• SL (Smagorinsky-Lilly)
Determines effective viscosity based on the Smagorinsky constant Cs .

• DSGS (Dynamic Subgrid Germano Scale)
A modification of SL to dynamically vary the Smagorinsky constant Cs based on a grid and test filter function. In
1992 Lilly again adapted the method using a least-squares approach in order to improve accuracy (Lilly, 1992).

• WALE (Wall-adapting local eddy viscosity)
Similar to SL this is a constant-based approach using the strain tensor values.

WALE theoretically combines accuracy with additional physical basis (Lilly, 1992), and is, from literature therefore
regarded as one of the best choices in this case. This should however be verified by numerical tests.
Important to note is that, due to local refinement in CFD programs, the near-wall cells are often very small. This
reduces the closure efficiency, especially for SL models. The solution for this is to adapt a filter length scale using
either Van Driest damping or a Zonal Layer approach. This way the turbulence induced viscosity remains
non-asymptotic.

Newer applications of closure models use numerical artefacts. The most known is the EMAC form, which uses energy
and momentum conservation properties (Varela et al., 2022; Charnyi et al., 2019). This work got picked up to improve
energy dissipation in finite element calculations specifically (Lehmkuhl et al., 2019). Most numerical stabilization
schemes use the Variational Multiscale Method. However the upwind numerical stabilization introduces
nonphysical damping. To solve this, new energy-conserving numerical scheme had to be made (Charnyi et al., 2019).
This makes use of estimated eigenvalues in order to calculate the optimal time step for the numerical integration.
The scheme thus uses a fractional time step. This method focuses on the pressure equations, since velocity accuracy
is not affected.
A similar approach has been developed by Colomés et al. (2015), focusing on ILES (implicit LES). They found that, for
sometimes questionable convergence, the computational cost is comparable to simpler LES closure models but the
accuracy and numerical stability is increased. For turbulent channel flow, most representing the expected CFD
simulations this thesis uses, the most efficient and stable method was found to be “orthogonal subscales”
(Dyn-Nl-OSS), generating results almost identical to DNS. Follow-up research into the stabilization showed that the
stabilization parameters c1, c2 and cc are best taken as 12, 8 and 32 respectively (Colomés et al., 2016).

A selection of the models described above will be implemented and tested for further research in the coming sections.
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2.2.3. Secondary hydrodynamic flow effects
As should be clear by now, numerical fluid modelling is a constant trade-off between computational cost and accuracy.
In light of the research question, some ways to cut costs to increase accuracy are to exclude certain effects and design
choices, of which a list is provided.

1. 3D modelling
For cylindrical structures 2D sections have been proven to be very representative in dimensional scale-ups
(Nguyen et al., 2021; Alagan Chella et al., 2019; Bianchini et al., 2017; University of Strathclyde, 2015).
Conversion rules for 2D to 3D Morison coefficients are available in the mentioned literature, or can be
generated by comparing coarse to fine 2D (cheap) results, and projecting them onto 3D coarse results in order
to predict the 3D finer mesh outputs (expensive). Either way for conceptual design of novel concepts a 2D
simulation should prove sufficient and useful for further large-scale design.

2. FSI, VIV and resonance
Different sources state different levels of relevance for the inclusion of hydro-elastic calculations for XXL
monopiles (Gupta and Basu, 2020). Most sources advise one-way coupling from relative inflow velocity,
without changing the flow around the moving structure (Taylor, 2007). For detailed design other, more recent,
sources say to always include FSI, especially in later design stages or for ice loading (Y. Liu et al., 2022). This is
because some monopiles simulations and physical experiments have shown dynamic amplification factors of
19-34% (Tödter et al., 2021; J. Zhang et al., 2010). The former does state that the DAF (Dynamic Amplification
Factor) for surface-piercing cylinders can be considerably lower than the just indicated range. This is explained
through multi-phase effects of the free-surface and damping because of that. Still the here proposed 2D
simulation would not be influenced by these free-surface effects, making DAF of up to 34% a number to keep
in mind if FSI were to be applied in the future.
When FSI is excluded, this closes the door to accurate research into Vortex Induced Vibrations (VIV) and
resonance. As a prediction the induced turbulence from the perforations themselves will most likely reduce the
VIV amplitude, like helical strakes would.

3. Fatigue effects
This is omitted in this fluid focused research, especially since fatigue is closely related to FSI, VIV, and vibrations
in general. Possible issues include residual stresses from the cutting processes of the perforations, influence
of marine life, inadequate fatigue or marine standards for the used weld or cut types, ... At this moment most
research of fatigue on perforations only looks into small (mm order) perforations. Their relevance for monopile
(m order) perforations remains questionable, and could provide interesting research in the future.
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3
Numerical modelling of fluid flow

In this chapter the implementation of the previously discussed fluid solvers is covered in more detail. Section 3.1
explains the software that is used and how the domain is set up. It forms the theoretical basis for Section 3.2 where the
domain is optimized and the results are validated. Lastly Section 3.3 discusses the engineering relevance and trends
of the performed simulations as a whole.

3.1. Fluid modelling implementation: Gridap.jl FEM and LES-VMS
3.1.1. Gridap.jl FEM solver
With knowledge of the effects to model from Chapter 2, the next step is to define the numerical scheme with which the
solution can be calculated. In this thesis the original assumption or approach was to use Gridap.jl, a Julia based Finite
Element Modelling (FEM) package. While other solver schemes for the Navier-Stokes equation exist, FEM proves to
be the most versatile and widely applicable for perforated monopiles from the ones considered. Below is a short
expansion on this finding.

• VOF and FVM
Volume of Fluid (VOF) models fluid motions based on the Navier-Stokes equation as a function of the liquid to
air ratio in each grid cell, and the related pressure and velocity field (Wellens, 2012). The donor-acceptor scheme
is mostly focused on free surfaces, and is known to be unstable for larger time steps, so close monitoring of CFL
limits is required. Additionally VOF is, due to its embedded structure, less suitable for inclusion of FSI effects
(Méchartes, 2021), although recent developments at Deltares in the ComFLOW solver have shown promising
results (Deltares, 2018).
Similar conclusions can be drawn for FVM (Finite Volume Methods).
Both VOF and FVM are unable to include higher order elements, limiting their numerical accuracy for complex
shapes.

• SPH
Solid Particle Hydrodynamics tries to model fluid as a set of solid, elastic particles (Hu and Han, 2017).
However, SPH has become slightly outdated due to the limited ability to include multi-phase flow, which
would be required when updating the perforated simulations to 3D free surface cases.

• FD
While being generally beneficial for understanding numerical phenomena, the simple Finite Difference method
is less often applied in CFD calculations due to its limitation to include complex shapes (Guan and Liu, 2018).

• DG
The Discontinuous Galerkin method combines elements of FD and FEM, with many successful applications in
fluid mechanics (Arnold et al., 2001). The method has been on the rise for LES solvers in the last decade due to
its accuracy and energy-accurate predictions (Fernández et al., 2018). However, the method application is often
computationally expensive. While implementations for GPU usage exist, for most CPU based calculations there
is little added benefit over FEM itself. Because of the velocity-pressure coupling in incompressible Navier-Stokes
calculations there is a need for iterative solutions to the system matrix, increasing the computation times. When
increasing the order of the formulations the number of degrees of freedom explodes. Additionally there is no full
solution found for accurate implementation of diffusion terms, meaning that the DG method is not yet optimal
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for transient problems. A solution to the expense of implicit matrix inversion for these large matrices could be
to use a more explicit scheme, but often the CFL (time step) limits that this imposes makes DG methods for
transient problems inefficient (Manzanero et al., 2018).

• FEM
Finite Element Modelling is the most complicated and elaborate option described. However, with its complexity
comes flexibility as well (Guan and Liu, 2018). For CFD an FEM approach provides the most all-round options,
with relatively easy inclusion of FSI, multi-phase flows, and 2D to 3D scaling (Cadence, 2022). Additionally it is
the best option for complex shapes, which is one of the main reasons why it is suited for research into perforated
monopiles.

Like mentioned before the FEM solver of choice in this case, as a starting assumption or prerequisite of the thesis
project, is Gridap.jl. The Julia based solver and its open source nature allow one to adapt the source code if needed for
stability or accuracy purposes (Verdugo and Badia, 2022; Badia and Verdugo, 2020). For a new development such as
perforated monopiles this feature is of key importance since chances are that no direct implementation in Gridap.jl is
possible. The choice for this specific Julia based Gridap.jl solver can be additionally justified because of three reasons:

1. “Gridap.jl provides a set of tools for the grid-based approximation of partial differential equations (PDEs) written
in the Julia programming language (Badia and Verdugo, 2020).” This means that while the focus here will lie on
CFD, the tools are intrinsically capable of incorporating structural effects as well. This model scaleability is the
main reason to use Gridap.jl. This limits the need for crossover-software, as is often the case for other models or
software packages (OWF Alpha, 2022; Mendoza et al., 2022; Murphy et al., 2018; Hermans and Peeringa, 2016).
Especially for post-processing or surrogate modelling this can become useful.

2. The Julia language itself provides a large potential of becoming a widely used scientific programming language
due to its Python-like user-friendliness and its FORTRAN and C-languages speed (Soleimani et al., 2022).
Earlier tests showed execution times 1.2-1.5 times greater than C, with Python lagging behind at 9-10 times the
computational cost of a compiled C-language (Suryad, 2022; Christianson, 2020).

3. In order to build on previous work at TU Delft, done in Gridap.jl, the continuation using the same packages is
logical. Although TU Delft often uses Plaxis3d for FEM simulations (Murphy et al., 2018), the added work to a
young open source package has additional benefits for the scientific community.

3.1.2. Internal definitions for the calculation scheme
Domains and boundaries
The domain is visualized in Figure 3.1. This domain forms the basis of all the simulations made and used in this thesis.

Figure 3.1: Updated domain visualization in 2D

Domain shape
The general domain shape used in CFD simulations is rectangular (Ideal Simulations, 2020; Duan et al., 2019;
Bianchini et al., 2017; Walters et al., 2013; Wellens, 2012). This will be used here as well because of the easy definition
and meshing references, as well as the better links to alternative research for validation purposes.
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Inflow
Flow around cylinders requires a fully developed flow at the location of the intersection. While often parabolic
(Poiseuille) inflow conditions are used, here a constant uniform inflow makes more sense when looking at the
open-ocean area where monopiles are usually found. The flow velocity definition makes this a Dirichlet boundary,
mathematically defined as:

V⃗i n =
[

Vi n

0

]
(3.1)

where Vi n is a constant scalar. To ensure the uniformity of the inflow the length from the inflow boundary to the
monopile must be large enough. Since this comes at a computational cost, this inflow length will be optimized in the
validation phase from an initial 1 diameter distance.
Later steps both in 2D and 3D would require the introduction of time-dependent inflow and outflow control with the
idea of simulating periodic wave motions in deep waters.

Outflow
The outflow boundary is defined as a Neumann boundary which imposes a zero pressure gradient at the domain end
(Flow3D, 2022; Kim et al., 2014). This boundary condition is defined through the last term of the weak form, as
shown later in Equation 3.13. For non-periodic inflow conditions no damping schemes are required.

Domain Walls
With the uniform inflow the wall conditions are predefined as Dirichlet bounds which set the fluid velocity at the
boundary to the inflow velocity in x-direction, while still keeping the cross-current y-velocity set to 0 (Haiderali and
Madabhushi, 2012):

V⃗w all =
[

Vi n

0

]
(3.2)

Depending on the applied LES closure model, some simulations perform better with the wall-outflow corners
considered at the Dirichlet wall, or in the Neumann outflow bound. Verification of the origin of instability in
simulations which crash or give faulty results is required to check that the instability does not originate from a
numerical fault in these two corner points.
As a side note, it must be said that in a real life application this boundary condition is not completely accurate. In
open seas the water would be able to cross this virtual bound in y-direction, so a velocity-inducing Dirichlet bound in
x-direction with a free traction Neumann bound in y-direction would be physically more correct. However, as to not
over-complicate the boundary models, which would increase the computational cost even further, it makes sense to
assume a full Dirichlet bound in both directions, and to assure that the domain is wide enough so that the y-velocity
constraint is not a key factor in determining the overall fluid flow. In the future it could be interesting to re-run some
simulations with these adapted boundary conditions, and to see whether or not a computational gain can be made
from a narrower domain with these Dirichlet-Neumann combined walls.

Structural Walls
Like mostly used for domain boundaries, the structural boundaries from the monopile and its perforations will be of
the no-slip, no-penetration Dirichlet type:

V⃗mp,local =
[

0
0

]
(3.3)

For the rounded monopile surfaces it is important that the directions of these two conditions depend on the location
and orientation of the element surface on the structure. This means that in general no immediate relation can be
made between the in- and cross-flow direction, as can be done for the side walls (Greenshields and Weller, 2022; Elger
et al., 2016). The monopile is placed in the centre of the domain width.

Monopile definition
The original parametric cylinder was based on the number of perforations, angle of attack, and porosity (Star, 2022).
This idea will be continued here with some minor changes. In the original work the angle of attack was found to be of
no influence. However, this conclusion will be verified in this thesis.
The parametric design has now been set up with model expansion in mind. This means that the initial parameters
allow full 3D definition and scaling of the cylinder. Cylindrical coordinates are needed rather than radial ones. Almost
all parameters are made to scale with the diameter, and rely on internal relative factors otherwise. This ensures easy
and automatic scaleability in the future. A visual overview can be seen in Figure 3.1 and Figure 3.2, with the numerical
explanations and design space boundaries in Table 3.1. In these figures and table the 2D relative scaling is explained
as well.
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(a) 3D (b) 2D

Figure 3.2: Parametric cylinder sketch

Table 3.1: Parametric cylinder definition

2D
Parameter Symbol Determination (Factor) Design values # samples
Diameter D - D = 8,9, ...,12 [m] 5
Wall thickness t t = D

Rt
Rt = 80,90, ...,120[−] 5

Sector angle α α= 2π
n n = 3,4, ...,20 [-] 17

Horizontal opening b b = D ·β/2 ; Rβ = 0.1,0.2, ...,0.9 [-] 9
β= Rβα

Total: 3825
3D

Parameter Symbol Determination (Factor) Design values
Vertical opening a a = Rab Ra = 1.1,1.2,1.3,1.5, ...,6.5 [-]
Row rotation γ γ= Rγα Rγ = 0.1,0.2, ...,0.5
Row separation ∆ ∆= R∆a R∆ = 1.1,1.2,1.3,1.5, ...,6.50 [-]

A few notes must be made on these definitions:

• The unique variables at the basis of the parametric design are thus D,Rt ,n,Rβ,Ra ,Rγ,R∆. The angles are given
in radians. The angle of attack then requires a separate definition, but it does not really change the cylinder
design itself.

• The horizontal opening b is defined along the original circular curvature. It is therefore not the straight line
distance (chord length) of the opening. This is done to facilitate porosity calculations. For large values of n the
differences will be negligible. The formulation follows from:

n ·b = Circumference ·Total opening angle ratio =πD · β ·n

2π
= n · D ·β

2
(3.4)

• The porosity, often called by the symbol β, would be Rβ in case of the 2D designs. For the design the change in
notation was done to keep uniformity in the Greek indicated angles and the R indicated ratios. In later
plotshowever simply β will be used. In 3D this would become, using an along-the-curve opening-area
approach from the middle of one horizontal perforation row to the middle of the next, substituting a,b,∆ to
obtain the basis variables:

Rβ,3D = Aopen

Atot al
= n · πab

Dπ
· 1

∆
=

π3RaD2R2
β

/n

π2R∆RaD2R2
β

/n
= πRβ

R∆
(3.5)

• The variables Ra and R∆ are not evenly spaced. Assuming that the changes in a closely knit perforation pattern
are more significant than when cut-outs are already very long (for large Ra) or very far apart (for R∆), their step
size is increased in a decimal Fibonacci manner: 1+1/10=1.1, 1+2/10=1.2, 1+3/10=1.3, 1+5/10=1.5, 1+8/10-1.8,
1+13/10=2.3, ... This is a matter of experimental preference and curiosity.
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• In theory the value R∆ can be varied smaller than 1 for certain values of γ. In that case two consecutive rows
would partly slide into each other. The exact limitations and structural boundaries associated with this however
lead us to not explore these options here.

In total this results in 3825 samples. As mentioned in Subsection 2.1.1 the maximum, realistically, expected water
velocity is 5.36 m/s from the wave motion, with up to 1.3 m/s currents. It is thus interesting to analyse these samples
at different, evenly spaced, incoming water velocities up to 6.5 m/s, here proposed as V = 0.5,1.5, ...,6.5 amounting to
in total 26775 design cases. By smart deductions and relation finding we will reduce this number to allow a reasonable
allocation of computation resources.

