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Abstract

Purpose. Distal radius fractures are common fractures of the wrist. These fractures are often
displaced and need reduction, after adequate reduction, the patients will have follow-up X-rays
to check if the fracture stays stable. This is important because surgery might be required if the
fracture becomes unstable. This can lead to delayed surgery which can worsen the treatment out-
come. Therefore, it would be valuable to predict which distal radius fractures are likely to become
unstable. Machine learning could help predict the stability of distal radius fractures based on CT.
In addition, because there is only a small dataset available, this research also studies the effect of
different machine learning methods.
Method. Two different methods were evaluated for the stability prediction of distal radius frac-
tures: traditional machine learning (radiomics method) and a residual network with and without
transfer learning (deep learning method). For the radiomics method, a python package called
WORC was used, which automatically extracts radiomic features and optimizes machine learning
models. For the deep learning method, the backbone of a residual network called Med3D with
added layers for classification was used.
Results. The radiomics method combined with augmentation, gave the best results (AUC: 0.64
± 0.01). Also, it was found that using an augmented data set in the radiomics method resulted
in improved performance. This gives a slight indication that the radiomic method can learn to
predict DRF when there would be more data available.
Conclusion. The radiomic method is the most promising method for predicting the stability of
distal radius fractures, despite the small difference in performance compared to random guessing
and the deep learning method. However, for further research, it is highly recommended to acquire
a larger dataset.

I INTRODUCTION
Bone fractures, especially distal radius fractures (DRF) are regularly treated at the Emergency De-
partment (1), (2). In the Netherlands, DRFs have an occurrence of around 45.000 patients yearly (3).
Despite year-to-year differences, this number seems to be growing every year (4), (5). DRFs occur
in every age group but it is more common in female elderly because of osteoporosis (6). The main
causes of DRFs in adolescents are high energetic falls, for example in sports events. In the elderly, the
most common causes are low energetic falls from standing or seated positions (7), (8).

A physician will evaluate every identified DRF to ascertain whether it is displaced, using X-ray imag-
ing of the DRF and registered criteria (9). If the fracture is displaced, the fracture will be manually
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reduced at the emergency department. After close reduction patients receive a cast and an X-ray to as-
sess whether the reduction was successful. Besides an X-ray, a CT-scan is recommended for complex
and / or intra-articular fractures or when the physician is doubting if the fracture is adequately reduced.
A CT-scan gives the clinician usually a clearer representation of the fracture and it provides the clin-
ician extra information for the treatment (9), (10). After adequate reduction, the patients will have
follow-up X-rays starting every week until the third week after reduction to check if the fracture stays
stable. This is important because the treatment plan depends on the stability of the fracture: unstable
fractures are generally surgically treated, while stable fractures are conservatively treated with cast (3).

The current treatment strategy can result in delayed surgical treatment for patients with an unstable
DRF. For the final bone alignment of the radius and function of the wrist, it is important that the sur-
gical replacement is not too long after the injury (11). Although the best timing is not established yet,
it is assumed that surgery should be performed within two weeks after the injury (12). With current
strategies, however, the surgery is generally not performed within this timespan. Improved classifica-
tion of patients with a DRF that are likely to become unstable could overcome the problem of delayed
surgical treatment. Since CT-scans contain more information than X-rays, it is preferred to predict this
based on CT-scans.

Machine learning could help in the identification of patients with DRFs that are most prone to become
unstable. Moreover, Machine learning is already being applied successfully and increasingly in the
other fields of medical imaging (12). Specifically, machine learning can be used for example in au-
tomatic diagnosis, or as a decision support system (13). In several applications, the use of machine
learning has reduced the workload of clinicians (14), which can result in lower emotional stress lev-
els for clinicians. Lowering clinician stress levels has been shown to improve the quality of patient
treatment (15), (16). In addition, algorithms can perform consistently and tirelessly and can therefore
also potentially improve patient outcomes (17). Furthermore, machine learning algorithms can detect
patterns in data that are invisible to the human eye. Ultimately, this can help to prevent invasive treat-
ment or improve diagnosis speed (18), (19).

If a machine learning algorithm could be trained to predict the stability of distal radius fractures based
on a CT-scan the patient outcome might improve and the workload of the clinician could be reduced.
Previous studies have already shown that machine learning gives good results in bone classification,
such as in fracture detection and bone disease classification tasks (20), (21), (22). As such, there is
reason to assume that a machine learning system can be developed to support the prediction of distal
radius fracture stability.

Although distal radius fractures are common, there are several issues that hinder the collection of a
large CT-scan dataset. For example, a specific issue is that patients often receive surgical treatment
before it can be established if their fracture would remain stable or not. Using a strategy to overcome
the small dataset problem could help create a good-performing prediction algorithm despite the limited
dataset. Therefore, the goal of this research is twofold: (1) predict the stability of distal radius fractures
on CT-scans using machine learning, and (2) determine which machine learning method is best suited
for the limited data problem.

