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ARTICLE

Benchmark and application of unsupervised
classification approaches for univariate data
Maria El Abbassi 1, Jan Overbeck 2,3,4, Oliver Braun 2,3, Michel Calame 2,3,4,

Herre S. J. van der Zant 1 & Mickael L. Perrin 2✉

Unsupervised machine learning, and in particular data clustering, is a powerful approach for

the analysis of datasets and identification of characteristic features occurring throughout a

dataset. It is gaining popularity across scientific disciplines and is particularly useful for

applications without a priori knowledge of the data structure. Here, we introduce an approach

for unsupervised data classification of any dataset consisting of a series of univariate mea-

surements. It is therefore ideally suited for a wide range of measurement types. We apply it

to the field of nanoelectronics and spectroscopy to identify meaningful structures in data sets.

We also provide guidelines for the estimation of the optimum number of clusters. In addition,

we have performed an extensive benchmark of novel and existing machine learning

approaches and observe significant performance differences. Careful selection of the feature

space construction method and clustering algorithms for a specific measurement type can

therefore greatly improve classification accuracies.
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Machine learning (ML) and artificial intelligence are
among the most significant recent technological
advancements, with currently billions of dollars being

invested in this emerging technology1. In a few years, complex
problems which had been around for decades, such as image2 and
facial recognition3,4, speech5,6 and text7,8 understanding, have
been addressed. ML promises to be a game-changer for major
industries like health care9, pharmaceuticals10, information
technology11, automotive12, and other industries relying on big
data13. Its underlying strength is the excellence at recognizing
patterns, either by relying on previous experience (supervised
ML), or without any a priori knowledge of the system itself
(unsupervised ML). In both cases, ML relies on large amounts of
data, which, in the last two decades, have become increasingly
available due to the fast rise of cheap consumer electronics and
the internet of things.

The same trend is also observed for scientific research,
including the field of nanoscience, where tremendous progress
has been made in the data acquisition14–16 and public data-
bases have become available containing, for instance, a vast
number of material structures and properties17,18. Inspiring
examples of the use of the predictive power of supervised ML
have, for instance, been realized in quantum chemistry for the
prediction of the quantum mechanical wave function of elec-
trons19 and in nanoelectronics for the tuning of quantum
dots20, the identification of 2D material samples21, and the
classification of breaking traces in atomic contacts22. Unsu-
pervised ML methods, on the other hand, are intended for the
investigation of the underlying structure of datasets without
any a priori knowledge of the system. Such approaches are
ideally suited for the analysis of large experimental datasets
and can help to significantly reduce the issue of conformation
bias in the data analysis23.

Several studies involving data clustering in nanoelectronics
applications have been reported to date24–31. In the study by
Lemmer et al.24, the univariate measurement data (conductance
versus electrode displacement) is treated as an M-dimensional
vector and compared to a reference vector for the feature space
construction, after which the Gustafson–Kessel (GK) algorithm32

is employed for classification. A variation of this method was
applied by El Abbassi et al.28 to current–voltage characteristics. In
a more recent study27, the need for this reference vector was
eliminated by creating a 28 × 28 image of each measurement
trace. However, the high number of dimensions resulting from
this approach is problematic for many clustering algorithms, as
the data becomes sparse for increasing dimensionality (curse of
dimensionality33), thereby restricting the available clustering
algorithms. Several approaches have been proposed to reduce
the number of dimensions, such as deep auto-encoder for feature
extraction from the raw data itself29, or the use of the approxi-
mately linear sections of the breaking traces31. Characteristic of
the previous studies, however, is the fact that the clustering is
performed on a feature space constructed from the individual
breaking traces, an approach that can become computationally
prohibitive in case large datasets are acquired. An appealing
alternative has been introduced by Wu et al.25, in which the
clustering algorithms is run on the 2D conductance-displacement
histogram.

In all the above-mentioned studies, only a single feature space
construction method and clustering algorithm were investigated,
without a systematic benchmark of their accuracy against a large
number of datasets of known classes and with varying partitions.
This makes it difficult to compare the performance of one method
to another. In addition, few studies25,31 provide guidelines for the
estimation of the number of clusters (NoC), a critical step in data
partitioning.

