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1 ETH Zürich, Zürich, Switzerland
2 Politehnica University of Timis,oara, Timis,oara, Romania

noricabacuieti@gmail.com
3 Radboud University, Nijmegen, The Netherlands

4 Delft University of Technology, Delft, The Netherlands
{lejla.batina,stjepan.picek}@ru.nl

Abstract. At CRYPTO’19, A. Gohr proposed neural distinguishers for
the lightweight block cipher Speck32/64, achieving better results than
the state-of-the-art at that point. However, the motivation for using
that particular architecture was not very clear; therefore, in this paper,
we study the depth-10 and depth-1 neural distinguishers proposed by
Gohr [7] with the aim of finding out whether smaller or better-performing
distinguishers for Speck32/64 exist.

We first evaluate whether we can find smaller neural networks that
match the accuracy of the proposed distinguishers. We answer this ques-
tion in the affirmative with the depth-1 distinguisher successfully pruned,
resulting in a network that remained within one percentage point of the
unpruned network’s performance. Having found a smaller network that
achieves the same performance, we examine whether its performance can
be improved as well. We also study whether processing the input before
giving it to the pruned depth-1 network would improve its performance.
To this end, convolutional autoencoders were found that managed to
reconstruct the ciphertext pairs successfully, and their trained encoders
were used as a preprocessor before training the pruned depth-1 network.
We found that, even though the autoencoders achieved a nearly perfect
reconstruction, the pruned network did not have the necessary complex-
ity anymore to extract useful information from the preprocessed input,
motivating us to look at the feature importance to get more insights.
To achieve this, we used LIME, with results showing that a stronger
explainer is needed to assess it correctly.

Keywords: Neural distinguisher · Feature importance · Speck ·
Pruning

1 Introduction

Traditional symmetric cryptanalysis shows small improvements over time, and
people started considering alternative ways to improve it. Since deep learning
c© Springer Nature Switzerland AG 2022
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has recently attracted much attention due to the significant advances in research
areas such as computer vision and speech recognition, it did not take long until
researchers also started to consider Deep Neural Networks (DNNs) in the area of
cryptography. DNNs are a family of non-linear machine learning classifiers that,
given a dataset and a loss function, try to learn the optimal hyperparameters
minimizing the loss. Using DNNs, A. Gohr was the first to achieve better results
than that time’s state-of-the-art, revolutionizing cryptanalysis, i.e., the study of
cryptographic systems with the purpose of finding weaknesses [7]. Encouraged
by Gohr’s results, more papers followed that built upon his work, e.g., [9].

Starting from Gohr’s neural networks, the purpose of this paper is to inves-
tigate whether there exists a smaller or better-performing neural network for
executing a better distinguishing attack. Generally, in a distinguishing attack
against a cryptographic primitive (a cipher in our case), the adversary tries to
distinguish between (or classify) encrypted data and random data, thus helping
in the cryptanalysis of the cipher. Specifically, if an adversary manages to dis-
tinguish the output of a cipher from random data faster than a brute force key
search, this is considered a break for the cipher. Thus, the cipher cannot be con-
sidered secure enough to ensure the confidentiality of the encrypted information.
These distinguishing attacks can be differential, in which case we talk about dif-
ferential cryptanalysis, that is, cryptanalysis with regards to bitwise differences
in the inputs given to the cipher [5]. In a differential attack, the non-random
properties of the ciphertext pair produced by the cipher when given a plain-
text pair with some known input difference are exploited for various purposes,
one of which is distinguishing. Those differential attacks further branch into
purely differential attacks, where the adversary uses only the ciphertext pair’s
bitwise difference, and general differential attacks, where the information from
the complete ciphertext pair is used [7]. Our work will focus on general differen-
tial distinguishing attacks on the lightweight iterated block cipher Speck32/64
achieved by neural networks.

Motivation. While the application of neural networks in cryptanalysis evidently
brings good practical results, it is also important to provide some theoretical
support. Otherwise, the improvements make limited sense, as one cannot obtain
guidance for the design and analysis of cryptanalytic primitives. Thus, it becomes
important to study the behavior of neural network distinguishers and the inter-
pretability and explainability of such solutions. Unfortunately, deep learning
explainability is a difficult problem that is not solved in general. Still, some
observations are possible, especially from the perspective of the neural network
size and the feature importance.

Recently, either a rather sophisticated technique exploited Speck’s internal
state values obtained through brute force key search [4] or a model that required
k times more data was deployed [10]. On the contrary, to make the analysis
simpler, our paper remains in the low data setting. Concretely, only the plaintext
inputs and ciphertext outputs are known. In addition, the same training/test size
and data format as in Gohr’s work is kept for comparison. Concretely, we want
to find out whether:
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1. A smaller, equally-good-performing distinguisher can be obtained by system-
atically pruning Gohr’s distinguishers to the bare minimum needed to achieve
their current performance.

2. Preprocessing the input will improve the performance of Gohr’s (pruned)
distinguishers.

Main Contributions. We show that the state-of-the-art on neural distinguisher
can be improved and that there are still multiple avenues to explore. We demon-
strate these with the following contributions, which, to the best of our knowledge,
are the first studies in the setting of neural differential distinguishers.

1. We evaluate the Lottery Ticket Hypothesis [6] on neural Speck distinguish-
ers to see whether a smaller or better-performing network can be obtained,
finding out that this is the case. Indeed, the Lottery Ticket Hypothesis states
there are subnetworks that match or even outperform the accuracy of the
original network. To obtain such subnetworks, we conduct pruning based on
average activations equal to zero.

2. We successfully strip the currently best neural distinguisher for Speck (the
depth-1 distinguisher), presenting a smaller network whose accuracy remains
around one percentage point of the depth-1 distinguisher’s.

3. We successfully train autoencoders that achieve a nearly perfect reconstruc-
tion of the given ciphertext pairs and study the performance of the proposed
(and pruned) Speck distinguishers when autoencoders do a prior feature engi-
neering.

