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Abstract

Ultrasound images are typically generated using the Delay-And-Sum (DAS) method,
which assumes a homogeneous propagation medium. When an aberrating layer is situ-
ated between the sensor array and the imaging target, this assumption does not hold,
and DAS is replaced with model-based methods. These methods are computationally
expensive and require to accurately model the aberrations caused by the layer. This
thesis investigates novel methods for image formation and aberration estimation. The
effect of the layer is described using a set of transfer functions from the sensor array to
a virtual array placed after the layer. In the first part, we assume the transfer functions
are known, and we propose a new method for image formation. The transfer functions
allow to map the signal from the sensor array to the virtual array, and the DAS method
is used on the virtual array signal. This technique is equivalent to model-based matched
filtering in terms of image quality, without requiring expensive matrix computations.
In the second part, the transfer functions are unknown, and a novel technique is intro-
duced for their estimation. Using pulse-echo data, a focus-quality metric is computed
to quantify the accuracy of the transfer function estimate. The transfer functions are
modeled using a dictionary and the dictionary coefficients are iteratively updated to
increase the defined metric. The optimization leads to improved focus quality and
sharper images. In the case the layer model requires a limited dictionary, the proposed
algorithm generates an accurate estimate of the transfer functions.
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Introduction 1
Ultrasound imaging makes use of sound waves to generate images of a target of inter-
est. The imaging process starts by sending an acoustic wave into the medium using a
transducer array. The wave is reflected or scattered by different structures within the
imaging domain and propagates back to the transducers, which record the received sig-
nal. Subsequently, this data is processed to generate an image where various structures
can be distinguished based on their reflection or scattering characteristics.

To generate an image, it is necessary to reverse the wave propagation and identify
the source of each received echo. To achieve this, the initial step is to model the wave
propagation within the medium. The typical assumption is that the variations in speed
of sound and density are large enough to generate weak scattering, but small enough
to ensure that both the transmit field and received echoes propagate as if the medium
was homogeneous [1]. This implies that the wave propagation delay from a source
to a receiver is solely based on their distance and the average speed of sound in the
medium. This forms the basis for the classical beamforming method, which is called
Delay-And-Sum (DAS).

In some situations, the medium exhibits significant variations in speed of sound
that challenge the validity of the homogeneous medium assumption. The variations
in speed of sound can give rise to various phenomena, including refraction, multiple
scattering and reverberation. As a result, the pulse-shape can be distorted and the
propagation delays may differ significantly from those observed in homogeneous media.
These effects are referred to as aberrations [2]. Neglecting the aberrations and using
the common image formation methods leads to imaging artifacts and loss of resolution
(Figure 1.1). Therefore, it becomes essential to include aberrations when modeling
propagation. As the model is modified to account for aberrations, the image formation
method needs to be adjusted accordingly. Instead of DAS, model-based methods are
employed, which are typically more computationally expensive than DAS [3].

In some cases, the medium inhomogeneities may be confined to a specific layer
situated between the transducers and the imaging target. Such a layer is referred to
as an aberrating layer. In various clinical situations, the imaging target lies behind an
aberrating layer. Examples of aberrating layers are the human skull and the abdominal
wall [4][5]. Another interesting example of aberrating layer is the so-called coding mask.
This is a random phase mask which has the purpose of distorting the transmitted wave
to make the pixel response position-dependent, thus improving the image quality [6].

When dealing with aberrating layers, we can simplify the general model by introduc-
ing the concept of a virtual array [7]. The virtual array is an imaginary array positioned
just after the aberrating layer. After introducing the virtual array, wave propagation
through the layer can be described using a set of transfer functions from the sensor
array to the virtual array. Given these transfer functions, we can model propagation
in the imaging domain.

1



Figure 1.1: The DAS method produces accurate images when propagation occurs in homoge-
neous media (left). When the wave encounters an aberrating layer, severe distortion occurs,
leading to corrupted images (right).

In the case of the coding mask, it is possible to place the sensors and the coding mask
in a water tank and measure the transfer functions with a hydrophone [6]. However,
in most in-vivo scenarios, measuring the transfer functions is not possible, since this
procedure would be invasive. If we aim to correct aberrations, we first need to estimate
the transfer functions.

Research Problems

This thesis addresses two distinct problems. In the first part of the thesis, we focus on
cases where the transfer functions are known. In this case, the challenge lies in finding
alternatives to the currently used image formation methods, which are computationally
expensive. In the second part of the thesis, we address the issue of the transfer function
estimation. The common thread between the two parts is the use of the virtual array
framework, which proves to be a valuable tool in solving these problems.

Thesis outline

In Chapter 2, we explain the fundamental concepts on which this work is based. We
derive the signal model and provide an overview of the basics of image formation.
Additionally, we briefly outline the main approaches for aberration corrections in the
literature. We conclude this chapter by incorporating the virtual array concept into
the model.

In Chapter 3, our focus is on cases where the layer transfer functions are known.
Here, we present an alternative method for image formation, which is first derived and
then applied on simulated data.

In Chapter 4, we address the challenge of imaging through aberrators for which
the transfer functions are unknown. We propose an iterative scheme to estimate the
transfer functions, and subsequently apply it on simulated data.

Finally, in Chapter 5, we draw the conclusions for this thesis.

2



Signal model and image
formation 2
In this chapter, we derive the signal model used in the rest of this thesis. We begin by
explaining fundamental concepts related to wave propagation in Section 2.1, specifically
reciprocity and time-reversal. These concepts are then linked to the matrix formalism
that will be employed throughout the thesis. In Section 2.2, the signal model for pulse-
echo imaging is derived and an overview of the common methods for image formation
is given. In Section 2.3, the model is adapted to incorporate specific assumptions
about wave propagation in the medium, taking into consideration relevant examples
from the literature. Finally, in Section 2.4 we explain how the model is modified when
introducing the virtual array.

2.1 Basics of ultrasound wave propagation

First, the expression for the pressure in the medium for a transducer excitation is
derived. Within this thesis, we consider lossless and linear media. The pressure in
the medium is a function of space and time and is denoted as p(r, t). One transducer
element is approximated as a point source located at a position r0. We derive the
pressure in the medium when the transducer element is excited by a Dirac pulse, and
the emitted pressure is equal to its electromechanical response s(t). The pressure in
the medium p(r, t) for this input satisfies the wave equation

∇ ·
(∇p(r, t)

ρ(r)

)
+ κ(r)

∂2

∂t2
p(r, t) = −δ(r− r0)s(t), (2.1)

where κ(r) is the medium compressibility, ρ(r) is the density and ∇ denotes spatial
derivative [8].

An array of M elements is considered. Each element is approximated as a point
source at position r0,i, i = 1, ..,M . The image domain is discretized in N points at
locations rn, n = 1, .., N . We define gi,n(t) as the pressure at rn when element i sends
a pulse s(t). The function gi,n(t) will be referred to as the Green’s function from sensor
i to point n. It is important to note that, in this thesis, the Green’s function includes
the transducer response s(t). The Green’s function gi,n(t) can be derived by solving
the wave equation in 2.1, after replacing r0 with the location of the i-th transducer r0,i.
In homogeneous media, we can replace κ(r) = κ0 and ρ(r) = ρ0 and we can introduce

c0 = (κ0ρ0)
− 1

2 . Then, gi,n(t) is equal to:

gi,n(t) = γi,ns

(
t− |rn − r0,i|

c0

)
. (2.2)

The wave travels in the medium with an invariant pulse-shape. The coefficient γi,n
measures the attenuation in the path from sensor i to point n. The propagation delay

3



(a) Green’s functions (b) Reciprocity (c) Time-reversal

Figure 2.1: Schematic of basic concepts in wave propagation. The matrix GT(ω) models
propagation from the array to the medium (a), while its transpose models propagation in the
opposite direction (b). If we record the wave coming from a source at n and send it back
after time-reversing, the re-emitted wave will focus back at point n (c).

is equal to the distance between sensor i and point n, divided by the speed of sound.
This delay is typically referred to as time-of-flight from i to n.

In inhomogeneous media, the density and the compressibility are functions of space.
Therefore, solving the wave equation requires using more sophisticated methods. The
resulting Green’s functions may vary significantly depending on the specific medium
[9]. Due to the inhomogeneity of the medium, the pulse-shape is distorted, and the
delays are not solely based on geometry anymore.

If we know the Green’s functions, we can derive the pressure in the medium for
any transducer excitation. This relation can be written in a matrix format. We define
ui(t) as the input at element i of the array, and pn(t) as the pressure at point rn. The
frequency domain representation of ui(t) and pn(t) is indicated as Ui(ω) and Pn(ω)
respectively. The relation between these variables is p(ω) = GT(ω)u(ω), with p(ω) =
[P1(ω), .., Pn(ω), ..PN(ω)]

T, u(ω) = [U1(ω), ..Ui(ω), ..UM(ω)]T and G(ω) equal to

G(ω) =

 G1,1(ω) . . . G1,N(ω)
...

...
GM,1(ω) . . . GM,N(ω)

 , (2.3)

where we have defined as Gi,n(ω) the Fourier-transform of gi,n(t).
Once the Green’s functions from the array to the medium are determined, we can

also model propagation in the opposite direction, i.e. from the medium back to the
array. If a source at point rn emits a s(t) pulse, the resulting pressure at point r0,i
is gi,n(t). This fundamental property is known as reciprocity and is applicable in any
linear, lossless medium [9]. The measured signal for an input pressure p(ω) in the
medium is y(ω) = G(ω)p(ω), where y(ω) is a M -dimensional vector in which each
entry measures the received pressure at one transducer. A schematic is given in Figure
2.1b. It is important to note that by writing this relation between p(ω) and y(ω) we are
assuming that the transducer response is reciprocal as well. At the transducers, the re-
ceived signal is convolved with the transducer response. Since the response in reception
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is equal to one in transmission, we can conclude that y(ω) is equal to G(ω)p(ω).

Knowing the Green’s functions allows not only to model the propagation from a
source within the medium to the transducer array, but also to identify the source
location based on the array measurements. To do so, we need to derive p(ω) from
the measurements y(ω). Deriving p(ω) requires solving an inverse problem, which
is usually accomplished using the matched filter estimator [10]. To explain how the
matching estimator performs in this case, we consider a situation where a single source
located at n is transmitting a pulse S(ω). Then, p(ω) = S(ω)en, with en n-th canonical
vector. The pressure at the array is y(ω) = S(ω)gn(ω), with gn(ω) n-th column of
G(ω). The matching estimator is effective if p̂(ω) = GH(ω)y(ω) ≈ p(ω). From now
on, we neglect the multiplications by S(ω) since we set the goal on getting a peak at
the n-th entry of p̂(ω), rather than reconstructing the original pulse shape. Then, the
matching estimator is effective if p̂(ω) = GH(ω)gn(ω) ≈ en.

Since GH(ω)gn(ω) = (GT(ω)g∗
n(ω))

∗, p̂(ω) is the conjugate of the pressure over
the medium when sending g∗

n(ω) from the transducer array. Applying conjugation to
the spectrum of a signal is equivalent to reversing it in time domain. The operation
of deriving p̂(ω) consists of two steps. Step 1 is recording the wave coming from the
source and Step 2 is re-emitting the recorded wave after time reversing. The re-emitted
wave focuses back at the source location, revealing from which point the initial wave
was coming from. A good estimate is obtained if this wave indeed focuses at the
original source location. It can be shown that if the transducers captured all the paths
originating from the source, the time-reversal focus would be perfect [11]. This happens
because the wave equation is time-reversal invariant, meaning that it does not change
if we replace t with −t, since it contains only second-order time-derivatives.

In practice, a finite aperture array is used, then it is not possible to reverse all the
paths. However, it is still true that the transmitted g∗

n(ω) pulses arrive at the same
time at point n and sum coherently. Indeed, the pressure at n is

∑
i G

∗
i,n(ω)Gi,n(ω).

Each i-th function in the sum is the convolution of gi,n(t) with gi,n(−t), thus it will
have a peak at t = 0, meaning that the pulses will sum coherently at the focal spot n.
On the other hand, the pressure at another point m will be

∑
i G

∗
i,n(ω)Gi,m(ω). Each

i-th term in the sum has a different phase shift, thus the terms will add incoherently.
Then, p̂(ω) = GH(ω)gn(ω) will still have a peak at the n-the entry and lower values at
the other entries.

The pulses add coherently not only at n, but also at the adjacent points. The area
where they sum coherently is called focal spot. In addition, the area where they sum
incoherently may exhibit other secondary peaks, which are referred to as sidelobes. In
homogeneous media, the focal spot dimension and the sidelobe level can be computed
based on array pitch and aperture and on the position of the focusing point. In inho-
mogeneous media, the focus quality depends not only on the mentioned parameters,
but also on the characteristics of the medium. The focus can either degrade or improve
compared to homogeneous conditions [12]. Several studies have been conducted to ex-
plore how focus quality varies in inhomogeneous media [13][8]. A remarkable result is
that in disordered media the focal spot can be even smaller than in homogeneous media
[8].

Overall, the matching estimator GH(ω) is efficient in estimating the location of a
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source, since the off-diagonal elements GH(ω)G(ω) can be considered to be zero.

2.2 Pulse-echo imaging

The image formation is an estimation problem, in which we estimate the scattering
amplitudes for each pixel from the transducer measurements. In Section 2.2.1, the
relation between the transducer measurements and the scattering amplitudes is derived.
In Section 2.2.2, the most common image formation methods are briefly described. In
Section 2.2.3, the link between the image and the focus quality is explained.

2.2.1 Signal model

We consider a Synthetic Aperture (SA) acquisition scheme. In the SA scheme, one
transducer element is active in each transmission. The transmissions are then repeated
after shifting the position of the active element until the whole array has been used
[14]. As a result, a total of M scans are performed, with M equal to the number of
elements in the array.

