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Video Acceleration Magnification

Yichao Zhang, Silvia L. Pintea, and Jan C. van Gemert

Vision Lab, Delft University of Technology

Delft, Netherlands
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(a) Original video. (b) Phase-based [26]. (c) Ours. (d) Intensity changes.

Figure 1: A toy moving along a trajectory depicted by the black arrow, while vibrating at a high frequency. The top row shows 3 frames

overlayed to indicate the toy’s trajectory. The bottom row shows a single column of pixels – the green line in (a) – for relevant video frames.

(a) Original video. (b) Phase-based motion magnification [26]. (c) Our proposed acceleration magnification. (d) Intensity changes at the

location of the red pixel in the top row in (a) — corresponding to a spatio-temporal rectangle in the bottom row. Our method generates

sharper results with a greater magnification than the phase-based method in [26]. See the supplementary material for the video result.

Abstract

The ability to amplify or reduce subtle image changes

over time is useful in contexts such as video editing, medical

video analysis, product quality control and sports. In these

contexts there is often large motion present which severely

distorts current video amplification methods that magnify

change linearly. In this work we propose a method to cope

with large motions while still magnifying small changes. We

make the following two observations: i) large motions are

linear on the temporal scale of the small changes; ii) small

changes deviate from this linearity. We ignore linear motion

and propose to magnify acceleration. Our method is pure

Eulerian and does not require any optical flow, temporal

alignment or region annotations. We link temporal second-

order derivative filtering to spatial acceleration magnifica-

tion. We apply our method to moving objects where we show

motion magnification and color magnification. We provide

quantitative as well as qualitative evidence for our method

while comparing to the state-of-the-art.

1. Introduction

Essential properties of dynamic objects become clear

only when they move. Consider, for example, the mechan-

ical stability of a drone in flight, the muscles of an athlete

doing sports, or the tremors of a Parkinson patient during

walking. For these examples the properties of interest do

not emerge while remaining still. The essential properties

are the tiny variations that occur only during motion.

Tiny temporal variations that are hard or impossible to

see with the naked eye can be enhanced by impressive video

magnification algorithms [26, 27]. The strength of these

methods stems from using Eulerian motion analysis instead

of Lagrangian motion. The Lagrangian approach uses opti-

cal flow which is expensive and an unsolved research topic

in its own [6, 14, 21]. Instead, the Eulerian approach does

not require tracking; it measures flux at a fixed position.

The Eulerian motion magnification methods [26, 27] give

excellent results for magnifying blood flow, a heart-beat, or

tiny breathing when the object and camera remain still. Un-

fortunately, these methods fail for moving objects because

large motions overwhelm the small temporal variations.

A useful video magnification method that deals with

large motion is developed by Elgharib et al. [7]. It offers

a hybrid of Eulerian and Lagrangian methods. By manu-

ally selecting the regions to magnify, these regions can be

tracked by Lagrangian methods and subsequently tempo-

rally aligned using a homography. After alignment stan-

dard Eulerian magnification methods [26, 27] can be ap-

plied, yielding good magnification results. A disadvantage

of this method is that regions of interest require manual seg-
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mentation which is time consuming and error prone. Also,

the Lagrangian region tracking is expensive and sensitive

to occlusions and 3D rotations. Furthermore, the alignment

assumes a homography, which is often inaccurate for a non-

static camera and non-planar objects. There is some room

for improvement.

In this paper we propose video acceleration magnifica-

tion for amplifying small variations in the presence of large

motion. Our method does not require manual region annota-

tion nor tracking or region alignment as done in [7]. Instead,

our method is closer to the original Eulerian approach [27]

in its elegant simplicity. We make the observation that at

the scale of the small variations the large motion is typi-

cally linear. By only magnifying small deviations of linear

motion we arrive at accelerations magnification.

The contributions of this paper are as follows. 1) We

propose a pure Eulerian method for magnifying small vari-

ations in the presence of large motion. 2) We show the re-

lation between a second-order temporal derivative filter and

spatial acceleration magnification. 3) We give practical in-

sight and analyze the success and failure of our method. 4)

We outperform relevant video magnification baselines both

in observed output quality and in a quantitative evaluation.