II RELATED WORK
A Application of machine learning in DRFs
The use of machine learning is rising in the diagnosis of DRF, for instance, in the automatic diagnosis
of DRF on X-rays. There are already algorithms published that can detect DRF with a similar perfor-
mance as a radiologist (23), (24), (25). Gan et al. (25) even found that the CNN performed better in
distinguishing wrist X-rays with DRFs from normal images.

2



To the best of our knowledge, no research has been published that focuses on predicting the stability
of DRFs or uses CT-scan data for automatic fracture recognition.

B Strategies for limited datasets in machine learning
Limited datasets are one of the biggest challenges in the application of machine learning, especially
in 3D medical image analysis (26). Fortunately, there are various strategies to overcome the small
dataset problem. For example, traditional machine learning, transfer learning, residual networks, and
ensemble learning offer relevant methodologies. These strategies are, according to a systematic re-
view of the literature (Appendix A), likely to be effective in the case of DRF stability prediction.

Machine learning can be defined as the training of algorithms to analyze, learn or make decisions for
new data, based on raw data input (27). Machine learning is a broad term that includes both traditional
machine learning and deep learning. These methods can be distinguished by how they handle input
data. In deep learning, features will be automatically extracted from the input data, then processed,
and eventually, an outcome will be produced (28), (29). In contrast, traditional machine learning only
optimizes a decision-maker based on the given (derived) input features (30), (31). Therefore, deep
learning is less reliant on the user because it optimizes its own feature extraction, at the expense of
requiring more data to optimize. Consequently, it is possible that traditional machine learning is better
suited to small datasets. Its usefulness for small medical 3D datasets was underlined by several suc-
cessful applications (32), (33), (34), (35).

One method to overcome the problem of a small dataset is the use of transfer learning. In transfer
learning, a model is trained on another dataset (source) before training it on the dataset of interest
(target) (36). In this way, the obtained knowledge from training on the source domain is transferred
to the target domain and less data is needed to train the network. Often ImageNet (37), a large dataset
of natural images is used as a source dataset but the best transferring effect is observed with a source
dataset with a similar data distribution to the target dataset (38). The relevance of a similar source
domain was emphasized by Raghu et al. (39) who found that for medical imaging tasks transfer learn-
ing with ImageNet did not significantly affect the performance of their light weighted model. The
literature supports the positive effect of transfer learning: several studies show that the use of transfer
learning to overcome the problem of a small 3D medical dataset increases model performance com-
pared with training from scratch (40), (41), (42), (43), (44). Most such studies used a source dataset
similar to the target dataset (40), (42), (44). In contrast, Rajpukar et al. (43) used a large dataset of
small videos called Kinetics and Clymer et al. (41) used a brain MRI data to pre-train the proposed
shoulder classification network. Both studies found an increase in performance when the pre-trained
weights were used.

Residual networks are introduced to overcome the overfitting problems in the training of deep neural
networks (45). The most important feature of the residual network is the introduction of skip connec-
tions. With this skip connection, the output of the previous layer is added to the next layer without
modification (46). The skip connection can overcome an overfitting problem called the vanishing
gradient: the gradient becomes very small making it hard to train the network (47). This happens
in particular when a network uses multiple activation functions that produce small gradients. Skip
connections usually give a higher gradient and therefore help in preventing the vanishing gradient
problem (48). Therefore, residual networks make it possible to train deeper networks without over-
training, which is especially a problem with small datasets. Satisfactory results with residual networks
for 3D medical classification application were found (43), (42), (49). However, it should be noted that
these studies did not compare the residual network to other methods so the difference in performance
for 3D medical classification purposes remains unknown.
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Lastly, ensemble learning could be used to cope with small amounts of data. Ensemble learning
approaches combine multiple models to achieve higher prediction performance (50). It is possible
to integrate various models in a variety of ways using ensemble learning approaches. For example,
different models can be combined by using the mean of their outputs. Also, a single model that is
trained on different subsets of the original dataset can be combined to produce one output (51). In
the recent literature, several studies found that ensemble learning can be effective for addressing the
problem of a small 3D medical dataset (52), (53).

III METHOD
In this study, three different methods were selected (based on a literature review (Appendix A)) for
the stability prediction of distal radius fractures: traditional machine learning, a residual network with
and without transfer learning, and ensemble learning. In the traditional machine learning method,
Radiomic feature extraction will be used to derive image features from the CT-scans, therefore this
method is further referred to as the ’radiomics method’ (54). The method using a residual network is
further referred to as the ’deep learning method’. The implementations of these methods are described
in section D and E. Ensemble learning is implemented by averaging the posterior probabilities of the
other methods. For all methods, the data pre-processing steps consisted of cropping and segmentation.
In addition, the effect of data augmentation was evaluated by performing all methods with and without
10× data augmentation.