4. We study the importance of the inputs using Local Interpretable Model-
agnostic Explanations (LIME) [15] to gain insights into the (pruned) distin-
guishers’ behavior, which might aid in the improvement of future preprocess-
ing methods.

2 The Speck Family of Block Ciphers

2.1 Notations and Conventions

In this paper, the bitwise eXclusive-OR operation will be denoted by ⊕, the
bitwise AND operation by ∧, modular addition modulo 2n by �, a left or right
bitwise rotation by � and �, respectively, and the concatenation of two-bit
strings a and b will be denoted by a ‖ b. Furthermore, the Hamming weight hw
of a bit string is given by the number of ones present in it.

2.2 Speck Block Cipher

The lightweight iterated block cipher Speck was designed by Beaulieu et al. for
the US National Security Agency (NSA) with the intent of being efficient in
software implementations on micro-controllers [3]. At its core, it is comprised
of three basic functions: modular Addition (modulo 2k), bitwise Rotation, and
bitwise eXclusive-OR of k-bit words, thus being an ARX construction. Since it
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is an iterated block cipher, it has a round function (that is iterated), which, in
the case of Speck, is a simple Feistel structure. The round function F : Fk

2 × F
2k
2

takes as input a k-bit subkey K and the cipher’s internal state that consists of
two k-bit words denoted as Li and Ri, and computes the cipher’s next internal
state as:

Li+1 = ((Li � α) � Ri) ⊕ K (1)

Ri+1 = (Ri � β) ⊕ Li+1 (2)

Here, i and i+1 represent the current, respectively, next round, and α and β
are constants specific to each member of the Speck cipher family. Regarding the
subkeys used, they are generated with a non-linear key schedule from a master
key using the above-described round function as the main operation, but with
details that change from one Speck member to another.

As the key schedule will not be studied in this paper, please refer to [3] for
additional information. Concretely, for the Speck member studied in this paper,
the block size n is 32 bits, the word size k is 16 bits, the key size m is 64 bits, α
is 7, β is 2, and the round function is applied maximally 22 times to compute a
ciphertext output from the plaintext input.

2.3 The Setup

For the implementation of the Speck32/64 cipher and distinguishers studied, as
well as for the algorithms needed for generating the datasets with a given input
difference and evaluating the results, this paper refers to the code provided by
the author of [7] here1. For all experiments, a training set of size 107, a test
set of size 106, and a batch size of 5 000 were used as in the previous related
work [7]. Finally, the experiments were run on an RTX 3090, and the code that
was used to conduct the experiments, as well as some figures, can be found in
the associated repository2.

3 Related Works on Neural Speck Distinguishers

Since the release of the lightweight block cipher Speck, differential and neu-
ral distinguishers have been used to cryptanalyze it. First, at CRYPTO’19,
Gohr proposed such distinguishers, focusing on the input difference Δin =
0x0040/0000 [1]. The author defined real pairs as being ciphertext pairs (C,C ′)
resulting from encrypting plaintext pairs (P, P ′) where P ⊕ P ′ = Δin, and
random pairs being ciphertext pairs (C,C ′) resulting from encrypting plaintext
pairs (P, P ′) where there is no fixed input difference. Then, the author aimed to
distinguish the real pairs from the random pairs, deploying several methods that
are described below. In the process, the author compared the performance of a
purely differential distinguisher to a neural distinguisher for 5 to 8 rounds, show-
ing that the neural distinguisher outperforms the purely differential one. Those
1 https://github.com/agohr/deep speck.
2 https://github.com/NoricaBacuieti/TheSpeckAttack.

https://github.com/agohr/deep_speck
https://github.com/NoricaBacuieti/TheSpeckAttack
https://github.com/agohr/deep_speck
https://github.com/NoricaBacuieti/TheSpeckAttack
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distinguishers were denoted Dr and Nr for differential and neural distinguishers
for Speck reduced to r ∈ {5, 6, 7, 8} rounds, respectively.

Purely Differential Distinguisher. First, the entire difference distribution
table (DDT) of Speck for the input difference Δin was computed under the
Markov assumption [13]. Then, to distinguish real ciphertext pairs from random
ones, the author first assumed that random ciphertext pair differences, i.e., Δout

= C ⊕ C ′, are distributed according to the uniform distribution. Next, the author
took the corresponding transition probability P (Δin → Δout) from the DDT,
classifying the ciphertext pair difference as real, if P (Δin → Δout) > 1

232−1 , and
as random otherwise. For more details, please refer to [7].

Gohr’s Neural Distinguisher. The proposed deep neural network is a residual
network consisting of three types of blocks: an initial convolution, convolutional
blocks, and a prediction head. Concretely, they are:

1. Block 1: the initial convolution consisting of a 1D-CNN layer with kernel size
1, 32 channels, padding, and stride of size 1, followed by batch normalization
and a ReLU activation layer.

2. Block 2-i: the convolutional one-to-ten residual blocks/units, each residual
block consisting of two 1D-CNN layers with kernel size 3, 32 channels and
padding, and stride of size 1, each followed by batch normalization and a
ReLU activation layer. These layers are then followed by an additional layer
where the input of this block is also added to its output and passed to the
input of the subsequent block. This last operation makes the block, and thus
also the network, residual, the input that skips all those layers being called a
residual connection.

3. Block 3: the prediction head consisting of two dense layers, having 64 neurons
and followed by batch normalization and a ReLU activation layer each, closing
with a dense layer of one neuron using a sigmoid activation function.

The neural distinguishers give a score between 0 and 1, where a score greater
than or equal to 0.5 classifies the sample as a real pair; otherwise, it is classified as
random. Using this setup, neural distinguishers were trained for Speck reduced
to 5 and 6 rounds, but different approaches were taken for Speck reduced to 7
and 8 rounds. For Speck reduced to 7 rounds, key search was used to improve
the accuracy of the neural distinguisher. For more details, the method described
can be found in [7].

