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Abstract. Quantitative T1 mapping by MRI is an increasingly impor-
tant tool for clinical assessment of cardiovascular diseases. The cardiac
T1 map is derived by fitting a known signal model to a series of baseline
images, while the quality of this map can be deteriorated by involuntary
respiratory and cardiac motion. To correct motion, a template image is
often needed to register all baseline images, but the choice of template
is nontrivial, leading to inconsistent performance sensitive to image con-
trast. In this work, we propose a novel deep-learning-based groupwise
registration framework, which omits the need for a template, and regis-
ters all baseline images simultaneously. We design two groupwise losses
for this registration framework: the first is a linear principal component
analysis (PCA) loss that enforces alignment of baseline images irrespec-
tive of the intensity variation, and the second is an auxiliary relaxometry
loss that enforces adherence of intensity profile to the signal model. We
extensively evaluated our method, termed “PCA-Relax”, and other base-
line methods on an in-house cardiac MRI dataset including both pre- and
post-contrast T1 sequences. All methods were evaluated under three dis-
tinct training-and-evaluation strategies, namely, standard, one-shot, and
test-time-adaptation. The proposed PCA-Relax showed further improved
performance of registration and mapping over well-established baselines.
The proposed groupwise framework is generic and can be adapted to
applications involving multiple images.

Keywords: Quantitative Cardiac MRI · Groupwise Registration ·
Principal Component Analysis · Relaxometry

1 Introduction

Quantitative MRI (qMRI) of the heart, such as T1 and T2 mapping [17,19], has
become an increasingly important imaging modality for non-invasive examina-
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tion of heart diseases [6]. In principle, the quantitative values of T1 or T2 relax-
ometry are inferred by fitting a known parametric model to a series of baseline
images with different intensities and contrasts, assuming anatomical alignment.
In practice, however, the alignment assumption is often violated by the invol-
untary respiratory and cardiac motion of patients [26], resulting in deteriorated
accuracy and precision of the quantitative mapping [9,10]. This makes motion
correction an essential post-processing step for qMRI [15,23].

Conventionally, qMRI motion correction is performed in a pairwise fashion,
by first selecting a single image or an average image as the template, and then reg-
istering the rest of the series to this template [3]. The choice of template, however,
is nontrivial [12,20]. Some baseline images of qMRI can have extremely poor con-
trast depending on the acquisition setting and can fail catastrophically in pair-
wise registration. Such failure can severely undermine the final mapping quality.
In contrast, groupwise registration, which registers all baseline images simul-
taneously, is a promising alternative. The groupwise paradigm avoids explicit
selection of a template, and utilizes the shared information among all baseline
images. The design of groupwise similarity, however, is not as straightforward as
pairwise similarity. Aggregation of pairwise metrics was proposed to describe the
groupwise alignment, including accumulated pairwise estimates [25] and the sum
of variances [18]. Notably, Huizinga et al. [8] proposed a principle component
analysis (PCA)-based metric that characterizes groupwise alignment without
aggregating pairwise metric computation, in the Elastix framework [11].

The role of image registration in medical image analysis is well-established,
with traditional optimization-based methods that optimize the deformation
fields per dataset [3,8,11,15], and recent deep-learning-based methods that pre-
dict the deformation fields through a parameterized network [1,2,4,7,12–14,16,
27]. Compared with iterative optimization-based methods, deep-learning-based
methods promises much faster inference with competitive performances [2,4].
Interestingly, deep-learning-based methods can also be interpreted as amortized
optimization on the training dataset, generalizable to in-domain data [2]. For
qMRI, most deep-learning-based methods follow the pairwise paradigm, rely-
ing on the selection of a template [1,14]. A groupwise deep learning framework
for qMRI was proposed recently, [13,28], but it still relies on the selection of a
template and aggregates pairwise metrics as the groupwise loss.

With the MRI signal model known, physics-informed qMRI registration has
been explored [5,24,26]. The methods are mostly optimization-based, which is
typically slow, and the additional mapping loop further adds to the long compu-
tation. A recent work, PCMC-T1 [7], predicts motion-corrected baseline series
by minimizing qMRI fitting error. However, the registration solely relied on the
T1 fitting error, which can be sensitive to the initial motion [23], while susceptible
to shape collapse (i.e., overfitting the signal model) [13].

