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Abstract

This report presents the design process of a project aimed at the automatic recognition of 3D structures
formed by magnetic spheres in a turbulent water-filled cylinder. This field of research holds promise for
future technologies, as macroscopic self-assembly might be the key to three-dimensional storage on
chips. With the macroscopic setup, the microscopic self-assembly process is imitated. To automatically
recognise a 3D structure, this report is divided into three subgroups that research the optimal test setup,
develop an image processing program and create a deep learning model. A labelled result of the 3D
formation will be outputted, all while limiting the data size, computation time and inaccuracies. The sub-
group responsible for the setup and the underlying physics produces images of the magnetic spheres
forming a structure in the test setup. The Image Processing subgroup extracts the properties of the
spheres from the image. Finally, the subteam for deep learning, in combination with data management,
gives the extracted properties as input to a neural network model, which determines the structure of
the spheres. Each submodule has demonstrated successful functionality on its own. However, due to
time constraints, a fully integrated system with high accuracy has not been achieved yet. Future work
will involve expanding the dataset to enhance the robustness of the recognition algorithms.
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Preface

This state-of-the-art project dives into the concept of macroscopic self-assembly by focusing on the
automatic recognition of three-dimensional structures. The project is divided into three interconnected
components: a module responsible for the experimental setup and physics, the image processing
module and the deep learning module, supported by a data management part.

The design process has primarily involved reiterating design choices based on the program of require-
ments, planning and laying the groundwork for subsequent implementation and, eventually, acquiring
experimental results and testing the algorithms.

We would like to express our gratitude to everyone who has contributed to this project. To Leon Abel-
mann, especially, thank you for your valuable guidance throughout this project. Your commitment to
answering all our practical and theoretical questions has been of great value in what we deem a suc-
cessful project. In particular, the Vaseline has saved us a lot of effort. We also extend our thanks to
Justin Dauwels and Massimo Mastrangeli for their expertise and helpful insights on the matter. We
are looking forward to any progress and discoveries that will emerge in this research field, and we are
excited to see what the future holds.
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1
Introduction

In the dynamic and rapidly advancing field of semiconductor manufacturing, a fascinating innovation
emerges: chip self-assembly. Imagine a watery domain within a controlled chamber, where minute
spheres, each harbouring a magnetic force, frolic in an orchestrated choreography. They connect, dis-
connect, and reassemble, forming intricate structures. Introducing the captivating realm of autonomous
fabrication, where science meets spectacle, and every sphere tells a story.

1.1. Macroscopic Self-Assembly
The pursuit of enhanced computational power and miniaturization in semiconductor technology has
led to a pressing need for innovative fabrication techniques to accommodate the demand for increased
information density. Traditional 2D chip architectures are reaching their limits, with the scaling of device
dimensions becoming increasingly challenging. While 3D chips offer a glimpse of promise, current
methods are constrained. Relying primarily on stacking to achieve information density in the z-direction,
will not suffice as this remains relatively low compared to the x and y directions.

This limitation presents an obstacle in the search for amore compact and efficient chip design. However,
with the prospect of chip self-assembly, possibilities arise. By utilizing the principles of autonomous fab-
rication, self-assembly holds the potential to overcome the constraints of traditional manufacturing tech-
niques, offering a pathway towards unlocking the full potential of 3D chip architectures. Self-assembly
enables the seamless integration of components in three dimensions, thereby achieving a more equi-
table distribution of information density across all spatial dimensions [1].

Microscopic self-assembly is challenging to observe due to the minuscule size of the particles and
the rapid time scales involved. However, to optimize the self-assembly process and minimize crystal
defects, it is crucial to gain insights into all interactions. While computer simulations offer a potential
solution, this is computationally expensive and impractical for large systems. An alternative approach
involves using a macroscopic self-assembly reactor to make simulations. This can significantly en-
hance visibility and allow for the detailed study of self-assembly dynamics at a larger scale.

To best mimic the microscopic scenarios, it is important to replicate the interplay between the disruptive
forces and the assembling forces that are present. By analysing the formations formed in the macro-
scopic set-up, researchers gain insights into the mechanisms of self-assembly, observe the formation
and evolution of structures in real-time, and identify factors that lead to defects. This approach can
complement computer simulations and experimental studies [12].

The ultimate aim is to pave the way for the realization of next-generation chip architectures. The next
step in realising this is to automate the analysis of formations that are composed in the self-assembly
reactor to gain a better understanding of the automation principles.

1
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1.1.1. Motivation

Figure 1.1: (Normalized) energy for formations of different number of spheres

One example of the research that can be conducted with the constructed product is illustrated by ana-
lyzing the energy levels of different formations of spheres. Figure 1.1 shows the energy levels for ring
and line formations of varying numbers of spheres, as calculated in [14]. The energy is normalized to
the energy of two dipole spheres. The formulas for the energies of both formations are:
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Particles tend to go to a state of minimum energy. For instance, when the experiment involves six
spheres, Figure 1.1 indicates that the probability of a line formation occurring is nearly zero. This
raises the question of the necessity of our product for experiments with six spheres.

However, the experiment also incorporates two coils placed on either side, capable of generating a
homogeneous field of up to 10 mT. As the external magnetic field increases, observations indicate that
ring formations will eventually break into a line formation aligned with the magnetic field. The energy
of the external field per sphere is given by:

Uext = −m ·Bext (1.3)

where m is the magnetic moment of the magnets inside the spheres. Since the external energy is the
dot product of themagnetic moment of the spheres and the external field, there is no energy contribution
to a perfectly aligned ring formation. However, there is (negative) energy added to the line formation.
Assuming the line is perfectly aligned with the field, the total external energy is the product of the
magnetic moment of the spheres, the external field, and the number of spheres. In Figure 1.2, the
same energy levels from Figure 1.1 are plotted. Additionally, a green line representing the total energy
of the line formation under a specific external field is added. It is evident that for six spheres, an external
field of 0.16 mT is required to equalize the total energy of line and ring formations. Investigating the
external field required to overcome the energy barrier and transition from a ring to a line formation
would be intriguing. Automatic recognition of ring and line formations would be highly beneficial in such
research.
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Figure 1.2: Having an external field of 0.16 mT results in ring and line formations with an equal total amount of energy

1.2. Research Objective
This study aims to investigate and realise a highly accurate system that automates the analysis of
magnetic dipole spheres that form structures in a turbulence-driven fluid.

Due to the magnetic interactions between the spheres and the turbulence, these spheres may form
chains or rings with a certain probability. Distinguishing between these formations is crucial for calcu-
lating their respective probabilities and advancing research. Our research question is:

“How do we automatically recognize 3D formations of magnetic spheres in line and ring formations?”

1.3. Experimental Set-Up
The setup consisted of spherical components, each containing a magnet. These were suspended in a
water-filled tank, featuring a steady upward flow, enabling buoyancy of the spheres and allowing them
to interact and form structures freely. The magnetic properties of the spheres facilitate their connection
when in close proximity.

The setup can use up to six spheres for structure formation analyses. This limitation arises from the
dimensions of the tank and the spheres. To facilitate individual analysis, each sphere is assigned a
unique colour, enabling one to track and analyse their behaviour independently.

Furthermore, the setup includes two large conductors attached to the tank, capable of inducing a con-
trolled magnetic field of up to 10 mT. This external magnetic field serves as a tunable parameter, influ-
encing the conditions under which the spheres connect and form structures. By modulating the strength
and orientation of the magnetic field, a systematic exploration of its effects on the self-assembly process
and the resulting structures formed by the spheres can be performed.

1.4. Outline of this Thesis
The experiment is composed of a combination of experimental observations, simulations, and auto-
mated analysis techniques. This thesis explains and describes the experiment and is structured in the
following way:

Chapter 2 outlines the top-level requirements that must be considered and adhered to throughout every
stage of the design process. It describes the goals and constraints of the project, ensuring that all
subsequent decisions align with the overarching objectives.

Chapter 3 explores the different approaches to fulfilling these top-level requirements. It evaluates
various design options, discussing their merits and drawbacks to identify the best possible solution.
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Chapter 4 provides a design overview of the selected implementation. It details the chosen architecture,
components and workflow.

Chapter 5 delves into the setup and physics that are required for the project. It covers the hardware
configurations, environmental conditions and physical interactions of the setup.

Chapter 6 focuses on the image processing techniques utilized in the project. The algorithms and
methodologies used to process and analyze the visual data are described.

Chapter 7 examines the deep learning models integrated into the system. The chapter discusses the
selection, training and optimization of the models.

Chapter 8 addresses the strategies for managing data throughout the project’s pipeline. It covers data
collection and storage, ensuring data integrity and accessibility are maintained.

Chapter 9 brings all system components together, describing how they interact and function as a unit.

Chapter 10 provides a critical analysis of the results and findings from the implementation and inte-
gration stages. It discusses the project’s successes, limitations, and potential areas for improvement,
offering insights into the effectiveness of the chosen design and implementation strategies.

Chapter 11 summarizes the project’s achievements and lessons learned. It reflects on the overall
process, highlighting key takeaways and suggesting directions for future research and development.
This chapter closes the document by reaffirming the project’s contributions to the field and its potential
impact.



2
Top-Level Requirements

The goal of this project is to determine a structure at several consecutive moments in time automati-
cally. The idea for achieving this goal is that for each time instance, a physical or digital system can
recognize how each sphere is connected to another sphere. From this, the structure is determined and
subsequently, the information about the structure is stored and analyzed.

To measure whether the developed design method serves the described goal, the method should ad-
here to the Program of Requirements(PoR). During the design process, the requirements were iterated
and design choices were made based on the program of requirements. This chapter describes the top-
level requirements. The subgroup-specific requirements are described in the chapter of each subgroup.

2.1. Practical Requirements
To ensure that the project is practically implementable, the development of the algorithm must adhere
to practical requirements.

1.1 Time Frame: The implementation of the project must be feasible in a time frame of three weeks.
1.2 Costs: The total cost budget of this project is €2000.
1.3 Setup Compatibility: The measurement method must be practically feasible and compatible

with the current setup without necessitating any modifications.
1.4 Portability: The developed automated system must be portable. It should be designed such that

the transportation of the system is convenient.
1.5 Accessibility: The system should be easy and remotely accessible.

2.2. System Requirements
The system requirements specify the criteria that define the necessary software, hardware and envi-
ronmental conditions for the developed system to function according to the project goal.

2.1 Training Time Efficiency: Training of the automated recognition module should take up less
time than the manual evaluation of the spheres’ formations.

2.2 Data Storage Size: The maximum allowable size for long-term data collected from a single
experimental trial is 500 MB.

2.3 Reproducible Experiment: Themeasurement methodsmust allow for reproducible experiments
to ensure consistent results.

2.3. Functional Requirements
The functional requirements are used to specify the functionalities and features that the developed
design must perform to serve the overall aim of the project.
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3.1 Formation Recognition: The method must be able to distinguish between a ring, a line and an
undefined formation of a variable number of spheres.

3.2 Automated Process: The developed algorithm/method must yield an automated execution pro-
cess.

3.3 Accuracy: The overall system must have an accuracy of at least 95%, meaning that false clas-
sifications should not take up more than 5% of all the results.

3.4 Generalisability: The developed method must be generalisable to any structure and any shape
of the spheres in the structure.

3.5 Validatability: The designed overall system must be capable of being validated to show the
reliability and usability of the system.

3.6 Experiment Duration: The test setup must be able to run the experiment for a duration of 12
to 24 hours. Also, the developed method must be able to handle and store the corresponding
amount of data.

3.7 Computation Time: The computation time of the automatised recognition module should not
take more than 1 hour past the experiment duration.

2.4. Most Relevant Requirements
In summary, the seven most relevant top-level requirements will be iterated underneath and in the
Conclusion, Chapter 11, solutions to these major requirements will be presented:

2.1 Training Time Efficiency,
2.2 Data Storage Size,
3.1 Formation Recognition,
3.2 Automated Process,
3.3 Accuracy,
3.5 Validatability,
3.7 Computation Time.



3
Top-Level Design Choices

As with any robust project design pipeline, various ideas, both effective and ineffective, were explored,
leading to the adoption or rejection of these strategies. At the outset of the project, two primary strate-
gies were assessed: a hardware solution and a software solution. Subsequently, sub-strategies were
devised and explored. Ultimately, one solution triumphed (see Figure 3.1 for an overview of the decision
tree).

3.1. Hardware
Within the hardware approach, three distinct options were considered: the implementation of reed
switches, Hall effect sensors or high-frequency EM sensors.

3.1.1. Reed Switches
Reed switches, which are sensitive to magnetic fields, close to allow current flow when two opposing
spheres come into contact due to their magnetic properties. However, since the experiment uses an
external field to manipulate sphere formations, the effective operational range of the reed switches is
significantly limited. Theymust resist closure induced by the external field from the coils while remaining
sensitive enough to close in response to the magnetic field produced by an adjacent sphere. This dual
demand presents a challenge in differentiating between the impact of the external field and the proximity
of another sphere [7].

3.1.2. Hall Effect Sensors
Hall effect sensors detect magnetic fields and convert these into electrical signals by creating a voltage
differential across a conductor exposed to a magnetic field. They require continuous power, making
them less suitable for power-sensitive applications compared to more energy-efficient reed switches.
Additionally, Hall effect sensors are also sensitive to interference from the external fields of coils. There-
fore, in this power-sensitive setup, reed switches would be a better alternative [7].

3.1.3. High-Frequency EM Sensors
High-frequency EM sensors were identified as the most promising solution among the three options.
This category includes sensors employing Bluetooth Low Energy (BLE), which offers a practical means
to detect connectivity in compact spheres. By calibrating the attenuation of EM waves through the
medium, it becomes possible to sense whether adjacent spheres are in contact. This solution, intended
to identify sphere interactions accurately, remains unaffected by the experiment’s conditions and can
efficiently collect the required data. However, its potential success was considered lower due to the
experiment’s size constraints and the challenges associated with accessing the data, both of which
significantly influenced the decision-making process regarding all three solutions.

7



3.2. Software 8

3.2. Software
Within the software solutions, three different strategies are considered: image processing, deep learn-
ing and a hybrid approach. Each utilises image processing techniques to isolate individual spheres.

3.2.1. Image Processing
Image processing, although inadequately described by its title, involves two distinct strategies: template
matching and 3D modelling.

Template matching
Template matching utilises a binary 2D circle template, where pixels that represent the circle are set to
1, and its diameter includes an additional margin to accommodate the maximum observed length in the
structure. Initially, the input image undergoes binary processing, the template is then systematically
moved across the image. If the sphere structure forms a complete circle, it fully overlaps the template,
matching all its pixels, and indicating the area of the template circle. This process is repeated for
images captured from the x, y, and z directions to evaluate the circularity of the structure. A consistent
match in all directions suggests a circular structure; otherwise, it is classified as linear. However, this
method is prone to incorrectly classifying larger structures with elliptical appearances that intersect the
template boundary as linear, necessitating the use of multiple cameras.

3D modelling
3D modelling employs advanced algorithms designed to analyse images captured from different per-
spectives, typically from multiple cameras positioned at various angles (x, y, and z directions). These
algorithms utilise principles of computer vision and geometric reconstruction to identify and localise the
centres of spheres within a 3D coordinate system.

The process begins with the acquisition of 2D images of the sphere formations from different viewpoints.
These images are then fed into the 3D modelling algorithm, which systematically analyses each image
to identify and extract features corresponding to the spheres. The algorithm reconstructs a 3D repre-
sentation of the scene, with each sphere represented by its centre point in the 3D coordinate system.
Once the centres of the spheres have been accurately localised in 3D space, the algorithm can anal-
yse their spatial arrangement to determine whether they form a circular or linear configuration. This
analysis may involve geometric computations, such as measuring distances between sphere centres
and assessing their alignment along different axes.

3.2.2. Deep Learning
The deep learning approach included two strategies: formation tracking and connectivity analysis.

Formation tracking
Formation tracking involves analysing entire sphere formations to distinguish between linear and cir-
cular configurations. This model requires training with a comprehensive dataset of all possible sphere
and formation combinations, which can be captured using a single camera. Therefore, it demands a
large dataset, especially if the number of spheres varies significantly, and entails extensive training
time due to the complexity of handling large arrays of RGB data.

Connectivity analysis
The connectivity analysis approach identifies connections between spheres to infer the formation type.
For instance, if three spheres are linked by two connections, it suggests a linear formation, whereas
three connections indicate a circular formation. This method is less influenced by the number of
spheres, substantially reducing the dataset size as fewer combinations need to be learned. Its primary
focus is on detecting whether a link exists between any two spheres, a factor that remains constant
regardless of the number of spheres. However, despite its potential, relying solely on image data has
disadvantages.

3.2.3. Hybrid Model
The third alternative is the use of a hybrid model. Image processing methods would be employed to
extract radius and centre information from the sphere formations, which would then serve as input for
the deep learning model.
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3.2.4. Incomplete Data Handling
Given that not all spheres may be visible in a single image, it’s crucial to devise a strategy for handling
incomplete data. Two approaches were considered: deletion and insertion of null values.

Deletion
The ”deleting” strategy utilizes a visibility algorithm to evaluate the accuracy of radius predictions. This
algorithm applies a threshold to determine the visibility coefficient of each sphere. If a sphere’s visibility
falls below the threshold, the corresponding set of images — whether from one or multiple cameras —
is eliminated.

However, this approach may result in the loss of a significant number of images, particularly if stringent
visibility standards are applied based on the number of cameras used. For instance, with two cameras,
if one image lacks sufficient visibility, both associated images are discarded. Consequently, three out of
four possible image combinations may be deleted. Historical data indicates that the camera positioned
in the x-direction typically has a higher likelihood of failing to capture certain spheres, thereby increasing
the potential for image loss under this strategy.

Insert Null
The ”insert null” strategy also employs a visibility algorithm to evaluate the accuracy of radius predic-
tions. A threshold is applied to determine whether a sphere’s visibility coefficient falls below a certain
level. If it does, all parameters related to that sphere are set to zero in the dataset.

This approach enables the retention of images in which some spheres are not visible while still training
the model to handle missing or incomplete data without bias. By incorporating data where certain
spheres are absent, the model learns to perform in scenarios where visibility is compromised. This
method mitigates the excessive discarding of data, potentially enhancing the overall effectiveness and
reliability of the system, especially in diverse operational environments.

However, it’s important to note that this approachmay influence the accuracy of predictions in scenarios
with good visibility, as the model is trained on data with artificially inserted null values.

The choice between these two strategies depends on the volume of data that can be collected, which is
influenced by the attempt frequency (fA); the frequency of formation changes. Given the constraints of
processing and uploading images via a Raspberry Pi, the setup requires careful consideration of data
flow.

When the attempt frequency is relatively low, the sampling frequency can exceed the Nyquist frequency.
In this scenario, even with a relatively low sampling rate, the data volumes remainmanageable, allowing
for a significant portion of data to be deleted without risking the loss of transitional information.

Conversely, in situations where the frequency of formation changes is high, the system generates a
substantial amount of data. Here, the sampling frequency must be at least twice that of the formation
change frequency to ensure no transitions are missed. In such cases, to avoid missing critical transi-
tions, the algorithm may have to utilize data with poorer visibility. Balancing this trade-off is crucial for
maintaining the integrity of the experiment’s outcomes.

3.3. Design Comparison
To determine the most suitable implementation, whether one or both, a comparison between the alter-
natives will be done using the described top-level requirements from Chapter 2.

3.3.1. Hardware vs Software
The comparison made for the top-level design choice is illustrated in Table 3.1. This comparison has
been made early on in the project, which is why the requirements in the Table do not fully match the final
requirements from Chapter 2. While specific weights for each category are not necessary, it’s clear that
the image-based approach holds an advantage. The top four categories (Sphere Size, Generalisability,
Measurement Neutrality and Experiment Duration) make the most significant difference in the design
selection; hence, their scores will be explained.
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Due to the installation of a sensor within the sphere, the size of the sphere will increase, which is
a significant disadvantage for sensor-based approaches. Generalisability includes various aspects
such as sphere size, variability, different structures, and formations. Because sensor-based methods
only establish a connection between spheres, this method cannot make a difference between different
formations like a cube. This presents a challenge for image processing as well, but one that is likely
manageable.

Sensor-based experiments may be sensitive to external electric field interference, which could influence
the experiment results. Additionally, the energy consumption of sensors poses a challenge, especially
when running experiments for extended periods such as 12-24 hours. In contrast, image-based meth-
ods do not have these disadvantages in either of these categories.

Table 3.1: Hardware vs. software comparison based on top-level requirements

Top-level requirements Image-based Sensor-based
Sphere Size 5 3
Generalisability 5 3
Measurement Neutrality 4 2
Experiment Duration 4 2
Accessibility 4 3
Costs 4 4
Setup Stability 4 3
Data Storage Size 4 5
Data Variability 5 3
Synchronized Data Collection 3 4
Future Expansion Prospects 4 2
Validatability 4 5
Total weight 50 39
Weighted average 4,2 3,3

3.3.2. Image Processing vs Neural Network vs Hybrid
In Table 3.2, clearly one method results in the best option. It distinguishes itself from the storage size,
as only a file with sphere arrays needs to be saved, instead of images with the other options. Secondly,
this method has good generalisable options, as this can be trained with the coordinates and radii of
the spheres. Also, an educated guess on the success rate of the method has been made, considering
aspects like debugging availabilities, precision estimation and potential unforeseen challenges.

Thus, after considering all these different methods, Figure 3.1 depicts the design plan, showing all
alternatives.
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Table 3.2: Image processing vs neural network comparison based on image-based requirements

Image-based requirements Weights Image Processing Neural Network Hybrid
Structure Dependencies 3 3 2 3
Data Storage Size 7 1 2 5
Data Variability 4 5 3 4
Generalisability 9 4 2 4
Future Expansion Prospects 2 3 2 4
Synchronized Data Collection 8 2 5 5
Accessibility 7 1 4 3
Validatability 10 5 3 4
Portability 7 4 4 4
Measurement Neutrality 10 2 4 4
Time Frame 4 3 4 5
Setup Stability 5 1 4 4
Training Time Efficiency 4 4 1 2
Chance of Success 10 3 2 4
Computational Time 3 2 4 4
Costs 10 5 5 5
Traceability 7 4 2 3
Total weight 110 346 356 444
Weighted average 3,15 3,24 4,04
% difference with max 28,3% 24,7% 0,0%

Figure 3.1: Alternative design decision tree
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3.3.3. Language Selection
To ensure consistency in the software program, it was opted to select one language for script writing.

1.1 Python
1.2 Matlab
1.3 C++

Python was chosen as the primary language for development due to its extensive libraries, ease of
use, and rapid prototyping capabilities. MATLAB and C++ were not selected because MATLAB, is
less efficient for large-scale applications, and C++ requires more complex memory management and
development time. The table substantiating this choice can be found in Appendix D.3, Table D.12.



4
Top-Level Implementation

This chapter provides an overview of the designed top-level implementation of the experimental setup
and the analysis that automates the detection of formations of spherical objects using image process-
ing and deep learning techniques. The implementation integrates various components, such as data
acquisition, processing and analysis workflow.

4.1. System Overview
The system consists of several interconnected modules managed by different teams. The process
begins with acquiring images at a certain sample frequency and ends with predicting the structure
formed at specific time stamps. The primary components involved are the experimental setup, the
image acquisition system, preprocessing and data extraction modules and the deep learning model for
structure prediction.

The steps that lead to automatised recognition of 3D structures of magnetic spheres are as follows:

1. A camera takes images of the experiment and a separate device uploads them to a server.
2. Image processing recognises the individual spheres suspended in a cylinder filled with turbulent

water.
3. The acquired data represents the position of the centre point and the radius of the spheres in a

2D plane.
4. The data is processed by inserting it into a neural network that is trained by (generated) labelled

data.
5. Output is a predicted 3D structure, either: Ring, Line or None.

4.1.1. Experimental Setup and Physics Analysis
Camera Setup
One camera is implemented in the setup, with a possible expansion to two cameras, and is used
to capture images at a predetermined sample frequency. The decision to use one camera comes
from the Time Frame requirement from Section 2.1 as it saves time, and from the Setup Compatibility
requirement (Section 2.2) so that it takes the existing setup into account. In addition, the camera is
chosen such that it can recognise individual spheres to meet the Formation Recognition requirement
(Section 2.3).

Sphere Design
The spheres must meet certain calculated size values to meet the requirements of Setup Compatibility.
According to requirements Reproducible Experiment and Experiment Duration, the spheres should be
designed in such a way that multiple experiments can be performed, having a duration of 12 to 24 hours.
Therefore, the spheres themselves and the paint should be waterproof and not break apart in the water

13
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flow. The training data is designed according to the requirement Generalisability, as the forced training
formations can be easily reproduced and extended to more spheres.

4.1.2. Data Management
The acquired images are temporarily stored in a cloud. First as the primary data source for subsequent
processing steps. Second, for post-inspection and to ensure no retake of the experiment has to be
performed in case the process fails. The images from the cloud have to be manually deleted whenever
the client does not need them anymore. These decisions can be traced back to the Data Storage Size
requirement in Section 2.2 and the Validatability requirement in Section 2.3.

4.1.3. Preprocessing and Feature Extraction
• Preprocessing: The image quality enhancement and preparation for feature extraction (Accu-
racy requirement from Section 2.3).

• Sphere Shape Extraction: Individual spherical shapes are identified and extracted from the
images, these are stored in separate files for further analysis.

• Extrapolation and Coordinate Determination: The edges of each sphere are extrapolated and
the 2D coordinates of each sphere’s centre and the radius are determined.

• Visibility: The ratio of the visible and extrapolated sphere (Accuracy requirement from Section
2.3).

4.1.4. Data Integration
The coordinates, radii and visibility of all identified spheres are compiled and saved into a single file,
consolidating the data for easier access and analysis.

4.1.5. Deep Learning for Structure Prediction
• Logic Implementation: implementing the necessary logic to feed the extracted data into the
deep learningmodel. Mainly, determining which images will be thrown away based on the visibility
factor (Accuracy requirement from Section 2.3).

• Model Training: Deep learning is used to process the data, and the model is trained to predict
the formation of the spheres (Formation Recognition requirement from Section 2.3).

4.1.6. Outcome and Analysis
The output of the deep learning model includes the predicted structure of the spheres: ring, line or
none. This will be saved accordingly to the final formatted file, so data can be validated. This final
format includes per image its spheres with their respective metadata (Validatability requirement from
Section 2.3).

Figure 4.1: Pipeline of the top-level implementation (can also be found in Appendix E.78).



5
Experimental Setup & Physics

5.1. Introduction
The research question of the overall project is:

“How do we automatically recognise 3D formations of magnetic spheres in line and ring formations?”

