<]
TUDelft

Delft University of Technology

Modulus consensus in discrete-time signed networks and properties of special recurrent
inequalities

Proskurnikov, Anton V.; Cao, Ming

DOI
10.1109/CDC.2017.8263942

Publication date
2017

Document Version
Accepted author manuscript

Published in
Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC)

Citation (APA)

Proskurnikov, A. V., & Cao, M. (2017). Modulus consensus in discrete-time signed networks and properties
of special recurrent inequalities. In A. Astolfi et al (Ed.), Proceedings of the 2017 IEEE 56th Annual
Conference on Decision and Control (CDC) (pp. 2003-2008). IEEE.
https://doi.org/10.1109/CDC.2017.8263942

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/CDC.2017.8263942
https://doi.org/10.1109/CDC.2017.8263942

Modulus consensus in discrete-time signed networks and properties of
special recurrent inequalities

Anton V. Proskurnikov and Ming Cao

Abstract— Recently the dynamics of signed networks, where
the ties among the agents can be both positive (attractive) or
negative (repulsive) have attracted substantial attention of the
research community. Examples of such networks are models of
opinion dynamics over signed graphs. It has been shown that
under mild connectivity assumptions these protocols provide
the convergence of opinions in absolute value, whereas their
signs may differ. This ‘“modulus consensus” may correspond
to the bipartite consensus (the opinions split into two clusters,
converging to two opposite values) or the asymptotic stability
of the system (the opinions always converge to zero).

In this paper, we demonstrate that the phenomenon of
modulus consensus in a signed network is a manifestation of
a more general, regarding the solutions of special recurrent
inequalities, associated to conventional first-order consensus
algorithms. Although such a recurrent inequality does not
provide the uniqueness of a solution, it can be shown that,
under some natural assumptions, each of its bounded solutions
has a limit and, moreover, converges to consensus. A similar
property has previously been established for special continuous-
time differential inequalities in [1]. Besides analysis of signed
networks, we link the consensus properties of recurrent inequal-
ities to the convergence properties of distributed optimization
algorithms and stability properties of substochastic matrices.

I. INTRODUCTION

In the recent years protocols for consensus and syn-
chronization in multi-agent networks have been thoroughly
studied [2]-[5]. Much less studied are “irregular” behaviors,
exhibited by many real-world networks, such as e.g. cluster
synchronization, partial synchronization, desynchronization
and chaos [6]-[8]. An important step in understanding these
complex behaviors is to elaborate mathematical models for
“partial” or cluster synchronization, or simply clustering [6],
[9], [10]. In social influence theory, this problem is known
as the community cleavage problem or Abelson’s diversity
puzzle [11], [12]: to disclose mechanisms that hinder reach-
ing consensus among social actors and lead to splitting of
their opinions into several clusters.

One reason for clustering in multi-agent networks is the
presence of “negative” (repulsive, antagonistic) interactions
among the agents [9]. Models of signed (or “coopetition”)
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networks with positive and negative couplings among the
nodes describe a broad class of real-world systems, from
molecular ensembles [13] to continental supply chains [14].
Positive and negative relations among social actors can
express, respectively, trust (friendship) or distrust (hostility).
Negative ties among the individuals may also result from
the reactance or boomerang effects, first described in [15]:
an individual may not only resist the persuasion process, but
even adopt an attitude that is contrary to the persuader’s one.
A simple yet instructive model of continuous-time opin-
ion dynamics over signed networks has been proposed by
Altafini [16], [17] and extended to the discrete-time case
in [18]-[20]. In the recent years, Altafini-type coordination
protocols over static and time-varying signed graphs have
been extensively studied, see e.g. [18]-[26]. It has been
shown that under mild connectivity assumptions these mod-
els exhibit consensus in absolute value, or modulus consen-
sus: the agents’ opinions agree in modulus yet may differ in
signs. In the recent works [1], [27] it has been shown that the
effect of modulus consensus in the continuous-time Altafini
model is in fact a manifestation of a more profound result,
concerned with the special class of differential inequalities