After element i transmits a pulse s(t), this pulse will propagate in the medium and
it will be scattered at multiple locations. The echo scatterered at location n will have
a pulse-shape gi,n(t) and a certain intensity. We define the intensity of the scattering
at n as xn.

The wave scattered at point n propagates towards the transducer array. The prop-
agation from point n to sensor j is modeled as the convolution of the scattered pulse
gi,n(t) with the Green’s function from point n to sensor j, gj,n(t). The signal measured
at sensor j is xn(gj,n(t) ∗ gi,n(t)).

It is assumed that the scattered echoes have a low intensity, thus multiple scattering
can be ignored. This approximation is known as the Born approximation [15]. As a
result, the echoes that arrive at sensor j are given by the sum of the contributions from
all n points.

We define yi,j(t) as the measured signal at sensor j when sensor i transmits. This
is equal to:

yi,j(t) =
∑
n

xn

[
gj,n(t) ∗ gi,n(t)

]
. (2.4)

In frequency domain, the relation between Yi,j(ω) and xn becomes

Yi,j(ω) =
∑
n

xnGj,n(ω)Gi,n(ω). (2.5)

We discretize the ω domain in L frequencies ω1, .., ωl, ..., ωL. The measurements at
frequency ωl can be arranged into a vector. Then, the relationship between this vector
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and the scattering amplitudes is:


Y1,1(ωl)

...
Yi,j(ωl)

...
YM,M(ωl)

 =


G1,1(ωl)G1,1(ωl) . . . G1,N(ωl)G1,N(ωl)

...
...

Gi,1(ωl)Gj,1(ωl) . . . Gi,N(ωl)Gj,N(ωl)
...

...
GM,1(ωl)GM,1(ωl) . . . GM,N(ωl)GM,N(ωl)





x1
...
xn
...
...
xN


(2.6)

This can be written as y(ωl) = (G(ωl) ◦ G(ωl))x, where ◦ is the Khatri-rao product
and G(ωl) is the matrix defined in (2.3).

The y(ωl) vecotrs can be stacked in a single vector y. The relation between y and
x is:

y = Ax, (2.7)

with

A =

G(ω1) ◦G(ω1)
...

G(ωL) ◦G(ωL)

 . (2.8)

The array measurements contain additive noise. We define ni,j(ωl) as the noise on
Yi,j(ωl). These can be stacked in a vector n. The model becomes:

y = Ax+ n. (2.9)

Throughout this thesis, we will consider independent white Gaussian noise.
The measurements can also be arranged in L matrices of dimension M ×M . Each

l matrix is defined as follows:

Y(ωl) =

 Y1,1(ωl) . . . Y1,M(ωl)
...

...
YM,1(ωl) . . . YM,M(ωl)

 . (2.10)

Then, the relation between each Y(ωl) and x is:

Y(ωl) = G(ωl)diag(x)G
T(ωl) +N(ωl). (2.11)

In this thesis, we will use the expression in 2.7 and the one 2.11 interchangeably.

2.2.2 Image formation methods

In this section, we briefly describe the DAS technique and the model-based methods.
The most basic beamforming method is DAS [16]. The DAS estimate for pixel n is

computed as:

x̂n =
∑
j

∑
i

yi,j(t0 + τj,n + τi,n) (2.12)
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with τj,n equal to the time of flight from pixel n to transducer j. Since the start of
the acquisition may not correspond with the time of peak of the transmitted pulse, the
offset t0 is introduced to correct the delays [16].

In model-based imaging, a different approach is used. The image is generated by
solving the system of equations y = Ax. To obtain an estimated image x from y, the
following minimization problem can be solved:

x̂ = argmin
x

||y −Ax||22. (2.13)

The A matrix is ill-posed, then a regularization term is typically added to the cost
function. Moreover, the matrix A is typically large, since the first dimension is propor-
tional to the number of transmit-receive events, which in the case of SA is M2, and the
second dimension is equal to the number of pixels N . Because of the large dimension
of A, solving this problem is usually computationally intensive [3].

To reduce the computation cost, the estimate can be computed using the matched
filter estimator:

x̂ = AHy. (2.14)

By replacing A with the expression in 2.8, it can be shown that x̂ is equal to the
diagonal of the matrix

∑L
l=1G

H(ωl)Y(ωl)G
∗(ωl). Then, the n-th entry x̂n is equal to:

x̂n =
L∑
l=1

gH
n (ωl)Y(ωl)g

∗
n(ωl). (2.15)

It can be noticed that, in homogeneous media, matched filtering is closely related to
DAS. In homogeneous medium, the matched filtered estimate of xn is

x̂n =
∑
j

∑
i

∑
l

S∗(ωl)S
∗(ωl)e

jωl(τj,n+τi,n)Yi,j(ωl), (2.16)

where we have replaced Gi,n(ω) with the expression in 2.2. Each (i, j) entry in the
sum is the correlation between Yi,j(ω) and S(ω)S(ω)e−jω(τj,n+τi,n). This is the same
as the correlation of the time-domain signals yi,j(t) and r(t − τi,n − τj,n). where we
have introduced r(t) = s(t) ∗ s(t). If we substitute r(t) with δ(t − t0) , we obtain the
expression in 2.12.

2.2.3 Relation between focus and image quality

In this Section, we highlight the link between focus and image quality, which will be
important in Chapter 4.

The quality of the image depends on how closely the estimated value x̂n matches
the actual value of xn. Considering the zero-noise case, we substitute Y(ωl) =∑N

k=1 xkgk(ωl)g
T
k (ωl) into the expression of x̂n (2.15). The resulting estimate for x̂n

can be written as:

x̂n = xn

∑
l

||gn(ωl)||42 +
∑
k ̸=n

xk

∑
l

(gH
n (ωl)gk(ωl))

2 (2.17)
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In this expression, we observe two terms: one proportional to xn and another depending
on the scattering sources at locations different from n. The interference from the source
at point k in the estimate xn depends on the product gH

n (ωl)gk(ωl). As explained in
Section 2.1, this represents the pressure at location k when we focus on location n. To
effectively suppress this interference, it is important to ensure that when we transmit
gH
n (ω) we achieve a pressure peak precisely at location n and a low pressure elsewhere.

Therefore, the quality of the matched filtered image is intrinsically linked to the focus
quality when applying time-reversal.

It is important to note that when noise is introduced, an additional term dependent
on the noise will also be present.

2.3 Models of aberration in the literature

The image formation process requires to know the Green’s function from the array to
the medium. However, these are typically not known. Estimating the correct Green’s
functions is the first step for aberration correction. In the literature, several aberration
correction methods have been proposed, which use different approaches to model wave
propagation. The methods can be grouped in three main approaches:

a) The most general approach allows Gi,n(ω) to be any waveform. Given the speed-
of-sound and density map, the Green’s functions are computed by solving the
wave equation.

b) The geometric approach uses Gi,n(ω) = S(ω)e−jωτRin , where τRin is the propagation
time from sensor i to point n, computed according to refraction laws. Geometric
methods do not consider diffraction and provide a good approximation when the
wavelength is much smaller than the size of the inhomogeneous inclusions [9].

c) The “isoplanatic patch” approach divides the medium into multiple regions, called
isoplanatic patches. One isoplanatic patch can be defined as “the area in which
the Green’s functions are identical after correction of the travel path differences”
[17]. Then, within one isoplanatic patch, Gi,n(ω) can be modeled as Gi,n(ω) =
S(ω)Ai(ω)e

−jωτin , where τin is the propagation time between transducer i and
pixel n, computed as if the medium was homogeneous. The aberration is modeled
in the Ai(ω) functions. Each Ai(ω) can be an exponential delay or any waveform.
In case Ai(ω) is an exponential delay (Ai(ω) = e−jωτ0,i), the layer is modeled as a
phase-screen. In this case, propagation in one isoplanatic patch is fully modeled
given a set of M delays, with M number of transducers. We refer to this set
of delays as an “aberration profile” [18]. In a homogeneous medium, there is
only one large isoplanatic patch with Ai(ω) = 1 for all i. However, as the effect
of aberrations increases, the size of one isoplanatic patch decreases. Multiple
isoplanatic patches need to be considered within the imaging area, each one with
a different aberration profile.

The methods that use the approach in (a) or in (b) require to first estimate the speed-of-
sound map. This is computed either with tomographic approaches [19] or by identifying
the profile of the layer-medium interfaces based on the measured reflections [20] [21]. In
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(a) (b) (c)

Figure 2.2: There are three main methods to model wave propagation in inhomogeneous
media. In the most general approach (a), the Green’s functions can take any waveform and
may differ at each point. The geometric approach (b) approximates each Green’s function
as a delayed pulse, with delay based on refraction. The third approach (c) simplifies (a) by
assuming that the Green’s functions share one aberrating profile within an area defined as
the isoplanatic patch.

transcranial ultrasound, a Computed Tomography (CT) scan is sometimes employed to
convert Hounsfield units into a speed-of-sound map. However, this is mainly used for
focusing through the skull during thermal treatment rather than for imaging purposes
[22].

It can be noticed that if the geometric approach is used, matched filtering reduces
to DAS with refraction-corrected delays. This variation of the DAS method is applied
in [20] and [19]. Given the speed-of-sound map, the correct delays can be derived by
solving a partial differential equation, known as the Eikonal Equation. After solving
this equation, DAS with refraction-corrected delays can be applied. However, this
requires that diffraction can be ignored.

Other methods attempt to find the Green’s functions without estimating the speed-
of-sound map of the aberrating layer. These methods use the “isoplanatic patch”
approach, thus they require to estimate only one set of Ai(ω) functions for each iso-
planatic patch in the imaging domain. In case of a phase screen (Ai(ω) = e−jωτ0,i), the
set of parameters to estimate is reduced to M delays per isoplanatic patch, with M
number of transducers. These delays are found by optimizing various fitting criteria
[23] [18]. Other methods consider more general Ai(ω) functions, but rely on one simpli-
fying assumption. It is assumed that a limited number of bright scatterers are present,
referred to as “guiding stars”. Under this assumption, Y(ω) has a rank equal to the
number of scatterers, as evident from (2.11). If these bright scatterers are sufficiently
distant, the corresponding gn(ω) vectors become orthogonal. Consequently, the equa-
tion in (2.11) can be viewed as an eigenvalue decomposition. The work by Prada et al.
on the decomposition of the time reversal operator (DORT) [24] is related to this idea.
Once the gn(ω) from a guiding star location is found, the Ai(ω) components are valid
within the isoplanatic patch of the guiding star.
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Figure 2.3: Schematic of the virtual array model. The aberrating layer distorts the transmit-
ted field. The field at a point n in the imaging domain is derived as a function of the pressure
on the virtual array, which is measured by the transfer functions hi,j(t).

2.4 Virtual array

Starting from the general model, we derive the model that will be used in the rest of
thesis. This model has been introduced in [7] and is based on the assumption that the
inhomogeneities are limited to one layer, situated between the sensor array and the
imaging target.

A virtual array is placed just after the layer, as depicted in Figure 2.3. The transmit
field in the imaging domain can be derived if the pressure at the virtual array is known.
The field below the virtual array can be decomposed into a set of spherical waves
originating from each point on the virtual array, with pulse shape equal to the pressure
at that point.

We define hi,j(t) as the Green’s function from sensor i on the real array to point j
on the virtual array. We define g̃j,n(ω) as the Green’s function from virtual sensor j to
point n. Then, the Green’s function from sensor i to point n can be written as:

gi,n(t) =
V∑
j=1

hi,j(t) ∗ g̃j,n(t) (2.18)

This equation holds if the virtual array is Nyquist sampled and the aperture is wide
enough to capture all the waves emitted by the real array. The matrix G(ω) can be
written as:

G(ω) =

H1,1(ω) . . . H1,V (ω)
...

...
HM,1(ω) . . . HM,V (ω)


G̃1,1(ω) . . . G̃1,N(ω)

...
...

G̃V,1(ω) . . . G̃V,N(ω)


= H(ω)G̃(ω).

(2.19)

Since the region below the layer is homogenous, G̃(ω) can be derived based on the

location of the virtual array and the imaging domain. Thus, G̃(ω) does not depend on
the layer. The presence of the layer only affects H(ω).
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The model in 2.11 can be written as:

Y(ωl) = H(ωl)G̃(ωl)diag(x)G̃(ωl)
TH(ωl)

T +N(ωl), (2.20)

for l = 1, .., L.
This model does not take into account that the transducers will receive reflections

from the layer. In practice there may be significant reflections from the two layer-
background interfaces, especially if the impedance mismatch between layer and back-
ground is high. In addition, for inhomogeneous layers scattering from inside the layer
will give rise to additional echoes superimposed on the initial reflections described
above. These echoes will be received before the echoes from the imaging domain. How-
ever, if the imaging area is very close to the virtual array there will be superposition
between these echoes and the reflections from the layer. Thus, in this case the model
in 2.20 might be inaccurate.
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Imaging through known
aberrators 3
In this chapter, we assume the transfer matrix H(ω) is known. This assumption is true
when using a coding mask, as the transfer matrix is measured during the calibration
process. In other cases, the transfer matrix may be known if the speed-of-sound map is
provided, and H(ω) is computed based on this information. Alternatively, H(ω) might
be estimated from pulse-echo data, as we will explore in Chapter 4.

If the layer transfer functions are known, we can derive the Green’s functions every-
where in the imaging domain and generate the model matrix A. From here, we solve
the equation y = Ax using any of the model-based methods. We are forced to use the
model-based methods and cannot resort to DAS. However, the model-based methods
are more computationally expensive.

