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Abstract
We propose two end-to-end neural configurations for language
diarization on bilingual code-switching speech. The first, a
BLSTM-E2E architecture, includes a set of stacked bidirec-
tional LSTMs to compute embeddings and incorporates the
deep clustering loss to enforce grouping of languages belong-
ing to the same class. The second, an XSA-E2E architecture,
is based on an x-vector model followed by a self-attention en-
coder. The former encodes frame-level features into segment-
level embeddings while the latter considers all those embed-
dings to generate a sequence of segment-level language labels.
We evaluated the proposed methods on the dataset obtained
from the shared task B in WSTCSMC 2020 and our handcrafted
simulated data from the SEAME dataset. Experimental results
show that our proposed XSA-E2E architecture achieved a rela-
tive improvement of 12.1% in equal error rate and a 7.4% rela-
tive improvement on accuracy compared with the baseline algo-
rithm in the WSTCSMC 2020 dataset. Our proposed XSA-E2E
architecture achieved an accuracy of 89.84% with a baseline of
85.60% on the simulated data derived from the SEAME dataset.
Index Terms: language diarization, language identification,
code-switching, end-to-end neural diarization, self-attention

1. Introduction
The term diarization was originally used to describe the task of
determining audio segments associated with the same speaker
in a multi-speaker recording. It was subsequently extended
to cover language diarization (LD), a special case of language
identification (LID), where the task is to identify the languages
of each utterance in a natural multilingual recording. This work
addresses LD in the context of code-switching speech (cf e.g.
[1]) where the same speaker may use more than one language,
often within the same utterance.

Traditional speaker diarization methods, which aim to seg-
ment the speech signal and group together segments belonging
to the same speaker, are traditionally based on a speaker en-
coding front-end, such as x-vectors [2], and a clustering back-
end model [3–8]. These are inherently unsupervised methods,
in the sense that they neither require nor leverage examples
of segmented-and-labeled multi-speaker recordings [9]. End-
to-end (E2E) speaker diarization methods, by contrast, require
(and learn from) labeled multi-speaker audio to jointly train
an integrated neural module for speaker encoding and cluster-
ing [9–12].

Traditional LID methods, which assume that each audio
segment presented to the system contains speech in one lan-
guage that must be identified [13], are similarly based on a

two-stage process [14–16], where a language embedding such
as an x-vector is first extracted from the speech using a front-
end encoder, and a separately trained classifier is then employed
as the back-end to identify the language using the embedding.
Again, by contrast, recently proposed E2E neural LID meth-
ods [17–20] integrate this two-stage process into a single neural
module. They work in a similar manner as E2E speaker diariza-
tion —initial layers of a deep neural network (DNN) generate
an embedding for the input speech, and subsequent DNN layers
perform language classification.

Note that language diarization cannot be done using LID
methods due to the one-language-per-audio-sample assumption.
Instead, inspired by E2E speaker diarization [10, 11] and the
x-vector language encoder [15], we propose two methods for
E2E neural language diarization. The first approach uses a bidi-
rectional long short-term memory neural network [21] to build
an end-to-end LD model (BLSTM-E2E), as originally proposed
for speaker diarization in [10]. This model is jointly trained for
language diarization by minimizing the cross-entropy (CE) loss
and a deep-clustering (DC) loss [22]. The second employs an
x-vector network followed by a self-attention transformer en-
coder [23] to build an end-to-end LD model (XSA-E2E). The
x-vector layers encode frame-level features into a sequence of
segment-level embeddings, from which the self-attention trans-
former generates a sequence of segment-level language labels.
For completeness, we also compare the performance of these
two models with intermediate model that uses only a self-
attention module on top of the BLSTM (SA-E2E).