Here, we provide a workflow for the classification of univariate
data sets. Our three-step approach consists of: (1) the feature
space construction, (2) the clustering algorithm, and (3) the
internal validation to define the optimum NoC. In the first part of
the article, we benchmark a wide range of 28 feature space con-
struction methods as well as 16 clustering algorithms using 900
datasets of simulated breaking traces with a number of classes
varying between 2 and 10. In this benchmark, we identify the top
five best performing clustering algorithms and top two feature
spaces. We then apply our workflow to several distinctively dif-
ferent measurement types (break-junction conductance traces,
current–voltage characteristics, and Raman spectra), yielding
extracted clusters that are distinctively different. Importantly, our
approach does not require any a priori knowledge of the system
under study and therefore reduces the confirmation bias that may
be present in the analysis of large scientific datasets. The attri-
bution of the various clusters to the physical phenomena dictating
their behavior, however, requires a detailed understanding of the
microscopic picture of the system under study and is beyond the
scope of this article.

Results
A schematic of the workflow for the unsupervised classification of
univariate measurements is depicted in Fig. 1, starting from a
dataset consisting of N univariate and discrete functions f(xi), i∈
[1, N]. Each measurement curve is converted into an M-dimen-
sional feature vector, resulting in a feature space containing M ×
N data points. After this step, a clustering algorithm is applied. As
the number of classes is not known a priori, this clustering step is
repeated for a range of cluster numbers (in this illustration for
2–4 clusters). Here, we define a class as the ground truth dis-
tribution of each dataset, and a cluster the result of a clustering
algorithm. Then, in order to determine the most suited NoC and
assess the quality of the partitioning of the data, up to 29 internal
cluster validation indices (CVIs) are employed. Each CVI pro-
vides a prediction for the NoC, after which the optimal NoC is
estimated based on a histogram of the predictions obtained from
all CVIs. These CVIs are also used to determine the optimal
feature space method and clustering algorithm.

Benchmarking of algorithm performance on simulated
mechanically controllable break-junction (MCBJ) datasets. In
the following, a large variety of feature space construction
methods and clustering algorithms are investigated and their
performance is benchmarked against artificially created datasets
with known classes. The aim of a benchmark is to rank the
various algorithms according to their performance for a given set
of parameters. Here, all algorithms were executed using their
default parameters, both in the benchmark, as well as when
applied to experimental datasets. The simulated datasets are
conductance-displacement traces—also known as breaking traces
—as commonly measured using the MCBJ technique and scan-
ning tunneling microscrope (STM) for measuring the con-
ductance of a molecule34. For a detailed description of the
construction of the simulated (labeled) data, we refer to Supple-
mentary Method 1.

In short, we generated 900 datasets, each consisting of 2000
breaking traces with known labels, with a varying number of
classes between 2 and 10 (100 × 2 classes ... 100 × 10 classes). The
traces were generated based on an experimental dataset consisting
of conductance vs. distance curves recorded on OPE3
molecules35,36. This is in contrast to previous studies where the
benchmark data was purely synthetic24,29. To account for
possibly large variations in cluster population which may occur
experimentally, the distribution of classes is logarithmically
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distributed with the most probable class having 10 times more
traces than the least occurring one. For example, for two classes
the distribution is 9.09% and 90.91%, for three classes the
distribution is 6.10%, 33.35%, 60.55%, etc.

We applied a variety of feature space construction processes
and clustering algorithms to each of these 900 datasets. We
investigated vector-based feature space construction methods
based on a reference vector as described in Lemmer et al.24,
feature extraction from the raw data itself29, and conversion to
images (two-dimensional histogram)27. In the latter case, inspired
by the MNIST datasets37, measurements are converted into
images of 28 × 28 pixels. This has the advantage that all inputs for
the feature space construction method have the same size,
independent on the number of data points in each measurement.
Here, we would like to stress that the number of pixels can be
chosen to fine-tune the resolution for the feature extraction,
independently from the number of data points in the measure-
ments. In Supplementary Note 1, we show that 28 × 28, inspired
by the MNIST database, is a good compromise between accuracy
and computational cost. This choice implies that the distinction
between features occurring below the bin size (0.25 orders of
magnitude in conductance and 0.1 nm in distance) is limited as it
relies only on the counts within the bin itself. To illustrate this, for
fixed acquisition rate, a slanted plateau can be separated from a
horizontal plateau as both would yield different counts in a
particular bin. For a distinction between more elaborate shapes a
denser grid would be beneficial. However, the use of more bins
comes at higher computational costs and may lead to high-
dimensional sparse data, which in turn is challenging to cluster,
even after dimensionality reduction.