2. Related Work

2.1. Lagrangian Approaches

For the task of motion magnification, successful work fo-

cused on Lagrangian approaches. These methods consider

the image changes that happen over time at a certain ob-

ject location by matching image points or patches between

video frames and estimating the motion based on optical

flow. In the presence of large object motion or camera mo-

tion, robust image registration plays a main role for such

methods. In [16] features are extracted over the frame and

these features are tracked and clustered into groups of points

where the video changes are magnified. The work in [2] es-

timates the heart beat of people from subtle movements of

the head. It does so by extracting features over the head

region and tracking them. In more recent work on heart-

rate estimation [24] the tracking and selection of features is

achieved by matrix completion. The work in [1] employs

user input to define regions of large motion at which video

de-animation is performed by tracking the pixels and using

graph-cut to consistently segment the motion. Dissimilar to

these works, we propose an Eulerian approach that does not

rely on image registration, can deal with object and camera

motion, and still magnifies the small video changes.

2.2. Eulerian Approaches

Rather than the Lagrangian paradigm based on track-

ing points over time to estimate the changes of certain ob-

jects, the Eulerian paradigm analyzes the image changes

over time at fixed image locations. Eulerian methods to-

wards magnifying subtle video changes were proposed by

first decomposing the video frames spatially through band-

pass filtering, and then temporally filtering the signal to find

the information to be magnified [22, 27]. These works have

shown impressive results especially in the context of color

amplification and heart rate estimation. With the apprise of

the complex-steerable pyramid [9,20,23], the use of phase-

based motion has been considered not only in the context of

motion magnification but also for other motion-related ap-

plications. Examples include phase-based video frame in-

terpolation [18] and video modification transfer [17]. In [5]

phase information is used for extracting sound from high

speed cameras, while in [4] the video phase information is

employed for predicting object material and in [3] phase

aids in estimating measurements of structural vibrations. In

the context of motion magnification, the successful work

in [26] proposes the use of phase estimated through com-

plex steerable filters and then magnifies this phase informa-

tion. A speedup is proposed in [25] through the use of a

Riesz pyramid as an approximation for the complex pyra-

mid. In the supplementary material of [27] (Table 3, row

9) it is shown that the computational speed of an accelera-

tion filter can be improved. These works achieve impressive

results for motion magnification, however the downside of

these approaches is that the subtle motion to be magnified

must be isolated — no large object motion or camera mo-

tion should be present. Inspired by these works, we use a

pure Eulerian approach to magnifying subtle video motion

and we extend these methods to deal with large object or

camera motion.

To deal with camera and object motion, in [7], the user

is asked to indicate a frame region whose pixels are tracked

and their motion is magnified. The recent work in [13]

proposes an alternative to finding the pixels whose changes

should be magnified, by using depth cameras and bilateral

filters such that the motion magnification is applied on all

pixels located at the same depth. However this method is

not tested on moving objects. Dissimilar to these works, we

aim to perform video enhancement without the use of addi-

tional information such as user input or depth information.

3. Acceleration Magnification

3.1. Linear Video Magnification

We take inspiration from prior work on linear Eulerian

video magnification [26, 27]. Linear magnification algo-

rithms estimate and magnify subtle video changes — pixel

intensity or motion changes — at fixed image locations,

temporally.

To illustratively compare our method to linear meth-

ods [26, 27] we consider a 1D signal with small motion

changes under a larger translation motion, see figure 2.
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Figure 2: Illustration of a 1 D signal where small motions undergo a larger translation for linear magnification and acceleration magnifi-

cation. The signal I(x, t) is shown for 3 time instants, {t− 1, t, t+1}. The red line shows the magnification results for a factor α = 3. (a)

For first-order methods, the linear filter B(x, t) is magnified and added to the original signal I(x, t). Note that all motions are magnified,

both small and large. (b) Acceleration magnification uses a temporal acceleration filter C(x, t) which is magnified and added to the original

signal I(x, t). By assuming local linearity of the large translation motion, the translation has little effect on the magnification and only the

small, non-linear, motions are magnified. This allows our method to magnify small changes of moving objects or scenes recorded with a

moving camera.