These approaches have three desirable properties. Firstly,
language diarization is a multi-label classification problem,
for which these models appropriately generate a sequence of
segment-level labels for each test recording, where a segment
consists of several adjacent frames, allowing the model to iden-
tify different languages within an utterance, detect the language
change point, and tag the silences in a unified manner. Sec-
ondly, as opposed to diarization approaches that require pre-
processing for speech-activity detection (SAD), these proposed
models perform SAD implicitly by defining silence as an output
label. Finally, hierarchical processing is employed in the pro-
posed XSA-E2E model with the multi-objective training. This
hierarchical processing captures local language information in
each segment before establishing global dependency between
input and output, which benefits language diarization. We
evaluated our proposed approaches on the code-switching data
set from the Shared Task B of the First Workshop on Speech
Technologies for Code-Switching in Multilingual Communities
(WSTCSMC 2020) [24], and on simulated data derived from
the SEAME data set [25].
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2. Proposed Methods
2.1. BLSTM-based end-to-end model (BLSTM-E2E)

We apply the BLSTM-E2E model that was originally proposed
in [10] for speaker diarization to language diarization. Consider
a sequence of segments, where we define X = (xt ∈ RB |t =
1, ..., T ) as features extracted from those segments with T being
the number of segments and B the dimension of the segment-
level feature vector. The ground-truth language label sequence
is defined as Y = (yt|t = 1, ..., T ), where the class label
yt ∈ {0, 1, ..., C} given that 0 is the label corresponding to a
silent segment when SAD task is included and C is the total
number of languages. In this architecture, the first N BLSTM
layers generate language representations (embeddings) for each
segment and the next M BLSTM layers estimate the label se-
quence for these embeddings.

To apply the DC loss [22], a D-dimensional embedding
vector et is transformed from the hidden activations hN

t of the
N -th BLSTM layer. We replaced the permutation-free loss used
in [10] with the cross-entropy loss and the multi-objective loss
can be then computed via

LCE = CE
(
Y, Ŷ

)
, (1)

LBLSTM = αLCE + (1− α)LDC. (2)

Here, L denotes the loss, CE (·, ·) denotes the cross-entropy
loss function between the ground-truth label sequence Y, the
output Ŷ = [ŷ1 · · · ŷt]

ᵀ of the BLSTM-E2E model and α is a
scaling factor to facilitate multi-objective training.

2.2. Self-attention-based end-to-end model (SA-E2E)

We first explore the SA-E2E model as a preliminary method
to understand the XSA-E2E model. This SA-E2E model em-
ploys the encoder module of the transformer in [23]. The SA-
E2E model comprises the positional encoding, encoder blocks,
and a linear layer with sigmoid activation function. The input
X = (xt ∈ RB |t = 1, ..., T ) of SA-E2E is the same as that
of the BLSTM-E2E model and the output Ŷ = [ŷ1 · · · ŷt]

ᵀ is
computed via

Ŷ = Encoder (X) , (3)

where Encoder (·) denotes the SA-E2E model. The architec-
ture of the SA-E2E model is presented as the self-attention en-
coder module in Fig. 1.

2.3. XSA end-to-end model (XSA-E2E)

The x-vector has shown to achieve high performance on short-
utterance LID [15] by capturing local language information.
The transformer, on the other hand, was proposed to draw
global dependencies between input and output [23]. Consid-
ering the benefits of both techniques, we employ the x-vectors
to capture the local information of each segment and the trans-
formers that take the temporal dynamics of the signal into ac-
count.

For a speech signal partitioned in segments, each xt in
the input sequence X = (xt ∈ RK×F |t = 1, ..., T ) of the
XSA-E2E model is a matrix [f1, ..., fK ]ᵀ, where fK is an F -
dimensional frame-level feature vector of the K-th frame in
segment t. The proposed XSA-E2E model operates in a hierar-
chical manner as shown in Fig. 1. It first processes frame-level
into segment-level features before estimating the posterior for
each segment.

Figure 1: X-vector-Self-Attention end-to-end (XSA-E2E) lan-
guage diarization model with multi-objective training.