In the following, the three different approaches will be referred
to as ‘Lemmer’, ‘raw’, and ‘28 × 28’. The high number of
dimensions for the raw and 28 × 28 case is known to lead to
the curse of dimensionality33; the data becomes highly sparse and
causes severe problems for many common clustering algorithms.
To avoid this limitation, we have investigated a range of
dimensionality reduction techniques, such as principal compo-
nent analysis38 (PCA), kernel-PCA38, multi-dimensional scal-
ing38 (MDS), deep autoencoders38 (AE), Sammon mapping39,
stochastic neighbor embedding40 (SNE), t-distributed SNE41 and
uniform manifold approximation and projection42 (UMAP). For

the last two methods, three distance measure approaches were
used (Euclidean, Chebyshev, and cosine, abbreviated as Eucl.,
Cheb., and cos., respectively), bringing the total number of feature
space construction methods to 28. For all methods containing
dimensionality reduction, we used a reduction down to 3
dimensions. A description of each method is presented in
Supplementary Method 2. In Supplementary Note 2, we show
that by increasing the dimensions for t-SNE (cos.) from 3 to 7
only a marginal gain in Fowlkes–Mallows (FM) index can be
achieved for the five selected algorithms.

After each of the 900 datasets was run through the 28 feature
space construction methods, 16 clustering algorithms were
tested, covering a large spectrum of classification methods such
as distance minimization methods (k-means, k-medoids), fuzzy
methods (fuzzy C-mean43 (FCM) and GK32), self-organizing
maps44 (SOM), hierarchical methods45 with various distance
measures, expectation-maximization methods (Gaussian mixed
model46 (GMM)), graph-based agglomerative methods (graph
degree linkage47 (GDL) and graph average linkage48 (GAL)),
spectral methods (Shi and Malik49 (S&M) and Jordan and
Weiss50 (J&W)) and density-based methods (Ordering Points
To Identify the Clustering Structure (OPTICS51)). A descrip-
tion of each method can be found in Supplementary Method 3.
We note that we restricted ourselves to algorithms in which the
NoC can be explicitly defined as input parameter. This step is
needed further on to calculate the data partitioning for 2–9
clusters and determine the optimum NoC using clustering
validation indices. This restriction excludes algorithms
such as density-based spatial clustering of applications with
noise52 (DBSCAN), hierarchical DBSCAN (HDBSCAN53), and
affinity propagation54. We also note that many different image
classification algorithms are available that can be run directly
on the 28 × 28 image before dimensionality reduction, such as
deep adaptive image clustering55 (DAC), associative
deep clustering56 (ADC), and invariant information cluster-
ing57 (IIC). Most of these algorithms, however, are based on
neural networks and are significantly more expensive in
terms of computational cost, thus limiting their applicability.
The execution speeds of the various feature space and
clustering methods applied here is presented in Supplementary
Note 3.

Fig. 1 Concept of our approach for univariate data classification. Any dataset in which the data depends on a single variable (for instance current I vs. bias
voltage V, conductance G vs. electrode displacement d, force F vs. displacement d, intensity Int vs. energy E, etc.) can be converted into a feature vector.
The feature space spanning the entire dataset is then split into clusters (represented using different colors) using a clustering algorithm. Finally, cluster
validation indices (CVIs) are used to estimate the optimal number of clusters (NoC).
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The accuracy of the classification is evaluated using the FM
index58; it is an external cluster validation index (CVI) which
varies between 0 and 1, where 1 represents the case of clusters
perfectly reproducing the original classes. The FM index is

defined as FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþFP � TP

TPþFN

q

, where TP is the number of true

positives, FP is the number of false positives, and FN is the
number of false negatives. The mean FM indices for all
combinations of feature space and clustering approach based on
all 900 datasets are shown in Fig. 2a, presented as heatmap.
Figure 2b presents an example dataset that has been clustered
using t-SNE (cos.) and GAL. We note that the NoC used for
clustering is chosen to be the same number as the number of
classes provided in the simulated dataset. The heatmap is sorted
by increasing average FM index per column and row, respectively,
with the most accurate combination in the lower right corner. In
this extensive benchmark, the least accurate algorithm is raw+
SNE combined with FCM with a FM index of 0.47, while the
most accurate one is the 28 × 28+ t-SNE (cos.) feature space,
combined with the GAL algorithm. Based on the benchmark
performed on this dataset, this optimal combination feature space
and clustering algorithm exhibits a FM index of 0.91 and
outperforms previously used methods to classify similar datasets
in literature24,27,29.

