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A B S T R A C T

Schedule design in the transportation and logistics sector is a widely studied problem. Transport service
providers, such as the train industry and aviation, aim for schedules to be on-time according to the planning
(i.e., on-time performance or OTP) in order to increase the service level by ensuring that passengers actually
make their connections and to reduce costs. Transportation services also aim for schedules that serve a high
variety of destinations and frequency of connections (i.e., connectivity). OTP and connectivity are both highly
dependent on buffer time: more lucrative connections can often be offered by reducing the buffer time in the
schedule, while more delay can be absorbed by more buffer time. Given strict constraints on the minimum
turnaround time of aircraft and minimum (and maximum acceptable) transfer times of passengers, assigning
buffer time in an already tightly planned schedule to optimize OTP and connectivity simultaneously is a big
challenge. This research presents a novel multi-objective formulation of a daily flight schedule where buffer
scheduling is used to ensure the optimal balance between OTP of the schedule and the passenger connections as
connectivity, given the tight restrictions. This problem formulation is solved using a simulation–optimization
framework. Specifically, we use the Multi-Objective Evolutionary Algorithm (MOEA) BORG. As a proof of
concept, a daily European flight schedule of a large international airline is optimized on both OTP and
connectivity. The results demonstrate that the presented multi-objective formulation and associated solving
through simulation–optimization can result in candidate schedules with both better on-time performance and
a higher connectivity.
. Introduction

Schedule design is a widely studied problem in the transportation
nd logistics sector. Designing a reliable schedule for transportation
ervices is one of the biggest challenges. A reliable schedule means
hat the schedule on the day of operation is on-time according to the
re-defined schedule (i.e., on-time performance or OTP) to ensure a
igh service level for the passengers. At the same time, transportation
ervices, such as rail and aviation, aim for schedules that serve a high
ariety of destinations and a high frequency of connections (i.e., con-
ectivity) (L’upták et al., 2019). Especially for the aviation sector,
cheduling is one of the most challenging and important operations.
ccording to Barnhart and Cohn (2004) and Wu (2006), there are four
ore problems in airline schedule planning:

∗ Corresponding author.
E-mail address: i.m.vanschilt@tudelft.nl (I.M. van Schilt).

1. Schedule design: Determine the markets to serve, at what fre-
quency, and how to schedule the flights.

2. Fleet assignment: Assign the aircraft to each flight.
3. Aircraft maintenance routing: Route the aircraft such that the

maintenance requirements are satisfied.
4. Crew scheduling: Assign the crew to the flights.

Ideally, the four core problems are solved simultaneously when
creating an airline schedule. However, due to the complexity of the
scheduling problem, most research focuses on either integrating two
core problems or extending one problem (Barnhart and Cohn, 2004;
Ageeva, 2000; Şafak et al., 2017; Achenbach and Spinler, 2018). Our
paper will also discuss extending one core problem, namely that of
schedule design. Creating a schedule in terms of connectivity and OTP
takes place in the schedule design phase; the planning of the flights is
determined here. Research has shown that the use of buffers improves
vailable online 7 February 2024
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the on-time performance of a flight schedule (Wu, 2005; Baumgarten
et al., 2014; Ahmadbeygi et al., 2010; Wu, 2006; Fricke and Schultz,
2009). Buffers are allocated to compensate for possible delays that
might occur on the day of operation. This research focuses on the use
of buffers in the schedule design.

Flight delays are an unavoidable fact and a key concern in aviation.
Their impact is both economic and environmental (Sternberg et al.,
2017). Delays (for example due to bad weather, technical problems,
and crew unavailability) are costly for both the airlines and the passen-
gers (Wu, 2008; Peterson et al., 2013). In particular for hub-and-spoke
networks (i.e., locations called spokes connected through an interme-
diary location called a hub), delays are problematic due to the high
intensity of connecting flights, passengers, and crews (Achenbach and
Spinler, 2018; Hansen et al., 2001). Therefore, it would be valuable
for airlines to incorporate the probability of delays in the design of
the flight schedule (Thengvall et al., 2000). In this manner, the flight
planning is less likely to be negatively affected by delays on the day of
operation (Lee et al., 2007).

However, a more reliable flight schedule often requires more re-
sources or more time, making it more costly for airlines. This leads
to a trade-off between OTP and costs (Clausen et al., 2010). For hub-
and-spoke airlines, costs are primarily determined by the connecting
passengers at the hub airports. An example of this trade-off is when an
extra five minutes is added to the ground time of a flight to increase
on-time performance in a schedule design. If five minutes is added
to the expected arrival time and the flight time does not change,
the chances of the flight being on-time is higher, i.e., the on-time
performance has increased. However, this shortens the transfer time
for connecting flights in the schedule, that could result in not being
able to offer certain (profitable) connections anymore. Thus, OTP and
connectivity are both highly impacted by buffer time; a higher OTP
asks for more buffer time whereas a higher connectivity (i.e., more
connecting flights) requires less buffer time, as this shortens transit
time and makes connections unfeasible. This research focuses on how
to add buffers such that it is most beneficial, both in terms of cost and
on-time performance in schedule design. In literature and in industry,
optimization tools that analyze one aspect of this complex trade-off
have been developed, either maximizing the reliability, or minimizing
the cost (Ageeva, 2000; Şafak et al., 2017). This means that first one of
the two aspects is optimized, and then the other, making it difficult to
actually balance OTP and connectivity (Wong and Tsai, 2012).

The challenge for creating optimal schedules that have the best
trade-off between OTP and connectivity becomes even more complex
due to tight restrictions. The primary restrictions in airline schedule
design is the minimum and maximum acceptable transfer time for
passengers on connecting flights (i.e., the time that the passengers has
available to transfer from one flight to another flight), and the mini-
mum turnaround time of the aircraft (i.e., the time between landing and
taking off). Furthermore, it is also important to consider factors such
as slot constraints, crew legalization and resource assignment, which
further complicate the allocation of buffers in the schedule. As many
airline schedules are already tightly planned to make optimal use of the
aircraft, it is a big challenge to assign buffer time to optimize for both
OTP and connectivity simultaneously, given these tight constraints.

In this research, OTP and connectivity are optimized simultaneously
when designing a schedule since they are both heavily impacted by
buffer time. The goal of this research is to investigate how a schedule
can be created that balances OTP and connectivity of daily flights by
means of buffer scheduling. Revealing the trade-off between OTP and
connectivity supports decision makers in creating daily flight schedules.
The contribution of this research is to present a novel multi-objective
formulation of the schedule design problem where there is an explicit
trade-off between OTP and connectivity of the network without the
use of aggregation (i.e., without combining the objectives to a single
objective using weights). We use a simulation–optimization framework
2

as this has been proven to be a fruitful approach for handling multi-
objective optimization for complex problems in other sectors such as
inventory management (Tsai and Chen, 2017).

The remainder of this paper is structured as follows. Section 2
presents the related work using the current state-of-the-art literature.
Section 3 gives a description of the problem, case study, and scope.
Section 4 describes the mathematical formulation of the problem and
the model. Section 5 presents the solution approach for this study.
Section 6 presents the results of the model performance on a real world
case from a large international airline carrier. The paper concludes with
a discussion in Section 7, and conclusions and recommendations for
further research in Section 8.

2. Related work

The literature on related work is studied on three main topics,
namely airline delay management, solving schedule design with a
multi-objective optimization, and the use of a simulation–optimization
framework.

2.1. Airline delay management

Much research has been performed on airline delay management for
the day of operation. Santos et al. (2017) presents a linear programming
approach to solve the daily airline delay management problem with
capacity constraints and to make decisions on the spot. Jarrah et al.
(1993) creates a decision support framework for flight delays and
cancellations during the day of operation. Instead of solving delays
during the daily operations, delays could also be prevented. Montlaur
and Delgado (2017) shows optimization techniques to minimize the
flight and passengers delay by including or excluding reactionary de-
lays. Sternberg et al. (2017) shows a review of approaches to predict
the flight delays and how machine learning relates to this. In their
paper, there is a distinction between root delay (i.e., local delays), or
cancellations and delay propagation (i.e., a delay in a flight causes
delays in the subsequent flights). Propagated delays are mostly caused
by the connected resources within the airline schedule such as the
aircraft, crew, passenger, and airport resources (Kafle and Zou, 2016).
Propagated delay is a well-known phenomenon in aviation and its
impact has been researched extensively. Kondo (2011) compares the
impact of propagated delays between hub-and-spoke and point-to-point
airports. Churchill et al. (2010) examines the effect of propagated
delays on the daily planning. Moreover, Qin et al. (2019) investigates
how to optimize the delay propagation in a Chinese aviation network
by rescheduling flights. Thus, delay propagation is a crucial element for
airline scheduling, especially in hub-and-spoke networks (Achenbach
and Spinler, 2018). Next to this, delays can occur either on the ground,
i.e., ground delay, or in the air, i.e., en-route delay (Carlier et al.,
2007). Ground delay can be defined as the delay during the turnaround
of the airplane. En-route delay can be defined as the delay of an
airplane between departure (off-blocks) and arrival (on-blocks); this
contains taxi and airborne time. En-route delay is also known as block
delay (Fricke and Schultz, 2009). This research focuses on allocating
buffers to the ground time given the arrival delay of airplanes, as a
result of en-route delay.