(1) < —L(t)z(t), ey

where L(t) stands for the Laplacian matrix of a time-varying
weighted graph. Although the inequality (1) is a seemingly
“loose” constraint, any of its bounded solutions (under
natural connectivity assumptions) converges to a consensus
equilibrium (this property is called consensus dichotomy).
This implies, in particular, the modulus consensus in the
Altafini model [1], [27] since the vector of the opinions’
absolute values obeys the inequality (1). In this paper, we
extend the theory of differential inequalities to the discrete-
time case, where (1) is replaced by the recurrent inequality
x(k+1) < W(k)x(k) with {W (k) }r>0 being a sequence of
stochastic matrices. We establish the consensus dichotomy
criteria for these inequalities, which imply the recent re-
sults on modulus consensus in the discrete-time Altafini
model [19]. We also apply the recurrent inequalities to some
problems of matrix theory and the analysis of distributed
algorithms for optimization and linear equations solving.

II. PROBLEM SETUP

We start with preliminaries and introducing some notation.

A. Preliminaries

First we introduce some notation. A vector x € R" is
non-negative (z > 0) if x; > 0Vi. Given two vectors z,y €



R™, we write z > y (respectively, z < y) if c —y > 0
(respectively, y — xz > 0). The vector of ones is denoted by
1, =(1,...,1)T € R Given a matrix A = (a;;), we use
|A| = (|a;;]) to denote the matrix of element-wise absolute
values (the same rule applies to vectors). A matrix A = (a;;)
is stochastic if its entries are non-negative and all rows sum
to 1, ie. >, a;; = 1Vi. We use p(A) to denote the spectral
radius of a square matrix A. The standard Euclidean norm
of a vector x is denoted by ||z| = VxTz.

A non-negative matrix A = (a;;)i jev can be associated
to a (directed) weighted graph! G[A] = (V, E[A], A), whose
set of arcs is E[A] = {(¢, ) : ai; # 0}.

B. Recurrent inequalities and consensus dichotomy.

In this paper, we are interested in the solutions of the
following discrete-time, or recurrent, inequality

w(k+1) <W(k)a(k), k=0,1,... )

where x(k) € R™ is a sequence of vectors and W (k) €

R™*"™ stands for a sequence of stochastic matrices.
Replacing the inequality in (2) by the equality, one obtains

the well-known averaging, or consensus protocol [30]—[32]

x(k+1) = W(k)x(k), 3)

dating back to the early works on social influence [33],
[34], rational decision making [35] and distributed opti-
mization [36]. The algorithm (3) may be interpreted as the
dynamics of opinions? formation in a network of n agents.
At each step of the opinion iteration k agent ¢ calculates the
weighted average of its own opinion z;(k) and the others’
opinions; this average is used as the new opinion of the ith
agent z;(k + 1) = >, w;j(k)z;(k). The graph G[W (k)]
naturally represents the interaction topology of the network
at step k. Agent ¢ is influenced by agent j if w;;(k) > 0,
otherwise the jth agent’s opinion x;(k) plays no role in the
formation of the new agent 4’s opinion x;(k + 1).

A similar interpretation can be given to the inequality (2).
Unlike the algorithm (3), the opinion of agent ¢ at each
step of opinion formation is not uniquely determined by
the opinions from the previous step, but is only constrained
by them z;(k + 1) < >, wy;(k)x;(k). The weight w;;(k)
stands for the contribution of agent j’s opinion z (k) to this
constraint, and in this sense it can also be treated as the
“influence” weight. The inequality (2) does not provide the
solution’s uniqueness for a given z(0), but only guarantees
the existence of an upper bound for the solutions.

Proposition 1: Any solution of (2) obeys the inequality

x(k) < M1,, M 2 max 2;(0).
Proof:  Proposition 1 is provea via straightforward
induction on k. By definition, x(0) < M1,; if z(k) < M1,
then x(k +1) < W(k)x(k) < MW (k)1, = M1,,. ]

'We assume that the reader is familiar with the standard concepts of
graph theory, regarding directed graphs and their connectivity properties,
e.g. walks (or paths), cycles and strongly connected components [28], [29].