A Dataset
The image dataset was created by retrospectively searching the patient databases from the Erasmus
MC (EMC) and the University Medical Center Groningen (UMCG). All adult patients (18+) with a
primary, adequately reduced DRF treated with a cast, including a CT-scan for the DRF and follow-up
X-rays, were eligible for this research (Fig. 1). Data was included from 40 female and 21 male cases.
The mean age of the subjects was 48 (95% C 44 - 52) from which 40 were labeled as ’Stable’ and 21
were labeled as ’Unstable’.

Figure 1: Inclusion flowchart of DRF cases included in this research. The database search in the EMC and
UMGC resulted in 2408 cases. After exclusion, 61 cases, regarding different patients were included.
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B Pre-processing: Cropping
To extract the most relevant features for stability prediction, the distal part of both the radius and ulna
was cropped. All CT scans were cropped based on anatomical landmarks in Mevislab (55), a guideline
was created (Appendix B) and followed to ensure repeatability. The anatomical landmarks defined a
new coordinate system (Xn, Yn, Zn) that was in line with the radius and ulna. In the new coordinate
system, a rectangle was drawn that cropped out both bones without selecting a large amount of sur-
rounding tissue.

Zn was formed by connecting two landmarks positioned at the proximal and distal end of the radius
(Fig. 2). After defining Zn the CT-scan was reformatted by resampling the original scan in planes per-
pendicular to Zn. In this representation, two additional landmarks at the left and right palmar side of
the radius side were placed (Fig. 3a). Similar to the first landmarks, these landmarks were connected
and formed a vector: Xn.

The two vectors Zn and Xn were respectively vertically and horizontally in line with the radius and
ulna. To compose orthogonality Xn could be adjusted to be perpendicular to Zn and in this way, both
vectors formed the basis of the new-coordinate system. To complete the new coordinate system Yn
was defined by placing it perpendicular to both Zn and Xn (Fig. 4).

(a) (b)

Figure 2: Visualisation of the landmarks placed for defining the Zn axis. (a) shows the landmark placed at
the proximal side of the radius, (b) shows the landmark placed on the distal side of the radius.

In addition, a reference point (Rp) was selected to establish the origin of the rectangle. This Rp is an
anatomical landmark: the styloid process of the radius, this is the highest point of the radius (Fig. 3b).
Rp was chosen because it is easy to recognize on CT; nevertheless, it was not entirely appropriate to
be the origin of the rectangle. Therefore, a fixed vector is defined that indicates the displacement from
the rectangle’s origin to Rp. Lastly, all scans were re-sampled with tri-linear interpolation.

(a) (b)

Figure 3: Visualisation of the landmarks placed for defining the Xn axis and reference point. (a) shows the
landmarks placed at right palmar side of the radius, (b) shows the landmark placed on the reference point (Rp).
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Figure 4: Three-dimensional visualization of the new coordinate system used for cropping. The red line
represents Xn, the green line Yn, and the blue line Zn

C Pre-processing: Segmentation
Providing machine learning methods with a segmentation of the image can help focus on important
areas and thus help to improve performance. Moreover, the radiomic method requires a region of
interest for radiomic feature calculation that is defined by the segmentation of both the radius and
ulna. Segmentation is done semi-automatically in Mevislab (55). First, markers were placed in the
first slice roughly surrounding the bones. These markers are automatically connected and form a
segmentation. This process is repeated in the last slice and in a random selection of ∼ 15 slices in
between. The segmentations the in the remaining slices are created by Shape Based Interpolation (56).
In this method, the shape of the segmented object is estimated by the use of a specific distance matrix
and used for interpolation of the other slices. Finally, the resulting segmentation was visually checked
to ensure that the radius and ulna are inside the segmentation.

D Radiomics method
In this method, an open-source python package called WORC is used (57). WORC automatically
extracts around 500+ Radiomic features (Supplementary data C) and optimizes a traditional machine
learning model (54). For the traditional machine learning model, a wide range of algorithms for fea-
ture pre-processing and classification can be used. It can be understood that finding the best model
may be challenging, especially since model selection depends on the tuning of the algorithms’ associ-
ated hyperparameters (58). Optimizing both the algorithms and associated hyperparameters is called
the Combined Algorithm Selection and Hyperparameter (CASH) optimization problem (59). The aim
of the CASH optimization problem is to find the algorithm set A∗ and associated hyperparameter set
λ∗ that minimizes a loss L. The WORC package solves the CASH problem by introducing hyper-
parameters for model selection in the hyperparameter space (60). In this way, the CASH problem is
redefined as a pure hyperparameter optimization problem and is it easier to solve.