Meshing scheme
For the numerical calculations the domain is split into an array of elements over which the Navier-Stokes equation,
with all related LES adaptations, can be solved. In Gridap.jl meshing takes place, usually, via GMSH.jl (GMSH, 2022).
The package makes a conformal mesh using (as default) unstructured grids through the Delaunay algorithm.
Conformal indicates that nodes are always matched on either side of the boundary lines (Cadence, 2022). For 2D
cases the meshing method makes use of triangular cells. Similarly expansion to 3D would generate tetrahedral cells
(Wollblad, 2018). These triangles are easier than squares or rectangles for the meshing stages itself, but are more
prone to giving skewed results. As indicated earlier there will not be the initial requirement for FSI inclusion, so a
fixed mesh rather than an adaptive one can be used, which limits the risk of getting skewed results.

As said, implementation of GMSH.jl in Gridap.jl is quite standard. An important part of the meshing will be to choose
the right resolution or mesh density. The right resolution is the one that is as coarse as possible while accurately
capturing all the intended physics. Generally the grid is made more dense using steps of a factor 2 or 3, in 2D
requiring 4 or 9 times as much computational power, with possible added computational increases from CFL limits.
The increase must be done until further increases do not yield different or more accurate results. The exact definition
for refinement is a disputed fact in literature (Nguyen et al., 2021; Haddoukessouni, 2021; Ideal Simulations, 2020;
Duan et al., 2019; Bianchini et al., 2017; Walters et al., 2013). For engineering applications one possible answer is to
consider the mesh converged when the quantity of interest experiences changes lower than 1% when halving the cell
size (Kuron, 2015). This “convergence process” will be performed later on.
To optimize this, local refinement is possible. That way one uses the bulk of the computational power in the
high-interest areas. In the case of perforated monopiles the refinement should thus be focused around the steel
structure. Additionally it is argued that the wake-region will be important as well. This makes for the need of a
refinement scheme that (1) captures the intended physics, (2) has a refinement function linked to the distance to the
structure, and (3) is more refined in the cylinder wake.

LES-VMS calculation scheme
For nonlinear effects such as turbulence the use of a transient fluid flow solver is needed (Elger et al., 2016, Wellens,
2012). This means that the Navier-Stokes equations must be solved at each time instance, after which a numerical
integration scheme is applied to find the velocity and pressure values in the next time step. The general way Gridap.jl
does this is as follows (Verdugo and Badia, 2022; Badia and Verdugo, 2020):

1. Set up the problem

(a) Define the model parameters and input values

(b) Define the geometry

(c) Define the boundary conditions

2. Set up the numerical scheme

(a) Set up the test spaces with the right conformity, for both velocity (H1 conformity) and pressure (C0)

(b) Build trial spaces for the velocity and pressure fields

(c) Combine them in a (transient) multifield

(d) Initialize the domain

(e) Define the weak form

(f) Set up the time integration scheme

3. Apply the nonlinear solver and time integration

4. Do post-processing
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For the engineering research into perforated monopiles the post processing should be built around the following data:

• The velocity and pressure fields (usually in .vtk format). This will be useful in the early stages of the design to
look into the exact flow effects, eddies, ...

• Drag and lift time-traces, either in the time or frequency domain, for further design analysis and trend-seeking.

A tutorial on the implementation of this scheme in Gridap.jl is added in Appendix A.

Setup of the problem
The model gets 3 main inputs: the mesh, the inflow velocity, and the time step. At this stage Gridap.jl does not allow
the useof variable time-stepping. Some auxiliary inputs define the output storage, but are computationally
irrelevant.
The mesh is used as the central input. It is triangulated and split into a fluid and a solid domain. Additionally the
boundaries are read from predefined tags from the mesh-file. The bounds of all these sub-domains are “Measured”
to be used in integration schemes later, and additionally the normal directions of the structure and the outflow
boundary are calculated.
The boundary conditions are as described above: a uniform (Dirichlet) inflow of speed (Vi n ,0), prescribed-velocity
(Vi n ,0) walls and a no-slip-no-penetration structure (0,0). The outflow boundary is included in the weak form
directly.

Making the multifield
With the domain fully defined the next step is to define the internal structure of each cell through reference elements
in their respective transient test spaces. With one for velocity (in 2 dimensions), and one for pressure (1 dimension),
a multifield test space and trial space is created.
The velocity reference elements in the test spaces are Lagrangian second order elements. For numerical stability, this
means that the pressure elements should be Lagrangian elements as well, but of order 1 (Star, 2022). These 2 test
spaces have H1 and C0 conformity respectively. H1 conformity indicates that the test space functions are
continuous, although their gradients can contain jumps. C0 conformity allows the test space to contain jumps
already, which is required for the pressure field.

Domain initialization
To facilitate the calculation start-up, it is better to not start from a no-flow situation, where all velocities are 0. To have
an initial state, a Stokes solver is ran once. The strong form of the steady state Stokes equation is:{

−µ∆u+∇p = f, i nΩ

−∇u = 0, i nΩ
(3.6)

where u denotes the velocity field, 2 dimensional, and p denotes the pressure field. µ is the incompressible fluid
viscosity. Multiplying the test function v ∈ H1

0(Ω) to the former momentum equation on the top, and doing the same
for the continuity equation on the bottom with q ∈ L2(Ω), we can find the weak form problem through integration by
parts. The problem then reads:

Find u ∈ H1
0(Ω) and p ∈ L2(Ω) such that:{

(µ∇u,∇v− (p,∇v) = 〈f,v〉, ∀v ∈ H1
0(Ω)

−(∇u, q) = 0, ∀q ∈ L2(Ω)
(3.7)

Finally this can be combined into the bilinear form:{
a(u,v) =µ∫

Ω∇u : ∇vdx

b(v, q) =−∫
Ω(∇v)qdx

(3.8)

Rewriting this such that the formulation includes the outflow boundary condition and the non-forced fluid flow
inside the domain, and then converting the inputs so that the form is equal to the one implemented in Gridap.jl, the
problem to be solved becomes:

Find u ∈ H1
0(Ω) and p ∈ L2(Ω) such that

a
((

u, p
)

,
(
v, q

))= ∫ (
ϵ (v)⊙

(
σdev f

·ϵ (u)
)
− (∇· v) ·p +q · (∇·u)

)
dΩ f (3.9)
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with σdev f (ϵ) = 2 ·ν f ·ϵ and ϵ the symmetric gradient of the field; and such that

l
((

v, q
))= ∫

(0)dΩ f (3.10)

in which the 0 indicates a free fluid flow inside the domain.

Weak form
In this thesis a total of three LES schemes were analysed: Smagorinsky-Lilly, WALE, and OSS-ISS (VMS-ILES). Each of
these schemes has their respective weak form, given below. Very soon it was clear that the first two options were a lot
less stable than the VMS variant. Most likely they require much smaller time steps to overcome this deficit. Therefore
further tests only use the VMS option.

The problem formulation starts with the Navier-Stokes equation:{
∂t u−ν∆u+u ·∇u+∇p = f, inΩ× (0,T )

−∇u = 0, inΩ
(3.11)

with ν the kinematic viscosity. Using the same space definitions as for the Stokes initialization, the weak form then
reads:

Find u ∈ H1
0(Ω) and p ∈ L2(Ω) such that:

(∂t u,v)+B(u; [u, p], [v, q]) = 〈f,v〉 ∀v ∈ H1
0(Ω)∩∀q ∈ L2(Ω) (3.12)

where B(a; [u, p], [v, q]) = ν(∇u,∇v) + c(a,u,v) − (p,∇ · v) + (q,∇ · u). The trilinear weak form c(a,u,v) has multiple
definitions, which may depend on the closure model used, as is highlighted below.

The final step is to add a stabilizing closure model, for which three options have been applied.

1. Smagorinsky-Lilly

r es
(
t ,

(
u, p

)
,
(
v, q

))= ∫ (
∂u

∂t
·v+ c (u,u,v)+ν f · (∇ (u)⊙∇ (v))−p · (∇·v)+ (∇·u) ·q

)
dΩ f

+
∫ (

νsg s (u,Cs ,∆SL) · (∇ (u)⊙∇ (v))
)

dΩ f +
∫ (

0.5 · (u ·v) · (u ·nΓout

))
dΓout (3.13)

where

• c (a,u,v) = 0.5 · ((∇ (u) ·a) ·v−u · (∇ (v) ·a))

• Cs = 0.11

• Si j (u) = 0.5 · (∇ (u)+∇ (u))

• νsg s (u,Cs ,∆SL) = (
C 2

s ·∆SL
) · (2 · (Si j (u)⊙Si j (u)

))0.5

• u,v, p, q are the velocity and its test value, and the pressure and its test value

From this residual form the solution for the velocities and pressures over the full domain is determined. Here
one sees that the last term does indeed cover the boundary definition in the outflow region.

2. WALE
For the WALE scheme the only change is the definition of ∆SL , since a correction factor is applied:

∆W ALE =∆SL ·
(

1−exp

(
−

(
y+

25

)3
))

(3.14)

where y+ = d ·uτ/ν f with uτ =
√
τw /ρ, τw = 0.5ρC f |u|2, C f = 0.026/Re1/7 and finally Re = |u ·D/ν f .

3. OSS-ISS
The weak form reads:

r es
(
t ,

(
u, p

)
,
(
v, q

))= ∫ (
∂u

∂t
·v+ c (u,u,v)+ν f · (∇ (u)⊙∇ (v))−p · (∇·v)+ (∇·u) ·q

)
dΩ f

+
∫ (

τm · ((∇ (u) ·u−ηnh
) · (∇ (v) ·u)

)+τc · ((∇·u) · (∇·v))
)

dΩ f +
∫ (

0.5 · (u ·v) · (u ·nΓout

))
dΓout (3.15)

For the exact details and implementation of all new factors a reference is made to Colomés et al. (2016). Note
that the definition of c(u,u,v) changes slightly compared to the SL and WALE scheme.
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Integration scheme
These results should then be integrated to the next time step. This is done through the implicit “generalized alpha”
scheme with ρ∞ = 0.5. This numerical time integration method, like Forward Euler or RK 45 exist as well, adds
stability through its implicit nature. Additionally the α parameter allows the internal damping of the method to be
controlled. This adds accuracy to the integration. It works best for problems which are of second order in time,
although adaptations for Navier-Stokes equations (of first order in time) have been widely applied since the early
2000s (Jansen et al., 2000).

Post-processing
The processes above are compiled as a single function. While calculating each time step, the pressure and velocity are
stored. For the VMS scheme the intermediate numerical artefacts unh and ηnh which are required for the orthogonal
projection scheme are stored too. The pressure and velocity fields are used to determine the drag and lift force on the
perforated cylinder through:

F⃗ =−
(∑∫ ((

nΓ ·σdev f (ϵ (u))
)
−p ·nΓ

)
·dΓs

)
·ρ (3.16)

The force vector contains then the total drag and lift components of the cylinder. The minus sign is explained through
the general use of the fluid domain in this calculation scheme. The integration of pressures and viscosity terms then
calculates the force as experienced by the fluid. A minus sign converts this to get the forces as experienced by the
structure itself.

3.1.3. FEM execution and cluster parallelization
The amount of computational power required is most likely very high. Therefore efficient coding might not be enough
to find useful results within a reasonable time frame. Options for parallelization, are provided via DelftBlue, the TU
Delft super computer (DHPC, 2022), and Snellius, the Dutch National super computer (SURF, 2022).
To apply this parallelization there are two main routes. The first one is to parallelize different design cases. This
is done on both clusters by uploading different batch jobs for each design case. Secondly, internal parallelization
over different domain areas is possible (Colomés, 2023). Initial testing of the named package indicated a 12 core
optimum for 3-perforation designs in 2D. However, for the meshes developed for this thesis some designs came back
with segmentation faults. The origin of this fault was a discrepancy between the 64-bit based GMSH.jl software, and
a 32-bit compilation of Metis in PETSc and Mumps, the parallelization solver. A first option would be to recompile
one of the two packages into another bit format. This is technically possible and application procedures exist for
OpenFOAM, which could be adapted for the Gridap.jl case. The alternative route chosen here was to run Mumps with
the “icntl-7=0” flag, which forces Mumps to use another (correct bit format) solver than Metis.
Concretely all testing, convergence and optimization was done on DelftBlue. The full design runs were performed on
Snellius.

3.2. Validation and optimization
In order to optimally use all computational resources, initial testing is required to determine the answers to the
following questions:

1. Which is the coarsest mesh that captures the drag and lift on the cylinder “exactly”?

2. Which is the largest time step that captures the drag and lift on the cylinder “exactly”? Does this capture all
intended physics?

3. Which is the smallest domain size (wake length, inflow length, simulation time) that captures the drag and lift
on the cylinder “exactly”?

4. Which of the 6 initial 2D design parameters (D,n,Rβ (using β later on),Rt ,α (angle of attack),Vi n) are irrelevant,
or can we model very accurately?

When we are certain that the results are “fixed” we can compare them against other research and practical
experiments.

3.2.1. Mesh convergence
GMSH.jl uses the MathEval function to indicate local refinement with defined sizes. The outline of the function to be
applied is:

∆=


∆1 = (1+ r ′ · f ) ·∆mi n , if x < 0 and r > r0

∆2 = (1+ r ′ · f
Rdomai n

) ·∆mi n , if x ≥ 0 and r > r0

∆3 = (1− r ′ · f ) ·∆mi n , if r ≤ r0

(3.17)
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with:

• ∆i the local refinement in sector i , as shown in Figure 3.3.

• r ′ = r−r0
r0

with r =
√

(x −x0)2 + (y − y0)2 the distance to the centre of the cylinder with centre point (in Cartesian

coordinates) [x0, y0]. r0 is the cylinder radius D/2. r ′ is then the relative, normalized distance to the cylinder
wall. It takes negative values in region 3, explaining the minus sign in Equation 3.17c, thus still increasing the
cell size towards the cylinder centre.

• ∆mi n the minimum cell size, found at the cylinder walls, with here an absolute maximum of the wall thickness
t .

• f = ∆max
∆mi n

the ratio between the maximum and minimum cell size, with the maximum cell size found at the
inflow and outflow boundary. With an inflow domain of length Li n and a wake length of Rdomai n ·Li n , for the

domain highlighted in Subsection 3.2.2, the factor f
Rdomai n

makes the boundary cells of equal size. Originally
Li n will be equal to the cylinder diameter D , but as said it can be increased to values higher than the cylinder
diameter if needed for convergence.

Figure 3.3: Updated domain visualization with indicated meshing regions in 2D

During testing some some minor tweaks were applied, amongst others extra refinement in the centre of the wake
region, and a more aggressive cell size increase in the centre of the cylinder. The final applied scheme is modified
such that the small, minimum cell size, is kept constant within the cylinder. Additionally there is a refined axis in the
centre of the wake, which coarsens as the vertical distance increases:

∆2 =
(
1+ r ′ · f

Rdomai n
·
(

y − y0

y ′

)2)
·∆mi n (3.18)

with y ′ = (y − y0)/r0 being the normalized distance to the wake centre. An example with 3 perforations at β= 0.15 can
be seen in Figure 3.4

Before this mesh was finalized a series of tests was performed with different mesh densities. The mesh above is
defined as “Convergence level 4”. A mesh of what is here called “level i ” has a maximum cell size of 22−i meter at the
inflow and outflow boundaries, with the smallest cell then approximately 5 times smaller at the cylinder wall or in the
wake centre. For level 4 this comes to 0.25 m cells at the outer bounds and cells of around 5 cm in the most refined
regions. This also means that a mesh of level 3 would have cell sizes double of what level 4 has. Similarly level 5 is
twice as dense, also meaning that the computational cost in 2D goes times 4. In Figure 3.5 one can see that the drag
trace of level 4 is only partially visible. That is because it lies below the level 5 trace. This is a visual proof of
convergence. Although the 5 cm cell size is enough to capture the large scale drag and lift, this will not be adequate to
capture flow effects around the perforation edges and along the wall thickness since t = D/Rt is between 6.7 (8/120)
and 15 (12/80) cm, then only being covered by 1 to 3 cells.

The previous convergence was ran at time steps of 0.05 seconds. Additional testing to optimize the time step were
performed, both to increase it for faster calculations as to decrease it to see of the original 0.05 s assumption was
justified. The plot in Figure 3.6 visualizes this. The 0.2 second time step trace (higher ones are ran but not shown) is the
first one which does not accurately follow the finer traces. Therefore an 0.1 second time step is seen as the maximum
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Figure 3.4: Domain mesh visualization in 2D

Figure 3.5: Mesh convergence for levels 1-5

allowable step. For larger time steps the relative error exceeds the 1% (10e-2) allowable error defined earlier.
This will still allow analysis up to 10 Hz, which is generally more than sufficient to capture all engineering-relevant
effects for structural design.

(a) Absolute value (b) Relative error to smallest step

Figure 3.6: Time step convergence for different time steps
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A second time related question is how long the simulations should last. While for higher n the full development of the
flow is a bit faster, the most critical simulations are the ones with low number of perforations and low porosity. Their
wake field takes upwards of 200 seconds to fully develop. While the first part of their drag-trace follows an expected
overshoot-dip-plateau shape (seen in the first 180 seconds of Figure 3.7), after a certain extended period of time the
wake vortices do seem to experience a lock-in effect, changing the drag regime. Since this means that, to be safe, all
traces should be analysed after 200 seconds, it is chosen to let the simulations run up to 600 seconds. This way 400
high quality seconds can be analysed, allowing conclusions with an accuracy of up to 0.0025 Hz.