Moving to the neural distinguisher for 8 rounds, since the previously men-
tioned approach did not improve this distinguisher’s performance, the neural dis-
tinguisher for 8 rounds was obtained from the seven-round neural distinguisher
using the staged training method. Again, more details can be found in [7].

Obtaining superior results compared to purely differential distinguishers indi-
cated that the neural distinguishers learn more than differential cryptanalysis.
It thus motivated A. Gohr to conduct the real differences experiment with the
goal to distinguish real ciphertext pairs (C,C ′) drawn from the real distribu-
tion (again obtained from the Δin = 0x0040/0000 difference) from masked real
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ciphertext pairs (C ⊕ M,C ′ ⊕ M) where M is a random 32-bit value. By conduct-
ing this experiment, Gohr wanted to show that the previously obtained neural
distinguishers (without retraining) offer comparable results to key search. The
results for both the real-vs-random, as well as for the real differences experiment,
can be found in [7].

Inspired by A. Gohr’s work, Benamira et al. [4] went further and developed
an approach to estimate the property learned by Gohr’s deep neural network.
Concretely, they replaced Gohr’s three building blocks with the following steps:

1. Changing (C,C ′) into I = (ΔL,ΔV, V0, V1), where ΔL = Cl ⊕ C ′
l is the

addition modulo 2 between the left parts of C and C ′, and Vi = Li ⊕ Ri is
the difference between the two parts of the internal state at round i.

2. Changing the 512-feature vector [4] of the DNN into a feature vector of prob-
abilities F = (P (Real | IM1) P (Real | IM2) · · · P (Real | IMm))T .

3. Changing the final dense layer of the third building block into the Light
Gradient Boosting Machine (LGBM) [12] model.

The authors defined an output distribution table (ODT) directly on the
values (ΔL,ΔV, V0, V1) instead of the DDT of the ciphertext pair differ-
ence (Cl ⊕ C ′

l , Cr ⊕ C ′
r). Then, they used the ODT to define a masked output

distribution table (M-ODT). This M-ODT is a compressed ODT where the input
is not I = (ΔL,ΔV, V0, V1), but IM = (ΔL ∧ M1,ΔV ∧ M2, V0 ∧ M3, V1 ∧ M4),
where M ∈ Mhw, M = (M1,M2,M3,M4) is an ensemble of four 16-bit masks,
each having the Hamming weights hw (later set to 16 and 18). Then, by consid-
ering several masks, they defined the set of relevant masks of Mhw as RM , being
able to compute for each input I the probability P (Real | IM ), ∀M ∈ RM [4].
Having those defined, they developed a three-step approach for recognizing the
output of Speck reduced to 5 and 6 rounds as follows:

1. Extract the masks from Gohr’s DNN with dataset 1.
2. Construct the M-ODT with dataset 2.
3. Train the LGBM classifier from the probabilities stored in the M-ODT with

dataset 3.

Through this approach, they obtained results similar to Gohr’s DNN, thus show-
ing that they have successfully modeled the DNN’s property. The results can be
seen in [4].

They concluded by explaining how to improve A. Gohr’s results by means of
creating batches of ciphertext inputs instead of pairs. They used two approaches
for training and evaluating the M-ODT distinguisher: one where each element
of the batch is given a score by the distinguisher and then takes the median of
the results, and the other one where the whole batch is considered as a single
input. For both methods, they obtained a 100% accuracy on 5 and 6 rounds, as
well as on 7 rounds with the first method [4].

More recently, taking inspiration from both the works mentioned above, Hou
et al. [10] first developed an algorithm based on SAT, which returns input differ-
ences of high-probability differential characteristics. They proposed an alterna-
tive format for the training and test data, where they would group k ciphertext
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differences in a matrix and regard it as one sample, and they used this type of
sample to train the ResNet. Concretely, they tried it either with the same input
difference as A. Gohr or a better one as chosen by their SAT-based algorithm.
Using this new data format in combination with the input differences suggested
by their algorithm, they managed to obtain an accuracy of 88.19% and 56.49%
for Speck reduced to 7 and 8 rounds, respectively, which is superior to A. Gohr’s
results. More details can be found in [10].

4 The Network Under Lens

First, A. Gohr’s network containing ten blocks of type 2 and its performance on
Speck reduced to 7 and 8 rounds will be examined. Following this, the Lottery
Ticket Hypothesis using two different pruning methods: one-shot pruning and
iterative pruning will be evaluated for this depth-10 distinguisher, analyzing the
results. After that, Gohr’s best network, the depth-1 distinguisher, containing one
block of type 2, will be examined in detail to see whether even this already small
network can be further pruned. For this purpose, the Lottery Ticket Hypothesis
will be evaluated for this network, followed by a computation of the average per-
centage of activations equal to zero and pruning of the network.

4.1 The Initial Network

First, we aim to reproduce the results given in [7] with the depth-10 neural
distinguisher for Speck reduced to 5 and 6 rounds. In addition, we also want to
see its performance for Speck reduced to 7 and 8 rounds by following the same
training method as opposed to the approaches used in [7]. After having trained
and evaluated the distinguishers five times, the results can be seen in Table 1.

