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Abstract

The loss of an upper limb significantly impacts an individual’s life, directly affecting their ability to per-
form activities of daily living. Prosthetic devices play a crucial role in aiding amputees’ rehabilitation
in society, primarily driven by advancements in externally powered prostheses. Although prosthetic
devices on the market offer excellent functionality, they come with a high price tag and use complex
control algorithms. Over recent years, a noticeable shift towards simplifying prosthetic devices has
emerged, often facilitated by soft robotic principles. For example, the adaptive synergy approach has
led to devices that are highly adaptable to their environment with a reduced degree of actuation (DoA),
thereby improving functionality at low complexity. This thesis explores a novel research direction by
combining the concept of adaptive synergy actuation with additional, parallel actuation of individual fin-
gers. The main goal of this research is to assess the viability of using such a parallel adaptive synergy
actuation structure for prosthetic hands. We designed a prototype incorporating this actuation struc-
ture, with the main design goals of high functionality, low complexity, robustness, and anthropomor-
phic sizing. The hand, which features a tendon-driven design, has 15 joints, including 14 dislocatable
joints and one revolute hinge joint. The entire hand is powered by a single primary actuator, with two
smaller additional motors operating in parallel on the index and thumb. We empirically validated the
prototype’s performance through qualitative experiments, and its performance was compared to that
of other prosthetic devices available on the market through quantitative analysis. Evaluation of the
prototype revealed promising results, such as its ability to adaptively grasp various functional objects
and execute complex tasks. Force measurements revealed performance comparable to devices on the
market. The results indicate that this novel actuation principle, with future refinement, is an interesting
new approach to increasing functionality with minimal increase in complexity and can offer an excellent
alternative to costly prosthetic devices currently on the market, thereby enhancing the accessibility of
functional prosthetic devices for individuals with upper limb loss and improving their quality of life.
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1
Introduction

Figure 1.1: Classification of upper limb loss [1]

The loss of an arm or hand can be challenging for an amputee, and the effects directly affect their work
life and quality of living. One measure for this is the reduced performance of ‘activities of daily living’
(ADL). The term ADL refers to routine tasks that comprise everyday living. ADLs are commonly divided
into two levels or categories: basic and instrumental tasks. Basic ADLs include mobility and personal
self-care tasks. Instrumental ADLs encompass a range of complex tasks that go beyond basic self-care.
These activities involve occupational skills, transportation, using technology such as telephones and
computers, and household management responsibilities [2]. Trauma is the leading cause of upper limb
loss among adults, followed by cancer as the second most prevalent cause [3]. The different levels of
upper limb loss can be classified as transcarpal, wrist disarticulation, transradial, elbow disarticulation,
transhumeral, shoulder disarticulation and forequarter, see Figure 1.1.

The amputation level is the most critical determinant of function after amputation. The primary surgical
principle is to save as much of the limb as possible while ensuring the removal of devitalized tissues
and residual limb wound healing [3]. Saving the most distal joint possible dramatically improves the
amputee’s function. The transradial level is the most prevalent amputation height for upper extrem-
ity amputations, accounting for 47% of all upper extremity amputations [4], closely followed by the
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transhumeral level. Transradial and transhumeral amputees completely lose hand function and have
severe limitations in basic and higher-level activities of daily living.

Common solutions
To aid amputees in their rehabilitation into society, intensive care trajectories involving medical, psy-
chological, and social support have been implemented. Often, these trajectories include a prosthetic
device primarily aimed at regaining functionality. Based on functionality and general design, prosthetic
devices can be classified into several types, namely passive-, body-powered-, externally powered-,
and hybrid devices [5].

The names of these types directly reflect their functionality level; as passive devices serve a primarily
aesthetic function, body-powered devices are often very durable and can provide basic functionality,
such as grasping through mechanical actuation powered by a different body part or limb. Externally
powered devices elevate the functionality further by increasing grasping and manipulation capabilities
through the use of control algorithms, sensors, and other advanced technologies. Finally, hybrid de-
vices combine body-powered and externally powered principles to create a hybrid device, which aims
to provide a balance between the durability of body-powered devices and the functionality of externally
powered devices.