Figure 3.7: Low n and low β flow development time

The found optimal spatial and temporal resolution allow two quick checks on the actual captured energy scales as
defined by Kolmogorov, and the ones for which we rely on the sub scale model.
To apply DNS the original theory requires a cell size lower than η = (ν3/ϵ)0.25 = 56 µm for ν = 1e-6 as the dynamic
viscosity and ϵ = u′3/D . In this u′ is taken at 2 m/s, as preliminary simulations indicated this to be the maximum
expected flow velocity for 1 m/s inflows, which are used later on. This 1 to 2 m/s increase around a cylinder is in exact
accordance with the expectations from potential flow theory (Elger et al., 2016). Taking a critical CFL limit of 1 the
temporal resolution then becomes 56 µs. For comparison this would make the current model set-up 1.5 billion times
more expensive. This indicates that the use of LES was a smart move over DNS.
Secondly the Kolmogorov energy cascade can be approximated by:

E(k) = K0ϵ
2
3 k

−5
3 exp

−3K0

2

(
ν3k4

ϵ

) 1
3

 (3.19)

with K0 = 1.5,k = 2π/∆= 125 with ∆ the captured eddy size, equal to the cell size of 0.05 m. By integration of the full
energy and comparing that to the, for us, cut-off at k = 125 it can be shown that only 0.8% of all energy originates
from the sub scale VMS model. The mesh choice should therefore be adequate. Even when not taking into account
the cells near the boundary itself, where Kolmogorov is technically not applicable, and only looking at cells outside of
the boundary layer, one finds most cells with sizes of around 10 cm. Here the boundary layer is defined as
δD = 0.37 x

Re1/5
x

= 0.15 m (Schlichting, 1955). Even for this cell size the subscale model only needs to account for 2.1%

of the total energy.

3.2.2. Domain optimization and key parameter selection
Wake length
The wake length is one of the main points of discussion in drag flow simulations (Méchartes, 2021; Colagrossi et al.,
2019; Guan and Liu, 2018; Deltares, 2018; Hu and Han, 2017; Wellens, 2012). These sources are more unanimous on
the optimal width of the domain, which should be at least 3-4D. 4D is taken here to be on the safe side.
In order to keep the computational cost low, the wake should be as short as possible while still capturing an adequate
amount of shedded vortices. Numerically this means that the energy dissipation must be large enough so that the
outflow condition can be correctly imposed. In Figure 3.8 one can see that, although there are still minor differences,
the characteristics of the drag history do not change for domain lengths of 7 diameters or more. With in this case
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the cylinder centre placed at 1.5D (D being the cylinder diameter) from the inflow side, this makes the optimal wake
length equal to 5D. The right sub-figure shows that the changes after the domain length exceeds 7D are within 2% of
each other with no clear trend, indicating that they mainly originate from minor, propagated numerical artefacts.

(a) All runs (b) Detailed converged cases with minor corrections

Figure 3.8: Wake length convergence visualization

Inflow length
A similar consideration can be made for the inflow length. However, the verification approach here is slightly different.
While the drag traces were very similar, the flow regime of the simulations was not. This means that to verify the
optimal inflow region length we should not look at a force output, but rather to the velocity profiles at the inflow
boundary. In Figure 3.9 one sees the cross-flow velocity profile a few cm before the cylinder. One sees that the velocity
profile only changes marginally when the inflow length, that is the distance from the inflow boundary to the first
encountered part of the cylinder, exceeds 1.3D, and definitely after 1.5D. Given that the original wake-length tests
were performed on a 1D inflow length, the total required domain length now becomes 7.5D

(a) 0 s

(b) 180 s

Figure 3.9: Inflow length convergence visualization
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Design parameter relevance and prediction
The 6 design parameters and their influence for small changes are researched in form of “box runs”. Rather than
analysing all combinations, each time 1 parameter is changed from a central case. The average case has D = 10m,
Rt = 100, n = 12, Rβ = 0.5, α = 0 and Vi n = 1. For full reference the results for drag and lift can be seen in Figure D.2.
The left column shows the full force traces. The right column shows the (Morison) coefficients for drag and lift.
Here the focus lies on the drag and lift coefficients themselves, disregarding inertia effects. From the Morison
coefficient data it can be seen that for high Reynolds simulations drag dominates the force on a cylinder in a steady
flow. However, for periodic and wave loading, the flow becomes more inertia dominated. Implementation of periodic
flows for wave-simulation may require a focus shift to the inertia constant since the drag-dominated flows would
then disappear to make way for a more inertia dominated scheme with different U-D scaling laws. The further
validity of Morison coefficient usage should then be rechecked.
From the data the following conclusions can be drawn:

• Drag

– Diameter: Scales good using Morrison and larger diameters do have a lower influence of high-frequencies
(smoother traces). From Figure 2.2 this was theoretically expected. Since the D = 10 monopiles have
Reynolds values well above the drag crisis, this drag coefficient should be constant for small changes in D ,
and at that also for Vi n .

– Wall thickness: No clear trend and limited importance, as one would expect given the relatively low
number of cells over the steel thickness of the plating. This was predicted earlier as when looking at the
mesh already.

– Perforations: Lots of frequency changes and clear value influence. The flow regime gets more turbulent for
higher n, but the variation amplitude reduces due to an averaging-out effect of the smaller vortices over
the full structure area.

– Porosity: Clear influence on the average value, but the exact relation is hard to define.

– Angle of attack: No trend is visible after “flow development” is complete. The main changes are the flow
pattern.

– Velocity: We need to compare relative time traces, so the faster traces are now "stretched out horizontally".
This is because in a 3 m/s flow the flow development after 30 seconds would be similar to one at 90 s for a
1 m/s inflow. We see that Morison works very well for drag force scaling in this case.

• Lift

– General: Very periodic traces so there can be a general VIV risk. The values themselves are multiple orders
of magnitude below the drag force (factor 12). This leads to believe that lift is not our main concern when
excluding FSI.

– Diameter: Large D’s show lower frequencies. This is expected from Strouhal relations. The Morison scaling
is similar to the drag case.

– Wall thickness: No immediate influence from traces. However thinner walls show less variation. Maybe
the influence on the "ends of steel" is quite large and one gets locally high velocities. The mesh in these
regions however does not allow exact verification, as was stated earlier.

– Perforations: High n’s give more averaged lift. This is a consequence of the added turbulence. Lift-peak
values increase for smaller n due to lower or less random turbulence.

– Porosity: Higher porosity gives more random traces due to more "space" for eddies to pass through the
perforations. Low porosity increases the relevance of lift.

– Angle of attack: The traces may not be fully developed for the performed simulations. However, it is
already clear that non-symmetric samples do increase mean lift values. Rather than the angle it looks to
be more related to the different “paths” the fluid follows, especially at low n. A visualization is added in
Figure 3.10. The main drag peaks follow from a fluid flow crossing a piece of steel when trying to follow
the wake vortices behind the cylinder. Non-zero average lift is generated when a flow path is
“permanently forced” to take a non-straight route. These findings can fuel upcoming research.

– Velocity: Morison scaling still looks adequate when comparing to drag orders of magnitude.

To summarize it appears that the number of perforations n and the porosity β are most important for further drag
research. While the diameter D and the flow velocity Vi n contribute greatly as well, their effects are better captured in
existing analytical relations. Lift in general can be disregarded. The angle of attack itself is of low importance. Rather
the existence of a logical and symmetric path for the fluid through the structure determines the size of drag and lift
variability for angled simulations. Again, the full force traces are added in Appendix D
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(a) n = 5 (b) n = 6

Figure 3.10: Visualization of flow paths through a cylinder for different angles of attack (0, 1/6, 2/6 and 3/6 ·α)

3.2.3. Validation against literature and design standards
Not only must the results be converged in order to prove a CFD method, but the results must be physically sound as
well. A large part of numerical modelling is comparing its results against other forms of experimentation or theory.
The complex shapes of perforated monopiles will limit the options for full theoretical validation. However, the initial
solver accuracy can be tested on simplified geometries (full cylinders here), while using experimental validation for
the full geometry. For the full geometry, validation against other, existing, numerical models would be possible as well.
In this case, validation has been done to three different sources. The validation can be visually verified in Figure 3.11.

Figure 3.11: Validation of the LES-VMS method against 3 literature sources

Full cylinder Morison
Following the design graphs of Chakrabarti (2005), one would expect the closed cylinder to have a drag coefficient of
around 0.2. When looking at the mean of the purple trace, this is indeed the case. Numerically it can be verified that
the mean of this drag trace lies at 0.2099 (absolute value from 50-100 seconds).
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OC dataset
The numerical example model developed internally at TU Delft by dr. O. Colomés was used as a second verification.
The mean drag from his simulations compared to ours, which have a similar calculation scheme but a slightly changed
mesh and domain, are 0.092 and 0.090 respectively. Their standard deviations are 0.009 and 0.004. So while the drag
mean itself has not changed that much, the fluctuation has gone down considerably. This makes that the traces look
very unalike, while for engineering practice they are rather similar. On the value itself one could comment that this
reduction of the drag of almost 55% is more than what was proposed in earlier work. There a reduction factor of 20%
(M. C. Anderson, 2017) to 40% (van der Ploeg, 2021, Star, 2022) was predicted. However, the latter did mention that
added benefits could be found when looking at transient situations.

Qualitative comparison to QStar
Finally we can come up with a numerical comparison to earlier Stokes creeping flow work by Star (2022). While this
work cannot provide transient data, his simulations predicted a reduction factor of 17% for the shown case (n = 12,
β = 0.5), translating into a drag factor of 0.17. However, this was done through the use of a parabolic inflow profile.
By using a parabolic inflow profile (“Star-P” with “P” for parabolic) the LES method applied here showed a mean drag
of 0.15. And while the results are technically off by a little over 10%, the rudimentary nature of the creeping Stokes
method, strengthened by the prediction of Star that transient solvers may show even better reduction factor results,
gives us a third indication that the applied transient scheme here can be considered as validated.

3.2.4. Domain and simulation build-up summary
From the previous paragraphs we can conclude that the correct situation to run many simulations on is:

• A domain of length 7.5D, width 4D, and the cylinder centre at 2D with D the diameter here.

• A time step of 0.1 seconds to amount to a total simulation time of 600 seconds.

• A focus on number of perforations and porosity, since wall thickness and angle of attack appears to be of no
influence and diameter and inflow velocity scale very well using known analytical (Morison) relations.

• A separate set of simulations for low-perforation angle-of-attack research to obtain insight in the flow-paths and
the influence on the drag, lift, and their variability. This separate aspect is left as a future recommendation.

By applying these parameters we ensure high quality simulations from which practical engineering conclusions for
design can be drawn. Additionally the dataset then forms a reliable basis for finding a surrogate model. The surrogate
model’s relevance is highlighted here using a numerical comparison. Two datasets are mentioned (OC and RD), both
consisting of around 500 simulations. Each of these simulations required a (maximum of) 48h of computation time
on 12 parallel cores. To circumvent the Snellius restriction of always having to “pay for” 32 cores on each occupied
node, it was tried to run the simulations on 10 cores so that 3 simulations could occupy 30 of the 32 allocated cores
in a requested node. This however did not work, meaning that some CPU hours were “lost” because of the Snellius
32-core minimum allocation cost. In total the two datasets required over 450.000 CPU hours to run. To ensure that
this work must not be redone, surrogate models come into play. This is further explored in Chapter 4.

3.3. CFD analysis and dataset comparison
The CFD analysis is based on two different datasets. One was created in January 2023 by dr. Oriol Colomés, the other
one was created specifically for this thesis. Firstly the two datasets will be considered separately, after which their
combined conclusions and/or differences are discussed.

3.3.1. OC data: square cutouts - diameter normalized
This analysis is a summary of a short update-report written for the 2023 SIAM convention in The Netherlands. The
full report can be seen in Appendix B.

The generated data consists of 500 samples of varying numbers of perforations n (5 to 30) and porosity values β (0.3
to 0.7). The output files contain time traces for the pressure integrated drag and lift force on the cylinder. 12
simulations failed to converge, meaning that there were no outputs. 1 simulation can be considered an extreme
outlier (order of 6 magnitude difference) and is therefore discarded. This results in 487 time traces.
A Fast Fourier Transform (FFT) on the time traces, excluding start-up and shutdown effects (using 80-180 of the 200
provided seconds) provides the most interesting basis for data analysis. The average value, standard deviation,
statistical absolute maximum (99% double sided quantile) and the three most dominant frequencies are extracted for
both the drag and the lift. These 12 outputs are to be analysed. The results are shown in Figure 3.12.
Initial data analysis has revealed the following key findings:
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• For drag the average value and statistical maximum follow expectations within a narrow noise band. Lower
porosity results in higher loads. Higher numbers of perforations give a more random nature to the flow, resulting
in slightly lower drag numbers but also much lower variation amplitudes (standard deviations). This is because
the small turbulence eddies are averaged out over the whole cylinder, where small numbers of perforations or
low porosity values give larger eddies which cannot be averaged out.

• Lift for a symmetrical profile should average out at 0. This is the case, especially for high n. Lower numbers of
perforations generate larger eddies, giving more variation in the lift over time. This is analogous to the
averaging-out property in the drag discussion.

• Both drag and lift frequencies follow similar trends. Low n and high β result in some higher frequency forcing.
The relatively large eddies in these cases carry enough energy to influence the full monopile. As n increases
the lift and drag traces become more and more constant. This gives a large decrease of the associated forcing
frequencies. Generally the frequency data has a much higher variance than the averaged forces.

• The energy spectra quickly die after 2-3 Hz.

It is promising to see the (absolute) drag coefficient values between 0.06 and 0.17, since full cylinders would
theoretically give values of around 0.2. So to conclude the data shows expected values and trends. The trends can
generally be explained through flow field patterns and turbulence of the water itself. An FFT extracts the most
important parameters. The main focus lies on the average and maximum drag.

(a) Drag average (b) Lift average (c) Drag standard deviation (d) Lift standard deviation

(e) Drag maximum (f) Lift maximum (g) Drag frequency 1 (h) Lift frequency 1

(i) Drag frequency 2 (j) Lift frequency 2 (k) Drag frequency 3 (l) Lift frequency 3

Figure 3.12: Drag and lift engineering mean values: contour plot visualization

3.3.2. RD data: triangular cutouts - full size diameters
In total 448 simulations were planned with a simulation time of up to 600 seconds. These ranged from perforations
3 to 30 and porosity 0.1 to 0.85 with 0.05 intervals. Initial visual verification of β = 0.9 showed that these meshes
were unstable and, with that, structurally not relevant. Therefore these 0.9-porosity meshes were omitted. The Stokes
preconditioner failed to converge for almost all meshes with n of 16 and above. From the performed simulations not
all ran for the full 600 seconds. The most critical one was cut off at 441 seconds, still allowing a 0.004 Hz resolution
from the assumed 200 second steady state region boundary. The completed simulations are shown in Figure 3.13. The
analysis and machine learning will be trimmed down to n ≤ 15. And although the 0.1 s sampling rate would allow
analysis of up to 10 Hz, the dataset is limited to 1 Hz for the actual analysis as even the highest-frequency simulation
only has 0.1% of its energy contained in higher frequencies. It was originally hypothesized that these large monopiles
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will not be too sensitive to large frequencies, to which this conclusion can serve as validation. Additionally the OC,
smaller diameter, dataset required analysis of up to 3 Hz. So again the fact that for larger diameters a 1 Hz limit is
sufficient is in accordance with Strouhal’s theory.

Figure 3.13: RD dataset completed runs

While the OC dataset, ran on 1 m diameter cylinders, showed improvement of the mean drag values for all designs,
this is not the case for the RD 10 m diameter simulations, as shown in Figure 3.14. The other mean quantities are
added in Appendix D. There is a clear trend where increased porosities give smaller drag values. This makes sense,
since in general there is just less material to generate this drag. Especially for higher numbers of perforations (n ≥ 8)
this relationship looks to be not very dependent on n itself. One also sees that for β ≤ 0.3 the mean drag is generally
higher than 0.2, which one would expect for a non perforated cylinder. It seems that the added turbulence from the
perforations increases the drag rather than reducing it due to the reduction of material in the water flow path. On the
other side very high porosities have almost 0 drag means. From a structural point of view however these don’t seem
too realistic for further application.