This submodule is responsible for the experimental setup and the underlying physics principles. In this
subdivision, experiments on the setup will supply data to be analysed and processed by the subse-
quent modules, Image Processing and Deep Learning. First, to be able to recognise 3D formations of
magnetic spheres, the spheres should be designed and produced. The Image Processing and Deep
Learning modules require clear images of the sphere formations, with the right illumination and enough
pixels to recognise the different spheres. Besides, the Deep Learning model needs to be trained on
the three optional results: ring, line and none. Therefore, a training dataset labelled with ring, line
and none formations needs to be produced. Therefore the subgroup-specific research question will be
formulated as follows:

”How can we supply the right data to the Image Processing and Deep Learning modules that will enable
them to recognise the formation of the 3D structures?”

The experimental setup is shown in Figure 5.1. It consists of an orange-coloured container on the
ground filled with water. A water pump produces a constant and adjustable upward water flow in
the cylinder. Inside this cylinder, a cone (see Figure 5.2) is located in which the spheres move. An
”aquarium” is stationed around the cylinder to oppose the reflection of the light. On top of that, there is
also a narrow orange cylinder placed 65 cm above the bottom of the cone, see the simulation in Figure
5.3. A flashlight is placed in the cylinder, directing light on the setup from above.

This chapter will cover all the steps that are needed to produce clear pictures of the spheres. It will
start with the selection of the camera and lighting source. Furthermore, the designing and assembling
of the magnetic spheres will be dissected, including their colours. Last but not least, decisions will be
made on the generation of the training data: which formations should be trained and how are these
being produced?
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Figure 5.1: Setup as seen from the front Figure 5.2: Cone in which the spheres are in motion

Figure 5.3: Undetailed simulation of the setup, including the cone within and cylinder above

5.2. Program of Requirements
This submodule is responsible for the experimental setup and the underlying physics principles. Spe-
cific requirements for this subgroup based on the top-level requirements have been formulated to en-
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sure clear objectives and guide design choices. These requirements are divided into three categories,
namely sphere design, setup and training data.

5.2.1. Sphere Design
Sphere design requirements describe the conditions the spheres and the magnets inside are limited
to.

1.1 Sphere Size: To accommodate a line formation of six spheres within the water tube with a mini-
mum diameter of 12 cm, each sphere’s diameter must be at most 2 cm. This requirement comes
from the Setup Compatibility requirement.

1.2 Mass Density Sphere: The spheres should have a mass density, dependent on their weight and
size, such that they will ’float’ in the area of sight of the cone. This is to ensure the Formation
Recognition requirement is met.

1.3 Energy Barrier: The energy barrier between the magnets in two contacting spheres should be
100 µJ to ensure proper interaction and stability within the experimental setup. This requirement
is derived from the accuracy objective.

1.4 Colour Selection: The Image Processing module (Chapter 6) prefers unique colours per sphere
and we will work with a maximum of 6 spheres. So 6 colours should be selected that can be dis-
tinguished from each other by the colour thresholding of Image Processing to allow for Formation
Recognition and Training Time Efficiency.

1.5 Paint Durability: The paint on the spheres must remain intact and undamaged for the entire du-
ration of the experiment (so this comes from the requirement Experiment Duration), withstanding
long exposure to water and any other conditions presented by the setup.

5.2.2. Setup Design
The setup requirements involve optimal equipment placement, consistent environmental conditions and
system stability to achieve accurate experimental results.

2.1 Costs: The budget for the experimental setup and hardware part is 1500 euros. This comes
from the top-level Costs requirement and is determined such that the majority of the budget is
available for this module.

2.2 Camera Position: The camera should be positioned to provide a clear and unobstructed view of
the spheres for Image Processing to allow for Formation Recognition. From this module follows
a position directly above the cylinder, looking down.

2.3 Camera Size: The physical dimensions of the camera are limited by the 11 cm diameter cylinder
on top of the experiment in which the camera is positioned. This requirement is derived from the
top-level requirement Setup Compatibility.

2.4 Camera Resolution: The pixel rate of the camera should be sufficient so that the spheres at a
maximum distance (at the bottom of the cone) depict a minimum of 10 pixels in radius, but not
too high that the size of the acquired data becomes too large to store. This is determined such
that requirements for Formation Recognition, Accuracy and Data Storage Size are met.

2.5 Camera Field of View: The camera should have a narrow enough field of view to minimise noise
from capturing areas outside the water cylinder, thereby maximising the resolution and focus on
the relevant experimental area. This requirement is derived from the same top-level requirements
as Camera Resolution.

2.6 Camera Colour Accuracy: The camera must have high colour accuracy to clearly differentiate
and recognise colours, this is to improve the overall accuracy and recognition.

2.7 Lighting Position: The light should be directed from above, in line with the camera’s perspective,
to minimise shadows and reflections that could interfere with sphere detection. This comes from
the requirements Formation Recognition and Accuracy.

2.8 Lighting Size: The size of the light source is limited by the same cylinder as the camera, the
lighting must fit together with the camera in an 11 cm diameter cylinder, according to requirement
Setup Compatibility.
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2.9 Lighting Brightness: The right luminosity is crucial for image recognition and should be chosen
such that it is bright enough that the spheres can be detected by the camera at their lowest point
but not too intense that overexposure occurs. This is derived from the same requirements as
Lighting Position.

2.10 Sampling Frequency: The camera should have a sampling frequency sufficient to capture
changes in sphere formations accurately, yet not so high as to produce redundant data. This
comes from Data Storage Size and Formation Recognition.

2.11 Water Pump Force: The water pump must be able to generate a flow rate sufficient to exert
an upward force equal to the gravitational force acting on the magnetic spheres at their terminal
velocity, ensuring that the spheres are suspended in the water without rising or sinking.

2.12 Waterproof Setup: The setup, including camera and lighting, must be fully waterproof to pre-
vent damage if an accident in the water-filled environment occurs. This is to ensure the Setup
Compatibility requirement is met.

2.13 Water Quality and Clarity: The water inside the cylinder must be clean and free of particles that
could obscure the view of the spheres, to allow for high accuracy and recognition.

2.14 Setup Stability: The entire setup should be stable to avoid any movements that could blur the
images and affect detection accuracy. This is derived from the requirements Accuracy and Re-
producible Experiment.

2.15 Contrasting Background: The background should be uniform and provide sufficient contrast
with the spheres, so that Formation Recognition is possible.

2.16 Uploading to Server: The camera must upload the collected data required by the Image Pro-
cessing module to a server. This comes from Accessibility, Data Storage Size and Formation
Recognition.

5.2.3. Training Data
The requirements for generating training data are based on its value for the deep learning algorithms,
as it should represent reality as much as possible to achieve high accuracy in the overall model.

3.1 Data Labelling : The system should facilitate easy labelling of the captured training data, indi-
cating the specific formation and number of spheres in each sample. This requirement is based
on Training Time Efficiency, Reproducible Experiment and Validatability.

3.2 Secure Attachment: The spheres should be attached strong enough to keep their shape intact
during the experiment, forming either a line or a ring. This comes from Validatability and Experi-
ment Duration.

3.3 Easy Assembly: The setup should allow for easy assembly and disassembly of different forma-
tions with varying numbers of spheres to generate diverse training data. This comes from the
Time Frame requirement.

3.4 String Visibility: In the case of using a string to attach the spheres, this string should be trans-
parent to avoid interference with the image recognition algorithms and to ensure it does not un-
dermine the accuracy.

3.5 Realistic Training Data: The generated training data must closely mimic the actual experimental
data in terms of sphere size and weight, formation flexibility, lighting conditions and image quality.
This is derived from the Training Time Efficiency, Accuracy and Validatability requirements.

5.3. Design Choices
In this section, all the alternatives, analyses and choices in terms of setup and sphere design will be
presented and discussed. This will be on the topics of camera selection, lighting selection, sphere and
magnet size considerations, paint colour selection, determination of the sampling frequency and the
chosen method for generating training data.
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5.3.1. Sphere and Magnet Size
In the design of the spheres, there are five requirements listed in Section 5.2.1 above, of which the first
three will influence the design choices concerning sphere and magnet size.

The first requirement is about the sphere size. Figure 5.2 shows the cone in which the spheres are
moving. The 20 cm height of the cone is the area that is visible in Figure 5.1. This is also the area of
interest for the model. If the spheres move outside of this area, then the data can be discarded. The
spheres should be able to form a line anywhere in this area, thus also at the lower side of the visible
area. The diameter of this lower side is 12 cm. Furthermore, the experiment should be performed with
up to six spheres. It is thus required that the spheres have a maximum diameter of 2 cm.

The second requirement is about the mass density of the sphere. This follows from the fact that the
spheres should not be too heavy or too light. Whenever the spheres are too heavy, they remain at the
bottom of the cylinder with the water flowing upwards. If they are too light, they will float on the water.
When a sphere is ’floating’ in a certain position in the water, the gravity force pointing downwards and
the drag force pointing upwards are equal to each other. The formula for the gravity force is:

Fg = (msphere −mH2O)g (5.1)

The mass of the sphere includes the mass of the sphere itself and the magnet inside of it:

Fg = ρ3DVsphere + ρmagnetVmagnet − ρH2OVsphere (5.2)

With Vsphere being the total volume of the sphere minus the volume of the magnet. The mass density
of the 3D material used for the sphere is 1169.2 kg/m3. This is calculated by 3D printing a sphere with
a certain volume and weighing it. The magnet that is used is a Neodymium magnet, having a mass
density of 7640 kg/m3. The mass density of the water is assumed to be 1000 kg/m3. The formula for
the drag force is:

Fdrag =
1

2
ACdv

2ρH2O (5.3)

With A being the surface of the sphere and Cd the drag coefficient, which is previously measured to be
0.58 [11], V is the terminal velocity and this is determined by the characteristics of the water pump. The
pump can deliver a flow upward with a speed between 7 cm/s to 30 cm/s. If the speed goes below 7
cm/s, the flow will not be constant anymore and 30 cm/s is the maximum flow that the pump can deliver.
However, this speed is measured at the top of the cone, so the speed inside the visible area is about
twice as large due to the smaller area through which the water has to flow. Calculations show that for
the design a speed of 33 cm/s is required, thus having a flow at the top of the cone of 16.5 cm/s.

The third requirement is about the energy barrier between two spheres. The deep-learning model will
classify formations into three cases: either a ring, a line or none. Therefore, there must be an energy
barrier between two magnets in surrounding spheres such that the spheres remain connected most of
the time. This energy barrier represents the energy required to overcome the repulsive or attractive
forces between two magnets to bring them to a desired position or to separate them. This can be
quantified in terms of the magnetic potential energy, which depends on the magnetic moments, the
distance between the magnets and their alignment, see equations 5.4 and 5.5.

Our spheres are designed to have an energy barrier of around 100 µJ for two reasons. First of all, in [11]
the ideal disturbing energy between two spheres has been determined to be around 100 µJ. This 100
µJ follows from a combination of cylindrical magnets of 4 mm by 4 mm and a sphere diameter of 18 mm.
Secondly, this assumption has been confirmed by experiments with spheres with an energy barrier of
around 90 µJ. A lot of the time some spheres were disconnected, resulting in a ”none” classification,
which is the least desirable classification (see Figure 5.4). It can be concluded that an energy barrier
of 90 µJ is too low. The formula for the energy of a single sphere (1) in the presence of a magnetic field
of another sphere (2) is:

U1 = −m1 ·B2 (5.4)

Assuming that the spheres are aligned, the magnetic field is calculated as follows:

B2 =
µ0m2

2πr3
(5.5)
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Since all spheres contain the same magnet, m1 = m2.

Figure 5.4: Experiment with spheres having an energy barrier of 90 µJ, resulting in a none classification

5.3.2. Sphere Colours
The fourth and fifth requirements of the sphere design are about colour and paint selection. The type
of paint that was deemed most suitable was spray paint, as that would be the easiest to apply evenly
on round shapes. The colour choices are based on maximum contrast between them to simplify the
image recognition algorithm.

A spray paint was found, Edding Permanent Spray, that was expected to meet the Paint Durability
requirement. This acrylic paint is suitable for almost all types of materials, dries quickly, is weatherproof,
gives good coverage and - most promising and conforms to the requirement Colour Selection - it is
available in 36 different colours, see Figure 5.5.

Figure 5.5: Colour options of the Edding 5200 Permanent Spray Premium Acrylic Paint

Based on knowledge from previous experiments with coloured spheres (see the colours in Figure 5.4),
it was found that it is quite hard to distinguish white from the rest, when the camera is positioned on the
side of the setup. Assumed is that this has something to do with the low contrast with the background
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and that it is technically not a colour, but a combination of all colours. Black, on the other hand, was
no problem to isolate.

The colours from Figure 5.5 were tested on the colour thresholding module found in Appendix C.2.1. It
was noticed that some of those are RAL colours, which is a standardized colour system. Considering
future applications, utilizing RAL colours provides a reliable reference for ’standard’ colours. This is
why it was chosen for the colours seen in Figure 5.6. These are red (Verkeersrood), black (Diepzwart),
orange (Neon oranje), yellow (Verkeersgeel), green (Geelgroen), dark blue (Elegant midnight) and
pink (Telemagenta). Despite its impracticality in colour isolation, the colour white (Verkeerswit) was
also ordered as it can be useful to restore the spheres to their original colour, facilitating the application
of a new colour if needed.

There are some uncertainties in the colour selection, in particular with blue and orange, that can only
be confirmed or refuted through experimentally testing the colour recognition. Initially, the lighter blue
(Gentiaanblauw) was preferred, as it has a larger contrast with black, but that colour was unfortunately
unavailable. Additionally, it was found that the colour orange can easily be isolated. However, the only
orange option is a neon colour; it cannot be said for certain how the colour recognition will respond to
that.

Figure 5.6: Colour selection of the Edding 5200 Permanent Spray Premium Acrylic Paint

5.3.3. Camera
Certain camera specifications have been relevant in the selection of a camera. First and foremost, the
camera size has been the biggest limitation, since a camera position from above is required and there is
a relatively narrow cylinder on top of the setup (see requirements Camera Position and Camera Size in
Section 5.2.2). ’Standard’ cameras like DSLR and mirrorless cameras are instantly unsuitable because
of their large sizes; even smaller compact cameras are too big. Action cameras were considered
but those are, no matter how small, not compatible because of their typical wide-angle lenses (see
requirement Camera Field of View in Section 5.2.2). Besides, action cameras often lack the necessary
control over sampling frequency and lighting conditions. What was left, is the category of webcam
cameras. Those tend to be compact and easy to integrate into a controlled experimental setup, with
adjustable fields of view, resolutions and frame rates. Additionally, many webcams allow for real-time
data capture via a direct connection to a computer.
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Figure 5.7: Schematic of camera proportions and distances

Finding the resolution
As can be seen in the requirements (Section 5.2.2), for Image Processing a minimum of 10 pixels must
be seen in a sphere’s radius at maximum distance, so underneath in the cone. The number of pixels is
in close correlation with the field of view and the focal length of a camera. Both specifications influence
the resolution and perceived image of a camera [8]. The number of pixels is calculated according
to Figure 5.7. From this, an equation can be drawn up for the ratio between actual and perceived
distances by the sensor:

r

f
=

R

D
(5.6)

Using the specific focal length f of a camera, the real radius of a sphere R of 1 cm and then the
maximum distance to a sphere D of 46 cm, one can find the perceived sphere radius at the sensor r.
Subsequently, the perceived radius can be divided by the size of one pixel in the camera sensor to find
how many pixels this radius projection represents.

Finding the field of view
For the Camera Field of View requirement, finding the field of view F (m) equals:

F = 2 tan(
α

2
)D (5.7)

with α the angle of view (degrees).

From this follows the width the camera sees at a certain distance, the minimum in the setup is 15,5 cm
at a distance of 26 cm (the top of the 20 cm visible area).
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Camera comparison
One webcam was selected, the Logitech StreamCam, whose specifications met all the requirements.
However, another camera option emerged during the research, namely a Raspberry Pi Camera Module
3. This comes in four versions, normal and wide angle, and with and without infrared filter. The wide
angle does not meet the field of view requirement, so only a normal angle with an infrared filter and a
normal angle without an infrared filter were considered.

The requirements and camera specifications of the Logitech Streamcam and the Raspberry Pi cameras
are compared in Table 5.1. Based on this analysis, the Raspberry Pi camera with an infrared filter
emerged as the superior option.

Table 5.1: Camera requirements comparison

Requirements Weights Logitech
Streamcam

Raspberry Pi
Camera Module 3

Raspberry Pi
Camera Module 3
NoIR

Costs 3 3
145 euros

4
56 euros

5
50 euros

Camera Size 5 4
48 x 58 x 66 mm

5
25 x 24 x 11,5 mm

5
25 x 24 x 11,5 mm

Camera
Resolution 5

4
1920 x 1080 pixels
focal length 3,7 mm
pixel size 2,2 um

–>min sphere radius
33 pixels[1]

5
4608 x 2592 pixels
focal length 4,74 mm
pixel size 1,4 um

–>min sphere radius
66 pixels[1]

5
4608 x 2592 pixels
focal length 4,74 mm
pixel size 1,4 um

–>min sphere radius
66 pixels[1]

Camera Field
of View 4

4
diagonal angle of

view 78°
–>diagonal field
of view 42 cm[2]

4
diagonal angle of

view 75°
–>diagonal field
of view 40 cm[2]

4
diagonal angle of

view 75°
–>diagonal field
of view 40 cm[2]

Camera Colour
Accuracy 5

4
larger sensors

generally have higher
color accuracy

4
larger sensors

generally have higher
color accuracy

2
this camera has no

infrared filter, meaning
that colours will be

distorted

Waterproof
Setup 2

4
not completely
waterproof, but
has enclosure

3
open circuit board,
measures must be
taken to make
watertight

3
open circuit board,
measures must be
taken to make
watertight

Uploading to
Server 3

4
direct interface with
computers via usb

5
raspberry pi camera
module directly

connects to raspberry
pi board

5
raspberry pi camera
module directly

connects to raspberry
pi board

Total weight 26 97 120 107
Weighted average 3,73 4,62 4,12
% difference with max 23,7% 0,0% 12,2%

[1]: Here the maximum distance to subject is D=46 cm.
[2]: Here the minimum distance to subject is D=26 cm.
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5.3.4. Lighting
In the lighting selection, there were three requirements to keep in mind: Lighting Position, Lighting
Size and Lighting Brightness, see Section 5.2.2. In terms of position, lighting coming from the same
direction as the camera was preferred. A bright flashlight would be ideal, as it is a narrow cylinder the
lamp has to fit in. So after choosing the Raspberry Pi Camera, the size of the lamp was constrained
to around 7 cm in diameter. For the brightness requirement, the value for the required luminous flux
(in Lumen) was based on a back-of-the-envelope calculation of the existing flashlight in the cylinder
which has about 12000 lm. This one was not suitable for the experiment because it was too large. The
selection for lighting landed on the Ansmann T12000R flashlight which has a brightness of 12000 lm
and is 64 mm in diameter, meaning that it meets all the requirements.

5.3.5. Sampling Frequency
The sampling frequency, in other words, the rate at which the camera takes pictures, is based on
empirical observations. It is quite difficult to theoretically determine a value for this, so testing our
spheres and observing their connecting behaviour was deemed as most useful in determining a sam-
pling frequency. For the Sampling Frequency requirement, the picture rate is based on how much the
formations seem to have changed after different time intervals. It is anticipated that a realistic value for
accurately capturing formation changes will be around 1 image per second.

5.3.6. Training Data
Some considerations have been made about how to generate the training data. First and foremost, the
generated data should be labelled so that it can serve as a verification of our actual experimental data,
see requirements in Section 5.2.3. Another requirement is secure attachment, this is so that training
data that needs to represent a ring, for example, cannot suddenly disconnect during the experiment and
show a line formation. Keeping these two in mind, two general methods for making this training data
were considered. One way is glueing spheres together in specific line and ring formations. Another
method is pulling a string through the spheres to create more flexible formations. Returning to the rest
of the training data requirements (easy assembly of formations, transparent strings and realistic data)
led to the conclusion of combining the two methods, as both have upsides and downsides, see Table
5.2.

Table 5.2: Training data requirements comparison

Training data requirements Glue String
Data labelling 5 5
Secure attachment 5 5
Easy assembly 5 4
String visibility 5 4
Realistic training data 2 5
Total weight 22 23
Weighted average 4,4 4,6

It can be noted that magnets are not necessary in the case of the training spheres, since specific
formations will be forced. It was decided to make use of lead fishing weights. Because of their specific
shape, it is easier to use these in combination with a string, because the string can be pulled through
the weights (see Figure 5.8).
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Figure 5.8: Fishing weights from lead

Some calculations have been done to ensure that the training spheres have the same effective mass
density as the spheres containing a magnet, and thus the same weight and size. Using a fishing weight
of 0,3 g meets the Realistic training data requirement of Section 5.2.3.

5.4. Implementation
This section sums up the implementation of the design choices from Section 5.3 that are made based
upon the requirements described in Section 5.2.

5.4.1. Sphere Design
There are five requirements for the design of the spheres: the size, the mass density, the energy barrier,
the colour and the paint selection. First of all, the diameter of the sphere must be below 2 cm. Secondly,
the mass density should have a certain value such that the spheres have a terminal velocity between
7 cm/sec and 30 cm/sec. Thirdly, the energy barrier between two magnets in connecting spheres is
100 µJ. Then, the six spheres must have a unique colour and lastly, the paint for the spheres must stay
intact during the whole operation.

Taking everything into consideration, the spheres are designed with the following specifications:

• The spheres contain a cylindrical Neodymium magnet with a diameter and a height of both 4 mm;
• The diameter of the spheres is 18mm.
• 3D models for the spheres are designed and printed using the Ultimaker S5 3D printer, present
in the EEMCS building.

• Seven printed spheres are painted for the experiment with the following colours: red, black, neon
orange, yellow, green, dark blue and pink (see Figure 5.6).

Printing of the magnetic spheres
For the printing of the spheres, a 3D model is designed using the program Tinkercad. The design is
illustrated in Figure 5.9 and the seven printed spheres can be seen in Figure 5.10.
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Figure 5.9: 3D model of two halves of a sphere with space left for a 4x4 mm cylindrical magnet inside

Figure 5.10: Printed magnetic spheres in seven different colours

5.4.2. Setup Design
The experimental setup has been implemented and the necessary components have been ordered and
installed. This includes the camera with the appropriate field of view and resolution, lighting and all the
components required for the Data Management module. In addition, a compressed air supply into the
cylinder has been implemented to serve as ventilation and cooling for the components within. All the
spheres necessary are glued and printed for the experiment.
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Camera mould
A custom insert has been placed at the bottom of the cylindrical cone, which has precisely printed
spaces for the camera and the flashlight, to keep these in place as much as possible. The design is
shown in Figure 5.11.

Figure 5.11: 3D model of the camera mould with space left for the Raspberry Pi camera and the flashlight

5.4.3. Training Data
Due to time constraints, initially training data using only four spheres has been generated, arranged in
line, ring and none formations.

To meet the last two requirements of the sphere design - colour and paint selection - the paint colours
from Figure 5.6 have been ordered and used on seven spheres. The colours red (Verkeersrood), yellow
(Verkeersgeel), green (Geelgroen) and pink (Telemagenta) seem to be the most effective for the image
processing model.

For the creation of the training data, two options have been considered and both are applied: glueing the
spheres together in a specific formation and pulling a string through them, enabling a certain flexibility
(see Section 5.3.6).

It has been decided that the ring will be glued and the line will be formed with a string. According to the
requirements in Section 5.2.3, the data should be easily labelled and securely attached. This follows
automatically using this method, given that the line could never form a ring and the glued ring is strong
enough to never lose connectivity between all spheres.

Furthermore, the setup should be easily assembled and the string should not be visible to prevent
interference with the image recognition program. Currently, four spheres are used to generate training
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data. Additionally, the same method could be applied to five or more spheres: using a string for a
line and glueing the ring. The string is transparent to prevent interference and the amount of string
that is visible is very small (the spheres are tightly connected). It is anticipated that it is not necessary
to generate more rings and lines with interchanged colours, since the deep learning model relies on
relative positions and can interchange the coordinates of the different coloured spheres.

Lastly, the training data must be realistic. By using the string instead of just glueing a line, the line
becomes more flexible and thus better represents reality.

Printing of the training spheres
As explained in Section 5.3.6, fishing weights made of lead are used for the training spheres, instead
of magnets. These leads are spherical, not cylindrical, and thus somewhat different in size than the
magnets. The 3D model had to be adjusted to this. Additionally, a very narrow, sort of hollow groove
was implemented in both sphere halves to allow a string to be threaded through it. The design is shown
in Figure 5.12.

Figure 5.12: 3D model of two halves of a sphere, to be used for generating training data and with space left for a lead fishing
weight and a string to be threaded through

Several of these designs have been printed and the training formation of four spheres in a line can be
seen in Figure 5.13.
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Figure 5.13: Printed training spheres formed in a line formation and connected via a string

5.5. Results
5.5.1. Sphere Design
To test whether the sphere design meets the requirements, some experiments have been executed.
First of all, only one sphere was tested. The sphere was observed to float perfectly in the area of sight
at a speed of 15 cm/s. As explained before, a test has been performed with an energy barrier of 90
µJ , which was a bit too low. Therefore, our spheres are designed to have an energy barrier of 100 µJ .
However, the 3D print material of our spheres has a higher mass density than the previously designed
spheres, resulting in a higher speed than in previous experiments. Although this speed is perfectly
within the limits of the water pump, it does produce more turbulence. This extra turbulence results in
more ”none” cases than was expected. The paint remains intact in the water, even after performing
multiple experiments for a couple of hours.

5.5.2. Camera
Initially, it was found that the pictures taken from above were less clear than anticipated. After filtering
the water, the quality of the images greatly improved. In addition, the camera fits perfectly in the mould.
However, if the spheres move too high, they might disappear from view, since the camera in the mould
is positioned somewhat off-centre, due to the flashlight. These unusable pictures will be discarded by
the image processing model.

After printing, it was discovered that the mould did not quite fit in the narrow cylinder. It was made 1 or
2 mm too large. To solve the problem, the mould was cut open on one side and a small segment was
removed so that the mould could be compressed and would fit in the cylinder.

5.5.3. Lighting
An unanticipated problem occurred with the flashlight. Unfortunately, it cannot charge and produce light
simultaneously. For this reason, the original flashlight is used.

5.5.4. Sampling Frequency
Observations of the experiment showed that taking fewer pictures than one every two seconds would
lead to insufficient information, as the spheres in the water moved quite quickly. It was also experienced
that there was a limit to how fast data could be uploaded to the server (requirement Uploading to Server),
a frequency higher than 1 image per second would deteriorate the performance of the Raspberry Pi.
Eventually, the determined sampling frequency is one picture taken every 1.5 seconds.
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5.5.5. Training Data
As said before, the training data will be created by glueing together a ring and using a string for a line.
The training data for the none case has been produced by demolishing the ring formation and letting
all four spheres float individually. A script is run on the Raspberry Pi (see 8), making it possible to
automatically generate one picture per 1.5 seconds. Therefore, it is possible to generate 2400 images
per hour. Since the deep learning model only needs 2500 pictures to train its model, the experiment
has to run 62.5 minutes to generate enough training data for one formation. Some captures of the three
different formations (ring, line and none) are shown in Figure 5.14.