2.2. Schedule design by multi-objective optimization

Creating a schedule where OTP and connectivity are balanced by
means of buffer scheduling is of a multi-objective nature. On the one
hand, we want to maximize OTP (i.e., minimize delay) and on the
other hand, we want to maximize connectivity. A commonly applied
approach is to scalarize the two objectives and formulate a single-
objective problem (Deb, 2014). This results in a single optimal solution,
thus a single optimal candidate schedule. For this research, there are
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two main disadvantages to the single-objective approach namely (i) ac-
curately converting OTP and connectivity to the same unit is currently
impossible, and (ii) supporting decision making by giving insight in the
trade-off between OTP and connectivity, i.e., balancing two conflicting
objectives, cannot be fully obtained by only providing a single optimal
solution (Kasprzyk et al., 2016). In the same line, Arrow’s Impossibility
Theorem implies that using aggregated objectives to get one single
objective for optimization inadvertently dictates the properties of the
optimized candidates solutions in unpredictable ways (Kasprzyk et al.,
2016). Thus, optimizing a schedule design that is multi-objective in na-
ture, should be handled as a multi-objective problem where a trade-off
exists between the objectives without aggregation.

A literature study revealed that only a few research studies used
multi-objective optimization to solve schedule design problems for
airlines. Lee et al. (2007) formulates the on-time performance and
operation costs as a multi-objective problem in order to improve the ro-
bustness of the flight schedule by re-timing the departure times. Burke
et al. (2010) uses multi-objective optimization to improve the reliabil-
ity, i.e., on-time performance, and flexibility of the flight schedule. Kat-
sigiannis et al. (2021) presents a multi-objective optimization that
investigates the trade-off between slot allocation and the airport sched-
ule as a whole. These studies show that solving a schedule design with
multi-objective optimization is promising. However, there is still lim-
ited literature that applies this approach while it has many advantages
compared to aggregating objectives. Therefore, this paper contributes
to the use of multi-objective optimization with two main conflicting
objectives of a schedule design, namely OTP and connectivity.

Research on the integration of OTP and connectivity is limited. Dun-
bar et al. (2012) presents a new approach on how to integrate aircraft
routing and crew scheduling to minimize propagated delay. They focus
on the delays caused by missed connection of the crew. Jacquillat
and Vaze (2017) designs and assesses a novel approach for scheduling
the air traffic congestion of an airport. They want to increase OTP,
i.e., mitigate the air traffic congestion at the airport, with network
connectivity as a constraint. However, it has not been investigated yet
how to handle the trade-off between connecting passengers and OTP in
the flight schedule of an airline.

2.3. Simulation–optimization framework

A simulation–optimization framework is used as an approach to
solve the complex and multi-objective problem of this research. For
optimization of complex systems, two strategies exist. One is to simplify
the system’s behavior as constraints using the optimization formalism,
the other is to use a simulation model of that complex system in
the optimization (Andradóttir, 1998). Especially for systems with a
stochastic and non-linear behavior over time, simulation models can
better represent the actual characteristics over time of the system that
is studied. For simulation-based optimization, the goal function of the
optimization is expressed as a function of the output variables of the
simulation model (single-objective or multi-objective). The optimiza-
tion algorithm carries out multiple runs of the simulation model, each
time setting the input parameters, to figure out which combination of
input variables leads to the best outcome of the goal function (Riley,
2013). Thereby, each run of the simulation model generates one data
point for the optimization. The main advantages of using a simulation
model over coding the system’s behavior as constraints are that the
simulation model can express complex, non-linear behavior, and that
the simulation model can be separately verified and validated for its
correct behavior. The optimization of simulation models is also a good
option when a simulation model of a complex system already exists,
and the user is interested to find those parameter settings for the
simulation model that optimize its output variable(s). Main issues are
the usually long runtimes as well as the stochastic nature and the non-
linear behavior of simulation models. Since most discrete-event and
3

agent-based simulation models are stochastic models, a single run does
Table 1
Table of notation.

Sets

𝐴𝐶 Set of aircraft types, 𝑎𝑐 ∈ 𝐴𝐶
𝐾 Set of connection types, 𝑘 ∈ 𝐾
𝐿 Set of fleetlines in the schedule, 𝑙𝑣 ∈ 𝐿
𝐹 Set of flights in the flight schedule 𝜉, 𝐹 = 𝐹 𝐼𝑁 ∪ 𝐹𝑂𝑈𝑇

𝐹 𝐼𝑁 Set of inbound flights in the flight schedule 𝜉
𝐹𝑂𝑈𝑇 Set of outbound flights in the flight schedule 𝜉
𝑅 Set of all rotations in the flight schedule 𝜉
𝑆𝑛 Set of flights over multiple days with the same flight call sign 𝑛

Objectives

𝐶𝐼𝑁
𝑗 Inbound connectivity revenue in euros per rotation

𝐶𝑂𝑈𝑇
𝑖 Outbound connectivity revenue in euros per rotation

𝐶(𝜉) Connectivity revenue of the flight schedule 𝜉 in euros
𝑂𝑇𝑃 (𝜉) Arrival on-time performance of the flight schedule 𝜉 in minutes

Decision variable

𝑋𝑟𝑖,𝑗 Buffer time for preceding rotation 𝑟𝑖,𝑗 in minutes

Parameters

𝑎𝑐 Aircraft type subscript
𝑎𝑡𝑎𝑖 Actual time of arrival of inbound flight 𝑓𝑖 in minutes
𝑓 𝐼𝑁
𝑖 Inbound flight

𝑓𝑂𝑈𝑇
𝑗 Outbound flight

𝑙𝑣 Fleetline with subscript 𝑣 as index
𝑛 Flight call sign
𝑝𝑘(𝑡) Probability that a passenger with connection type 𝑘 will actually be

boarded on the transferring flight as a function of time 𝑡
𝑟𝑖,𝑗 Rotation with inbound flight 𝑓𝑖 and outbound flight 𝑓𝑗
𝑠𝑡𝑎𝑖 Scheduled time of arrival of inbound flight 𝑓𝑖 in minutes
𝑠𝑡𝑑𝑗 Scheduled time of departure of outbound flight 𝑓𝑗 in minutes
𝑡𝑝𝑖,𝑗 Expected number of passengers connecting from flight 𝑓𝑖 to flight 𝑓𝑗
𝑡𝑡𝑖,𝑗 Transfer time between flight 𝑓𝑖 and 𝑓𝑗 in minutes
𝑐𝑖,𝑗 Connectivity revenue of one passenger connecting from flight 𝑓𝑖 to

flight 𝑓𝑗
𝑀𝐴𝐶𝑇 𝑘 Maximum acceptable connecting time for connection type 𝑘 ∈ 𝐾 in

minutes
𝑀𝐶𝑇𝑘 Minimum connecting time for connection type 𝑘 ∈ 𝐾 in minutes
𝑀𝑇𝑇𝑎𝑐 Minimum turnaround time for aircraft type 𝑎𝑐 ∈ 𝐴𝐶 in minutes
𝑁𝑣 Number of rotations in fleetline 𝑙𝑣
𝑇𝑙𝑣 Total buffer time for a fleetline 𝑙𝑣 in minutes
𝑊 Time window for period to calculate OTP
𝜉 Flight schedule as a tuple {L, R, MTT, X} for all rotations, for all

aircraft types 𝑎𝑐, and for all buffer times
𝜏 Unit of buffer time in minutes

not express the true outcome of the model. Multiple replications of
the model with different random seeds are necessary to estimate the
true average of the model’s performance indicators with a tight enough
confidence interval. Combined with an already long runtime, this can
form a blocker for the usage of optimization in combination with
simulation. Because of the non-linear behavior of the simulation model,
techniques that are specifically taking into account the characteristics
of stochastic simulations typically yield better results for this type
of optimization than classical optimization techniques (Fu, 2015). In
a real-life airline system, OTP is primarily affected by flight delays
with a complex, unpredictable, and stochastic character. A simulation
model would be suitable to represent the actual characteristics of the
airline schedule over time in the system. This makes the combination
of simulation and optimization useful for our research. Therefore, our
research uses the simulation–optimization framework for analyzing the
schedule design.