For input signal I(x, t) at position x and time t, the

linear method assumes a displacement function δ(t) such

that I(x, t) = f(x + δ(t)). The goal is to synthesize

Î(x, t) = f(x + (1 + α)δ(t)) where α is the magnifica-

tion factor.

Assuming that the signal at time t can be decomposed by

a first-order Taylor series expansion around x gives:

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
, (1)

where the first-order term δ(t)∂f(x)
∂x

gives the linear change

in signal over time.

The linear magnification method uses a temporal band-

pass filter B(x, t) tuned to measure the desired video

changes to be magnified:

B(x, t) = δ(t)
∂f(x)

∂x
. (2)

The magnified signal Î(x, t) with a factor α is then:

Î(x, t) = I(x, t) + αB(x, t), (3)

which relates to the first-order term in the Taylor expansion:

Î(x, t) ≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x
. (4)

For details, see [27].

Linear methods [26, 27] measure all motion changes:

small motions and large motions. The bandpass filter

B(x, t) measures the magnitude of a change, and it does not

discriminate if the change is big or small. Thus, all transla-

tional motion will be magnified. In figure 2(a) we show the

effect of large motions on linear magnification. As the fig-

ure illustrates, linear methods are sensitive to large motions

such as camera or object motion.

3.2. Video Acceleration Magnification

Rather than magnifying all temporal changes we mag-

nify the deviation of change. For example, if an object

moves in one direction, then we enhance every small de-

viation from that direction. This includes the special case

of an object that does not move, where deviations from no

motion will be magnified. By assuming that the large object

motion is approximately linear at the temporal scale of the

small changes, we can disregard all linear motion. We do

not magnify linear changes: we magnify accelerations.

For the 1 D input signal I(x, t) = f(x+δ(t)) at position

x and time t, we define its magnified counterpart as:

Î(x, t) = f(x+ (1 + β)δ(t)). (5)

Our goal is to model the magnified signal Î(x, t) based on

second-order changes. Decomposing the magnified signal
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in a second order Taylor series around x yields:

Î(x, t) ≈ f(x) + (1 + β)δ(t)
∂f(x)

∂x
+

+ (1 + β)2δ(t)2
1

2

∂2f(x)

∂x2
. (6)

If we consider only the linear term of the magnified signal,

we can define this as:

Î(x, t)linear ≈ f(x) + (1 + β)δ(t)
∂f(x)

∂x
+ 0. (7)

However, here we aim at magnifying the non-linear part of

the signal, the acceleration. We can obtain this by subtract-

ing the linear motion:

Î(x, t)− Î(x, t)linear ≈ (1 + β)2δ(t)2
1

2

∂2f(x)

∂x2
, (8)

where for simplicity we take (1 + β)2 = α, with α > 0.

Let C(x, t) be the result of applying a temporal acceler-

ation filter to I(x, t) at every position x, then we capture the

second-order offset:

C(x, t) = δ(t)2
1

2

∂2f(x)

∂x2
, (9)

which we can multiply with α as the magnification factor

Î(x, t) = I(x, t) + αC(x, t). (10)

We focus on magnifying second-order signal changes: ac-

celeration. In figure 2(b) we show the effect of large mo-

tions on acceleration magnification. As the figure illus-

trates, our method only magnifies the small motion and is

robust to large motions such as camera or object motion.

3.3. Temporal Acceleration Filtering

Acceleration is the second temporal derivative of the sig-

nal I(x, t). To take a second-order derivative of the discrete

video signal we use a Laplacian filter. The Laplacian is the

second-order derivative of the Gaussian filter and it allows

us to take an exact derivative of a smoothed discrete sig-

nal. The Gaussian is the only filter that does not introduce

spurious resolution [11] and due to the linearity of the oper-

ators [12] the relation between the Laplacian and the second

derivative of the signal is:

∂2I(x, t)

∂t2
⊗Gσ(t) = I(x, t)⊗

∂2Gσ(t)

∂t2
, (11)

where ⊗ is convolution and Gσ(t) is a Gaussian filter with

variance σ2 and
∂2Gσ(t)

∂t2
is the Laplacian.