Frame-level features of each xt are encoded into a segment-
level embedding through the x-vector embedding module. The
use of x-vector embedding allows the algorithm to capture the
language identity of each segment. We first define the segment-
level embeddings E = (et ∈ RD|t = 1, ..., T ), which are
computed via

E = Embedding (X) , (4)

where Embedding (·) denotes the embedding module in Fig. 1.
The outputs of the x-vector model and the XSA-E2E model are
then computed, respectively as

ŶXSA = Encoder (E) , (5)

ŶXV = Xvector (X) , (6)

where Encoder (·) is the encoder module in Fig. 2 and
Xvector (·) is the x-vector model employed in our proposed
XSA-E2E model. XV and XSA denote the x-vector model and
the XSA-E2E model in Fig. 1, respectively.

Similar to BLSTM-E2E, the proposed XSA-E2E employs
a multi-objective training paradigm. Inspired by the cross-
entropy loss function of the TDNN-based x-vector model
in [15], we adopted the cross-entropy loss for the XSA-E2E
model; consequently, the multi-objective loss function is com-
puted as

LXV = CE
(
Y, ŶXV

)
, (7)

LSA = CE
(
Y, ŶXSA

)
, (8)

LXSA = βLXV + (1− β)LSA, (9)

where Y = (yt|t = 1, ..., T ) is the ground-truth language label
sequence, β is the parameter for multi-objective training.

3. Experiments
3.1. Dataset

We conducted experiments on two datasets. The first dataset is
obtained from the shared task B in WSTCSMC 2020 compris-
ing three code-switching language pairs: Gujarati-English (gu-
en), Tamil-English (ta-en) and Telugu-English (te-en). The pro-
posed model for each language was trained on its corresponding
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Table 1: Duration (hours) of each language in the shared task
B in WSTCSMC 2020

Language pair Training Development
gu/ta/te en silence gu/ta/te en silence

gu-en 10.6 2.1 3.0 1.3 0.3 0.4
ta-en 10.9 1.8 3.1 1.4 0.2 0.4
te-en 10.9 1.8 3.0 1.4 0.2 0.4

Table 2: Utterances description of the simulated data using
SEAME dataset

Simulated data Num.of classes in utterances
one class two classes three classes

no silence 7556 4936 -
with silence 3271 8521 3921

training set and evaluated on the development set. Detailed in-
formation of this dataset [24] is shown in Table 1. In addition,
to verify the robustness and the extension capability to multiple
classes, our models were trained on all three language pairs to
achieve a five-class language diarization task consisting of En-
glish, Gujarati, Tamil, Telugu, and silence. Test results are then
reported on the development sets of these three code-switching
pairs.

The algorithms were also validated on the SEAME dataset
[25]. This SEAME dataset comprises 290 recordings consist-
ing of 110,145 utterances out of which 24,438 are Mandarin,
28,655 are English, and 57,052 are code-switching utterances.
Since there are no time-stamps corresponding to the language
change for these Mandarin-English code-switching utterances,
code-switching data was simulated by concatenating no more
than five monolingual utterances from the same recording in
chronological order. The maximum length of the final utterance
was set to 50 s. A total of 18.7-hour of English, 18.1-hour of
Mandarin and 5.7-hour of silence were used to build the sim-
ulated data. For the version without silence, we used 12,492
speech samples with an average duration of 10.6 s. For the
simulated data with silence, we occasionally interleaved silence
segments and we used 15,713 simulated speech samples with an
average duration of 9.7 s. In contrast to the WSTCSMC 2020
dataset, in which each utterance comprises three classes, the
simulated data utterances can contain one, two or three classes.
The related information is shown in Table 2. In addition, since
there is no partition on development or test, we conducted a
ten-fold cross validation.

3.2. Experiment setup

3.2.1. Feature extraction

Since the ground-truth language labels of the data in WSTC-
SMC 2020 are assigned to 200 ms segments, the input speech
sample is first partitioned into segments of the same duration.
We ignore the remaining of the speech samples that cannot
be divided exactly into 200ms segments. For each segment,
23-dimensional log-Mel-filterbank features are extracted with a
25 ms window and a 10 ms shift as [10] for all systems.