In this chapter, we explore the possibility of using DAS even when imaging through
known aberrators. Here, we make use of the virtual array and we consider the sce-
nario where it is feasible to transmit and receive at the virtual array. With these
measurements, DAS imaging becomes possible since propagation occurs in a homoge-
neous medium. However, as we do not have direct access to these measurements at the
virtual array, we must estimate them. Section 3.1 explains how to estimate those mea-
surements for arbitrary transmit schemes. This method is then applied to simulated
data and it is compared to model-based matched filtering. Section 3.2 provides an ex-
planation of the simulation setup used. The estimated signals and beamformed images
are displayed in Section 3.3. In Section 3.4, we discuss the expected advantage of this
method compared to conventional ones and we relate this work to existing research in
the field.

3.1 Transmitting and receiving at the virtual array

We start by defining the notation used in this chapter:

• Ui(ω) is the transmit field at element i of the real array, for i = 1, ..,M

• Pj(ω) is the transmit field at element j of the virtual array, for j = 1, .., V

• Zj(ω) represents the received echoes at element j of the virtual array, for j = 1, ., V

• Qi(ω) represents the received echoes at element i of the real array, for i = 1, ..,M

M is the number of real transducers and V is the number of virtual transducers. We
stack Ui(ω) in a vector u(ω) = [U1(ω), .., Ui(ω), .., UM(ω)]T. We do the same for the
other variables.
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Figure 3.1: In the estimation process, we follow the order indicated by the blue arrows. First,
we assign values to p(ω) and estimate the corresponding input u(ω). Next, we derive the real
array measurements q(ω), from which we estimate the received echoes at the virtual array
z(ω). The estimation requires solving two inverse problems.

The relations between these vectors are:

• p(ω) = HT(ω)u(ω)

• q(ω) = H(ω)z(ω).

Our goal is to send a specific wave from the virtual array and capture the corresponding
echoes received at the virtual array. However, since we cannot directly excite the virtual
transducers, we use the real transducers to transmit a wave that, after propagating
through the layer, generates the desired transmit field. We first assign values to p(ω)
and then proceed to estimate the input u(ω) required to have that field. Once we
have determined this input u(ω), we obtain the measurements at the real array for this
particular input, which we have defined as q(ω). However, to complete our task, we
require the received echoes at the virtual array z(ω). Therefore, we need to estimate
z(ω) from q(ω). These steps are depicted by the blue arrows in Figure 3.1.

The estimation of z(ω) involves two inverse problems. As discussed in Section 2.1,
these inverse problems can be effectively addressed using a matched filtering approach.
It has been shown that it is possible to focus on each individual virtual transducer
with time-reversal. Thus, the off-diagonal elements of the matrix HH(ω)H(ω) can be
assumed to be zero.

This implies that it is possible to estimate u(ω) and z(ω) as follows:

• û(ω) = H∗(ω)p(ω)

• ẑ(ω) = HH(ω)q(ω).

The only step that remains to be discussed is the step from û(ω) to q̂(ω). One option
consists in transmitting the û(ω) waves from the real array and measuring q̂(ω). Usu-
ally, ultrasound transducers allow to send pulses or sequences of coded pulses. However,
this might not be accurate enough to represent the û(ω) waveforms. If propagation
and scattering in the medium are assumed to be linear and time-invariant, the received
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echoes q(ω) for any transmission û(ω) can be derived by using a synthetic aperture
scan. The received echoes for input û(ω) are equal to:

q̂(ω) = Y(ω)û(ω), (3.1)

with Y(ω) as defined in Section 2.2.
After combining all steps together, the estimate ẑ(ω) can be expressed as:

ẑ(ω) = HH(ω)Y(ω)H∗(ω)p(ω). (3.2)

If we replace Y(ω) with the expression in (2.20), we get:

ẑ(ω) = HH(ω)H(ω)G̃H(ω)diag(x)G̃T (ω)HT (ω)H∗(ω)p(ω). (3.3)

The pressure at virtual array when sending p(ω) from the virtual array would be z(ω) =

G̃H(ω)diag(x)G̃T (ω)p(ω). Now we clearly see that ẑ(ω) ≈ z(ω) if HH(ω)H(ω) ≈ I. In
Section 2.1, it has been explained that the off-diagonal elements of this matrix can be
considered to be zero. However, we did not elaborate on the diagonal elements. Firstly,
the intensity at the focal spot can vary depending on the virtual element we focus on.
Thus, the elements in the diagonal of HH(ω)H(ω) might have different amplitudes,
introducing different scaling for each entry of ẑ(ω). Secondly, the pulse-shape at the
focal spot will be |S(ω)|2. As we mentioned, H(ω) models propagation and convolution
with the transducer response S(ω). This is the pressure that we measure below the
layer, so implicitly it contains the transducer response. Even in the scenario where
the off-diagonal elements are zero and the diagonal elements have the same amplitude,
HH(ω)H(ω) does not approximate the identity matrix, but rather |S(ω)|2I. From these
observations, we derive:

ẑ(ω) ≈ G̃H(ω)diag(x)G̃T (ω)|S(ω)|4p(ω). (3.4)

This implies that the actual pulse shape in the ẑ(ω) waveforms will be different from
the pulse shape in p(ω). We consider the case where we aim at estimating the pressure
at the virtual array when sending a plane wave with pulse shape S(ω). Then, we set
p(ω) to a plane wave with pulse S(ω). However, the resulting estimate ẑ(ω) contains
the echoes we receive when transmitting S(ω)|S(ω)|4. A longer pulse leads to a larger
point spread function (PSF) in the axial dimension. If S(ω) is known, we can divide
ẑ(ω) by |S(ω)|4 and recover the desired pulse shape S(ω). However, this may increase
noise at the frequencies where S(ω) is low. We will explain later how to partially solve
this with regularization.

So far, we have considered a single transmission from the virtual array. Indeed, it
is possible to derive the received echoes for multiple transmissions. We define pk(ω) as
the input for the k-th transmission. From each one, we derive the corresponding ẑk(ω).
We can write everything in a single equation if we stack the vectors in two matrices
Ẑ(ω) = [ẑ1(ω) . . . ẑk(ω) . . . , ẑK(ω)] and P(ω) = [p1(ω) . . .pk(ω) . . . ,pK(ω)]. We derive

Ẑ(ω) from P(ω) as:

Ẑ(ω) = HH(ω)Y(ω)H∗(ω)P(ω). (3.5)
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3.1.1 Virtual transmit schemes

In this section, we define how to set P(ω) for different transmit schemes from the virtual
array. In each transmission k, the j-th element of the array sends a pulse that is delayed
by τj,k and has an amplitude of aj,k. We can represent this as Pj,k(ω) = aj,ke

−iωτj,k ,
where Pj,k(ω) is the input for the j-th element during the k-th transmission. In this
representation, we omit the pulse shape S(ω), for the reason explained in the previous
section. The value aj,k is binary and is set to 1 if the j-th element is active during the
k-th transmission, 0 otherwise.

As our goal is to apply DAS, we focus on transmission schemes that allow us to
use DAS. Specifically, we consider three transmission schemes: Synthetic Aperture
(SA), single plane wave and Plane-Wave Compounding [25]. We define how to set the
coefficients in these three cases:

• For a SA scan, the number of transmissions K is equal to the number of virtual
transducers V . The coefficient aj,k is 1 for j = k, 0 otherwise. The delays τj,k are
set to zero. Then, P(ω) = I for all ω.

• For a single plane wave transmission, K = 1, aj = 1 and τj = 0 for all j. Then,
P(ω) = 1 for all ω.

• In the case of plane-wave compounding, K waves at K angles θ1, ..., θK are sent.
The amplitude coefficients are aj,k = 1 for all j, k. The delays can be easily
computed based on the array pitch, the speed of sound, and the desired angle.
The formula for the delays can be found in [25].

3.1.2 Regularized inverse filter

In the previous sections, it has been explained that the inverse problems involved in the
estimation can be solved by using HH(ω). This approach is justified by the possibility
of focusing on the virtual transducers through time-reversal, as explained in Section 2.1.
While this method provides the desired focus, it also results in a longer pulse shape.
Moreover, the intensity at the focal spot can vary depending on the virtual transducer
location.

An alternative solution to the two problems is obtained through regularized least-
squares. The estimate of u(ω) becomes:

û(ω) = argmin
u(ω)

||HT(ω)u(ω)− p(ω)||22 + λ||u(ω)||22

= WT(ω)p(ω).
(3.6)

with W(ω) = (HH(ω)H(ω) + λI)−1HH(ω).
The same approach is used to estimate z(ω) from q(ω):

ẑ(ω) = argmin
z(ω)

||H(ω)z(ω)− q(ω)||22 + λ||z(ω)||22

= W(ω)q(ω).
(3.7)
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(a) (b) (c)

Figure 3.2: Time-reversal focusing is effective when using a fully sampled array (a). In case
an undersampled array is used, focusing at a single virtual transducer is no longer feasible
(b). However, it is still possible to achieve focusing using disordered aberrating layers, such
as coding mask (c).

Then:

• ẑ(ω) = W(ω)q(ω)

• û(ω) = WT(ω)p(ω)

The estimate of the full matrix Z(ω) is:

Ẑ(ω) = W(ω)Y(ω)WT(ω)P(ω) (3.8)

If time-reversal focusing is already effective (off-diagonal elements of HH(ω)H(ω) are
zero, and the diagonal elements have the same amplitude), the primary change intro-
duced by this approach is in the pulse shape. Specifically, HH(ω)H(ω) ≈ |S(ω)|2I, then
W(ω) ≈ 1

|S(ω)|2+λ
HH(ω) and WH(ω)H(ω) ≈ |S(ω)|2

|S(ω)|2+λ
I. Otherwise, the effect is also

on reducing the sidelobes and improving the focal spot size in the lateral dimension.
Moreover, it can adjust the different weighting introduced on the entries of û(ω) and
ẑ(ω).

3.1.3 Undersampled array

In this derivation, no assumption has been made regarding the number of virtual trans-
ducers V and the number of real transducers M . The model in 2.20 is applicable for a
Nyquist-sampled virtual array. Typically the real array is Nyquist sampled, then it is
reasonable to set V = M .

We now shift our focus to a scenario where the real array is undersampled, leading to
M < V . In this situation, solving the inverse problems becomes more challenging due to
the mismatch between the number of unknowns (V ) and the number of measurements
(M). The assumption ofH(ω)HH(ω) ≈ |S(ω)|2I no longer holds. In physical terms, it is
not possible to achieve focus at a single virtual transducer j by sending the time-reversed
waveforms H∗

i,j(ω). While we discussed the possibility of focusing in the context of
fully sampled arrays, the same cannot be said for an undersampled array. Generally,
the focus degrades when working with a lower number of transducers (Figure 3.2b).
However, it has been shown that in disordered media, a tight focal spot can still be
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achieved, even when using a single element [8]. We can expect a similar result for the
coding mask. It has been shown that using a coding mask in front of an undersampled
array significantly improves the resolution [6]. Because of the link in resolution and
focus quality explained in Section 2.2.3, we can expect that a coding mask leads to a
smaller focal spot when applying time-reversal on an undersampled array. Therefore,
we may still be able to estimate received echoes at a fully sampled virtual array. Since
M < V , estimating Z(ω) from the real transducer measurements Y(ω) can be seen
as an attempt to synthesize more transducers than we actually have. The advantage
of using a coding mask lies in the ability to create more virtual transducers than real
transducers, thus extending imaging possibilities.

3.1.4 Delay-And-Sum at the virtual array

In this section, we present the proposed image formation method, outlining all its steps.
After selecting the transmit scheme and computing the corresponding P(ω), the image
is computed as follows:

1. Compute Ẑ(ω) = W(ω)Y(ω)WT(ω)P(ω)

2. Perform an inverse Fourier-transform on each Ẑj,k(ω)

3. Compute each xn as: x̂n =
∑

j

∑
k ẑj,k(τ

TX
n,k + τRX

n,j )

Here, we can simply set W(ω) = HH(ω). Alternatively, we can use the regularized
inverse approach and set W(ω) = (HH(ω)H(ω) + λI)−1HH(ω), with λ appropriately
chosen. The delay τRX

n,j represents the propagation time from pixel n to point j on the

virtual array, while τTX
n,k is the time it takes for the transmit field to reach point n. It

is different for each k-th transmission, as we send different types of waves.

We now derive the relation between this method and model-based matched filtering.
If we consider a Synthetic Aperture at the virtual array and we use the matched filter
approach in the estimation, the image estimate is computed as:

1. Ẑ(ω) = HH(ω)Y(ω)H∗(ω)

2. Inverse Fourier-transform each Ẑj,k(ω)

3. x̂n =
∑

j

∑
k ẑj,k(τ

TX
n,k + τRX

n,j )

For a Synthetic Aperture scan, τTX
n,k is the propagation time from n to virtual transducer

k. It can be shown that the second equation can be written as:

x̂n =
L∑
l=1

g̃H
n (ωl)Ẑ(ωl)g̃

∗
n(ωl), (3.9)

where g̃n(ωl) is the vector containing the Green’s functions from the virtual array to

the image domain, as defined in Section 2.4. By replacing Ẑ(ω) with the equation in
Step 1, the following expression is obtained:
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x̂n =
L∑
l=1

g̃n(ωl)
HHH(ωl)Y(ωl)H

∗(ωl)g̃
∗
n(ωl)

=
L∑
l=1

gH
n (ωl)Y(ωl)g

∗
n(ωl).

(3.10)

This equation coincides with the matched filtered estimate of x̂n in Equation 2.15,
therefore the method’s outcome is equivalent to matched filtering with A.

In this derivation, we have considered that g̃j,n(ω) = e−iωτn,j , thus we have ignored
the attenuation γj,n in the path from virtual transducer j to pixel n. Differences between
the proposed method and matched filtering may arise if the attenuation is considered
in the A matrix computation. However, these can be easily corrected by introducing
weights equal to γj,n in the DAS step.