In this work, to realize fast, template-free, physics-informed motion cor-
rection of T1 mapping, we propose a novel groupwise registration framework.
The groupwise registration makes use of PCA with a robust yet straightforward
premise: the intensity profiles of all pixels should adhere to a low-rank model.
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This implicitly regulates anatomical alignment across baseline images. Further-
more, we design an auxiliary relaxometry loss, which explicitly incorporates the
MR relaxometry into the registration, also in a groupwise manner. The second
loss serves to refine the registration after PCA, given that it can be sensitive
to motion and prone to overfit. We show that the proposed method, termed
“PCA-Relax”, significantly outperformed established medical image registration
baselines in our extensive experiments with different training-and-evaluation set-
tings.

2 Method

2.1 Groupwise Image Registration

In quantitative MRI, a series of N baseline images are acquired for map-
ping, denoted by IN = {Ii|i = 1, 2, . . . , N}, where Ii ∈ R

H×W is an image
of size H × W . The objective of groupwise registration is to align these images
into a common coordinate system through parameterized 2D deformation fields
φN = {φi|i = 1, 2, . . . , N}, ensuring that all IN ◦ φN = {Ii ◦ φi|i = 1, 2, . . . , N}
align. The proposed deep-learning groupwise image registration framework is
built upon the well-established VoxelMorph backbone [2]. As shown in Fig. 1,
the parameterized network Rθ1 takes IN stacked along the channel dimension
as input, and passes them through a U-Net architecture [21] to predict φN .

Fig. 1. An overview of the proposed template-free groupwise registration framework. It
takes the baseline image series IN through the registration module to predict φN . The
warped series IN ◦ φN undergoes PCA decomposition to calculate the groupwise PCA
loss without a template. If the auxiliary mapping module is enabled, the relaxometry
loss is also activated to refine the registration module.
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2.2 PCA-Based Template-Free Similarity Metric

In qMRI, the signal intensity S(x,y) at image coordinate (x, y), follows a paramet-
ric signal model. For T1 mapping, with the widely adopted Modified Look-Locker
inversion recovery (MOLLI) [17] sequence, the signal model is defined as follows:

S(x,y)(ti) =

∣
∣
∣
∣
∣
C(x,y)

(

1 − k(x,y) exp

(

− ti
T ∗
1 (x,y)

))∣
∣
∣
∣
∣
, (1)

where ti is the inversion time of Ii. The parameters C(x,y), k(x,y) and T ∗
1 (x,y)

are the underlying tissue parameters at coordinates (x, y) to derive T1(x,y) =
(k(x,y) − 1)T ∗

1 (x,y). For a well-aligned MOLLI image series, the group of signal
profiles has a low rank. This can be visually appreciated, as shown in Fig. 2(d).

Fig. 2. Illustration of cardiac motion correction in qMRI. Sampled (a) misaligned and
(b) registered series. Voxel-wise intensity curve for (c) misaligned and (d) registered
series. And (e) the comparison of eigenvalues of the correlation matrix.

PCA provides an intuitive way to evaluate the groupwise alignment across
all baseline images. By first rearranging the registered series IN ◦φN into a data
matrix M ∈ R

HW×N such that each row represents a signal profile of length N ,
the alignment of all baseline images can be characterized by performing PCA
decomposition on the normalized correlation matrix K:

K =
1

HW − 1
Σ−1(M − M)�(M − M)Σ−1, (2)

K = UΛU�, Λ = diag(λ1, λ2, . . . , λN ), (3)

where Σ = diag(σ1, σ2, . . . , σN ) with σi being the standard deviation of each
column, M is the column-wise mean matrix, U is the orthogonal matrix of eigen-
vectors, and λ1, λ2, . . . , λN are the eigenvalues of K in descending order. Ideally,
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the variance of K should be explained by the first few eigenvalues if all base-
line images are aligned. However, motion can induce noisy or shifted row entries
in M , resulting in a more scattered distribution of eigenvalues of K (Fig. 2e).
Therefore, we define the PCA loss as follows [8]:

LPCA =
N∑

i=1

iλi. (4)

Since
∑N

i=1 λi equals to N given the normalized correlation matrix K, a smaller
LPCA indicates a sharper energy concentration at the first few eigenvalues.