2.4. Research gaps

The review of the related work shows that there is no research, to
our knowledge, that investigates the trade-off between OTP and con-
nectivity for airline schedule design. Most of the previous work focused
on optimizing a schedule on OTP with connectivity as a constraint.
Here, the impact that buffer time has on OTP and connectivity simul-
taneously is neglected. Therefore, our research focuses on optimizing
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both objectives in the schedule design problem. Moreover, the schedule
design problem is solved using multi-objective optimization instead of
a single-objective optimization as used in most studies. Literature on
multi-objective optimization for schedule design is limited though very
promising. Thus, our research contributes to the literature on the use
of this technique.

Although there are many airline delay types, we explicitly focus on
allocating a buffer to the ground time and not to the en-route time.
Due to the complex characteristics of the airline system and delays that
primarily impact OTP in the schedule design, a simulation–optimization
framework is used in this research.

Concluding, our study tackles two research gaps, namely (1) no
research, to our knowledge, has combined connectivity and on-time
performance in the schedule design problem, and (2) almost no papers
formulated the schedule design problem as a multi-objective problem,
where a trade-off exists between the objectives without aggregation.

3. Problem description

This section gives a detailed description of the problem addressed
in this research. Section 3.1 explains how a typical flight schedule is
constructed. Section 3.2 introduces the case study at a large interna-
tional carrier. Section 3.3 presents the scope of the problem. Table 1
provides an overview of the mathematical notations.

3.1. Flight schedule

The flight schedule for a season is created by the airline’s network
department. This department determines the destinations, the impor-
tant connecting flights, the frequency of the flights, and the aircraft
types, and therewith the profitability of the schedule. They are also
responsible for creating an operationally feasible schedule by taking
into account constraints such as slots and crew (Barnhart and Cohn,
2004).

A typical flight schedule consists of fleetlines 𝐿 and rotations 𝑅,
as well as the minimum transfer time of all aircraft types and buffer
time between each rotation in a fleetline. A fleetline is the sequence
of flights scheduled to be performed by one aircraft in a schedule
period. A fleetline consists of 𝑙𝑣 = {𝑟𝑖𝑣,1 ,𝑗𝑣,1 , 𝑟𝑖𝑣,2 ,𝑗𝑣,2 , 𝑟𝑖𝑣,3 ,𝑗𝑣,3 ,… , 𝑟𝑖𝑣,𝑁𝑣 ,𝑗𝑣,𝑁𝑣

}
rotations. One rotation generally consists of two flights from the set of
flights 𝐹 , namely a flight from the hub to an outstation as the outbound
flight, 𝑓𝑂𝑈𝑇

𝑗 ∈ 𝐹𝑂𝑈𝑇 ⊂ 𝐹 , and a flight from an outstation to the hub
as the inbound flight, 𝑓 𝐼𝑁

𝑖 ∈ 𝐹 𝐼𝑁 ⊂ 𝐹 . Each rotation has an unique
pair of flights, presented by 𝑟𝑖,𝑗 = {𝑓𝑂𝑈𝑇

𝑗 , 𝑓 𝐼𝑁
𝑖 }. The first flight of a day

is often only an inbound flight to the hub, thus {∅, 𝑓 𝐼𝑁
𝑖 }. Similar, the

last flight of the day is often only an outbound flight from the hub,
so {𝑓𝑂𝑈𝑇

𝑗 , ∅}. Note that in the remainder of the paper subscript 𝑖 for a
flight is used for the inbound flight 𝑓 𝐼𝑁

𝑖 , and subscript 𝑗 is used for the
outbound flight 𝑓𝑂𝑈𝑇

𝑗 . Fig. 1 presents a conceptualization of a typical
flight schedule.

Each rotation has a scheduled time of arrival and a scheduled time
of departure at the hub. The time between the rotations in one fleetline
is the scheduled turnaround time of an aircraft; this is the time between
the scheduled time of arrival of rotation 𝑟𝑖𝑣,𝑛 ,𝑗𝑣,𝑛 and the scheduled
time of departure of rotation 𝑟𝑖𝑣,𝑛+1 ,𝑗𝑣,𝑛+1 in fleetline 𝑙𝑣. Each aircraft
type has a minimum turnaround time which is the minimum time it
takes to prepare an aircraft for the next rotation. Additional turnaround
time scheduled on top of this minimum turnaround time is called
buffer time. For example, the minimum turnaround time is 45 min and
there is 50 min turnaround time scheduled between rotations 1 and
2, which means that the aircraft has a buffer time of 5 min. Buffer
times are used to capture possible delay in order to ensure that an
aircraft leaves on-time according to schedule. In this research, flights
are not swapped between fleetlines and the sequence of the flights
within a fleetline does not change, so buffer time is allocated within
each fleetline individually. Given that, rotations can be moved between
4

the time frame of the first arriving flight of the day to the last departing
flight of the day.

The flight schedule also determines the flight connections that can
be offered, because it determines the transfer time. The transfer time
needs to be sufficiently long for a connection to be possible, since pas-
sengers need to be able to actually make the transfer. The transfer time
is the time between an inbound flight 𝑓 𝐼𝑁

𝑖 to an outbound flight 𝑓𝑂𝑈𝑇
𝑗

for all rotations from the whole set of fleetlines, 𝐿. This means that,
for example, a connection is possible between rotation 1 of fleetline
1 and rotation 2 of fleetline 2, if there is sufficient time between the
flights indicated by the minimum transfer time. The minimum transfer
time is the minimum time that a passenger needs to get on the next
flight on-time. This time determines whether a connection between
two flights is possible. Similar to the minimum turnaround time, buffer
time could occur in addition to the minimum transfer time when
scheduling. Furthermore, the schedule also has to take into account the
maximum acceptable transfer time for passengers. Passengers tend to
experience long waiting times as unpleasant, so connections become
decreasingly attractive the longer the transfer time is. As a result, there
is a maximum to the transfer time passengers are willing to accept.

When creating a flight schedule, it can be designed for optimal
connectivity or for optimal OTP. However, it is extremely unlikely
that these two optimums occur within the same schedule. In order to
maximize OTP, the time between flights should be increased as much as
possible. The first flight in a fleetline should take off as early as possible,
and the last flight in a fleetline should take off as late as possible.
This would maximize the amount of buffer time that can be used to
recover from delays. However, in order to maximize connectivity, it
is important that the flights that have many connecting passengers
have a transfer time that falls within the acceptable range. Flights for
which there is large demand from connecting passengers should be
scheduled close together, taking into account the transfer time, whereas
connecting flights for which there is little demand can be scheduled
farther apart. Since both OTP and connectivity are of great importance
to an airline, and one usually comes at the cost of the other, two points
would be very helpful to airlines:

i. Compromising on one of these objectives should lead to the
maximum possible increase in the other.

ii. The trade-off between these two objectives should be made
explicit, so that it becomes a clear strategic decision to make
when designing a flight schedule.

3.2. Case study

The research presents a Proof-of-Concept applied to a case with real
world data of a large international airline carrier. The holding of the
airline carrier is leading in terms of international cargo and passenger
traffic departing from Europe with more than 2.300 daily flights, and
flying to more than 150 destinations. The size of the company makes
the network highly complex and challenging to design and operate. The
company operates via a hub-and-spoke network. Via the hub, many
connections are made which allow passengers to efficiently access
major destinations in the world. The hub serves more than 34 million
passengers per day.

The large international airline carrier plays a leading role in the
European air industry. The short haul flights, carried out within Europe,
have a higher intensity than the long haul flights, while there is less
buffer time due to the short length of the trips. This makes optimal
scheduling and handling delays even more challenging and difficult for
European short haul flights than for long haul flights. Due to the tight
turnaround windows and high frequency in this part of the network, the
need to recover from delays by adding buffers to the schedule, while
at the same time maximizing connectivity, is felt most acutely here.
Thus, we use a case study of the European flight schedule of this large

international airline as the case study for this research.
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Fig. 1. A typical flight schedule.
3.3. Scope

The focus of this research is on the short haul flight schedules
of the month July. Summer is the busiest period for airline carriers,
meaning that the frequency of flights in the schedule is very high,
leading to a very tight turnaround window. There is an urgent need
for minimizing delay with buffers and integrating it with connectivity
in this specific season. The base case schedules of this research are the
real schedules that were designed and used by the large international
airline carrier in the summer of 2019. More specifically, the base case
schedules are schedules of two separate summer days of 2019. In
the remainder of the paper, we refer to these as Day 1 and Day 2.
Historical OTP and connectivity data from summer of 2019 on both of
these schedules was provided by the airline. These are European flight
schedules, meaning that there is a focus on short haul flights. Long haul
flights are taken into account for the connectivity aspect of the short
haul flight schedule. However, optimizing the long haul flight schedule
itself is not within the scope of this research. As there are typically
no overnight flights within the European flight schedule, the schedule
can be cut into days. Here we consider the schedule for a single day.
Moreover, only the fleetlines of the aircraft type Boeing 737–900 are
included in the flight schedule optimized in this research.