3.2 Methods

The proposed method is applied to simulation data generated using the k-Wave toolbox
[26]. The simulation involves a plastic coding mask placed in front of an array, with an
imaging phantom made of point scatterers. The transfer functions and the Synthetic
Aperture measurements are simulated. In addition, the model matrix A is computed,
since the proposed method will be compared to matched filtering. In this section, we
provide a detailed explanation of the simulation set-up. Moreover, we explain how the
model matrix is computed.

We consider a grid of 1024×512 points. The first dimension is the axial (z dimension)
and the second one is the lateral (x dimension). The spacing between the points is the
same in both dimensions and is equal to 90 µm. The dimension of the simulation grid
is then 9.2× 4.6 cm.

We will consider two arrays: one fully sampled and one undersampled. In the first
one, the number of transducers is set to M = 80. Each transducer is 270 µm wide,
which corresponds to 3 grid points, and the overall aperture is 2.2 cm. The aperture,
pitch and number of elements is the same as the ultrasound probe GEM5ScD (General
Electric, USA) used for cardiac imaging and transcranial Doppler. The second array
has the same aperture size as the GEM5ScD. However, each transducer covers 24 grid
points, providing a pitch 8 times larger than the Nyquist limit.

The background speed of sound c0 is set to the average speed of sound in tissues,
which is 1540 m/s. The background density ρ0 is set to 997 kg/m3. The transmitted
signal is a pulse with central frequency f0 = 2.8 MHz and bandwidth B = 6 MHz.
Then, the wavelength is equal to λ0 = 550µm and the array spacing is smaller than the
Nyquist limit. The sampling frequency is set to fs = 57 MHz.

The shape of the layer is displayed in Figure 3.3a. The mask covers the entire
transducer aperture. There is a small gap of 360 µm between the sources and the layer
interface. The width of the pillars is equal to 1 mm, while the thickness varies in the
interval [2,8] mm, which corresponds to [2,8] wavelengths in plastic. The thickness of
each pillar is selected randomly in this interval.
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(a) (b)

(c)

Figure 3.3: Set-up for k-Wave simulations. A plastic coding mask (yellow) is placed in front
of the array (black), and the virtual array (blue) is located just after the mask. For the first
simulation (a), a single scattering point is placed at the center of the array. This point is
highlighted in a circle. In the second simulation (b), a grid of scattering points is used. The
red rectangle in (b) highlights the area at which the pressure is recorded and the A matrix is
computed. Both simulations use the pulse shown in (c).

In the layer region, the speed of sound and density are set to 2750 m/s and 940
kg/m3 respectively. These values are selected to simulate a plastic layer.

The virtual array is at 1 cm depth. It has the same aperture and pitch of the real
array. Then, the number of virtual transducers is V = 80.

The imaging phantom consists of scattering points. At the scattering points, the
speed of sound is set to 2050 m/s and the density is set to 500 kg/m3. We will consider
two phantoms: a single point and a grid of points. The single point is located at
position (1.6, 0) cm. The grid consists of points spaced 2 mm apart (approximately
4 wavelengths) and covers the entire simulation grid, starting from a depth of 1.1 cm.
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The position of the two phantoms with respect to the two arrays and the coding mask is
displayed in Figures 3.3a and 3.3b. The figure displays only a section of the simulation
grid, not the entire grid.

The comparison with matched filtering is performed only on the area highlighted in
Figure 3.3b. Thus, the model matrix A will contain only the an columns corresponding
to this area.

We begin by computing the transfer functions through a simulation without the
scattering points. A synthetic aperture scan is acquired, and for each transmission, the
pressure at the virtual array is recorded. This collection of functions is then Fourier
transformed to create one transfer matrix per frequency bin H(ωl). During this simu-
lation, the pressure at the real array is also recorded. This pressure originates at the
medium-mask interfaces and will be used in the next step. In addition, the pressure
in the region highlighted in Figure 3.3b is recorded. This pressure is used to make
the matrices G(ω1), ..,G(ωL) and to generate the matrix A as in (2.8). We choose to
measure the Green’s functions in k-wave, instead of deriving them from the transfer
functions using (2.20). In this way, we can not only validate the relation presented in
Section 3.1.4, but we can also indirectly assess whether the model in (2.20) produces
the same pressure in the medium as the one obtained through the k-Wave simulation.

Subsequently, a second Synthetic Aperture scan is repeated after introducing the
scattering pixels. Two simulations are performed, one for each phantom. At this step,
only the pressure at the real array is stored. The reflections from the mask, measured at
the previous step, are subtracted from the data. Moreover, zero-mean white Gaussian
noise is added to this data. The noise power is adjusted to achieve a signal-to-noise
ratio of 20 dB. Finally, the data is Fourier transformed to form one matrix Y(ωl) per
frequency bin.

Instead of repeating the simulations for the undersampled array, we just group the
transducers in 10 sets of 8 and we sum the entries of H(ωl) and Y(ωl) over these sets.
The summation is performed on the noiseless measurement. Next, the signal power is
computed and noise is added. The noise power is adjusted to obtain an SNR of 20 dB.
Finally, the summation is repeated on the G(ωl) matrices and the model matrix A for
the undersampled array is computed.

In addition, a further simulation is performed after removing the coding mask from
the speed-of-sound and density maps. This data will be used for comparison.

3.3 Results

In this section, we apply the proposed method to image point scatterers through a
plastic coding mask. We begin with the single point phantom in Section 3.3.1, and
use a single plane wave transmission as the virtual transmit scheme. We analyze the
estimates of the wavefields u(ω), q(ω) and z(ω), as defined in Section 3.1. Next, we
perform beamforming on ẑ(ω) and examine the Point Spread Function (PSF). In Section
3.3.2, we consider the grid phantom. In this case, we focus solely on the beamformed
images and do not analyze the estimated waves. The main goal is to verify that the
PSF is centered at the correct location, exhibits relatively tight dimensions, and has
low sidelobes. We assess the method’s performance with various transmission schemes
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and using both fully sampled and undersampled arrays. Additionally, we evaluate the
effectiveness of the two inverse problem solution strategies described in this chapter.
Finally, we compare the proposed method to matched filtering with the matrix A.

3.3.1 Single point phantom

We consider the data for the single point simulation and we derive the echoes at the
virtual array for a plane wave transmission. For this transmission, the received echoes
form a parabola in the space-time domain. Our goal is to retrieve this parabolic shape
with our method. Instead of directly computing the waveforms in ẑ(ω) as in (3.2), we
will derive them following the steps mentioned in Section 3.1. In this way, we also gain
insights into the characteristics of the transmit field.

First, we use the matched filter approach and we set W(ω) to HH(ω). Then, the
input needed to have a plane wave transmission on the virtual array is û(ω) = H∗(ω)1.
The time domain representation is shown in Figure 3.4b. The transmit field at the
virtual array is p̂(ω) = HT(ω)H∗(ω)1. The time domain is shown in Figure 3.4c.
It can be seen that it is an approximation of a plane wave. However, the pressure
amplitude varies depending on the array element. As mentioned before, the amplitude
at i depends on the pressure peak when focusing at element i with time-reversal. Thus,
it exhibits a lower amplitude at elements where it is more challenging to focus.

Next, we derive the echoes at the real array for the û(ω) input. In k-Wave it is
possible to set the input signals to these waveforms. This is not the case in a real
situation, as explained in Section 3.1. Then, we use the Synthetic Aperture scan as
in (3.1). The echoes at the real array when sending û(ω) are computed as q̂(ω) =
Y(ω)û(ω). The time domain representation is shown in Figure 3.4d. In this Figure,
we can observe the effect of aberrations on a wavefront. In a homogeneous medium,
the echo from a point source forms a parabola. In this case, it deviates significantly
from the parabolic shape. We can recover the parabolic shape after computing ẑ(ω) =
HH(ω)q(ω). This is displayed in Figure 3.4e. The amplitude is not constant over the
parabola. We observe a decrease as we move towards the borders of the array. This
decrease is partially due to the attenuation that occurs in the medium. We can also
notice that the pulse shape has a broader support with respect to s(t), for the reasons
explained in Section 3.1.

Finally, the data ẑ(ω) are beamformed to create an image. An image domain of
dimension 100×80 is defined, centered at the scattering point location. Delay-and-sum
is applied to generate an image. A hilbert transform is applied to obtain the envelope
signal which is dispalyed in the image. Furthermore we normalize each pixel in the
image to the overal maximum and apply a log transformation to the image to enhance
visibilty. These steps will be applied to all the images displayed in this thesis. The
resulting image is displayed in Figure 3.4f.

In Section 3.1.2, we have discussed the option of using an inverse filter instead
of a matched filter. This is now applied on this data. ẑ(ω) is computed as ẑ(ω) =
W(ω)Y(ω)WT(ω)1. The time domain of ẑ is shown in Figure 3.4g. Here we just plot
ẑ(ω) to show the effect on the final estimate. The parameter λ is tuned based on the
results. Once again, we can observe the parabola shape appearing in the plot, and this
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(a) (b) û(t) (c) p̂(t) (d) q̂(t)

(e) ẑ(t) (f) (g) ẑ(t) (h)

Figure 3.4: Transmitting a plane wave through the coding mask (a) is possible by transmitting
the waveforms in (b), which will form a plane wave at the virtual array (c). From the received
echoes at the real (d), we derive the echoes at the virtual array (e). The data in (e) is DAS
beamformed, resulting in image (f). The estimation is repeated using the regularized inverse
filter, resulting in a better estimate of the echoes (g) and a smaller PSF (h).

time it is even more pronounced than before. The pulse shape exhibits a shorter time
support, and we also notice a more uniform amplitude distribution over the parabola.
After beamforming, we achieve a smaller PSF in the axial dimension, while the lateral
dimension remains almost unchanged. The sidelobes are lower than -20 dB in both
cases.

In Section 3.1.3, we mentioned that this method can, in principle, be applied when
the transducers’ spacing is smaller than the Nyquist limit. Now we consider the data
for the undersampled array and we repeat the steps explained before. The results are
shown in Figure 3.5. In this case, the number of real transducers is M = 10, while
the number of virtual transducers is V = 80. Transmitting a plane wave through the
medium with just 10 elements is more challenging, as we can see in Figure 3.5c. For
one part of the elements, the pressure is a pulse with peak at t = 0. However, there
are also elements where the support is longer. Moreover, the amplitude is less uniform
than in Figure 3.4c. Similarly, the estimate of ẑ(ω) is more distant from a parabola,
resulting in a poorer PSF. As we can see in Figure 3.5f, an intensity peak at the correct
location is obtained. However, 4 more spots at approximately −2 dB can be observed.
Improvements can be obtained when using the regularized inverse filter, as the intensity
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(a) (b) û(t) (c) p̂(t) (d) q̂(t)

(e) ẑ(t) (f) (g) ẑ(t) (h)

Figure 3.5: Transmitting a plane wave with an undersampled array (a) is still possible, but
more challenging. By transmitting the waveforms in (b), an approximation of a plane wave is
obtained (c). From the received echoes at real (d), we derive the echoes at the virtual array
(e). The data in (e) is DAS beamformed, resulting in image (f). The PSF is worse than the
one for fully sampled array. Improvements can be obtained by using a regularized inverse
filter (g),(h).

(a) q̂(t) (b) ẑ(t) (c)

Figure 3.6: Results obtained from a simulation without coding mask. ẑ(t) (b) is a more
densely sampled version of q̂(t) (a), thus it is not possible to reproduce the desired curvature.
This results in a large PSF (c). The advantage of using a mask is evident when comparing
these plots to the estimates in Figure 3.5.
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of the sidelobes becomes lower and the size of the PSF becomes smaller.
Even though the ẑ(ω) waveforms appear quite different from the expected parabola,

the estimation process successfully captures the correct curvature in the central part
of the virtual array. It is important to consider that ẑ(ω) is obtained from q̂(ω). The
spatial variations of q̂(ω) in the lateral dimensions would not be sufficient to achieve
the desired curvature, since we have only 10 transducers. Through a multiplication
with HH(ω), we are able to synthesize a more spatially varying field. This would not
hold if we didn’t use a coding mask. In Figure 3.6 the results for a simulation with no
layer are shown. Although ẑ(ω) is more densely sampled than q(ω), it does not contain
higher spatial frequencies, resulting in a larger focal spot in the lateral dimension.

3.3.2 Grid phantom

In this section, we consider the data for the simulation with a grid of scatterers. So far,
we have only considered a single plane wave transmission. However, the PSF can be
significantly improved by combining multiple transmissions. This compounding tech-
nique implies no additional cost in terms of acquisition time, as a Synthetic Aperture
scan is required for both approaches. In this section, we will investigate two virtual
transmit schemes: Synthetic Aperture (SA) and Plane-Wave Compounding (PWC).

First, we estimate the received echoes for a SA scan at the virtual array. These are
computed as in (3.8). Both the fully sampled and the undersampled array are used.
For each array, we compare the matched filter and the regularized inverse. Again, the
λ parameter has been tuned based on the results. The resulting images for the fully
sampled array are shown in Figures 3.7b and 3.7c. The images for the undersampled
array are in Figures 3.8b and 3.8c.

(a) (b) (c)

Figure 3.7: Images of a grid of scatterers (a) obtained with a fully sampled array (M = 80).
A virtual SA scan is considered and the matched filter approach is applied (b). Next, the
regularized inverse approach (c) is applied, leading to a slightly smaller PSF.
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(a) (b) SA (c) SA, Inverse

(d) SA, no coding mask (e) PWC (f) PWC, Inverse

Figure 3.8: Images of a grid of scatterers (a) obtained with an undersampled array (M = 10).
A virtual SA scan is considered, and both the matched filter (b) and regularized inverse (c)
approaches are applied. To reduce the computations, the virtual transmit scheme can be set
to Plane-Wave Compounding with 9 plane waves. In all cases, the results show significant
improvement compared to a simulation without a coding mask (c).