Figure 3.14: RD average drag values contour plot



3. Numerical modelling of fluid flow 27

When looking at the frequencies present in the simulations, the results are much more steady and relatable than the
ones found from the small diameter OC dataset. Some key designs are shown in Figure 3.15. The first point to note is
that, for low n, all low β simulations are double periodic. This makes sense since their flow patterns would be most
closely linked to a closed cylinder simulation, with an additional “simple” flow path through the cylinder generating
just one or two additional frequency effects.
A second point to note is that these same low-n designs do get more random traces in mid-β regions, but become
periodic again for very high β. An interesting play of frequencies arises for β ≥ 0.7, both for even and odd numbers
of perforations, with a beat-phenomenon result. While the exact physical origin of this pattern is unknown, it could
prove very important in future determination of statistical maxima or for the determination of resonance effects. On
the other hand, the low steel area and following structural weakness in these designs leads to believe that there is only
a slim change that they will be actually applied offshore.
Additional results from data analysis give the same conclusions as for the OC data. Higher n increases the amount
of variability in the signal but reduces the actual variational amplitude due to the reduction of vortex sizes, then
averaging out pressure fluctuations over the whole monopile. These results are now more easily distinguished because
of the higher diameter used, making the averaging-out effect more pronounced. The same reasoning also explains
why the low-β samples have much higher standard deviations as well, making their prediction using DDM at later
stages, most likely, more difficult.
Lastly, due to the smoother signals, it was easier to distinguish some lift relations as well, showing that, as predicted,
low n designs were prone to heaving non-zero mean lift values (Star, 2022). Additionally, from these new simulations
it becomes clear that the non-zero lift is stronger for low-β designs than for the larger porosities. This can be explained
using the same more-or-less-random water flow explanation as given earlier, averaging out the lift signal. Additionally,
most designs do show large lift amplitudes for low porosities, regardless of the number of perforations.

(a) n = 3 - β= 0.1 (b) n = 4 - β= 0.8 (c) n = 4 - β= 0.85

(d) n = 12 - β= 0.45 (e) n = 15 - β= 0.15 (f) n = 23 - β= 0.35

Figure 3.15: Drag and lift traces and FFT conversion for some core RD simulations

3.3.3. OC-RD data comparison and design take-aways
While there are some interesting effects at the extremes of the n-β design space, the centre cases of the simulations
show general reductions of the mean drag coefficient of around 50%. While additional gains are possible by increasing
the porosity, the structural validity of these designs reduces. In case that the stiffness can be assured, one must beware
of beat-frequency effects, especially at low-n designs. These effects only become clear for very high porosities and at
real life (non scaled) diameters. Low porosities may increase the mean drag, but do reduce the periodic nature of the
forcing by adding some new frequencies into the mix. Earlier this effect was predicted by making a comparison to the
function of helical strakes. For the design-relevant center-cases generally higher porosities give a lower mean drag,
and higher numbers of perforations make the signal more constant due to averaging-out of the vortex effects.
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4
Surrogate modelling of fluid flow

In this chapter the data generated by the simulations is applied into different sets of machine learning models. These
models, given their training on the dataset, will then be able to predict intermediate relations without having to re-
run the expensive simulations. Section 4.1 further explores why one would want to have a regression model for design
purposes. Secondly the implementation of different models is discussed in Section 4.2 with the results presented in
Section 4.3 for the two datasets.

4.1. Surrogate models and their application
As indicated in Chapter 3 the calculation times for transient, non-linear models can ramp up very quickly. Surrogate
modelling in essence tries not to speed up the computations of a numerical model, but rather looks for alternative,
easier models to obtain the same results. For CFD models there are two main ways of finding simulation results
without using high amounts of computational power. Although the first may not be seen as a full surrogate model, it
is still added for completeness.

4.1.1. Physical experiments
One of the main ways CFD calculations are omitted is through the use of scaled tests and physical experiments. Even
for perforated monopiles the initial concept was physically tested by M. C. Anderson (2017) before being picked up
by CFD researchers.
Physical experiments have three main drawbacks (Wellens, 2012). The first one is the physical cost of modelling,
especially at full scale. Building different scale models for different designs can become expensive and time
consuming. A second drawback is the limited amount of results that can be obtained from an experiment. Due to the
physical size of sensors, measurement errors and inaccuracies. Thirdly and lastly a major drawback of physical
testing is the uncertainty in scaling laws. This creates very special, sometimes impossible, validation demands.

4.1.2. Data driven models and Machine Learning
As an alternative to physical experimentation, the results of earlier models, whether physical or numerical, can be
used to find patterns. This is called a data driven model (DDM), and is often linked to the more known concept of
“machine learning” (ML). As the name suggests DDM’s require large amounts of input data. This input data needs to
be tailored to the ML-model specifically and vice versa. There are two main model and thus input types: numerical
values or visual values. In the first case a limited set of input values generates a set of output values. On the other
hand when inputting an image-like array the 2D data is used to predict the output values. This is most often done
through the use of a CNN (Convolutional Neural Network). In essence the convolutions just change the image array
into a comprehensible set of input parameters.

Training of a regression model is mostly done on an 80% subset of the full data, with the leftover “unseen” 20% left to
test the model quality (Morozova et al., 2022). This is called the train-test split, and the 80-20 ratio is used in this
thesis as well. Additionally, data often needs to be normalized to limit the effect of outliers. More specifically for CFD
problems surrogate models need to be able to generate multiple outputs. This makes a lot of regression algorithms
unsuitable.



4. Surrogate modelling of fluid flow 29

The most known form of this is linear regression, where one tries to find the best “average” line in a 2D data cloud.
While there is, at least for least-squares errors in a linear model, an analytical best-fit, this is often not the case for non-
linear or multi-dimensional data. For this different regression algorithms have been made, which all generally rely on
iteration and smart parameter-optimization to converge towards a statistical best-fit. Since the iterations update the
parameter, it is as if the computer learns the best parameters, giving name to the concept of “Machine Learning”. In
this case, the following algorithms are looked into:

• Gradient Boosting (GBR)
GBR relies on tabular datasets as its input. It uses averages and patterns within the residuals in order to update
an average-fit-line (Morozova et al., 2022). It has been stated as the best model for CFD by Morozova et al., due
to its tabular-to-output architecture. For multiple outputs however, the model must be trained for each output
separately, increasing calculation times and eliminating output relations. Additionally the algorithm becomes
very slow when inputs are correlated (Kukacka, 2019). Therefore no implementation is done.

• Response surface models (RSM)
While often used in engineering and design, RSM is mainly intended towards design optimization. This makes
it less suitable for regression. Therefore no implementation is done here, although it may prove useful in later,
more detailed, design stages for perforated monopiles.

• Space mapping (SMp)
Space mapping is mainly a technique to get fine results from coarse data. Only very limited possibilities for
extrapolation exist. This may be one of the reasons why there are no CFD precedents to be found, at this time,
in literature. Therefore no implementation is done. A possible implementation for the earlier mentioned 2D-
to-3D scaling between course and fine simulations could be worth looking into.

• Support vector regression (SVR)
SVR uses a technique of hyper-plane fitting, being in essence the non-linear and multi-dimensional brother
of linear regression. It relies heavily on the correct kernel choice, making it hard to implement for unknown
relations. Therefore no implementation is done.

• Nearest Neigbours (KNN)
KNN pools the most-similar results into an interpolated answer. While being powerful, simple, and not
requiring any actual training, the prediction itself is quite slow and very poor on high-dimensional data sets
(Ronaghan, 2018). Therefore no implementation is done.

• Random forests (RF)
RF regression is an ensemble learning technique based on the use of multiple randomly combined decision
trees (Amit and Geman, 1997). Its optimization and input parameters require some knowledge of the problem
at hand, but when found the scheme can find highly nonlinear relations very efficiently. The scheme is
implemented on the data.

• Gaussian Processes (GPR)
GPR is a non-parametric ML model tailored towards space and/or time series (Powell, 2021). This ensures a
wide application on different problems. While the technique relies on the choice of a fitting kernel for its
stochastic calculations, it is not extremely sensitive to the choice, especially when using RBF (Radial Basis
Function) kernels. The wide application comes at a cost for both accuracy and speed, especially in very
high-dimensional problems. GPR has been successfully applied to CFD problems using RANS (Shen et al.,
2022), where it proved to have a non-transient speedup by a factor 10. The scheme is implemented on the data.

• Neural networks (NN)
NN are generally very flexible and have, because of this, gotten a lot of attention and fast development in the
past few years. Convolutions, as used by Star (2022) are omitted here since the convolutions focus on finding
relations or parameters in the input data from an image-like array. However, in this case the monopile is
parametrically defined, so the convolutions would only try to predict these already known parameters. The
focus can thus lie on the Neural Network itself. The NN consists of fully or partially connected neuron layers
and uses a backwards scheme to update the model regression weights. These weights determine the strength
of the signal through an activation function, most often ReLU, that reaches the neurons. The neurons then
combine the input signals for the different input values into a single or multi dimensional output. Learning
takes place in a back-propagation phase which updates the weights iteratively to arrive at the best fitting
output (Bento, 2021).



4. Surrogate modelling of fluid flow 30

In offshore applications, machine learning has been applied on multiple occasions in order to speed up calculations
and prediction times, both for research and in industry practices. Earlier GPR work has provided RANS design
simulation speedups of factor 10 (Shen et al., 2022). Similarly design optimization of wind turbine blades has been
done using SVR (Kaya, 2019). However, no incompressible projects have been found for SVR application. The
application of MLP’s in CFD is limited due to the, while still nonlinear, very rudimentary predictions that follow from
a single neuron layer. Neural networks are more popular, for example predicting engineering results like airfoil lift
coefficients (Y. Zhang et al., 2018), stationary flow patterns (Eichinger et al., 2021; Jiang et al., 2019) and other
offshore applications such as sailboat performance prediction (Byrne et al., 2022). Alternatively NN’s have been
successfully applied for LES result prediction Beck et al., 2019), Spallart-Alamas closure (B. Liu et al., 2020), or even
more fundamentally focusing on more internal concepts such as Reynolds stress tensor prediction (Morozova et al.,
2022; B. W. Anderson and Domaradzki, 2012) or LES shape filter optimisation for Smagorinsky-Lilly models
(De Stefano and Vasilyev, 2004).
The wide array of previous applications hints that for perforated monopiles too, machine learning models can
contribute to the prediction quality, either in terms of accuracy or speed.

4.2. Implementation of ML in Julia: OC data
For this research two different paths are explored for the application of machine learning on the design of perforated
monopiles. Firstly a trend-and-averages scheme is developed, from now on called the “Engineering-mean models”.
Here the focus lies on mean values, maxima percentiles, and predicting a few key frequencies. These models are best
suited for preliminary design and trend analysis. Secondly some models are explored which look into the detailed
frequency-domain prediction. From their outputs it is not a relative value, but rather the expected energy at each
frequency that can be predicted. These models find their application in more detailed design phases where the exact
energy-distribution of a single design is required for, for example, resonance avoidance.

4.2.1. OC Engineering mean models
Data preparation
From the force-time traces (both lift and drag) the average value, standard deviation, statistical absolute maximum
(99% double sided quantile) and the three most dominant frequencies are extracted. Only the developed values
between 80 and 180 seconds of the 200 second simulation time are used. For the frequency extraction a fast Fourier
Transform (FFT) is performed, only looking at the positive frequency domain. Each of these outputs, 12 in total, can
now be predicted based on two input parameters, namely the number of perforations n and the porosity β.

Model definition and optimization
Prediction is done based on three different models. The hyper-parameters were determined using a random 80-20
train-test split. No random-batch sampling was used. Both input and output data were normalized between 0 and 1
in their own dimension. The three model architectures are:

• A Decision Tree Regressor (ScikitLearn.jl): optimal depth of 9 branches. Originally a Random Forest was used,
but hyper-parameter optimization showed that a 1-tree forest performed optimally, therefore the predictor was
slightly changed, even though this makes predictions more prone to overfitting. At this point in time no specific
reason has been found as to why the 1-tree solution worked best.

• A Gaussian Process Regressor (GaussianProcesses.jl): internal optimization using Optim.jl, using an initial zero
mean and a kernel sum and double kernel with a Matern-5/2 and Squared Exponential kernel (all length scales
and standard deviations initialized at 0). The optimizer uses a LogNoise correction of -2.0.

• A Neural Network (Flux.jl): learning rate of 0.025, 100 epochs and 60 hidden nodes in a network using a single,
dense, ReLU activated hidden layer and using a MSE loss function. The architecture is based on a Flux.jl tutorial
by Komarniczky (2022). Afterwards a grid search was used to find the optimal parameters. Here the parameters
are varied between 0.0001 and 0.1 for the learning rate, 10 to 1000 in increasing steps for the maximum number
of epochs, and 10 to 200 in steps of 10 for the number of neurons.

Model results
The results of this optimization are shown in Table 4.1. The RMSE is reported as an absolute value based on the
normalized data. It is determined by the test set only. The time step ∆t is given in milliseconds. The actual tests were
done on 1000 predictions in view of increasing the timing accuracy, but the reported times are now scaled back to
a single prediction. Lastly the badness is defined here as the product of the prediction time and the RMSE. Higher
values of either input make the model worse, and hence increase the badness. While different weights could be given
to the two badness elements using different exponents, a simple linear relation was chosen here.
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RF GPR NN
RMSE ∆t Bad. RMSE ∆t Bad. RMSE ∆t Bad.

avg_D 0.008827 19673 174 0.004414 2617 12 0.014345 9136 131
avg_L 0.0684 20434 1398 0.063757 2582 164 0.123585 25899 3201
std_D 0.009934 19807 197 0.014637 10926 160 0.025229 11262 284
std_L 0.026339 17905 472 0.018457 1583 29 0.020262 15667 317

Max_D 0.009546 18970 181 0.010089 3206 32 0.013232 9927 131
Max_L 0.037633 14245 536 0.044118 7282 321 0.04846 17835 864
f1_D 0.480 14809 1708 0.411 2085 857 0.421 13290 5595
f1_L 0.143 13623 1948 0.639 1749 1118 0.580 7357 4267
f2_D 0.405 14961 6059 0.341 2366 806 0.346 8798 3044
f2_L 0.190 19097 3628 0.447 1240 554 0.497 9032 4489
f3_D 0.529 16525 8597 0.216 2461 532 0.384 17769 6823
f3_L 0.457 13065 5971 0.289 1330 384 0.477 6897 3290

Table 4.1: OC dataset: Engineering model results

While mainly optimized for the drag mean and statistical maximum predictions, the ideal machine learning model
should be able to capture all 12 outputs as accurately as possible. From the data in Table 4.1 the following interesting
conclusions can be extracted:

• The badness between the 12 different output variables is hard to compare because the RMSE is scaled due to
the different original values. The large RMSE for the frequency data is a consequence of the huge randomness
and small correlation within the data itself.

• The Neural network seems to perform on par with the RF and GPR models in terms of RMSE for all frequency
related outputs. The force focused output accuracy differs by a factor 2. This is most likely a consequence of the
use or disuse of normalized data to train the models. The non-normalized RF and GPR inputs for the frequency
matters all lie between 0 and around 1.7, so normalization is less useful than for the force related quantities
between 0.05 and 0.2 approximately. In general these two model types are less sensitive to normalization than
NN’s, regardless of the input data order of magnitude.

• Visually all fits look equally good. This explains the worse RMSE for almost all frequency based output types, as
a relatively random point cloud RMSE is hard to predict from visual inspection. We see that the less correlated
original outputs have RMSE values which are much closer to each other still. This is because in this case the fit
quality through the uncorrelated data cloud is not very dependent on the model used. All trend seeking models
perform equally bad (by principle).

The most important conclusion to be drawn however is that GPR is outperforming its rivals on all force-value fronts.
This is opposite of what was earlier said to be expected from the GPR technique (Powell, 2021). Its badness is on
average a factor 10 lower than the second best model for that specific output prediction. While having RMSE values
similar to RF and NN, the training and prediction times are much better. While this may partially be a consequence
of the more elaborate, built in optimization of the hyper-parameters, rather than the manual grid-search selection
done for the RF and NN model, the main reason is most likely the straightforward and simple nature of the model. Its
robustness has been shown in literature, both in general as for CFD applications (Shen et al., 2022).

4.2.2. OC Frequency domain prediction models
Data preparation
For the prediction of the full frequency-energy data the data preparation needs a bit more work. The small diameter
used in the OC dataset results in very fast flow oscillations, making the data look more random and non-smooth. The
same 487 datasets that were used for the engineering-mean models are converted using a FFT. In order to allow a
machine learning model to remain simple enough and capture all the trends, while not filtering out the important
peaks, two extra steps of data conversion are required.