Table 1. Accuracies of the depth-10 Neural distinguishers for Speck32/64 reduced to
5, 6, 7, and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.927 ± 1.46 × 10−4 0.901 ± 3.92 × 10−4 0.953 ± 5.86 × 10−4

N6 0.787 ± 3.90 × 10−4 0.719 ± 9.66 × 10−4 0.855 ± 7.45 × 10−4

N7 0.611 ± 4.17 × 10−4 0.551 ± 1.98 × 10−3 0.671 ± 1.90 × 10−3

N8 0.500 ± 7.53 × 10−5 0.368 ± 3.55 × 10−1 0.632 ± 3.55 × 10−1

From these results, one can see that for Speck reduced to 5 and 6 rounds, the
results could be reproduced. What is more, for Speck reduced to 7 rounds, the
distinguisher gave a similar accuracy to the one in [7], where the author used the
approach mentioned in Sect. 3. Perhaps, the more sophisticated approach [7] was
used more for seeing whether it would improve the distinguisher’s accuracy, but
since the improvement is insignificant, we will use the same training approach as
for the first two distinguishing cases. When looking at the N8 distinguisher, the
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improvement achieved by using the approach mentioned in Sect. 3 managed to
make the neural distinguisher slightly better than the differential distinguisher.
However, it is not considerable compared to the N8 distinguisher trained using
the same approach as for Speck reduced to 5 and 6 rounds. Since the N8 distin-
guisher without the training approach mentioned above is no better than random
guessing, even though results will be given for it as well, the decisions will be
based on the results of the other three distinguishers.

With this, we turn to the next section, where we will look at the Lottery
Ticket Hypothesis and the results obtained by effectuating the steps needed for
evaluating it for the depth-10 and depth-1 versions of this distinguisher.

4.2 The Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) was first proposed by Frankle and Carbin
in [6]. It was proposed after finding that appropriately initialized pruned net-
works are capable of training effectively while achieving a comparable accuracy
to the original network in a similar number of training epochs. It reads as follows:

Arandomly initialized dense neural network contains a subnetwork initialized
such that - when trained in isolation - it can match the test accuracy of the
original network after training for at most the same number of iterations.

Thus, the reasons behind evaluating the LTH is to see whether:

1. Some subnetworks perform similar to the baseline network for each of the
four distinguishers, and how much the performance decreases as the network
becomes more sparse. The goal is to get an idea of the trade-off between the
network’s size and its performance.

2. There are winning tickets and whether their performance is significantly bet-
ter than the baseline network.

3. Similar conclusions to the ones in [6] can be drawn. Those are:
– Iterative pruning finds winning tickets that match the accuracy of the

baseline network at smaller network sizes than one-shot pruning.
– Winning tickets are 10% (or less) to 20% of the baseline network’s size.

As mentioned, these subnetworks are obtained by pruning, and in the fol-
lowing subsections, two pruning strategies will be put under test for the LTH:
one-shot pruning and iterative pruning.

The Winning Tickets. According to [6], after having pruned the trained base-
line network of the smallest-magnitude weights, we are ready to define what a
winning ticket is. A winning ticket is a subnetwork that, when trained in isola-
tion after having had the remaining weights reinitialized with the weights of the
baseline network prior to training, will provide classification accuracy equivalent
or superior to the baseline networks.

Frankle and Carbin have repeated the experiments with random initializa-
tion of the pruned network. However, the randomly initialized pruned network no
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longer matched the trained (unpruned) baseline network’s performance eviden-
tiating that the pruned networks need to be appropriately initialized. Therefore,
the pruning strategies will be defined to reinitialize the remaining weights of the
pruned network to the weights of the unpruned network prior to training.

One-shot pruning. In one-shot pruning, the baseline network is trained once, p%
of the weights are pruned, and then the remaining weights are reinitialized to the
weights of the baseline network prior to training. The process will be repeated
for several values of p% to see the possible changes in the performance of the
distinguisher. Please refer to [6] for the pseudocode and further details.

Iterative pruning. In iterative pruning, we again start from a baseline network
that is trained once. But unlike in one-shot pruning, where we start from the
same pretrained weights θ0 each time we repeat the process with a different value
of p%, now, at each pruning trial i ∈ {1, t}, p% of the remaining weights are
pruned. Again, since there is no indication of what an appropriate value for p%
would be, one would have to try different values. However, if the improvement
of the winning tickets’ performance will not be significant, the experiments will
be run just for one value of p%. For more details, please refer to [6].

Results. Here, the results that were obtained by evaluating the LTH for the N5,
N6, N7, and N8 distinguishers based on the depth-10 neural network are given.
Experiments with both one-shot pruning (depicted in yellow) as well as iterative
pruning (depicted in green) were conducted and compared to the results obtained
for the (unpruned) baseline model (depicted in black). Specifically, for each
distinguisher, accuracy was computed and compared to those obtained with the
baseline network. The experiment was run five times per pruning ratio for each
pruning method, the results were averaged, and the minimum and maximum at
each pruning trial were indicated. The accuracies can be seen in Fig. 1.

For both pruning methods, there were 9 pruning trials, where:

1. For one-shot pruning: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%,
respectively, of the network was pruned.

2. For iterative pruning: 20% of the remaining network’s weights was pruned
per trial.

Looking at the results of the four distinguishers, two things can be observed
immediately: at least up to 90% of the depth-10 network can be pruned without
losing (on average) performance, and there are winning tickets that even slightly
outperform (on average) the baseline network. Therefore, it can be empirically
confirmed that the LTH does indeed find subnetworks (winning tickets) that will
provide classification accuracy equivalent or superior to the baseline network.

Then, looking at the findings of the authors in [6], they have found that
iterative pruning finds winning tickets that match the accuracy of the baseline
network at smaller network sizes than does one-shot pruning. In addition, they
have also found that the winning tickets are 10% (or less) to 20% of the base-
line network’s size. These findings could not be entirely confirmed by the results
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above nor by the ones presented in the next subsection where the depth-1 net-
work (which can be regarded as an already 90% pruned version of this depth-10
network) is examined. First, iterative pruning does not seem to be superior to
one-shot regarding finding winning tickets that match the accuracy of the base-
line network at smaller network sizes. Looking at the results, iterative pruning
is either outperformed by one-shot pruning or is just barely outperforming one-
shot pruning. Perhaps more trials per pruning ratio are needed to be firm in this
sense. However, since iterative pruning is, as noted by the authors of [6] costly,
the conclusion is left that both pruning methods perform similarly concerning
finding winning tickets at smaller network sizes. Second, the results presented
above and in the next subsection show that winning tickets can be found, in
general, at every pruning ratio by both pruning methods.