Most of the current innovations in prosthetics are pioneered by externally powered devices. Where high
discomfort levels often accompany body-powered devices due to the device being attached to various
other body parts, externally powered hands only need to be attached to the residual limb, resulting in
less discomfort, provided their size and weight are low enough. Externally powered hands come in
various kinds, depending on their functionality, complexity, and cost. Nevertheless, a common factor
among all types is that they strive to offer high functionality to complete ADLs and achieve high com-
fort levels. A sub-classification exists between different externally powered prosthetic hands, namely
robotic hands and prosthetic hands. The primary difference lies mainly in their application area and
accompanying requirements and limitations. Robotic hands are typically utilized in various industrial
processes such as supervised manipulation, autonomous manipulation, and logistics, where higher-
order control algorithms can be employed more easily, and size is less of a constraint. In contrast,
prosthetic hands are designed for direct human-related purposes, such as rehabilitating amputees.
Significantly more straightforward control strategies must be implemented, mainly because of the dif-
ficulty in identifying incoming signals and their intended goals. Moreover, prosthetic hands are often
strictly limited in size to accommodate high comfort levels.

The key priorities of prosthetic hand design can be divided into two categories: design and functional
priorities. The most important design categories are comfort, cost, durability, reliability, and aesthetics.
The key functional requirements all stem from how well the hand performs, such as grasping force,
available degrees of freedom, ease of control, and object adaptability.

Design priorities

Comfort significantly affects the overall user experience and satisfaction with a prosthetic hand. The
weight and size of a prosthetic hand are crucial factors for comfort and ease of use. The comfort
of a prosthesis is negatively affected with high weight because a lightweight and appropriately sized
hand reduces fatigue and allows for more natural movement. The average mass of a human hand is
426 grams [6]. For that reason, most prosthesis designs set this as the target goal to ensure comfort
satisfaction. The price of a prosthetic hand can vary widely, depending on functionality, complexity,
materials, manufacturing, research costs, and more. The price ranges from a few hundred euros to
tens of thousands. Recent open-source and low-cost projects, such as the Baxter Easyhand, have
been launched, claiming prices as low as $150 [7], or Wu’s low-cost compact humanoid hand [8]. Con-
trary, the high-end solutions on the market can cost up to $70,000 (I-Limb)[9], $90,000 (Taska)[10], or
$70,000 (Michelangelo) [11]. Additionally, prosthetic hands should be designed to withstand daily wear
and tear, providing long-lasting performance. Durability and reliability are crucial to ensure the pros-
thetic hand functions consistently and effectively over time. In addition, the appearance and aesthetics
of a prosthetic hand play a significant role in user acceptance and confidence [1]. Designing prosthetic
hands that closely resemble a human hand’s natural shape and appearance can positively impact the
user’s psychological well-being and social integration.
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Functional priorities

The ability of a prosthetic hand to generate sufficient grasping force is crucial for securely holding ob-
jects of various sizes and weights. Furthermore, adequate grasping force allows individuals to perform
daily tasks effectively. Degrees of Freedom (DoF) refers to the number of independent movements or
joints a prosthetic hand possesses. Increasing the DoF allows for a broader range of grasp patterns
and configurations, enabling users to perform tasks with greater precision and versatility, such as han-
dling objects of different shapes and sizes. The ability of a prosthetic hand to adapt to different tasks,
objects, and environments is essential. Designing hands that adjust their grip or shape according to the
grasped object enhances versatility and usability. Furthermore, this shape adaptation aids in grasping
success by compensating for uncertainties in actuation and world models and attaining many contact
points. Thereby shape adaptation significantly increases the chances of achieving force closure with a
grasp, and much research on robotic grasping attempts to leverage this effect explicitly [12].

In order to create a prosthetic hand that is valuable to amputees, information is needed on the cur-
rent state of knowledge, existing technologies, and research relevant to this topic. For that reason, a
literature review was conducted on the current state of the art of prosthetic hand technologies. The fol-
lowing section will summarize these findings, highlighting the current trends in the field and identifying
challenges, gaps, and opportunities for this thesis.
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State of the Art

Figure 2.1: Trends in prosthetic hand design [13]. Cumulative distributions of hands from 1912 to 2018 based on
the (a) joint type (rigid, soft-continuous, flexible, or dislocatable), (b) the actuation type (rigid or soft), and (c) the
transmission architecture type (coupled, fully actuated, or underactuated). In panel c, the red line shows the

cumulative number of hands that embed hand synchronized motion

To create a prosthetic hand, it is essential to thoroughly examine all options available for its various
parts. The main parts include actuation, transmission, joints, and materials. By exploring different so-
lutions for each component, a knowledgeable approach can be taken to improve the prosthetic hand’s
functionality and performance. Piazza et al. [13] identified the different trends emerging in three cate-
gories for the design of prosthetic hands (see Figure 2.1). Current trends can be easily distinguished
from the traditional approach of rigid joints, rigid actuation, and fully actuated transmissions. In all
three categories (joints, actuation, and transmission), discoveries have been made that improve over-
all performance, functionality, usability, and cost-effectiveness. The most notable trends are the ’soft’
principles for joints and actuation and reduced degrees of actuation facilitated through novel transmis-
sion technologies. The following section will detail these three categories, highlighting the main new
discoveries and their benefits and limitations.