The 19-frame log-Mel-filterbank features are then pro-
cessed into segment-level features in two different forms. The
first directly concatenates features of all 19 frames into a 437-
dimensional vector before feeding the vector into our E2E mod-
els. The second employs a pruned x-vector model [15] as a fea-
ture extractor. A 256-dimensional embedding is extracted as the
segment-level input of the encoding module.

Table 3: Comparison of our approaches with DeepSpeech2 sys-
tem [24, 27] and Vocapia-LIMSI system [28] on the dev set of
the shared task B in WSTCSMC 2020 by employing EER (%)
and Accuracy (%)

Method gu-en ta-en te-en Average
EER Acc. EER Acc. EER Acc. EER Acc.

DeepSpeech2 [24, 27] 6.7 76.7 6.5 77.6 6.7 76.5 6.6 76.9
Vocapia-LIMSI [28] - 80.5 - 81.2 - 81.8 - 81.2

BLSTM-E2E 6.1 81.8 5.9 82.4 5.7 82.8 5.9 82.3
SA-E2E 6.4 80.9 6.1 81.6 6.0 81.9 6.2 81.5

XSA-E2E 5.8 82.7 5.9 82.4 5.8 82.6 5.8 82.6

3.2.2. Model configuration

The BLSTM-E2E language diarization model employs five
BLSTM layers with 256 hidden units in each layer. The out-
puts of the second BLSTM layer are transformed into 256-
dimensional vectors for the computation of DC loss and α =
0.5 in (2). We used the Adam optimizer [26] with an initial
learning rate of 10−3 and cosine annealing learning rate decay.
The model was trained for 60 epochs with a batch size of 8.

For the XSA-E2E language diarization model, we applied
an x-vector model followed by a self-attention encoder. The x-
vector model is the same as that in [15] except that the third
TDNN layer was removed to adapt to the length of segment
and the dimension of the x-vector embedding et is given by
D = 256. As shown in Fig. 1, the 256-dimensional x-vectors
are fed into the self-attention encoder module. This module
comprises four encoder blocks with four heads in each multi-
head self-attention layer (J = 4) and a position-wise feed for-
ward layer with 2048 hidden units in the inner-layer. We used
the Adam optimizer with an initial learning rate of 10−4 with
cosine annealing learning rate decay. The model was trained for
30 epochs with a batch size of 32.

The SA-E2E model which is equivalent to the self-attention
encoder module of our XSA-E2E model is also implemented as
baseline. The Adam optimizer was applied to train the SA-E2E
model for 60 epochs in total with an initial learning rate of 10−4

which decays after 10 warm-up epochs. The source code for this
research is made publicly available in GitHub. 1

We evaluated our systems using accuracy and equal error
rate (EER). To compare with the models in WSTCSMC 2020,
we applied the method described in this workshop [24] to com-
pute the accuracy and EER.

3.3. Results

3.3.1. Evaluation on WSTCSMC 2020 shared task B

The results for the shared task B in WSTCSMC 2020 are shown
in Table 3. The baseline models include DeepSpeech2 [24, 27]
and Vocapia-LIMSI system [28], where the latter is a fusion
system of an unsupervised GMM-based i-vector model [29] and
a phonotactic model. As shown in Table 3, both BLSTM-E2E
and XSA-E2E models outperformed baseline algorithms on this
dataset; the proposed BLSTM-E2E system achieved the best
performance on Telugu-English code-switching data while the
XSA-E2E system achieved the best performance on Gujarati-
English and Tamil-English code-switching data.

To validate the performance of our proposed models under a
more challenging condition, we pooled together code-switching
data of all three language pairs as the training data. The results
presented in Table 4 show that the XSA-E2E model achieves

1https://github.com/Lhx94As/E2E-langauge-diarization
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Table 4: Comparison of our approaches on 3-language-pair
code-switching data in WSTCSMC 2020 by employing EER (%)
of each language and Accuracy (%)