In WORC the hyperparameter optimization problem is solved by randomly constructing workflows
and selecting the best performing ones for an ensemble model. These workflows consist of a com-
bination of different algorithms for feature pre-processing and a classifier. A detailed overview of
the algorithms used in WORC is provided in Supplementary data D. The workflows (w) are created
by randomly selecting hyperparameters (λw) from the hyperparameter space. This process is repeated
and produces a total of Nrs workflows. All these workflows are trained and validated, k times. In each
k round, the workflows are trained on 85% of the training set and evaluated on 15% of the dataset.
The loss of a radiomic workflow is calculated as the average of all k rounds:

Lw =
1

k

k∑
i=1

L(λw, Dtrain(i) , Dvalid(i)) .
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The F1-score is the loss function used for the workflow optimization, which is a class-balanced per-
formance metric:

F1,w = 2

Nclasses∑
c=1

Nc

Ntotal

PRECc ×RECc

PRECc +RECc
,

in which w refers to the radiomic workflow, Nclasses is the number of classes, Nc number of samples in
class c, Ntotal the total number of samples, PRECc precision of class c and RECC the recall of class c

After all k training rounds, all the Nrs workflows are ranked based on the average loss. To prevent
over-fitting, the best-performing N workflows are then ensembled by averaging the posterior proba-
bilities. Finally, the ensembled model is trained on the complete training set and evaluated on a 1000x
bootstrap resampled test set (Fig. 5).

Figure 5: Schematic overview of the train/test protocol in WORC. This figure was adapted from (60).

E Deep learning method
The Med3D backbone will be used as the basis for the residual network in the deep learning method
(61). Med3D is similar to the ResNet family but it has been modified to manage 3D medical data (46).
The authors of Med3D trained and tested multiple versions of their network. However, a relatively
shallow residual network is desired for this project due to the limited dataset, therefore the most shal-
low version of Med3D, which is based on Resnet-10, is used.

For this project’s classification problem, several layers were added to the Med3D backbone. Fig.
6 shows the architecture of the Med3D backbone and additional layers for classification. The first
layer of the Med3D backbone is a 3D convolution layer, followed by batch normalization, ReLU,
and max-pooling. After that, there are 4 BasicBlocks (Fig. 7), which are residual blocks with a 3D
convolution layer followed by batch normalization, ReLU, a 3D convolution layer, and batch normal-
ization. All the BasicBlocks have a skip connection in which the input is downsampled, by adaptive
average pooling, and added to the output of the last batch normalization layer before a ReLU layer.
The classification layers are added after the BasicBlocks. First, the data is multiplied elementwise
with the downsampled segmentation of the mask. Followed by a: max-pooling, flatten, dropout (with
a probability of p), linear, and sigmoid layer. The network produces an outcome between 0 and 1,
with 0 indicating a stable fracture and 1 indicating an unstable fracture.
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Binary cross-entropy loss is used as loss function:

L = − 1

N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi))

Where yi and p(yi) are the label and the posterior probability of sample i, respectively and N is the
number of samples.

Figure 6: Architecture of the adapted Med3D backbone. The different layers are described with different
colored arrows, size of the data is specified between each layer. The Med3D backbone consists of all the layers
before the multiplication with the segmentation. The architecture of the BasicBlocks is shown in Fig. 7

.

Figure 7: Visualisation of the BasicBlocks. With C = 64, 128, 256, 512 in BasicBlock 1 - 4 respectively. In
BasicBlock 2, the stride of the convolutional layers is 2, in the other BasicBlocks, the stride is 1.

The weights of the Med3D network, which was trained on a large collection of medical images,
were stored and made publicly available. In addition to training with random initialization, these
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weights will be used to initialize the weights of the adapted residual network. In this way, the obtained
knowledge from training on the medical dataset is transferred to DRF prediction task.

F Evaluation metrics
The performance of all methods is established by 5-fold cross-validation. Therefore, the data is split
into 5 random, balanced, and equal groups. In each fold the data is trained on 4 groups an tested on 1
group, this is repeated 5 times and finally, the mean performance of all folds is calculated. Performance
metrics to compare the different methods are the sensitivity, specificity, accuracy, confusion matrix,
Receiver Operator Curve (ROC), and, Area Under the Curve (AUC). In addition, the ROC curves
of the experiments were compared with each other by the DeLong test (62). All the experiments
are repeated 5 times, these are called sub-experiments. The sensitivity, specificity, and accuracy are
calculated based on all the sub-experiments, by concatenating the posterior probabilities of each sub-
experiment. The AUC is calculated based on the mean ROC and given with the standard deviation.
Finally, the best workflows from the radiomic method will be evaluated to analyze which classifiers
and feature groups are mostly used.