4



2.1. Joint design 5

2.1. Joint design

Joints in prosthetic hands are crucial because they allow the parts to move relative to each other, en-
abling more natural interaction with the environment. This mobility is essential for performing various
tasks and adapting to different objects, making prosthetic hands functional and effective. Joint design in
prosthetics involves various categories broadly classified into four main types: rigid joints, flexible joints,
dislocatable joints, and soft continuous joints. Rigid joints are systems where the links are connected
using fixed mechanical elements, such as standard hinge joints. Flexible joints incorporate flexible ele-
ments (e.g. springs) to connect the links. Using flexible elements creates an inherent compliant effect,
which helps with adaptability to various objects. Similarly, dislocatable joints include flexible elements
with the addition of withstanding severe disarticulations. One typical example of this is a saddle joint
with an added flexible element, which has a concave and convex surface that fits together and is con-
nected with elastic tendons, similar to the joint in the thumb. Unlike the other joint types, which are all
made up of multiple parts, soft continuous joints utilize compliant materials and mechanisms to mimic
the behaviour of human joints more closely. Soft continuous joints are constructed using materials with
inherent flexibility and compliance, such as elastomers, polymers, or composite materials.

Rigid joints are still the most prevalent among all joint types, but a steady increase in the other types
is happening. Especially dislocatable and soft continuous joints are becoming more prevalent due to
their unique benefits and human-like kinematic behaviour. Two of the most commonly used dislocat-
able joints in prosthetic hands are the dislocatable rolling contact joints called Hillberry joints [14] and
COmpliant Rolling-contact Elements (CORE) [15]. Depending on the design used, such joints can
introduce compliance without affecting the precision, making the finger resilient to impacts. Several re-
searchers have made use of this type of joint, such as the Pisa/IIT SoftHand [16], the MeRo Hand [17],
and an underactuated hand by Mottard et al. [18], where each finger consists of a group of rolling joints
connected by elastic ligaments such as in Figure 2.2. The elastic bands, fixed on either side of the joint,
make the system soft and safe and allow the hand to automatically return to its correct configuration,
i.e., after severe dislocations. The replacement of rigid mechanical structures with soft materials and
actuation has been identified as one of the biggest trends in the design of prosthetic hands [13]. Soft
robotic hands exploit the flexibility of joints to adapt the shape of the fingers to the object (or environ-
ment) when grasping, substantially simplifying control strategies. The compliant nature of these joints
significantly enhances the robustness of the robotic hand, enabling it to withstand significant impacts.

Figure 2.2: Dislocatable rotational sliding joint in its two different states used in the design by Mottard et al. [18].
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2.2. Actuation

Actuation plays a vital role in the design of prosthetic hands, it being the mechanism that enables the
prosthetic hand to produce controlled movements and exert forces as required. Various actuation meth-
ods have been explored in prosthetic hand design, each with unique advantages and considerations.
Traditional approaches primarily use electric motors such as the ones in Figure 2.3, but pneumatic or
hydraulic systems have also been well-researched. Recently, there has been a growing interest in
using soft actuators and creating artificial muscles that aim to replicate human muscles. Both aim to in-
corporate softness into the design and although artificial muscles are still somewhat underperforming,
soft actuators have created an interesting way to induce additional compliance and improve perfor-
mance. Generally, however, soft actuators are significantly more expensive than standard electrical
DC motors. A different, often cheaper, approach for implementing softness into a hand’s design is by
exploiting mechanical advantages in the transmission architecture.

Figure 2.3: Schematic drawings of different actuator solutions: (a) Rigid actuator, (b) Active
admittance control, (c) Series elastic actuator, (d) Variable stiffness actuator, (e) Agonist-antagonist

actuator, (f) Variable-impedance actuator. Images courtesy of [13]