2.3 Auxiliary Relaxometry Loss

In principle, the aligned series should follow the MR signal model at each voxel,
e.g., as in Eq. 1. However, quantitative parameters (C, k, T ∗

1 ) are normally esti-
mated by least-square methods or grid search [5,24], lacking practical differen-
tiability. This makes it difficult to integrate the physics prior into the deep learn-
ing registration framework. To incorporate the physics prior of relaxometry, we
propose a differentiable qMRI mapping module and use it to further refine the
PCA-based registration. We design an end-to-end U-Net [21] architecture to con-
struct this module Mθ2 , parameterized by θ2 [29]. The module takes stacked reg-
istered images IN ◦φN and inversion times tN =

{

ti ∈ R
H×W |i = 1, 2, . . . , N

}

as
input, and output parameter maps [C, k, T ∗

1 ] ∈ R
3×H×W . The mapping module

is pre-trained, independently of the registration module, in a fully self-supervised
fashion. The relaxometry loss is defined as the normalized fitting error:

LRelax =
1

NHW

∑

(x,y)∈Ω

N∑

i=1

∥
∥
∥S(x,y)(ti) − Ŝ(x,y)(ti)

∥
∥
∥

2

2
, (5)

where Ω denotes the spatial domain of an image I ∈ R
H×W , S(x,y)(ti) is the

signal intensity of Ii ◦ φi at (x, y), and Ŝ(x,y)(ti) is the estimated intensity by
evaluating Eq. 1 at (x, y). The differentiability of LRelax is established through
its sequential composition of IN ◦ φN , Mθ2 , and signal model. We note that
in our work, LRelax is optional as shown in Fig. 1, and can be omitted if the
registration problem is model-agnostic.

2.4 Regularization on Groupwise Deformation

In addition to the two template-free groupwise losses LPCA and LRelax, we further
regularize the deformation fields as regularly done. The first is the regularization
loss Lreg [2] on deformation fields to ensure the spatial smoothness of φN :

Lreg =
1

NHW

∑

(x,y)∈Ω

N∑

i=1

‖∇φi(x, y)‖22 , (6)
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where ∇ denotes the spatial gradient operator.
Specific to groupwise registration is the cyclic consistency loss Lcyclic to pre-

vent collapsing [8,12,28]:

Lcyclic =

√
√
√
√
√

1
NHW

∑

(x,y)∈Ω

(
N∑

i=1

φi(x, y)

)2

, (7)

which enforces the deformation fields to warp the baseline images to a “mean
shape” of the group [8,20]. Therefore, the total loss is:

Ltotal = λPCALPCA + λregLreg + λcyclicLcyclic + λRelaxLRelax. (8)

3 Experiments and Results

Data: We used an in-house cardiac MRI dataset including 50 subjects. Each
subject has both pre-contrast and post-contrast MOLLI sequences (Philips 3.0T)
with a fixed length N = 11. All images were resampled to a 1 mm resolution and
center-cropped to a size of 128×128. The dataset was randomly split subject-wise
to prevent data leakage: (36, 4, 10) subjects were used for training, validation,
and testing. To evaluate out-of-domain generalization, training involved only pre-
contrast sequences, whereas validation and testing included both pre-contrast
and post-contrast sequences.

Training-and-Evaluation: We employed three train-and-evaluation settings
to assess the registration performance. Standard: the model was trained on the
training dataset and unchanged at inference time. One-shot: the model was
randomly initialized and trained on the input T1 mapping sequence. Test-time
Adaptation (TTA): the model was pre-trained on the training dataset and
finetuned on the input image as in [2].

Comparison Study: The following scenarios were compared:

1. Raw: Original series without any registration.
2. VM-P: A pairwise registration baseline with the VoxelMorph backbone, which

registered all baseline images to Itemplate = I1, with normalized mutual infor-
mation (NMI) loss.

3. VM-G: A template-based groupwise registration baseline with the Voxel-
Morph backbone, using Itemplate = 1

N

∑N
i=1 Ii ◦φi as the template, and aggre-

gated pairwise NMI loss.
4. PCA: Our template-free groupwise framework with LPCA.
5. PCA-Relax: Our template-free groupwise framework with LPCA and LRelax.

Evaluation Metrics: We evaluated our proposed method in terms of T1 map-
ping quality, as indicated by the fitting SD values [9]. Instead of evaluating
tissue heterogeneity, the fitting SD measures the quality of curve fitting of the
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signal model at each voxel. The SD map is a clinically accepted metric to eval-
uate the quality of T1 mapping [6,10,22,24], as it is difficult to compare con-
tours or landmarks across the cardiac qMRI baselines given the varying contrast.
We estimated the fitting SD following [9] and calculated the SD values in the
myocardium region for each series, manually annotated by experienced radiolo-
gists.