The σ parameter of the Gaussian allows for selecting

the observation scale of the frequency to magnify [15, 19].

For setting the observation scale, we denote the desired fre-

quency by w and we select a temporal window in the video

that is equal to our target frequency as r
4w , where r denotes

the video frame rate. We center the temporal window on the

current video frame. Subsequently, following [19], we find

the scale of the Laplacian kernel as: σ = r

4w
√
2

.

3.4. Phasebased Acceleration Magnification

For magnifying motion information, rather than intensity

changes over time, we use as a starting point the successful

work of [26] where phase information is magnified by using

the linear method of [27]. We use acceleration magnifica-

tion in the phase domain to magnify non-linear motions.

Motion can be represented by a phase shift. For a given

input signal f(x) with displacement δ(t) at time t, we can

decompose the signal by Fourier series as sum of sinusoids

over all frequencies w:

f(x+ δ(t)) =

∞∑

w=−∞

Awe
iw(x+δ(t)), (12)

where the global phase information at frequency w for the

displacements δ(t) is φw = w(x+ δ(t)).

Spatially localized phase information of an image over

time is related to local motion [8] and is used for magni-

fying motions in the phase domain linearly [26]. This mo-

tion magnification method uses the complex steerable pyra-

mid [20] to separate the image signal into multi frequency

bands and orientations. The pyramid contains a set of fil-

ters Ψw,θ at various scales w, and orientations θ. The local

phase information of the 2D image I(x, y) is given by:

(I(x, y)⊗Ψw,θ)(x, y) = Aw,θ(x, y)e
iφw,θ(x,y), (13)

where ⊗ is convolution, Aw,θ(x, y) is the amplitude and

φw,θ the corresponding phase at scale w and orientation θ.

The phase information φw,θ(x, y, t) at a given fre-

quency w, and orientation θ and frame t, is magnified in

our proposed approach by temporally filtering the phase

φw,θ(x, y, t) with a Laplacian:

φ̂w,θ(x, y, t) = φw,θ(x, y, t) + αCσ(φw,θ(x, y, t)),

(14)

Cσ(φw,θ(x, y, t)) = φw,θ(x, y, t)⊗
∂2Gσ(x, y, t)

∂t2
, (15)

where ⊗ is convolution and Cσ(·) represents the temporal

Laplacian filter with scale σ.

Due to the periodicity of the phase between [−π, π],
there is an interval ambiguity that may be present: a small

increase to a value slightly less then 2π at time t may cause

the phase to become slightly bigger than 0 at time t + 1.

This causes artifacts in the convolution with the Laplacian.

We correct for this using phase unwrapping [10].
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Video α w (Hz) Gaussian σ FPS

Light bulb 20 60 2.95 1000

Baby 100 2.5 6.63 30

Gun 8 20 4.24 480

Synthetic ball 8 2 5.30 60

Cat toy 4 3 1.41 240

Parkinson-1 3 3 2.12 30

Parkinson-2 4 3 2.12 30

Drone 5 5 1.06 30

Water bottle 4 2 2.83 30

Table 1: Parameters for all videos. “Light bulb” and “Gun”

are from [26], the rest is new.

4. Results

4.1. Experimental Setup

We evaluate our proposed method on real videos as well

as synthetic ones with ground truth magnification. We set

the magnification factor α, and the frequency of the change

to be magnified as given in table 1. For all videos we pro-

cess the video frames in YIQ color space. We provide these

videos as well as additional videos depicting our magnifica-

tion method in the supplementary material.

Motion Magnification. We use the complex steerable pyra-

mid [20] with half-octave bandwidth filters and eight ori-

entations. We decompose each frame into magnitude and

phase, and convolve with our proposed kernel over the

phase signal temporally.

Color Magnification. We decompose each video frame

into multiple scales using a Gaussian pyramid, and we mag-

nify the intensity changes only in the third level of the pyra-

mid, similar to [27].

4.2. RealLife Videos

4.2.1 Comparison on Existing Videos

As a first experiment we show in figure 3 we show that our

method can also magnify changes when there is no motion

in the video.

Figure 4 shows a person holding a light bulb while the

hand moves upwards. The intensity variations in the light

bulb are hardly visible. The Eulerian-based method [27] re-

veals the intensity changes, but creates additional artifacts.