IV EXPERIMENTS AND RESULTS
A Implementation details
All included scans were reoriented, cropped and segmented. This resulted in 61 cropped scans and
masks with a size of 150, 140, 210 pixels with a pixel size of 0.3 mm and stored in compressed nifti
format. For the augmentation experiments, all images were augmented 10 times with TorchIO 0.18.82
(63) by randomly scaling, translating, and zooming.

All methods were performed with Python, version 3.6.8 and 3.7.2, an AMD Opteron 2378 CPU and
an AMD EPYC 7451 GPU, for the radiomics method and deep learning method, respectively. Ad-
ditionally, the radiomics method used WORC 3.6.0 (57) and the deeplearning method Pytorch 0.4.1
(64). Statistical analysis was performed with Python 3.7.2, Seaborn 0.12.0 (65), Scikit-learn 0.23.1
(66).

A.1 Experiments radiomic method
According to the DRF dataset the Nrs, N and, k parameters were set to 1000, 100, and 5, respectively.
Experiments with k = 10 were also conducted, these results are shown in Supplementary data E.

A.2 Experiments deep learning method
In all experiments the model was trained during 100 epochs with a batch size of 5. The residual
network has a total of 14.187.841 trainable parameters, from which 14.181.696 originates from the
Med3D backbone, and 6145 parameters, from the added layers for classification.

A selection of hyperparameters is optimized during training: learning rate (lr), optimizer, dropout
rate (p), and, freezing of the Med3D backbone. Experiments to determine the best hyperparameters
values were performed in that order. As a result, once a hyperparameter value was chosen, it was used
in all future experiments. Lastly, the architecture of the last BasicBlock (4) was changed in order to
enhance performance. It was decided to only adapt the architecture of the last BasicBlock because
the last BasicBlock is expected to learn the most specific features for the DRF application. (67). The
weights before this BasicBlock were frozen to see the effect of the adapted BasicBlock. Figure 8,
depicts the adapted structure of BasicBlock 4, it can be seen that the BatchNorm layers were removed
and two dropout layers were added. Furthermore, optimization was performed with a validation set: a
randomly selected balanced group of 20% of the training data.
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Figure 8: Visualisation of the adapted BasicBlock 4, with C = 512.

B Results
B.1 Hyperparameter selection
The selected hyperparameters to optimize were the learning rate (lr), optimizer, dropout rate (p),
freezing of Med3D backbone parameters, and adaption of last BasicBlock. Fig. 1, shows the various
hyperparameter values that were tested. Different experiments were performed and value selection
was based on an analysis of the learning curve. When analyzing the learning curve, the following
factors were taken into account (in order of importance): validation loss, training loss, and, the fluc-
tuations and slopes of both curves. The learning rate and optimizer were chosen based on learning
curves of 1 cross-validation fold, while the dropout rate and freezing of the Med3D backbone were
chosen based on all cross-validation folds. All learning curves are provided in In Supplementary data
F. The hyperparameter selection resulted in: an initial lr of 0.0001, an ADAM optimizer, a dropout
rate p of 0.2, partial unfreezing of the Med3D backbone (BasicBlock 4), and using the adapted ver-
sion of BasicBlock 4. In addition, a ReduceLROnPlateau schedular decreased the learning rate by 0.1
when the validation loss was not decreasing for 10 epochs.

Table 1: Hyperparameter values used during optimization of the deep learning method, the selected values
are highlighted by bold text. The abbreviation ’BB’ refers to BasicBlock.

Learning rate Optimizer Dropout rate Freezing Med3D backbone Adapting BB 4
0.001 ADAM 0.1 Unfrozen Yes

0.0001 SGD 0.2 Partially unfrozen1 No
0.00001 0.3 Partially unfrozen2

0.4 Frozen
0.5

1 The Med3D backbone was frozen except from BasicBlock 3 and 4
2 The Med3D backbone was frozen except from BasicBlock 4

B.2 Classification outcomes
Results of all the classification outcome measures are provided in Table 2. For the radiomic method,
two experiments were performed, one with augmented data and one without. The AUC of the ex-
periment without augmented data was AUC of 0.58 ± 0.07 and the AUC of the experiment with
augmented data was 0.64 ± 0.01. The ROC curves and confusion matrices of both experiments are
shown in Fig. 9a, Fig. 10a, and, Fig. 10b.