Method en gu ta te silence Accuracy
BLSTM-E2E 6.27 3.94 3.55 3.52 2.97 80.15

SA-E2E 6.33 3.59 3.73 3.65 3.49 79.21
XSA-E2E 5.99 2.98 3.21 3.05 3.56 81.20

Table 5: 10-fold cross validation results of our approaches on
simulated code-switching data using SEAME dataset by em-
ploying EER (%) and Accuracy (%). EER for the simulated
data with silence is composed of EER for English (Eng), EER
for Mandarin (Man), and EER for Silence (Sil)

Method Simulated data using SEAME
no silence with silence

EER Acc. Eng Man Sil Acc.
BLSTM-E2E 7.20 85.60 6.47 6.37 0.93 86.23

SA-E2E 7.15 85.71 6.47 6.25 1.67 85.60
XSA-E2E 5.08 89.84 5.06 4.91 2.38 87.66

the highest overall accuracy among the three proposed mod-
els and lowest EER on all classes except silence. It is worth
noting that although the SA-E2E model suffers from the worst
overall performance, it achieves similar performance to that of
BLSTM-E2E on four language classes. It also achieves worse
performance on silence segments than BLSTM-E2E. These re-
sults imply that the self-attention mechanism may not perform
as well as the BLSTM model for data with silence. The perfor-
mance of XSA-E2E is reduced further compared to SA-E2E by
the silent segments. This is not surprising given that about 20%
of the data from WSTCSMC 2020 is silence [24]. Moreover,
English only accounts for 12% of this dataset, leading to high
EER on English for all models in this experiment.

3.3.2. Evaluation on simulated code-switching data using
SEAME dataset

We evaluated our approaches on two types of simulated data.
The results presented in Table 5 show that our proposed XSA-
E2E system achieves the best performance on both types of
simulated data in this evaluation. In addition, both XSA-E2E
and SA-E2E models which employ the self-attention mecha-
nism perform worse on silence segments than the BLSTM-E2E
model. After including silences in the simulated data, XSA-
E2E and SA-E2E exhibit degradation of accuracy when com-
pared with the BLSTM-E2E model. The XSA-E2E model suf-
fers from the highest EER on the silence data. These observa-
tions are consistent with results presented in Table 3 and Ta-
ble 4.

3.4. Analysis and visualization of self-attention heads

To investigate the operation of the self-attention mechanism for
language diarization task, we analyze the attention weight ma-
trices of two attention heads of the second encoder block in the
XSA-E2E model, shown in Fig. 2. The attention weights in the
left head lead to a linear transformation, while the right head
horizontally exhibits different color depths for different classes.
This implies that the self-attention mechanism in our proposed
XSA-E2E model is able to capture the language identity for lan-
guage diarization and speech activity detection.

In addition, Fig. 2 shows how data composition influences
our proposed XSA-E2E model. The XSA-E2E model trained
on the simulated version of the SEAME dataset shows clearer

Figure 2: Attention weights at the second encoder block of
the XSA-E2E model trained on (a) Gujaratu-English code-
switching data and (b) simulated data using SEAME dataset
with silence.

boundaries of different classes in the right head than trained
on the Gurajarati-English data. This is due to the simulated
data being more balanced than the the WSTCSMC 2020 dataset
resulting in higher accuracy and lower EER.

4. Conclusions
We proposed the BLSTM-E2E and the XSA-E2E models
for the language diarization task on bilingual code-switching
speech. Our proposed XSA-E2E model improves the state-of-
the-art performance on the development set of the shared task
B in WSTCSMC 2020 and achieves the best performance on
simulated data derived from the SEAME dataset. Compared to
SA-E2E model, our proposed models that employ embedding-
related loss for joint training achieve higher performance in
most experiments. Compared to the SA-E2E model, the XSA-
E2E also achieves higher performance with a hierarchical pro-
cessing. These underpin the importance of the local information
in each segment for the language diarization task. The results
also highlight that both x-vector and self-attention mechanisms
can perform higher on data with less silence. We also show how
self-attention captures the language characteristics through the
attention weights. Our model may be employed as a prepro-
cessing module of a multilingual speech recognition system. In
addition, the research into improving the performance of lan-
guage diarization systems on silence frames can be interesting
as future work.
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