DVMAG [7] relies on a user-input region around the bulb

and therefore does not magnify the small reflections on the

hand. Our proposed method not only magnifies the inten-

sity variations of the light bulb without manual masking, but

also magnifies the intensity changes of the hand, caused by

the reflection of the light, as shown in the plot on the right

of Figure 4.

Figure 3: Intensity magnification on a static video. We indicate

with a green stripe the locations at which we temporally sample the

video. Note that our method is well able to magnify the intensity

for videos without large motions.
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Figure 4: Intensity magnification. Note that the hand holding

the light bulb moves upwards. We indicate with a green stripe

the locations at which we temporally sample the video. We show

the original intensity change, the Eulerian [27] intensity magni-

fication, the DVMAG [7], where the blue region shows the user

input area in which changes are magnified, and our proposed ac-

celeration magnification. We also show the intensity changes over

time in the hand area reflecting the light of the bulb. The inten-

sity changes are measured at the indicated red dot. Our proposed

method manages to magnify the intensity changes of the light bulb,

but it also captures the intensity changes in the hand cause by the

reflection of the light.

Figure 5 shows various motion magnification results for

a gun shooting sequence. Due to the strong recoil, subtle

motion in the arm muscles can be recovered. We record the

motion of the forearm, upper limb, and the bracelet in the

spatio-temporal slices indicated with three green lines over
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(a) Raw video. (b) Phase-based [26]. (c) DVMAG [7]. (c) Ours.

Figure 5: Sports use-case: sports video analysis with motion magnification. (a) Original video frame. We indicate with three green stripes

the locations at which we temporally sample the video. (b) Phase-based based motion magnification [26]. (c) The DVMAG [7] results with

user annotated areas indicated in blue. (c) Our proposed acceleration magnification. This figure shows a gun shooting sequence, where the

recoil of the gun induces movement in the arm muscles. DVMAG only magnifies the motion within the user annotated region, while the

Eulerian based method results in large artifacts. Our proposed method magnifies he arm motion without inducing blurring and artifacts.

the original video. The phase-based motion magnification

proposed in [26] induces large artifacts due to the strong

arm movement. The DVMAG [7] relies on a user annotated

region where the motion is magnified. Therefore, the mag-

nification performance depends on the user input, as seen in

the figure. Our method magnifies the muscle movement of

the complete arm without creating artifacts and without the

need for user input.

4.2.2 Additional Videos with Large Object Motion

Figure 1 shows a toy moving on the table while vibrating

with a high frequency. The goal of the experiment is to mag-

nify the vibration while not creating artifacts and blurring.

Our proposed method manages to achieve this by magnify-

ing the motion at the pixels that have a non-zero accelera-

tion, thus amplifying the vibration of the toy and ignoring

the motion along the trajectory of the toy on the table.

In figure 6 we consider a medical use case in which a

person walks towards screen — zooming, and a video in

which a person is rotating in 3D, while having a tremor

motion present in the right arm. Our proposed approach is

able to magnify the tremor of the arm without introducing

considerable artifacts and blurring in the rest of the areas.

In figure 7 we show our results on a mechanical stabil-

ity quality control application where a drone is oscillating

while flying in a cluttered environment. Moreover, in fig-

ure 8 we show a transparent bottle with water being pulled

on a smooth table — the level of water in the bottle fluc-

tuates. Our method is able to correctly magnify the de-

sired motion — oscillation of the drone and fluctuations

of the water level, despite the challenging setup of back-

ground clutter and transparent elements whose motion must

be magnified.

4.3. Controlled Experiments

In figure 9 we show a synthetic ball which moves diago-

nally on the screen from the top-left corner to bottom-right

corner, with its intensity fluctuating in certain frequency.

We set the radius of ball as 10 pixels. The ball moves with

1 pixel/frame. We model the intensity changes as a sine

wave, with a maximum intensity change of 20. The inten-

sity frequency is 2 cycle/sec, and we set the frame rate to 60
frame/sec. For ground truth magnification, we amplify the

intensity changes 4 times without changing any other pa-

rameters. For all methods, we first apply a Gaussian pyra-

mid and only magnify the third pyramid level with amplifi-

cation factor 8.