Key Performance Indicators (KPIs) are defined to evaluate whether
a candidate solution performs better than the base case schedule.
OTP and connectivity are two main objectives to optimize in the
schedule design for this research, and are thus the most important
KPIs. Additional KPIs are determined to give more in-depth insight in
the performance of the schedule, which helps decision makers make
a choice between candidate schedules. The chosen additional KPIs
are total arrival delay minutes of the schedule, percentage of missed
connections, and average transfer time of a passenger at the hub in
minutes. The total arrival delay minutes of a schedule is a valuable
measure of the OTP side since it gives an indication of the overall
disruption. Moreover, where the connectivity objective represents the
number of connections offered, the percentage of missed connections
represents the proportion of those connections that were realized in
actuality, taking departure and arrival delay into account. If the initial
transfer time is 50 min while the minimum transfer time is 45 min, this
connection is possible and will be offered. Should the inbound flight
then have an arrival delay of 10 min, the actual transfer time is 40 min
and a percentage of connecting passengers would miss their connection.
If the connecting outbound flight also has a departure delay of 10 min,
the transfer time stays at 50 min and a larger percentage of passengers
make their connections. Lastly, the average transfer time of a passenger
at the hub is an indicator of customer experience of the flight schedule.
A longer average transfer time results in a more negative customer
experience since the waiting time for passengers becomes longer.
5

4. Mathematical model

In order to solve the multi-objective optimization problem, we
formulate it mathematically. This section presents the objectives of the
problem in Section 4.1 and a novel multi-objective model formulation
in Section 4.2. The objectives and model formulation are based on
literature (e.g., Wu, 2005; Burke et al., 2010; Danesi, 2006; Lee et al.,
2014), and are designed in combination with experts and stakeholders
of the large airline carrier.

4.1. Objectives

Let 𝑋𝑟𝑖,𝑗 be the buffer time for rotation 𝑟𝑖,𝑗 . This is the time by which
the arrival and departure of rotation 𝑟𝑖,𝑗 shifts in fleetline 𝑙𝑣. Buffer time
is the primary decision variable of this research. Let 𝜏 be the unit of
buffer time in minutes. In our research, we use a five-minute buffer
time as 𝜏 to schedule arriving and departing flights according to the
large international airline case.

4.1.1. On-time performance
Combining the insight of previous theories of OTP in the airline

industry (Lee et al., 2007; Wu, 2005; Sohoni et al., 2011; Burke et al.,
2010) and sectors such as railway (Veiseth et al., 2007; Olsson and
Haugland, 2004) and road transport (Chen et al., 2003), the OTP of
rotation 𝑟𝑖,𝑗 can be measured with delay minutes, thus how many
minutes a flight of a rotation has ‘‘lost’’ compared to the scheduled time.
Airlines mostly focus on the arrival punctuality as on-time performance
and therefore, this research only focuses on the on-time performance
of the arriving flight of a rotation. An extensive operationalization of
on-time performance can be found in Appendix A.1.

The on-time performance objective is defined as the average arrival
delay minutes of a rotation 𝑟𝑖,𝑗 in the flight schedule. Each rotation
consists of a unique inbound and outbound flight for that particular
day. Each flight has a flight call sign that is not unique over the
entire flight schedule over a specific time period, 𝑊 . Flights with the
same flight call sign have the same origin–destination, and are often
scheduled on the same day of the week. For example, flight FL1000
to London is scheduled on Monday. Every individual flight FL1000 on
Monday during Summer 2019 (𝑊 ) is part of the collection of flights
over which to average.

Let 𝑛 be the flight call sign, and let 𝑆𝑛 be the collection of flights
for which we want to average the OTP for time period 𝑊 . For rotation
𝑟𝑖,𝑗 ∈ 𝑙, the arrival OTP of rotation 𝑟𝑖,𝑗 is the arrival punctuality of
the last flight leg arriving at the hub, the inbound flight 𝑓 𝐼𝑁 . Thus,
𝑖
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the collection of flights 𝑆𝑛 is equal to the outstation-to-hub flights with
imilar flight call sign 𝑛, 𝑓 𝐼𝑁

𝑖,𝑛 . This gives:

𝑇𝑃 (𝑆𝑛) =

∑

𝑓𝑖∈𝑆𝑛
𝑚𝑎𝑥(0, 𝑎𝑡𝑎𝑖 − [𝑠𝑡𝑎𝑖 +𝑋𝑟𝑖,𝑗 𝜏])

#𝑆𝑛
(1)

where

𝑂𝑇𝑃 = arrival on-time performance, expressed in delay minutes
𝑎𝑡𝑎𝑖 = actual time of arrival of flight 𝑓𝑖 ∈ 𝑆𝑛
𝑠𝑡𝑎𝑖 = scheduled time of arrival of flight 𝑓𝑖 ∈ 𝑆𝑛
𝑟𝑖,𝑗 = the rotation belonging to the inbound flight 𝑓 𝐼𝑁

𝑖 and the
outbound flight 𝑓𝑂𝑈𝑇

𝑗 prior to flight 𝑓 𝐼𝑁
𝑖

The OTP objective for a flight schedule 𝜉 with a set of rotations 𝑅
s the average OTP for all rotations, i.e., for all inbound flights of the
otations, 𝑓 𝐼𝑁

𝑖 ∈ 𝐹 𝐼𝑁 , and is formulated as:

𝑇𝑃 (𝜉) =
∑

𝑓 𝐼𝑁
𝑖 ∈𝐹 𝐼𝑁

𝑂𝑇𝑃 (𝑓 𝐼𝑁
𝑖 ) (2)

For OTP for various buffer allocations, it is assumed that adding
more buffer time to a rotation leads to a better on-time performance
and thus, less arrival delay. This means that shifting the rotation
‘‘forward’’, i.e., creating more buffer time, leads to less arrival delay
and vice versa.

Another main assumption is that buffer time at outstations is in-
cluded in the arrival delay. This means that when there is buffer time
planned at the outstation, some of the calculated average arrival delay
is compensated by this buffer. The arrival delay for a rotation is, thus,
the departure delay plus the rotation delay minus the buffer at the
outstation. The average arrival delay for a rotation is the historical
arrival delay for a rotation averaged over the collection of flights 𝑆𝑛
n Summer 2019. Real airline data is used to determine the average
rrival delay of a rotation (in minutes). This data includes delays due
o uncertain factors such as weather, propagated delay, and late arrival
f passengers.

The third main assumption is that early arrivals are considered to
e on-time. When an aircraft arrives earlier than the scheduled time of
rrival, there is negative delay. Since the turnaround operation often
till starts at the scheduled time of arrival and not earlier, the negative
elay is set to zero.

.1.2. Connectivity
Hub connectivity refers to the number and quality of indirect flights

vailable to passengers via an airline hub (Lee et al., 2014; Burghouwt
nd de Wit, 2005; Danesi, 2006). Hub connectivity is quantified by sev-
ral studies, mostly by means of indices. Burghouwt and de Wit (2005)
efines hub connectivity as the number and quality of the indirect
onnections generated by the existing flights, and created a weighted
ndirect connectivity index. Danesi (2006) presents a novel Weighted
onnectivity Ratio consisting of the weighted indirect connection num-
er and the approximate number of weighted connections in a purely
andom situation, during a specific time period. Kim and Park (2012)
resents a connectivity index that measures the relationship between
rrivals and departures of flights in 24 h. Following the Weighted
onnectivity Ratio of Danesi (2006) and Lee et al. (2014) developed
he Continuous Connectivity Index for hub-and-spoke operations by
dding an extra weighted element to the Weighted Connectivity Ratio
nd creating a continuous character.

The connectivity index for this research is operationalized build-
ng on the existing discrete connectivity index of Danesi (2006) and
ontinuous Connectivity Index of Lee et al. (2014). For an airline,
he actual number of passengers catching their transfer is interesting
or determining connectivity. The percentage of passengers that make
he transfer is a function of the transfer time, 𝑡𝑡𝑖,𝑗 = 𝑠𝑡𝑑𝑗 − 𝑠𝑡𝑎𝑖, and
an be extracted from real airline data. The real airline data includes
any uncertainties impacting the transfer times and the percentage of
6

assengers making the transfer, such as weather, walking times to the
ate of the transferring flight, and waiting times for customs control.
his can be translated to the probability that a passenger will actually
e boarded on the transferring flight given the scheduled transfer time,
𝑘(𝑡𝑡𝑖,𝑗 ). This probability differs per transfer type 𝑘 ∈ 𝐾, for example
t is faster to transfer from a European flight to another European
light than to transfer from a European flight to an international flight,
ince the distance between gates for European flights is often smaller.
ossible connections types in 𝐾 are European flights to European
lights, International flights to European flights, and European flights
o International flights. Hereby, the Schengen versus Non-Schengen
onnection types also are incorporated.