2In the broad sense, “opinion” is just a scalar quantity of interest; it can
stand for e.g. a physical parameters or an attitude to some event or issue.

Although many solutions of (2) are unbounded from
below, under certain assumptions any its bounded solution
converges to a consensus equilibrium cl,,, where ¢ € R.
A similar property, called consensus dichotomy® has been
established in [1], [27] for the differential inequalities (1).

Definition 1: The inequality (2) is said to be dichotomic
if any of its bounded (from below) solutions has a limit
Ty = klgrgo z(k). It is called consensus dichotomic if these

limits are consensus equilibria x, = c,1,, where c, € R.
The main goal of this paper is to disclose criteria of
consensus dichotomy in the recurrent inequalities (2). In Sec-
tion IV we discuss applications of these criteria to models of
opinion dynamics and algorithms of distributed optimization.

III. MAIN RESULTS

The first step is to examine time-invariant inequalities (2).

A. A dichotomy criterion for the time-invariant case

W is a
constant matrix, whose graph G = G[W] has s > 1 strongly
connected (or strong) components Gy, ...,Gs; in general,
arcs between different components may exist (Fig. la). A
strong component is isolated if no arc enters or leaves it.
All strong components are isolated (Fig. 1b) if and only if
every arc of the graph belongs to a cycle [28, Theorem 3.2].

In this subsection, we assume that W(k) =

(@) (b)

Fig. 1: Non-isolated (a) vs. isolated (b) strong components

Theorem 1: The inequality (2) with the static matrix
W(k) = W is dichotomic if and only if all the strong
components Gi,...,G, of its graph G are isolated and
aperiodic*. The inequality is consensus dichotomic if and
only if G is strongly connected (s = 1) and aperiodic, or,
equivalently, the matrix W is primitive [29], [38].

The proof of Theorem 1, as well as the remaining results of
this section, is omitted due to the page limit and is available
in the extended version of this paper [39].

Remark 1: Let V; stand for the set of nodes of G;. Theo-
rem 1 shows that the time-invariant dichotomic inequality (2)
reduces to s independent inequalities of lower dimensions

™ (k4+1) <WmeM(E), m=1

5, @

RN
3The term dichotomy originates from ODE theory. A system is dichotomic
if any of its solutions either grows unbounded or has a finite limit [37].

4Recall that a graph is aperiodic if the greatest common divisor of its
cycles’ lengths (that is also referred to as the graph’s period) is equal to 1.



where m(m)(k’) = (l‘i(k‘))ievm, W(m) = (wij)i’jevm and
each inequality (4) is consensus dichotomic.

Remark 2: The matrix is primitive if and only if [12],
[29], [38] its powers W are strictly positive for large k.

B. Consensus dichotomy in the time-varying case

In this subsection, we extend the result of Theorem 1 to
the case of general time-varying inequality (2). Given ¢ >
0, let S. denote the class of all stochastic matrices W =
(wij)i,jev. satisfying the two conditions:

1) w;; > € for any ¢ € V;

2) the graph G.[W] = (V, E;[W]) is strongly connected,

where E.[W] 2 {(i,j) € V x V 1wy >}
In other words, removing from the graph G[W] all “light”
arcs weighted by less than ¢, the remaining subgraph G.[W]
is strongly connected and has self-loops at each node.

For any integers k¥ > 0 and m > k let ®(m, k) =
(i (m k)2, 2 W(m —1)...W(k) stand for the evo-
Iutionary matrix of the equation (3); for convenience, we
denote ®(k,k) = I,. It is obvious that any solution of (2)
satisfies also the family of inequalities

z(m) < ®(m, k)x(k) Ym >k >0.

The following theorem provides a consensus dichotomy
criterion for the case of the time-varying matrix W (k).

Theorem 2: The inequality (2) is consensus dichotomic if
€ > 0 exists that satisfies the following condition: for any
k > 0 there exists m > k such that ®(m, k) € S..