Figure 10 shows magnification results for a set of consid-

ered baselines. We compare with an ideal filter of 1.5− 2.5
Hz from the Eulerian magnification method in [27] which

uses the whole video. To make this a more fair baseline

we also use this method with the STFT (Short Term Fourier

Transform) with a temporal window of frame sizes 5 and

15. The Eulerian approach generates background artifacts

due to the bandpass filter which uses the complete temporal

length of the video. STFT partially alleviates this problem,

artifacts being removed outside the temporal window. How-

ever, it generates larger artifacts inside the temporal win-

dow. For a smaller window size the intensity changes are

magnified less, because at a coarse frequency resolution in

Fourier domain more signals are filtered out. Our method

generates an intensity magnification that closely resembles

the ground truth, without introducing artifacts.
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(a) Raw video. (b) Our magnification (a) Raw video. (b) Our magnification.

Figure 6: Medical use-case: hand tremor magnification. The left example (Parkinson-1) has the person walking towards the screen.

The right example (Parkinson-2) has the person do a 3D rotation. We overlay 2 frames of the video to visualize how the person moves.

(a) Original video frames. We indicate with a green stripe the locations at which we temporally sample the video. (b) Our proposed

acceleration magnification. We manage to amplify the motion in the arm of the person while the person is moving towards the camera and

even under a 3D rotatation. This is possible because the scale of the body motion is considerably larger than the scale of the hand tremor.

(a) Raw video. (b) Our magnification.

Figure 7: Mechanical use-case: analyzing possible mechanical

failures from motion. A drone oscillating while flying in a clut-

tered environment. (a) Original video frames. We indicate with

a green stripe the locations at which we temporally sample the

video. (b) Our proposed acceleration magnification. Our pro-

posed magnification method is able to amplify the oscillations of

the drone without being affected by the background clutter.

We analyze the effect of the intensity frequency on the

magnification methods. The ball speed is fixed to 0.5
pixel/frame, and we vary the intensity frequency from 0.5
Hz to 7 Hz in increments of 0.25 Hz while keeping other

parameters unchanged. We estimate MSE (Mean Square

Error) between the predicted intensity and the ground truth

intensity magnification, measured over the whole image in

all frames. Results are given in figure 11.(a). The error of

the Eulerian method [27] decreases with the increase in in-

tensity frequency. This is because the ideal bandpass filter

in the frequency domain is able to measure more periods

of the signal at high frequencies. The STFT methods, per-

form well when the corresponding temporal window con-

tains precisely one cycle of the intensity change. For ex-

ample, for an STFT with window size 25, there is a drop

(a) Raw video. (b) Our magnification.

Figure 8: The water fluctuating in a bottle while the bottle is

being pulled sideways on a smooth surface. (a) Original video

frames. We indicate with a green stripe the locations at which we

temporally sample the video. (b) Our proposed acceleration mag-

nification. Our propose magnification method is able to amplify

the fluctuations in the water level while not adding substantial blur.

Figure 9: Synthetic Video. A ball with intensity varying while

moving from top-left corner to the bottom-right.

in MSE around the frequency 2.5 Hz, while for STFT with

window size 15, the drop is at 4 Hz. Our method is sensitive

to low frequencies, where the signal barely fits in the tem-

poral window. For higher frequencies the method stabilizes
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Figure 10: (a) We record the change in intensity temporally at

the value of the red point indicated in the left frame of figure 9.

The black curve shows the original intensity values, while the blue

curve shows the ground truth magnification. (b) Signal magnifi-

cation result for our method, the Eulerian method [27], and STFT

(Short Term Fourier Transform) with window sizes 5 and 15. Our

method generated a signal magnification closer to the ground truth

magnification, while not creating additional artifacts.
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Figure 11: (a) Error while increasing intensity frequency. (b)

Error while increasing object speed.

and outperforms the others.

For analyzing the effect of the speed on the magnifica-

tion methods we fix the intensity frequency at 2 Hz, and

increase the ball speed with increments of 0.25 from 0 to

7 pixel/frame while keeping other parameters unchanged.