(a) Ring (b) Line (c) None

Figure 5.14: Captures from the different training data cases

5.6. Discussion
5.6.1. Energy Barrier
The energy barrier between two magnets inside two connecting spheres is the main point of discussion.
The spheres are ideally designed to have very little none cases. Due to the heavier mass density of the
3D printing material compared to the material that is used in previous experiments, the overall mass
density, and thus weight, of the sphere becomes higher. Therefore, it is needed to have a higher water
pump force, which in turn results in increased turbulence. Due to this higher turbulence, an energy
barrier of 100 µJ is insufficient to have every sphere in a connected state most of the time. To omit the
none cases, one solution could be to use a 3D print material with a reduced effective density. A lower
mass of the spheres requires less force from the water pump and, consequently, less kinetic energy
caused by turbulence. As an alternative, it is recommended to replace the 4 by 4 mm magnets with a 4
by 5 mmmagnet, requiring only a few adjustments to the current design of the 3D sphere. The spheres
do increase in weight, resulting in more turbulence. However, the step from a 4 by 4 mm magnet to a 4
by 5 mm magnet is also quite big in terms of magnetic force, increasing the energy barrier to 156 µJ .

Another consequence of the heavier spheres is the area that they can be found in. Since a higher
velocity results in more turbulence and thus more none cases, the water pump force is kept relatively
low. That means that the spheres will move generally in the lower parts of the cone. This can have
a significant impact on the image processing and deep learning models, as these had expected the
spheres to be higher up in the cone.

5.6.2. Light Source
The flashlight chosen as a light source from the top works perfectly fine. It produces enough light and is
small enough to fit in the cylinder next to the camera. However, as is mentioned in the Results (Section
5.5), it is not possible to charge the flashlight while it is on. With only 2,5 hours of operation time
and a disproportional 6 hours of charging time, this particular flashlight became unfunctional for this
implementation as it conflicts with top-level requirement Experiment Duration. Therefore, it has been
decided to use the original flashlight. It does not fit perfectly in the camera mould next to the camera
but it does produce enough light for the spheres to be clearly visible, even when positioned on top of
the camera.
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5.6.3. Camera Position
The decision is made to put the camera in the cylinder, looking down at the spheres from the top.
This has been decided because the formations tend to move along a horizontal axis. This implies that
spheres forming a ring will have a higher visibility when looking from above. Considerations have been
made that the deep learning model better predicts the formation when looking from the top. Another
consideration is the light source placed at the top. This produces shadows at the bottom half of the
spheres, which are visible at the front. The camera from above does not see these shadows, which is
an advantage for the image processing model.

The alternative is placing a camera at the front. The camera placed at the top had much more difficulty
producing clear pictures than at the front, so the water needed to be filtered first. Another downside
of the camera positioned above is the background. The camera from above sees the bottom of the
setup, while a camera from the front would have a white and uniform background, which matches
sub-requirement 2.15, Contrasting Background. Since the image processing model is looking for the
colours of the spheres, it has more difficulty finding these from the top than from the front. It is unclear
to us whether the advantages of having the camera at the top outweigh the disadvantages.

5.6.4. Extend Number of Spheres
According to top-level requirement 3.4, the developed method must be generalisable to any structure
and any shape of the spheres in the structure. The spheres can be easily reproduced and painted in
different colours. The same yields for producing the training data. After the formations are made, the
system can be run and automatically produce enough training data in one hour per formation.

5.6.5. Future Recommendations
Moving forward, several key areas should be addressed to enhance the overall effectiveness and in-
tegration of the project. To begin with, looking into the practicalities of the setup could improve user-
friendliness. At present, the mould used for the camera at the bottom of the orange cylinder barely fits
in there. In addition, it was designed to fit the smaller flashlight of around 6 cm in diameter. The final
flashlight used is larger than that and does not fit in the mould. Besides this, the layout of the camera,
lighting and the Raspberry Pi 5 inside the cylinder is quite complex and not effortless to put into place.
In the future, the use of a sort of tube that holds everything at the right spot could be considered.

Secondly, as of right now, the setup is not waterproof. Due to time limitations, it is not yet ensured that in
case of an accident, all the components are secured from water damage. To achieve this, the cylinder
can be covered, for example, in a way that still allows for ventilation and cooling of the components.

Furthermore, another recommendation is the use of a second camera or a different camera position.
Choosing to take pictures from above the setup, has introduced some complications, such as the non-
uniform background of the bottom of the cone. The ideal would be to adjust the bottom and create more
contrast with the sphere formations In practice, on the other hand, this would not be in alignment with
the Setup Compatibility requirement. For this reason, experimenting with another camera perspective
could yield some useful insights into image recognition. Moreover, the ability to take pictures from a
second perspective is most likely to improve accuracy.

5.7. Conclusion
The objective of this subgroup is to provide the subsequent modules Image Processing and Deep
Learning with the required data for 3D structure recognition. For this, the optimal test setup and sphere
design have been examined and implemented. The experimental findings will be concluded in this
section by reiterating the comparison of all the requirements with the design choices.

5.7.1. Results and Performance Evaluation
In conclusion, the Experimental Setup & Physics submodule has been quite successful in providing an
answer to the research question, that is:

”How can we supply the right data to the Image Processing and Deep Learning modules that will enable
them to recognise the formation of the 3D structures?”
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Supplying the right data involved researching the optimal test setup and experimental spheres. The
test setup has functioned accordingly and also the sphere design has met all the requirements, as
illustrated in the section below. Only the Energy Barrier requirement remains to be disputed. The
design resulted in an energy barrier that would deliver favourable data, in theory. In practice, however,
it was experienced that the experimental spheres would float in the none classification the majority of
the time. This formation is least desirable in acquiring useful results. It was found that merely focusing
on the energy barrier will not suffice, the combination with the effective density is crucial for the structure
formations.

Furthermore, successful training spheres have been designed and training data has been delivered.
This part of the submodule has functioned properly and meets the requirements. For the future, the
expansion of the training dataset is a real opportunity.

5.7.2. Alignment with Requirements
Top-level requirements
1.1 Time Frame: Due to time limitations, only a demo of four spheres can be performed. However,

an extension to more spheres is easily performed (see Section 5.6.5).
1.3 Setup Compatibility: Since modifications to the current setup were not possible, there were

some constraints that needed to be dealt with. However, this has not restricted the achievements
of this submodule, all the implementations could be performed without disrupting the integrity of
the setup.

2.1 Training Time Efficiency: Only two sphere formations have to be prepared: one ring and one
line. After that, the experiment can run for hours generating the training data automatically. And
finally, to train on none data, the ring and line formations can be demounted to form disconnected
spheres and an experiment can run, again, for hours.

2.3 Reproducible Experiment: By using the same lighting, camera and water pump settings, all
the factors apart from the independent variable stay constant, ensuring the reproducibility of the
experiments.

3.6 Experiment Duration: A requirement was to run the experiment for 12 to 24 hours. This amount
of time has not been tested yet, but it is expected that all the physical elements will endure, such as
the paint and glued sphere formations. Only the duration of the connection between the camera
and the server remains uncertain, but this requires further testing to confirm its stability.

Sphere design requirements
1.1 Sphere Size: The sphere diameter is taken to be 18 mm.
1.2 Mass Density Sphere: To ensure this requirement is met, calculations have been done with the

effective density of the 3D print material, the size of the magnet and its density and the size of
the sphere.

1.3 Energy Barrier: Cylindrical neodymium magnets have been chosen of 4 mm in diameter and 4
mm in height. This in combination with 18 mm sphere size gives an energy barrier between two
spheres of around 100 µJ . Although this requirement is met, in hindsight a stronger magnet or
smaller sphere size would be preferred.

1.4 Colour Selection: 7 colours have been ordered, namely: red, neon orange, green, yellow, pink,
dark blue and black. This is one more than required to have the ability to alternate between
colours.

1.5 Paint Durability: The paint selection fell on Edding Permanent Spray. Empirical observations
have shown that the paint stays intact and that this requirement has been met.

Setup design requirements
2.1 Costs: In total, the expenses have cost around 300 euros, well under budget.
2.2 Camera Position: The camera provides a clear view of the spheres in the cone. Because of the

flashlight in the same cylinder, the camera is positioned around 3 cm off-centre, which may result
in a skewed perspective. It appears, however, to capture all the relevant information.
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2.3 Camera Size: A camera is chosen that is truly small, only 25 by 24 mm, so this requirement has
been met.

2.4 Camera Resolution: This requirement has been met with a focal length of 4,74 mm and a pixel
size of 1,4 µm. From this follows a minimal sphere radius of 66 pixels.

2.5 Camera Field of View: The selected camera has a diagonal field of view at a 26 cm distance of
40 cm. This is not minimal (which is 15,5 cm), but it is sufficient.

2.6 Camera Colour Accuracy: Contrast between the chosen colours can clearly be detected.
2.7 Lighting Position: It was possible to direct light from the same perspective as the camera.
2.8 Lighting Size: The flashlight was able to fit within the same cylinder as the camera.
2.9 Lighting Brightness: Eventually, the already existing flashlight was used. The luminosity of this

light could be adjusted so that the right brightness could be selected.
2.10 Sampling Frequency: The sampling frequency was determined at 1,5 s per image. More im-

ages per second would be preferable because of the quick changes in formations. However, the
frequency was limited by the Raspberry Pi’s capacity.

2.11 Water Pump Force: During the experiments, it was found that a pump velocity of around 15 cm/s
ensures the floating of the spheres. However, this relatively high speed also caused quite some
undesired turbulence in the sphere formations.

2.12 Waterproof Setup: It was not yet ensured the setup is waterproof, since the cylinder containing
the camera, flashlight and Raspberry Pi is left uncovered, which is an area for future improvement.

2.13 Water Quality and Clarity: Initially, it was found that the camera position from above resulted
in low-quality pictures. After refreshing the water, however, the images became a lot clearer,
showing that it is essential to keep the water quality in mind.

2.14 Setup Stability: To improve the stability of the setup, a mould for the camera and flashlight has
been designed. Although it was printed a bit too large, after some effort the mould could still fit
and effectively hold the camera in place.

2.15 Contrasting Background: When using a camera position from above, instead of from the side
of the setup, the background is not uniform anymore. This has also caused some problems in the
Image Processing module with background removal. The fact that this requirement is not met in
the current setup could account for some inaccuracies.

2.16 Uploading to Server: Uploading to the server runs successfully. First, data is transmitted from
the camera to the Raspberry Pi, which in turn is connected to a computer via the internet, enabling
smooth uploading of the acquired data.

Training data requirements
3.1 Data Labelling : Three experiments have been conducted with the training data: a ring formation,

a line formation and four individual spheres disconnected. These three experiments are clearly
labelled with the specific formation.

3.2 Secure Attachment: The training formations have held their required connectivity for the whole
duration of the experiment, meeting this requirement.

3.3 Easy Assembly: It was quite easy to assemble the formations. Disassembling, on the other
hand, will be a challenge because of the superglue used. Some future effort can be put into
simplifying this process.

3.4 String Visibility: A transparent string is used, one that is not visible on the images, meaning that
this requirement is followed successfully.

3.5 Realistic Training Data: Both the line and ring formation closely mimicked the actual experimen-
tal data. The line was flexible, to a certain extent in that it would never form a ring. The ring was
robust and accurately represented this formation type.
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Image Processing

6.1. Introduction
The image processing team’s objective is to develop an algorithm that can accurately and efficiently
process images to detect spheres and extract the desired properties: the centers, radii and visibility.
This algorithm not only needs to handle clear and unobstructed images but must also be robust against
partial occlusions and varying lighting conditions. This is an important step in the overall system, that
aims to automatically identify structures such as lines or rings.

Various image processing techniques have been employed to detect and analyze geometric shapes.
Traditional methods include Hough Transform, edge detection algorithms like Canny, and contour-
based approaches. These methods have been successful in controlled environments but often struggle
with occlusions and noise present in real-world scenarios. To enhance robustness, more recent ad-
vances incorporating deep learning techniques are employed in the developed algorithm for example
by removing the background. However, these approaches require substantial annotated data and com-
putational resources. Given the constraints and the specific needs of this project, a hybrid approach
leveraging both traditional and modern techniques was considered.

After researching potential strategies, the sub-team developed an algorithm that applies image pro-
cessing techniques to automatically compute the properties requested by the Deep Learning system.
The algorithm was tested on preliminary images recorded with mobile phones of team-members, allow-
ing the image processing team to work in parallel with the other teams. Additionally, binary images of
occluded circles were generated to facilitate the comparison of different algorithms and ensure robust-
ness. Also, this gave access to a much larger dataset of testing images ensuring controlled adjustment
of parameters in the test images.

The project adopted an iterative approach, continuously evaluating and refining the requirements and
design to align with the top-level goals and meet the expectations of the team supervisor. The image
processing component serves as a bridge between the raw images and the data required for the deep
learning algorithm, which is a subsequent stage in the system.

The following sections will provide a breakdown of the image processing team’s work. A simplified
overview of the final implemented subsystem can be seen in Figure 6.1 and was designed to meet the
requirements, including sphere detection, feature extraction, noise resistance, computation efficiency,
and data management. A robust sequence of steps ensures that the system is resilient to noise and
capable of processing multiple sequential tasks efficiently.

34
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Figure 6.1: Black Box Pipeline of Image Processing

Image processing black box overview
1. Colour Enhancement: Improves the visibility of spheres by enhancing the colours in the images.
2. Background Removal: Eliminates irrelevant background details, isolating the spheres more

effectively.
3. Sphere Isolation via Color Detection: Uses colour-based techniques to distinguish spheres

from the background.
4. Extrapolation using Hough Transform: Applies the Hough Transform to compute centre coor-

dinates and radii of the isolated spheres.
5. Visibility Calculation: Assesses the visibility of each sphere by comparing it to the respective

reconstructed complete circle.
6. Data Output: The computed features for post-inspection and further analysis.

6.1.1. Outline of the Chapter
The outline of this chapter is as follows: Section 6.2 will discuss the specific requirements for the
image processing component. It will detail the constraints and specifications that the image processing
algorithm needs to meet to contribute to the overall system goals.

In Section 6.3, the design choices made during the development of the image processing algorithm
will be explained. This section will also explore alternative methods that were considered, providing
insights into the decision-making process and the rationale behind selecting the final approach.

Section 6.4 will dive into the details of the implementation of the chosen image processing algorithm. It
will describe the steps taken to develop the system, the challenges encountered, and how these were
addressed.

The performance of the image processing system will be discussed in Section 6.5 and Section 6.6. It
will present the results obtained from testing the system on various images. The accuracy of the system
in detecting the centers, radii, and visibility of the spheres will be evaluated and compared to the initial
requirements.

Finally, Section 6.7, will review the developed image processing system, summarizing its performance
and the extent to which it meets the project goals. Potential future improvements will be analyzed to
enhance the system’s accuracy and efficiency.

6.2. Program of Requirements
The overall goal is to compute individual spherical objects’ center coordinates, radius, and visibility
in a two-dimensional image of the self-assembled structure of magnetic spheres in a turbulent driven
flow of water. This section outlines the Program of Requirements (PoR) for the image processing part,
detailing the necessities to determine the features mentioned before. The PoR ensures clear objectives
and guided design choices. The requirements are divided into four categories: Overall Subsystem,
Sphere Isolation, Feature Extraction, and Data Storage.

6.2.1. Overall Subsystem
1.1 Accuracy: The accuracy of the radius and centre point should be 98.2% for 3 spheres, 96.1% for

4 spheres, 96% for 5 spheres and 95.4% for six spheres (see Figure 7.14 from the Deep Learning
sub-team to achieve an overall system accuracy of 95%).

1.2 Self-Contained Algorithm: The algorithm must operate independently without relying on exter-
nal applications.
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1.3 Iterative Sequential Performance: The system should perform multiple sequential processing
and measurement tasks iteratively.

1.4 Computation Time: The time it takes to process all images obtained during an experiment should
not lie above 2 hours.

1.5 Multi-Sphere Computation: The algorithm must detect and compute the required parameters
for up to six individual spheres.

1.6 Automated Process:: The algorithm must automatically compute the features of the detected
spheres when an image is inputted.

6.2.2. Sphere Isolation
2.1 NoiseResistance: Themodel should effectively remove environmental and system noise caused

by factors such as light reflections, shadows, and water disturbances, without losing important
information.

2.2 Sphere Detection: The spheres’ colour should be distinguishable by the software algorithm in
the images taken of the observed structure.

6.2.3. Feature Extraction
3.1 Position: The system must determine and store the center position coordinates of each sphere.
3.2 Radius Computation: The system must determine the radius of each observable circle in the

2D image taken from the 3D structure of spheres.
3.3 Visibility: The system must calculate the visibility of each sphere by comparing it to the recon-

structed complete circle with the identical computed centre coordinates and radius.

6.2.4. Data Management
4.1 Input File Format: The system should be able to process .jpg images, as this is the standard

format received from the camera.
4.2 Output File Format: The computed features should be in a format readable by the Deep Learning

Neural Network: a NumPy array, consisting of the centre (x,y), radius, and visibility.

6.3. Design Choices
In developing a robust solution for the image processing component of the system, various design
choices were explored and evaluated. This section delves into multiple design options and their respec-
tive analyses, providing insights into the selection process based on specific criteria and performance
metrics. With the use of weighted tables comparing the amount of adherence to the top-level and
sub-group specific requirements per alternative, the best approach for every choice is substantiated.

6.3.1. Camera Position
In a similar project executed by Tijmen [12], one camera was placed in a horizontal recording direction
on the side of the test tank. However, the camera could also be placed at the top of the test setup and
record the structure in a vertical direction pointing down. Recordings taken with the camera recording
horizontally at the side of the tank resulted in a significant loss in the ability to have a significant portion of
the sphere captured in the camera. Mainly when the structure of spheres formed a ring, some spheres
were behind other spheres such that the sphere was not visible. Also, when the camera records the
spheres horizontally at the side of the tank and the light source is placed vertically at the top of the
tank, shadows cause implications in sphere isolation. Example images of these implications can be
found in Appendix E.1.1. In Appendix D.1 the comparison between the two camera positions can be
found. Eventually, the choice of having a camera from the top scores significantly higher than having
a camera from the side. Therefore, it was decided to place the camera vertically at the top of the test
setup.

6.3.2. Feature Extraction Method
To extract circle features a distinction between the two methods was made:
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Alternatives
1.1 Immediate Circle Detection
1.2 Binary Thresholding + Reconstruction

Analysis and Choice
Table D.2 weighed the selected method to be sphere isolation by binary thresholding, followed by circle
reconstruction to extract the circle features. This method is preferred over immediate circle reconstruc-
tion as it is less accurate and robust. Another main advantage is that the binary thresholding and
reconstruction is expected to have better processing speed and flexibility in the objects that needs to
be extracted.

6.3.3. Pre-processing Techniques
To increase the chance of successful sphere detection and feature extraction, the images had to be
prepared to enhance the quality.

Alternatives
2.1 LAB Image - CLAHE Enhanced L-channel
2.4 Background removal
2.5 Non-Local Means Denoising
2.6 Contrast and Brightness Adjustment
2.7 Remove Shade with Low Frequencies
2.8 Glare Removal using CLAHE
2.9 Temperature Adjustment

Analysis and Choise
The selected pre-processing techniques include: LAB Image - CLAHE Enhanced L-channel: Under-
water digital images generally suffer from more blur, low contrast, non-uniform lighting, and diminished
colour, due to different colour absorption underwater. To conquer the problem of uneven illumination, a
proposed [13] pre-processing technique based on CLAHE in the LAB colour space improves the quality
of underwater digital images. Background Removal: To limit thresholding of parts in the image that
are not part of the spheres. Non-Local Means Denoising: to smooth the artefacts that may have
arisen during colour enhancement. These techniques collectively improve image quality, enhance fea-
tures of interest, and reduce noise. In Appendix D.1, Table D.3 the considerations can be found. The
decision can be traced back to requirements 2.1 and 2.2.

6.3.4. Sphere Colours
The first step in detecting spherical objects in the image depends on the appearance of the spheres.

Alternatives
3.1 All Spheres are the Same Colour
3.2 All Spheres are a Unique Colour
3.3 Half the Sphere One Colour, the Other Half Another Colour (Consistent Across All Spheres)

Analysis and Choice
Spheres with unique colours or half-and-half colouring provide distinct advantages for colour-based
segmentation, simplifying detection and differentiation. Therefore, both options were explored. The
implementation process of both algorithms can be found in Section 7.4. The weighted table can be
found in Appendix D.4. The decision can be traced back to requirements 1.5 and 2.2.

6.3.5. Sphere Detection Techniques
Alternatives
4.1 Colour Threshold - Binary Isolation
4.2 Contour, Concave, Segment grouping - Estimates Contours
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4.3 Canny Edge Detection
4.4 Watershed Algorithm
4.5 Gradient detection [9]

Analysis and Choice
Colour Threshold - Binary Isolation is selected for its simplicity, minimizing the computation time, and
effectiveness in isolating spheres based on their unique colour. This choice is substantiated by the table
from Appendix D.5. For half-and-half colouring, the Contour, Concave, Segment grouping alternative
was explored. The decision can be traced back to requirement 2.2.

6.3.6. Circle reconstruction Algorithms
Due to possible overlapping of spheres, they need to be reconstructed to find the radius and center
point.

Alternatives
5.1 Bayesian Extrapolation [18]
5.2 Matched Filter
5.3 Minimum Enclosing Circle
5.4 Hough Transform [3]

Analysis and Choice
Minimum Enclosing Circle algorithm and Hough Transform are selected for their robustness and ac-
curacy in detecting circular shapes in images. See Table D.6. The decision can be traced back to
requirements 3.1 and 3.2.

6.3.7. Intermediate Temporal Image Storage
To check processing steps, a temporal storage format is selected:

Alternatives
6.1 PNG
6.2 BIN
6.3 PSD
6.4 JPEG

Analysis and Choice
PNG is chosen for its lossless compression, ensuring high image quality throughout the processing
stages. The table arguing for this choice can be found in Appendix D.8. The decision can be traced
back to requirement 1.1.

6.3.8. Visibility Metrics
To determine the overlap of the detected and constructed circles a visibility metric is introduced. This is
used by the Deep Learning sub-team to give a measure of the probability of the extracted parameters
being accurate up to a certain point.

Alternatives
7.1 Jaccard Similarity Coefficient
7.2 Dice Similarity Coefficient
7.3 Fuzzy Logic
7.4 Easy Ratio: Detected / Reconstructed

Analysis and Choice
Jaccard and Dice coefficients are selected for their effectiveness in evaluating the overlap and similarity
between detected spheres and ground truth data. The weighted table, D.9, substantiated the selected
method. The decision can be traced back to requirement 3.3.
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6.3.9. Background Theory
To gain a deeper understanding of the design choices that weremade, a background study is performed.
In this section the explanation and theory behind every processing step can be found, supported by
mathematical equations where applicable.

Preprocessing Theory
The LAB colour space is a colour-opponent space with dimensions L for luminance and a and b for
the colour-opponent dimensions(chromaticity). It is designed to approximate human vision and is often
used in image processing because it separates the luminance (lightness) from the colour information.
This separation allows for more effective color-based segmentation and analysis.

CLAHE (Contrast Limited Adaptive Histogram Equalization) is applied to the L-channel to improve
local contrast and enhance the visibility of features in the image. The CLAHE method optimizes maxi-
mum entropy equalization, while the contrast gets limited. [2]

CLAHE(L) = clip(
cdf(L)−min(cdf(L))

max(cdf(L))−min(cdf(L))
· (Lmax − Lmin) + Lmin) (6.1)

Where cdf(L) is the cumulative distribution function of the L-channel, and Lmax and Lmin are the
maximum and minimum pixel values.

Contrast enhancement ensures more accurate background removal: where a pre-trained deep learn-
ing model is used to segment the foreground (objects of interest) from the background.

Iforeground = Model(I) (6.2)

I is the input image, and Iforeground is the segmented image with the background removed.

To filter artefacts in the enhanced image, a denoising method is applied that reduces noise while pre-
serving edges by averaging similar pixel patches throughout the image. This is calledNon-local Means
(NLM) Denoising [5]:

I ′(x, y) =
1

C(x, y)

∑
p∈Ω

I(p) · exp
(
−||I(x, y)− I(p)||2

h2

)
(6.3)

Where I ′(x, y) is the denoised image, Ω is the search window, h is the filtering parameter, and C(x, y)
is the normalization factor.

Sphere Isolation Theory
To isolate spheres, selecting distinct colours that can be easily recognized is essential. The HSV (Hue,
Saturation, Value) colour space is used because it separates chromatic content (hue and saturation)
from intensity (value), making it easier to segment based on colour.

The conversion from RGB to HSV is [10]:

V = max(R,G,B) (6.4)

S =

{
0 if V = 0

1− min(R,G,B)
V otherwise

(6.5)

H =


0 if max(R,G,B) = min(R,G,B)
60◦ · G−B

V−min(R,G,B) + 0◦ if V = R
60◦ · B−R

V−min(R,G,B) + 120◦ if V = G
60◦ · R−G

V−min(R,G,B) + 240◦ if V = B

(6.6)

Binary selection is done using thresholding:

Ibin(x, y) =

{
1 if Hmin ≤ H(x, y) ≤ Hmax

0 otherwise
(6.7)
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Feature Extraction Theory
TheMinimumEnclosing Circle algorithm uses geometry to find the smallest possible circle enclosing
the detected segmentation. This can define the size and position of the spherical objects within the
image. The general equation of a circle with centre (a,b) and radius r is:

(x− a)2 + (y − b)2 = r2 (6.8)

Circle detection using the Hough Transform [3], works by transforming points in the image space to a
parameter space where circles can be identified as peaks. It is defined in a parametric form, where (a,
b) is the centre and r the radius:

x = a+ r cos θ (6.9)
y = b+ r sin θ (6.10)

Points in the image that lie on the circumference of a circle, map to curves in the Hough space, and
the intersection of these curves indicates the presence of a circle.

Visibility Theory
The Dice Similarity Coefficient(DSC) is defined as:

DSC =
2|A ∩B|
|A|+ |B|

(6.11)

and the Jaccard Similarity Coefficient(JSC) as:

JSC =
|A ∩B|
|A ∪B|

(6.12)

Where A and B are two sets representing the original and the reconstructed segmentation. Both met-
rics quantify the similarity between these segmentations, with values ranging from 0 (no overlap) to 1
(perfect overlap). For a consistent visibility evaluation, the JSC is selected.