Notice that for the static matrix W (k) = W one has
®(m, k) = W™ *, so the condition from Theorem 2 means
that W* € S. for some s. It can be easily shown that
in this case W51 is a strictly positive matrix. On the
other hand, if W is strictly positive for some d, then
W € S, for sufficiently small € > 0. In view of Remark 2
and Theorem 1, in the static case W (k) = W the sufficient
condition of consensus dichotomy from Theorem 2 is in fact
also necessary, boiling down to the primitivity of W.

The condition from Theorem 2 is implied by the two
standard assumptions on the sequence {W (k)}i>o.

Assumption 1: There exists § > 0 such that for any £ > 0

1) wy(k)>6 forany i =1,...,n;

2) for any ¢, j such that ¢ # j one has w;;(k) € {0}U[d;1].

Assumption 2: (Repeated joint strong connectivity) There
exists an integer B > 1 such that the graph G[W (k) + ...+
W (k + B —1)] is strongly connected for any k.

Corollary 1: Let Assumptions 1 and 2 hold. Then the
inequality (2) is consensus dichotomic.

Proof: We are going to show that the condition from
Theorem 2 holds for ¢ = 68 and m = k + B, ie.
®(k+ B, k) € Sss for any k. Indeed, @;;(m, k) > wy;(m —
1)...w;(k) > 0™ % Vi whenever m > k due to Assump-
tion 1. Supposing that (¢,7) € G[W (l)], where k <1 < m,
one has ®(m, k) = ®(m,l + 1)W()®(l, k), and therefore
ij(m, k) > ii(m, 1+ wi; (D51, k) = 6™ 7168k =
8™~k Applying this to m = k + B, one easily notices that
i is connected to j in the graph Gss[®(k + B, k)] whenever

w;;(1) > 0 for some | = k,...,k+ B — 1. Assumption 2
implies now that ®(k + B, k) € Sss for any k. ]

It should be noticed however that the condition of Theo-
rem 2 may hold in many situations where Assumptions 1
and 2 fail. Even in the static case W (k) W, the
matrix W can be primitive yet have zero diagonal entries.
The following corollary illustrates another situation where
both Assumptions 1 and 2 may fail, whereas Theorem 2
guarantees consensus dichotomy.

Corollary 2: Suppose that for any k one has W (k) €
{Wo}UW, where W, stands for the primitive matrix and W
is a set of stochastic matrices, commuting with Wy: WoyW =
WWoVW € W. Let the set Ko = {k : W(k) = Wy} be
infinite. Then the inequality (2) is consensus dichotomic.

Proof: Let d be so large that W is a positive matrix,
whose minimal entry equals ¢ > 0. For any k, we can find
such m > k that the sequence k,k+1,...,m — 1 contains d
elements from the set K. Since any W (j) commutes with
Wo, @(m, k) = TkWéi, where T}, is some stochastic matrix,
and thus all entries of ®(m, k) are not less than &. |

Many sequences {W(k)}, satisfying the conditions of
Corollary 2, fail to satisfy Assumptions 1 and 2. For instance,
if W > I, then the sequence {WW(k)} can contain an
arbitrary long subsequence of consecutive identity matrices,
which violates Assumption 2. Both the matrix W, and
matrices from ¥ may have zero diagonal entries, which also
violates Assumption 1. The set VV can also be non-compact,
containing matrices with arbitrary small yet non-zero entries.

C. The case of bidirectional interaction

It is known that in the case of bidirectional graphs w;; >
0 < wj; > 0 the conditions for consensus in the network (3)
is reached under very modest connectivity assumptions.
Under Assumption 1, consensus is reached if and only if
the following relaxed version of Assumption 2 holds [31].

Assumption 3: (Infinite joint strong connectivity) The
graph Go, = (V, E) is strongly connected, where

Eo =3 (i,j) 1 > wij(k) =00 .
k=1

The following result extends this consensus criterion to
the condition of consensus dichotomy in the inequality (2).