Firstly we cap the data at 3 Hz. Visual analysis indicated that no interesting or relevant effects take place at higher
frequencies. Additionally, their relevance for engineering practice is small, due to the ever lower getting natural
frequencies of the large monopile structures, especially if their stiffness were to be reduced even further by
perforating them. Also checking the energy which is lost from the FFT by capping it at 3 Hz was below 1%, indicating
that no important data is lost through the cut-off.
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Secondly, in order to give the models the right focus, three different routes for the data simplification were taken. The
three results are shown in Figure 4.1. The goal of the preparation is to simplify the data, either by smoothing it, or by
reducing the number of values that the model must learn.
In the first “rolled” scheme, a 10 point rolling average of the data is used. The smooth results would allow for rather
simple models to be fit. However, the rolling mean reduces the height of the important energy peaks. This makes its
application for resonance questions impossible. Additionally, there is no mathematical way of proving or optimizing
the number of frequencies over which the moving mean should be taken. 10 is just an educated guess.
Alternatively the data can be poured into bins, in this case 60 bins of 0.05 Hz. To not over-estimate the total energy,
the mean energy in each bin is reported, except for 5 bins where the maximum is reported. The full energy-line is
then shifted downward slightly as to ensure the total energy over all frequencies in the original data as well as in the
reworked sample is the same. This way the dataset size gets greatly reduced, while still capturing the peaks. As a
drawback this does mean that one cannot determine the exact frequency of a peak, with the “shifted peaks” in of
Figure 4.1b as a consequence. Also, like for the 10 point rolling mean, there is no way of proving, rather than some
manual inspection of the data, that taking 5 peaks into account is the best option.
The third and preferred option is to use a bin-approach but to refine the bins in areas where maxima occur. In this
case 30 bins of size 0.1 Hz get refined 10 times to 0.01 Hz (the maximum sample rate) when the maximum energy
peak in the bin exceeds 2.5 times the mean energy in the bin, and the peak is higher than 5% of the total energy mean.
The latter condition is added to disregard relatively small variation peaks in the almost zero energy tail region of the
spectra. As can be seen from the right plot of Figure 4.1, this generally coarse way of depicting the data still provides a
closely detailed trace in the areas where it really matters.

(a) Rolled (b) Mean-Max (c) Mean-Max Refined

Figure 4.1: Three different data preparation techniques: qualitative comparison for a representative case

Although the report continues by only discussing the Mean-Max-Refined scheme results, it is worth mentioning that
the same model architectures will work, and have been tested to do so, on the other data types, with some minor
tweaks to the hyper-parameters in order to find optimal convergence.

Model definition and optimization
As indicated above, there is an engineering discrepancy between redirecting the frequency trace for a single design
case, or predicting a trend over multiple designs. In order to incorporate this a total of three model concepts is
worked out together with their optimized hyper-parameters for the same three prediction schemes (Random Forest
RF, Gaussian Process GPR, Neural Network NN) as before. In Figure 4.2 more details are given on their exact
application.

Frequency-Discrete models
Each ML model is trained for each frequency specifically. The inputs are the perforations and porosity. It returns a
2D array with energy values for all these n −β combinations at the model’s frequency. This way of predicting allows
engineers to quickly, in one prediction, see the trends around a frequency that they are interested in, for example
which design regions to avoid given a structural eigenfrequency. Some output examples are added in Figure 4.3. To
obtain the frequency-energy trace for a specific design one needs to call each respective frequency model, extract the
wanted n −β combination results, and then concatenate this result over all frequencies. The final ML models were:

• RF: The random forest optimization resulted in 1 tree being optimal, making the model idea interchangeable
with a single decision tree. A tree depth higher than 8 did not increase the accuracy using the earlier
mentioned 80-20 train-test split. However, since the training and prediction times go up for deeper trees, this
single tree depth of 8 was chosen as the optimal architecture. Training times are in the order of 10 seconds for
each frequency. The model is based on the code of the ScikitLearn.jl project.
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Figure 4.2: Application flow-chart for different ML model types

• GPR: Internal optimization using the Optim.jl package was performed for the hyper parameters themselves.
The GPR algorithm was set-up using an initial zero mean and a kernel sum. The first kernel is of the type
Matern-5/2 with length scale 0 (for both input dimensions) and standard deviation 0 as well. The second
Squared Exponential kernel has length scale and standard deviation 0.1 and 0.0 which showed optimal results.
The optimizer uses a LogNoise correction of -1.0. The model is based on the GausianProcesses.jl source code.

• NN: The neural network used here is non normalized and has a fixed depth with 2 dense, hidden, ReLU activated
layers. A grid-search for the optimal hidden layer width, batch size, learning rate and number of epochs before
cut-off gave 32, 16, 0.0005 and 100 respectively. While a 128 neuron width gave slightly more accurate results
(1% relative error reduction), the added expense for predictions showed that this was not necessarily worth the
trouble. Not through a grid search but through design the most efficient loss function was a relative (to the
dataset mean value) mean-squared error function together with an Adam weight optimizer, using an epoch-
based learning rate reducer of factor 1e-2 per epoch. The model is based on the Flux.jl source code. In the final
implementation the use of (Xavier-Glorot) weight initialization was removed because, while helping to reduce
the number of epochs required to converge, the final model accuracy was not affected.
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(a) RF (b) GPR (c) NN

Figure 4.3: Three different Frequency-Discrete prediction models (n −β prediction at 0.36 Hz)

Design-Discrete models
For 1 design (n −β combination) it predicts all energy levels between 0 and 3 Hz. This model allows engineers to
deeply analyse the details of a specific design’s drag energy spectrum without the need of model concatenation.

• RF: Here too a single tree depth of 8 was found optimal for the Decision Tree Regressor. When not applying a
train-test split, this model especially was prone to overfitting for depths exceeding 12. The model is based on
the code of the ScikitLearn.jl project.

• GPR: The best-fit for the design discrete GPR model was found using the same parameters as for the frequency
discrete variant, but with the initial squared exponential length scale set to 0. The model is based on the
GausianProcesses.jl source code.

• NN: Using the same Adam and weight-decay optimizer, and using the same MSE/mean loss function, it was
found that a 3 hidden layer architecture, also ReLU activated, gave the best results. The optimal
hyperparameters found were a hidden layer width of 64-256-1028 for the three layers respectively, a batch size
of 64, and a learning rate equal to 1e-5. The MSE loss stabilized after 12.000 epochs, where the model
optimization was then cut off. The high width and added complexity follows from the fact that in this case all,
over 300, binned frequencies are predicted at once. The model is based on the Flux.jl source code.

Full models
By inputting n, β and f the model returns a single energy value. By predicting different values either for different
designs or different frequencies, any of the 2 standard results from the previous concepts can be generated. As a
drawback the increased dataset size, since now everything must be analysed at once, requires more complicated
architectures and therefore also longer training and prediction times, and less accurate results.

• RF: for the full model a tree depth of 32 was found to give optimal results. The model is based on the code of the
ScikitLearn.jl project.

• GPR: The previous Matern-Exponential kernel resulted in infinite estimator weights. Therefore an alternative
implementation was built with an RBF kernel with length scale 1. The model is based on the code of the
ScikitLearn.jl project.

• NN: Testing to find the optimal architecture parameters showed that the same model set-up as for the design-
discrete NN predictor was already quite optimized, assuming the there used base-architecture as a starting
point. Further investigations showed no immediate improvement. The model is based on the Flux.jl source
code.

Model results
The previous paragraph is summarized in the double-purpose Table 4.2. Firstly an overview of the model hyper
parameters is given again. They are accompanied by the model performance results.
The hyperparameter optimization has been done through a grid search. For the RF an increasing number of trees
was tested (1-10-50-100-200-500) at different depths (1-50). The GPR model had a trial-and error based set-up. The
Optim.jl package performs a Riemann optimization internally on the GPR kernel parameters. The Neural network
here was tested for 8, 16, ..., 2048 neurons in each layer, a batch size of 2, 4, ..., 256, and a learning rate of 1e-5, 5e-5,
1e-4, 5e-4 or 1e-3.
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FD DD Full

RF
Depth 8 8 32
RMSE 1.858 3.915 6.058

∆t 5.351 6.278 15.249

GPR
Kernel

Matern-5/2 (l=0.0 - σ=0) Matern-5/2 (l=0.0 - σ=0) RBF (l=1.0)
+ Squared Exponential (l=0.1 - σ=0) + Squared Exponential (l=0.0 - σ=0)

Mean zero zero zero
RMSE 2.673 13.887 4.681

∆t 4.371 19.526 16.284

NN

Dense hidden layers 2 3 3
Dense layer width 32-32 64-256-1028 64-256-1028

Layer activation function ReLU ReLU ReLU
Batch size 16 64 64

Learning rate 5e-4 1e-5 1e-5
Weight decay 0.01 0.01 0.01

Optimizer Adam Adam Adam
Loss function MSE/mean MSE/mean MSE/mean

RMSE 6.283 5.338 27.526
∆t 8.459 1.863 8.862

Table 4.2: OC data prediction model parameter and performance comparison (RMSE in % and prediction time in milliseconds)

From the table a few different conclusions can be drawn.

• The prediction times are all in the order of a few milliseconds. This indicates that the prediction times are an
irrelevant parameter in the model quality comparison. Even the most expensive prediction (Full GPR) can be
performed over 60 times in just a single second. These figures are negligible in comparison to the 480 CPU hours
a single CFD simulations would take in order to acquire the same data. Star (2022) performed non-transient
simulations where the surrogate CNN model was 386 times faster, and he predicted that surrogates for transient
simulations could be even faster. For the prediction of 0-3 Hz frequency data every 0.01 Hz (the sampling rate
in the performed simulations) the slowest model developed here would take 5 seconds, equalling a speedup
factor of 350 thousand. Even though some post-processing of the predictions is still required to recreate the
force trace itself (through a reverse FFT, not being able to account for the phase shifts of the harmonic signal),
the speed-up is still immense. When comparing to the factor 400 speed-up found in creeping Stokes surrogates
(Star, 2022), this value makes sense. In essence the transient model requires 10 time steps per second for 600
seconds, showing a speed-up for a single calculation in time of 58.3. This is then 7 times less than the creeping
stokes prediction, as one would have expected for the more complicated LES predictions. Although not exactly
similar, the order of magnitude for the prediction speed-up is comparable (7 to 1), possibly indicating that the
here developed models are relatively well, or at least similarly well, optimised.

• Most models have a RMSE accuracy of 6% or lower. This can generally be considered acceptable for
engineering design, as dynamic safety factors often include a factor two or three as standard. Only the
design-discrete GPR and full NN predictions do worse. In both cases this is expected to be caused by
sub-optimal kernel and architecture choices. Due to time constraints further improvements were not
developed. At the moment the NN options are expected to have the most potential for future improvements,
however this is just speculative. The current model with an error of 27%, on average, is unsuited for application
in design scenarios.
As a secondary comparison tool, the original CNN model developed by Star had a similar error rate of 5%.

• While the earlier engineering-mean models showed the best results using GPR predictors, in this case the
Random Forest performs slightly better. The Neural Networks are generally worse in both prediction
philosophies. This result is attributed to the large randomness which can be found in the provided data. The
RF and GPR architectures are more prone to overfitting, making their results on random data look better. In
practice however their applicability may not reflect this. As indicated just before, it is expected that the better
controlability of neural networks, given enough time and energy to develop them, will allow them to catch up
performance-wise and to be the model of choice in the future.
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4.2.3. OC Analysis insights and design take-aways
While the raw data trends are already commented on in Chapter 3, the further data handling showed some additional
useful insights. Because of the rolling means and/or binning techniques applied, it became possible to show some
additional relations in the seemingly random data.

The first conclusion is visualized in Figure 4.4. For a high number of perforations and a low porosity, the energy peak
at 0.65 Hz reduces with n, and gets wider with n. The relative effect of this does not show this trend in the rolled data
conversion, but it does in a binned mean-max (refined) scheme. Additionally, one sees that all these 4
perforation-samples have energy peaks at the (approximately) same frequency, but that the design with the highest
peak is different for each of these frequencies. Their respective relations disappear quickly as the porosity β

increases.

(a) Rolled n-changes (b) Mean-Max n-changes (c) Mean-Max Refined n-changes

(d) Rolled β-changes (e) Mean-Max β-changes (f) Mean-Max Refined β-changes

Figure 4.4: Small design variation energy patterns for high n - low β designs

An additional point to note is visualized for the RMSE-based least optimal model (Full-NN) in Figure 4.5. More
representations can be found in Appendix C. While the RMSE showed a suboptimal relation the visual fit can still be
considered quite good. As a side note it is mentioned that simulation case 17-0.5 failed to converge, hence 18-0.5 is
chosen as its replacement for imaging purposes.

As the number of perforation increases, the general average energy decreases. This is in accordance with earlier
observations in the CFD phase, where the high perforation samples were said to have a much more constant, less
varying time-domain drag force trace due to the reduced scale of the created vortices, averaging out over the full
cylinder size. Secondly there are some samples which show a clear, exponentially decaying trend, while others have
clear resonance peaks. This large discrepancy in data shape can serve as a verification of the reasoning why the much
less over-fitted neural network did not give optimal RMSE results, since the characteristics over the data change so
drastically. Some samples however do show clear energy peaks. This indicates the importance of looking at the full
frequency domain in design phases in the future as to avoid issues with resonance and VIV.

The final important note considers the high energy peaks at the 0 Hz line. In these regions all prediction algorithms
failed to give accurate results. This means that the “frequency domain models” are not suited to predict the average
drag force on the cylinder. They should be used to predict variations and frequency-related effects. For the constant
level the earlier “engineering-mean models” are much better suited. While not explored here, due to the earlier
explained lower relevance, this may mean that this problem does not exist for, on average zero-mean, lift predictions.
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(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure 4.5: Different selected fitment visualizations for the Full-NN model (OC data)

4.3. Implementation of ML in Julia: RD data
The same paths and models are now applied to the second dataset. Firstly a trend-and-averages scheme is developed.
The architecture and parameters are kept as close as possible to the previous models. The same goes for the detailed
frequency-domain prediction.

4.3.1. RD Engineering mean models
Data preparation
The same 6 values (mean, standard deviation 99% statistical maximum, and the 3 top frequencies) are gathered from
200 to 600 seconds, or to the end of the simulation, the shortest one being 441 seconds. The same n-β combination
idea is used for the prediction of the 12 (drag and lift) values.

Model definition and optimization
Prediction is done based on the same models as before with an 80-20 train-test split as well. No random-batch
sampling was used. Both input and output data was normalized between 0 and 1 in their own dimension. For the
different hyperparameter options, the same grid-search was performed as the one for the OC dataset. The three final
model architectures are:

• A Decision Tree Regressor (ScikitLearn.jl): optimal depth of 9 branches. Here the depth optimization is beatifully
clear when looking at its evolution over the branch depth, as shown in Figure 4.6
This is the same as the OC dataset.

• A Gaussian Process Regressor (GaussianProcesses.jl): internal optimization using Optim.jl, using an initial zero
mean and a kernel sum and double kernel with a Matern-5/2 and Squared Exponential kernel (all length scales
and standard deviations initialized at 0). The optimizer uses a LogNoise correction of -2.0.
This is the same as the OC dataset.
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• A Neural Network (Flux.jl): learning rate of 0.1, 100 epochs and 160 hidden nodes in a network using a single,
dense, ReLU activated hidden layer and using a MSE loss function.
This is different than the OC dataset.

Figure 4.6: RMSE evolution for different RF depths for the RD engineering data

Model results
The results of this optimization are shown in Table 4.3.

RF GPR NN
RMSE ∆t Bad. RMSE ∆t Bad. RMSE ∆t Bad.

avg_D 0.0706 2.175 0.1536 0.0266 2577.5 68.6775 0.0764 16.375 1.2505
avg_L 0.3204 2.25 0.7208 0.3184 2530 805.6557 0.2398 15.325 3.6748
std_D 0.0406 2.375 0.0965 0.0247 2527.5 62.4874 0.0421 15.375 0.6469
std_L 0.0363 2.175 0.079 0.0657 2512.5 165.1089 0.0529 15.65 0.8279

Max_D 0.0922 2.325 0.2144 0.033 2570 84.9179 0.096 17.075 1.64
Max_L 0.0529 2.275 0.1204 0.0734 2615 191.9593 0.0638 15.825 1.0098
f1_D 0.1425 2.275 0.3241 0.2341 2545 595.871 0.2881 16.675 4.8033
f1_L 0.2997 2.2 0.6594 0.2056 2657.5 546.4006 0.2174 15.425 3.3532
f2_D 0.1291 2.2 0.284 0.1576 2680 422.4457 0.1727 15.5 2.6764
f2_L 0.1865 2.275 0.4243 0.1577 2532.5 399.3145 0.219 15.725 3.4438
f3_D 0.0389 2.225 0.0865 0.0967 2550 246.4652 0.1001 15.55 1.5558
f3_L 0.1954 2.25 0.4396 0.1233 2697.5 332.5343 0.1945 15.7 3.0541

Table 4.3: RD dataset: Engineering model results

From the data in Table 4.3, with the time given in milliseconds for the prediction of all samples, the following
interesting conclusions can be extracted:

• Like for the OC data, the badness, defined as the linear product of the prediction time and RMSE, between the
12 different output variables is hard to compare because the RMSE is scaled due to the different original values.
The large RMSE for the frequency data is a consequence of the huge randomness and small correlation within
the data, even though the difference is now much smaller than for the OC data.

• GPR is generally the worst model in terms of badness. For the most important features, and RF is the best.
Even though execution times are similar, their millisecond order of magnitude will in practice not weigh into
the decision making.

• Visually all fits look equally good, just like for the OC data. For most frequency peak data there is a bigger
correlation now, making their fit look better over the OC-data random clouds. This is true for the lift values as
well. The RF contour data visually shows a much better prediction too, as can be seen in Appendix D.