The PSF varies across the image. The quality of the PSF at a particular point
depends on the focus quality that can be achieved at that specific location. Since the
focus quality beyond a layer is not uniform over the imaging domain, the PSF differs
accordingly.

When using the regularized filter, the PSF becomes smaller. This effect is noticeable
in both the fully sampled and undersampled array cases. In the undersampled array
scenario, we can also observe better sidelobe suppression. If there is no coding mask
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Figure 3.9: The two masks used for the image quality metric computation are displayed. For
each scattering point, the ratio between the mean intensity in the inner circle (orange) and
in the outer circle (blue) is computed. The image quality is the average over the whole grid.

between the real and virtual array, it is not possible to estimate the data for a fully
sampled virtual array. In Figure 3.8d, the resulting image for the no-layer simulation
is shown. The PSF is so large that the single points cannot be distinguished.

In Section 3.3.1, we applied only one virtual transmission. In this section, the num-
ber of virtual transmissions is increased to 80, which corresponds to the number of
virtual transducers. Although the acquisition time remains the same, as we need Syn-
thetic Aperture from the real array in any case, a higher number of virtual transmissions
leads to longer image computation times. Considering this, we look at what happens
when the number of virtual transmissions is reduced. Specifically, we will consider 9
plane waves at evenly spaced angles in the interval [−15◦, 15◦]. The resulting images
are displayed in Figures 3.8e and 3.8f.

To provide a quantitative comparison, we introduce an image quality metric. For
each scattering point, we define two concentric circles centered at the point’s location.
The metric computation involves calculating the mean image intensity within the inner
circle and the mean in the area between the two circles, followed by taking their ratio.
This process is repeated for all scattering points, and the mean is then computed over
the entire image grid.

The inner circle has a diameter equal to 7 grid points, which is equivalent to 1
wavelength, while the outer circle has a diameter equal to 17 pixels. Figure 3.9 displays
the area considered for the metric computation for 4 points. Only 4 points are shown
in the figure to illustrate the circle’s dimension compared to the distance between the
points. The image metric is calculated for all the images presented in Figures 3.7 and
3.8, and the image quality values are reported in Table 3.1.
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N. transducers Inverse problem solution Virtual TX scheme Figure label Image quality

80 Matched SA 3.7b 1.24

80 Regularized inverse SA 3.7c 1.44

10 Matched SA 3.8b 0.83

10 Regularized inverse SA 3.8c 0.87

10 Matched PWC 3.8e 0.68

10 Regularized inverse PWC 3.8f 0.77

Table 3.1: Image quality metric for all the images in Figure 3.7 and Figure 3.8

Finally, we compare the proposed method with matched filtering. We apply matched
filtering on both the fully sampled and undersampled array data. The resulting images
are displayed in Figures 3.10a and 3.10c. In section 3.1.4 it has been shown that
matched filtering with A is equivalent to this method if we consider a SA scan at the
virtual array and we set W(ω) = HH(ω). These images have already been computed
for both the fully sampled and undersampled array and are displayed in Figures 3.7b
and 3.8b. The area selected for the comparison is extracted and is displayed again
in Figures 3.10b and 3.10d. In the fully sampled case, the dynamic range has been
increased to 40 dB to better display the similarities in the sidelobe levels.

(a) (b) (c) (d)

Figure 3.10: Comparison between the matched filtering with the model matrix A and the
proposed method. In (a) and (b), the images for the fully sampled array are shown, while
(c) and (d) are computed using the undersampled array measurements. (a) and (c) display
the matched filtered images, while (b) and (d) display the images obtained with the proposed
method. The red dots indicate the location of the scatterers.
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3.4 Discussion

When imaging through aberrating layers, using the traditional DAS method becomes
ineffective, and model-based methods are required. In this chapter, we have introduced
an alternative approach that enables the application of DAS in the presence of aberrat-
ing layers. In this section, the advantages and disadvantages of the proposed method
are discussed. Additionally, we relate this work to existing research in the field.

Comparison with model-based methods

In previous sections, it has been mentioned that the model-based methods are compu-
tationally expensive. The number of computations needed to generate an image varies
significantly depending on the array and on the dimension of the imaging domain. In
this discussion, we focus on a scenario where model-based imaging is particularly incon-
venient. We consider a situation where a 2D array is used to perform 3D imaging. The
model linking the SA measurements y to the scattering amplitudes x is y = Ax, where
A has dimensions M2L × N . The computation of A involves propagating the field
through the entire imaging domain using the Angular Spectrum Approach (ASA) [27].
The procedure to generate the A matrix is described in [6]. This process is illustrated
in Figure 3.11. We assume the number of frequencies is L = 256, the array dimension
is 10× 10, then M = 102, while the virtual array is 80× 80, then V = 802. We assume
the number of pixels in the image domain is N = 1203 and each entry of the A matrix
occupies 4 bytes. These have been selected arbitrarily and represent realistic values. In
this case, the memory required to store A is M2LN = 104 × 256× 1203 × 4 bytes ≈ 17
TeraBytes. Storing this matrix would be impractical. Therefore, computing a matched
filtered estimate of the image would not be possible in a single operation. Instead, it
would require multiple steps. First, the field must be propagated to the first plane, and
then the x̂n values for the pixels at that plane can be computed. The process is then
repeated for the next plane, and so on until the entire image is formed. The major

Figure 3.11: In this scenario, a 2D array is employed for 3D imaging. To construct the A
matrix, field propagation using the Angular Spectrum Approach (ASA) is required. However,
due to its large size, storing the matrix is not feasible. Field propagation needs to be repeated
when generating each frame x̂, leading to a significant computational burden.

29



challenge lies in the fact that field propagation needs to be performed for each frame
x̂, resulting in a substantial increase in computational cost.

If the method proposed in this thesis is used, there is no need to propagate the field
through ASA. Instead, we can directly apply DAS. Before applying DAS, the Ẑ(ωl)

matrices need to be computed, and each [Ẑi,j(ωl), .., Ẑi,j(ωL)] has to be inverse Fourier
transformed. The cost of this operation needs to be added to the cost of DAS. However,
this operation is done just once for the whole image, then its cost does not scale with
the number of pixels. Overall, the cost is expected to be lower than matched filtering
with A.

Since the virtual array contains a large number of elements, performing DAS at the
virtual array on SA data can be quite computationally demanding. For this reason,
the option of using Plane-Wave Compounding has been proposed. When using PWC
as virtual transmit scheme, the image quality may be degraded. Therefore, one needs
to evaluate whether the image quality is sufficient depending on the specific scenario.

Inverse filter as an alternative to time-reversal:

In this chapter, it has been shown that a regularized inverse filter can be a valid
alternative to a matched filter/time-reversal approach. Several papers in the literature
have analyzed the potential of reducing the focus spot size and sidelobes by using an
inverse filter instead of time-reversal [12] [28]. In [12], Tanter et al. demonstrated that
using an inverse filter leads to improvements when dealing with lossless media. This is
in line with our results, where we observed an improvement using the regularized inverse
filter. However, it is essential to note that this observation is valid for the current level
of noise and may change as the noise increases. It is well-known that the performance
of the regularized inverse filter heavily depends on the noise level. Moreover, it changes
depending on the rank of the transfer matrix H(ωl) and the regularization parameter
λ. Prior research has explored methods to determine the rank of the transfer matrix,
as seen in Tanter et al. [12] and Aubry et al. [29]. In this thesis, the rank of H(ωl) has
not been analyzed and the parameter λ has been tuned based on the results.
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Imaging through unknown
aberrators 4
In the previous chapters, it has been shown that aberrating layers do not pose an
obstacle for successful imaging, if the layer transfer functions between the real and
virtual array are known. In the case of a coding mask, these transfer functions can
be measured. However, when the layer cannot be removed, measuring H(ω) becomes
invasive and impractical. This chapter addresses the challenge of imaging through
layers for which the transfer matrix cannot be directly measured.

Typically, there is no prior knowledge about the imaging target, and the only avail-
able data are the pulse-echo measurements. The relation between the measurements,
the image and the layer transfer functions is shown in (2.20). Imaging through unknown
aberrators involves estimating both H(ω) and x from the given y. This is challenging
as there is a large number of unknowns compared to the number of knowns.

In this chapter, we investigate the possibility of estimating H(ω) by optimizing a
cost function. The cost function is designed to measure the focus quality beyond the
layer. Instead of directly optimizing for H(ω), we adopt a different approach. We
model H(ω) and treat the model’s parameters as optimization variables. By doing so,
we reduce the dimensionality of the solution space. In Section 4.1, the cost function is
introduced, while Section 4.2 is dedicated to the parametrization. The main objectives
are:

1. To investigate whether the transfer functions can be approximated using the pro-
posed parametrization

2. To explore whether increasing the defined cost function results in an improved
estimate of the transfer matrix, and subsequently improves the quality of the
generated image.

To achieve these objectives, we apply the proposed model and optimization approach
to simulated data. The details of the data generation and algorithm implementation
are explained in Section 4.3. The results are presented in Section 4.4. In Section 4.5,
we discuss the obtained results and the limitations of this work.

4.1 Focus quality measure

In this section, we derive the cost function that will be employed in the optimization.
The goal is to find a function of H(ω) that yields high values for good estimates of
H(ω) and low values for poor estimates.

Given an estimate ofH(ω), we can derive an estimate of the Green’s functions at any

point n using the equation ĝn(ω) = Ĥ(ω)g̃n(ω), with g̃n(ω) as defined in Section 2.4. A
good estimate of H(ω) is one for which x̂n =

∑
ω ĝ

H
n (ω)Y(ω)ĝ∗

n(ω) accurately reflects
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(a) (b) (c) (d)

Figure 4.1: A good estimate ĝn(ω) is one that produces a field focused at point n after
propagating through the layer (a). As a consequence, when transmitting ĝn(ω), we receive
only echoes from n (b). In contrast, a poor estimate results in an unfocused transmit field
and echoes scattered from locations different from n, as depicted in (c) and (d) respectively.

xn. This is the case if the pressure beyond the layer when transmitting ĝ∗
n(ω) forms a

beam focused at n. To identify a good Ĥ(ω), we need a metric that measures how well
we can focus at n using ĝn(ω). To simplify the notation, throughout this section we

will refer to these ĝn(ω) estimates without explicitly writing the dependency on Ĥ(ω).
However, it is essential to remember that what we are actually estimating is H(ω), and

ĝn(ω) is a function of Ĥ(ω).

As we aim to use a non-invasive approach, measuring the pressure beyond the layer
is not possible. Our assessment of focus quality must rely solely on the pulse-echo
data. To assess focus quality based on pulse-echo data, we rely on the idea that when
focusing at a location n, we should receive echoes only from that location. This concept
is illustrated in Figure 4.1.

As mentioned in Section 3.1, it is possible to derive the received echoes for any input
from Synthetic Aperture measurements. Therefore, we can obtain the received echoes
when trasmitting ĝ∗

n(ω) as q(ω) = Y(ω)ĝ∗
n(ω). These should only contain echoes from

point n. Then, if we cross-correlate these echoes with the Green’s functions at another
location ĝk(ω) ( k ̸= n), the result should be zero. This is the main idea behind our
cost function for the transfer matrix optimization.

We introduce a new variable xk,n which represents the intensity of the echo scattered
from point k when focusing at point n. This is equal to:

xk,n =
∑
l

ĝH
k (ωl)Y(ωl)ĝ

∗
n(ωl). (4.1)

It can be noticed that for k = n, this corresponds to the matched filtered estimate of
xn.

The indices k and n vary from 1 to N , with N equal to the number of pixels. We
define a matrix X of dimension N ×N , in which the (k, n) entry is xk,n. This matrix
is equal to:
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X =
∑
l

ĜH(ωl)Y(ωl)Ĝ
∗(ωl)

=
∑
l

ĜH(ωl)G(ωl)diag(x)G
T (ωl)Ĝ

∗(ωl),
(4.2)

where we have replaced Y(ωl) with the expression in 2.11. A simplified model with
zero noise is considered.

We aim to exploit that a good Ĝ(ω) is one for which xk,n is zero for k ̸= n. As we
have previously explained, if ĝ∗

n(ω) allows focusing at point n, and this holds for all

points, the matrix ĜH(ω)G(ω) becomes diagonal. Consequently, to assess the quality
of the estimate, we should examine the diagonality of the matrix X. However, it has
been found that considering all xk,n entries may not be the best approach, and it is
preferable to focus on a subset of these entries. From this point on, we consider only
the xk,n for k and n at the same depth.

To explain why, we replace Y(ωl) =
∑

m xmgm(ωl)gm(ωl)
T in (4.1) and we write

the variables xk,n as:

xk,n =
∑
l

ĝH
k (ωl)

(∑
m

xmgm(ωl)g
T
m(ωl)

)
ĝ∗
n(ωl)

=
∑
m

xm

∑
l

gT
m(ωl)ĝ

∗
k(ωl)g

T
m(ωl)ĝ

∗
n(ωl)

=
∑
m

xmw
kn
m ,

(4.3)

where we have defined wkn
m =

∑
l g

T
m(ωl)ĝ

∗
k(ωl)g

T
m(ωl)ĝ

∗
n(ωl).

For fixed n and k, xk,n can be interpreted as a weighted sum overm of the underlying
pixel echogenicity values xm. We now derive an upper bound for the weights wkn

m . As
explained in the Section 2.1, gT

m(ω)ĝ
∗
k(ω) and gT

m(ω)ĝ
∗
n(ω) represent the pressure at m

when we transmit ĝ∗
k(ω) and ĝ∗

n(ω) respectively. We define Pk(r, ω) as the pressure in
the medium when sending ĝ∗

k(ω), and as Pn(r, ω) the pressure when sending ĝ∗
n(ω). By

using basic algebra relations, we can derive:

wkn
m ≤

∑
l

|Pn(rm, ωl)|2|Pk(rm, ωl)|2

≤
(∑

l

|Pn(rm, ωl)|2
)(∑

l

|Pk(rm, ωl)|2
)
.