Not all connecting passengers are equal for the airline, since some
ring more revenue than others, and can therefore be considered to
e more ‘important’ from a commercial point of view. Therefore, we
hose to include the revenue of a passenger connection to measure
ub connectivity for airlines. The expected number of passengers con-
ecting from flight 𝑓𝑖 to flight 𝑓𝑗 , 𝑡𝑝𝑖,𝑗 , is taken as an approximation
or earnings of a connection for an airline. This is multiplied by the
evenue of one passenger connecting between flight 𝑓𝑖 and 𝑓𝑗 , 𝑐𝑖,𝑗 ,
efined by the commercial branch of the airline, who define revenue of
assengers connecting between flights based on historical revenue data
or connections.

Airlines have strict constraints regarding the transfer times of pas-
engers. The transfer time of a passenger connection cannot be too
hort as the passenger will not catch their next flight. On the other
and, the transfer of a passenger cannot be too long as this is seen as
ndesirable by passengers and thus could lead to a decrease in customer
atisfaction. Therefore, the connectivity revenue is only included for
lights where the transfer time is between the minimum transfer time
f a passenger with transfer type 𝑘 ∈ 𝐾, 𝑀𝐶𝑇𝑘, and the maximum
cceptable transfer of a passenger with transfer type 𝑘 ∈ 𝐾, 𝑀𝐴𝐶𝑇𝑘.

The connectivity objective in this research is total connectivity
evenue in euros of all rotations in the flight schedule. The connectivity
f rotation 𝑟𝑖,𝑗 is divided into inbound connectivity and outbound
onnectivity as shown in Fig. 2.

Inbound connectivity revenue is determined by the connections
etween inbound flights on hub station 𝐹 𝐼𝑁 ⊂ 𝐹 and the first flight
f the rotation from hub station to outstation, 𝑓𝑂𝑈𝑇

𝑗 . Outbound con-
ectivity revenue is determined by the connections between the last
light of the rotation arriving at hub station from outstation 𝑓 𝐼𝑁

𝑖
nd the related outbound connections from hub station 𝐹𝑂𝑈𝑇 ⊂ 𝐹 .
hus, the outbound flight 𝑓𝑂𝑈𝑇

𝑗 of rotation 𝑟𝑖,𝑗 determines the inbound
onnectivity revenue, 𝐶𝐼𝑁

𝑗 , and the inbound flight 𝑓 𝐼𝑁
𝑖 of rotation 𝑟𝑖,𝑗

determines the outbound connectivity revenue, 𝐶𝑂𝑈𝑇
𝑖 . In combination

with the formulated connectivity index, this results in the following
definitions of objectives.

Inbound connectivity revenue for flight 𝑓𝑂𝑈𝑇
𝑗 of rotation 𝑟𝑖,𝑗 can be

defined as

𝐶𝐼𝑁
𝑗 =

∑

𝑓𝑖∈𝐹 𝐼𝑁

{

𝑝𝑘(𝑡𝑡𝑖,𝑗 )𝑡𝑝𝑖,𝑗 𝑐𝑖,𝑗 , if 𝑀𝐶𝑇𝑘 ≤ 𝑡𝑡𝑖,𝑗 ≤ 𝑀𝐴𝐶𝑇𝑘
0, otherwise

(3)

with 𝑡𝑡𝑖,𝑗 = 𝑠𝑡𝑑𝑗 − 𝑠𝑡𝑎𝑖 +𝑋𝑟𝑖,𝑗 𝜏.
Note that the buffer time 𝑋 can also be negative. Outbound con-

nectivity revenue for flight 𝑓 𝐼𝑁
𝑖 of rotation 𝑟𝑖,𝑗 can be defined as

𝐶𝑂𝑈𝑇
𝑖 =

∑

𝑓𝑗∈𝐹𝑂𝑈𝑇

{

𝑝𝑘(𝑡𝑡𝑖,𝑗 )𝑡𝑝𝑖,𝑗 𝑐𝑖,𝑗 , if 𝑀𝐶𝑇𝑘 ≤ 𝑡𝑡𝑖,𝑗 ≤ 𝑀𝐴𝐶𝑇𝑘
0, otherwise

(4)

with 𝑡𝑡𝑖,𝑗 = 𝑠𝑡𝑑𝑗 − 𝑠𝑡𝑎𝑖 +𝑋𝑟𝑖,𝑗 𝜏.
The connectivity revenue objective for a flight schedule 𝜉 with a set

of fleetlines 𝐿 is defined as follows:

𝐶(𝜉) =
∑

𝐶𝐼𝑁
𝑗 (𝑋𝑟𝑖,𝑗 𝜏) + 𝐶𝑂𝑈𝑇

𝑖 (𝑋𝑟𝑖,𝑗 𝜏) (5)

𝑟𝑖,𝑗∈𝑅
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Fig. 2. Inbound and outbound connectivity.
minimize
∑

𝑓 𝐼𝑁
𝑖 ∈𝐹 𝐼𝑁

𝑂𝑇𝑃 (𝑓 𝐼𝑁
𝑖 ), maximize

∑

𝑟𝑖,𝑗∈𝑅
𝐶𝐼𝑁
𝑗 (𝑋𝑟𝑖,𝑗 𝜏) + 𝐶𝑂𝑈𝑇

𝑖 (𝑋𝑟𝑖,𝑗 𝜏) (6)

subject to
∑

𝑟𝑖,𝑗∈𝑙𝑣

(𝑋𝑟𝑖,𝑗 𝜏) ≤ 𝑇𝑙𝑣 ∀𝑙𝑣 ∈ 𝐿 (7)

𝑀𝐶𝑇𝑘 ≤ 𝑡𝑡𝑖,𝑗 ≤ 𝑀𝐴𝐶𝑇𝑘 ∀𝑖, 𝑗 (8)

𝑠𝑡𝑑𝑓𝑗∈𝑟𝑖+1,𝑗+1 − 𝑠𝑡𝑎𝑓𝑖∈𝑟𝑖,𝑗 + (𝑋𝑟𝑖,𝑗 𝜏) ≥ 𝑀𝑇𝑇𝑎𝑐 ∀𝑟𝑖,𝑗 ∈ 𝑙𝑣,∀𝑙𝑣 ∈ 𝐿 (9)

Box I.
An extensive description of previous literature and the quantifi-
cation of the connectivity objective can be found in Appendix A.2.
In the remainder of the paper, we refer to connectivity revenue as
connectivity.

4.2. Formulation

To find the optimal combination of 𝑋𝑟𝑖,𝑗 in a chain of flights,
the entire fleetline is optimized simultaneously. The interdependencies
between the arrival and departure times are taken into account for
this. There are two main objectives for this optimization, namely the
average delay minutes of the schedule and the sum of inbound and
outbound connectivity revenue of the schedule. This gives the following
optimization problem: (see Eqs. (6)–(9) in Box I).

Constraint (7) ensures that no extra time could be added to a
day. The total buffer time of the day per fleetline, 𝑇𝑙𝑣 , can only be
reallocated. This means that the sum of the buffer time of all rotations
of one fleetline should be less or equal to the total amount of buffer time
that could be reallocated for a fleetline. This applies to all fleetlines
in the schedule. Constraint (8) ensures that the transfer time of a
passenger between inbound flight 𝑓𝑖 and outbound flight 𝑓𝑗 is not
smaller than 𝑀𝐶𝑇𝑘 and not larger than 𝑀𝐴𝐶𝑇𝑘. Constraint (9) ensures
that the turnaround time between two rotations in a fleetline is equal or
more than the minimum turnaround time of the aircraft type, 𝑀𝑇𝑇𝑎𝑐 .
The sequence of the rotations in a fleetline 𝑙𝑣 is fixed meaning that
𝑟𝑖+1,𝑗+1 is the subsequent rotation of rotation 𝑟𝑖,𝑗 .

5. Solution approach

In this research, a multi-objective optimization approach is used.
Characteristics of this approach are that the objectives are optimized
simultaneously without scalarization, and the Pareto optimal front
7

helps to identify the trade-off between objectives (Burke et al., 2010;
Emmerich and Deutz, 2018; Kollat and Reed, 2007). The Pareto optimal
front is the set of non-dominated Pareto solutions. Non-dominated
Pareto solutions are solutions that cannot advance the performance
of one objective without deteriorating the other objectives (Emmerich
and Deutz, 2018). In the context of this research, a Pareto optimal
solution represents a schedule with buffers in which buffers cannot
be reallocated in such a way that it improves OTP without decreasing
connectivity and vice versa.