In contrast to the OC data where GPR was the best predictor, here Random Forests prove to be better predictors for all
data, even including the random looking frequencies.
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4.3.2. RD Frequency domain prediction models
Data preparation
As the mean-max-refined scheme was shown to be optimal for the OC data, it is here used again without alteration.
This was done to make the models as comparative as possible. The cut-off frequency now lies at 1 Hz, giving 400 FFT
sample points per simulation. The refinement resulted in a smaller reduction of the amount of samples since the
frequency peaks in the RD data were more pronounced, meaning that each simulation had clear peaks and thus
refinement areas, whereas the OC data had some no-peak simulations.
Due to time constraints the RD data has only been used to train the ML models for this mean-max-refined data
preparation scheme. However it is expected that implementation using rolling averages or simple binning will work
without additional adaptations as well.

Model definition and optimization
The same philosophy for prediction, using three different “routes” is worked out for the RD data as well. Their build-
up and software usage is identical, and therefore only summarized in Table 4.4. The same grid search as for the OC
data has been performed in order to find the hyper parameters.

Model results
The table below summarizes all model hyper-parameters, as well as the model performance on the RD dataset.

FD DD Full

RF
Depth 16 16 256
RMSE 1.188 1.349 1.632

∆t 5.167 4.888 9.861

GPR
Kernel

Matern-5/2 (l=0.0 - σ=0) RBF (l=1.0) RBF (l=1.0)
+ Squared Exponential (l=0.1 - σ=0)

Mean zero zero zero
RMSE 1.611 2.002 4.554

∆t 5.494 5.317 10.852

NN

Dense hidden layers 3 3 3
Dense layer width 256-256-256 64-256-1028 64-256-1028

Layer activation function ReLU ReLU ReLU
Batch size 8 64 64

Learning rate 1e-4 1e-5 1e-5
Weight decay 0.01 0.01 0.01

Optimizer Adam Adam Adam
Loss function MSE/mean MSE/mean MSE/mean

RMSE 3.964 9.807 5.981
∆t 2.750 20.142 19.932

Table 4.4: RD data prediction model parameter and performance comparison (RMSE in % and prediction time in milliseconds)

From the table a few different conclusions can be drawn:

• The models are quite identical to the ones used for the OC dataset, but all needed a bit more depth and
complexity. This is due to the more pronounced frequency forcing after the FFT process, making less elaborate
models view the peaks as outliers. Deeper, more over fitting networks were required to accurately capture these
effects. This does make the prediction times similar to the ones found for the OC data.

• Interestingly the Full RF found a converged RMSE optimum at a depth of 16 branches, with a sudden, and at
this moment unexplained, increase in accuracy at a depth of around 200. The increase was however minimal,
especially considering the already, for engineering, accurate predictions, that the better prediction was not
worth the additional computation time, even though it still only took a few 10s of milliseconds.
The GPR models required no kernel alterations, which was expected due to the general applicability of the
used RBF kernel (Duan et al., 2019).
The NN workded quite well out of the box too, with some added depth and small hyperparameter alterations.

• Like for the OC data, the FD-RF model is the best predictor, with the full RF model not far behind and, from a
practical point of view, having the upper hand
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• A lot of models have a RMSE accuracy of around 1%, which is exceptionally good. The smoother
frequency-domain traces are the main reason for this. Like before the NN’s are a bit worse, but the difference is
less pronounced than for the OC data. The original recommendation to further optimize this way of prediction
therefore still stands. As a drawback, but being of millisecond order not a big one, the predictions do take twice
as much time approximately. .

4.3.3. RD Analysis insights and design take-aways
Due to the more constant trends in the RD dataset, no new special features propped up after the ML data
preparation. This peak-focused data also allows to omit a full appendix of representations like done earlier for the OC
data, since the prediction of the full trace is now less important than the peak predictions. Like for the OC data, still
as the number of perforation increases, the general average energy decreases. However the effect is less pronounced
since the large cylinder diameter already filters out some of the large vortices from low-n designs.
Like for the OC data, these models for FFT converted predictions are not suited for constant and mean predictions.

As a final take-away, it is recommended to adapt the data preparation scheme in the future to focus on log energy
scales, as shown in Figure 4.7. On a log10 scale the energy peaks become much more comprehensible, especially
in the case of narrow-peaked spectra. Additionally the effect of the preparation technique and the binning is better
visualized. This may indicate that a machine learning training process on these log values would yield more accurate
results as well, especially in the close-to-zero tail. Also for more random signals the log scale shows more interesting
effects in this higher frequency region.

(a) 6 - 0.8 (b) 6 - 0.8 - log

(c) 12 - 0.4 (d) 12 - 0.4 - log

Figure 4.7: Visualization of the frequency domain on normal and log scales

4.4. OC and RD similarities and discrepancies
Below a list is added of notable conclusions from the comparison of the two datasets, with hopes of facilitating future
research using a combination of the strong points of both.

• It is assumed that the small changes in meshing strategy and the way the perforations are cut out do not
contribute greatly to the results, other than changing the convergence-properties of the Stokes
pre-conditioner. A continuation of the meshing scheme used for the OC data (rectangular rather than
triangular cutouts from the cylinder center) is advised since less simulations crashed using the OC meshes.
The non-convergence could also be related to the diameter scale itself, but since all values in the mesh are
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scaled on the diameter in both meshing schemes this is unlikely. The test for this should however be fast and
simple enough so as to not ignore the possibility.

• The effect of the larger cylinder on the smoothness of the data in the frequency domain was very important.
This indicates that scaled simulation results are inaccurate, and should be avoided.

• The increased design space size, with more extreme (high and low) n and β gave some additional insights as
well. The large variations from the beat-pattern for low-n and high-β samples are the first that spring to mind.
However further analysis of these extremes may be futile once more details on the structural side of this
perforated monopile concept become available.

• The larger cylinder also showed a much larger time required for development of the wake field, requiring up to
600 seconds of simulation times. While the OC data was only ran for 200 seconds, their traces showed better
signs of a developed state than some of the RD traces in the 100-200 second region. But, to be fully correct, at
this point it is unknown what would happen if the OC simulations were ran for longer. It does make sense that
the 1 m diameter, so in total 7 m long OC domains develop faster for a 1 m/s inflow than the 10 m diameter and
thus 70 m length domains do for the same 1 m/s inflow velocity.
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5
Conclusions and recommendations

5.1. Conclusions
To increase the water depth at which conventional offshore wind turbine monopiles remain economical, the concept
of M. C. Anderson in which the monopile is perforated around the splash zone provides interesting possibilities. To
simulate the effects of the perforations on the water flow and in order to predict the consequent drag and lift forces a
transient fluid flow model should capture the required flow and turbulence effects at a reasonable computational
cost. For preliminary design and concept evaluation it is not required to include manufacturing details, installation
and noise mitigation solutions, scour effects, corrosion and acidification, or marine growth, nor any 3D and
hydro-elastic effects.

In order to solve the Navier-Stokes equation in this case an LES model provides the accuracy-cost balance needed.
From the three closure models tested, Smagorinsky-Lilly and WALE proved to require much smaller time steps,
whereas a VMS scheme provided the required stability at a much lower computational cost. Parametric design of the
monopiles based on wall thickness and angle of attack showed that the influence of the former was negligible,
whereas the latter only relevantly changed the lift patterns. The existence of logical flow-paths through the monopile,
mainly at a low number of perforations, is expected to be a better measure for lift and drag effects than the angle
itself. The monopile diameter and the inflow velocity were found to impact the drag in relation to the Morison
equation, allowing them to be excluded in coefficient-based force reduction determination. The most important
influence of the diameter is that larger cross sections average out small pressure fluctuations, resulting in smoother
time-drag histories. Varying porosity and number of perforations remains the key of this novel monopile design
process, with some combinations allowing for modeled force reductions of up to 55% for small diameter cylinders
and 50% for larger ones when excluding “extreme” porosities which are assumed to be structurally invalid. For these
conclusions it was required to have simulations exceeding 200 seconds, since a 1 m/s inflow velocity took that time
to fully develop and for the vortices to “lock into” the wake region. The RD data also showed that the conclusion of
Star (2022), namely that lift is only relevant for n ≤ 4, could be extended such that lift will only contribute really for
low-n designs which are also low in porosity. Additionally for low-n designs, it is important to closely monitor the
beat-effect of extremely high-β samples. From the RD data, with some engineering-feel limitations applied, a
porosity of around 0.5 will most likely give the best trade-off between strength and mean force reduction. For 10 to 12
perforations the cost of cutting the holes will most likely stay reasonable, and the high number of perforations
reduces the total amplitude that the force trace has.

To facilitate the design process two datasets, one pre-existing for small diameters (OC), and one with large diameters
(RD), were used to train a variety of Random Forest Regressors, Gaussian Process Regressors, and Neural Networks.
By using binned-data which got refined locally at locations of interest, the dataset is reduced to a trainable size. While
optimization is still required, Neural Networks are expected to provide the best basis for accurate and trend-based
predictions. General values such as mean and expected maximum drag can best be predicted using a GPR model for
small diameter, and a RF model for large diameter designs. To predict a full energy-spectrum for future resonance
checks a RF model performs best, with errors being less than 6% and prediction times in the order of milliseconds.
A speed-up factor over three hundred thousand over the original CFD simulations can be achieved. Based on input
of the number of perforations, and the porosity, one can use these models to predict the energy for a specific design
at any frequency, as an engineer would require to ensure dynamic stability of future monopile designs. However, this
model type is on its merits not suited for mean value predictions due to the use of the frequency domain.



5. Conclusions and recommendations 43

5.2. Recommendations and future work
During the study a number of subjects was found not to be extensively covered in earlier works, or which were
excluded from the current scope at a later stage. These are discussed in a T-shaped manner, covering a wide and a
deep dimension.

For width the expansion of the code and models to include additional CFD and structural effects is required in order
to verify whether or not their added computational expense is justified to get more accurate predictions, or even more
rudimentary of the economic implications of perforated monopiles will help advance the industry as intended. The
most important concepts are:

• The influence of angle of attack variations and the flow-path shape through the perforations on drag, but
especially lift time-traces. The importance of the effect and the development at low numbers of perforation are
the key questions. The hypothesis that flow-relations may be more important than angular values may provide
an opportunity for CNN models to be applied for surrogate prediction.

• 3D effect inclusion, with wave motions and free surfaces or multi-phase flow, even though the conclusions
of the current research indicated that Morison scaling laws are still applicable. With this a further look into
numerical stability of the Stokes preconditioner can be worked in as to determine if rectangular cutouts rather
than triangular ones are really, also from a manufacturing point of view, more beneficial.

• FSI, VIV, resonance and frequency analysis. Since scaling seems to follow Morison’s theory, one-way coupling
may already give a relatively cheap but relevant addition to the modelling scheme.

• Fatigue determination and inclusion in a full turbine model.

• Design optimization of the hole lay-out and shape, and practical manufacturing details with possible inclusion
of the perforations in transition pieces rather than in the monopiles themselves. The optimization should be
based on the relative impact that adding more or bigger holes has in reducing the drag, compared against the
structural weakening which comes from the removal of material and introduction of stress concentrations
around the holes. Elliptical holes in vertical directions may already reduce these concentrations.

On an even larger scale, subjects that fell out of the scope of this thesis and that provide main research topics for future
work are:

• Accurate numerical or physical experiments for the determination of p-y curves for large monopiles.

• Accurate numerical or physical experiments for the determination of SCF of curved perforated plates with large
holes.

• Detailed information of costs and scaling rules for XXL monopile foundations.

• The importance and need of FSI inclusion.

Diving deeper and more detailed into recommendations to this thesis specifically, there are four main areas where
future work is required:

• A detailed analysis of the structural possibilities and limitations in order to decrease the size of the solution
space and amount of simulations needed in future design or research, and in order to guide future CFD research
to the prediction values which really matter, like for example frequencies to avoid or the relevance of lift in
general.

• Upgrades on the domain and the modeled structure. A few ideas are given here:

– One could look into Dirichlet-Neumann combined boundary conditions for the side walls, as explained in
Chapter 3.

– Now the cutouts in the OC and RD datasets are based o rectangles or triangles respectively, originating
from the cylinder center and then being rotated to mark the different holes. In real world applications,
especially in areas with a dominant single-direction current, a cut-out straight through both walls of the
cylinder may more sense. This way the flow path of the fluid is more straightforward, which may minimize
drag effects.
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– Implementation of periodic flows for wave-simulations. It must be noted that the assumption in this
thesis of drag-dominated flows would then disappear to make way for a more inertia dominated scheme
with different U-D scaling laws. The further validity of Morison should then be rechecked. For this all
domain boundaries require a redefinition, with the top and bottom one still consisting of a Dirichlet or
Dirichlet-Neumann combined bound, only with an x-direction velocity which varies over time and along
the wall, depending on the wave period and length. Similarly the now left inflow and outflow bound
would require a Dirichlet-Neumann combination which simulates periodic or irregular waves in time,
with the inflow boundary still forcing a constant current and the outflow boundary having a Neumann
element to accommodate a constant-current outflow. It is expected that the distance between the inflow
boundary and the cylinder should increase to accommodate the waves themselves. For a base case it is
most likely not required to add options to control the wave direction in the domain. Wave crests which
are aligned with the y-direction and travel purely in x-direction would work in all cases, since it is easier to
just rotate the cylinder. Expansion to irregular waves in both amplitude, period and direction would make
this a necessity.

• Further optimization of the LES solver and numerical schemes, especially concerning the now brute-force
Navier-Stokes solution (PCLU factorization) and the absence of variable time-stepping in Gridap.jl. The
implementation of variable time stepping may help reduce calculation times in the future as well, especially if
multiple cores calculating different segmented parts of the domain could use their own optimized time step.
Similarly further optimization of, or the upgrade to a different integrator than generalized alpha could better
the execution times as well.

• A focused surrogate-model study aiming to verify and improve the machine learning models, especially the
Neural Network options. The recommendations for future work cover a wide array of possibilities.

– The absolute simplest model, further optimization of the hyper-parameters, and the effect of removing or
introducing random batch sampling, weight initialization, normalization, ... are all relevant questions. To
this also comes the search for an explanation as to why the Random Forest approach here found 1 tree to
be optimal.

– A re-run of the found analysis focusing on a log-valued energy input. At the end of this project the
alternative representation added some key insights, so a re-fit of the ML models may do so as well.

– Amongst many additional options that could be considered, novel work on DeepONets is showing
promising results on the prediction of dynamic systems and differential equation results. This would
allow exponential model convergence even for small datasets (Lu et al., 2019).

– An additional DDM expansion could be to look into flow-pattern and vorticity predictions, especially in
the inner-cylinder water area or in the near-cylinder wake field. These 2D phenomena would most likely
require a conversion back to CNN predictions, both for decoding as encoding phases.

– In Julia, while Flux.jl was used here, a conversion to ScikitLearn.jl for all models, or similarly PyTorch.jl may
reduce the amount of software or dependency complexity required to run all calculations and prediction
schemes. The Python link additionally allows for better documentation and, possibly, performance over
Flux.jl. Even if performance is not improved, this will most likely not pose any problems due to the now
very fast and cheap predictions.

– A final topic in the surrogate-modelling department could be to check the validity of 2D models for 3D
predictions. Based on a few, computationally very expensive, CFD simulations the link between 2D and
3D results could be determined. This allows designers and engineers to only having to run a 2D simulation
to get the 3D results.
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A transient LES-VMS scheme: flow through a perforated
cylinder
Author: Ruben Dekeyser and Oriol Colomés
Published: June 2023
Gridap version: Gridap@0.17.17

This tutorial shows the implementation of an external mesh for a perforated cylinder in 2D in Gridap.jl. The goal is
to get a time trace of the drag and lift force experienced by the monopile.

A. Problem description

The goal is to model a steady uniform flow through a perforated cylinder. The general domain looks as follows:

To this end, the problem is split into a series of consecutive steps:

1. Set up the problem
i. Define the model parameters and input values
ii. Define the geometry
iii. Define the boundary conditions

2. Set up the numerical scheme
i. Set up the test spaces
ii. Build trial spaces
iii. Combine them in a (transient) multifield
iv. Initialize the domain
v. Define the weak form
vi. Set up the time integration scheme

3. Apply the nonlinear solver and time integration
4. Do post-processing

For engineering research into perforated monopiles the post processing should be built around the following data:

1. The velocity and pressure fields (usually in vtk format). This will be useful in the early stages of the
development to look into the exact flow effects, eddies, ...
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2. Drag and lift time-traces, either in the time or frequency domain, for further design analysis and trend-
seeking.

B. Set up of the module and surrounding parallelization options

We start by importing all required packages in a module. This module allows for easier parallel execution in cluster
machines. The 2 files that are imported containt the actual Navier Stokes implementation, and the mesh generator.
the latter is not elaborated on here. However, the code can still be publically accessed.