6.4. Implementation
This section will describe the implementation and the design choices made to meet the top-level and
image processing requirements.

Figure 6.2: Pipeline of the Image Processing Implementation (Appendix E.32)

The strategies and algorithms were selected based on the background information in Section 6.3.9 to
comply with the PoR. The input image for the processing algorithm is provided by the hardware team,
with the image-taking process detailed in Chapter 5. An example image processed by the algorithm is
shown in Figure 6.2. The following sections discuss the implementation details of the image processing
algorithm.
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6.4.1. Radius and Center coordinates extraction
The final implementation was developed in Python, as explained in Section 3.3.3. Primarily using the
OpenCV library due to its optimized C++ codebase, ensuring robustness, computational efficiency, and
real-time image processing capabilities [21].

To improve the accuracy of the contour-finding algorithm, colour enhancement was applied to the input
image. Initially, histogram equalization was attempted to enhance contrast; but it increased noise due
to unequal pixel value representation across different colour channels. The Contrast Limited Adaptive
Histogram Equalization (CLAHE) method (explained in Section 6.3.9), significantly improved contrast
while reducing noise, enhancing the detection of spheres in binary images. After applying CLAHE, a
GaussianBlur was used to smooth edges and remove sharp transitions. This was followed by image
dilation to connect fragmented edges and erosion to refine these connections. The process is illustrated
in Figure 6.3.

Input image Pre-processed color enhanced image

Figure 6.3: Pre-processing and colour enhancement result

To limit computational complexity, the background is removed to make only the spheres visible. The
background removal algorithm, rembg, efficiently handles relatively simple backgrounds using a deep
learning approach. This results in a significantly reduced amount of pixel information to process [20].
The result of applying the rembg background removal algorithm can be seen in Figure 6.4.

Pre-processed color enhanced image Removed background image

Figure 6.4: Rembg remove background result

To denoise the image, the fastNlMeansDenoisingColored function from the cv2 library was applied to
the background-removed image. This function searches for similar patches in an image and averages
them to filter out noise [4] enhancing the overall accuracy of the contour-finding algorithm and property
computation.

In Section 6.3.9 the HSV colour space was chosen for its invariance to illumination brightness [15]. A
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trackbar was used to visualize the minimum and maximum values for the Hue, Saturation, and Value
channels. The trackbar adjusts the H, S, and V thresholds, as illustrated in Figure 6.5. The Python
script can be found in C.2.1.

Full HSV Range HSV Range for Yellow

Figure 6.5: HSV Range Selection

The image is converted from BGR to HSV colour space. Each pixel is compared to the lower and
upper H, S and V threshold values to create a binary image. Accurate threshold values ensure the
binary image contains only the visible part of the occluded sphere. This process is shown in Figure
6.6. Finally, a GaussianBlur is applied and the image is dilated and eroded to smooth and connect the
edges. This process is repeated for all spheres in the input image, isolating and storing each sphere
in a binary image. The isolated yellow sphere in the binary image can be seen in Figure 6.6.

Figure 6.6: Binary image of yellow isolated sphere

Sphere Isolation:Unique colours vs Consistent Half-and-Half Colours
Two methods were evaluated for isolating spheres in the image processing algorithm: the Unique
Colour method and the Consistent Half-and-Half Colour scheme.

Unique colour combined with binary thresholding method:

• Advantages: This method is straightforward and computationally efficient, making it well-suited
for scenarios where spheres can be distinctly coloured.

• Limitations: It lacks flexibility and generalizability for more complex and varied scenarios where
sphere colours might overlap or be indistinct.

Consistent half-and-half colour scheme - contour and concave segment grouping:

• Advantages: Potentially more generalizable and future-proof, capable of handling more complex
scenarios.

• Limitations: Higher computational complexity and prone to errors, particularly in overlapping con-
tour segments. An example trial image of this method is shown in Appendix E.19.

Ultimately, the Unique Colour method was chosen due to its simplicity and efficiency, despite the po-
tential future benefits of the Consistent Half-and-Half Colour scheme. The latter method was not fully
implemented due to time constraints.
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Circle Reconstruction Algorithms: Hough Transform vs. Min Enclosing Circle
In Section 6.3.6 various algorithms for determining the radius and centre coordinates of a binary image
were discussed. Two main algorithms were considered: the textttmin_Enclosing circle method and the
Hough Transform.

min_Enclosing Circle Method:

• Initial Assessment: Initially seemed optimal due to its efficiency in specific geometric conditions.
• Limitations: Proved inaccurate when less than half of the circle’s perimeter was visible, failing in
scenarios with partial occlusion.

Hough Transform:

• Initial Assessment: Scored 9% lower in initial tests but demonstrated higher overall robustness
across varied scenarios.

• Performance: Chosen for its ability to handle cases with partial visibility of the sphere’s perimeter.

To compare the accuracy of these algorithms, an initial accuracy test was conducted using artificial
images. A dataset was generated with a white circle (radius of 73 pixels) in the centre of each image.
A black circle, representing an occluding sphere, was placed on top of the white circle and displaced
incrementally until it was completely out of the white circle. This setup simulated the occlusion scenarios
expected in real experiments, as shown in Figure 6.7.

Figure 6.7: Illustrative examples of images from the accuracy test set

The error in the computed radius for each algorithm was calculated using Equation 6.13:

eradius[%] =
computed radius− correct radius

correct radius
∗ 100 (6.13)

Comparing the computed radius to the actual radius provides an accurate measure of the inaccuracy
of the computed radius. The following graph, Figure 6.8, shows the error in the computed radius when
the different algorithms are applied.

Figure 6.8: Comparison of radius reconstruction when displacing one occluding sphere
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Initial evaluations suggested that the min_Enclosing circle method might provide the most accurate
results. However, further investigation revealed that this method’s accuracy heavily depends on spe-
cific geometric characteristics. Notably, when less than half of the circle’s perimeter is visible, the
min_Enclosing circle method yields inaccurate radius estimates. Examples of common fault recon-
structed spheres using the min_Enclosing algorithm can be found in Appendix E.11. Given the varying
radii observed in images of spheres within the tube, it is impractical to establish a definitive threshold
for the perimeter visibility required for accurate results using this method.

Consequently, an updated evaluation of the circle detection requirements, detailed in Appendix D.1.6,
led to the exclusive implementation of the Hough Transform due to its superior performance against the
defined criteria. The following code snippet demonstrates the implementation of the Hough Transform
using the OpenCV library:

1 # Apply the HoughCircles function on the edges
2 circles = cv2.HoughCircles(edges,
3 cv2.HOUGH_GRADIENT,
4 dp=4.7,
5 minDist=10,
6 param1=100,
7 param2=50,
8 minRadius=66,
9 maxRadius=117)

Listing 6.1: Python code: Hough Transform circle implementation in cv2

Below an overview of definitions of the Hough Circles parameters is given.

• dp : Size of accumulator in comparison to the input image.
• minDist : Minimum distance between neighbouring centres (when more circles can be detected).
• param1 : Internal Canny-edge detector threshold value.
• param2 : Accumulator threshold for detecting circle centers.
• minRadius: Minimum radius of the circle to be reconstructed.
• maxRadius: Maximum radius of the circle to be reconstructed.

The number of pixels per radius can be computed by Equation 5.6 of the Experimental Setup & Physics
team. Depending on the distance used, one can find the minRadius and maxRadius in pixels. In the
beginning of the implementation phase it was decided that the spheres would be detectable in a height
range of 20 centimeters, resulting in a minimum radius of 66 pixels and a maximum radius of 116
pixels for the detected sphere. The minDist parameter, which specifies the minimal distance between
detected circle centres, is calculated as:

minDist = 2 ∗ minRadius (6.14)

With a minimum radius of 66, the minDist equals 132.

Parameter Optimization
To identify the optimal values for dp, param1, and param2, multiple test images were analyzed. These
tests examined the impact of each parameter on radius and centre accuracy across various visibilities
and radii, as detailed in Appendices E.1.3 and E.1.4.

dp Parameter
Figures 6.9 and 6.10 illustrate the dependency of radius and centre errors on the dp parameter for
different visibilities and radii.

For different visibilities, a dp value of 4.7 results in the lowest radius error. In contrast, a dp value of
2 minimizes the radius error for circles of varying radii. The centre coordinate error does not show
a significant correlation with the dp value for different radii. However, for varying visibilities, the y-
coordinate error is minimized at dp = 4.7 when only part of the sphere is visible. Thus, dp was set to
4.7 based on these observations.
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Visibility based dp dependency Radii based dp dependency

Figure 6.9: dp Dependency when the radii error is calculated

Visibility based dp dependency Radii based dp dependency

Figure 6.10: dp Dependency when the centre coordinate error is calculated

param1 Parameter
The effect of param1 on radius and centre coordinate error is detailed in Appendix E.1.5 The results
indicate no significant correlation between param1 and the errors, leading to a default value of 100 for
param1.

param2 Parameter
Figures 6.11 and 6.12 show the impact of param2 adjustments on radius and center errors.

Figure 6.11: Effect of param2 adjustment on the computed radius inaccuracy for different visibilities
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Figure 6.12: Effect of param2 adjustment on the computed center inaccuracy for different visibilities

A steep increase in error is observed at param2 = 118 when three occluding spheres are present. Thus,
param2 was set to 100 to ensure accuracy under various conditions.

6.4.2. Visibility
The visibility is computed using the Jaccard Similarity Coefficient (JSC), as detailed in Section 6.3.9.
The extracted radius and center coordinates are used to reconstruct the circle, and the binary isolated
sphere image is compared to this reconstruction using the JSC.

Final implementation in Python
The final overall implementation in python code can be found in appendix C.2.2.

6.5. Results
Since images were only available at the end of the project, the image processing algorithm was first
tested on generated images. Generated images allow for the evaluation of accuracy, as the centre and
radius are known inputs in the image generation algorithm. This enables a comparison between the
computed reconstructed centre and radius and the actual centre and radius.

6.5.1. The Generated Image Set
The Generated Image set is divided into two categories:

1. Radius Variation Set: This set examines the effect of varying radii on the performance of the
image processing algorithm. The radii range from 66 to 116 pixels, with increments of 2.5 pix-
els. The colours tested are green, red, pink, white, and yellow. Sample images are provided in
Appendix E.1.6.

2. Visibility Variation Set: This set assesses the impact of varying levels of occlusion on the algo-
rithm’s performance. A circle with a centre in the middle of the image and a radius of 91 pixels is
used. The same colours as the radius variation set are applied. An identical black circle is used
to occlude the target circle in increments of 20 pixels until it no longer covers any part of the target
circle. This is tested with one, two, and three occluding spheres. Sample images are in Appendix
E.1.6.

Influence of radius on performance
The algorithm’s performance was assessed using the radius variation test set. The following equations
were used to compute the accuracy of the reconstructed centre and radius:
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radius accuracy = 100− |reconstructed radius− actual radius|
actual radius

∗ 100

x-coordinate accuracy = 100− |extracted x-coordinate− correct x-coordinate|
correct radius

∗ 100

y-coordinate accuracy = 100− |extracted y-coordinate− correct y-coordinate|
correct radius

∗ 100

Figures 6.13 and 6.14 show the accuracy of radius and centre coordinate extraction for circles of varying
radii and colours.

Figure 6.13: Radius accuracy concerning different radius lengths [pixels]

Figure 6.14: Centre coordinates accuracy concerning different radius lengths [pixels]

The results indicate that:

• The radius extraction accuracy for green and red circles is above 95%.
• White circles exhibit the lowest and most unstable accuracy.
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• Excluding white circles, the radius extraction accuracy is at least 92%, with an average of approx-
imately 96%.

For centre coordinates:

• Yellow circles have consistently high accuracy.
• Different colours yield varying accuracies without a clear bias.
• Excluding white circles, the accuracy for x-coordinate extraction is at least 92%and for y-coordinate
extraction, at least 90%.

• The average accuracy for both coordinates is approximately 96%.

Influence of visibility on performance
The influence of occlusion was assessed, comparing it to the radius, x-coordinate and y-coordinate
accuracy. The displacement percentage was calculated using:

displacement[%] =
displacement[pixels]

2 ∗ radius
∗ 100

Figures 6.15 and 6.16 show the impact of occlusion on the reconstructed radius and centre accuracy.

Figure 6.15: Influence on the amount of occlusion on the reconstructed radius accuracy
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Figure 6.16: Influence on the amount of occlusion on the reconstructed centre accuracy

Key observations include:

• A greater visible area of the sphere leads to higher radius extraction accuracy.
• For centre accuracy, a higher visible area improves accuracy.
• The accuracy shows significant variance when three occluding spheres are present.
• Minimal accuracy for visible parts is 80%.

Influence of noise on performance
The effect of noise, such as glare and shadows, was analyzed. Figures 6.13 and 6.18 display the radius
and centre accuracy in noisy conditions.

Figure 6.17: Radius accuracy concerning different radius lengths [pixels] and the influence of unique sphere colours with
added noise



6.5. Results 50

Figure 6.18: Centre accuracy concerning different radius lengths [pixels] and the influence of unique sphere colours with
added noise

Findings are:

• Noise reduces radius accuracy by 2% on average.
• The x-coordinate accuracy remains similar to noise-free conditions, averaging 96%.
• The y-coordinate accuracy decreases by 1%, averaging 95%.
• Radius accuracy drops to 94% on average.

6.5.2. Images from test setup
From a set of 750 images, 63 were qualitatively assessed to determine an estimation of the accuracy.
There were three main types of errors:

Wrong detection of Sphere

Test Image Line Test Image None

Figure 6.19: Wrong Detection of Entire Sphere

In Figure 6.19 The algorithm completely missed the correct detection of the sphere, resulting in a 100%
wrong localization.
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Inaccuracy in Radius and Centre Point

Test Image Ring Test Image None

Figure 6.20: Inaccuracy in Detection of Sphere

Figure 6.20 show inaccuracies of the determined centre coordinates and radius of the reconstructed
sphere.

Accurate Detection of Sphere

Test Image Line Test Image Ring

Figure 6.21: Accurate Detection of Spheres

Figure 6.21 depicts accurately reconstructed spheres.

The average inaccuracies and standard deviation are calculated using the tables found in Appendix
E.1, E.2 and E.3. The results can be found in Table 6.1.

Line Ring None Combined

Radius Average Inaccuracy [%] 1.0 2.0 1.7 1.6
Standard Deviation [%] 3 4 5 4

Centre Point Average Inaccuracy [%] 0.1 0.2 0.3 0.2
Standard Deviation [%] 1 1 2 1

Table 6.1: Inaccuracies [%] of the Test Images
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6.5.3. Bias and Error
To determine possible bias and errors, dine images were taken from the same sphere formation by
turning off the water upflow, causing the spheres to settle at the bottom of the cone in a net without
movement. Features were extracted from these images and compared using standard deviation. Re-
sults are summarized in Appendix E.1.8. The average standard deviation for the x and y axes is 4.1
pixels. The standard deviation of the radius per colour is as follows:

• Red: 4.66 pixels
• Green: 4.19 pixels
• Blue: 3.87 pixels
• Yellow: 3.16 pixels
• Black: 4.72 pixels
• Pink: 3.18 pixels

These results indicate that the centre point lies within a box defined by these standard deviations and
that the algorithm maintains a relatively consistent accuracy across different colours, with some varia-
tion due to noise and occlusion. One of the reconstructed images can be found in Figure 6.22.

Figure 6.22: Bias and Error Determination

6.6. Discussion
The discussion expands on the analysis of the applied methods and highlights potential improvements
for future research. Recommendations are provided to enhance the developed methods and address
current limitations.

6.6.1. Sphere isolation
The current method for sphere isolation, based on colour thresholding, generally performs well on real
images produced by the Hardware & Test Setup team. Each sphere is assigned a different colour to
facilitate efficient computational isolation.

• Shadow Interference: When a sphere has a significant shadow, the isolation algorithm struggles
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to detect and isolate it accurately. This issue reduces the robustness of the current method under
varying lighting conditions.

• Colour Limitation: The range of usable colours is limited due to potential overlap in colour
threshold values, which restricts the number of distinguishable spheres.

• Background Colour Bias: The detection of green spheres in the test images, was notably prob-
lematic, probably due to the greenish hue of the background. This colour interference significantly
reduced the detection accuracy for green spheres. Figures 6.23 shows an image with correct de-
tection of the green sphere, however in most cases the detection is more like in Figure 6.24. The
green sphere was omitted during further experimentation.

• BackgroundNoise: Due to unexpected background noise from the alternative camera setup (top
view), the background removal function sometimes struggles to correctly identify and remove the
background. This inconsistency leads to the deletion of important features in some instances
and the retention of excessive background in others, causing significant noise in colour isolation
(prior testing was only done from the side view as the camera needed for the top view had not
yet arrived).

Figure 6.23: Correct detection of the green sphere

Figure 6.24: Incorrect detection of green sphere

To overcome these limitations, future research could explore algorithms that extract sphere contours
based on shape and edges rather than relying solely on colour. Implementing shape-based methods



6.6. Discussion 54

would make the algorithmmore aligned with the generalisability requirement 3.4 in Section 2.3, allowing
for the detection of more spheres and diverse structures. A promising approach is the development
of algorithms based on concave point detection and Gaussian processes, which were preliminarily
researched but not fully implemented due to time constraints [23].

6.6.2. Sphere reconstruction
The developed algorithm employs the Hough Transform to extract the centre and radius of spheres.
The Hough Transform was selected for its robustness and general accuracy in most cases. However,
several issues were noted:

• Fluctuating Accuracy: The accuracy of the extracted radius and centre can vary, with some
images yielding less reliable results. Initially, an agreement was made that the sphere radius size
would be between 66 and 117 pixels to limit noise in the algorithm. However, in practice, the
sphere radii now range between 50 and 150 pixels, making the algorithm more prone to errors.
This was noted late in the project due to the final test images being generated only at the end of
the project.

• Processing Time: The image processing algorithm takes approximately 6 seconds per image,
with the Hough Transform being a significant contributor to this duration. For large datasets, this
results in relatively long processing times.

• Minimum andMaximum radius: The minimum and maximum radius were first calculated based
on the visible part that could be captured by a camera horizontally from the side resulting in
a height range of 20 cm. However, with the camera vertical on top of the tube, the minimum
and maximum height of the sphere that could be captured with the camera was significantly
higher.Therefore, also the minimum and maximum radius of the captured spheres were lower
and higher, respectively. The minRadius and maxRadius values of the Hough Transform were
adjusted accordingly. Resulting in less accurate results of the Hough Transform, because the
Hough Transform can detect more false positive circles.

Future research should investigate alternative algorithms that could provide more accurate and com-
putationally efficient computation of radii and centre coordinates. Optimization techniques may offer
improvements in both accuracy and processing time.

6.6.3. Characterizing depth
Currently, depth is inferred from the computed radius using a single-camera setup. This method has
inherent limitations:

• Accuracy Measurement: Without knowing the exact correct centre and radius of the image, the
accuracy of the centre and radius extraction algorithm can only be visually assessed. Adding
reconstructed circles to the original images provides a rough measure of accuracy.

• Single-Camera Limitation: Using a single camera restricts depth computation accuracy. Em-
ploying two cameras with perpendicular observation angles could enhance accuracy by capturing
x, y, and z coordinates. However, this approach doubles the data and computation time, poten-
tially conflicting with project requirements.

• Light attenuation: During testing it was found that spheres located at the bottom or lower part
of the testing tube, showed a glare and reduced contrast with the background due to the light
attenuation of the water.

• Reflection: The presence of reflections in conical surfaces complicates the accurate detection
of the sphere’s location, see Figure 6.25.

• Bottom of the Cone: The net at the bottom of the cone introduces additional noise, as the
camera’s focus on the net results in clear images that background removal algorithms misidentify
as foreground, sometimes deleting the spheres instead of the net, see Figure 6.25.
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Figure 6.25: Incorrect Removal of the Background

Further research could focus on optimizing dual-camera systems to balance accuracy and efficiency.
Additionally, exploring depth estimation using light intensity variations could be beneficial. As observed,
spheres at different depths exhibit varying light intensities due to underwater light attenuation and refrac-
tion. Establishing a relationship between light intensity and depth could offer an alternative method for
depth measurement. This approach warrants further investigation to determine its practical application
in improving overall system accuracy.

6.6.4. Future Recommendations
To build on the current work, the following recommendations are proposed:

• Advanced Sphere Isolation Techniques: Develop and test shape-based sphere isolation algo-
rithms to improve robustness and scalability.

• Alternative Sphere Reconstruction Algorithms: Explore and validate more efficient and accu-
rate methods for computing sphere parameters, reducing reliance on the Hough Transform.

• Enhanced Depth Characterization: Investigate dual-camera setups and light intensity-based
depth estimation [22] methods to improve depth accuracy.

• Comprehensive Testing: Conduct extensive testing under various environmental conditions and
with different sphere configurations to ensure the robustness of the developed methods.

• Background and Color Interference Mitigation: Address the issue of colour interference from
backgrounds by adjusting image capture conditions or applying advanced colour filtering tech-
niques.

• Background and Color Interference Mitigation: Address the issue of colour interference from
backgrounds by adjusting image capture conditions or applying advanced colour filtering tech-
niques.

In summary, while the current image processing system shows promise, addressing the identified limi-
tations and implementing the recommended improvements will enhance its robustness, accuracy and
applicability in diverse practical scenarios.

6.7. Conclusion
The goal of the image processing sub-team was to design an algorithm capable of automatically com-
puting the radius, centre coordinates, and visibility of spheres from an image of a structure of magnetic
spheres in water. Throughout the project, the design of the algorithm was iteratively refined based on
the program of requirements. The final algorithm isolates each sphere into a binary file from which
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the radius and centre are reconstructed. Using these parameters, the circle is reconstructed using the
Hough transform, and the visibility is computed using the Jaccard Similarity Coefficient (JSC).

6.7.1. Results and Performance Evaluation - Generated Images
Preliminary validation of the image processing algorithm with generated images was necessary due
to the late availability of real images. Generated images allowed for mathematical computation of the
accuracy of radius, centre coordinates, and visibility. Key performance metrics derived from these tests
are:

• Sphere Detection: The algorithm is able to successfully detect generated circles.
• Feature Extraction: The algorithm accurately computes the centre coordinates, radius, and
visibility for fully visible spheres and those partially occluded up to a specific threshold.

• Accuracy: For fully visible spheres, the average radius and centre coordinate accuracy is 96%.
For five and six spheres, the required accuracy threshold of respectively 96% and 95.4% is met,
confirming that the algorithm reconstructs the radius and centre within acceptable limits. How-
ever, for three or four spheres a minimum accuracy of respectively 98.2% and 96.1% must be
achieved. Therefore, when three or four spheres are used for the experiment, the current devel-
oped algorithm is, based on generated images, not accurate enough.

• Noise Resistance: Noise introduced into the generated images reduced radius accuracy by
2% and centre accuracy by 1%. When occluding spheres are at least 50% displaced from the
centre of the occluded sphere, the noise still results in an average accuracy of 95%. Although
assessing actual noise resistance is challenging with generated images alone, these findings
suggest plausible robustness against noise.

6.7.2. Results and Performance Evaluation - Test Images
The proposed image processing system was further validated with real images from the Hardware &
Test Setup team. Although a comprehensive analysis of a large dataset was not possible due to late
image availability, the evaluation of a smaller set provided valuable insights:

• Sphere Detection: Out of 63 inspected images containing 3 spheres per image, 187 spheres
were detected accurately, achieving a detection accuracy of 98.9%.

• Feature Extraction: For the 187 correctly detected spheres, the average accuracy of the com-
puted centre coordinates was 99.8% and radii was 98.4%.

• Data Output: The output data, containing all features, is saved as a .h5 file.
• Multi-Sphere Computation: The system effectively handled up to 6 spheres per image.

6.7.3. Alignment with sub-team specific and top-level relevant Requirements
The image processing system aligns well with the Program of Requirements (PoR) specified in Chapter
6.2:

• Accuracy: The system achieves an overall accuracy of 98.9% for sphere detection, 99.8% for
correct centre determination and 98.4% for correct radius determination. All lie well above the
95% accuracy requirement.

• Self-Contained Algorithm: The algorithm operates independently without the need for external
applications, ensuring reliability and ease of integration.

• Iterative Sequential Performance:The system consistently performs multiple sequential pro-
cessing tasks, maintaining performance across large image sets.

• Computation Time: Average processing time is maintained at 6-7 seconds per image for up to
six spheres, this is time-intensive for large data sets. If the experiment runs 12 hours and every
second an image will be taken, then the total processing time of processing this data is 72 hours of
image processing not adhering to the requirement of the total processing time of a set of images
must be less than 2 hours.

• Automated Process: The system is fully automated, requiring no manual intervention during the
feature computation process, which enhances usability and efficiency.
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• Noise Resistance and Sphere Detection: The model effectively removes noise and accurately
distinguishes sphere colours, achieving a detection accuracy of 98.9%.

• Feature Extraction: The system determines the position, radius, and visibility of each sphere
with an average accuracy of 99.8% for centre coordinates and 98.4% for radii.

• Data Management: Input and output file formats are handled as specified, with processed fea-
tures outputted in a format compatible with Deep Learning applications.

• Validatability: The algorithm’s performance can be visually verified for sphere detection.
• Generalisability: The algorithm can detect a maximum number of distinct spheres based on
color differentiation, within threshold margins.

6.7.4. Recommendations
Based on the results and performance evaluation, the following is recommended:

• Enhancing Detection Accuracy: Further refinement of the detection algorithm to improve the
accuracy and reliability of sphere detection, especially under varying environmental conditions.
Exploring more flexible and generalizable detection methods to get rid of the colour variation
limitation.

• Expanding Testing Scenarios: Conduct additional tests with different quantities and configura-
tions of spheres to ensure robustness and generalisability, targeting an accuracy variation within
±1

• Optimizing Computation Time: Investigate methods to further reduce computation time, aim-
ing for a processing time of less than 5 seconds per image, enhancing efficiency for real-time
applications.

• Improving Feature Extraction: Enhance the accuracy of feature extraction, particularly the com-
putation of centre coordinates and radii, aiming for an accuracy improvement to 99%.

• Validation Method: Determine a more accurate validation method that does not rely solely on
visual assessment.

In conclusion, the proposed image processing system demonstrates significant potential in achieving
high accuracy and efficiency in sphere detection and feature extraction. By addressing the identified ar-
eas for improvement, the system can be further optimized to meet the demands of practical applications
and ensure seamless integration with Deep Learning algorithms for formation identification.
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Deep Learning

7.1. Introduction
To classify the formations, a deep learning algorithm (a multi-layer perceptron) was chosen. Deep
learning, a subset of machine learning, generally utilizes multi-layered neural networks to decipher
complex patterns in data. This technique automatically identifies features through training, facilitat-
ing tasks such as image recognition and natural language processing without the need for manually
programmed feature detection.