A widely used approach for solving multi-objective optimization
problems is through using a multi-objective evolutionary algorithm
(MOEA), i.e., a population-based search algorithm (Vikhar, 2016).
Within the class of MOEAs, genetic algorithms (GA) are known to
generate high-quality solutions for optimization problems based on the
concept of natural selection in Darwin’s theory of evolution (Mitchell,
1996). In this research, we use a generational version of a MOEA called
BORG as the optimization algorithm. BORG combines 𝜀-dominance
archiving, adaptive population sizing, and time continuation, with
adaptive operator selection (Hadka and Reed, 2013; Reed et al., 2013;
Hernandez-Diaz et al., 2007). The motivation for using the genetic al-
gorithm BORG is twofold. First, BORG is an extension of 𝜀-NSGAII with
adaptive operator selection (Kollat and Reed, 2006, 2007). This means
that the algorithm keeps track of the performance of the operators
and adapts to the most appropriate operator. Operators of BORG are
binary crossover, differential evolution, parent-centric recombination,
unimodal normal distribution crossover, simplex crossover, polyno-
mial mutation and uniform mutation, thus in total seven operators.
In contrast, most other MOEA employ a single search operator (Singh
et al., 2015). Second, BORG has been demonstrated to outperform other
MOEAs when the population size, number of decision variables, and the
complexity of the problem increases (Ward et al., 2015; Salazar et al.,
2016). Given to the complex and interdependent nature of the schedule
design problem as considered here, BORG is a suitable choice.
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Table 2
Generational distance of Day 1 and Day 2 of five seeds.

Day 1 Day 2

Seed 1 0.009 0.033
Seed 2 0.040 0.010
Seed 3 0.004 0.017
Seed 4 0.007 0.048
Seed 5 0.024 0.009

To evaluate the performance of the optimization, we consider (1)
onvergence, i.e., convergence of the solution set to the Pareto optimal
olutions, and (2) diversity, i.e., a diverse set of solutions in the
bjective space (Reed et al., 2013). Convergence is measured by 𝜀-
rogress. 𝜀-progress measures whether the optimization models found a
ubstantially better solution based on the user-defined search precision
(Kwakkel et al., 2016).

Since the algorithm does not converge with the fully random initial
opulation to feasible solutions, we initialize the population with 20%
f solutions that are close to the base case. To guarantee diversity in the
olutions, the other 80% of the initial population is sampled randomly.
ue to the randomness in the optimization algorithm (including this

andom sample), the algorithm is analyzed for five random seeds. We
erge the Pareto-optimal solutions resulting from the random seeds

nto a single Pareto optimal set using a non-dominated 𝜀-sort. The
ombined Pareto front is used as reference set for calculating the
enerational distance of each of the solution sets to the combined
areto optimal set. The smaller the generational distance, the closer
he given set of solutions is to the reference set (Lwin et al., 2014).

In this research, a deterministic simulation model is used. A de-
ailed description of the configuration of the simulation–optimization
odel can be found in van Schilt (2020). The simulation–optimization
odel is written in Python. The library Exploratory Modeling and
nalysis in Python is used for implementing the optimization algorithm
ORG (Kwakkel, 2017).

. Results

In this section, the performance of the optimization model using the
olution approach is discussed first. Afterward, the results, i.e., optimal
chedules, of the two separate summer days (Day 1 and Day 2) are
resented.

.1. Performance of optimization model

The performance of the optimization model in combination with
he solution algorithm is examined to ensure that the outcomes of
he model converge to Pareto optimal solutions. In order to deter-
ine the number of function evaluations needed for this problem,

he convergence of the optimization model is evaluated by means of
he 𝜀-progress. The approach converges fully when the number of
mprovements stabilizes.

Fig. 3 shows the results of 𝜀-progress for Day 1 and Day 2 of five
eeds. A line is drawn at the number of function evaluations where
he number of improvements stabilizes. For both days, this is after
round 18.000 function evaluations, meaning that the optimization
as converged according to the 𝜀-progress metrics. Therefore, we use
0.000 function evaluations in this research.

Next, to assess whether the different seeds converge to essentially
he same approximate Pareto front, we calculate the generational dis-
ance of the five seeds to the combined Pareto front across the five seeds
i.e., the reference set). The smaller the generational distance, the closer
he given set of solutions is to the reference set (Lwin et al., 2014).

Table 2 presents the results of the generational distance for Day
and Day 2 of the five seeds. For the schedules of both days, the
8

o

enerational distance of the Pareto fronts from the various seeds to the
eference set are very small, i.e., between 0.01 and 0.05.

The outcome of 𝜀-progress and the generational distance for this
roblem show that the algorithm converges to essentially the same
areto front, i.e., the optimal combined Pareto front across five seeds.

.2. Results per day

This section presents the results of the optimization model per day.
or each day, the Pareto-optimal front is discussed first. Next, the
esults of the KPIs are examined for all the Pareto optimal solutions.
ubsequently, we present the results of the two most divergent solu-
ions in terms of 𝛥OTP in more detail. The graphs of the results of
bjectives and the additional indicators for all solutions of Day 1 and
ay 2 can be found in Appendix B.

.2.1. Day 1
Fig. 4 shows the Pareto-optimal front of Day 1. The difference

etween the base case and the Pareto-optimal solutions are displayed
n the axes, measured in the percentage of improvement. The base case
s the starting point and therefore, set to 0% improvement for both
onnectivity and on-time performance. This means that the difference
𝛥) in percentage shows the increase or decrease of each objective com-
ared to the base case. The arrows on the axes point out the direction of
esirability. Both 𝛥OTP and 𝛥Connectivity should be maximized by the
ptimization model. This means that the point closest to the upper-right
orner is the most optimal. The figure shows that the multi-objective
ptimization model improves the base schedule on either or both OTP
nd connectivity.

The results for 𝛥OTP in Fig. 4 present the percentage of average
rrival delay minutes that the schedule increases or decreases compared
o the base case of Day 1. There are two solutions that are expected to
ead to a negative percentage of on-time performance, meaning more
verage arrival delay minutes than the base case. However, there is
n increase in connectivity value for these particular solutions and
herefore, these solutions are still interesting to include in the analysis.

The results for connectivity in Fig. 4 show that all Pareto solutions
ave a connectivity value that is at least 1.2% higher than the base case
i.e., the current actual schedule). This means that the airline would get
ore connectivity revenues with each of these Pareto optimal schedules

ompared to the actual schedule. Fig. 4 also confirms the trade-off
etween OTP and connectivity, namely higher OTP (less average arrival
elay minutes) leads to less connectivity.

It is up to the decision maker to determine the importance of OTP
ersus connectivity. For example, schedule planners rather choose for
higher OTP (thus lower average arrival delay minutes) where con-

ectivity is lower, as it does not differ significantly from a connectivity
alue with a lower OTP. However, in all cases, it would be better to
hoose a schedule resulting from the simulation–optimization model,
ather than the base schedule that the airline actually uses.

Other indicators to evaluate the solutions are the total arrival delay
inutes, the percentage of missed connections by passengers, and the

verage transfer time. Total arrival delay minutes is proportional to
TP. This means that most Pareto-optimal solutions perform better on

otal arrival delay minutes than the base case. Results of Day 1 show
hat the Pareto-optimal solution that has the same OTP as the base case
as over 10% more arrival delay minutes than the base case. However,
imilar to the logic followed for OTP, the schedules that have more total
rrival delay minutes than the base case are still interesting to include
ince they have a higher connectivity than the base case.

The percentage of missed connections by passengers shows whether
he schedules would decrease the number of missed connections. The
esults of Day 1 show that a Pareto optimal solution with a higher
TP than the base case (thus higher than 0%) decreases the percentage

f missed connections by passengers. This means that a better OTP
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Fig. 3. 𝜀-progress of Day 1 and Day 2 with the number of improvements per number of function evaluations of five seeds.
Fig. 4. Pareto front of Day 1 in percentage of difference (𝛥) between the base case
(0%, 0%) and the Pareto-optimal solutions for connectivity and on-time performance.

compared to the base case schedule would lead to fewer passengers
missing their connections.

The average transfer time for a passenger in the Pareto schedules
is significantly longer than the base case of Day 1 (between 10% and
12%).