The meshes can be generated by calling a dedicated funtion, taking the different diameters, wall thicknesses,
perforations, porosities, angles of attack and domain lengths as inputs. This creates meshes of all their
combinations. To get a single mesh, just input 1-element lists. By changing the boolean do_mesh  value it is
possible to easily get a list of all generated files, without having to actually generate them. This is useful if one
wants to re-run simulations.

using Gridap
using Gridap.FESpaces: zero_free_values, interpolate!
using Gridap.Fields: meas
using GridapGmsh: gmsh, GmshDiscreteModel
using GridapDistributed
using GridapDistributed: DistributedTriangulation, DistributedCellField
using GridapPETSc
using GridapPETSc: PETSC
using PartitionedArrays
using SparseMatricesCSR

using CSV
using DataFrames

include("NavierStokesParallel.jl")
include("mesh_generation.jl")

function generate_meshes(; nD=[10], nRt=[100], nperf=[12], nβ=[0.5], nα=[0], nR_L=[7], do_mesh=true)
  # Create cases
  cases = []
  # RDK values
  for D in nD
    for Rt in nRt
      for num_perforations in nperf
        for β in nβ
          for α in nα
            for R_L in nR_L
                D2 =  round(D;digits=2)
                Rt2 = round(Rt;digits=0)
                β2 =  round(β;digits=2)
                α2 =  round(α,digits=2)
                filename = "D$D2-Rt$Rt2-n$num_perforations-beta$β2-alfa$α2-RL$R_L.msh"
                push!(cases,replace(filename, r".msh"=>""))

                if do_mesh==true
                  create_mesh(filename=filename, D=D, R_t=Rt, num_perforations=num_perforations, R_β=β, 
α=360/num_perforations*α,
                              R_L=R_L, R_Cx=R_L-5.5)
                end
              end
          end
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After that a series of mumps  flags is defined for the module to work correctly:

Lastly the actual parallel solver can be called. The default values of the parameters allow easy execution of a
warmup loop, allowing a system image to be stored on a cluster. That way the system image can be used on all
calculation cores, without having to recompile the module each time. This saves multiple hours of computation
time for high parallel computing.

        end
      end
    end
  end

  return cases

end

options_mumps = "-snes_type newtonls \
-snes_linesearch_type basic  \
-snes_linesearch_damping 1.0 \
-snes_rtol 1.0e-8 \
-snes_atol 1.0e-10 \
-ksp_error_if_not_converged true \
-ksp_converged_reason -ksp_type preonly \
-pc_type lu \
-pc_factor_mat_solver_type mumps \
-mat_mumps_icntl_7 0"

function main_parallel(np;
  mesh_file="tmp_mesh_coarse.msh",
  vtk_outpath="tmp_mesh_coarse",
  Vinf=1,
  Δt=0.1,
  tf=1.0,
  Δtout=0.5,
  output_path=joinpath(ENV["PerforatedCylinder_DATA"],"vtk"))

  filename = replace(mesh_file, r".msh"=>"")
  run_name = filename*"-Vinf$Vinf-dt$Δt"

  current_path = pwd()
  cd(output_path)
  with_backend(MPIBackend(),np) do parts
    options = options_mumps
    GridapPETSc.with(args=split(options)) do
      run_test_parallel(parts,run_name,mesh_file,vtk_outpath,Vinf,Δt,tf,Δtout)
    end
  end
  cd(current_path)
end
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1. Setup of the problem

The model gets 3 main inputs: the mesh, the inflow velocity, and the time step. The mesh is triangulated and split
into a fluid and a solid domain. Additionally the boundaries are read from predefined tags from the mesh-file. The
bounds of all these sub-domains are Measured  to be used in integration schemes later, and additionally the
normal directions of the structure and the outflow boundary are calculated. The boundary conditions are: a
uniform (Dirichlet) inflow of speed , prescribed-velocity  walls and a no-slip no-penetration structure. The
outflow boundary is included in the weak form directly.

For the code we define a more elaborate structure.

1.1 Define the model parameters and input values

We start by referencing the part , or subdomain which we are currently in. This is needed since we are using
parallel computing, and this way the differenc processors can communicate with each other by sharing their
outputs. Additionally, while this can be omitted, we generate files to log the progress. Also we generate a file to
store the force outputs.

Vin (Vin, 0)

if i_am_main(parts)

    logs_path=ENV["PerforatedCylinder_LOGS"]
    log_file = run_name*"-output.log"
    full_logs_path = joinpath(logs_path,log_file)
    io = open(full_logs_path, "w")

    forces_path=ENV["PerforatedCylinder_FORCES"]
    force_file=run_name*"-forces.csv"
    full_force_path = joinpath(forces_path,force_file)
    io_force = open(full_force_path, "w")

  end

  function to_logfile(x...)
    if i_am_main(parts)
      write(io,join(x, " ")...)
      write(io,"\n")
      flush(io)
    end
  end

  function to_forcefile(x...)
    if i_am_main(parts)
      write(io_force,join(x, " ")...)
      write(io_force,"\n")
      flush(io_force)
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1.2 Define the geometry

After that we call the mesh that we want, and extract all tags and boundaries. Throughout the code some key steps
get pushed to the log file so that it is easier to troubleshoot the code if, or rather when some simulations were to
fail.

1.3 Define the boundary conditions

We start by defining the model order and assigning it to the domain and its boundaries.

In addition, we define some general physical parameters:

as well as the boundary conditions for the inflow side, walls and cylinder itself. The outflow boundary condition is
immediately incorporated in the weak form. While not used here, this code allows immediate 3D expansion.

    end
  end

starting_timestamp = time()
to_logfile("Start time = $starting_timestamp")
# Geometry
to_logfile("Geometry")
DIRICHLET_tags = ["inlet", "walls", "monopile"]
# FLUID_LABEL = "fluid"
# OUTLET_LABEL = "outlet"
meshes_path=ENV["PerforatedCylinder_MESHES"]
full_mesh_path = joinpath(meshes_path,mesh_file)
to_logfile("Mesh file: ",full_mesh_path)
model =  GmshDiscreteModel(parts,full_mesh_path)
Ω = Triangulation(model)
Ω_f = Triangulation(model, tags = "fluid")
Γ_S = Boundary(model, tags = "monopile")
Γ_out = Boundary(model, tags = "outlet")

to_logfile("Measures")
order = 2
degree = 2 * order
dΩ_f = Measure(Ω_f, degree)
dΓₛ = Measure(Γ_S, degree)
dΓout = Measure(Γ_out, degree)
n_ΓS = get_normal_vector(Γ_S)
n_Γout = get_normal_vector(Γ_out)

# Physics parameters
to_logfile("Parameters")
rho = 1.025e3 # kg/m^3
μ_f = 1.0e-3 # rho * Vinf * D / Re #0.01 # Fluid viscosity
ν_f = μ_f / rho # kinematic viscosity

# Boundary conditions and external loads
dims = num_cell_dims(model)
u0(x,t,::Val{2}) = VectorValue(0.0, 0.0)
u1(x,t,::Val{2}) = VectorValue( Vinf, 0.0 )
u0(x,t,::Val{3}) = VectorValue(0.0, 0.0, 0.0)
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2 Set up the numerical scheme

2.1/2.2/2.3 Set up the test and trial spaces and combining them into a transient multifield

With the domain fully defined the next step is to define the internal structure of each cell through reference
elements in their respective transient test spaces. With one for velocity (in 2 dimensions), and one for pressure (1
dimension), a multifield test space and trial space is created.
The velocity reference elements in the test spaces are Lagrangian second order elements. For numerical stability,
this means that the pressure elements should be Lagrangian elements as well, but of order 1. These 2 test spaces
have H1 and C0 conformity respectively. H1 conformity indicates that the test space functions are continuous,
although their gradients can contain jumps. C0 conformity allows the test space to contain jumps already, which is
required for the pressure field.
With all of that done, we can generate the actual trial and test spaces for transient use.

2.4 Initialize the domain

To facilitate the calculation start-up, it is better to not start from a no-flow situation, where all velocities are 0. To
have an initial state, a Stokes solver is ran once. The strong form of the steady state Stokes equation is:

where  denotes the velocity field, 2 dimensional, and  denotes the pressure field.  is the in-compressible fluid
viscosity. Multiplying the test function  to the former momentum equation on the top, and ding the
same for the continuity equation on the bottom with , we can find the weak form problem through
integration by parts. The problem then reads:

Find  and  such that

u1(x,t,::Val{3}) = VectorValue( Vinf, 0.0, 0.0 )
u0(x,t::Real) = u0(x,t,Val(dims))
u1(x,t::Real) = u1(x,t,Val(dims))
u0(t::Real) = x -> u0(x,t,Val(dims))
u1(t::Real) = x -> u1(x,t,Val(dims))
println("Dimensions in this problem = $dims")
U0_dirichlet = [u1, u1, u0]
g(x) = 0.0

to_logfile("FE spaces")
# ReferenceFE
reffeᵤ = ReferenceFE(lagrangian, VectorValue{dims,Float64}, order)#,space=:P)
reffeₚ = ReferenceFE(lagrangian, Float64, order - 1)#,space=:P)

# Define test FESpaces
V = TestFESpace(Ω, reffeᵤ,  dirichlet_tags = DIRICHLET_tags, conformity = :H1)
Q = TestFESpace(Ω, reffeₚ,   conformity= :C0)
Y = MultiFieldFESpace([V, Q])

# Define trial FESpaces from Dirichlet values
U = TransientTrialFESpace(V, U0_dirichlet)
P = TrialFESpace(Q)
X = TransientMultiFieldFESpace([U, P])

{−μΔu + ∇p = f , in Ω,  
−∇u = 0, in Ω

u p μ

v ∈ H1
0(Ω)

q ∈ L2(Ω)

u ∈ H1
0(Ω) p ∈ L2(Ω)

{(μ∇u, ∇v) − (p, ∇v) = ⟨f , v⟩, ∀v ∈ H1
0(Ω)

−(∇u, q) = 0, ∀q ∈ L2(Ω)
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Finally this can be combined into the bilinear form:

Rewriting this such that the formulation includes the outflow boundary condition and the non-forced fluid flow
inside the domain, and then rewriting the inputs so that the form is equal to the one implemented in Gridap.jl, the
problem to be solved becomes:

Find  and  such that

with  and  the symmetric gradient of the field; and such that

in which the  indicates a free fluid flow inside the domain.

This is done through the definition of the weak form:

and the set-up of the parallel solver:

Lastly this solution is interpolated over the different elements in order to be used as initial conditions for the
transient calculations.

{a(u, v) = μ ∫Ω ∇u : ∇vdx

b(v, q) = − ∫
Ω

(∇v)qdx

u ∈ H1
0(Ω) p ∈ L2(Ω)

a ((u, p), (v, q)) = ∫ (ϵ (v) ⊙ (σdevf ⋅ ϵ (u)) − (∇ ⋅ v) ⋅ p + q ⋅ (∇ ⋅ u))dΩf

σdevf (ϵ) = 2 ⋅ νf ⋅ ϵ ϵ

l ((v, q)) = ∫ (0)dΩf

0

# Stokes for pre-initalize NS
σ_dev_f(ε) = 2 * ν_f * ε #  Cauchy stress tensor for the fluid
a((u, p), (v, q)) = ∫(ε(v) ⊙ (σ_dev_f ∘ ε(u)) - (∇ ⋅ v) * p + q * (∇ ⋅ u))dΩ_f
l((v, q)) = ∫(0.0 * q)dΩ_f
stokes_op = AffineFEOperator(a,l,X(0.0),Y)

# Setup solver via low level PETSC API calls
function mykspsetup(ksp)
    pc       = Ref{GridapPETSc.PETSC.PC}()
    mumpsmat = Ref{GridapPETSc.PETSC.Mat}()
    @check_error_code GridapPETSc.PETSC.KSPSetType(ksp[],GridapPETSc.PETSC.KSPPREONLY)
    @check_error_code GridapPETSc.PETSC.KSPGetPC(ksp[],pc)
    @check_error_code GridapPETSc.PETSC.PCSetType(pc[],GridapPETSc.PETSC.PCLU)
    @check_error_code GridapPETSc.PETSC.PCFactorSetMatSolverType(pc[],GridapPETSc.PETSC.MATSOLVERMUMPS)
    @check_error_code GridapPETSc.PETSC.PCFactorSetUpMatSolverType(pc[])
    @check_error_code GridapPETSc.PETSC.PCFactorGetMatrix(pc[],mumpsmat)
    @check_error_code GridapPETSc.PETSC.MatMumpsSetIcntl(mumpsmat[],  4, 2)
    @check_error_code GridapPETSc.PETSC.MatMumpsSetIcntl(mumpsmat[],  7, 0)
    @check_error_code GridapPETSc.PETSC.MatMumpsSetIcntl(mumpsmat[],  14, 5000)
    @check_error_code GridapPETSc.PETSC.MatMumpsSetIcntl(mumpsmat[],  24, 1)
    @check_error_code GridapPETSc.PETSC.MatMumpsSetCntl(mumpsmat[], 3, 1.0e-10)
    @check_error_code GridapPETSc.PETSC.KSPSetFromOptions(ksp[])
end

# Linear Solver
to_logfile("Stokes solve")
ls₀ = PETScLinearSolver(mykspsetup)
u_ST, p_ST = solve(ls₀,stokes_op)
# u_ST, p_ST = solve(stokes_op)
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2.5 Define the weak form

The problem formulation starts with the Navier-Stokes equation:

with  the kinematic viscosity. Using the same space definitions as for the Stokes initialization. the weak form with
a residual notation then reads:

Find  and  such that

where .

The final step is to add a stabilizing closure model:

This can all be elegantly, in the same formulation, be converted into Gridap code:

# initial condition NS
to_logfile("Navier-Stokes operator")
xh₀ = interpolate_everywhere([u_ST, p_ST],X(0.0))
vh₀ = interpolate_everywhere((u0(0),0.0),X(0.0))

{∂tu − νΔu + u ⋅ ∇u + ∇p = f , inΩ × (0,T )
−∇u = 0, inΩ

ν

u ∈ H1
0(Ω) p ∈ L2(Ω)

(∂tu, v) + B(u; [u, p], [v, q]) = ⟨f , v⟩∀v ∈ H1
0(Ω) ∩ ∀q ∈ L2(Ω)

B(a; [u, p], [v, q]) = ν(∇u, ∇v) + c(a, u, v) − (p, ∇ ⋅ v) + (q, ∇ ⋅ u)

res (t, (u, p), (v, q))  = ∫ ( ∂u
∂t ⋅ v + c (u,u, v) + νf ⋅ (∇ (u) ⊙ ∇ (v)) − p ⋅ (∇ ⋅ v) + (∇ ⋅ u) ⋅ q)dΩf   + ∫ (τm ⋅ ((∇ (u) ⋅ u

# Explicit FE functions
global ηₙₕ = interpolate(u0(0),U(0.0))
global uₙₕ = interpolate(u_ST,U(0.0))
global fv_u = zero_free_values(U(0.0))

# Stabilization Parameters
c₁ = 12.0
c₂ = 2.0
cc = 4.0
h2map = map_parts(Ω_f.trians) do trian
CellField(get_cell_measure(trian),trian)
end
h2 = DistributedCellField(h2map)
hmap = map_parts(Ω_f.trians) do trian
CellField(lazy_map(dx->dx^(1/2),get_cell_measure(trian)),trian)
end
h = DistributedCellField(hmap)
τₘ = 1/(c₁*ν_f/h2 + c₂*(meas∘uₙₕ)/h)
τc = cc *(h2/(c₁*τₘ))

# Weak form
c(a,u,v) = 0.5*((∇(u)'⋅a)⋅v - u⋅(∇(v)'⋅a))
res(t,(u,p),(v,q)) = ∫( ∂t(u)⋅v  + c(u,u,v) + ε(v) ⊙ (σ_dev_f ∘ ε(u)) - p*(∇⋅v) + (∇⋅u)*q +
                        τₘ*((∇(u)'⋅u - ηₙₕ)⋅(∇(v)'⋅u)) + τc*((∇⋅u)*(∇⋅v)) )dΩ_f +
                    ∫( 0.5*(u⋅v)*(u⋅n_Γout) )dΓout
jac(t,(u,p),(du,dp),(v,q)) = ∫( c(du,u,v) + c(u,du,v) + ε(v) ⊙ (σ_dev_f ∘ ε(du)) - dp*(∇⋅v) + (∇⋅du)*q +
                                τₘ*((∇(u)'⋅u - ηₙₕ)⋅(∇(v)'⋅du) + (∇(du)'⋅u + ∇(u)'⋅du)⋅(∇(v)'⋅u)) +
                                τc*((∇⋅du)*(∇⋅v)) )dΩ_f +
                            ∫( 0.5*((du⋅v)*(u⋅n_Γout)+(u⋅v)*(du⋅n_Γout)) )dΓout
jac_t(t,(u,p),(dut,dpt),(v,q)) = ∫( dut⋅v )dΩ_f
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2.6 Set up the integration scheme

These results,  and  should then be integrated to the next time step. This is done through the implicit
generalized alpha scheme with , as defined before.

3. Apply the nonlinear solver

While being the core of the problem, Gridap allows the solution to be executed in a lazy format with just one line
of code.