The algorithm processes a dataset comprising coordinates and radii of each formation, training to de-
tect patterns by interpreting complex correlations within the data. Given the complex non-linear rela-
tionships between random formations suspended in water and their 2D plane projections captured by
a camera, deep learning is an effective method for handling such complexities.

Due to timeline constraints, the deep learning sub-team has assumed responsibility for creating accu-
rate simulations of the tank and suspended spheres. This proactive approach reduces the dependency
on the progress of other sub-teams. By doing so, the deep learning team can generate its data and
independently develop its model in parallel with the ongoing work of other groups, ensuring continuous
progress without delays. This approach also has the potential to generate data in many more forma-
tions than might be feasible when artificially glueing spheres together to form formations for creating
training data.

The deep learning pipeline will function as follows:

1. Simulate formations to generate data.
2. Create a 2D projection from the simulation from the perspective of a camera.
3. Extract x, y-coordinates, and radii information from the projection.
4. Transform the data so each coordinate is relative to one of the spheres in the formation and

normalize it.
5. Train the model on this transformed data.
6. Use the trained model to make predictions on unseen data.

7.2. Program of Requirements
For deep learning, there are two sets of requirements specific to the subsystem: requirements for the
simulation and requirements for deep learning itself.

7.2.1. Simulation Requirements
A simulation is required due to timeline constraints, as the neural network heavily depends on training
data that cannot be collected until other processes are completed. The simulation must be as accurate
as possible so that when actual data is collected, the model won’t require significant adjustments,

58
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rendering the initial tuning effort futile. The simulation must be based on existing research but cannot be
fully validated without real data, however, it is challenging to quantify the accuracy of the simulation as
it encompasses many dynamics. Alternatively, if the simulation is very accurate, future work might be
able to generate more complex formations without needing to collect actual data through cumbersome
methods such as glueing or tying formations to maintain their shape.

1.1 Realness: The simulation must be as realistic and true-to-life as possible. (This requirement is
hard to give a value to as it encompasses many dynamics.)

1.2 Generation Count: The simulation must be able to generate at least 2500 to 3000 formations
for each type of formation (ring/line/undefined).

1.3 Generation Centre Points: The simulation must efficiently generate data points (the centres of
the spheres) in three-dimensional space.

1.4 Relative Position: The simulation must provide the data points relative to each other to ensure
independence from the calibration of the coordinate system.

1.5 Generation Time: The generation of data should not take longer than 15 minutes.

7.2.2. Deep Learning Requirements
2.1 Accuracy: The deep learning submodule must achieve at least 95% accuracy, as specified by

the functional top-level requirement for accuracy, (see Section 2.3).
2.2 Noise Resistance: The model trained on simulated data must be resistant to noise up to 5%

(see Section 6.5).
2.3 Required Data: The model must process coordinates and radii per the top-level requirement for

required data (see Section 2.3).
2.4 Non-GPU Training: To reduce computation time, the model must be trainable on a laptop without

a GPU, as required by the top-level requirement for non-GPU training and training time (see
Section 2.3).

2.5 Multi-Sphere Computation: The algorithm must isolate and compute the required parameters
for a variable number of spheres, in line with the top-level requirement for multi-sphere computa-
tion (see Section 2.3).

2.6 Training Time: The model must be trained within 24 hours, as per the top-level requirement for
training time (see Section 2.3).

7.3. Design Choices
As discussed in Chapter 3, one of the alternative top-level designs required the neural network to
be trained on image data instead of coordinate data. This approach would have increased both the
physical size of the data and the computation time for training, making it unfeasible without using a
graphics card, thus violating the graphics requirement in Section 7.2.2. Additionally, this approach
would have necessitated training multiple networks in different amounts of spheres.

After deciding to use a hybrid approach (coordinates/radii extraction before training), data processing
became much more manageable. However, to fulfil the multi-sphere requirement in Section 7.2.2,
multiple models still need to be trained.

Another important design decision was the architecture of the simulation. It was crucial for the simu-
lation to be completed as quickly as possible since the major bottleneck was generating data without
having any of the other processes finished. Without a camera setup, a database, an image processing
system, and a coordinate extraction algorithm, the deep learning sub-team could not begin tuning and
training its models. Therefore, it was decided that a simulation was necessary.

The simulation could take one of two approaches: generating spherical formations by creating images
in 3D space and projecting the spheres onto a 2D plane, or directly generating spheres on a 2D plane.
While the latter approach sounds simpler, key considerations included the ease of validating themodel’s
accuracy and simulating the spatial constraints of the tank. A 3D simulation facilitates easier plotting
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of probability density and more accurate simulation of spatial constraints, which would be challenging
with a direct 2D projection.

The accuracy of the model is crucial, as the training and tuning of the model depend heavily on it. If the
model is not sufficiently accurate, the tuning process would need to be completely revised, potentially
altering its characteristics. Therefore, the decision was made to generate spheres in three-dimensional
space. This approach not only ensures better accuracy but also holds significant potential for future
expansion, allowing for the generation of more complex structures without needing to run actual exper-
iments and glue formations together.

In the field of machine learning every decision is a consideration between computational efficiency and
accuracy of the model. Models like Multi-Layer Percetrons (MLP’s), Convolutional Neural Networks etc,
have a lot of variables to tune. With enough time and a fast enough computer any variable can be tuned
to gain a perfect accurate model, however there is not enough time to do so. Therefore a significant
decision was determining the deep learning architecture—specifically whether to use multiple classifier
models, a single model utilizing a ”wisdom of the crowd” approach, or a single expert model. To aid
this decision, preliminary tests were conducted to evaluate various models, both linear and non-linear,
including neural networks. These tests aimed to provide a preliminary understanding of the models’
accuracy before proceeding further. Although the simulation had already been developed, program-
ming the simulation took longer than expected, necessitating an accelerated timeline for developing
the proper architecture. Nevertheless, sufficient care was taken in the evaluation of the architecture.
The comparison uses the following models (see Table 7.1). These models were implemented using the
Scikit-learn library, as it was the library with which the sub-group had the most experience [16]. Due to
time constraints, it was decided to use Scikit-learn despite its limited flexibility for deep learning models.
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Model Type Description Good At Not Good At
SGDClassifier A linear classifier (e.g.,

linear SVM or logistic
regression) optimized
using stochastic gradient
descent.

Large-scale datasets,
high-dimensional spaces,
online learning, fast train-
ing.

Non-linear relationships,
small datasets, handling
noisy data without careful
tuning.

SVC A classifier that finds
the hyperplane that best
separates the classes,
using kernel functions
for non-linear decision
boundaries.

Non-linear classifica-
tion with kernel trick,
high-dimensional feature
spaces, and clear margin
of separation.

Large datasets (compu-
tationally intensive), han-
dling many classes with-
out significant tuning.

NuSVC A variant of SVC that uses
a parameter ν to con-
trol the number of support
vectors and the margin.

Similar advantages to
SVC, more control over
the number of support
vectors, effective for
imbalanced classes with
proper tuning.

Same limitations as SVC
regarding large datasets
require careful tuning of
the ν parameter.

RandomForestClassifier An ensemble method us-
ing multiple decision trees
to improve classification
accuracy.

Handling high-
dimensional spaces,
robustness to overfitting,
dealing with missing val-
ues, and interpretability.

Requires more compu-
tational resources, can
be less effective on very
noisy data, and may not
perform well on datasets
with a very small number
of features.

XGBoost An efficient implementa-
tion of gradient boosting
for decision trees.

Handling high-
dimensional data, excel-
lent predictive accuracy,
handling missing values,
regularization to prevent
overfitting, fast training
with parallel processing.

Requires careful tuning
of hyperparameters, com-
putationally intensive for
very large datasets.

MLPClassifier A neural network-based
classifier with one or more
hidden layers.

Learning complex, non-
linear relationships, han-
dling high-dimensional
data, and flexibility with
various architectures.

Requires a lot of data
to avoid overfitting, com-
putationally expensive
and slower training, hy-
perparameter tuning can
be complex and time-
consuming.

Table 7.1: Comparison of Different Models
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Figure 7.1: Confusion matrix model comparison

Having evaluated the accuracy of these non-optimized models and considering the secondary require-
ments for the architecture, it was found that models like XGB andMLP already show promising accuracy.
This suggests that a single expert model could achieve sufficient accuracy while being computationally
less expensive than training multiple models. This advantage becomes even more significant when
considering that multiple architectures would need to be trained for different amounts of spheres poten-
tially violating the computation time requirement, see Section 7.2.2. Therefore, the decision was made
to implement a single MLP architecture.

7.4. Implementation
This section discusses the implementation and design choices made in creating the simulation and
deep learning algorithm.

7.4.1. Simulation Implementation
The simulation began simply by generating points in 3D space. Since the simulation needed to generate
points relative to each other, it could proceed in one of two ways: randomly generating formations in
3D space or generating points on a 2D plane and then randomly translating and rotating the formation.
Randomly generating formations in 3D space is a more complex task, as it involves generating multiple
points in random directions relative to each other while spatially restraining consecutive points to form
a line or ring formation within the tank’s dimensions.

It is much easier to first generate points in a specific formation and then randomly rotate and translate
the entire formation. Therefore, this approach was adopted. A point is first generated at the origin, after
which consecutive points are generated in a formation and then rotated and translated.

To handle these calculations, several algorithms were developed and utilized. The file ‘generate-
Points.py‘ generates consecutive points based on initialization parameters. It calculates the minimum
allowed angle between the vectors of consecutive sphere centres to form a ring of spheres, effectively
determining the angle between vertices of regular polygons. Using this angle and the sphere radius,
it calculates the centre coordinates of the next sphere. To ensure the next point is generated in the
correct location, a 2D rotational matrix is multiplied with a set of 2D coordinates where y equals zero.

This results in the following equation:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)(
2R
0

)
=

(
2R cos θ
2R sin θ

)
(7.1)
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A similar approach was taken when randomly rotating using 3D rotational matrices in their simplest form.
However, for random translations, the simulation needed to be highly accurate (to fulfil the realness
requirement in Section 7.2.1). To achieve this, the observed distribution of the spheres when suspended
in the tank was utilized. Specifically, a particle has a 26% chance of being in the upper half of the tank,
a 48% chance of being in the positive x-axis half of the tank, and a 62% chance of being in the positive
y-axis half of the tank [12]. This distribution was implemented using a simple if statement combined
with a uniform random distribution. This characteristic distribution is evident when plotting thousands
of these formations, as shown in Figure 7.12.

When the formation is generated and randomly transformed, it is crucial to check whether it remains
within the boundaries of the cone. The file ’generateShapes.py‘ generates all necessary components to
calculate the distances from sphere centres to the tank’s boundaries. It includes both the mathematical
description of the tank (a frustum of a cone) and its physical dimensions.

Efficiently determining whether a sphere collides with the tank is essential, as this check must be per-
formed for every point in the thousands of formations generated (in alignment with the generating data
requirement in Section 7.2.1). A strategy like ray tracing is impractical due to computational intensity.
Instead, the frustum of a cone with a specified height can be described as the set of all points traced
by a line segment rotated about a fixed axis, where the endpoints of the segment trace two circles with
specified radii. Using this approach, each generated point can be evaluated by comparing it to the
nearest line segment that defines the frustum, ensuring it remains within the tank’s boundaries.

To find the distance from a point to a line segment on the cone, it is simplest to first determine the
corresponding points on the circles traced by the rotated line segment. This is done by calculating
the angle the point makes with the x-axis when projected onto the XY-plane. Using this angle, the 3D
coordinates of the endpoints of the line segment can be found, given the measured height and radii of
the cone.

Figure 7.2: Points and their closest line segment describing the cone

With three points calculated—one representing the centre of a random sphere and two representing the
endpoints of the line segment on the cone—the next step is to project the sphere centre orthogonally
onto the vector spanning the line segment of the cone. This can be achieved using the projection for-
mula shown in Equation 7.2, where u is the vector of the line segment onto which the point is projected:

xp =
x · u
u · u

u (7.2)

Having calculated the orthogonal projection, the distance to the cone is now equal to the magnitude of
the vector spanning from the projection to the centre of the randomly generated sphere.
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Since the positions of the spheres will be captured using a camera, the spheres will be projected onto
a certain plane. This implies that the radii of the spheres will depend on their distance from the lens.
Consequently, the file ‘projectPoints.py‘ calculates the perceived radius and converts all coordinates
into pixels.

The ‘generateData.py‘ script generates tens of thousands of formations and formats them into HDF5,
enabling rapid training and evaluation of the deep learning algorithm, meeting the computation time
requirements in 7.2.1.

7.4.2. Deep Learning Implementation
As discussed in Chapter 7.3, the decision to use a neural network was made quickly due to time con-
straints. The next step involved tuning the neural network and evaluating its performance.

To begin, it was essential to estimate the amount of data required for training to achieve accurate
predictions on new data. This estimation was done by initially generating 15,000 random formations,
which was deemed sufficient. A model was then trained using normalized data following a relative
coordinate transformation (relative coordinate transformation will be explained later). The training was
conducted using k-fold cross-validation, iteratively decreasing the training dataset size and calculating
the accuracy of unseen data. This process resulted in the graph shown in Figure 7.3. The x-axis is
inverted to better illustrate the effect of iteratively decreasing the training dataset size.

Figure 7.3: Accuracy with relative coordinate transformation depending on the size of training set

With this information, the other sub-teams now have clear requirements regarding the amount of data
they need to collect, from which the requirement in 7.2.1 sprouted. To further evaluate the performance
of the neural network, the accuracy was plotted against the number of nodes in a network with one
hidden layer. For every dataset, a model was trained using k-fold cross-validation while incrementing
the number of nodes to determine the accuracy and when the model converged to a stable accuracy.
This resulted in the following plots (see Figure 7.7).

The three graphs in Figure 7.7 correspond to different transformations of the data to make it translation-
invariant. Figure 7.4 shows the relationship between the number of nodes and the accuracy of the
network when trained with unaltered data. The figure next to it (Figure 7.5) shows the same relation-
ship, but this time the coordinates of each formation are not absolute but relative to each other, with
one sphere being the origin to ensure the data is translation-invariant. In Figure 7.6, this concept is ap-
plied differently: instead of using relative coordinates, the angle between vectors spanning consecutive
points is calculated.

The relative coordinate transformation subtracts the coordinates of the first sphere in the formation from
every other coordinate within the formation.

The relative angle transformation generates a 1D vector of x and y coordinates, creates another set of
vectors shifted by one element, and then takes the point-wise difference between the corresponding
vectors. This process generates two one-dimensional vectors that hold the directional information from
one point to another in the x and y directions. By combining these vectors and using the definition of
the dot product (Equation 7.3), the angle between them can be calculated.
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Figure 7.4: Accuracy depending on
the number of nodes in hidden-layer
with non-transformed training data

Figure 7.5: Accuracy depending on
the number of nodes in hidden-layer
with relative-coordinate-transform

training data

Figure 7.6: Accuracy depends on the
number of nodes in the hidden layer
with relative-angle-transform training

data.

Figure 7.7: Accuracy depending on amount of node in hidden layer

a · b = ∥a∥∥b∥ cos(θ) (7.3)

Looking at the graphs, none of them converge to 100%. Figures 7.4 and 7.5 exhibit similar characteris-
tics, while Figure 7.6 shows distinct differences. Additionally, there appears to be a correlation between
the ratio of inputs (number of spheres) and the number of nodes in the hidden layer, which affects the
model’s accuracy. This is evident in the initial values of the plots, where the initial accuracy increases
with the number of input nodes corresponding to a larger number of spheres. If the hidden layer has
40 nodes, the accuracy declines beyond a certain number of spheres, with the threshold being around
13 spheres.

The relative coordinate transformation however seems to have a larger spread in converging character-
istics with different amounts of spheres. The relative angle transformation converges much faster to a
stable accuracy, but this accuracy only exceeds 95% when more than three spheres are present. This
is likely because the angles between the points contain much less information compared to configura-
tions with four, five, or six spheres. For example, consider three spheres in a line formation compared
to a formation with two connected spheres and one separated sphere. It is much harder to distinguish
these formations based solely on angles, as it is unclear whether the spheres are connected or in a
specific formation. This is also the reason why, in Figure 7.8, the confusion matrices show a high false
positive rate for undefined formations.

Therefore, the decision was made to evaluate the model and transform the data using the relative
coordinate transformation. As shown in Figure 7.5, the topology of the neural network will consist of
one hidden layer with 40 nodes.

Taking this topology into account, the confusion matrices for each number of spheres are shown in
Figure 7.8. The network was trained using k-fold cross-validation with one layer and 40 nodes on
15,000 transformations. The confusion matrices were tested using the same dataset.
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Figure 7.8: Confusion matrix per amount of spheres with relative coordinate transformation. Labels 0, 1 and 2 are line-, ring-
and undefined-formations respectively.

From this analysis, it was determined that the chosen topology provides sufficient accuracy and per-
formance to meet the requirements outlined in Section 7.2.2. The results will be discussed in detail in
Section 7.5.

To determine the model’s susceptibility to noise, it was first trained with ’clean’ data and then evaluated
on noisy data. This approach helps to understand how noisy the data will be when gathered from the
actual setup using a model trained with simulated data, and conversely, how accurate the simulation
is.

Noisiness is defined as the accuracy of measured centre point coordinates and radius measurements
compared to the actual centre points and radii. Since the classification of the formation heavily depends
on the relative coordinates of the spheres and the accuracy of the radii, a thorough understanding of
the impact of inaccuracies is essential.

In this test, the model was trained on ’clean’ or noiseless data and then evaluated on (newly generated)
data with noise added incrementally, expressed as a percentage of the mean radius. This is done
because the Noise levels ranged from 0% to 5%, applied to the x, y coordinates, and radius. Before
being fed into the model, the values were normalized. This process resulted in the graph shown in
Figure 7.14.

Finally, data was collected, but it was insufficient for the requirements in Section 7.2 to train the model
on a new dataset (approximately 760 different formations). The data was normalized and fed into the
trained model, producing the Figure 7.8.

7.5. Results
Since not enough data has been gathered, there isn’t a way to compare the simulation’s accuracy to
real-world results. However, understanding the generated data is crucial for identifying discrepancies
in the simulation. To facilitate this, three graphs have been plotted in Figure 7.12.

Figure 7.9: XY-Plane distribution Figure 7.10: XR-Plane distribution Figure 7.11: YR-Plane distribution

Figure 7.12: Distribution of Generated Formations
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In the diagram, there is a clear divide between the lower and upper parts of the tank. This is intentional,
as research ([12]) indicates a 26% chance of finding a sphere in the upper part of the tank. The same
research also states there is a 62% chance of finding a sphere along the positive x-axis of the tank
and a 48% chance along the positive y-axis. These distributions are less visible but still present in the
diagrams.

The simulation attempts to generate thousands of formations accurately, but as shown in Figure 7.12,
there are a few inaccuracies. For example, there are clear lines around radius values of 130 and 60
pixels, which roughly correspond to height values of 20 and 0 cm, virtually the bounds of the tank. Some
formations are generated above these bounds because the formations are translated with respect to
the origin. If a formation is rotated 90 degrees (with respect to the x or y-axis), some spheres in the
formation might pass the 20 cm mark, but generally, they do not. There are exceptions, such as some
undefined formations that end up much higher than intended. This occurs because when separate
formations are generated to collide, one of the formations is randomly translated, causing its new origin
to have a z-coordinate that isn’t equal to zero, allowing it to be generated much higher. This is not a
problem, however, since the simulation includes a limit that translates formations back down when they
are generated above 30cm. Although there are some inaccuracies, they are mitigated by the large size
of the dataset, which averages them out.

Using the simulation, 15,000 formations were generated, producing the following diagrams (see Figure
7.13). These diagrams were created by a neural network, a multi-layer perceptron with one hidden
layer and 40 nodes, trained on the generated data and evaluated on newly generated data.

Figure 7.13: Confusion matrix of final Neural Network with MLP(40,) topology. Labels 0, 1 and 2 are line-, ring- and
undefined-formations respectively.

The neural network achieves accuracies of 96.0%, 98.7%, 99.1%, and 99.1% respectively with 3-
spheres, 4-spheres, 5-spheres, and 6-spheres, respectively. It can be observed that every model
exhibits a similar characteristic: the undefined formation has the highest misclassification ratio of all
the formations. This is likely due to the fact that, in rare situations, some separated formations might be
touching or nearly touching. In such cases, it is difficult to recognize the type of formation. Additionally,
there seems to be a correlation between the model’s accuracy and the number of spheres the model
is trained on, likely due to the ability to extract more information from larger formations.

Following the measurement of the model’s accuracy, the noise resistance of each model was evaluated.
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Figure 7.14: Noise resistance of final Neural Network with MLP(40,) topology

Note that when 0% noise is added, the predicted accuracy is similar to the accuracies in 7.8, as ex-
pected. Additionally, there is a clear correlation between the number of spheres and the accuracy
plots. Specifically, the 6-sphere formation prediction accuracy starts and ends with the highest value,
while the other models, although offset lower, follow a similar trajectory. The example plot in Figure
7.14 shows a different trajectory in some cases. Although the accuracy plot for 5-spheres starts with
a higher initial accuracy, its final accuracy is lower than that of the 4-sphere plot. This discrepancy is
likely due to a bias within the model, which would likely disappear if the model is re-trained.

In general, there seems to be a trend that Figure 7.8 agrees with: the more spheres present in the data,
the higher the model’s accuracy. This is because the model can extract more information about the
structure’s formation when more spheres are included. This is reinforced through the noise resistance
plot, where there appears to be a correlation between noise resistance and the number of spheres in
the formation. This correlation is a direct result of having more information and stronger relationships
between a higher number of spheres.

The model for 6-spheres has the best resistance to noise, being able to handle added noise of about
2.4%. Following that, the 4-sphere model, 5-sphere model, and 3-sphere model have noise resistances
of 2.0%, 1.9%, and 0.7%, respectively, until they fall below the 95% accuracy threshold.
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Figure 7.15: Confusion matrix of the model trained with
3-sphere formation evaluated on generated data with no

added noise.

Figure 7.16: Confusion matrix of the model trained with
3-sphere formation evaluated on generated data with

50% added noise to radius only

Figure 7.17: Labels 0, 1 and 2 are line-, ring- and undefined-formations respectively.

The tuning parameter for the image processing radius and coordinate extraction algorithm (Section 8.4)
determined a bias in coordinate or radii extraction accuracy. Therefore, to determine what the optimal
bias is, it was necessary to investigate the accuracy of coordinates and radii data depending on added
noise, as this bias accuracy would translate to noise added to the data. The element that exhibits the
worst noise resistance characteristics will be the element for image processing to bias towards. The
results of this evaluation are shown in Figure 7.18. Assuming that both coordinates and radius are
equally sensitive to noise, it is expected that the coordinates will perform worse, as they encompass
two values (x and y coordinates) instead of one (the radius of a sphere).

Figure 7.18: Accuracy of model with increasing added
noise as a percentage of the coordinate data

Figure 7.19: Accuracy of model with increasing added
noise as a percentage of the radii data

Figure 7.20: Distribution of Generated Formations

Examining the graphs in Figure 7.20, it is evident that the assumption that both coordinates and radius
are equally sensitive to noise is incorrect. The radius is approximately 20 times more sensitive to noise.
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The model reaches the 95% accuracy threshold at 0.7%, 1.9%, 2.0%, and 2.4% of added noise to
the radius (see Figure 7.19), while the coordinates exhibit greater noise resistance, achieving the 95%
accuracy threshold at around 50%, 60%, 60%, and 65% of added noise to the coordinates (see Figure
7.18).

The difference in sensitivity can be attributed to the fact that changes in the radius of a sphere can
cause parts of the formation to appear disconnected, rendering the formation undefined. This theory is
supported by the confusion matrices of formations with and without noise (see Figures 7.15 and 7.17).
These figures show a shift from high prediction accuracy to predicting mostly undefined formations as
noise increases. Essentially making the undefined formation category a catch-all class.

The differences in noise sensitivity between the two elements might initially seem excessive. However,
they fit well when compared to the ranges of the coordinates and radii. The coordinates range from
0 to 2600, while the radii range from 60 to 200. Adding a certain percentage of the mean radius has
a less significant effect. Plotting the x-axis as the ratio between the added percentage of the mean
radius and the maximum value of either the x or y coordinates reveals that the coordinates are only
half as sensitive to noise compared to the radius. This explains why the plot in Figure 7.19 exhibits
similar characteristics to Figure 7.14. The maximum coordinate is used because the relative coordinate
transformation ensures the mean of the coordinates is zero.

Note that the requirement for noise resistance in Section 7.2 has not been met, as none of the radii
noise resistances are above 5%.

Figure 7.21: Accuracy of model with increasing added Noise as Percentage of the mean radius relative to the max Y-coordinate

Finally, the collected data was evaluated, resulting in Figure 7.22. Unlike the model trained with gener-
ated data, there is a significant bias toward misclassifying formations as undefined and a tendency not
to classify any formation as a line formation. When the formation is undefined, the model has a 98%
accuracy. This is likely because it is easier to discern when spheres are far apart, indicating they are
not in a formation, and the undefined formation category acts as a catch-all for misclassified instances.

As seen in Figure 7.19 and discussed earlier, the radius is much more sensitive to noise/inaccuracies.
This sensitivity is because a change in radius can alter the perception of the formation from being
connected to appearing unconnected.

Other discrepancies in the misclassification of formations can be explained by the difference in the
distribution of values between the simulation and the collected data (see Figures 7.24 and 7.23).

From this evaluation, an error was identified in the simulated data: it was generated with the wrong
resolution (the maximum value of the x and y coordinates should be 2592 pixels as per the resolution of
the camera). This mistake went unnoticed throughout the simulation process. This mistake was easily
fixed in the code (see the Discussion in Section 7.6). The newly generated data was re-evaluated and
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Data Distribution x-coordinate range y-coordinate range radius range
Collected Data 1458 - 3719 1468 - 3715 52 - 147
Simulation Data 106 - 2343 425 - 2484 67 - 174

Fixed Simulated Data 162 - 2423 172 - 2419 67 - 165

resulted in the same accuracy. The coordinate translation was invariant, maintaining the accuracy of
the results.

Figure 7.22: Confusion matrix of the model trained on generated data and evaluated on collected data that has been modified
to match the range of the simulated data. Labels 0, 1 and 2 are line-, ring- and undefined-formations respectively.

This discrepancy raised concerns about the simulation, prompting an evaluation and comparison of the
data distributions (see Figures 7.23 and 7.24). There is a clear bell curve in the collected data for the
x and y-coordinate distribution, indicating a Gaussian distribution. The generated data, however, has
a more triangular shape due to the uniform distribution over the length of the axis as discussed in the
implementation.