Given the Pareto optimal front, we discuss the two most divergent
solutions in more detail: (1) the solution with −33.3% 𝛥OTP, and (2)
the solution with 50% 𝛥OTP. Table 3 presents the used buffer time
for each fleetline, divided by the total buffer time for each fleetline.
It also presents the used buffer time in percentage for the entire flight
schedule. These percentages are given for both solutions. The base case
is the reference value for the buffer time and therefore, is set to 0%
of buffer time used. More specifically, the buffer time (𝑋𝑟𝑖,𝑗 ) for all
rotations 𝑅 of the base case is 0. The table shows that both solutions
9

Table 3
Buffer time divided by the total buffer time available (in percentage) compared to the
base case (0% of buffer time used) used by the optimal solutions of −33.33% 𝛥OTP
(Solution 1.1) and 50% 𝛥OTP (Solution 1.2), per fleetline 𝑙𝑣 and over the flight schedule
𝜉 of Day 1.

Buffer time used
by Solution 1.1
(−33.33% 𝛥OTP)

Buffer time used
by Solution 1.2
(50% 𝛥OTP)

Fleetline 1 (𝑙1) 14.3% 17.9%
Fleetline 2 (𝑙2) 17.6% 19.6%
Fleetline 3 (𝑙3) 16.7% 29.6%
Fleetline 4 (𝑙4) 14.7% 35.3%
Fleetline 5 (𝑙5) 17.9% 25.0%

Flight schedule (𝜉) 16.6% 25.6%

Table 4
Results of the key performance indicators as compared with the base case of the optimal
solutions of −33.33% 𝛥OTP (Solution 1.1) and 50% 𝛥OTP (Solution 1.2) of Day 1.

Solution 1.1
(−33.33% 𝛥OTP)

Solution 1.2
(50% 𝛥OTP)

𝛥OTP −33.3% 50.0%
𝛥Connectivity 2.1% 1.2%
𝛥Total arrival delay minutes 37.6% −35.3%
𝛥Percentage of missed
connections by passengers

2.7% −2.0%

𝛥Average transfer time 11.2% 10.4%

use at least 16% more buffer time than the base case. Also Solution 1.1
uses 9% less buffer time than Solution 1.2 in the total flight schedule.
In the case of Solution 1.1, the optimization allocates more negative
buffer time to the rotations than Solution 1.2, hence the lower amount
of buffer time used. This means that rotations are shifted ‘‘forward’’,
i.e., to the beginning of the flight schedule compared to the base case.
Moreover, Solution 1.2 (with a higher 𝛥OTP) uses at least 17% more
buffer time in each fleet line compared to the base case.
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Fig. 5. Pareto front of Day 2 in percentage of difference (𝛥) between the base case
(0%, 0%) and the Pareto solutions for connectivity and on-time performance.

The KPIs for both solutions are presented in Table 4. The base
case is the reference value, i.e., 0%, for all KPIs. The results confirm
the trade-off between OTP and connectivity, e.g., Solution 1.1 has the
highest 𝛥Connectivity and vice versa for Solution 1.2. The difference in
𝛥OTP is more than 83% and the difference in 𝛥Connectivity is around
1%. Regarding the total arrival delay minutes, the solutions differ with
more than 70%. Moreover, the results also show that the schedule
with the highest OTP (Solution 1.2) compared to the actual schedule
leads to 2.0% less passengers missing their connection whereas the
schedule with the lowest OTP (Solution 1.1) results in 2.7% more
passengers missing their connections. However, the 𝛥Average Transfer
Time of Solution 1.1 is slightly higher than that of Solution 1.2. In both
solutions, there is more transfer time available for the passengers than
in the base case.

6.2.2. Day 2
Fig. 5 shows the Pareto optimal front of Day 2. The figure shows

that the multi-objective optimization model also improves the actual
schedule of Day 2 on either or both OTP and connectivity. For each
solution, the model improves connectivity with at least 1.3% compared
to the base case.

Similar to Day 1, there are two solutions that are expected to lead to
a negative percentage of on-time performance, meaning more average
arrival delay minutes than the base case. However, there is an increase
in connectivity value for these particular solutions and therefore, these
solutions are still interesting to include in the analysis.

Regarding connectivity, Fig. 5 shows that all Pareto-optimal solu-
tions have a higher connectivity of at least 1.3%. So, it would always
be better for connectivity to choose a schedule resulting from the
simulation–optimization model, rather than the base schedule that is
currently in use by the airline.

Another indicator is the total arrival delay minutes. For Day 2, this
is proportional to the OTP. Next, the outcomes of percentage of missed
connections by passengers show that a solution with a lower OTP than
the base case (𝛥-12.5%) results in a slight decrease in percentage of
missed connections by passengers. The solution with 12.5%𝛥OTP shows
a smaller decrease in the percentage of missed connections (less than
-1%) compared to a solution with more average arrival delay minutes
(close to −2%). So although OTP improves, it does not necessarily
contribute to a lower percentage of missed connections. The average
transfer time of the schedules of Day 2 is 4% to 8% higher than in the
base case.

Given the Pareto optimal front, we discuss the two most divergent
optimal solutions in more detail: (1) the solution with -25% 𝛥OTP, and
(2) the solution with 62.5% 𝛥OTP. Table 5 presents the used buffer time
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Table 5
Buffer time divided by the total buffer time available (in percentage) compared to
the base case (0% of buffer time used) used by the optimal solutions of −25% 𝛥OTP
(Solution 2.1) and 62.5% 𝛥OTP (Solution 2.2), per fleetline 𝑙𝑣 and over the flight
schedule 𝜉 of Day 2.

Buffer time used
by Solution 2.1
(−25% 𝛥OTP)

Buffer time used
by Solution 2.2
(62.5% 𝛥OTP)

Fleetline 1 (𝑙1) 43.1% 43.3%
Fleetline 2 (𝑙2) 5.8% 41.2%
Fleetline 3 (𝑙3) 23.2% 41.1%
Fleetline 4 (𝑙4) 32.1% 46.4%
Fleetline 5 (𝑙5) 11.1% 26.0%

Flight schedule (𝜉) 23.4% 38.6%

Table 6
Results of the key performance indicators as compared with the base case of the optimal
solutions of −25% 𝛥OTP (Solution 2.1) and 62.5% 𝛥OTP (Solution 2.2) of Day 2.

Solution 2.1
(−25% 𝛥OTP)

Solution 2.2
(62.5% 𝛥OTP)

𝛥OTP −25% 62.5%
𝛥Connectivity 2.2% 1.3%
𝛥Total arrival delay minutes 27.9% −54.9%
𝛥Percentage of missed
connections by passengers

2.4% −4.9%

𝛥Average transfer time 5.1% 7.7%

for each fleetline, divided by the total buffer time for each fleetline. It
also presents the used buffer time as a percentage for the entire flight
schedule. These percentages are given for both solutions. Similar to Day
1, the base case is the reference value for the buffer time and therefore,
is set to 0% of buffer time used. This means that the buffer time (𝑋𝑟𝑖,𝑗 )
for all rotations 𝑅 of the base case is 0. The table shows that Solution
2.1 and 2.2 uses 23.4% and 38.6% more buffer time than the base case,
respectively. Also Solution 2.2 uses more than 15% more buffer time
than Solution 2.1 in the total flight schedule. In the case of Solution
2.2, the optimization model allocates more positive buffer time to the
rotations. This means that rotations are shifted ‘‘backwards’’, i.e., to
the end of the flight schedule compared to the actual schedule, to
create more room for being on-time. Moreover, the two most divergent
solutions both use a similar amount of buffer time in fleetline 1. In
all the other fleetlines, Solution 2.2 (with a higher 𝛥OTP) uses at least
14% more buffer time than Solution 2.1. For example, in fleetline
2, Solution 2.1 only uses 5.8% more buffer time than the base case
whereas Solution 2.2 uses 41.2% more buffer time.

The KPIs for both solutions are presented in Table 6. The base case
is the reference value, i.e., 0%, for all KPIs. The results again confirm
the trade-off between OTP and connectivity, e.g., Solution 2.1 has the
highest 𝛥Connectivity and vice versa for Solution 2.2. The difference in
𝛥OTP is more than 87% and the difference in 𝛥Connectivity is around
1%. It is up to the decision makers to determine the importance of these
differences. For the KPI total arrival delay minutes, the solutions differ
with more than 80%. Moreover, the results also show that Solution 2.2
(with the higher OTP) leads to around 4.9% less passengers missing
their connection whereas Solution 2.1 (with the lowest OTP) results
in 2.4% more passengers missing their connections. In line with this,
𝛥Average Transfer Time of Solution 2.2 is 2.6% higher than Solution
2.1. Thus, passengers have more time to transfer between flights,
leading to fewer passengers missing their connections in the case of the
solution with the highest 𝛥OTP (Solution 2.2). In both solutions, there
is more transfer time available for the passengers than in the base case
schedule.