Implementation Details: Our models were developed in PyTorch, with thor-
ough hyper-parameter tuning on the validation split. The hyperparameters for
PCA-Relax were set to λPCA = 1, λreg = 10, λcyclic = 0.1, λRelax = 10. For PCA,
we set λRelax = 0. The models VM-P and VM-G utilized the NMI loss with
λNMI = 10. For mapping module Mθ2 , the encoder features 5 convolutional lay-
ers with channel counts [32, 32, 32, 64, 64]; the decoder mirrors the encoder. We
pretrained Mθ2 for 100 epochs on the training split. The architecture of Rθ1 is
the same as Mθ2 . We used the ADAM optimizer, with learning rates of 5×10−4

for Standard, and 1×10−3 for One-shot, and TTA with early stopping after 500
iterations. Parametric fitting was performed using the Nelder-Mead algorithm
after registration. All experiments were conducted on an NVIDIA RTX 4090
GPU. Our code will be released on GitHub.

Fig. 3. Boxplots of T1 SD values in the myocardium, with lower values indicating better
motion correction: (a) Pre-Gd (in-domain) and (b) Post-Gd (out-of-domain). All five
scenarios were evaluated in three training-and-evaluation settings. One-sided Wilcoxon
signed-rank tests were conducted to compare the performance of PCA-Relax against
that of PCA and VM-G. Statistically significance (p < 0.05) is labeled with *.

Results: We evaluated all four motion correction methods, as well as the raw
data, on three training-and-evaluation settings. The box plots are shown in Fig. 3,
with detailed statistics reported in Table 1. Our template-free registration base-
line (PCA) outperforms the competitive VoxelMorph baselines (VM-P, VM-G)
in all scenarios. Furthermore, for all-but-one settings, the SD maps are improved
with the mapping module activated (PCA-Relax). However, the post-Gd results
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in the standard setting suggest that the mapping module may overfit when a
domain shift exists. (Note that the training only included the pre-contrast T1

mapping data.) One-shot optimization and TTA per sequence take only ≈ 20 s

Table 1. Mean and standard deviation of the T1 SD values in the myocardium, with
three training-and-evaluation strategies. Bold denotes the best results within the spe-
cific training-and-evaluation strategy and underline denotes the overall best results.

Method Modality SD Values (ms) ↓
Standard One-shot Fine-tuning

Raw Pre-Gd 45.89 (±23.33)
VM-P Pre-Gd 44.50 (±21.56) 44.71 (±20.90) 44.84 (±21.33)
VM-G Pre-Gd 41.67 (±21.24) 37.50 (±16.22) 36.72 (±15.73)
PCA Pre-Gd 41.25 (±20.35) 36.15 (±15.44) 35.66 (±15.04)
PCA-Relax Pre-Gd 40.58 (±20.95)34.00 (±15.89)32.88 (±14.41)
Raw Post-Gd 28.32 (±12.15)
VM-P Post-Gd 27.42 (±10.79) 25.86 (±12.10) 25.60 (±11.31)
VM-G Post-Gd 25.00 (±10.28) 19.09 (±5.75) 18.19 (±5.46)
PCA Post-Gd 23.82 (±9.44) 18.89 (±5.85) 18.08 (±5.28)
PCA-Relax Post-Gd 25.55 (±10.04) 18.02 (±5.43) 17.19 (±5.28)

Fig. 4. Estimated T1 and SD maps of a (a) pre-contrast and (b) post-contrast sequence
with the TTA strategy. The mean values of the SD maps in the myocardium are
reported. We highlight the difference in the SD maps with the yellow boxes and arrows.
(Color figure online)
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with the groupwise framework, making TTA a valuable trade-off for refined regis-
tration for each new input sequence, with little extra time. Qualitative improve-
ments in cardiac T1 mapping are illustrated in Fig. 4.

4 Conclusion

In this work, we proposed a novel template-free, deep-learning-based, groupwise
registration framework, to tackle the motion correction problem for cardiac T1

mapping. Two groupwise losses were proposed and validated: a sequence-agnostic
PCA loss and a sequence-specific relaxometry loss. We extensively evaluated the
proposed method, PCA-Relax, with diverse training-and-evaluation strategies
on an in-house cardiac T1 mapping dataset. The proposed method demonstrated
improved performance of registration and mapping over well-established base-
lines. The generic formulation of our groupwise framework allows easy extension
to applications that involve multiple image registration.
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