(a) The accuracy of N5 after
pruning p% of the network.

(b) The accuracy of N6 after
pruning p% of the network.

(c) The accuracy of N7 after
pruning p% of the network.

(d) The accuracy of N8 after
pruning p% of the network.

Fig. 1. The accuracys obtained after evaluating the LTH for the depth-10 N5, N6, N7,
and N8 distinguishers.

While, on the one hand, we have looked at whether similar conclusions to
the ones in [6] could be drawn, on the other hand, some of their conclusions
were directly considered when running the experiments. First, while the globally
smallest-magnitude weights were pruned in both pruning methods, the authors
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also experimented with pruning the smallest weights per layer with the same
ratio, finding that for ResNet-18 and VGG-19, global pruning finds smaller win-
ning tickets. They explained that some layers have far more parameters than
others and that when all layers are pruned with the same ratio, the smaller
layers become bottlenecks. Since in the depth-10 baseline network, some layers
presented a similar difference of parameters as in the network studied by them,
the experiments were run directly with the globally smallest-magnitude weights
pruning approach to avoid the pitfall of having such bottlenecks.

Second, the authors have also found that the value from which the learning rate
starts matters for the LTH’s success. When starting from a higher learning rate for
Resnet-18 and VGG-19, the performance of the networks obtained with iterative
pruning was no better than that of randomly reinitialized pruned networks (ran-
dom guessing). However, they have found that at a lower learning rate, the sub-
networks remain within one percentage point of the baseline network’s accuracy.
Although they do not give intuition behind this result, since the point of the LTH is
to find subnetworks that match or outperform the baseline network’s performance,
it makes sense to choose a (lower) learning rate that would allow the model to learn
a more optimal set of weights. The baseline network proposed by A. Gohr already
started with a small learning rate of 0.002 which further decreased to 0.0001, and
as seen, iterative pruning did indeed find winning tickets.

4.3 The Smaller Network

Having seen that at least 90% of the depth-10 network can be pruned (even
with some minor improvement on average), we now turn to the best network A.
Gohr has found, namely, the version with only one block of type 2, the depth-
1 network. Again, first, we will try to reproduce the results Gohr obtained for
Speck reduced to 5 and 6 rounds, and then see the distinguisher’s performance on
Speck reduced to 7 and 8 rounds using the same training approach as for the first
two distinguishing cases. After having trained and evaluated the distinguishers
five times, the results can be seen in Table 2.

Table 2. Accuracies of the depth-1 Neural distinguishers for Speck32/64 reduced to
5, 6, 7, and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.927 ± 1.46 × 10−4 0.897 ± 1.06 × 10−3 0.954 ± 8.45 × 10−4

N6 0.783 ± 1.39 × 10−4 0.717 ± 1.34 × 10−3 0.850 ± 1.11 × 10−3

N7 0.608 ± 9.91 × 10−4 0.542 ± 3.99 × 10−3 0.674 ± 4.56 × 10−3

N8 0.500 ± 1.52 × 10−4 0.51 ± 1.92 × 10−1 0.489 ± 1.92 × 10−1

As expected from the results of the previous subsection, as well as from the
results that Gohr obtained for the depth-1 N5 and N6 distinguishers, the accu-
racy of the depth-1 N5 and N6 distinguishers remained similar to the depth-10
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distinguisher’s. What is more, the accuracy of the N7 distinguisher decreased
by only around one percentage point, which can be considered as an insignifi-
cant decrease. Having seen that reducing the depth-10 network to depth-1 does
not affect the distinguishers’ performance significantly, the next question raised
was whether the depth-1 network can be pruned even more at an insignificant
performance loss. The LTH with the two pruning methods was evaluated again
for this depth-1 network to determine whether this is the case. The accuracies
can be seen in Fig. 2. Those show, again, that one could prune even 90% of this
small network without losing (on average) in terms of performance. Therefore,
in the next subsections, we will look at the importance of each major part of
this smaller network and how it affects the performance of the distinguishers.

4.4 How Much Smaller Can We Go?

To find the answer to this question, we will first look at the activation map of
each layer of the four neural distinguishers to see how much they learn at each
layer. The idea is that if we see completely black activation maps, nothing is
learned at that layer so that it can be pruned entirely. However, if there is only
some activation present, some channels/neurons of that layer can be pruned,
and how much it can be pruned in such cases needs to be determined through
experiments. In this paper, results will be given for two cases that show that
the performance is marginally affected even when the depth-1 network is pruned
significantly.

To compute the activation maps, the keract3 [14] library was used, and they
can be seen in the associated repository. For each of the four distinguishers, the
five activation maps were computed, where A1, A2, and A3 correspond to the
activation maps of the three convolutional layers, and A4 and A5 correspond
to the activation maps of the two dense layers. However, since the results were
similar, just the activation maps of the N5 distinguisher are given.

After examining them, the findings confirm the results obtained with the
LTH, according to which even this small network can be further pruned. Con-
cretely, the A1 activation maps have around 13–15 channels with no activation
or an insignificant number of activations, the A2 activation maps have 12–18
such channels, and the A3 activation maps, 6–10 channels. Then, looking at the
A4 and A5 activation maps, there are around 10 and 20–25 neurons, respectively,
that show some activation.

Now, even though these were the activation maps for just one input value
each, the results were similar for all three distinguishers, so we go to the next step
where we prune. As mentioned, besides having some maps with no activation,
which will not influence the performance of the distinguishers, some maps have
almost no activation but with a/some large activation value/s. First, to confirm
that the performance will not be affected, a network from which the minimum
number of empty channels/neurons will be removed from each layer will be
trained.