The heatmap also shows that both 28 × 28+ t-SNE and 28 ×
28+UMAP perform similarly well and provide a significant
improvement in accuracy with respect to the other feature space
methods investigated. In the following, we will therefore focus on
these two feature space methods using the cosine distance
measure. In terms of the clustering algorithm, the heatmap shows
that the GAL algorithm yields the highest accuracy. This
observation follows a previous study demonstrating that GAL
outperforms many state-of-the-arts algorithms for image cluster-
ing and object matching47.

To ensure that the benchmark is not biased by the use of a
logarithmically distributed class population, we produced the
same heatmap as shown in Fig. 2a but on datasets containing
equal-size classes (see Supplementary Note 4). This benchmark
yields very similar results in terms of best performing feature
spaces and clustering algorithms. Finally, to account for different
noises that may be present during experiments, we generated
three additional datasets (see Supplementary Note 4 for details).
One dataset had an increased amount of noise, while the two
others contained heteroscedastic noise, either scaling with
conductance or with displacement. The best performing feature
spaces and clustering algorithms remain largely unaffected.

From the fact that the row-to-row variation of FM indices, i.e.,
between feature space methods, is larger than the difference

Fig. 2 Benchmarking of various feature spaces and clustering algorithm on simulated mechanically controllable break-junction data. a Overview of the
accuracy, expressed as Folwkes–Mallows (FM) index, for all combinations of the various feature space construction methods and clustering algorithms. For
this analysis, the average FM is shown based on 900 datasets of 2000 traces each, with 2–10 classes. The rows and columns of the heatmap have been
sorted by increasing average FM-index, with the best combination of feature spaces and algorithm in the lower right corner. b 2D conductance-
displacement histogram for an example dataset, including the 2D conductance-displacement histograms obtained by clustering using the best performing
feature space method 28 × 28+ t-distributed stochastic neighbor embedding (t-SNE) using a cosine distance (cos.) and the graph average linkage (GAL)
clustering method.
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between columns (clustering methods), we conclude that the role
of the feature space is more important than that of the algorithm.
This can be rationalized, as a better feature space method will
produce distinctively separated clusters, making it easier for the
algorithm to find these clusters. However, as this benchmark is
performed on synthetic data, the performance of the algorithms
may be different than on actual data. Therefore, we select the five
best performing algorithms, namely GK, the most accurate of the
spectral methods (J&W), GMM, the most accurate graph-based
method (GAL), and OPTICS for further studies in the remainder
of this paper.

Application to an experimental MCBJ dataset. We now apply
our workflow to an experimental dataset of unknown classes and
illustrate the different steps in Fig. 3. The starting point is an
MCBJ dataset consisting of 10,000 traces recorded on the OPE3
molecule35 (see Fig. 3a for the 2D conductance-displacement
histogram), to which we apply the two selected feature space
methods 28 × 28+ t-SNE (cos.) and 28 × 28+UMAP (cos.).
Subsequently, these feature spaces are classified using the five
selected clustering methods for a NoC ranging from 2 to 8. This
gives a total of 5 × 2 × 7= 70 different clustering distributions.
For each of them, we calculate internal CVIs59–62. Each index is
calculated for a varying NoC, from which the optimum NoC can
be estimated by different means (minimum, maximum, elbow,
etc.). Here, we choose 29 CVIs, including the well-known Sil-
houette index, Dunn, and Davies–Bouldin index, that only
require a maximization/minimization of the index. As such, the
index can be used to compare different clustering methods, fea-
ture space, and NoCs, and determine the optimum combination.
A complete list of all the indices and their implementation can be
found in Supplementary Method 4.