4. Do post processing

The processes above are compiled as a single function. While calculating each time step, the pressure and velocity
are stored. The intermediate numerical artefacts  and  are stored too. The pressure and velocity fields are
used to determine the drag and lift force on the perforated cylinder through:

The force vector contains then the total drag and lift components of the cylinder. We use some relay-parameters
since the parallel use of global variables gave some discrepancies in the nested loops. Additionally these
calculations contain the fluid domain, so integration of pressures determines the forces as experienced by the fluid.
To get the forces on the cylinder we add a minus sign.

# Orthogonal projection
aη(η,κ) = ∫( τₘ*(η⋅κ) )dΩ_f
bη(κ) = ∫( τₘ*((∇(uₙₕ)'⋅uₙₕ)⋅κ) )dΩ_f
op_proj = AffineFEOperator(aη,bη,U(0.0),V)
ls_proj = PETScLinearSolver()

# NS operator
op = TransientFEOperator(res, jac, jac_t, X, Y)

u p

ρ∞ = 0.5

# ODE solver
t₀ = 0.0 # start [s]
ρ∞ = 0.5
ode_solver = GeneralizedAlpha(nls,Δt,ρ∞)

xₜ = solve(ode_solver,op,(xh₀,vh₀),t₀,tf)

unh ηnh

→F = (∑∫ ((nΓ ⋅ σdevf (ϵ (u))) − p ⋅ nΓ) ⋅ dΓs) ⋅ ρ

# Postprocess
if i_am_main(parts)
    println("Postprocess")
    to_logfile("Postprocess")
end
global tout = 0
createpvd(parts,run_name) do pvd
    global t_out_relay = tout
    global Δtout_relay = Δtout
    global uₙₕ_relay = uₙₕ
    global ηₙₕ_relay = ηₙₕ
    for ((uh,ph),t) in xₜ
        to_logfile("Time: $t")
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Finally the post processing is finished by closing the opened log files and ending the function which was originally
called from the main module.

        to_logfile("=======================")
        Fx, Fy = -sum(∫((n_ΓS ⋅ σ_dev_f(ε(uh))) - ph * n_ΓS) * dΓₛ)
        to_forcefile(t,Fx,Fy)
        if t>t_out_relay
        # pvd[t] = createvtk(Ω,joinpath(full_vtk_path,run_name*"_$t"),cellfields=
["u"=>uh,"p"=>ph,"un"=>uₙₕ_relay,"eta_n"=>ηₙₕ_relay])
        # t_out_relay=t+Δtout_relay
        pvd[t] = createvtk(Ω,run_name*"_$t",cellfields=
["u"=>uh,"p"=>ph,"un"=>uₙₕ_relay,"eta_n"=>ηₙₕ_relay])
        t_out_relay=t+Δtout_relay
        end
        uₙₕ_relay = interpolate!(uh,fv_u,U(t))
        ηₙₕ_relay = solve(ls_proj,op_proj)
    end
end

if i_am_main(parts)
    close(io)
    close(io_force)
end

ending_timestamp = time()
to_logfile("Start time = $ending_timestamp")
elapsed_time = ending_timestamp - starting_timestamp
to_logfile("elapsed time = $elapsed_time seconds")

return nothing
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Machine-learning based methods to accelerate design optimisation
of perforated monopiles
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Abstract. To help the energy transition, wind turbine manufacturers are venturing into deeper waters.
Reducing the hydrodynamic loads on the foundation monopiles could be achieved by perforating the
structures. For this, novel CFD calculation schemes are needed, which can be sped up through Machine
Learning. Here a Random Forest, Gaussian Process Regression, and Neural Network are trained to
predict the outcomes of 487 samples generated using Gridap.jl. It is found that Gaussian Processes
outperform their alternatives by a factor of 10 for the most critical parameters, namely the prediction
of average and statistically maximum drag force on the cylinder, based on the number of perforations
n and porosity β of the monopile.

1 Introduction

The requirement for an ever-greener energy mix has
the offshore wind industry venturing into deeper waters.
This comes with great technical challenges. Chief among
these are the enormous hydrodynamic loads from
currents and waves in the splash zone of monopile
foundations. Earlier work by Anderson (2017) and others
at TU Delft have shown promising results for reducing
the loads using perforated monopiles.
In this intermediate thesis update we give an initial
representation of the possibilities that machine learning
offers. Three regression models (Random Forests RF,
Gaussian Process Regression GPR, and Neural Networks
NN) are fitted to a 500-sample dataset created by Dr.
O. Colomés at TU Delft. This update document is part
of the process of the MSc thesis of R. Dekeyser. The
ultimate goal of this thesis, supervised by Dr. Colomés,
is to apply the Julia based FEM solver Gridap.jl to solve
transient flow around a perforated cylinder using LES.
In post-processing, Gridap.jl data generation can be
sped up using machine learning (ML). This intermediate
update explores the ML options.

2 Data analysis

The generated data consists of 500 samples of varying
numbers of perforations n (5 to 30) and porosity values β
(0.3 to 0.68). The output files contain time traces for the
pressure integrated drag and lift force on the cylinder.
12 simulations failed to converge, meaning that there

were no outputs. 1 simulation can be considered an
extreme outlier (order of 6 magnitude difference) and
is therefore discarded. This results in 487 time traces.
A Fast Fourier Transform (FFT) on the time traces,
excluding start-up and shutdown effects (using 80-180 of
the 200 provided seconds) provides the most interesting
basis for data analysis. The average value, standard
deviation, statistical absolute maximum (99% double
sided quantile) and the three most dominant frequencies
are extracted. These 12 outputs are to be analysed. the
results are shown in Figure 1 and Figure 2.
Initial data analysis (all sets are added in section B) has
revealed the following key findings:

– For drag the average value and statistical maximum
follow expectations within a narrow noise band.
Lower porosity results in higher loads (more
negative). Higher numbers of perforations give a
more random nature to the flow, resulting in slightly
lower drag numbers but also much lower standard
deviations. This is because the small turbulence
eddies are averaged out over the whole cylinder,
where small numbers of perforations or low porosity
values give larger eddies which cannot be averaged
out.

– Lift for a symmetrical profile should average out
at 0. This is the case, especially for high n. Lower
numbers of perforations generate larger eddies,
giving more variation in the lift over time. This in
analogous to the averaging-out property in the drag
discussion.
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– Both drag and lift frequencies follow similar trends.
This is best seen in Figure 6, 7 end 8 rather than in
the appended contour plots. Low n and high β result
in some higher frequency forcing. The relatively
large eddies in these cases carry enough energy to
influence the full monopile. As n increases the lift
and drag traces become more and more constant.
This gives in a large decrease of the associated
forcing frequencies. Generally the frequency data
has a much higher variance than the averaged forces.

While not the focus of this intermediate machine
learning update, it is promising to see the (absolute)
drag coefficient values between 0.06 and 0.17, since full
cylinders would theoretically give values of around 0.2.

3 Machine learning models

In total three machine learning models have been trained
on the 487 samples. While Random Forests can be
trained for multi-output regression, this was omitted
here in order to get accurate performance comparisons
to the, by default single output, Gaussian Processes
(Kriging) Regression. However, successful tests with
Random Forests have been done on this data. Neural
Networks can be trained for multi-outputs as well, but
current attempts on this dataset were unsuccessful.
The regression results did not converge and they were
inaccurate. The current assumption links this to the
small amount of samples for training a multi-layer
system with 12 outputs. All models use a train-test
split ratio of 0.8-0.2.

The RF model has been tested using multiple layer
depths. The implementation is based on the Python-
originated ScikitLearn.jl package. When weighed
linearly against the RMSE accuracy (Badness =
TrainingT ime · RMSE, so lower = better) one finds
that 9 levels within the forest are optimal. Further
increases in accuracy are not guaranteed and only
increase the required training time. This is visualized
below.

The GPR model training as laid out by
GaussianProcesses.jl has an internal hyperparameter
optimization looking into bounds for the mean estimates
and kernel functions. The limited time requirement
for full optimization indicates further design of the
optimization scheme is not needed.

The Neural Network used here has been made in order
to optimize results for the average drag and statistic
maximal drag, as these outputs are seen as most critical
in later wind turbine design schemes. The inputs and
outputs of the model are normalized, as this improved
result accuracy. For RF and GPR this was not the case.
A model with 1 hidden layer using 2 input values (n and
β) predicts the single output through:

Chain(Dense(2, n hidden, relu),
Dense(n hidden, 1)

In order to allow negative results the end layer is taken
linearly. The NN uses an MSE loss function, even though
generally MAE is considered better for outlier-prone
CFD results (Eichinger et al., 2021). In this case however
lower RMSE values were obtained using MSE in the
optimization process. The learning rate reduces from the
initial value with each epoch through the log10 value of
the current epoch.
The hyper-parameter optimization is done for four
parameters:

1. the initial learning rate, for which optimally 0.025
is found;

2. the model accuracy cutoff, for which 10e-6 is found;

3. the minimum number of training epochs, for which
100 is found;

4. the number of neurons in the hidden layer, for which
60 is found.

The model accuracy cutoff ensures continuous
improvement of the model, meaning that the training
is stopped when the loss function change between two
consecutive epochs is below this cutoff value, and the
number of performed epochs is higher than the minimum
number of epochs. There are thus two conditions to
accept the trained values.

RF GPR NN
RMSE ∆t Bad. RMSE ∆t Bad. RMSE ∆t Bad.

avg D 0.008827 19673 174 0.004414 2617 12 0.014345 9136 131
avg L 0.0684 20434 1398 0.063757 2582 164 0.123585 25899 3201
std D 0.009934 19807 197 0.014637 10926 160 0.025229 11262 284
std L 0.026339 17905 472 0.018457 1583 29 0.020262 15667 317
Max D 0.009546 18970 181 0.010089 3206 32 0.013232 9927 131
Max L 0.037633 14245 536 0.044118 7282 321 0.04846 17835 864
f1 D 0.480 14809 1708 0.411 2085 857 0.421 13290 5595
f1 L 0.143 13623 1948 0.639 1749 1118 0.580 7357 4267
f2 D 0.405 14961 6059 0.341 2366 806 0.346 8798 3044
f2 L 0.190 19097 3628 0.447 1240 554 0.497 9032 4489
f3 D 0.529 16525 8597 0.216 2461 532 0.384 17769 6823
f3 L 0.457 13065 5971 0.289 1330 384 0.477 6897 3290
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4 Machine learning evaluation

While mainly optimized for the drag mean and
statistical maximum predictions, the ideal machine
learning model should be able to capture all 12 outputs
as accurately as possible. From the data above, with
the time given in milliseconds for the training of the
model using train values and the prediction using the
test values, the following interesting conclusions can be
extracted:

– The badness between the 12 different output
variables is hard to compare because the RMSE is
scaled due to the different original values. The large
RMSE for the frequency data is a consequence of
the huge randomness and small correlation within
the data.

– The Neural network seems to perform on par with
the RF and GPR models in terms of RMSE for all
frequency related outputs. The force focused output
accuracy differs by a factor 2. However is most likely
a consequence of the use or disuse of normalized data
to train the models. The non-normalized RF and
GPR inputs for the frequency matters all lie within
0 and around 1.7, so normalization is less useful than
for the force related quantities between 0.05 and 0.2
approximately.

– Visually all fits look equally good. This explains
the worse RMSE for almost all output types, as
a relatively random point cloud RMSE is hard to
predict from visul inspection. We see that the less
correlated original outputs have RMSE values which
are much closer to each other still. This is because
in this case the fit quality through the uncorrelated
data cloud is not very dependent on the model used.
All trend seeking models perform equally bad (by
principle).

The most important conclusion to be drawn however is
that GPR is outperforming its rivals on all fronts. Its
badness is on average a factor 10 lower than the second
best model for that specific output prediction. While
having RMSE values similar to RF and NN, the training
and prediction times ∆t are much better. While this
may partially be a consequence of the more elaborate,
built in optimization of the hyperparameters, rather
than the manual selection done for the RF and NN
model, the main reason is most likely the straightforward
and simple nature of the model. Its robustness has
been shown in literature, both in general as for CFD
applications (Shen et al., 2022).

5 Conclusions and future work

To conclude this brief progress and data analysis
overview we highlight three main observations:

1. The data shows expected values and trends. The
trends can generally be explained through flow field
patterns and turbulence of the water itself. An FFT
extracts the most important parameters. the main
focus lies on the average and maximum drag.

2. The comparison of three models shows clear
effects of their hyperparameter optimization. The
parameters optimized for the avg D data perform
well for the other 11 outputs.

3. GPR gives the all-round best results, both in
terms of accuracy as well as required training
and prediction time. Some sources indicate that
this effect can be attributed to the simplicity
and robustness of the method, while it can also
be a consequence of software package included
optimization functions rather than manual schemes.

Going further, the work outline can be split into three
parts. Within the machine learning aspect of this thesis
further training optimization should be researched,
especially on the architecture optimization of the Neural
Network. Additional models can be looked into as
well. Within the full thesis scope the expansion of the
dataset using variations of the CFD and LES calculation
scheme with validation and stability testing has priority.
Possible added work in 3D and free surface modelling,
FSI and fatigue come second. Lastly design optimization
of the perforation layout must be performed, and
different industry design rules should be validated for
perforated monopile use, such as p-y-curves for XXL
monopiles, installation and manufacturing issues, and
economic aspects.
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A Raw data contour plots

(a) Drag average (b) Lift average

(c) Drag standard deviation (d) Lift standard deviation

(e) Drag maximum (f) Lift maximum

Fig. 1: Drag and lift raw data visualization part 1: force values
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(a) Drag frequency 1 (b) Lift frequency 1

(c) Drag frequency 2 (d) Lift frequency 2

(e) Drag frequency 3 (f) Lift frequency 3

Fig. 2: Drag and lift raw data visualization part 2: frequency values
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B 3D data regression results

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 3: Average drag and lift regression quality visualization in a 3D plot



B. SIAM 2023 Intermediate report 67

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 4: Standard deviation drag and lift regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 5: Maximum absolute value (99% percentile) drag and lift regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 6: First highest Fourier forcing frequency regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 7: Second highest Fourier forcing frequency regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 8: Third highest Fourier forcing frequency regression quality visualization in a 3D plot
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C Contour data regression errors

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 9: Average drag and lift regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 10: Standard deviation drag and lift regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 11: Maximum absolute value (99% percentile) drag and lift regression quality visualization in a contour
plot



B. SIAM 2023 Intermediate report 75

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 12: First highest Fourier forcing frequency regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 13: Second highest Fourier forcing frequency regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 14: Third highest Fourier forcing frequency regression quality visualization in a contour plot
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C
OC data fit visual representation

(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.1: Different selected fitment visualizations for the DD-RF model (OC data)
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(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.2: Different selected fitment visualizations for the FD-RF model (OC data)

(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.3: Different selected fitment visualizations for the Full-RF model (OC data)
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(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.4: Different selected fitment visualizations for the DD-GPR model (OC data)

(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.5: Different selected fitment visualizations for the FD-GPR model (OC data)
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(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.6: Different selected fitment visualizations for the Full-GPR model (OC data)

(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.7: Different selected fitment visualizations for the DD-NN model (OC data)
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(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.8: Different selected fitment visualizations for the FD-NN model (OC data)

(a) 5 - 0.3 (b) 5 - 0.5 (c) 5 - 0.7

(d) 17 - 0.3 (e) 18 - 0.5 (f) 17 - 0.7

(g) 29 - 0.3 (h) 29 - 0.5 (i) 29 - 0.7

Figure C.9: Different selected fitment visualizations for the Full-NN model (OC data)
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D
RD data fit visual representation

D.1. RD Engineering models

(a) Drag average (b) Lift average (c) Drag standard deviation (d) Lift standard deviation

(e) Drag maximum (f) Lift maximum (g) Drag frequency 1 (h) Lift frequency 1

(i) Drag frequency 2 (j) Lift frequency 2 (k) Drag frequency 3 (l) Lift frequency 3

Figure D.1: Drag and lift engineering mean values: contour plot visualization
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D.2. RD variable importance visualization

(a) Drag

(b) Lift

Figure D.2: Box run results to determine important design parameters
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D RD 3D data regression results: import

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 15: Average drag and lift regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 16: Standard deviation drag and lift regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 17: Maximum absolute value (99% percentile) drag and lift regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 18: First highest Fourier forcing frequency regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 19: Second highest Fourier forcing frequency regression quality visualization in a 3D plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 20: Third highest Fourier forcing frequency regression quality visualization in a 3D plot



D. RD data fit visual representation 91

E RD Contour data regression errors: import

(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 21: Average drag and lift regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 22: Standard deviation drag and lift regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 23: Maximum absolute value (99% percentile) drag and lift regression quality visualization in a contour
plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 24: First highest Fourier forcing frequency regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 25: Second highest Fourier forcing frequency regression quality visualization in a contour plot
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(a) RF lift (b) RF drag

(c) GPR drag (d) GPR drag

(e) NN drag (f) NN lift

Fig. 26: Third highest Fourier forcing frequency regression quality visualization in a contour plot
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