The mean of the collected X-coordinate distribution appears to be shifted to the left compared to the
simulated data. This can be explained by the camera being off-centre relative to the cone’s centre,
which shifts the mean of the X-coordinate. The Y-coordinates in both datasets seem to have the same
mean value, as only the X-axis of the camera is off-centre. It is also observed that the range of the
distributions for both X and Y-coordinates is the same in the dataset. However, this is not the case
for the slope of the distributions and the relative peak values. Further investigation is needed to better
understand the distribution discrepancy.

The distributions for the radius exhibit significant differences. Both peaks are shifted to the left, indicat-
ing the tendency of the spheres to stay in the lower half of the tank, as per the research done in [12].
However, the difference in the frequency of sphere occurrences between the lower and upper halves
of the tank is smaller in the collected data. There is a higher probability of finding a sphere with a radius
lower than 60 pixels, corresponding to the tendency of the spheres to settle at the lowest points of the
tank (as discussed in Section 5.6). The inaccuracy in extracting the radius is much higher than the
neural network was expected to handle, as the requirement for noise resistance at 5% was set much
later (as discussed in Section 6.5 and related to the requirement for noise resistance in Sectuib 7.2).

Although there are differences in the distribution, they do not appear significant enough to suggest that
the current model topology cannot be trained to reach the required accuracy.
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Figure 7.23: Distribution of simulated data

Figure 7.24: Distribution of collected data.

7.6. Discussion
7.6.1. Simulation
The main discussion around the simulation focuses on accuracy. The more obvious issues include
incorrect tank measurements and incorrect camera location or resolution. A mistake was found in the
scaling algorithm when projecting coordinates on a plane. In the final two lines of code, the centres of
the spheres were incorrectly translated by half the resolution.

1 # translate coordinates first quadrant of plane
2 self.sphere_centers[:, 0]+= gS.tank_param.r2
3 self.sphere_centers[:, 1]+= gS.tank_param.r2
4 # normalize coordinates
5 self.sphere_centers[:, 0]/= gS.tank_param.upper_diameter
6 self.sphere_centers[:, 1]/= gS.tank_param.upper_diameter
7

8 # scale normalized coordinates
9 self.sphere_centers[:, 0] *= gS.tank_param.camera_resolution[0]
10 self.sphere_centers[:, 1] *= gS.tank_param.camera_resolution[0]
11 # translate to center of image
12 self.sphere_centers[:, 0] += gS.tank_param.camera_resolution[0]/2
13 self.sphere_centers[:, 1] += gS.tank_param.camera_resolution[0]/2

Listing 7.1: Python code: projectionPoint.py, normalization and scaling of coordinates.

However, these issues can be easily adjusted in the simulation code and do not pose a significant
problem. The primary reason the model trained on the simulated data is inaccurate is likely due to the
collected data being a high deviation from the true value or noisy data. Nevertheless, when sufficient
data is available to train the model (see data size requirement in Section 7.2), there is enough evidence
to suggest that it will work with this topology.

With sufficient data, the simulation’s accuracy can be enhanced. More data is required as the simulation
generates 3D coordinates projected onto a 2D plane. By increasing the data volume, the distribution
based on the depth of the spheres (i.e., the radius of the sphere) can be analyzed. Currently, coor-
dinates are generated through a uniform distribution over its corresponding axis, with the magnitude
of the coordinates dependent on the radius of the cone in that part of the tank. To better emulate
the tank’s real dynamics, a dataset is required where the distribution of the tank is plotted at discrete
heights. This is a cumbersome task and therefore could be more easily approximated by scaling a
normal distribution’s standard deviation based on the sphere’s height in the tank.
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Another issue is that formations can only be generated in spheres or arc formations and not in snake-like
patterns, which will undoubtedly occur in the actual setup. This effect will be exacerbated when adding
more spheres. Consequently, the models have only been trained on formations with up to 6 spheres.
It was deemed that beyond this point, the simulation would become too inaccurate. Not only will lines
form snake-like formations, but ring formations won’t always be perfect circles. They may instead take
on elliptical shapes or resemble the edge of a hyperbolic paraboloid (Pringles-shaped ring). This will
undoubtedly also impact the data size required for training a model to recognize larger formations. As
formations become more complex and deviate from ideal shapes, the simulation’s accuracy decreases,
necessitating a larger dataset to adequately capture the variability and improve the model’s robustness.

Finally, the model will never be trained on certain formations due to the strategy for deleting data when
the visibility of the formation is determined to be too low. For example, when a line is perpendicular to
the camera in the simulation, all coordinates and corresponding radii are generated. However, in the
real world, the camera will only see one sphere. The visibility algorithm removes such datasets as they
are deemed useless, and thus the model is not trained on them.

A fix for this problem wouldn’t be hard to implement, but it may not be necessary. Since the model will
be trained on data it will never encounter in practice, it won’t need to make predictions on these specific
types of data. In other words, while the model could predict more orientations of formations, these will
never actually be fed into the network.

7.6.2. Deep Learning
The main discussion for the neural network concerns the amount of features that can be extracted.
Feature selection is a crucial aspect of machine learning and an essential part of model development.
However, for this project, feature selection was not implemented due to the initial belief that there was
sufficient information available and a lack of experience with machine learning. In hindsight, it is a
logical step, but there was insufficient time to implement and redo all the tests as of writing.

A clear understanding of what works and what doesn’t has been established, which will be elaborated
upon in this section. From this analysis, strategies for future improvements will be suggested.

After collecting the generated data, it will be formatted as a set of n×3matrices where n is the number
of spheres in the formation. To train or predict data with the model, these matrices will need to be
reshaped into a vector of size 3n. Consequently, the input to the neural network will have 3n nodes.

When using the relative centre’s transformation, the input size remains 3n, but this is not the case with
the relative angle transformation, which reduces the vector length to n. This reduction explains why the
hidden layer is smaller, as there is less information needed to tune weights and biases to reach stable
accuracy. This is also why the accuracy for, for example, 3-sphere formations, can’t reach higher than
60%, as there is insufficient information.

A good strategy might be to extract both features: relative coordinates and angles between those
coordinates, which has generated the plot below, Figure7.25.

Figure 7.25: Accuracy as a Function of the Number of Nodes in the Hidden Layer, Using Both Relative Coordinate and
Relative Angle Transformations on the Data

With this model, it can be observed that for formations with more than 3 spheres, the models start to
reach stable accuracy or converge with just above 8 nodes. However, similar to the other plots in Figure
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7.7, the model still struggles with formations involving 3 spheres. It might be advantageous to use this
strategy with higher-order formations, as it will require less processing time when the model uses fewer
nodes.

Keep in mind the concept of diminishing returns. This concept describes the relationship between
the number of features used in a model and the resulting accuracy. As more features are added, the
model’s accuracy typically improves up to a certain point, after which additional features may offer
diminishing returns or even degrade performance due to overfitting or noise.

Another issue is the unknown characteristics of the noise, which means the characteristics observed
in the noise resistance evaluation tests may not exactly match those in the data eventually collected.
The noise has been added using a uniform probability distribution, but it could exhibit different charac-
teristics in reality. Despite this, evaluating noise resistance in this way remains valuable for managing
expectations and tuning parameters for other sub-teams.

Additionally, the requirement for noise resistance in Section 7.2 was established very late, only after
the radius and coordinate accuracy had been evaluated post-training. This delayed the neural network
team’s ability to tune the model for noise resistance, which could have been achieved by training the
model on noisy data. Unfortunately, there was not enough time to modify the model to meet the noise
resistance requirement at that stage. However, new data will be gathered for training the model, which
could not be included in this report due to time constraints. This new data is expected to be inherently
noisy, allowing the model to be naturally trained for noise resistance, potentially making additional
tuning unnecessary. This will also verify whether this topology will work on the gathered data and can
be used to increase the simulation’s accuracy.

7.7. Conclusion
In conclusion, the model classifies generated formations with up to 6 spheres with an accuracy of up to
99%. Beyond this, the structures become more complex than a perfect circle or arc, which the current
simulation cannot generate. The simulation produces tens of thousands of separate formations within
seconds, fulfilling the requirements in 7.2.1. Data from these formations can be stored, loaded, and
fed into a deep learning algorithm.

The neural network’s accuracy varies with the number of spheres in the formation. It achieves over 95%
accuracy with 3-sphere formations and up to 99%with 6-sphere formations when trained and evaluated
on transformed data (coordinates relative to one sphere) meeting the accuracy requirement in Section
7.2. No network has been trained on formations with more than 6 spheres, as it was determined that
the simulation would not accurately represent the true experiment beyond this point. However, there
appears to be a correlation between model accuracy and the number of spheres in the formation. A
neural network with a MLP 40-node, single hidden layer topology shows higher accuracy with more
spheres.

Thus, although the simulation accurately represents the experiment up to a certain number of spheres,
it is likely that if the actual experiment collected enough data, the neural network would achieve the
desired accuracy with formations involving more than 6 spheres, potentially up to around 13-sphere
formations.

This is not supported by the model’s noise resistance. When trained on ’clean’ data and evaluated on
newly generated ’clean’ data with added noise as a percentage of the data value, the model can handle
up to 2.4% noise for 6-sphere formations and down to 0.8% noise for 3-sphere formations. This does
not meet the noise resistance requirement in Section 7.2 , as the requirement was set too late for the
model to be re-trained on generated noisy data (see the Discussion in Section 7.6).

Using the generated data, the required data size to train the model was determined to be around 2,500
samples per formation. To gather data from the actual experiment, at least 2,500 images per formation
type per sphere amount are needed. This requirement was not met, and therefore, the model could
not be trained on the collected data. When making predictions on the collected data, the model had an
accuracy of 42%.

This evaluation revealed an error in the range distribution of the coordinates in the simulation, where
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the coordinates were unnecessarily translated. This mistake was corrected by ensuring that the simu-
lation’s range matched the experiment’s range. However, this error did not affect the model’s accuracy
since the model is translation invariant, suggesting that the generated data is more inaccurate than
initially thought.

Due to the difference in data size, further data collection is necessary to enhance the simulation’s accu-
racy by analyzing the distribution of the coordinates and radii within the tank. Nonetheless, the variation
in the simulation is not significant enough to conclude that this model topology will be ineffective. There
is a high degree of confidence that this topology will work if enough data is gathered.



8
Data Management

8.1. Introduction
Data management consists of two main components:

8.1.1. Image Storage
Captured images need a reliable storage solution. While there are many options, only a few are suit-
able for this project. As discussed in Chapter 4, a remote device will automatically handle the image-
capturing and saving process. However, additional requirements must be specified for this project,
including:

• How much storage space is required at different stages of the system?
• What are the client’s specific needs?
• How will the images be secured during the experiment?

8.1.2. Metadata Storage
After processing the images, the associated metadata needs to be stored in an appropriate format to
ensure data validation, as outlined in Chapter 2. This chapter will detail the specific requirements and
solutions for metadata storage.

Following the discussion of design choices, the chosen solutions will be implemented and tested. The
results of these experiments will be analyzed, leading to a conclusion on the effectiveness of the design.

Project Scope and Objectives
The aim is to develop a robust system for managing image data and metadata efficiently and securely.
The main objectives include:

• Designing a scalable and secure storage solution for both images and metadata.
• Ensuring the system meets the specific requirements of the client.
• Validating the data to maintain integrity and reliability throughout the process.

Outline of the Chapter
The outline of this chapter is as follows: the first section, 8.2, will discuss the requirements for temporar-
ily storing images and long-term metadata storage. Details will be discussed such as data storage size,
accessibility and more.

In Section 8.3, alternative designs will be discussed, which are potential solutions regarding the require-
ments.

Section 8.4 will discuss how the design choices are implemented and the problems that were encoun-
tered during this process.
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Section 8.5 will explain experiments to prove if the modules are working and show the results of these
experiments.

Section 8.6 discusses the experiment’s results. The conclusion, section 8.7 goes over the chapter
again and summarises the discussion of this chapter.

8.2. Program of Requirements
As discussed in Section 2, key considerations for the system include automation, synchronised data
collection, portability and accessibility. This section outlines the requirements for selecting a device
that meets these criteria. Each requirement is referenced back to the top-level requirements.

8.2.1. Experiment Control Device Requirements
1.1 Remote Accessibility: the device should provide a simple method for connecting to a remote

server. This follows from the top-level’s ’accessibility’ requirement. (1.4)
1.2 Synchronised Data Collection: The device must support the synchronisation of captured im-

ages. This way the system can be validated to show the reliability and usability of the system,
this also follows from the top-level requirements. (3.5)

1.3 Portability: The system should be portable, ensuring convenient transportation and easy setup
for image saving. (1.3)

1.4 Budget: The device, in combination with cameras, should fit within a budget of €400 or less and
is available for delivery. (1.2)

1.5 Performance: The device must have sufficient performance capabilities to upload high-quality
images. Performance will have an effect on the overall accuracy of the whole system. Accuracy
is an important top-level requirement.

1.6 Future Scalability: the device’s function should be scalable to accommodate future expansions.
(3.4)

1.7 Experiment Time: The device should demonstrate reliability over extended operation periods
(≥12 hours). (3.6)

8.2.2. Data Storage Requirements
Temporarily Image Storage: After image upload, temporary storage is needed for image processing.
The storage solution must be easily accessible and have sufficient capacity for ≥12 hours of image data.
This data will be stored until the images are processed and validated:

2.1 Data Storage Size: The device must have enough storage to save ≥12 hours of images tem-
porarily (2.2).

2.2 Safety: The device should be resilient to unforeseen issues, especially considering the project’s
environment (3.5 & 3.6).

2.3 Accessibility: Images must be easily accessible for processing (1.4).
2.4 Data Retention: The original image dataset should be stored until it is proven that the developed

method meets the specified accuracy requirement (3.5).
2.5 Budget: The temporary image storage, in combination with the device and cameras; thus should

fit within a budget of €100 or less and is available for delivery (1.2).

Data Formatting: The processed and validated data for each image, along with its metadata, must be
stored in a well-structured database. This database should be compact and readable to facilitate data
validation. The requirements for the database format include:

3.1 Concise Structure: The format should allow for a well-organized, concise structure (1.4).
3.2 Data Storage size: the format must be compact (2.2).
3.3 Readability: the format must be readable to enable data validation (1.4).

Uploading and Downloading: both of these have the same requirement, which is:
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4.1 Computational Time: the time to upload or download an image should not influence the waiting
time for processing the images. This means no longer than 6 seconds of uploading time as
image processing takes this amount of time to process an image, see Chapter 6. Downloading
time should be milliseconds to minimise download waiting time (3.7).

8.3. Design Choices
8.3.1. Remote Device
To meet criteria such as budget-friendliness, reliability, ease of use, and remote connectivity, a Single-
Board Computer (SBC) was chosen over other options like microcontrollers or commercial IP cameras.
Among various SBC options, the Raspberry Pi 5 (RPI5) [17] emerged as the best choice due to the
team’s prior experience with the device.

8.3.2. Image storage
Given the potential for the experiment to generate a large volume of image data over a ≥12-hour pe-
riod (every 2 to 5 seconds an image is captured), sufficient storage capacity is crucial. Keeping this
primary requirement in mind with the requirement of 8.2.2, several options were considered: SD card,
external hard disk, and cloud storage. Each advantage and disadvantage is referenced back to their
requirement.

Storage Method Pros Cons
SD Card

• Enough storage capacity (2.1)
• Easily accessible (2.2)

• Vulnerable in experimental condi-
tions (e.g., water) (2.3)

• Expensive for large data sizes (2.5)

External Hard
Disk • Enough storage capacity (2.1)

• Budget-friendly (2.5)
• Vulnerable in experimental condi-
tions (e.g., water) (2.3)

Cloud Server
• Very large or ”unlimited” storage ca-
pacity (2.1)

• Saves physical storage space (2.3)
• Data is secure once uploaded (2.3)
• Budget-friendly (client already has
a cloud server) (2.5)

• Requires a stable internet connec-
tion for live uploading (2.2)

Based on this Table 8.3.2, cloud storage emerged as the preferred choice due to its large capacity,
space-saving benefits, and existing availability for the client. To make this option even better, a combi-
nation with the use of an SD card will be implemented. The SD card will function as RAM, whenever
the internet connection is not stable to upload to the cloud. This will ensure no data will be lost.

To add to this ”internet connection” drawback, a brief experiment testing the stability in the project’s
environment, showed sufficient upload speeds. This further supports the feasibility of cloud storage. 5
measurements in one hour have been conducted with the help [19] (see Table 8.1). The slowest speed

Timestamp 09:09 09:25 09:37 09:56 10:05
Upload Speed (Mbps) 258.3 76.0 80.21 55.6 50.4

Table 8.1: Upload speeds (Mbps) for 5 measurements and their corresponding timestamps

is 50.4 Mbps within this one-hour test, which is still fast enough for uploading images. On average
the upload speed is 104.1 Mbps. The results of this test ensure that there is no need for significant
concern.

To summarise, the eventual setup involves using a Raspberry Pi 5 with a 128GB SD card for temporary
storage, with images uploaded directly to the cloud whenever possible.
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8.3.3. Metadata Storage
After image processing, metadata storage options such as JSON, TOML, and HDF5 were evaluated.
See Appendix D.11 for a weighted table. HDF5 emerged as the most suitable choice, despite the
limitation of not being able to be directly opened like a ’.txt’ file (this disadvantage applies to most
formats). This limitation can be easily overcome by converting the structured data from the HDF5 file
into a ’.txt’ file. Additionally, compression can be applied to mitigate any concerns regarding file size.

8.4. Implementation
This chapter outlines the implementation of the data collection process, data handling, and cloud inte-
gration using a Raspberry Pi.

The process pipeline, based on the design alternatives, is as follows: the Raspberry Pi captures images
using the attached camera. The images will be temporarily stored on the Raspberry Pi, subsequently,
these will be uploaded to a Google Drive. From the cloud, the images are downloaded and processed,
and then stored as a .h5 file. The processed data is analysed using a Deep Learning algorithm.

It is important to note that the image downloading and processing pipeline runs simultaneously with the
execution of the experiment, to accelerate the overall process.

All these processes will be automated to fulfil the main requirement: automation.

8.4.1. Cloud Integration Using Raspberry Pi
Raspberry Pi
Integration of the Raspberry Pi involves establishing a connection with a remote laptop and explaining
the use of the Raspberry Pi.

Initially, the Raspberry Pi was set up and configured with an SSH key, enabling remote access from a
laptop to configure its IP address. Later, a VNC connection was established, allowing easier control of
the Raspberry Pi through a simple IP address. This improved accessibility, as not every PC needing
to communicate with or control the Pi would require its own SSH key.

Using the laptop, the user can execute the main program, specify the saving folder for data storage,
and initiate experiments. This initiation means starting the camera and capturing images, which are
then uploaded to the cloud.

Image Capturing
Image capture is managed by a simple script on the Raspberry Pi, triggering the camera at set intervals
and saving images locally. Each image is uniquely named for automation purposes: ”xxxxx_image”,
where ”xxxxx” is a number from 00000 up to 99999.

Uploading
Once the images are saved locally, they are uploaded to a cloud server, currently the project team’s
Google Drive, enabling easy access for all team members.

The upload algorithm works as follows: at regular time intervals, the script will send a request to upload
the images to the Google Drive server, and if the request is successful, the images will be uploaded.
Once the images are uploaded, they will be deleted from the Raspberry Pi.

If a connection cannot be established, the program handles this exception instead of crashing. The
images will be kept on the Raspberry Pi and during the next interval, the program will try to reconnect
and upload the images again.

Downloading
Images can be downloaded in real-time onto a remote system during the experiment. The download
process continuously monitors newly uploaded images, downloading them in chronological order. Ro-
bust error-handling strategies, such as retry attempts and dynamic API connections, are used to ensure
stability and prevent crashes.

While implementing the download process, several errors occur in the threading processes, causing
the program to crash. To address this within the limited implementation time frame, an efficient solution
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was adopted. Errors were caught using try-except blocks, with a setup to try downloading the image
three times. In case of failure after three tries, the program would go ahead and download the next
item. This strategy was effective in preventing frequent crashes.

Another problem faced was a ’malloc’ error, and this was surprising because Python is known to handle
memory problems by itself. The problem occurred while working with Google’s authorization process
and, to some extent, in combination with Python’s threading. At first, in combination with threads, it
was found that if a connection were made to Google’s API at the start of the program, then eventually
a ’malloc’ error happened and crashed the program. The solution was for the thread to connect to
Google’s API upon each execution, during the download of a file. This procedure ensured that there
was no crash error and that the download operation proceeded smoothly.

1 def run(self):
2 try:
3 # Run build (again) within threaded function, otherwise malloc() errors
4 creds = authenticate()
5 service = build(API_NAME, API_VERSION, credentials=creds)
6 request = service.files().get_media(fileId=self.file_id)
7 with io.BytesIO() as byte_stream:

Listing 8.1: Python code: Google API and Threading.

8.4.2. Data Formatting
The output from image processing, a NumPy array, is transformed into HDF5 format using scripts. This
HDF5 format, when printed into a text file, provides a structured and easily interpretable representation
of the data, see Figure 8.1.

Figure 8.1: HDF5 formatting

As the input of the deep learning algorithm requires a NumPy array, another script is designed to
deconstruct the HDF5 files to a NumPy array.

Additionally, an option for compressing the HDF5 and .txt files into zip format is provided for long-term
storage, addressing the requirement for minimal data storage size.
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8.5. Results
This section presents the outcomes of experiments conducted to validate the functionality and reliability
of the implemented subsystems.

8.5.1. Cloud Integration Using Raspberry Pi
First, 2 experiments will be explained, which should prove working sub-modules.

Experiment 1
Every individual sub-module within image capturing, uploading, and downloading has been tested in-
dividually. The next level of testing integrates these modules into a laptop and runs the tests for an
extended period to determine their long-term reliability. A one-hour test period should be enough at this
stage. This period is not enough to determine a ≥12-hour reliability but serves as enough evaluation to
test the sub-module by itself on a laptop.

The images are captured every 2 seconds and uploads will happen in batches every 5 seconds. Every
5 seconds an image is downloaded. The experiment will be documented by saving the terminal logs
and comparing them to ensure that the correct images are downloaded on the laptop.

Experiment 2
A second experiment will be conducted to check the reliability of the Raspberry Pi. A one-hour test will
be executed, from which again the terminal log will be stored.

With this experiment, images will be captured every second and uploaded continuously. This will also
directly test the reliability of faster uploading.

8.5.2. Experiment 3
A third experiment will purely check the time it takes to download an image. This data will be proved
again by logging the terminal. The download speed during this experiment was measured at around
130 Mbps with [19] and conducted at the Technical University of Delft.

Results Experiment 1
The log output found in listing 8.2, shows the beginning and end of the test period. Images were
successfully captured between 11:50:33 and 12:50:50. A total of 720 images (numbered 0-719) were
uploaded, which had no failed uploads and are available in Google Drive.

1 Image 00001_Image.jpg captured successfully.
2 2024-06-07 11:50:33,959 - INFO - file_cache is only supported with oauth2client <4.0.0
3 Image 00002_Image.jpg captured successfully.
4 File '00000_Image.jpg' uploaded successfully.
5 # skip to end
6 File '00719_Image.jpg' uploaded successfully.
7 2024-06-07 12:50:50,407 - INFO - Contents of folder 'Images' uploaded and deleted

successfully.
8 Image 00720_Image.jpg captured successfully.

Listing 8.2: log: Uploading timestamps

One error occurred during the one-hour testing period (log 8.3): the server connect error, is trapped in
the try-except block, and the algorithm continues.

1 ERROR - An error occurred in upload_and_delete: <!DOCTYPE html>
2 #...
3 <p>The server encountered a temporary error and could not complete your request.<p>Please

try again in 30 seconds. <ins>’Thats all we know.</ins>

Listing 8.3: Log: Errors in uploading.

This log output shows how the first and last images are successfully downloaded, and linked with their
time stamps. The last download happened 17 minutes after the last upload, as the sleep time between
downloads is longer than the upload time.
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1 What is the name of the folder of the experiment?: test_experiment_1
2 2024-06-07 11:51:47,598 - INFO - file_cache is only supported with oauth2client <4.0.0
3 2024-06-07 11:51:49,061 - INFO - Download successful: 00000_Image.jpg
4 # skip to end
5 2024-06-07 13:07:35,616 - INFO - file_cache is only supported with oauth2client <4.0.0
6 2024-06-07 13:07:37,050 - INFO - Download successful: 00719_Image.jpg

Listing 8.4: log: Downloading timestamps

This error is a server connection error. It can be resolved in the same way as with the errors during
uploading: by using a try-except block, so that the process can keep on going.

1 2024-06-07 12:30:01,193 - ERROR - Error downloading chunk: IncompleteRead(129614 bytes read,
169937 more expected)

Listing 8.5: Log: Errors in downloading.

Result Experiment 2
The experiment was conducted for 45 minutes (10:58:31 - 11:45:48). Within this 45 minutes, 3 different
times uploading was started. In the first execution, a connection (IOError) occurred 8.6. This collided
with the whole system, and uploading was not reliable. The next 2 executions of the script did work
effectively.

1 File '00329_Image.jpeg' uploaded successfully.
2 2024-06-17 11:45:15,419 - INFO - Contents of folder 'Images' uploaded and deleted

successfully.
3 File '00328_Image.jpeg' uploaded successfully.

Listing 8.6: Log: Errors in uploading.

The uploading speed was observed to be diverse between a burst upload within a second and some-
times uploading took 2 seconds.

1 Image 00318_Image.jpeg captured successfully.
2 File '00317_Image.jpeg' uploaded successfully.
3 2024-06-17 11:44:42,114 - INFO - Contents of folder 'Images' uploaded and deleted

successfully.

Listing 8.7: Log: Uploading speed.

During testing, it was noticed that the cooling fan of the Raspberry Pi did not work. Forcing the cooling
fan within the terminal was tried, but not succeeded. However, with the cooling of the flashlight and
smart placement, the Raspberry Pi would not overheat.

8.5.3. Results Experiment 3
In the logbook 8.8, the initial timestamp of connecting to the Google Drive is made and the time stamp
is shown when the download was finished. The time between these two is 1.8 seconds. The total
amount of images downloaded during this experiment was 100 images. By observation, the amount of
seconds it took to download an image was around 2 seconds.

1 2024-06-18 16:24:03,686 - INFO - file_cache is only supported with oauth2client <4.0.0
2 2024-06-18 16:24:05,499 - INFO - Download successful: 00157_Image.jpeg

Listing 8.8: Log: Download time.

8.5.4. Data Formatting
Experiment 4
The experiment aimed to validate the data formatting process by simulating 9000 images and converting
them into HDF5 format and a text file. The resulting data was then compressed into a zip folder to
assess storage size.