3 https://pypi.org/project/keract/4.4.0/.

https://pypi.org/project/keract/4.4.0/


Deep Neural Networks Aiding Cryptanalysis 821

(a) The accuracy of N5 after
pruning p% of the network.

(b) The accuracy of N6 after
pruning p% of the network.

(c) The accuracy of N7 after
pruning p% of the network.

(d) The accuracy of N8 after
pruning p% of the network.

Fig. 2. The accuracys obtained after evaluating the LTH for the depth-1 N5, N6, N7,
and N8 distinguishers.

Then, going to the other extreme, the maximum number of empty channel-
s/neurons over all three distinguishers for each layer will be pruned to see how
much the performance is affected and whether a finer-grained pruning approach
is needed. To conduct these experiments, the kerassurgeon4 library will be used.
However, since it does not support residual connections, we will first see whether
they have a significant impact on the performance of the distinguishers. After
training the depth-1 distinguishers with no residual connection, the results can
be seen in Table 3.

As can be seen, the accuracy of the distinguishers did not decrease, which
indicates that a residual connection is not necessary. This was also expected since
the use of residual connections is to allow the training of very deep neural net-
works. In a nutshell, those residual connections mitigate the vanishing gradients
and accuracy saturation problems by allowing an alternate path for gradients
to flow through and allowing the model to learn an identity function [8]. This
ensures that the higher layers will perform at least as well as the lower (deeper)

4 https://pypi.org/project/kerassurgeon/.

https://pypi.org/project/kerassurgeon/
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Table 3. Accuracies of the depth-1 Neural distinguishers with no residual connection
for Speck32/64 reduced to 5, 6, 7, and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.925 ± 1.44 × 10−4 0.897 ± 1.30 × 10−3 0.954 ± 1.24 × 10−3

N6 0.784 ± 3.35 × 10−4 0.714 ± 5.68 × 10−4 0.855 ± 8.07 × 10−4

N7 0.608 ± 2.55 × 10−3 0.542 ± 6.00 × 10−3 0.671 ± 4.94 × 10−3

N8 0.500 ± 1.36 × 10−4 0.57 ± 4.48 × 10−1 0.43 ± 4.50 × 10−1

layers. However, since we have such a small network, the benefits of using a
residual connection vanish, allowing us to eliminate it without compromising
the distinguishers’ performance. Since the residual connection does not impact
the distinguishers’ performance, we will start pruning the depth-1 network with
no residual connection to see how much smaller we can go. The results can be
seen in Tables 4, 5, 6, 7.

Table 4. Accuracies and pruned channels/neurons of each layer of the depth-1 Neural
distinguisher with no residual connection for Speck32/64 reduced to 5 rounds in the
real-vs-random experiment for different APoZ values.

APoZ Accuracy C1 C2 C3 D1 D2

1 0.925 ± 1.58 × 10−4 6.4 2 2 2.6 3.4

0.9 0.924 ± 1.50 × 10−3 6.2 9.6 11 24.6 3.2

0.8 0.920 ± 1.76 × 10−2 6 14 23.2 45.6 6.6

0.7 0.904 ± 3.05 × 10−2 11.6 20.4 28.4 53.6 10.6

Table 5. Accuracies and pruned channels/neurons of each layer of the depth-1 Neural
distinguisher with no residual connection for Speck32/64 reduced to 6 rounds in the
real-vs-random experiment for different APoZ values.

APoZ Accuracy C1 C2 C3 D1 D2

1 0.785 ± 9.06 × 10−4 6.4 6 2.2 2.2 4.4

0.9 0.783 ± 3.02 × 10−3 5.4 11.2 14.4 21.8 7

0.8 0.780 ± 1.32 × 10−2 3.6 15 21.8 40.4 10.4

0.7 0.737 ± 1.48 × 10−2 10 20 28.6 56 30.4

Using kerassurgeon, each of the four distinguishers’ layers were pruned based
on the average percentage of activations equal to zero (APoZ) described in [11].
In the tables, the accuracies for each distinguisher and the average number of
channels/neurons that were pruned from each of the five layers are presented.
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Table 6. Accuracies and pruned channels/neurons of each layer of the depth-1 Neural
distinguisher with no residual connection for Speck32/64 reduced to 7 rounds in the
real-vs-random experiment for different APoZ values.

APoZ Accuracy C1 C2 C3 D1 D2

1 0.607± 3.23× 10−3 8.2 15 12.2 16.2 27.8

0.9 0.608± 1.23× 10−3 6.8 17.2 17.8 26.2 31.4

0.8 0.601± 8.78× 10−3 6.6 20.2 24.8 40.8 35.6

0.7 0.597± 5.25× 10−3 12 25.6 27.4 49.6 43

Table 7. Accuracies and pruned channels/neurons of each layer of the depth-1 Neural
distinguisher with no residual connection for Speck32/64 reduced to 8 rounds in the
real-vs-random experiment for different APoZ values.

APoZ Accuracy C1 C2 C3 D1 D2

1 0.500± 2.80× 10−4 0.8 0 0 2.2 15.4

0.9 0.500± 2.32× 10−4 2.2 0.2 1.2 2.4 20.2

0.8 0.500± 3.23× 10−4 2.2 1.2 2 11.8 24

0.7 0.500± 1.09× 10−4 5.6 8.4 7 17.2 32.6

As suspected, the depth-1 network can be even further pruned without sig-
nificantly impacting the distinguishers’ performance. One can see that when the
channels/neurons that had the APoZ value greater or equal to 0.7 were removed
from the N6 distinguisher, the accuracy decreased by five percentage points.
In contrast, for greater cutoff values, the accuracy decreased by less than one
percentage point. Now, seeing that the depth-1 network can be pruned, we will
decide how much to prune the network before moving to the next section.