(4.4)

∑
l |Pn(rm, ωl)|2 for varying rm represents the beam obtained when focusing on point n.

Similarly,
∑

l |Pk(rm,ωl)|2 corresponds to the beam obtained when focusing on point k.
Figure 4.2 shows a schematic depicting the relation between these two beams. When
points n and k are at the same depth (Figure 4.2a), the two beams do not overlap
significantly. As a result, the upper bound for wkn

m is low at all points m, leading to
an overall low value for xk,n. However, for two points aligned in the axial dimension
(Figure 4.2b), the overlap between the two beams is more significant, resulting in higher
upper bounds for the weights wkn

m .
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(a) (b)

Figure 4.2: Schematic of the beams when transmitting ĝn(ω) (blue) and ĝk(ω)(orange). When
points n and k are at the same depth (a), the two beams do not overlap significantly. As as
result, the corresponding xk,n is guaranteed to be low. This is not true for two points aligned
in the axial dimension (b). Considering n and k at the same depth is expected to be more
effective in identifying a good Ĝ(ω).

Figure 4.3: For each point n, we compute the xk,n for the k points at the same depth as n.
The cost contribution of this point is given by

∑
k∈F |xk,n|2 divided by

∑
k∈O |xk,n|2.

Since the goal is to identify a good estimate as the one for which the xk,n terms
have low values, it is expected that considering only n, k at the same depth is more
effective.

To compute the cost function, we select a fixed n and calculate xk,n for all k at the
same depth as n. Next, we divide the points into two sets: those inside the focal spot
F and those outside the focal spot O. The two sets for a specific point n are displayed
in Figure 4.3. A good estimate Ĝ(ω) is one for which the sum of squared magnitudes∑

k∈F |xk,n|2 is high, while the sum for
∑

k∈O |xk,n|2 is low. Thus, we will use the ratio
of these sums as the cost function:

fn =

∑
k∈F |xk,n|2∑
k∈O |xk,n|2

(4.5)

This operation is repeated for all n in a pre-defined grid, and the overall cost function
is calculated as the sum of individual point contributions, denoted as f =

∑
n fn.

To explicate the dependency of f onH(ω), we reformulate the cost function. For this
purpose, we introduce the matrices Xnz , for all the nz in the defined grid. Each matrix
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has dimension K × K, where K represents the number of points in the x-dimension,
and it contains only the xk,n for k, n at a specific depth nz. Xnz is equal to:

Xnz =
∑
l

ĜH
nz
(ωl)Y(ωl)Ĝ

∗
nz
(ωl). (4.6)

Gnz(ωl) is M ×K and it contains only the gn(ωl) columns that correspond to points
at the depth nz.

Using Xnz , we can write fn as:

fn =
||WF

nx
⊙Xnz ||2F

||WO
nx

⊙Xnz ||2F
, (4.7)

where ⊙ represents element-wise multiplication. We define the matrices WF
nx

for nx in
the pre-defined grid. Each matrix is of dimension K ×K. The matrix WF

nx
contains

all zeros, except for the column nx. In this column, the elements (nx −∆f/2, nx), ...,
(nx, nx), ..., (nx +∆f/2, nx) are set to 1, while the rest are 0. Here, ∆f represents the
focal spot width in grid points.

Similarly, we define the matrices WO
nx
, also with dimension K ×K and nx varying

in the pre-defined grid. The matrix WO
nx

contains all zeros, expect for the column nx.
In this column, the elements in the focal spot are 0, while the other elements are 1.

The cost function f can be finally written as:

f =
∑
nz

∑
nx

||WF
nx

⊙Xnz ||2F
||WO

nx
⊙Xnz ||2F

Xnz =
∑
l

G̃H
nz
(ωl)H

H(ωl)Y(ωl)H
∗(ωl)G̃

∗
nz
(ωl)

(4.8)

Even though we have provided an intuition for why a good estimate results in a high
cost and a bad estimate yields a low cost, we cannot definitively demonstrate that
this cost is maximized by the true H(ω). It is essential to acknowledge that other
matrices H(ω) may also lead to higher costs, particularly if we do not impose any
specific structure and allow H(ω) to be arbitrary.

To mitigate this issue, we introduce a model for H(ω) and optimize for its param-
eters. By constraining the model, we can better guide the optimization process and
increase the likelihood of obtaining improved focus and better images by maximizing
this cost function.

4.2 Modeling the transfer matrix

We model wave propagation through the layer as a set of scattering events. The (i, j)
entry of the matrix H(ω) measures the field at the virtual element j when the real
element i transmits a pulse S(ω). We assume Hi,j(ω) can be approximated as a su-
perposition of waves scattered from multiple locations rp, as illustrated in Figure 4.4a.
We consider a speed of sound c in the path from the transducer to the scatterer and
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a different speed of sound c0 in the path from the scatterer to the virtual transducer.
We assume a constant attenuation α for both paths.

(a) (b)

Figure 4.4: Each Hi,j(ω) is approximated as a weighted sum of waves scattered from multiple
locations rp (a). The scattering from each location is weighted by a coefficient βp. To estimate
H(ω), a grid of possible scattering locations is considered (b), and the task is reduced to
estimating the coefficients [β1, β2, ..., βP ].

First, we derive the contribution of a single scatterer at rp to the pressure Hi,j(ω).
We define Di,j,p(ω) as the field measured at the virtual transducer j when a pulse S(ω)
is sent by the real element i and then is scattered at location rp. We define rri as the
location of the real element i and rvj as the location of virtual element j. Then, Di,j,p(ω)
is equal to:

Di,j,p(ω) = exp
(
−

∆(rp, r
r
i) + ∆(rp, r

v
j )

α
− jω

(∆(rp, r
r
i)

c
+

∆(rp, r
v
j )

c0

))
S(ω) (4.9)

where we have defined ∆(r1, r2) = ||r1 − r2||2.
Di,j,p(ω) is the field for a single scatterer at rp. We assume that scattering occurs at

multiple locations simultaneously. However, we do not have prior knowledge of which
specific locations to consider as active scattering points. To address this, a grid of P
points is defined. An example of such a grid is shown in Figure 4.4b. After assigning
a value for c, c0 and α, the Di,j,p(ω) functions can be computed for each grid location.
Then, the transfer functions Hi,j(ω) can be decomposed as a weighted sum of the waves
scattered at all points:

Hi,j(ω) =
∑
p

βpDi,j,p(ω). (4.10)

The coefficient βp is zero if the corresponding location rp does not scatter. At the
location where it is non-zero, we can have different amplitudes, as the intensity of
the scattered waves can vary depending on the scatterer’s location. In addition, the
coefficient βp is considered complex, which allows for variations in the phase of the
waves.

We will define a grid a priori. Then, the estimation problem is reduced to estimating
the [β1, .., βP ] coefficients.
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We define Dp(ω) as a matrix whose (i, j) entry is Di,j,p(ω). We also discretize the ω
domain in L frequencies ω1,..., ωL. Then, we have a set of matrices Dp(ω1),..,Dp(ωL)
for each location in the grid. These can be arranged in a single vector:

dp =

vec(Dp(ω1))
...

vec(Dp(ωL))

 . (4.11)

Then, we reconstruct the transfer functions as:

h = Db, (4.12)

where we have defined b = [β1, ..., βP ]
T , D = [d1...dP ] and

h =

vec(H(ω1))
...

vec(H(ωL))

 . (4.13)

The assumption is that the vector h can be reconstructed by using P vectors {d1, ..,dP}.
We use the term “dictionary” to refer to this set.

Before proceeding with the optimization, the dictionary needs to be computed. This
requires defining the grid dimension and spacing, the speed of sound from transducer to
scatterer c, speed of sound from scatterer to virtual transducer c0 and the attenuation
α. The next section will provide further details on how these parameters are defined
in the results’ derivation.

In general, the grid should cover the transducer aperture in the x-dimension. For
the z-dimension, the minimum and maximum depths should be chosen based on the
expected layer thickness. It is important to keep a larger range to compensate for
errors in the speed of sound. If the c used in the Dp(ω) computation is higher than the
actual speed of sound, we may need to place the scatterers closer to the transducers to
compensate for the speed of sound error and achieve an accurate time of arrival.

Regarding the grid spacing, it is necessary to ensure that it is small enough to
sufficiently sample the layer area. However, excessive sampling with respect to the
wavelength does not provide additional information, as the dp vectors become more
linearly dependent.

4.3 Methods

In Section 4.1, a cost function for the transfer function estimation has been derived.
In Section 4.2, a decomposition for the transfer matrix H(ω) has been introduced. It
is possible to replace the dictionary-based representation of H(ω) in the cost function,
which then becomes a function of the dictionary coefficients [β1, .., βP ]. The overall cost
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function is:

f =
∑
nz

∑
nx

||WF
nx

⊙Xnz ||2F
||WO

nx
⊙Xnz ||2F

Xnz =
∑
l

G̃H
nz
(ωl)H

H(ωl)Y(ωl)H
∗(ωl)G̃

∗
nz
(ωl)

H(ωl) =
∑
p

βpDp(ωl) l = 1, .., L.

(4.14)

The optimization will be performed on simulated data. In Section 4.3.1, the set-up
for the simulations is explained.

After this, we explain the methodology used for the cost function optimization. It is
important to consider that the evaluation of this function involves several parameters
that need to be defined before the optimization process. Even though these parameters
have been mentioned in previous sections, we provide an overview of all the matrices
involved in the cost computation and we explicitly state which parameters are required:

• The matrices Dp(ωl) for varying l and varying p collectively form the dictionary.
The dictionary computation requires to define a pulse shape, a speed of sound for
the layer c, a speed of sound for the background c0, an attenuation α and a grid
for the scatterer’s positions. The choices for these parameters are explained in
Section 4.3.2.

• The matrices Y(ωl) for varying l are computed from a SA scan at the real array.
This data is given.

• Each G̃nz(ωl) is a V ×K matrix with V number of virtual transducers, K number
of pixels in the x dimension. It contains the Green’s functions from the virtual
array to the line at depth nz. To compute G̃nz(ωl) at all frequencies, we only
need to compute the geometry-based delays from the virtual array to the points
on this line. We compute one set of L matrices for each depth nz included in
the summation. To accelerate the cost computation, we limit the summation to a
selected subset of depths within the imaging domain. In Section 4.3.3 we explain
how these depths are selected.

• The matrices WF
nx
, WO

nx
for varying nx have been defined in Section 4.1. They are

determined once a focal spot width ∆f is fixed. This value is defined in Section
4.3.3.

Once all the parameters are defined, we can proceed with the optimization. We start
with an initial guess [β0

1 , .., β
0
P ]. Then, we iteratively update each βp using Gradient

Ascent:

β(i+1)
p = β(i)

p + µ
∂f

∂β∗
p

(β(i)
p ) (4.15)

In Section 4.3.4, we elaborate on how to determine the initial guess, how to compute
the gradients, and how to assess if the updates lead to improvements with respect to
the initial guess.
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(a)

(b)

(c) (d)

Figure 4.5: Three different layers are considered: two homogeneous layers with a range of
variations in thickness of 0.5λ (a) and 3λ (b) respectively, and a third layer with the same
profile as the first one but with a porous structure inside (c). The speed-of-sound map of the
imaging phantom resembles the brain structure (d). The red rectangle highlights the imaging
domain.

4.3.1 K-Wave simulations

The simulation grid and the array characteristics are the same as those described in
Section 3.2. However, the layer shape and the imaging phantom are changed.

Three distinct layers are considered. The speed-of-sound map of each layer is dis-
played in Figures 4.5b, 4.5b and 4.5c respectively. We assign a speed of sound c0 = 1540
m/s and a densityρ0 = 997 kg/m3 to the white pixels. At the yellow pixels the speed
of sound is c = 2750 m/s and the density is ρ =940 kg/m3 to the yellow pixels. As in
the previous chapter, we simulate plastic layers.

The profile of the first two layers is generated by randomly selecting a set of x lo-
cations and assigning a random thickness to each location. The thickness values are
drawn from a specified range. The thickness values at all x locations are then deter-
mined through interpolation. For the first layer, the difference between the minimum
and maximum thickness is set to 0.5λ, with λ equal to the wavelength in plastic. In
the second layer, this interval is increased to 3λ. The third layer has the same profile
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as the first one. However, it is heterogeneous inside. The heterogeneous part resembles
the porous structure of the skull.

First, the transfer functions are simulated, as they will serve as ground truth for the
estimation. The speed of sound and density are set to c0 and ρ0 in the rest of the k-Wave
grid. Then, a Synthetic Aperture scan is simulated. The matrices H(ω1), ..,H(ωL) are
computed as explained in Section 3.2. This is repeated for each of the three layers.

Secondly, the speed-of-sound and density maps are modified to simulate the presence
of an imaging target. The speed-of-sound map used for k-Wave simulations is displayed
in Figure 4.5d. The density for each pixel is calculated by dividing the speed of sound
by a factor of 1.5. The speed-of-sound map is generated based on a brain illustration.
It should be noted that the phantom does not accurately model brain structures as we
know them from in-vivo measurements. However, the use of sub-resolution scatterers
with relatively low contrast does provide a realistic and difficult imaging scenario unlike
single bright scatterers often used in this aberration correction work.

The red rectangle in Figure 4.5d highlights the area right below the layer, which
is the part that we will image. This area has dimension (2.70 × 2.16) cm, which
corresponds to 300× 240 pixels.

The simulation is then repeated after inserting the phantom and the matrices
Y(ω1), ..,Y(ωL) are computed. As in the previous chapter, the reflections from the
layer are removed. Moreover, in the skull simulation, the brain phantom is shifted 1
mm below. The reasons for shifting the phantom and the implications of removing the
reflections are discussed in Section 4.5.