In figure 11.(b) it shows that the Eulerian approach [27]

and the STFT methods have trouble for speeds around 1.5

pixel/frame. For most methods, MSE decreases slowly with

the increase in ball speed. The high error for the lower fre-

quencies is mostly due to blurring effects outside the ball.

When increasing the speed of the ball, less intensity changes

are available to measure. Our proposed method has a simi-

lar behavior, albeit at a better performance level then others.

5. Discussion

Limitations of our approach. A disadvantage of a second-

order filter is the need for two zero-crossings for estimat-

ing it. Thus, the phase measurement has to be made for

at least 3 frames inside the spatial aperture at hand. The

spatial aperture corresponds to various levels in the multi-

resolution complex spatial pyramid, where the highest res-

olution has the smallest aperture. Thus, for fast moving ob-

jects, fine texture will blur the easiest, exemplified by mo-

tion boundary artifacts. Other limitations of our method

are the assumption that the large motion should be linear.

Therefore, if nonlinear motion is present in the background,

this will also be magnified causing blur. The same ef-

fect occurs when multiple motions with different speeds are

present. However, assuming a single linear large motion,

our method performs well when the object is moving —

slightly rotating or zooming (figure 6), and when the cam-

era is moving — provided linear, non-shaky, camera mo-

tion. These results can be found in the supplemental.

Performance improvement over state-of-the-art. Our re-

sults are similar to [7] on the manually drawn masked re-

gions of DVMAG [7]. For non-masked regions, the results

differ. For a moving camera we do not change the video

resolution, nor introduce white boundaries as [7]. For fig-

ure 5, our method incorrectly blurs the gun, whereas [7]

does not. Yet, we magnify the bracelet and shoulder, re-

vealing a pattern that [7] misses. On figure 4 we magnify

the hand color, which [7] does not. We sidestep the problem

of drawing a mask for unseen motion that is not yet visible.

Results in the supplementary material on the “parking gate”

and “eye” videos of [7] look similar for “eye”, while for

“parking gate” the multiple non-linear motions in the back-

ground cause blurring effects. We expect the difference to

be further emphasized when testing [7] on our videos, as

non-planar 3D rotation (figure 1 and figure 6) is a serious

issue for optical-flow homography alignment as used in [7],

however the implementation of [7] is not available.

Our results, original videos and code implementation can

be found at: https://acceleration-magnification.github.io.

6. Conclusions

We present a method for magnifying small changes in

the presence of large motions. Standard video magnifica-

tion algorithms [26, 27] cannot handle large motion while

the concurrent DVMAG method [7] requires user anno-

tations, optical flow, and temporal alignment. We are

not bounded by such constraints and can magnify uncon-

strained videos.

We magnify acceleration by measuring deviations from

linear motion. We do this by linking the response of a

second-order Gaussian derivative to spatial acceleration.

We demonstrate our approach on synthetic and several

real-world videos where we do better, and/or require less

user intervention than other methods. Our real-world videos

show the potential of our method in the medical domain

(Parkinson-I and Parkinson-II), in sports (Gun), and in me-

chanical stability quality control (Drone).

536

https://acceleration-magnification.github.io


References

[1] J. Bai, A. Agarwala, M. Agrawala, and R. Ramamoorthi.

Selectively de-animating video. SIGGRAPH, 31(4):66–1,

2012. 2

[2] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse

from head motions in video. In CVPR, 2013. 2

[3] J. G. Chen, N. Wadhwa, Y. J. Cha, F. Durand, W. T. Free-

man, and O. Buyukozturk. Modal identification of simple

structures with high-speed video using motion magnifica-

tion. Journal of Sound and Vibration, 345:58–71, 2015. 2

[4] A. Davis, K. L. Bouman, J. G. Chen, M. Rubinstein, F. Du-

rand, and W. T. Freeman. Visual vibrometry: Estimating

material properties from small motions in video. In CVPR,

2015. 2

[5] A. Davis, M. Rubinstein, N. Wadhwa, G. J. Mysore, F. Du-

rand, and W. T. Freeman. The visual microphone: passive

recovery of sound from video. SIGGRAPH, 79:110, 2014. 2

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas,
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