For the deep learning method, three experiments were performed with the adapted Med3D residual
network: trained from scratch, trained from scratch with augmented data, and, transfer learning and
augmented data. The AUCs of these experiments were 0.63 ± 0.01, 0.55 ± 0.02 and 0.51 ± 0.05 for
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the experiments without augmentation, with augmentation, and with both augmentation and transfer
learning, respectively. The ROC curves and confusion matrices of all experiments are shown in Fig.
9b, Fig. 10c, Fig. 10d, and, Fig. 10e.

Based on the results of the deLong test (Table 3. It was found that the radiomic experiment with
augmented data was significantly different (p < 0.05) from both the deep learning experiment with
augmentation and with augmentation and transfer learning (p = 0.014). The deep learning experiment
without augmentation was found to be significantly different from the deep learning experiment with
augmentation and transfer learning (p = 0.014).

The classification outcomes of a random guess were included in the results for reference. Random
guess was performed by randomly generating values between 0 and 1.

Because the performance of the radiomic and deep learning methods were close to random guessing,
it was decided not to perform ensemble learning. Therefore, it is excluded from the results.

Table 2: Classification results of the different methods. The AUC is given with the standard deviation of all
sub-experiments. Abbreviations: RM: radiomic method; DML: deep learning method. The ’a’ and the ’t’ behind
the experiment name indicate the use of data augmentation and/or transfer learning.

Experiment Sens. [%] Spec. [%] Acc. [%] AUC
RM 0.11 0.95 0.67 0.58 ± 0.07

RM (a) 0.35 0.83 0.67 0.64 ± 0.01
DLM 0.22 0.89 0.67 0.63 ± 0.01

DLM (a) 0.28 0.78 0.62 0.55 ± 0.02
DLM (at) 0.7 0.31 0.43 0.51 ± 0.05
Random 0.44 0.52 0.49 0.50 ± 0.08

Table 3: Results of the deLong test. The delong test was used to compare the ROC curves of all experiments
and establish if the curves are statistically different (p < 0.05). This table shows the p-values obtained after
comparing each experiment to the others. Abbreviations: RM: radiomic method; DML: deep learning method.
The ’a’ and the ’t’ behind the experiment name indicate the use of data augmentation and/or transfer learning.

Experiment RM RM(a) DL DL(a) DL(at)
RM - 0.18 0.31 0.63 0.15

RM(a) - - 0.78 0.073 0.014
DL - - - 0.13 0.014

DL(a) - - - - 0.34
DL(at) - - - - -

B.3 Additional analysis of the radiomic method
In addition to the classification results, it was determined which classifiers and feature groups were
most commonly used in the WORC ensemble model. This was done by selecting the best best-
performing experiment, and then selecting the 10 best radiomic workflows of all cross-validation
folds, resulting in 50 workflows. After analyzing these workflows it was found that the SVM was
used in all workflows (50/50) and that the histogram features and texture Gray-Level-Co-Occurrence
Matrix (GLCM) features were used most often in all the workflows (48/50) and (34/50), respectively.

11



(a) (b)

Figure 9: Receiver operator curves (ROC) of radiomic method (a) and deep learning method (b). The plotted
curves are the mean ROC curves of all sub-experiments shown with the standard deviation in grey. Abbrevi-
ations: RM: radiomic method; DML: deep learning method. The ’a’ and the ’t’ behind the experiment name
indicate the use of data augmentation and/or transfer learning.

(a) (b) (c)

(d) (e)

Figure 10: Confusion matrices of all experiments. (a) and (b) show the confusion matrix of the radiomic
experiments. (c), (d), and, (e) show the confusion matrices of the deep learning experiments. The labels ’0’ and
’1’ refers to the prediction of a stable DRF and prediction of an unstable DRF, respectively. The ’a’ and the ’t’
behind the experiment name indicate the use of data augmentation and/or transfer learning.
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V DISCUSSION
In this study, we studied the use of machine learning for predicting the stability of DRF based on a
small CT-scan dataset. In order to solve the problem of having a small dataset, different machine-
learning methods were selected: traditional machine learning (radiomics method), residual network
(deep learning method) and ensemble learning. After evaluation of the results, the radiomics method
combined with augmentation, gave the best results (AUC: 0.64 ± 0.01). Although the difference be-
tween random guessing and the other experiments is small it is the most promising method. Also,
it was found that using an augmented data set in the radiomics method resulted in improved perfor-
mance. This gives a slight indication that the radiomic method can learn to predict DRF when there
would be more data available. In addition, the use of data augmentation resulted in a lower standard
deviation which indicates that experimenting with more data will result in more stable performance.