4.3.2 Dictionary definition

We assume the speed of sound of the layer is known, then we set c to 2750 m/s. The
speed of sound of the background is c0 = 1540 m/s. The attenuation value has been
arbitrarily set to α = 500m−1.

In the x dimension, the grid covers the entire transducer aperture. The spacing is
set to λ0/2, with λ0 equal to the wavelength in the background. This results in 80
points in the x-dimension, which is the same as the number of transducer elements. In
the z dimension, we select 5 depths for the dictionary, ranging from 2.3 to 6.3 mm with
1 mm spacing. Figure 4.6a displays the 5× 80 grid overlaid on the shape of the second
layer.

Each transfer matrix H(ω) and each dictionary entry Dp(ω) consist of M ×V func-
tions of ω. In the remainder of this thesis, we will visualize these functions as follows.
We will only display a subset of these functions, specifically the ones corresponding
to the i = 40 row of the matrix. These functions represent the measurements at the
virtual array when element i = 40 of the real array sends a pulse. Moreover, we will
always display the time domain of these functions.

Figure 4.6b displays the dictionary entries corresponding to the vertical line high-
lighted in Figure 4.6a. This plot shows the sum of the five dictionary entries. It can be
observed that the time supports of the pulses do not overlap due to the chosen spacing
between the lines. Additionally, Figure 4.6c presents another significant plot, which
shows the sum of the dictionary entries corresponding to the points on the horizon-
tal line highlighted in Figure 4.6a. The plot reveals that the sum forms a parabola.
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(a) (b) (c)

Figure 4.6: In (a), the 5× 80 grid for the dictionary computation is displayed. (b) shows the
sum of the dictionary entries for x = 40 and varying z. (c) displays the sum of the dictionary
entries for z = 3 and varying x. Only the waves corresponding to a transmission from element
40 of the real array are shown.

This observation implies that if we consider βp = 1 over a single horizontal line and
βp = 0 elsewhere, we are modeling H(ω) as the transfer matrix for propagation in a
homogeneous medium. However, the speed of sound in this medium is different from
c0. Instead, it is equal to an average speed of sound between the background and the
layer. This average speed depends on the location of the line.

For each layer, the ground truth H(ω) is available. Therefore, before proceeding
with the optimization, we will verify if this dictionary can provide a good approximation
of the true transfer matrix. To achieve this, we compute the least-squares fit:

bLS = argmin
b

||h−Db||22 = D†h, (4.16)

with † indicating pseudo-inversion. Then, we compute hLS = DbLS and we compare it
to h.

4.3.3 Optimization grid and focal spot width

Two more aspects need to be discussed before proceeding with the optimization. Firstly,
we need to determine the specific values of nx and nz that will be included in the
summation in (4.14). Secondly, we need to define an appropriate focal spot width ∆f

for the weighting matrices.
The focal spot width is set to 3 pixels, which corresponds to half wavelength. The

nx and nz in the summation cover the entire image domain, with steps of 3 pixels in the
x-dimension, and 10 pixels in the z-dimension. This configuration results in a 29× 80
optimization grid, as illustrated in Figure 4.7.

4.3.4 Optimization procedure

We use Gradient Ascent (GA) to maximize the cost function. First, we make an initial
guess b(0). Then, we iteratively update each entry as in (4.15). In principle, an analytic
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Figure 4.7: Grid considered for the cost computation. The image domain is sampled with
steps of 3 pixels (0.5λ0) in the x dimension and 10 pixels (1.7λ0) in the z dimension, resulting
in a 29× 80 grid.

expression for the gradients of f with respect to each βp can be derived using the chain
rule. However, in this thesis, we take advantage of the PyTorch framework and we use
Automatic Differentation to compute the gradients at each iteration [30].

Since the function f is not convex in βp, there is no guarantee that the gradient
ascent will reach the global maximum. However, our goal is not to find a global or
local maximum, but rather to determine whether the transfer matrix estimate can be
improved at each update.

In this scenario, the choice of b(0) is crucial. This vector is selected among 5 possible
ones. These 5 are defined in the following way. For each of the 5 depths included in the
dictionary, we define a vector b(0) in which βp = 1 for the βp corresponding to points
at that depth, while all other βp are set to zero. This process yields 5 possible b(0),
each corresponding to one depth. Then, we evaluate the cost at the 5 vectors and we
select the one with highest cost. In Section 4.3.2, it has been explained that if we set
βp = 1 over one line only, we are essentially modeling propagation as if the medium
was homogeneous, with a different speed of sound depending on the depth of the line.
Therefore, this search for the optimal depth can be seen as analogous to a search for
the average speed of sound in the area between the real and the virtual transducer.

Starting from this guess, we apply Gradient Ascent iterations with an appropriately
selected learning rate µ. At each iteration, we compute ĥ = Db(i). Then, we compute
the normalized correlation coefficient between h and ĥ, defined as:

ρ = hHĥ/||h||2||ĥ||2 (4.17)

Another approach to evaluate the estimate ĥ consists in analyzing the focus quality it
provides. We reshape ĥ into L matrices Ĥ(ω1),..,Ĥ(ωL). We decide a focusing point

n and we compute ĝ∗
n(ωl) = Ĥ(ωl)g̃

∗
n(ωl) for l = 1, .., L. Then, we transform each

ĝn,i(ω1), .., ĝn,i(ωL) into the time-domain to obtain M waveforms. Next, we run a k-
Wave simulation in which transducer i sends the i-th waveform, and we measure the
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pressure in the medium. By visualizing the maximum pressure per point, we can check
whether a beam focused at n is obtained.

As explained in Section 2.1, the pressure resulting from this excitation could be
computed as GT (ω)ĝ∗

n(ω). However, for a large number of pixels, running a k-Wave
simulation is faster than computing this product.

4.4 Results

In this Section, the results for the transfer matrix estimation are presented. First, we
consider the ground truth transfer matrix and we compute the least-squares dictionary
fit to assess whether a good approximation can be achieved with the defined dictionary.
Next, a starting point for the optimization is defined and Gradient Ascent is applied.
This is repeated for all the three layers described.

4.4.1 Dictionary Least-Squares fit

First, we visualize the transfer functions for the three different layers. We only display
the transfer functions related to the transmission from the central element of the array
(i = 40). The transfer functions for the three layers are shown in the top row of Figure
4.8. The transfer functions for Layer 1 exhibit slight deviations from a parabolic shape.
The small variations in the delays can be attributed to the relatively small changes
in layer thickness. As the layer profile becomes more varied, the transfer functions
experience a wider range of delays, as evident in Figure 4.8b, which displays the transfer
functions for Layer 2. In the third plot, the time support of the transfer functions
becomes more extended, due to the presence of the internal porous structure which
generates multiple late reflections.

Next, the coefficients that best approximate the ground truth in the least-squares
sense are computed as bLS = D†h, with D† pseudo-inverse of D. The h approximation
is derived as hLS = DbLS. We reshape hLS in L matrices HLS(ω1), ..,HLS(ωL). Then,
each (i, j) function is transformed in time-domain. The functions for i = 40 are shown
in the bottom row of Figure 4.8. For Layer 1 and 2, a good reconstruction can be
obtained. The transfer functions at the borders of the virtual array have lower ampli-
tude, indicating that we are using a too high attenuation value. A worse reconstruction
is obtained for Layer 3, because modeling the late reflections is not possible with the
current dictionary, but would require considering more lines of scatterers.

The bLS coefficients are shown in Figure 4.9. The bLS vector is reshaped in a 5× 80
matrix to simplify the mapping of each coefficient to its corresponding grid location.
The variations in the bLS plots resemble the layer profiles. This can be attributed to
the fact that the highest scattering occurs at the boundary between the layer and the
background medium. In the third plot, the high-intensity β’s are at a smaller depth
compared to Layer 1, even though the boundary is the same. This occurs because the
average speed of sound in Layer 3 is smaller, causing the wave to arrive slightly later
than in Layer 1. This time delay is also evident in the plots of h in Figure 4.8a and
4.8c.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Tranfer functions hi,j(t) for transmission from real element i = 40. The top row
shows the ground truth transfer functions for Layer 1 (a), Layer 2 (b) and Layer 3 (c). The
bottom row displays the transfer functions obtained through a least-squares dictionary fit for
Layer 1,2,3 respectively.

Finally, we generate images by using both the ground truth h and the least-squares
fit hLS. The imaging domain corresponds to the area highlighted in red in Figure 4.5d.
The image is computed using the method described in Chapter 3. First, we estimate the
data for a SA scan at the virtual array as in (3.5). Next, we apply DAS. The resulting
images are shown in Figure 4.10. For Layer 1 and 2, the same image is obtained whether
we use h or hLS. However, for Layer 3, the image quality is degraded when using the
least-squares fit. This indicates that including the late reflections is important when
attempting to correct for aberrations.
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(a) (b) (c)

Figure 4.9: β coefficients obtained from the least-squares dictionary fit. The results for Layer
1 (a), Layer 2 (b), and Layer 3 (c) are shown. Both the real and imaginary parts of the
coefficients are displayed.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Images generated using the ground truth h (top row) and the least-squares
dictionary fit hLS (bottom row). The results for Layer 1 (left), Layer 2 (center) and Layer 3
(right) are displayed.
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4.4.2 Optimization

In this Section, we apply the proposed method for transfer function estimation to the
simulated data, considering each of the three layers separately.

Layer 1

Following the steps mentioned in Section 4.3.4, we define five possible initial vector
b0 vectors (one per dictionary depth). The cost function is evaluated at these five
vectors and the resulting values are shown in Figure 4.11a. The best approximation is
obtained by setting βp = 1 along the 5-th line. This result aligns with the least-squares
fit displayed in Figure 4.9a.

Based on this result, we assume that only one more line is needed to achieve a
good approximation of h. Consequently, we set the βp values for depths 1, 2, and 3 to
zero and only optimize for the βp values at depths 4 and 5. This choice simplifies the
problem, since it reduces the feasible set dimension.

The step size is set to µ = 1×10−4 and a total of 400 iterations are executed. Figure
4.11b shows how the cost f evolves over the iterations. The dashed line in the plot
indicates the cost evaluated at the ground truth h. To evaluate the cost at the ground
truth, we just replace the ground truth h in (4.14), bypassing the use of the dictionary
model.

The cost increases over the iterations until it reaches the cost for the ground truth.
Interestingly, it surpasses the cost of the ground truth as the iterations continue. Figure
4.11c shows the normalized correlation coefficient ρ between the estimated h and the
ground truth. Initially, the correlation increases, indicating that the solution is getting
closer to the true h. However, after 100 iterations, the correlation starts to decrease.

(a) (b) (c)

Figure 4.11: Results for Layer 1. (a) shows the 5 values of the cost f in the search for the
best b0 vector. (b) and (c) show the evolution of the cost function f and the normalized
correlation between ĥ and the ground truth h.
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(a) (b) (c) (d)

Figure 4.12: b coefficients during the optimization for Layer 1. Each vector is reshaped in
a 5 × 80 matrix. The least-squares fit of the ground truth is shown in (a). Then, the b
coefficients for iteration 1, 100 and 400 are shown in (b), (c) and (d) respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: Transfer functions evolution during the optimization for Layer 1 and corre-
sponding images: ground truth (a,e), initial guess (b,f), iteration 100 (c,g) and iteration 400
(d,h).
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Figure 4.12 illustrates the evolution of the b coefficients. The least-squares fit is dis-
played again in this Figure to facilitate the comparison with the estimates. Figure
4.13 displays the evolution of the transfer functions (top row) and the corresponding
beamformed images (bottom row). The true h and its corresponding image are in-
cluded a second time for easier comparison. When using the initial h, a decent image is
obtained, where the important features can be recognized. However, the PSF appears
larger, and the sidelobes are higher when compared to Figure 4.13e. As the optimiza-
tion progresses, the spatial variations in the βp coefficients are correctly estimated. We
notice improvements in both h and the corresponding image. Although the estimated
h is not exactly equal to the ground truth, and the normalized correlation reaches a
maximum of 0.78, the resulting images show no noticeable difference.

(a) (b) (c)

(d)

Figure 4.14: Pressure distribution during the transmission of ĝn(ω) waveforms through Layer
1. The point n is highlighted in red on the figures. The maximum pressure per point is
extracted and the beam is normalized with respect to the value at the focusing point. The
beams for the ground truth (a), the initial guess (b) and the estimate at the last iteration (c)
are displayed. In (d), the pressure distribution along a line at the focal point depth is shown.
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We conclude by analyzing the beams obtained for a focused transmission. A single
focusing point is considered, located at position (1.4, 0) cm. The beams are computed
as explained in Section 4.3.4. We consider the ground truth h, the initial h0 and the
estimate computed at the iteration number 100. The three beams are shown in Figure
4.14. The intensity has been normalized to the value at the focusing point, which is
indicated with a red dot. In Figure 4.14d, the pressure over the line z = 1.4 cm is
shown. The pressure for the three h is overlaid for comparison. When using h0, we
obtain a peak at the correct location, but the focal spot is larger, and the sidelobes are
higher compared to the beam in Figure 4.14a. This is the reason why we get a bigger
PSF in the image. After the optimization, the focus becomes as small as for the true
h, but the sidelobes are 10 dB higher.

Layer 2

We begin with the search for the optimal initial vector. In this case, the search for the
average depth does not yield the expected result. The cost is maximized at 5. However,
we know that 3 is a better choice. To guide the optimization process, we decide to select
3 as the depth for the initial vector.