Since we saw the accuracy decreasing for an APoZ value greater or equal to
0.7, we look at the number of channels/neurons pruned above this cutoff across
the first three distinguishers. Two experiments were run where the distinguishers’
layers were pruned in two ways: one in which the smallest (for an APoZ value
equal to 1) and one in which the largest (for an APoZ value equal to 0.8) number
of channels/neurons per layer across all three distinguishers was pruned. The
processes were called min-pruning and max-pruning, and the results can be seen
in Tables 8 and 9.

Table 8. Accuracies of the min-pruned depth-1 Neural distinguishers with no residual
connection for Speck32/64 reduced to 5, 6, 7, and 8 rounds in the real-vs-random
experiment.

Distinguisher Accuracy TPR TNR

N5 0.923± 1.67× 10−3 0.890± 3.52× 10−3 0.955± 5.11× 10−4

N6 0.782± 6.27× 10−4 0.713± 1.19× 10−3 0.850± 6.12× 10−4

N7 0.605± 1.75× 10−3 0.546± 3.70× 10−3 0.664± 4.26× 10−3

N8 0.500± 1.99× 10−4 0.54± 5.36× 10−1 0.44± 2.50× 10−1
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Table 9. Accuracies of the max-pruned depth-1 Neural distinguishers with no residual
connection for Speck32/64 reduced to 5, 6, 7, and 8 rounds in the real-vs-random
experiment.

Distinguisher Accuracy TPR TNR

N5 0.915 ± 1.41 × 10−3 0.875 ± 1.54 × 10−3 0.955 ± 1.50 × 10−3

N6 0.770 ± 4.24 × 10−3 0.691 ± 8.84 × 10−3 0.848 ± 1.37 × 10−4

N7 0.596 ± 7.70 × 10−3 0.543 ± 7.40 × 10−3 0.648 ± 1.63 × 10−2

N8 0.500 ± 1.65 × 10−4 0.54 ± 2.83 × 10−1 0.460 ± 2.83 × 10−1

While the performance was expected not to be impacted in the first case, the
second one was done more of sheer curiosity to see how the performance would
change. As expected, in the first case, the performance remained within one
percentage point, but, in the second case, the performance surprisingly remained
again within one percentage point. For all experiments conducted in this paper
(unless otherwise specified), the results are the average of five trials, which was
considered appropriate given the time some of the experiments took (see the
associated repository for details). However, the results might differ a bit if more
trials per experiment would be conducted. Nevertheless, we keep the max-pruned
network where we remove 7 channels from C1, 21 from C2, 25 from C3, 46
neurons from D1, and 36 from D2.

Finally, satisfied that we could even further prune the depth-1 network with
no residual connection while the performance remained within one percentage
point, we will move to the next section.

5 Visualizing the Important Features

In this section, we will look at whether a prior feature engineering will improve
the performance of our distinguishers and whether all 64 input bits are needed
for classification. A trained encoder will be used to preprocess the input, and
regarding the assessment of the feature importance, LIME will be used. Finally,
the experiments will be conducted on the max-pruned depth-1 network with no
residual connection (also referred to as pruned network).

5.1 Feature Engineering Using an Autoencoder

Here, we will look at whether prior input engineering will improve the perfor-
mance and, for this purpose, autoencoders of various compression capacities
have been trained. An autoencoder is a neural network that learns to repro-
duce its input to its output, and it comprises of two parts: an encoder and a
decoder. The encoder compresses the input to a latent representation, that is,
an encoding that contains all the important information needed to represent the
input, and the decoder takes this latent representation, trying to reconstruct
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the input [2]. The reason for choosing autoencoders to perform feature engineer-
ing was that autoencoders learn such a latent representation that ignores noise,
anticipating that the network’s performance would improve by bringing the use-
ful features forward. The autoencoders corresponding to the results presented
in Tables 10, 11, and 12 consist of one, two, and three blocks, respectively, each
block being comprised of:

1. A 1D-CNN layer with kernel size 3, 32 channels, padding and stride of size
1, followed by a batch normalization and a ReLU activation layer.

2. A 1D-MaxPooling/1D-UpSampling layer with pool-size/size 2.

Table 10. Accuracies of the one-block autoencoder for Speck32/64 reduced to 5, 6, 7,
and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.999 ± 2.10 × 10−6 0.999 ± 4.41 × 10−5 0.999 ± 4.72 × 10−6

N6 0.999 ± 4.94 × 10−6 0.999 ± 3.26 × 10−5 0.999 ± 2.60 × 10−5

N7 0.999 ± 1.25 × 10−5 0.999 ± 4.83 × 10−5 0.999 ± 5.58 × 10−5

N8 0.999 ± 2.38 × 10−5 0.999 ± 1.11 × 10−4 0.999 ± 1.44 × 10−4

Table 11. Accuracies of the two-block autoencoder for Speck32/64 reduced to 5, 6, 7,
and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.999 ± 1.00 × 10−6 0.999 ± 6.54 × 10−7 0.999 ± 1.53 × 10−6

N6 0.999 ± 3.68 × 10−7 0.999 ± 3.83 × 10−7 0.999 ± 4.82 × 10−6

N7 0.999 ± 2.31 × 10−6 0.999 ± 2.76 × 10−6 0.999 ± 2.32 × 10−6

N8 0.999 ± 5.93 × 10−6 0.999 ± 6.03 × 10−6 0.999 ± 5.99 × 10−6

Table 12. Accuracies of the three-block autoencoder for Speck32/64 reduced to 5, 6,
7, and 8 rounds in the real-vs-random experiment.