The heat map shown in Fig. 3b presents the calculated values of
the Davies–Bouldin index as a matrix, with as columns the NoC
and as rows all combinations of feature space and the clustering
algorithm. From this matrix, the maximum/minimum value of
the index is obtained to determine the optimum NoC and method
as determined by this particular CVI. We note that the use of
CVIs to estimate the NoC is not straightforward as each of them
has implicit assumptions, in particular on the distribution of the
clusters. For this reason, we only consider NoC estimations that
are unambiguous, in other words, a well-defined peak or dip in
the CVI. This means that we calculate the CVIs for 2–8 clusters,
but we only take the CVI into account if the optimum NoC lies
between 3 and 7 clusters. This procedure is repeated for all 29
CVIs and a 2D histogram is constructed (Fig. 3b). Finally, this
allows us to directly access the overall best feature space (28 × 28
+UMAP), algorithm (GAL), and NoC (5). As a verification of
the robustness of the CVI prediction, we have performed the
same analysis including, in addition, two poorly performing
feature spaces (raw+ t-SNE (cos.) and raw+UMAP (cos.)) and
the same five clustering algorithms. Shown in Supplementary
Note 5, the analysis shows that the combination of 28 × 28+
UMAP, GAL and 5 clusters again comes out as optimal. The
resulting feature space, with the individual breaking traces
colored by cluster assignment, is plotted in Fig. 3c.

The resulting clusters are visualized as 2D conductance
displacement histograms built from the individual breaking
traces (see Fig. 3d). The plots show that the resulting 2D
histograms exhibit distinctively different breaking behaviors, and
based on our knowledge of these junctions, one can speculate that
Cluster 1 corresponds to gold junctions breaking directly to below
the noise floor, Cluster 2 to tunneling traces with some hints of
molecular signatures, Cluster 3 to a fully stretched OPE3
molecule, Cluster 4 to tunneling traces without any molecular

Fig. 3 Application of the workflow to measured mechanically controllable break-junction data. a Experimental 2D conductance-displacement histogram
based on 10,000 breaking traces. The blue area represents the corresponding 1D conductance histogram. b Determination of the most suited feature
space, clustering algorithm, and the optimal number of clusters using cluster validation indices (CVI). The feature space considered are 28 × 28+ t-
distributed stochastic neighbor embedding (t-SNE) and 28 × 28+ uniform manifold approximation and projection (UMAP), both using a cosine (cos.)
distance metric. The clustering algorithms considered are Gustafson–Kessel (GK), Gaussian mixed model (GMM), graph average linkage (GAL), spectral
clustering following Jordan and Weiss (J&W), and Ordering Points To Identify the Clustering Structure (OPTICS). The heat map represents the
Davies–Bouldin CVI, requiring a minimization of its value (red/white highlighted box). The histogram counts the occurrence of the feature space and
clustering algorithm combinations, and of the optimal number of clusters, as predicted by the various CVIs. c Feature space constructed from the data of
(a) using 28 × 28+UMAP (cos.) and the GAL clustering method for five clusters. d 1D conductance and 2D conductance-displacement histogram for the
cluster assignment in (c).
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presence, and Cluster 5 to a two step breaking process involving
molecule–electrode interactions. The exact attribution of the
various clusters, however, requires a detailed understanding of the
microscopic picture of the molecular junction, possibly supported
by ab-initio calculations, and is beyond the scope of this article.
Even though the CVIs show that five is the ideal NoC, this result
should be taken with a grain of salt. To the best of our knowledge,
no CVI exists that performs well in all situations. In particular
clusters of largely varying densities are challenging as well as
clusters of arbitrary shape. Therefore, the CVIs should be used
merely as a guideline, and, as reference, we show the resulting
cluster for 3–7 clusters in Supplementary Note 6.

To illustrate the versatility of our approach for different
measurements types, we now proceed with the classification of
two more datasets: the first one consists of 67 current–voltage
(IV) characteristics, while the second one contains 4900 Raman
spectra. For the current–voltage characteristics classification, we
note that the OPTICS algorithm was excluded as it fails using the
default parameters due to the limited amount of measurements.