An experiment for this is very straightforward. Give input in a NumPy array per image with spheres and
their respective coordinates, radius and visibility generated from the Deep Learning simulation. If the
formatting still works correctly for a lot of images and can zip with the use of a script, the sub-module
works.
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Results experiment 4
In figure 8.2 the metadata of the first and last images are displayed. Next to that, the database is shown
with the ’normal’ folder and the zip folder. The zip folder size was found to be 8.8 Mb, demonstrating
the efficient data compression capabilities of the formatting process.

(a) Image 1 (b) Image 2

(c) Image 3

Figure 8.2: Formatting and database

8.6. Discussion
The Discussion section provides a detailed analysis of the experimental outcomes, focusing on the
effectiveness of data formatting procedures, and the performance and reliability of cloud integration
using the Raspberry Pi.

8.6.1. Cloud Integration Using Raspberry Pi
Experiment 1
The results of Experiment 1 were positive. During the one-hour testing period, only two errors occurred
during uploading and one during downloading, all related to server connection issues. These errors
were effectively managed by the algorithm, allowing the process to continue smoothly. The successful
capture and upload of 720 images, along with their accurate download, demonstrate the functionality
and reliability of the sub-modules.

Although the test duration was limited to one hour, the positive results indicate potential for long-term
reliability. Extended testing is recommended to fully assess the system’s performance over 24 hours
or more.

Experiment 2
The error observed in this experiment could cause problems during execution. While restarting the
script resolves this issue, it is not a foolproof solution.

During the creation of the training data and the extended execution of the script on the Raspberry Pi, the
sub-module worked as expected whenever the script started correctly, such as with a good connection
and proper image capturing. However, initialization sometimes failed, which resulted in later data loss
if proceeded. This issue was observed by the team but not officially documented.

The uploading speed either occurred in bursts or took more than 2 seconds. This variation is due to
the algorithm checking the upload folder and uploading all contents within that folder directly. Between
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these bursts, there can be a longer delay before uploading again, explaining the time differences. This
implementation is as expected; it does not slow down the overall pipeline process since uploading is
anticipated to be faster than downloading and processing the image. This will be further discussed in
the final discussion (see Chapter 10).

8.6.2. Experiment 3
The time required to download an image significantly slows down the total process. This issue can be
mitigated by designing a buffer system, where the next image is downloaded while the current image
is being processed and analyzed by deep learning algorithms. This would eliminate download waiting
time. Although this idea has not been implemented in the system, it should be a priority when focusing
on optimizing computation time.

8.6.3. Data Formatting: Experiment 4
The data formatting process performed as expected. The formatted datamaintained a concise structure
even with a large dataset of 9000 images. The data was easily readable in a text file format, facilitating
validation and analysis. Additionally, the compressed data size was efficiently reduced to 8.8 MB, well
within the target of 500 MB for long-term storage of experiment data.

The successful implementation of data formatting and cloud integration underscores the system’s vi-
ability for automated, synchronized data collection and storage. These findings support the system’s
potential for scalability and reliability in long-term experiments.

8.6.4. Future Recommendations
Overall, the system functions as expected and is correctly set up with the sub-modules. The main
issue is with initializing the uploading script. The recommendation is to make this process more robust
by improving the handling of IOE errors. Instead of continuing the script, the program should restart
and resume uploading from the image that initially caused the error. It is crucial to save the images
that were not uploaded when the error occurred. A script implementing this feature already exists but
should be verified for correct functionality if this idea is adopted.

After addressing this issue, a long-duration test should be conducted to meet the requirements of Ex-
periment Time (1.7), demonstrating the system’s reliability for long-term use.

8.7. Conclusion
This chapter reviewed the implementation of remote accessibility, an upload and download script, and
storage requirements. Through targeted experiments, the system demonstrated good results.

The implementation of the Raspberry Pi 5 successfully met the requirements of accessibility (1.1), syn-
chronized data collection (1.2), portability (1.3), budget (1.4), performance (1.5) and future scalability
(1.6). These requirements were fulfilled effectively because the Raspberry Pi 5 provided a platform
for capturing and uploading images while being compact and easily transportable, during the use of
multiple experiments. As the system is an OS, the future expansion is limitless. No valid experiment
has been done to show a valid proof for the requirement Experiment Time(1.7).

The upload script was implemented on the Raspberry Pi, and the download script was run on a laptop.
The most important aspect of system reliability during extended experiments was addressed, with the
results showing reliability whenever initialisation was conducted properly. The system handled server
connection errors properly, not including initialisation, and maintained consistent operation throughout
the testing period, which shows potential for long-term use.

The uploading time was within the margin of the requirement (6 seconds) [4.1]. Downloading time did
not fulfil the requirement of having ’milliseconds of download waiting time’ by the image processing and
deep learning pipeline.

Data formatting did not require extensive testing, as it was straightforward to demonstrate its effective-
ness. The script successfully formatted a large dataset, creating a readable text file and compressing
the data into an 8.8 MB zip file. This satisfied the most important requirement for minimal long-term
data storage size (3.2), confirming the efficiency of the data formatting process. Furthermore, all other
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data storage-related requirements were met.

In conclusion, the experiments showed positive results, except for the downloading time. This module
can however be improved with the help of a buffer. Furthermore, the system’s long-term reliability
remains sensitive to network initialisation. Further testing and adjustments may be needed to ensure
consistent long-term performance.



9
System Integration

9.1. Introduction
This chapter discusses the full integration of all sub-modules and how they are realized as an integrated
system. It details the general operation of the program, highlighting the input and output of each sub-
module and identifying any implementation bottlenecks. While the system as a whole will be tested,
the results of these tests will be discussed in Chapter 10 and the conclusion in Chapter 11.

Automation is a key aspect of the system integration, as it directly influences computational time. Fur-
thermore, all previously discussed requirements from Chapter 2 apply to this full project implementation.
This chapter focuses exclusively on the implementation process and the results obtained.

9.2. Implementation
The same figure from Chapter 4 is shown in Figure 9.1 for clarity regarding the entire system. As such,
it will not be explained in detail again here. Instead, this section will focus on discussing the exact
inputs and outputs of each submodule.

Additionally, the implemented code for system integration can be found on GitHub. In Appendix C.1,
each branch relevant to the project is explained.

Figure 9.1: Pipeline of the top-level implementation (can also be found in appendix E.78).

9.2.1. General Use
The goal of the system integration is to design a fully automated process for the client. This process
is structured as follows: when the user starts the program, they are prompted to choose whether to
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start the process of defining a Ring, Line, or none. From here, two more options will appear: using an
existing database or conducting a live experiment.

For the existing database option, data that has already been processed by image processing and saved
in a zip folder will be used as input for deep learning.

The second option is to run a direct check of the downloaded images. These images could be uploaded
live or already exist on a cloud server. In either case, these images will be processed one by one
through the image processing module, then through the deep learning algorithm, and finally saved into
an HDF5 file. The output for each image will be displayed accordingly.

9.2.2. Setup to Image Processing
The system is designed to directly process newly uploaded images from the cloud that have been
uploaded from the setup. The structure is sequential, with image processing receiving a new input
only after processing the previous image. This means that one image per iteration will be on the local
system, which helps save storage space. This process is repeated until the user stops it by pressing
’Ctrl+C’.

9.2.3. Image Processing to Deep Learning
Once the image processing algorithm completes its task, the output is passed through the deep learn-
ing network. If the process is running live, the output of image processing (a NumPy dictionary) is fed
directly into the neural network. The neural network will display its prediction alongside the correspond-
ing image. All of this data is saved into an HDF5 file.

If the process runs offline, the saved HDF5 format is deconstructed (without its prior given label) and
input into the neural network. The neural network processes the images and updates all the labels
according to its new output.

9.3. Results
During the implementation, it was concluded that a green sphere was unrecognizable by the image
processing module. This issue impacted the deep learning sub-module, preventing the generation
of complete results. Only a small number of images, including three spheres, were successfully pro-
cessed by image processing and subsequently analyzed by deep learning using a simulated neural
network. These results have already been discussed in Chapter 7, so they will not be detailed again
here. However, the accuracy of the current trained neural network in defining a ring, line, or none with
three spheres is 42.0%. Excluding the ’undefined’ category, which likely serves as a ”catch-all,” the
accuracy drops to 18.4%.

9.3.1. Validation
For more comprehensive results, such as those from a 12-hour experiment, the required sample size n
for the validation set can be calculated using the finite population correction formula [6]. For a 12-hour
experiment, this calculation results in a sample size of approximately n ≈ 380.

n =
N · Z2 · p · (1− p)

E2 · (N − 1) + Z2 · p · (1− p)

Where:

N = Population size for a 12-hour experiment is 43200 images
Z = Z-score corresponding to the desired confidence level (1.96 for 95% confidence)
p = Estimated proportion (0.5 as a conservative estimate)
E = Margin of error (0.05 for 5% error)



10
Discussions

The discussion provides a critical analysis of the results and findings from the implementation and inte-
gration stages. It discusses the project’s successes, limitations, and potential areas for improvement,
offering insights into the effectiveness of the chosen design and implementation strategies.

10.1. Final Result
The current implementation results of the system do not meet the set requirements. This is due to the
unavailability of training data for the neural network, which shows currently an achievable accuracy of
42%. However, the result of the neural network itself, with trained simulation data, still shows promising
data if trained correctly. Therefore, the primary recommendation and highest priority for proceeding with
this project is to gather the required training data for the neural network as originally planned.

10.2. Hardware Setup and Image Processing
In Chapter 6, a conclusion resulted that a green sphere could not be recognized and thus no metadata
could be collected. This means no experiments can be conducted with a green sphere, this does
reduce the possibility to generalise. The hardware team and image processing team should make
further investigation into finding colors that will work effectively, so experiments can be conducted with
multiple spheres.

10.3. Image Processing and Deep Learning
As has been explained in Top-Level Design (Chapter 4, the choice was made to process images into
2D coordinates, radius and visibility. This metadata would be fed into the neural network, which would
produce an output. Resulting this pipeline, it was concluded that the computational time for downloading
would take around 2 seconds image processing would show at least 6 seconds of processing and deep
learning was able to produce its result in milliseconds. This result is too large and thus the requirement
is not met.

One solution to solve this problem is applying optimization for each process. The optimization for the
downloading process has been explained in detail in the discussion of Chapter 8; design a buffer, so
other processes don’t have to wait on downloading. The image processing algorithm should be inves-
tigated to achieve faster computational time. The neural network does not need further optimisation
regarding computational time, as it is already fast.

It can also be considered to reevaluate the design choice of extracting metadata from images. As
image processing is highly computationally inefficient, this may have not been the correct design choice.
Spreading the weight of computation time between image processing and deep learning more evenly
may have been a better choice. Ideas for this have not been researched. It is recommended to first
investigate optimisation for image processing before considering changing to a whole different design.
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10.4. Hardware setup and Deep Learning
A key difference between data collection and simulation lies in the formation possibilities. In the col-
lected data, spheres were connected with thin fishing wire, particularly in line formations, which inhibits
the formation of certain curvatures. The small distance between the anchor points of opposing spheres
allows for some flexibility but restricts the range of motion between the spheres.

This constraint permits snake-like chain formations, which are not generated in the simulation. The
simulation enforces equal angles between the vectors spanning the centers of the spheres, unlike the
actual scenario where each angle can vary. However, the simulation allows for a wider range of these
angles. Although the simulation cannot generate snake-like formations, it defines a broader range of
curvatures as lines, which the hardware physically cannot achieve. This discrepancy might impact
model training, as data collected from actual experiments could differ. When the actual experiment is
running, the model might misclassify formations, predicting a ring instead of a line due to a larger grey
area of formation types in the simulation. For example, a 3/4 arc of a circle might be recognized as a
ring instead of a line.

10.5. Future Recommendations
A future recommendation is to generate more data to train the neural network, ensuring it captures
the full range of possible formations observed in real-world scenarios. This additional data should
include various formations with inherent noise and inaccuracies, enabling the model to better handle
real experimental conditions and improve its classification accuracy. By incorporating these diverse
formations, the neural network can bemore robust and reliable in distinguishing between similar shapes,
reducing the likelihood of misclassifications.

The current model operates with three to six spheres. The spheres are small enough to fit a line of
six within the cone. Training data is easily generated by reconstructing one ring and one line and
running the experiment for a few hours. Six different colors are selected for the image processing
model to maintain an accuracy of 99%. The deep learning model exhibits characteristics that show
higher accuracy with more spheres. However, beyond a certain number of spheres, the model topology
will need to be adjusted to prevent a likely decline in accuracy.

Another recommendation is to improve the image processing algorithms. Enhancing these algorithms
can lead to more accurate detection and measurement of the spheres’ positions and radii, reducing
the noise and errors in the data. This can be achieved by employing more advanced techniques such
as deep learning-based image segmentation, edge detection algorithms, or real-time tracking methods.
Additionally, incorporating pre-processing steps like noise reduction, contrast enhancement, and image
stabilization can further refine the input data quality. By improving the image processing pipeline, the
overall accuracy and reliability of themodel can be significantly increased, leading to better performance
in real-world applications.



11
Conclusion

To better understand self-assembly processes, it is important to be able to research interactions be-
tween the particles. Amacroscopic experimental setup containingmagnetic dipole spheres in a turbulence-
driven fluid is yet to be analysed. The turbulence of the water and the magnetic force of the spheres
create an environment where the spheres interact with each other and form either a line or a ring. The
research question at the beginning of the report stated:

“How do we automatically recognize 3D formations of magnetic spheres in line and ring formations?”

To answer this in short: the system can perform an automated process that provides a result based
on a given 3D formation. However, the accuracy of this result is too low to be viable for practical use.
On the other hand, promising working sub-modules have been demonstrated, which showed accurate
results.

11.1. Submodule Conclusions
The pipeline contains the experimental setup and physics analysis, image processing, deep learning
and data management. The camera takes pictures of the experiment from the top. The images are
processed and individual spheres are recognized. Data is extracted from these spheres and fed to
the deep learning model. The deep learning model is trained on generated labelled data and will give
one of three cases as output: ring, line or none. The images and camera control will be done with a
Raspberry Pi 5.

Spheres are designed to fulfil the requirements of the experimental setup and the image processing
model. The camera together with the light source is placed at the top to take clear pictures without
shadow. Training data for the deep learning model is generated by gluing the spheres together (in the
case of a ring) and pulling a string through them (in the case of a line).

During the image processing stage, the spheres are detected on the images and their centre coordi-
nates, radii and visibility are computed. The spheres are detected with an accuracy of 98.9%. The
centre coordinates are computed with an accuracy of 99.8% and the radii with 98.4%. The average
processing time is 6-7 seconds per image.

According to simulations, the deep learning model seems to correlate with the number of spheres and
the model’s accuracy. Having three spheres, an accuracy of over 95% is reached up to 99% for six
spheres. The simulation showed that at least 2500 images per formation type per sphere are needed
to train the model. Real training data has not been provided to the model, and therefore, it has to make
real predictions based on simulated training data. The overall accuracy is 42.0%, taking into account
none as well.

A Raspberry Pi 5 is used to control the experiment. The upload script to a cloud server has been
successfully tested. Formatting the metadata retrieved from image processing into HDF5 proved to be
working as well.
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11.2. Top-Level Requirements
The most relevant requirements, as stated in section 2 are summed up below. The other top-level
requirements can be found in Appendix B. If applicable, all design choices have been made upon
these:

• Training Time Efficiency: Training of the automated recognition module should take up less
time than the manual evaluation of the spheres’ formations.

Training data does not have to be labelled automatically anymore. By forcing a formation of
spheres into a line (using the string) or a ring (gluing), the experiment can be performed for hours
without any manual intervention.

• Data Storage Size: The maximum allowable size for long-term data collected from a single
experimental trial is 500 MB.

Every image is processed and certain data is extracted. Saving only the coordinates of the
spheres, their radii and visibility drastically reduces the amount of data compared to the images
themselves. Besides, formatting the data of a simulated experiment to a HDF5 format and a text
file, results in a zip folder of 8.8 MB, thus complying with the requirement.

• Formation Recognition: The method must be able to distinguish between a ring, a line and an
undefined formation of a variable number of spheres.

As stated in the Accuracy requirement, the overall system lacks real-time training data and thus
achieves a result of 42.0%. Although every sub-system has promising results, the overall imple-
mentation does not meet this requirement.

• Automated Process: The developed algorithm/method must yield an automated execution pro-
cess.

With the system integration developed as it is now, a fully automated process has been integrated.
Capturing and uploading happen at the same time when the downloading and processing pipeline
runs. This gives a direct output, which is saved accordingly. This integration meets the require-
ment of an automated process.

• Accuracy: The overall system must have an accuracy of at least 95%.

The overall system has not met the set requirements due to the lack of real-time training data for
the neural network. The achieved accuracy was 42.0%.

• Validatability: The designed overall system must be capable of being validated to show the
reliability and usability of the system.

Each image is able to be validated if its computed output is correct. This is possible by observing
the direct output in the terminal and post-evaluation from the saved HDF5 format.

• Computational Time: The computation time of the automatised recognition module should not
take more than 1 hour past the experiment duration.

The total computational time includes 2 seconds for downloading, 6 seconds for image processing,
and milliseconds for deep learning. This sums up to a total of 8 seconds, which does not meet the
requirement of processing an image every second. This results in a computational time that is 8
times longer than the experiment duration, as an image is taken every second. For experiments
lasting 12-24 hours, this leads to significant delays in computation.
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Appendix All team members

94



B
Conclusion Top-Level Requirements

• Time Frame: The implementation of the project must be feasible in a time frame of three weeks.

Every subsystem has been able to implement its design and generate promising results. The
overall design, however, faced some difficulties which led to a low overall accuracy. Even though
the final product is not fully functioning, some very useful results and conclusions have been
gathered in the process. Therefore, this requirement has been met.

• Costs: The total cost budget of this project is €2000.

The total costs of the project have been around €300 for the setup and €200 for data management.
Consequently, the requirement has been met.

• Setup Compatibility: The measurement method must be practically feasible and compatible
with the current setup without necessitating any modifications.

In fact, it is not a question of whether this requirement has been met, but multiple design decisions
come from the compatibility with the current setup. A camera mould has been designed and
assembled to fit the camera and flashlight into the small cylinder at the top. Both the camera and
the flashlight had to be small to fit in the cylinder. The only thing that has been changed to the
setup is the filtering of the water to increase visibility.

• Portability: The developed automated system must be portable. It should be designed such that
the transportation of the system is convenient.

The Raspberry Pi 5 provides a platform for capturing and uploading images while being compact
and easily transportable, during the use of multiple experiments. Therefore, this requirement is
met.

• Accessibility: The system should be easy and remotely accessible.

The images that are generated are uploaded to a Google Drive and therefore very easily and
remotely accessible. Also, the Raspberry Pi itself is easily accessible through the use of a VNC
connection.

• Reproducible Experiment: Themeasurement methodsmust allow for reproducible experiments
to ensure consistent results.

The training formations (the forced line and ring formations) are created in such a way that it is
possible to reproduce new data without changing the formations. Besides, the camera mold is
produced to ensure the stability of the experiment.

• Generalisability: The developed method must be generalisable to any structure and any shape
of the spheres in the structure.

The spheres can easily be reproduced and painted in different colours. The training data can
be assembled the same way. For image processing, there is a limit for the different amount of
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colours that can be used (and thus the maximum number of spheres).
• Experiment Duration: The test setup must be able to run the experiment for a duration of 12
to 24 hours. Also, the developed method must be able to handle and store the corresponding
amount of data.

During the design of the spheres, especially the choice of the paint was important as it had to
remain intact for multiple experiments of 12 to 24 hours. Furthermore, the shape of the spheres
needs to remain intact during these experiments. However, the flashlight did not meet this re-
quirement, as it could not charge and produce light at the same time.



C
Source Code

C.1. GitHub Relevant Branches
Link to Git repository: GitHub

(https://github.com/gvanhuizen/BEPSelfAssembly)

Github Branches
Main Overall main branch for the main program (not updated yet as no working version)
Version1 The first implementation version; no trained neural network as for now
RPI5 The Raspberry configuration code
MaskAlgorithm The Neural Network design and analysis
ImageProcessingPeter Part of image processing analysis
ImageProcessingEmma Part of image processing analysis
Implementation Design and testing of the whole system implementation

C.2. Image Processing
C.2.1. HSV Colour Range Selection

1 import cv2
2 import numpy as np
3

4 def nothing(x):
5 pass
6

7 # Load image
8 image = cv2.imread('noise_remove_background_removed_00000_bias_image_colorenhance_no_clahe.

png')
9 if image is None:
10 print("Error: Unable to open/read file")
11 exit()
12

13 # Create a window
14 cv2.namedWindow('image')
15

16 # Create trackbars for color change
17 # Hue is from 0-179 for OpenCV
18 cv2.createTrackbar('HMin', 'image', 0, 179, nothing)
19 cv2.createTrackbar('SMin', 'image', 0, 255, nothing)
20 cv2.createTrackbar('VMin', 'image', 0, 255, nothing)
21 cv2.createTrackbar('HMax', 'image', 0, 179, nothing)
22 cv2.createTrackbar('SMax', 'image', 0, 255, nothing)
23 cv2.createTrackbar('VMax', 'image', 0, 255, nothing)
24

25 # Set default value for Max HSV trackbars
26 cv2.setTrackbarPos('HMax', 'image', 179)
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27 cv2.setTrackbarPos('SMax', 'image', 255)
28 cv2.setTrackbarPos('VMax', 'image', 255)
29

30 # Initialize HSV min/max values
31 hMin = sMin = vMin = hMax = sMax = vMax = 0
32 phMin = psMin = pvMin = phMax = psMax = pvMax = 0
33

34 while True:
35 # Get current positions of all trackbars
36 hMin = cv2.getTrackbarPos('HMin', 'image')
37 sMin = cv2.getTrackbarPos('SMin', 'image')
38 vMin = cv2.getTrackbarPos('VMin', 'image')
39 hMax = cv2.getTrackbarPos('HMax', 'image')
40 sMax = cv2.getTrackbarPos('SMax', 'image')
41 vMax = cv2.getTrackbarPos('VMax', 'image')
42

43 # Set minimum and maximum HSV values to display
44 lower = np.array([hMin, sMin, vMin])
45 upper = np.array([hMax, sMax, vMax])
46

47 # Convert to HSV format and color threshold
48 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
49 mask = cv2.inRange(hsv, lower, upper)
50 result = cv2.bitwise_and(image, image, mask=mask)
51

52 # Print if there is a change in HSV value
53 if (phMin != hMin or psMin != sMin or pvMin != vMin or phMax != hMax or psMax != sMax or

pvMax != vMax):
54 print(f"(hMin = {hMin}, sMin = {sMin}, vMin = {vMin}), (hMax = {hMax}, sMax = {sMax},

vMax = {vMax})")
55 phMin = hMin
56 psMin = sMin
57 pvMin = vMin
58 phMax = hMax
59 psMax = sMax
60 pvMax = vMax
61

62 # Display result image
63 cv2.imshow('image', result)
64 if cv2.waitKey(10) & 0xFF == ord('q'):
65 break
66

67 cv2.destroyAllWindows()

Listing C.1: HSV Thresholding Tool

C.2.2. Final implementation
Image Processing Main Function code

1 import sys
2 import os
3 import cv2
4 import numpy as np
5

6 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'Sphere_Isolation')))
7 from run_files_main import main_sphere_isolation
8

9 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'Property_extraction'
)))

10 from Main_Property_Extraction import main_property_extraction
11

12 # The main function of the property extraction algorithm
13 def extract_sphere_feature_main(image_path):
14

15 # Load the image
16 image = cv2.imread(image_path, cv2.IMREAD_COLOR)
17

18 # Isolate each sphere in the image and save each sphere in a list of binary images of
isolated spheres

19 dictionary_of_binary_isolated_circles = main_sphere_isolation(image_path)
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20

21 sphere_properties = []
22

23 # Iterate through all the binary files of the isolated spheres
24 for color, bin_image in dictionary_of_binary_isolated_circles.items():
25 # Compute for each isolated sphere its radius, center and visibility
26 properties_dictionary = main_property_extraction(bin_image, color, image)
27 print(f"Extracted {color}")
28

29 # Remove the unnecessary 'found' parameter from the properties_dictionary
30 properties_dictionary.pop('found')
31

32 # Append the property information of the isolated sphere
33 sphere_properties.append(properties_dictionary)
34

35 return sphere_properties

Listing C.2: Image Processing Main function

Image Processing sphere isolation code
1 import cv2
2 import numpy as np
3 from PIL import Image
4 from LAB_process_image import enhance_and_process_image
5 from background_removal_process import remove_background
6 from denoise_process import denoise_image
7 from colour_threshold_process import process_and_blend_colors
8

9 def main_sphere_isolation(image_path):
10

11 # Step 1: Enhance and process the image
12 processed_image = enhance_and_process_image(image_path)
13

14 # Convert the processed image to a format compatible with the rembg library
15 processed_image_pil = Image.fromarray(cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB))
16

17 # Step 2: Remove the background
18 processed_image_pil = remove_background(processed_image_pil)
19

20 # Convert back to OpenCV format\sub
21 processed_image = cv2.cvtColor(np.array(processed_image_pil), cv2.COLOR_RGB2BGR)
22

23 # Step 3: Denoise the image
24 processed_image = denoise_image(processed_image)
25

26 # Step 4: Process and blend colors
27 isolated_spheres_binary_images = process_and_blend_colors(processed_image)
28

29 return isolated_spheres_binary_images

Listing C.3: Image Processing Main sphere isolation function

1 import cv2
2 import numpy as np
3

4 def enhance_and_process_image(image_path):
5 # Load image
6 image = cv2.imread(image_path)
7

8 # Convert the denoised image to the LAB color space
9 lab_image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
10

11 # Split the LAB image into its channels
12 l, a, b = cv2.split(lab_image)
13

14 # Apply CLAHE to the L-channel
15 clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
16 cl = clahe.apply(l)
17

18 # Merge the CLAHE enhanced L-channel with the a and b channels
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19 enhanced_image = cv2.merge((cl, a, b))
20

21 # Convert the LAB image back to BGR color space
22 enhanced_image = cv2.cvtColor(enhanced_image, cv2.COLOR_LAB2BGR)
23

24 # Smooth edges using Gaussian blur
25 blurred_image = cv2.GaussianBlur(enhanced_image, (5, 5), 0)
26

27 # Create a kernel for the morphological operations
28 kernel = np.ones((5, 5), np.uint8)
29

30 # Apply dilation to connect edges
31 dilated_image = cv2.dilate(blurred_image, kernel, iterations=3)
32

33 # Apply erosion to refine the edges
34 eroded_image = cv2.erode(dilated_image, kernel, iterations=3)
35