Theorem 3: Suppose that Assumption 1 and 3 hold and
for any k one has w;;(k) > 0 < wj;(k) > 0. Then the
inequality (2) is consensus dichotomic.

The relaxation of Assumption 1 in Theorem 3 remains a
non-trivial open problem. To the best of the authors’ knowl-
edge, the same applies to usual consensus algorithms (3):
most of the existing results for consensus in discrete-time
switching networks [3], [30]-[32] rely on Assumption 1 or
at least require uniformly positive diagonal entries w; (k).

IV. EXAMPLES AND APPLICATIONS

In this section we apply the criteria from Section III to
the analysis of several multi-agent coordination protocols.



A. Modulus consensus in the discrete-time Altafini model

We first consider the discrete-time Altafini model [18]-
[20] of opinion formation in a signed network. This model
is similar to the consensus protocol (3) and is given by

E(k+1) = A(k)¢(k) € R™, or, equivalently

Z a; (k &)

Here the matrix (a;;(k)) satisfies the following assumption.

Assumption 4: For any k = 0,1, ..., the matrix A(k) =
(a;;(k)) has non-negative diagonal entries a;;(k) > 0, and
the modulus matrix |A(k)| = (|a;;(k)|) is stochastic.

The non-diagonal entries a;;(k) in (5) may be both
positive and negative. Considering the elements &;(k) as
“opinions” of n agents, the positive value a;;(k) > 0 can
be treated as trust or attraction among agents ¢ and j. In this
case, agent ¢ shifts its opinion towards the opinion of agent j.
Similarly, the negative value a;;(k) < 0 stands for distrust or
repulsion among the agents: the ith agent’s opinion is shifted
away from the opinion of agent j. The central question
concerned with the model (5) is reaching consensus in
absolute values [19], [26], or modulus consensus.

Definition 2: We say that modulus consensus is estab-
lished by the protocol (5) if the coincident limits exist

klim [&1(k)|=...= klim |6n (k)| for any £(0) € R™.
— 00 — 00
The absolute values z;(k) = |£;(k)| obey the inequalities

&i(k+1)

Z aij(k)|z;(k) Vi, (6)

and hence the vector (k) = (x1(k),...,2,(k))" obeys (2)
with W (k) = | A(k)|. If this recurrent inequality is consensus
dichotomic, then modulus consensus in (5) is established.
Theorems 2 and 3 yield in in the following criterion.

Theorem 4: Modulus consensus in (5) is established, if the
sequence of matrices W (k) = |A(k)| satisfies the conditions
of Theorem 2 or Theorem 3.

In particular, if Assumption 1 holds, then modulus con-
sensus is ensured by the repeated strong connectivity (As-
sumption 2), which can be relaxed to the infinite strong
connectivity (Assumption 3) if the network is bidirectional
w;;(k) > 0 < wj;(k) > 0. Theorem 4 includes thus the
results of Theorems 2.1 and 2.2 in [19]. As discussed in
Section III, the condition from Theorem 2 holds in many
situations where Assumption 1 fails, e.g. W (k) = W may
be a constant primitive matrix with zero diagonal entries.
Unlike consensus algorithms (3), where the gains w;; (k) are
design parameters, the social influence (or “social power”)
of an individual over another one depends on many uncertain
factors [40], and the uniform positivity of the non-zero gains
|a;; (k)] may become a restrictive assumption.

The most interesting case of modulus consensus is bipar-
tite consensus, or “bimodal polarization”: the agents split
into two groups, whose opinions converge to two opposite
(non-zero) values. Modulus consensus is also established,

however, if the system is asymptotically stable, i.e., all
opinions converge to 0. We do not consider here conditions
criteria for bipartite consensus and stability, which can be
found e.g. in the recent works [26] (see also Theorem 2.3
in [19]). Notice, however, that the criteria from [26] primarily
deal with the case of exponentially convergent Altafini’s
model, whereas the general criterion from Theorem 4, in
general, does not guarantee exponential convergence.