Application to current–voltage characteristics. Figure 4 a pre-
sents a 2D current–voltage histogram of 67 current–voltage
characteristics recorded on a dihydroanthracene molecule36,63,64.
The IVs have been normalized to focus on the shape of the
curves, not on the absolute values in current. The same clustering
procedure is repeated as described previously and the best feature
space and clustering algorithm is determined to be 28 × 28+
UMAP(cos.) and GAL, respectively for an optimal NoC of 5
(Fig. 4b). The corresponding feature space is presented in Fig. 4c,
colored according to the clusters produced by the GAL algorithm.
The 2D current–voltage histograms of the five resulting clusters
are shown in Fig. 4d. Cluster 1 shows perfectly linear IVs, while
cluster 2 shows a pronounced negative differential conductance
(NDC) feature, with first a linear slope around zero bias, a sharp
peak around 30 mV, followed by a rapid decrease of the current
for increasing bias voltage. Cluster 3 contains mostly IVs with a
gap around zero bias. Cluster 4 exhibits NDC as well, but with a

more rounded peak compared to cluster 2, and a more gentle
decrease in current. Cluster 5 shows close-to-linear IVs with some
deviations from the perfect line.

Application to Raman spectra. As a final application, we
investigate the classification of Raman spectra36. As Raman
spectra are less stochastic than MCBJ measurements, we have
performed a separate benchmark (see Supplementary Note 7) to
rank the different algorithms. We find that, similar as for the
MCBJs, the 28 × 28+ t-SNE and 28 × 28+UMAP feature spaces
perform the best. For the clustering algorithms, we find that most
of them perform similarly well.

The Raman spectra are recorded on a well-studied reference
system, namely a graphene membrane that has been divided into
four quadrants, each exposed with a different dose of helium ions.
The effect of He-induced defects on the Raman spectrum of
graphene is known from literature65,66, but for our analysis we
explicitly do not rely on any a priori knowledge of the system, i.e.,
we do not need to know beforehand which Raman bands will be
altered by the irradiation and by what spatial pattern of the
graphene has been irradiated. Instead, we use our clustering
approach to identify the different types of Raman spectra present
in the sample from which we infer the spatial distribution of He-
irradiation doses and their effect on the graphene spectrum. The
sample under study consists of a free-standing graphene
membrane (6 μm diameter), suspended over a silicon nitride
frame coated with Ti/Au (5 nm/40 nm). An illustration of the
sample layout is presented in Fig. 5a. On this sample, a two-
dimensional map containing 70 × 70 spectra was acquired using a
confocal Raman microscope (WITec alpha300 R) with a 532 nm
excitation laser. A description of the sample preparation and
Raman measurements is provided in Supplementary Note 8.

The Raman spectra were fed to the 28 × 28+UMAP (cos.)
feature space construction method and split into 7 clusters using
the GAL algorithm (see Supplementary Note 8 for more details).
Figure 5b presents the partitioned feature space, containing
several well-separated clusters. From this partitioning, we

Fig. 4 Application of the method on current–voltage characteristics. a Experimental 2D current–voltage histogram based on 67 current–voltage
characteristics recorded on a dihydroanthracene molecule36,63,64. b Determination of the most suited feature space, clustering algorithm and the optimal
number of clusters using cluster validation indices (CVI). The feature space considered are 28 × 28+ t-distributed stochastic neighbor embedding (t-SNE)
and 28 × 28+ uniform manifold approximation and projection (UMAP), both using a cosine (cos.) distance metric. The clustering algorithms considered
are Gustafson–Kessel (GK), Gaussian mixed model (GMM), graph average linkage (GAL), spectral clustering following Jordan and Weiss (J&W), and
Ordering Points To Identify the Clustering Structure (OPTICS). c Feature space constructed using the 28 × 28+UMAP (cos.) and clustered using the GAL
algorithm for five clusters. d 2D current–voltage histogram of the data shown in (a), clustered according to the partitioning shown in (c).
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construct a two-dimensional map of the clusters to investigate
their spatial distribution (see Fig. 5c). The plot shows that the
extracted clusters match well the physical topology of the sample:
Clusters 1–4 are located on the suspended graphene membrane,
reproducing the four quadrants. Clusters 5–7 form concentric
rings located at the edge of the boundary between the SiN/Ti/Au
support and the hole and on the support itself.