36 return eroded_image

Listing C.4: Image Processing enhance and process image function

1 from rembg import remove
2 from PIL import Image
3

4 def remove_background(image):
5 # Remove the background
6 output_image = remove(image)
7 return output_image

Listing C.5: Image Processing remove background function

1 import cv2
2

3 def denoise_image(image):
4 # Apply Non-Local Means Denoising
5 denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 3, 11, 21)
6 return denoised_image

Listing C.6: Image Processing denoise image function

1 import cv2
2 import numpy as np
3

4 def process_and_blend_colors(image):
5 # Convert the image to HSV color space
6 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
7

8 # Define the color ranges
9 color_ranges = {
10 'red': (np.array([1, 0, 0]), np.array([19, 255, 114])),
11 'yellow': (np.array([27, 104, 233]), np.array([35, 255, 255])),
12 'roze': (np.array([155, 37, 186]), np.array([179, 255, 255]))
13 }
14

15 def process_color(mask, color_name):
16 # Smooth edges using Gaussian blur
17 blurred_mask = cv2.GaussianBlur(mask, (5, 5), 0)
18

19 # Create a kernel for the morphological operations
20 kernel = np.ones((5, 5), np.uint8)
21

22 # Apply dilation and erosion to connect edges
23 dilated = cv2.dilate(blurred_mask, kernel, iterations=3)
24 eroded = cv2.erode(dilated, kernel, iterations=3)
25

26 # Save the resulting binary image to a file
27 cv2.imwrite(f'Image_Procesing_Implementation/Test_Images/{color_name}_binary_WA0093.

png', eroded)
28

29 return eroded
30
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31 # Initialize a dictionary to hold the binary images
32 binary_images = {}
33

34 # Iterate through each color range and process the corresponding mask
35 for color_name, (lower, upper) in color_ranges.items():
36 mask = cv2.inRange(hsv, lower, upper)
37 binary_images[color_name] = process_color(mask, color_name)
38

39 return binary_images

Listing C.7: Image Processing color thresholding function

Image Processing Sphere Reconstruction code
1 from Radius_Center_V2 import compute_center_radius
2 from Visibility import main_visibility
3 from Radius_Center_V2 import find_largest_region_features
4 import cv2
5 from skimage import measure
6 import numpy as np
7

8

9 def main_property_extraction(isolated_sphere_binary_image , color, image):
10 min_radius = 50
11 max_radius = 150
12

13 # Load the binary image of the isolated sphere as binary file
14 _, binary_image = cv2.threshold(isolated_sphere_binary_image , 1, 255, cv2.THRESH_BINARY)
15

16 # Compute the x and y center coordinates and the radius of the visible part of the sphere
17 x, y, radius, found = compute_center_radius(binary_image, None, None, max_radius, None)
18

19 # Make an empty image with the same dimensions as the binary input image
20 height, width = binary_image.shape
21 empty_image = np.full((height, width), 0, dtype=np.uint8)
22

23 # Try to make a binary picture by reconstructing the circle from the isolated contour
24 try:
25 reconstructed_circle = cv2.circle(empty_image, (int(x), int(y)), int(radius), 255,

-1)
26

27 # Determine the visibility
28 visibility = main_visibility(binary_image, reconstructed_circle)
29 except:
30 visibility = None
31 pass
32

33 # The output of the main property function is a dictionary with the following values
34 properties = {
35 "x" : x,
36 "y" : y,
37 "radius" : radius,
38 "visibility" : visibility,
39 "found" : found,
40 "color" : color
41 }
42 print(properties)
43

44 return properties

Listing C.8: Image Processing Sphere Reconstruction main function

1 def compute_center_radius(binary_image, labeled_image, largest_region, max_radius,
regions):

2 # Compute the parameters of the visible part of the circle by applying the Hough
Transform

3 x, y, radius, found = HoughCicles_Reconstruction(binary_image)
4

5 return x, y, radius, found

Listing C.9: Image Processing Sphere apply Hough Transform function
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1 import cv2
2 import numpy as np
3

4 def HoughCicles_Reconstruction(image):
5

6 # Find the edges in the binary image
7 edges = cv2.Canny(image, 50, 150)
8

9 # Apply the HoughCircles function on the edges
10 circles = cv2.HoughCircles(edges,
11 cv2.HOUGH_GRADIENT,
12 dp=4.7,
13 minDist=132,
14 param1=100,
15 param2=100,
16 minRadius=66,
17 maxRadius=117)
18

19 # Determine whether a circle is found and set the x, y and radius values
20 if circles is not None:
21 found = True
22 for circle in circles:
23 circles = np.round(circles[0, :]).astype("float")
24 circle = circles[0]
25 x, y, radius = circle
26 else:
27 found = False
28 x = None
29 y = None
30 radius = None
31 return x, y, radius, found

Listing C.10: Image Processing Sphere Hough Transformfunction

1 import numpy as np
2 import cv2
3

4 def jaccard_similarity(img1, img2):
5 intersection = np.logical_and(img1, img2)
6 union = np.logical_or(img1, img2)
7 if np.sum(union) == 0:
8 return 0
9 else:
10 return np.sum(intersection) / np.sum(union)
11

12 def dice_coefficient(img1, img2):
13 intersection = np.logical_and(img1, img2)
14 if np.sum(img1) + np.sum(img2) == 0:
15 return 0
16 else:
17 return 2.0 * np.sum(intersection) / (np.sum(img1) + np.sum(img2))
18

19 def main_visibility(detected_circle, reconstructed_circle):
20 # Binarize the images (in case they are not binary)
21 _, detected_circle = cv2.threshold(detected_circle, 127, 255, cv2.THRESH_BINARY)
22 _, reconstructed_circle = cv2.threshold(reconstructed_circle , 127, 255, cv2.THRESH_BINARY

)
23

24 # Calculate Jaccard similarity coefficient
25 jaccard_score = jaccard_similarity(detected_circle, reconstructed_circle)
26 print("Jaccard Similarity Coefficient:", jaccard_score)
27

28 # Calculate Dice coefficient
29 dice_score = dice_coefficient(detected_circle, reconstructed_circle)
30 print("Dice Coefficient:", dice_score)
31

32 return jaccard_score

Listing C.11: Image Processing compute visibility function



D
Requirement Trade-Off Tables

D.1. Image Processing
D.1.1. Camera position

Camera position Weights Side/Horizontal Top/Vertical
Time frame feasibility:
Consideration of the implementation
time compared to the acquired results

8 5 4

Detection Accuracy 7 2 4
Chance of success:
How big is the risk factor when using a certain method? 10 2 4

Computational efficiency:
How much computational power
is required when recognizing the formation?

8 4 4

Ease of Segmentation 5 2 5
Traceability:
Ability to track the calculations/steps used
in the method and debug possible errors

7 3 4

Generalisability:
Does the method allow for generalisability in size,
variability of sphere, structure and formation?

8 4 4

Validatability:
Can the accuracy of the results be verified? 10 3 3

Robustness:
How robust is the algorithm to minor changes
in the environment of the test setup?

5 2 4

Bias prone:
How likely will a bias be introduced in
the algorithm with the applied method?

7 3 3

Total 75 230 288
Weighted average - 3,06 3,84

Table D.1: Camera Position Selection
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D.1.2. Circle Features Extraction
Criterion Weight Immediate Circle Detection Binary Thresholding + Reconstruction

Accuracy 9 3 4
Processing Speed 6 2 4
Complexity 6 4 3
Robustness 6 3 5
Scalability 3 3 4
Flexibility 3 2 4
Resource Usage 2 3 3
Result 35 102 138
Weighted Score - 2.91 3.94

Table D.2: Circle Features Extraction Methods

D.1.3. Preprocessing Techniques
Technique Selected (Yes/No) Reason

LAB Image - CLAHE Enhanced L-channel Yes Enhances contrast in the luminance channel.
Gaussian Blur Yes Reduces noise and detail.
Background Removal Yes Removes unnecessary parts of the image.
Non-Local Means Denoising Yes Effectively removes noise while preserving details.
Contrast and Brightness Adjustment No Less effective compared to other methods.
Remove Shade with Low Frequencies No Redundant with other selected methods.
Glare Removal using CLAHE No Removed too much datail and information.
Temperature Adjustment No Not necessary for the scope of this project.

Table D.3: Preprocessing Technique Alternatives

D.1.4. Sphere Colours
Spheres Weights Unique Colour Same Colour Half-Half

Time frame feasibility:
Consideration of the implementation
time compared to the acquired results

8 4 2 1

Detection Accuracy 7 5 2 4
Chance of success:
How big is the risk factor when using a certain method? 10 5 1 4

Computational efficiency:
How much computational power
is required when recognizing the formation?

8 5 3 2

Ease of Segmentation 5 5 2 4
Traceability:
Ability to track the calculations/steps used
in the method and debug possible errors

7 5 2 3

Generalisability:
Does the method allow for generalisability in size,
variability of sphere, structure and formation?

8 2 5 5

Validatability:
Can the accuracy of the results be verified? 10 2 5 4

Robustness:
How robust is the algorithm to minor changes
in the environment of the test setup?

5 4 3 4

Bias prone:
How likely will a bias be introduced in
the algorithm with the applied method?

7 3 5 4

Total 75 294 228 261
Weighted average - 3,92 3,04 3,48

Table D.4: Sphere Colour Selection
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D.1.5. Sphere Detection

Circle detection algorithms Weights Colour Threshold -
Binary Isolation

Contour, Concave,
Segment Grouping

Canny Edge
Detection

Watershed
Algorithm

Gradient
Detection

Time frame feasibility:
Consideration of the implementation
time compared to the acquired results

8 5 1 2 2 3

Accuracy 10 3 5 4 4 3
Chance of success:
How big is the risk factor
when using certain method?

10 4 3 2 2 2

Computational efficiency:
How much computational power is
required when recognizing the formation?

8 3 1 2 2 3

Traceability:
Ability to track the calculations/steps used
in the method and debug possible errors

7 4 4 3 4 4

Generalisability:
Does the method allow for generalisability
in size, variability of sphere, structure and formation?

5 3 5 5 5 4

Validatability:
Can the accuracy of the results be verified? 10 3 4 3 3 3

Robustness:
How robust is the algorithm to minor changes
in the environment of the test setup?

5 3 5 4 3 3

Data variability (features):
What is the variance in data that can be collected?
What type of data can we collect?

4 4 4 2 2 2

Data storage:
What is the amount of data required for the algorithm?
And how much data is outputted?

8 5 3 3 3 5

Bias prone:
How likely will a bias be introduced
in the algorithm with the applied method?

4 2 3 3 3 3

Total 79 286 266 232 234 251
Weighted average - 3,62 3,37 2,94 2,96 3,18

Table D.5: Sphere Detection Algorithms

D.1.6. Circle Reconstruction Algorithm
Initial Evaluation
Circle detection algorithms Weights Bayesian extrapolation Matched Filter minEnclosing Hough Transform
Time frame feasibility:
Consideration of the implementation time
compared to the acquired results

8 4 4 5 5

Accuracy 10 2 3 5 4
Chance of success:
How big is the risk factor when using certain method? 10 4 3 5 5

Computational efficiency:
How much computational power
is required when recognizing the formation?

8 2 2 3 2

Traceability:
Ability to track the calculations/steps used
in the method and debug possible errors

7 4 4 4 4

Generalisability:
Does the method allow for generalisability
in size, variability of sphere, structure and formation?

5 4 5 5 3

Validatability:
Can the accuracy of the results be verified? 10 4 4 4 4

Robustness:
How robust is the algorithm to minor changes
in the environment of the test setup?

5 5 3 5 5

Data variability (features):
What is the variance in data that can be collected?
What type of data can we collect?

4 3 3 4 3

Data storage:
What is the amount of data required for the algorithm?
And how much data is outputted?

8 5 3 5 5

Bias prone:
How likely will a bias be introduced
in the algorithm with the applied method?

4 3 4 4 4

Total 79 285 268 354 322
Weighted average - 3,61 3,39 4,48 4,08

Table D.6: Circle Reconstruction Algorithms
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Updated Circle Reconstruction Algorithm Evaluation
Circle detection algorithms Weights Bayesian extrapolation Matched Filter minEnclosing Hough Transform
Time frame feasibility:
Consideration of the implementation time
compared to the acquired results

8 4 4 5 5

Accuracy 10 2 3 2 5
Chance of success:
How small is the risk factor when using certain method? 10 4 3 2 5

Computational efficiency:
How much computational power
is required when recognizing the formation?

8 2 2 3 2

Traceability:
Ability to track the calculations/steps used
in the method and debug possible errors

7 4 4 4 4

Generalisability:
Does the method allow for generalisability
in size, variability of sphere, structure and formation?

5 4 5 3 3

Validatability:
Can the accuracy of the results be verified? 10 4 4 4 4

Robustness:
How robust is the algorithm to minor changes
in the environment of the test setup?

5 5 3 3 5

Data variability (features):
What is the variance in data that can be collected?
What type of data can we collect?

4 3 3 4 3

Data storage:
What is the amount of data required for the algorithm?
And how much data is outputted?

8 5 3 5 5

Bias prone:
How likely will a bias be introduced
in the algorithm with the applied method?

4 3 4 3 4

Total 79 285 268 270 332
Weighted average - 3,61 3,39 3,42 4,20

Table D.7: Circle Reconstruction Algorithms

D.1.7. Temporal Image Storage

Temporal Image Storage Weights .PNG .BIN PSD JPEG
File size 10 3 2 2 5
Quality 8 5 5 5 3
Re-editing 8 5 3 5 3
Compatibility 7 5 3 3 5
Lossless Compression 7 5 5 5 2
Total 37 180 140 156 147
Weighted Average - 4,86 3,78 4,22 3,97

Table D.8: Temporal Image Storage Format

D.1.8. Visibility Metrics

Visibility Metrics Weights Jaccard Dice Fuzzy Logic Easy Ratio
Accuracy 10 5 5 3 2
Robustness 10 4 4 3 2
Simplicity 7 4 4 3 5
Detail 7 4 4 5 1
Computational Efficiency 5 3 3 2 5
Ease of Implementation 10 4 4 3 5
Result 49 201 201 156 157
Weighted Average 4.10 4.10 3.18 3.20

Table D.9: Visibility Metrics Evaluation
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D.2. Data Management
Requirement Mini-PCs/SBCs Microcontrollers IP Cameras Smartphones/Tablets Streaming Devices Custom-built Systems

Budget-friendly ++ ++ - - + +/-
Performance + - +/- + +/- +
Remote Connectivity ++ + + ++ + +
Scalability + - - + - +
Ease of Use & Setup ++ + - - + -
Reliability + + + + + +
USB Connectivity for Cameras + + - - - -

Table D.10: Comparison of various devices based on different requirements; Without numbers very clear which one is better.

File Format Weight CSV JSON YAML HDF5 TOML
Small storage size 7 2 2 2 4 3
Speed (high) 5 1 2 2 4 2
Metadata accessibility 8 2 3 3 4 4
Human Readable 2 2 2 1 3 2
Structure design complementary 10 1 3 3 5 3
Easiness in use 5 5 4 2 2 1
”Add-ons” 2 1 1 2 1 2
Total 39 76 104 94 148 106
Weighted Average - 1.948717949 2.666666667 2.41025641 3.794871795 2.717948718
% Difference with Max - 94.74% 42.31% 57.45% 0.00% 39.62%

Table D.11: Comparison of file formats based on various criteria

D.3. Top Level
D.3.1. Language Selection

Programming Language Weights Python Matlab C++
Open source 7 5 1 5
Future proof
How well is the algorithm able to adopt
to future improvements and updates
of the programming language?

5 5 4 5

Prior knowledge of the programming language 10 5 4 2
Simplicity
How simple is it to implement the algorithms?
What libraries are available?

7 5 4 2

Prototyping speed 5 5 4 2
Performance 5 3 3 5
Total 39 145 95 94
Weighted average - 3,72 2,44 2,41

Table D.12: Language Selection for the Image Processing Program



E
Results and Figures

E.1. Image Processing
E.1.1. Images captured from the side and top for comparison
Illustrative sample images captured from the side

Figure E.1: Illustrative images from the side of the test setup captured with mobile phone
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Figure E.2: Illustrative images from the side of the test setup captured with mobile phone

Illustrative sample images captured from the top

Figure E.3: Illustrative images from the top of the test setup captured with mobile phone

Figure E.4: Illustrative images from the top of the test setup captured with mobile phone

E.1.2. min_Enclosing result images
The min_Enclosing method can accurately compute the radius and center of the circle when more
than half of the circumference of the circle is visible. However, due to the varying radius of the to be
reconstructed sphere in the test setup due to a varying depth of the sphere in the tube, it is not possible
to set up correct boundary conditions when the min_Enclosing algorithm should be applied.
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Figure E.5: Reconstructed sphere computed with the min_Enclosing algorithm

E.1.3. Visibility test images set with # occluding spheres

Figure E.6: None Figure E.7: One
Figure E.8: Two

Opposite
Figure E.9: Two
Perpendicular Figure E.10: Three

Figure E.11: Visibility test images set with # occluding spheres
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E.1.4. Radii test images set with # occluding spheres

Figure E.12: 66 Figure E.13: 76 Figure E.14: 86

Figure E.15: 96 Figure E.16: 106 Figure E.17: 116

Figure E.18: Radius test images set with [#] pixels radius
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Figure E.19: Half-and-Half Spheres Isolation using Contour, Concave, Segment Algorithm

E.1.5. Graphs exploring parameter adjustment Hough Transform
Exploring dp adjustment
The following two graphs show the effect of changing the dp value on the amount of error in the com-
puted radius.

Figure E.20: Effect of dp adjustment on the computed radius inaccuracy for different radii
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Figure E.21: Effect of dp adjustment on the computed radius inaccuracy for different visibilities

The following graphs show the effect of changing the dp value on the amount of error in the computed
center x- and y-coordinate.

Figure E.22: Effect of dp adjustment on the computed center inaccuracy for different radii



E.1. Image Processing 114

Figure E.23: Effect of dp adjustment on the computed center inaccuracy for different visibilities

Exploring param1 adjustment
The following two graphs show the effect of changing the param1 value on the amount of error in the
computed radius.

Figure E.24: Effect of param1 adjustment on the computed radius inaccuracy for different radii
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Figure E.25: Effect of param1 adjustment on the computed radius inaccuracy for different visibilities

The following graphs show the effect of changing the param1 value on the amount of error in the
computed center x- and y-coordinate.

Figure E.26: Effect of param1 adjustment on the computed center inaccuracy for different radii
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Figure E.27: Effect of param1 adjustment on the computed center inaccuracy for different visibilities

Exploring param2 adjustment
The following two graphs show the effect of changing the param2 value on the amount of error in the
computed radius.

Figure E.28: Effect of param2 adjustment on the computed radius inaccuracy for different radii



E.1. Image Processing 117

Figure E.29: Effect of param2 adjustment on the computed radius inaccuracy for different visibilities

The following graphs show the effect of changing the param2 value on the amount of error in the
computed center x- and y-coordinate.

Figure E.30: Effect of param2 adjustment on the computed center inaccuracy for different radii
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Figure E.31: Effect of param2 adjustment on the computed centre inaccuracy for different visibilities
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Figure E.32: Pipeline of the Image Processing Implementation
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E.1.6. Test Set images for testing the image processing algorithm
Sample images of radii based test images set

Figure E.33: r = 66.0 Figure E.34: r = 83.5 Figure E.35: r = 98.5 Figure E.36: r = 116.0

Figure E.37: Radii differing color test images set

Figure E.38: r = 66.0 Figure E.39: r = 83.5 Figure E.40: r = 98.5 Figure E.41: r = 116.0

Figure E.42: Radii differing color test images set
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Figure E.43: r = 66.0 Figure E.44: r = 83.5 Figure E.45: r = 98.5 Figure E.46: r = 116.0

Figure E.47: Radii differing color test images set

Figure E.48: r = 66.0 Figure E.49: r = 83.5 Figure E.50: r = 98.5 Figure E.51: r = 116.0

Figure E.52: Radii differing color test images set

Figure E.53: r = 66.0 Figure E.54: r = 83.5 Figure E.55: r = 98.5 Figure E.56: r = 116.0

Figure E.57: Radii differing color test images set
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Sample images of visibility based test images set

Figure E.58: d = 10 Figure E.59: d = 50 Figure E.60: d = 100 Figure E.61: d = 180

Figure E.62: Visibility differing color test images set with 1 occluding sphere with center displacement d pixels

Figure E.63: d = 60 Figure E.64: d = 90 Figure E.65: d = 110 Figure E.66: d = 180

Figure E.67: Visibility differing color test images set with 2 opposite occluding spheres with center displacement d pixels
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Figure E.68: d = 20 Figure E.69: d = 50 Figure E.70: d = 110 Figure E.71: d = 180

Figure E.72: Visibility differing color test images set with 2 perpendicular occluding spheres with center displacement d pixels

Figure E.73: d = 60 Figure E.74: d = 90 Figure E.75: d = 120 Figure E.76: d = 180

Figure E.77: Visibility differing colour test images set with 3 occluding spheres with centre displacement d pixels
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E.1.7. Qualitative Assessment of Test Images

Line

Image Detection Radius[%] Centre Point[%]
Pink Red Yellow Pink Red Yellow

1 3 0 0 0 0 0 0
2 3 0 0 0 0 0 0
3 3 0 0 0 0 0 0
4 3 0 0 0 0 0 0
5 3 0 0 0 0 0 0
6 3 0 5 0 5 0 0
7 3 0 0 10 0 0 0
8 3 0 0 10 0 0 0
9 3 0 0 0 0 0 0
10 3 0 0 10 0 0 0
11 2 0 - 0 0 - 0
12 3 0 0 0 0 0 0
13 3 0 0 0 0 0 0
14 3 0 0 0 0 0 0
15 3 0 0 0 0 0 0
16 3 0 0 5 0 0 0
17 3 0 0 5 0 0 0
18 3 0 10 0 0 0 0
19 3 5 0 0 0 0 0
20 3 0 0 0 0 0 0
21 3 0 0 0 0 0 0
Average 0.2 0.8 1.9 0.2 0 0
Standard Deviation 1 2 4 1 0 0

Table E.1: Qualitative Assessment of the Test Images, where Three Spheres Could be Detected. The screening was done with
increments of 5%.
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Ring

Image Detection Radius Inaccuracy [%] Centre Point Inaccuracy [%]
Pink Red Yellow Pink Red Yellow

1 3 5 5 0 0 0 10
2 3 0 0 0 0 0 5
3 3 0 0 0 0 0 0
4 3 5 0 5 0 0 0
5 3 0 0 0 0 0 0
6 3 0 0 0 0 0 0
7 3 10 0 0 0 0 0
8 3 0 10 5 0 0 0
9 3 0 0 0 0 0 0
10 3 0 0 0 0 0 0
11 3 20 0 0 0 0 0
12 3 0 0 0 0 0 0
13 3 10 0 0 0 0 0
14 3 0 0 0 0 0 0
15 3 0 0 0 0 0 0
16 3 5 0 5 0 0 0
17 3 0 5 0 0 0 0
18 3 5 0 0 0 0 0
19 3 10 0 0 0 0 0
20 3 0 0 15 0 0 0
21 3 5 0 0 0 0 0
Average 3.6 1.0 1.4 0 0 0.7
Standard Deviation 5 2 3 0 0 2

Table E.2: Qualitative Assessment of the Test Images, where Three Spheres Could be Detected. The screening was done with
increments of 5%.
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None

Image Detection Radius Inaccuracy [%] Centre Point Inaccuracy [%]
Pink Red Yellow Pink Red Yellow

1 3 10 0 0 0 0 0
2 3 0 0 0 0 0 0
3 3 0 0 5 0 0 0
4 3 0 0 0 0 0 0
5 3 0 2 0 0 0 0
6 3 5 5 5 0 0 0
7 3 10 0 5 0 0 0
8 2 0 - 0 0 - 0
9 3 0 0 5 0 0 0
10 3 0 0 0 0 0 0
11 3 0 0 0 0 0 0
12 3 0 0 5 0 0 0
13 3 10 0 0 5 0 0
14 3 0 0 0 0 0 0
15 3 0 0 0 0 0 0
16 3 0 0 0 0 0 5
17 3 0 0 0 0 0 0
18 3 0 0 0 0 0 10
19 3 10 0 5 0 0 0
20 3 0 0 0 0 0 0
21 3 0 30 0 0 0 0
Average 2.1 1.9 1.1 0.2 0 0.7
Standard Deviation 4 7 2 1 0 2

Table E.3: Qualitative Assessment of the Test Images, where Three Spheres Could be Detected. The screening was done with
increments of 5%.
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E.1.8. Bias and Error Detection
Radius

Image Red Green Blue Yellow Black Pink
0 68 62 63 62 60 59
1 62 53 57 67 62 56
2 66 59 55 67 56 57
3 51 56 59 62 67 59
4 60 63 57 67 62 60
5 62 53 60 72 62 68
6 66 52 66 67 62 59
7 66 64 59 67 72 62
8 64 56 66 67 56 62
9 66 60 55 72 67 59
mean 63,1 57,8 59,7 67 62,6 60,1
Standard deviation 4,7 4,2 3,9 3,2 4,7 3,2
Averaged Standard deviation 4,0

Table E.4: Radius variability

x-Coordinate

Image Red Green Blue Yellow Black Pink
0 1093 1267 1210 1238 1116 1135
1 1088 1257 1210 1243 1121 1135
2 1088 1271 1215 1243 1121 1135
3 1079 1271 1210 1234 1116 1130
4 1088 1271 1210 1243 1116 1135
5 1083 1257 1206 1234 1116 1140
6 1088 1257 1201 1238 1112 1130
7 1088 1267 1210 1243 1112 1140
8 1083 1271 1201 1238 1121 1135
9 1088 1267 1210 1234 1112 1130
Mean 1086,6 1265,6 1208,3 1238,8 1116,3 1134,5
Standard deviation 3,7 5,9 4,2 3,8 3,5 3,5
Averaged Standard deviation 4,1

Table E.5: x-Coordinate variability
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y-Coordinate

Image Red Green Blue Yellow Black Pink
0 1525 1577 1464 1704 1398 1638
1 1530 1582 1469 1699 1403 1638
2 1530 1582 1478 1704 1403 1638
3 1539 1577 1478 1708 1412 1643
4 1525 1586 1469 1708 1408 1647
5 1530 1582 1478 1699 1403 1638
6 1530 1582 1478 1699 1408 1643
7 1530 1586 1478 1704 1417 1643
8 1525 1577 1478 1699 1403 1643
9 1530 1577 1478 1699 1412 1643
Mean 1529,4 1580,8 1474,8 1702,3 1406,7 1641,4
Standard deviation 3,9 3,4 5,1 3,6 5,4 3,0
Averaged Standard deviation 4,1

Table E.6: y-Coordinate variability
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E.2. Top-Level

Figure E.78: Pipeline of the Top-Level Implementation
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