B. Substochastic matrices and the Friedkin-Johnsen model

A non-negative matrix A = (a;;) is called substochastic if
> j—1 aij = 1Vi. We say that the ith row of A is a deficiency
row of A if the latter inequality is strict 3 a;; < 1. Unlike
a stochastic matrix, always having an eigenvalue at 1, a
substochastic square matrix is usually Schur stable p(A) < 1.
Theorem 1 allows to give an elegant proof of the Schur
stability criterion for substochastic matrices [41], [42].

Lemma 1: Let G = G[A] be the graph of a substochastic
square matrix A and Iy = {i:>_, a;; <1} is the subset of
its nodes, corresponding to the deﬁcwncy rows of A. If any
node j either belongs to the set I, or I; is reachable from
it in G via some walk, then p(A) < 1.

Proof: Consider the matrix W =

wij = alj + — (1 — Z all> > Q4.

Obviously, W = (w;;) is stochastic and w;; > a;; > 0Vj
when ¢ € I;. Hence in the graph G[W] each node i € I; is
connected to any other node and to itself, and hence G[W] is
aperiodic. The condition of Lemma 1 implies that G[W] is
also strongly connected. Choosing an arbitrary non-negative
vector ¢ > 0, the vectors (k) = A¥z( are non-negative for
any k > 0 and satisfy the inequality (2) with W (k) = W.
Thanks to Theorem 1, (k) — ¢1, where ¢ > 0. It remains
to notice that 1 is not an eigenvector of A since I;(A) # 0,
and hence ¢ = 0. Thus Akxo — 0 as k — oo for any x¢ > 0,
which implies the Schur stability of A since any vector xg
is a difference of two non-negative vectors. [ ]

Notice that Lemma 1 implies the following well-known
property of substochastic irreducible matrices [38]: if G is
strongly connected then A is either stochastic or Schur stable.
The condition from Lemma 1 is not only sufficient but also
necessary for the Schur stability [42]. Lemma 1 implies the
condition of opinion convergence in the Friedkin-Johnsen
model of opinion formation [11], [42], [43]

(k) = AWax(k) + (I — A)u,

(w;;), defined by

u = x(0). (7

Here W is a stochastic matrix of influence weights, and A is
a diagonal matrix of the agents’ susceptibilities to the social
influence [43], 0 < A;; < 1. Without loss of generality, one
may suppose that \;; = 0 & w; = 1; in this case agent
i is stubborn x;(k) = x;(0) (often it is assumed [43] that
Ais = 1 — wy;). Another extremal case is A\;; = 1, which
means that agent ¢ “forgets” its initial opinion u; = x;(0) and
iterates the usual procedure of opinion averaging x;(k+1) =
> jwiizi(k). If 0 < A;; < 1, then agent i is “partially



v Po(x)

Fig. 2: The projection onto a closed convex set

stubborn” or prejudiced [12], [44]: such an agent adopts the
others’ opinions, however it is “attached” to its initial opinion
2;(0) and factors it into every opinion iteration.

If the substochastic matrix AW is Schur stable, then the
opinion vector z(k) in (7) converges to the equilibrium

a(k) —— (I — AW)~

k—o0

NI - A)u. 8)

By noticing that the graphs G[AW] and G[W] differ only by
the structure of self-loops (recall that A\;; > 0 unless w;; = 1
and w;; = 0Vj # 7), Lemma 1 implies the following.
Corollary 3: [42] The opinions (8) converge if from each
agent ¢ with \;; = 1 there exists a walk in G[IV] to some
agent j with \;; < 1, that is, each agent is either prejudiced
or influenced (directly or indirectly) by a prejudiced agent.
Using Theorems 2 and 3, some stability criteria for the
time-varying extension [44] of the Friedkin-Johnsen model
can be obtained that are beyond the scope of this paper.

C. Constrained consensus

In this subsection, we consider another application of
the recurrent inequalities case, related to the problem of
constrained or “optimal” consensus that is closely related
to distributed convex optimization [45]-[47] and distributed
algorithms, solving linear equations [48]-[50].