7. Discussion

This section discusses the results of the simulation–optimization
model. It presents the interpretation of the results in Section 7.1 and
the limitation of this model in Section 7.2.
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7.1. Interpretation of results

The multi-objective optimization model solved through MOEA
BORG successfully improves the base schedule on either or both OTP
and connectivity. This means that buffer scheduling resulting from
the optimization model performs better than buffer allocation in the
base case. It would be better to choose a schedule resulting from the
simulation–optimization model, rather than the actual schedule. Due to
the multi-objective nature of the problem, presenting the optimization
results in a Pareto optimal front helps schedule planners to make a
trade-off between OTP and connectivity. It is the task of the decision
maker to determine the importance of OTP versus connectivity and
choose an optimal schedule accordingly.

The percentage of buffer time used in the optimal flight schedules
resulting from the multi-objective optimization model is relatively
small compared to the total available buffer time. Even in the schedules
with a 𝛥OTP of more than 50%, the percentage of extra buffer time used
is smaller than 40% of the total buffer time available. The reason is
that the model is not only optimizing on OTP but also on connectivity.
Also, the results show that in the schedules with the lowest 𝛥OTP and
the highest 𝛥OTP of both days use at least more than 16% more buffer
time than the base case schedule. Thus, the optimization model uses
more buffer time compared to the base case to either increase OTP
or connectivity. Furthermore, the results of the two most divergent
schedules of Day 1 and Day 2 imply that using less buffer time leads
to a lower OTP but a higher connectivity and vice versa. Less buffer
time often means that the flight schedule is tightly planned, resulting
in more passengers missing their connections. Therefore, the schedule
with the lowest 𝛥OTP has a higher percentage of missed connections by
passengers than the base case or the schedule with the highest 𝛥OTP.
One notable result is that the average transfer time of the schedule for
Day 1 with the lowest 𝛥OTP is slightly higher (0.8%) than the schedule
with the highest 𝛥OTP, whereas more passengers seem to miss their
connections (2.7%). This implies that a higher average transfer time
results in more passengers missing their connections for this solution.
The main explanation is that, in this case, the optimization model
creates many connections with a short transfer time and keeps a few
connections with a long transfer time which on average leads to a
relatively high transfer time over the flight schedule. Due to the many
connections with a short transfer time, many passengers still miss their
flight and therefore, this percentage stays high.

More specifically on the KPI percentage of missed connection by
passengers, departure delay plays an important role. The result of the
schedule of Day 2 shows that the improvement of OTP compared to
the base schedule does not necessarily contribute to a lower percentage
of missed connections. The reason could be that arrival delay has
been improved by buffer allocation (thus a higher OTP) but it did
not influence departure delay which also impacts the percentage of
missed connections. Another reason is that lower OTP has a higher
connectivity and lower transfer times, which leads to more connections
being missed by passengers. Since the average transfer times do not
vary much between the optimal schedules (a difference of around 2%),
the time to catch a flight for a passenger is on average similar for
schedules with a lower OTP and a higher OTP. This could also explain
why a higher OTP does not necessarily lead to a lower percentage of
missed connections. In contrast, the result of the schedule of Day 1
implies that the higher OTP, thus the less average arrival delay minutes,
the fewer passengers miss their connection. The main difference with
Day 2 is that the buffer allocation immediately impacts both arrival and
departure delay on Day 1.

For the KPI average transfer time for a passenger, the bound-
ary cases of connections play an important role. The simulation–
optimization model tries to maximize connectivity, meaning that the
schedules could offer more long connections (i.e., close to MACT) or
cut-off short connections (i.e., close to MCT). The result of the schedule
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of Day 1 shows that connectivity increases while the average transfer
time increases as well, since it includes more connections with a longer
transfer time. The result of the schedule of Day 2 shows that the average
transfer time can both be longer and shorter than the base case but are
relatively close to the base case. This means that the average transfer
time variability depends on the relative amount of connections that lie
close to MCT versus close to MACT.

7.2. Limitations

There are three main limitations of the simulation–optimization
model namely (i) a simplistic formulation of the constraints for the
real-life problem, (ii) difficulty to find a feasible solution for this highly
complex problem, and (iii) no convergence with stochastic variance.

The presented multi-objective optimization formulation is simplistic
with respect to the constraints in a real-life schedule. Three simple base
line constraints are included in this model namely (1) no extra time
could be added in a day, (2) transfer time of passengers is within the
minimum and maximum accepted transfer time, and (3) turnaround
time between two rotations is larger than or equal to the minimum
turnaround time. There are numerous additional constraints that apply
in practice when designing a flight schedule, such as slot assign-
ment, crew legalization, or resource assignment. However, finding the
optimal candidate schedules with only these four relatively simple con-
straints is already challenging. This shows the highly complex nature
of the problem. Therefore, when adding more constraints to create an
optimization formulation closer to real-life, it is likely that it becomes
very difficult to find optimal candidate schedules. Helpful tools to be
able to add more constraints would be to relax the constraints or to
add penalty costs. This gives infeasible but good performing schedules,
instead of very few feasible optimal schedules, which actually might
work better than the fully optimized schedules.

The multi-objective optimization formulation is solved through the
MOEA BORG. As the problem is highly complex, even with only four
constraints, it is difficult to find feasible schedules that do not vio-
late the strict constraints within a reasonable time. The optimization
only converged after many functions evaluation and a large run time,
meaning a high computational investment is needed to find feasible
optimal solutions. This challenge related to convergence shows the
high complexity of solving the problem with only four constraints. This
complexity could affect the usability of the optimization formulation
when adding constraints.

Another challenge related to convergence through the MOEA BORG
is the stochastic variance of the objectives in the optimization model.
Currently, this research uses a deterministic optimization model with a
simulation–optimization framework. Real airline data including many
uncertainties is used for the mathematical description of the objectives
in the optimization model. However, the uncertainties themselves are
not explicitly modeled for the purpose of our study. This could have an
impact on the performance of BORG as it is only robust with a certain
level of noise, i.e., a certain level of stochastic variance. If the optimiza-
tion model has a high stochastic variance on the two objectives with an
extremely wide confidence interval, the simulation–optimization model
is not consistent in determining whether a candidate solution performs
better or worse than others. For example, if a candidate solution is
evaluated twice by the optimization model with a high stochastic
variance, it could give two completely different values for OTP and/or
connectivity. Although this could be a challenge for the optimization
model, in reality OTP of a flight cannot be predicted using only the
historical data due to the high level of uncertainty. Therefore, it would
be interesting to include the stochastic variance by explicitly modeling
the uncertainties in the multi-objective optimization model.

8. Conclusion

The trade-off between OTP and connectivity plays a large role in

allocating buffers in the schedule design of transportation services. For
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the aviation sector specifically, it is challenging to schedule buffers in
an already tight schedule such that there is a high OTP and high con-
nectivity, given the strict constraints on minimum turnaround times of
aircraft and transfer times of passengers. Considering these constraints,
it is complex to optimize a daily flight schedule for an airline on both
OTP and connectivity, which are the main objectives of an airline.
Although much research is performed on schedule design, the trade-off
between OTP and connectivity had not yet been investigated. There-
fore, we presented a novel multi-objective optimization formulation of
a daily Europe flight schedule for a large international airline carrier in
this paper. Solving this problem formulation through the MOEA BORG,
the optimization results in candidate schedules with both a better OTP
and a higher connectivity than the base schedule. Having candidate
schedules instead of one optimal schedule leaves room for decision
makers to explicitly decide on the importance of OTP versus that of
connectivity, rather than the model already deciding on the trade-off.
This means that the final optimal daily schedule is decided by the
decision makers based on their expertise.

Thus, the presented multi-objective optimization formulation, in
combination with the simulation–optimization framework, successfully
provides support to decision makers when trading off OTP and con-
nectivity in a daily European flight schedule. It results in candidate
schedules which perform better on connectivity and OTP than the base
schedule. The technique is a suitable way for solving this complex
integral problem in the transportation and logistics sector.

The multi-objective optimization formulation of this paper lays the
first basis for trading off OTP and connectivity in a schedule design by
buffer scheduling. Only a small set of the constraints for designing a
schedule are incorporated in this paper. This small set of constraints,
namely the minimum turnaround time for aircrafts and the minimum
and maximum acceptable transfer times of passengers, are the founda-
tion of designing a flight schedule. However, constraints such as slots,
crew legalization, and resource assignment are also necessary for deci-
sion making. To get a fully integrated optimization model for schedule
design, further research could focus on incorporating these elements to
support decision makers even better. Moreover, further research could
also focus on including stochastic variance by explicitly modeling the
uncertainties in the multi-objective optimization formulation.
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