The step size is again µ = 1× 10−4, and the number of iterations is set to 400. The
evolution of the cost and the normalized correlation coefficients is shown in Figure 4.15b
and 4.15c, respectively. As the cost increases, the normalized correlation coefficient
decreases, indicating that the h estimate is getting further from the ground truth h.
This is also evident in the h plots displayed in the top row of Figure 4.17

Even though the h estimate is moving further from the true, we can observe that
the image becomes sharper after the optimization. The image obtained using the initial
h is completely blurred, but after the optimization, more details become visible. For
instance, a vertical bright line, which is present in the true image, becomes visible in
the optimized image as well, although there has been a shift.

(a) (b) (c)

Figure 4.15: Results for Layer 2. (a) shows the 5 values of the cost f in the search for the
best b0 vector. (b) and (c) show the evolution of the cost function f and the normalized
correlation between ĥ and the ground truth h.
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(a) (b) (c)

Figure 4.16: b coefficients during the optimization for Layer 2. Each vector is reshaped in
a 5 × 80 matrix. The least-squares fit of the ground truth is shown in (a). Then, the b
coefficients for iteration 1 and 400 are shown in (b) and (c) respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4.17: Transfer functions evolution during the optimization for Layer 2 and correspond-
ing images: ground truth (a,d), initial guess (b,e) and iteration 400 (c,f).
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Looking at the beams in Figure 4.18, we can see that using the initial h results in a
completely unfocused beam. However, after the optimization, the energy beam appears
to be more focused. If we observe the pressure at the line z = 1.4 cm (Figure 4.18d),
we can see that, after the optimization, the energy is higher at the center and lower at
the sides. However, the peak is not at x = 0. Instead, there is one peak on the left and
two peaks on the right.

(a) (b) (c)

(d)

Figure 4.18: Pressure distribution during the transmission of ĝn(ω) waveforms through Layer
2. The point n is highlighted in red on the figures. The maximum pressure per point is
extracted and the beam is normalized with respect to the value at the focusing point. The
beams for the ground truth (a), the initial guess (b) and the estimate at the last iteration (c)
are displayed. In (d), the pressure distribution along a line at the focal point depth is shown.

51



Layer 3

We begin by selecting the optimal initial point. The cost values for the 5 depths are
shown in Figure 4.19a. The highest cost is obtained at the 3rd depth. This result is
consistent with the bLS plot in Figure 4.9c, where the highest β coefficients correspond
to depth 3.

The learning rate is now set to µ = 0.001. Since the learning rate is higher than be-
fore, we run only 22 iterations. The evolution of the cost and the normalized correlation
is shown in Figure 4.19. As before, we observe an increase in the cost and a decrease in
the normalized correlation. The top row of Figure 4.21 displays the true h, the initial
h, and the estimated h after 22 iterations. It is evident that the optimization result
looks different from the true h. However, when examining the images in the bottom
row of Figure 4.21, we notice an improvement. The image is significantly blurred when
using h0 and becomes sharper when using the optimized h. A better focusing can also
be observed in the beam plots, shown in Figure 4.22.

(a) (b) (c)

Figure 4.19: Results for Layer 3. (a) shows the 5 values of the cost f in the search for the
best b0 vector. (b) and (c) show the evolution of the cost function f and the normalized
correlation between ĥ and the ground truth h.

(a) (b)

Figure 4.20: b coefficients during the optimization for Layer 3. Each vector is reshaped in a
5× 80 matrix. The b coefficients for iteration 1 and 22 are shown in (a), (b) respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.21: Transfer functions evolution during the optimization for Layer 3 and correspond-
ing images: ground truth (a,d), initial guess (b,e) and iteration 22 (c,f).
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(a) (b) (c)

(d)

Figure 4.22: Pressure distribution during the transmission of ĝn(ω) waveforms through Layer
3. The point n is highlighted in red on the figures. The maximum pressure per point is
extracted and the beam is normalized with respect to the value at the focusing point. The
beams for the ground truth (a), the initial guess (b) and the estimate at the last iteration (c)
are displayed. In (d), the pressure distribution along a line at the focal point depth is shown.

4.5 Discussion

This chapter addresses the challenge of imaging through aberrating layers for which the
transfer functions cannot be directly measured and need to be estimated. To address
this issue, we have introduced a cost function designed to yield higher values when
good focus can be achieved. Additionally, we have proposed a parametrization for the
transfer functions, with the purpose of reducing the dimension of the solution space.

To evaluate the effectiveness of the parametrization, we compute the least-squares
dictionary fit for each layer. Three different layers are considered in this study: two
homogeneous layers and one heterogeneous layer. The results show that for Layer 1
and Layer 2, the dictionary fit is good, indicating that the model accurately represents
the transfer functions for these layers. Moreover, errors in the attenuation coefficient
do not significantly affect the image quality in these cases. However, for Layer 3, the
dictionary fit is poor, leading to a lower-quality image.
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Despite the poor least-squares fit for Layer 3, running the optimization is still valu-
able. It is possible that within the feasible set there are other solutions that yield better
images even if they are farther from the ground truth h in the least-squares sense.

The optimization process is applied to all three layers, yielding different results:

1. The first layer represents the simplest scenario. The feasible set is small, since
we optimize only for the β corresponding to the lines 4 and 5. With the initial
h we already obtain a focused beam. However, the focal spot obtained with this
initial estimate is larger compared to the true focal spot. As a result, the image
exhibits a larger PSF. The optimization leads to improved sidelobe suppression
and a reduction in the focal spot size. The image obtained using the estimated
transfer functions closely resembles the one generated with the true h, indicating
the success of the optimization approach in this simple layer.

2. Layer 2 presents more challenges due to the higher variations in thickness. The
initial guess results in a completely unfocused beam. The optimized beam appears
more focused, but not centered at the correct point. Consequently, there is a shift
in the resulting image. Moreover, in the final image we observe structures that
are not present in the correct image, indicating that the optimization process is
not progressing in the right direction.

3. Layer 3 presents additional challenges in estimation compared to Layer 1, pri-
marily due to its porous structure. Interestingly, when comparing with Layer 2,
we observe that the initial beam for Layer 3 is better, indicating that high varia-
tions in thickness are more problematic than the porous structure itself. However,
the initial image is still completely blurred. After the optimization, the focus is
improved, resulting in a sharper image.

Comparing the results with the initial guess, the optimization using the proposed cost
function yields more focused beams and sharper images for all three cases. However,
the fact that the image becomes sharper does not mean that it becomes closer to the
true image. For layer 2, we know that in the feasible set there is a solution that gives
a good image, which is the least-squares solution. However, the optimization leads to
other solutions, which have higher cost but generate a worse image.

In this thesis, we have only provided an intuitive explanation of why a good estimate
is expected to have a high cost. When the beams GT (ωl)ĝ

∗
n(ωl) and GT (ωl)ĝ

∗
k(ωl) have

clearly separated focal spots, the corresponding xk,n tends to be low. On the other
hand, if the beams are unfocused, the xk,n tends to be high. It is important to note
that for xk,n to be low, it is sufficient that the focal spots are clearly separate, without
requiring the first focal spot to be centered at n and the second one at k. Other wrong
solutions can lead to low xk,n and then high cost. For instance, we consider a situation
where GT (ωl)ĝ

∗
n(ωl) generates a beam centered at a point n′ ̸= n and GT (ωl)ĝ

∗
k(ωl)

generates a beam centered at a point k′ ̸= k. If the focal spots are clearly separated,
the coefficient xk,n will be low. However, the estimates are poor since the focal spots
are not centered at n and k. This situation is depicted in Figure 4.23. A scenario like
this would result in mapping the intensity of point n′ to n and the intensity of point k′

to k, leading to a shift on the left in the beamformed image.
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Figure 4.23: To achieve a low xk,n value, it is necessary that GT (ωl)ĝ
∗
n(ωl) and GT (ωl)ĝ

∗
k(ωl)

represent two beams with clearly separated focal spots. However, this does not guarantee that
the focal spot locations will be precisely aligned with the correct ones, which could result in
a shift in the resulting image.

The idea of computing the xn,k coefficients has been used also in [31]. In this paper,
Lambert et al. derive a matrix that can be considered as the equivalent of Xnz in (4.6).
They compute Xnz using the Green’s functions in homogeneous medium G0(ω). Then,
they define one metric to measure aberrations, which they call “F-factor”. This metric
could be examined to improve the cost function. However, it’s important to remember
that the final cost must remain suitable for gradient descent.

We introduce the parametrization of h with the purpose of excluding wrong solutions
that result in a high cost. While this approach works for Layer 1, it is not sufficient for
Layer 2. Therefore, it becomes evident that the dimension of the feasible space should
be further reduced.

The parametrization we have used has the advantage of being linear in the param-
eters. However, other parametrization would be possible. For instance, for Layer 1
and 2 we could approximate each transfer function as Hi,j(ω) = S(ω)ejωτi,j . This ap-
proximation works well when diffraction can be neglected, and the geometric approach
described in Section 2.3 can be applied. In such a case, the optimization could be per-
formed on the τi,j parameters. However, it is important to highlight that h is no longer
linear in the optimization variables. While gradient ascent could still be employed,
introducing non-linearity may not be beneficial in finding a stable solution. Addition-
ally, this approach would require constraints on the minimum and maximum delays.
Moreover, we would need to ensure there are no sharp discontinuities in the delays of
adjacent elements.

The model used in this thesis is linear in the parameters. The β coefficients can be
discontinuous in the x dimension. However, the overall H(ω) will not be discontinuous,
as the dictionary entries overlap. Furthermore, we automatically limit the time support
without the need for additional constraints, which simplifies the optimization problem.

Despite these advantages, we have observed that the current approach may not be
sufficient to exclude solutions that result in a higher cost compared to the optimal one.
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Therefore, further investigation is required to address this limitation.

To identify the initial point, prior information about the layer speed of sound has
been employed. The procedure involves keeping the speed of sound constant while
varying the thickness, with the goal of finding the thickness that maximizes the cost.
We believe that knowing the exact speed of sound is not crucial. The key factor is
to determine a pair consisting of average thickness and average speed of sound which
provides an accurate estimate of the pulse travel time from the sensor array to the
virtual array. To find this pair, one can fix the speed of sound and vary the thickness,
as we did in this thesis. Alternatively, one could fix the thickness and vary the speed
of sound. In this situation, this method could be integrated with more sophisticated
techniques for identifying the average speed of sound. In any case, it is expected
that errors in one variable will not pose significant issues, as long as the other one
compensates for the errors, leading to an accurate travel time estimate.

Limitations of this thesis

It is important to acknowledge that the general problem is more complex than the one
presented in this thesis. Several simplifications have been adopted in this work:

• no noise is added to the k-Wave simulation data;

• the speed of sound and density are set to the ones of plastic, resulting in a relatively
low impedance mismatch and low losses compared to for example skull bone;

• the reflections from the masks are removed from the Y(ω) data.

The focus of this chapter has been restricted to distortion correction. Even with low
losses and zero noise, this is already a challenging problem. Indeed, distortion correction
becomes more challenging as we introduce noise and increase the signal losses.

Moreover, the optimization for Layer 3 did not work when the phantom was placed at
the same depth as for the other two layers. To achieve an improvement in the optimized
image, it was necessary to move it 1 mm below. We believe that this issue is related to
the presence of consistent reflections, which have a long duration because of the internal
porous structure. Even though the reflections are subtracted from the measurements,
numerical errors may still lead to residual effects, impacting the optimization process.

In addition, another aspect that requires further investigation is the convergence
analysis. While the optimization for Layer 1 appeared to work well, it remains unclear
whether starting from different initial points may lead to convergence issues and getting
stuck in local minima.

Lastly, the search for the average depth in Layer 2 did not lead to the optimal result,
and it requires further investigation.
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Conclusion 5
In this thesis, the concept of a virtual array is exploited to develop methods for image
formation and aberration estimation.

In Chapter 3, an alternative method for image formation is presented. The initial
step involves estimating the measurements that would result from transmission and
reception at the virtual array. This estimation can be done using either a matched
filter or a regularized inverse filter, with the latter resulting in a shorter pulse-shape.
After estimating this data, DAS is applied to form an image. The PSF is examined
for different virtual transmit schemes. Improvements are observed when incorporating
more virtual transmissions. However, this improvement comes with a corresponding
increase in the number of computations. In addition, the method remains applicable
even when the real array is undersampled. In this case, a coding mask is placed between
the real and the virtual array. We demonstrate that the advantage of using a coding
mask lies in the ability to virtually synthesize more transducers than those physically
available. Finally, the method is compared to model-based matched filtering and it is
shown that the resulting images are equivalent. However, unlike matched filtering, the
proposed method does not require to compute the large model matrix. Consequently,
it can potentially lead to a faster implementation.

In Chapter 4, an iterative scheme to estimate the layer transfer functions is proposed.
This method uses pulse-echo data and does not rely on specific assumptions about the
image structure. However, it requires to define a speed of sound and a thickness range
for the layer. Based on this, a dictionary is generated and the dictionary coefficients
are updated using Gradient Ascent. The proposed algorithm effectively estimates the
transfer functions, when the layer can be modeled using a small dictionary. When
dealing with more complex layers and larger dictionaries, the optimization process
remains effective in achieving enhanced focus quality and sharper images compared to
the initial guess. However, it does not converge to the optimal estimate. Instead, it
leads to other transfer functions which result in higher values for the cost function, but
correspond to worse estimates.

Future research

Future research could investigate how to prevent the optimization from yielding inac-
curate estimates. One possibility is to further narrow down the feasible set, for instance
by enforcing sparsity on the dictionary coefficients. Moreover, a deeper analysis is nec-
essary to understand why the cost function assumes high values at incorrect solutions.
To this end, it might be useful to examine how the different points contribute to the
overall cost. A reliable estimate should result in a simultaneous cost increase across the
entire image region. On the other hand, other solutions might lead to cost increases
limited to one specific pixel cluster. Improvements might be obtained by penalizing
these solutions.
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