For any closed convex set @ C R? and 2z € R? the
projection operator Po : © € R? — Po(z) € Q can
be defined, mapping a point to the closest element of (),
ie. ||[* — Po(x)|| = mingeq ||z — y|. This implies that
4(y — Pa(x),z — Po(x)) > 7/2 (Fig. 2) and

lz = ylI* > lla = Pa(@)|* + lly — Pa(2)|I* vy € Q. 9)

The distance dg(z) = |z — Pa(x)|| is a convex function.

Consider a group of n discrete-time agents with the state
vectors &;(k) € RY. Each agent is associated with a closed
convex set =; C R4 (e.g., the set of minima of some convex
function). The agents’ cooperative goal is to find some point
& € E 2 Z1N...NE,. To solve this problem, various
modifications of the protocol (3) have been proposed. We
consider the following three algorithms

Gkt 1) =P [30 wyMg®)]. (0
Slk+1) =Pz Y wij(k>Pz.(£j(k))] .oan
ik +1) = wii (k) P=, (&(K) + > wi; (k) (12)

JFi

Here W (k) = (w;;(k)) stands for the sequence of stochastic
matrices. The protocol (10) has been proposed in the in-
fluential paper [45] (see also [47]), dealing with distributed
optimization problems. The special cases of protocols (11)
and (12) naturally arise in distributed algorithms, solving
linear equations, see respectively [48], [49] and [50]; a
randomized version of (12) has been also examined in [46].
Theorem 5: Let the set =; be closed and convex, and
assume that = = ;N ... NE, # (. Suppose that the
matrices W (k) satisfy Assumptions 1 and 2. Then each of
the protocols (10)-(12) establishes constrained consensus:

klglgo zi(k)=...= khjrgo xn(k) € E. (13)

Proof: Due to the page limit, we give only an outline

of the proof. By assumption, there exists some & € =.

Denote Pi(-) 2 P=.(), d;(-) 2 d=,(-) and let n;(k) 2

> wij(k)&;(k). Under Assumptions 1 and 2, to prove the
constramed consensus (13) it suffices to show [47] that

ei(k) = &k +1) — milk) —— 0, di(&(k) —— 0.
14

Applying 9) to Q =Z5;, z =&, y =& € Z;, one gets
1€ = &> > |1 Pi(€) — &l + di(€)* VEeR?,  (15)

and therefore || — &ol| > || Pi(€) — &o||- Each protocol (10)-
(12) thus implies the recurrent inequality (2), where z; (k) 2

||€: (k) — &o|| Vi. For instance, the equation (10) entails that
0 < z;(k+1) Zw” =&l < Zwij(k)%(k)
j=1

Corollary 1 implies the existence of the common limit z, =
limg 00 z;(k) > 0. We are now going to prove (14) for the
protocol (10). The second statement in (14) is obvious since
d;(&(k 4+ 1)) = 0. Substituting £ = n;(k) into (15),

s 92 i (1)) < lms(k) — &oll? — (e + 1)?
< Zj wij(k)w;(k) — zi(k +1) 0

(16)
To prove (14) for the protocol (12), notice that
(10)
zi(k+1) < wig(k)| Pi&i(k) — &oll + Y wija; (k)
s i (17)
< wii(k)v/zi(k) 2+ wija(k)
i

Recalling that w;; (k) > § and x; (k) — x. Vi, it can be shown
that dl(fz(k» — 0 and hence ||€l(k')|| = w”(kz)dz(fl(k‘)) —
0. The property (14) for the protocol (11) is proved similarly,
combining the arguments from (16) and (17). |

V. CONCLUSIONS

In this paper, we have examined a class of recurrent
inequalities (2), inspired by the analysis of “modulus consen-
sus” in signed networks. Under natural connectivity assump-
tions the inequality is shown to be consensus dichotomic,



that is, any of its solution is either unbounded or converges
to consensus. Besides signed networks, we illustrate the
applications of this profound property to some problems of
matrix theory and distributed optimization algorithms.
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