Distinguisher Accuracy TPR TNR

N5 0.889 ± 1.98 × 10−2 0.893 ± 1.86 × 10−2 0.885 ± 2.20 × 10−2

N6 0.895 ± 2.30 × 10−2 0.904 ± 1.96 × 10−2 0.886 ± 2.94 × 10−2

N7 0.871 ± 1.11 × 10−2 0.861 ± 3.61 × 10−2 0.881 ± 2.70 × 10−2

N8 0.896 ± 4.03 × 10−2 0.879 ± 5.69 × 10−2 0.914 ± 3.39 × 10−2

A prior reshaping and permutation of the input were also performed as in [7].
Concretely, starting from four 16-bit strings, the encoder of the one-block autoen-
coder compressed them into four 8-bit strings, the encoder of the two-block
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autoencoder compressed them into four 4-bit strings, and the encoder of the
three-block autoencoder compressed them into four 2-bit strings. The results
show that a convolutional encoder manages to learn a latent representation of
the input that allows the convolutional decoder to reconstruct it almost per-
fectly for the one and two-block cases and reasonably well for the three-block
case. Having seen these results, the pretrained encoders that were trained on
a separate training set were added as a preprocessing step to the pruned net-
work, and training was again performed to see the effect. Performance close to
the one we already saw (or even a slightly better one) was expected. However,
preliminary runs show quite the contrary. Even though the pretrained one and
two-block encoders were used as a preprocessing step (as they were the most
promising ones), the results do not show an improvement in the performance of
the distinguishers. What is more, not even comparable results to the ones we
already saw for the pruned network earlier are obtained.

For instance, for the pruned network with a one-block encoder as a preproces-
sor, the N5 distinguisher’s accuracy was 88%, and for the pruned network with
a two-block encoder as a preprocessor, it was 82%. It seems that, even though
the encoder managed to learn an efficient latent representation, once the input
was transformed/engineered by the encoder, the pruned network did not have
the complexity to decompose the engineered input and recombine it in a useful
way. Having this intuition, the one-block encoder was added as a preprocessor to
the original depth-10 network, and, when looking at the results of the N5 distin-
guisher, the accuracy indeed improved compared to the time when the pruned
network was used; namely, it reached a 92% accuracy. As suspected, when adding
an encoder to perform feature engineering, the network that does the classifica-
tion needs indeed to be complex enough to extract useful information from the
latent representation.

5.2 Feature Visualization with LIME

Next, we will look closer at the input features and their importance to try to
gain insights into the (pruned) distinguishers’ behavior, which might aid in the
improvement of future preprocessing methods. We will do this using one of the
state of the art explanation techniques called Local Interpretable Model-agnostic
Explanations (LIME) [15]. In short, according to [15], LIME explains the pre-
dictions of any classifier in an interpretable and faithful manner by learning an
interpretable model locally around the prediction. Using it, the feature impor-
tances for all four distinguishers were computed, giving explanations for the
five best predictions belonging to class 1 (fixed difference) and class 0 (random
difference). In the associated repository, results are given just for the five best
predictions of class 1 of the N5 and N6 distinguishers as the feature importance
was similar. LIME with a submodular pick was also run [15]. However, even
though it selected the instances judiciously, the results were similar to what was
obtained so far, thus not contributing to a greater understanding of the distin-
guishers’ behavior. From the figures given in the associated repository, we see
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that the importance of each feature is insignificant and that it varies from distin-
guisher to distinguisher (even from instance to instance). It seems that there is
no clear local region that would have a considerable impact on the classification.
Now, LIME already samples from both the vicinity of the instance and further
away from it. Still, it is possible that even larger regions need to be considered
for the important features to become evident to the explainer.

Then, even though for Speck reduced to 5 rounds, the distinguisher per-
forms quite well, the explainer suggests that removing any (even all of the 64
features) will insignificantly affect the classifier’s performance. Having obtained
those results even for a fairly good distinguisher and after seeing the type of
explainer LIME currently uses, it might well be that the linear explanation
model will not be able to explain the distinguishers’ behavior as there might
be no linear boundary to begin with. For now, as LIME could not identify the
important features, the conclusion is left that all of the 64 inputs are important.

6 Conclusions and Future Work

In this paper, the distinguisher proposed by A. Gohr [7] was under a study to
find a better performing or smaller distinguisher for Speck32/64. To this end,
the Lottery Ticket Hypothesis has been evaluated for the first time for the dis-
tinguisher mentioned above, discovering that even the depth-1 version can be
further pruned without significantly compromising the performance, empirically
confirming the hypothesis anew. Then, based on the conclusions of prior exper-
iments, the depth-1 network was successfully pruned to potentially aid in the
process of explaining its behavior, besides having seen how pruning the suggested
limit would affect the performance.

Next, it has been studied whether a prior feature engineering would result in
a performance gain. In the process, convolutional autoencoders of various com-
pression capacities that successfully reconstructed the inputs were for the first
time discovered, using their trained encoders as a preprocessor prior to training
the pruned depth-1 network. Results have shown that even though convolutional
autoencoders manage to learn a latent representation that they can nearly per-
fectly decode when passing the encoded inputs to the pruned depth-1 network,
the network’s performance decreased. This led to suspicion that the pruned net-
work did not have the necessary complexity to extract useful information from
the encoded inputs, which was later confirmed by additional experiments.

As a follow-up, intending to explain the distinguisher’s behavior, the classi-
fication explainer LIME was for the first time deployed in this setting. Results
showed that, despite the pruned depth-1 distinguisher performing reasonably
well, LIME considered that none of the 64 inputs impacted the classification
outcome. This suggests that a stronger explainer than the one LIME currently
uses is needed, suspecting two possible causes (mentioned in Sect. 5) for LIME’s
current results that are yet to be studied.

One direction for future work would be to train the most recent networks
used for image recognition to see whether a better performance can be achieved.
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Then, since there are still instances classified with high confidence as belonging to
the opposite class, a second suggestion would be to look at ensemble learning to
see whether it could alleviate the problem. Moreover, since the evaluation of the
LTH revealed that the depth-1 neural distinguisher could be further pruned, it
would be interesting to consider evaluating it for different neural distinguishers.
Finally, combining the SAT-based algorithm [10] with the framework presented
in [16] for extending the differential attack to more rounds would be interesting
as well.
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