Surprisingly, the deep learning experiment without augmentation performed best of all the deep
learning-based experiments while it was expected that the use of transfer learning and/or data aug-
mentation would improve performance. The AUC is even decreasing with the use of augmentation
and transfer learning which we do not attribute to random fluctuations because a larger overlap in ROC
curves would then be expected. Moreover, the deep learning method without augmentation was sig-
nificantly different from the method with augmentation and transfer learning. The higher performance
of the experiment without augmentation or transfer learning may be an accidental finding resulting
from the noise in the experiment. This was less likely to occur in the augmented dataset because
interpolation was used for rotation and scaling and therefore the experiments that used augmented
data performed worse. These effects probably occurred because the network had too many trainable
parameters and a lack of training data. Therefore the results of the deep learning method should be
evaluated with care, especially regarding the ’good’ performance of the experiment without data aug-
mentation.

To the best of our knowledge, physicians are not able to distinguish stable cases from non-stable ones
by looking at the CT-scan. However, the radiomic experiments indicated that there lies some infor-
mation in image intensities or texture that can help to predict DRF stability. For example, dorsal
comminution, a specific fracture pattern, might be a predicting factor for the stability of DRFs (68).
This fracture pattern might be ’recognized’ by the GLMC texture features. It remains, however, un-
certain why the radiomic method could extract features from CT-scans to predict the stability of DRF
and the deep learning method could not. This might be because the WORC algorithm, used in the
radiomic method, had fewer trainable parameters compared to the deep learning method and there-
fore overfitted less quickly on the training set. In addition, also the feature extraction in the radiomic
method was less tuned to the dataset and therefore more robust.

Finally, a notable finding in this study was that completely freezing the Med3D network gave the
best validation loss and resulted in less overtraining (Supplementary data E Fig. 18). Contrary to
expectations, this did not enable learning specific DRF features (67). One possible explanation could
be, again, that the network had too many trainable parameters for the small dataset. A common
solution is to add a dropout layer to reduce the number of parameters. However, with an increased
dropout rate the training loss did not decrease, and there appeared to be not much improvement in the
validation loss (Supplementary data E Fig. 17). Changing the architecture of the last BasicBlock did
however improve the learning curve slightly (Supplementary data E Fig. 19). Since the change mainly
involved using dropout instead of batch normalization layers it can be concluded that dropout has a
positive influence on the performance but the location of the dropout layer is of great importance.
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Limitations
One of the main limitations of this study is the small dataset, although several approaches were applied
to solve this issue. It is important to keep this in mind when looking at the results because methods
that are currently unsuccessful might perform better with a larger dataset. Furthermore, the method
used to create the segmentations was not very precise and might have included some bias, especially
since the segmentation is important for the radiomic feature extraction (69). Moreover, the segmen-
tations were accomplished by roughly selecting the bones with some surroundings. This method was
chosen because there might be some information in the surrounding tissue that is important for the
stability prediction of DRF. However, it might have been better to segment strictly the bones without
surrounding tissue and later dilate the mask to include some surroundings. Another limitation is the
hyperparameter selection in the deep learning method: it was limited to four parameters and was done
in a certain order. Therefore, it might be that there are more hyperparameters, or different combi-
nations of hyperparameters that perform better. Lastly, the dataset selection might have introduced
bias. For example, many cases were excluded because there was insufficient follow-up information or
X-rays to determine the progress of these cases. If this follow-up information was available they could
have been suitable for this research. In view of this project, a hospital protocol where all patients with
DRF receive a CT-scan would have been better.

Future work
First, since the performance was improved in the radiomics method when using simple data augmen-
tation to increase the dataset, it would be very relevant to experiment with the methods in this project
with other data augmentation techniques or a larger dataset. Secondly, although it is not yet estab-
lished, gender and age might be predictors for the secondary displacement of DRFs (68), therefore
it may be worthwhile to include these factors in future research. Moreover, since all patients also
have follow-up X-rays it might be interesting to include those X-rays for the prediction of DRF. In
addition, it might be interesting to also include information about the shape of the bone and fracture,
for example by supplying a segmentation that follows the bone cortex and fracture lines. Lastly, other
research could further investigate feature extraction in the radiomic method. In this study, only the
larger feature (sub)groups were evaluated, but it is interesting to see go a bit more into detail to see if
there exist features that are good predictors for DRF stability.

VI CONCLUSION
The radiomic method is the most promising method for predicting the stability of distal radius frac-
tures, despite the small difference in performance compared to random guessing and the deep learning
method. However, for further research, it is highly recommended to acquire a larger dataset.
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SUPPLEMENTARY DATA
A Literature Review
Use this link to the Literature study. Please contact the author if it is not possible to access the file.