Figure 5d shows the average spectrum obtained per cluster
from the which the following characteristics can be evoked:
Cluster 1 shows a flat background, with pronounced peaks at
1585 cm−1 and 2670 cm−1. For Clusters 2 to 4 (corresponding to
increasing He-dose), a peak at 1340 cm−1 appears with steadily
increasing intensity while the intensity of the peak at 2670 cm−1,
on the other hand, decreases. Cluster 5, located at the edge of the
support possess all three above-mentioned peaks, while for
Clusters 6 and 7, a broad fluorescence background originating
from the gold is present and all graphene-related peaks drastically
decrease in prominence. Interestingly, the four quadrants have
only been identified as distinct clusters on the suspended part, but
not on the substrate. This implies that the clustering algorithm
identifies spectral changes upon irradiation as characteristic
features for the freely suspended material, whereas the additional
fluorescence background from the gold is a more characteristic
attribute of the supported material than the variation between
quadrants. Nevertheless, when inspecting Clusters 6 and 7, some
substructure is still visible, and performing a clustering on that
subset may reveal additional structure.

The three observed peaks correspond to the well-known D-, G-
and 2D-peak, and follow the behavior expected for progressive
damage to graphene by He-irradiaton65,66. We would like to
stress that our approach allowed to extract the increase of the D-
peak and the decrease of the 2D-peak when introducing defects in
graphene, without any before-hand knowledge of the system:
neither the type of Raman spectra under consideration, nor where
on the sample the He-irradiation occurred.

Discussion
In the synthetic data, the t-SNE and UMAP algorithms score
equally well in reducing each measurement from a 784

dimensional space (28 × 28) down to the 3 dimensional feature
space. On the experimental datasets, however, UMAP tends to
perform better. This difference emphasizes the need for labeled
data which resembles as closely as possible the experimental data,
as synthetic data may not capture all the experimental com-
plexity. We note that UMAP has become the new state-of-the-art
method for dimensionality reduction, surpassing t-SNE in several
applications67,68. While t-SNE reproduces well the local structure
of the data, UMAP reproduces both the local and large-scale
structure42. Moreover, one could also investigate more advanced
variants of UMAP69 that could lead to even higher FM indices.
Along the same lines, the use of more sophisticated clustering
algorithms involving convolutional neural networks that can
directly be applied to the 28 × 28 image merit additional research
as some of them have proven to be highly accurate on the MNIST
and other databases57, despite their high computational cost.

Conclusion
In conclusion, we have introduced an optimized three-step
workflow for the classification of univariate measurement data.
The first two steps (feature space construction and partition
algorithm) are based on an extensive benchmark of a wide range
of novel and existing methods using 900 simulated datasets with
known classes synthesized from experimental break junction
traces. By doing so, we have identified specific combinations of
feature space construction and partition algorithm yielding high
accuracies, highlighting that a careful selection of the feature
space construction and partition algorithm can significantly
improve the classification results. We also provide guidelines for
the estimation of the optimal NoC using a wide range of CVIs.
We show that our approach can readily be applied to various
types of measurements such as MCBJ conductance-breaking
traces, IV curves and Raman spectra, thereby splitting the dataset
into statically relevant behaviors.

Data availability
The experimental datasets used in this study are freely available online at https://doi.org/
10.6084/m9.figshare.13258640. The generated datasets used for the benchmark shown in
the main text are available at https://doi.org/10.6084/m9.figshare.13258595. The

Fig. 5 Application of the method on Raman spectra. a Sample layout: suspended graphene membrane irradiated with four different He-ion doses.
b Partitioned feature space, constructed with 28 × 28+ uniform manifold approximation and projection (UMAP) using the cosine (cos.) distance metric
and the graph average linkage (GAL) clustering algorithm. c Spatial map of the extracted clusters. d Average Raman spectrum of each cluster.
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additional datasets generated for the benchmark are available from the corresponding
author upon reasonable request.

Code availability
The code used for this benchmark is freely available online at https://github.com/
MickaelPerrin74/ClusteringBenchmark. In addition, we provide a graphical user
interface for clustering data in a user-friendly fashion, containing all feature space
construction methods and clustering algorithms used in this study. The code of this GUI
is freely available online at https://github.com/MickaelPerrin74/DataClustering.
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