B Guideline for cropping CT scans in Mevislab.
1. Check if the patient’s fracture involves the left or right wrist (excel document)

a. If the fracture is in the right wrist: go to the “Switch” module and press on the right arrow.
b. If the fracture is in the left wrist: check if the input of the “Switch” module is “0”

2. Double click on the “DirectDicomImport” module
3. Click “Browse” and select the folder with the patient’s CT
4. Click “Import”
5. Close “DirectDicomImport” module
6. Double click on “X Markers” module
7. Scroll down to slice 0 (left bottom corner)
8. Slowly scroll up, as soon as the whole proximal end of the radius is in the plane, move the cursor
to the middle of the shaft hold ALT and click with the left mouse button.
9. Check if you see an ORANGE rectangle
10. Scroll up until you last see a not fractured radius, so the fracture needs to be whole. BUT make
sure that you are at least 20 slices away from the first point.
11. Move the cursor to the middle of the shaft hold SHIFT and click with the left mouse button
12. Check if you see a GREEN rectangle
13. Close “X Markers” module
14. Double click on “Reference Point” module
15. Scroll up until you see the processus Styloideus radii i.e. the highest point of the radius articular
plane.
16. Hold SHIFT and left-click on the processus styloideus radii
17. Check if you see a RED rectangle
18. Close “ReferencePoint” module
19. Double click on “Y Markers” module
20. Scroll down until you see a complete part (without fracture) of the radius.
21. Move to the point of the radius closest to the ulna on the palmar side of the radius
22. Hold ALT and click on the left proximal side of the radius
23. Check if you see a BLUE rectangle
24. Move over the oblique palmar side of the radius in a somewhat straight line following the bone
until you can no longer follow the bone in a straight line.
25. At this point hold SHIFT and click on the right proximal side of the radius
26. Check if you see a YELLOW rectangle
27. Close the “Y Markers” module
28. Double click on “3DCroppedView” module
29. Check if the whole distal part of the radius is cropped out, if not return to step 4 and try to select
more precisely the indicated points
30. Close the “3DCroppedView” module
31. Open “DicomTool”
32. Click “Browse” select the folder “patientnumber cropped radius” click select folder
33. Click ”Save”
34. Close “DicomTool”
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C Algorithms used in WORC

Table 4: Categories of algorithms used in WORC (60).

Algorithm group Algorithms
Feature selection Group-wise selection, Variance Threshold, SelectFromModel, Uni-

variate testing, RELIEF
Feature Imputation Mean, Median, Mode, Constant (zero), K-nearest neighbors
Feature Scaling Robust z-scoring
Dimensionality Reduction Principal component analysis
Resampling RandomUnderSampling,RandomOverSampling, NearMiss, Neigh-

borhoodCleaningRule, SMOTE, Adaptive synthetic sampling
Classification Support vector machine, Logistic regression, Linear discriminant

analysis, Quadratic discriminant analysis, Random Forest, Gaussian
Naive Bayes, Adaptive boosting, Extreme gradient boosting

D Radiomic features used in WORC

Table 5: Categories of Radiomic features used in WORC (60).

Feature group Description
Histogram based features Features based on the image intensities
Shape features Morphological features based on the shape of the ROI
Orientation features Features based on the orientation and location of the ROI
Texture features Features based on image texture1

Vessel features Features extracted after the application of vessel filter2

LoG filter features Features extracted after the application of LoG 3 filters
Phase features Features based on local phase
DICOM features Features based on DICOM tags

1 For example features extracted from the Gray-Level-Co-Occurrence Matrix (GLCM), or features
extracted after the application of a filter such as a Gaussian filter
2 Vessel filters are specific filters designed for tubular structures (70)
3 Laplacian of Gaussian filters
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E Additional ROC curves

(a) (b)

Figure 11: Receiver operator curves (ROC) of the sub-experiments from the experiment in the radiomic method
without augmented data. (a) shows the results with 5 training rounds (k) and (b) the results with 10 training
rounds.

(a) (b)

Figure 12: Receiver operator curves (ROC) of the sub-experiments from the experiment in the radiomic method
with augmented data. (a) shows the results with 5 training rounds (k) and (b) the results with 10 training rounds.
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(a) (b)

Figure 13: Receiver operator curves (ROC) of the sub-experiments from the experiment in the deep learning
method without (a) and with augmented data (b).

Figure 14: Receiver operator curves (ROC) of the sub-experiments from the experiment in the deep learning
method with augmentation and transfer learning.
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F Hyperparameter selection: learning curves

Figure 15: Learning curves for experiments with different learning rates (lr).

Figure 16: Learning curves for experiments with different optimizers.

Figure 17: Learning curves for experiments with different dropout rates (p).
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Figure 18: Learning curves for experiments with different freezing Med3D backbone. ’BB’ refers to Ba-
sicBlock.

Figure 19: Learning curves for experiments with and without altered architecture of BasicBlock 4. In both
’adapted’ and ’not adapted’ experiments, only the Med3D weights of BasicBlock 4 were unfrozen. For reference,
the learning curve of the experiment with completely freezing the Med3D was also shown.
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