2.3. Transmission

Transmission systems in prosthetic hands refer to the mechanisms responsible for transmitting motion
from actuators to the joints of the hand. These systems dictate how effectively the hand can move and
adapt to various tasks. Transmission can be classified into three categories: fully actuated, coupled,
and underactuated. Fully actuated transmission systems use a separate actuator for each joint, which
means they can perform many different configurations. However, this comes at the cost of a very high
degree of actuation (DoA), which requires complex control architectures and comes with high costs.
Fully actuated systems are primarily used in high-end solutions for prosthetic hands because they of-
ten require advanced sensory input and processing, many actuators, and a sophisticated algorithm to
control everything. Coupled and underactuated transmissions have a higher degree of freedom (DoF)
than a degree of actuation, meaning a single actuator moves multiple joints. The difference is that the
movement of a joint in a coupled transmission system is always directly proportional to a joint linked to it,
whereas an underactuated system allows for passive movement between DoFs. This underactuation
feature creates a mechanical adaptivity in the hand without the need for complex control algorithms or
sensorization. Underactuated hands typically employ specific grasp strategies, such as the synergis-
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tic [19] or intrinsic hand model. These models identify key grasping postures or patterns that can be
achieved with fewer actuators. The hand’s mechanical design is optimized to naturally achieve these
grasping postures or patterns. By leveraging passive or self-adaptive mechanical designs and strate-
gic actuation, underactuated transmission systems in prosthetic hands offer a simplified and robust
approach to achieving a wide range of grasping and manipulation capabilities. These systems aim to
reduce the complexity of control and improve the user experience by leveraging the mechanical prop-
erties of the hand itself. Finally, because they use fewer motors, they save weight, space, and cost,
which are three important factors in prosthetic hand design.

The transmission of forces from the actuator to joints and moving parts is primarily facilitated by cables
and rigid linkages. Vertonghen et al. [20] found that more than half of the devices use a cable trans-
mission. The cable, or tendon, is attached at the fingertip, runs along the finger, and is actuated by a
motor-driven pulley. This mechanism is inspired by the tendons of a human hand. The cables or ten-
dons are routed through the prosthetic hand structure in a predetermined manner. They are typically
connected to specific points on the fingers or joints to control their movement. Pulleys or guides are
often used to change the direction of the cables or tendons, allowing them to navigate through the hand
structure smoothly. One of the most significant benefits of using cables is their low weight and small
size. Cables can be made from various materials, including steel, Spectra Fiber, Dyneema, and Kevlar.
An example of a prosthetic hand using tendons as a transmission form can be seen in Figure 2.4.

(a) Palmar view, fully extended fingers. (b) Palmar view, partially flexed fingers.

Figure 2.4: Diagram of the internal tendons and pulleys during flexion and extension movements of the middle,
annular, and little fingers. (a) Fully extended configuration, (b) partially flexed configuration. ’A-B-C’ refers to the

pulleys used to connect multiple fingers to a single actuation [21].

2.4. Hand Synchronized Motions

One especially promising trend is the use of a concept called hand-synchronized motions. The study
of synchronized hand motions has revolutionized prosthetic hand design, offering insights into how
human hands move and interact with objects. Initially proposed by Santello et al. [19], the concept
of hand ”synergies” revolutionized prosthetic hand design by challenging the traditional view of finger
movements. Through extensive analysis of human grasping behaviours, they demonstrated that grasp-
ing involves not just the movement of individual fingers but, rather, coordinated movements of the entire
hand.

By identifying the patterns of covariation among the 15 joint angles of the hand, they subsequently
obtained the coefficients of determination of the relations between the joint angles of the hand. They
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found a general similarity in the patterns for all subjects, indicating that not all of the joint angles of
the hand are controlled independently of each other in shaping the hand to grasp different objects.
This implies a reduction in the number of degrees of freedom, and principal component (PC) analysis
was used to identify the effective degrees of freedom more precisely. Principal components analysis
showed that two principal components could account for >80% of the variance in the data and that the
variance contributed by other principal components was small. This result can be interpreted to imply
that there are two fundamental synergies governing the manner in which the hand is shaped to grasp
objects [19].

Inspired by these findings, researchers have sought to leverage the principles of postural hand syner-
gies in the design of prosthetic hands. One significant advancement in this direction is the concept of
adaptive synergies, as proposed by Catalano et al. [22]. Catalano et al. extended the soft synergies
framework [23], which was difficult to realize by integrating the viewpoint of soft synergies with that of
adaptive underactuated hands, creating the adaptive synergies framework. Adaptive synergies move
a step past soft synergies by enabling a method to effectively exploit synergies for the design of under-
actuated hands, which helps compensate for the reduced number of synergies with the possibility to
adapt to the shape of the objects to be grasped.

Another benefit of using adaptive synergies is the possibility of adding more synergies by adding ad-
ditional tendons in parallel to the first one. A three-fingered gripper prototype noting promising results
using multiple synergies has been made [24]. Increasing the number of grasping synergies results
in evident benefits, as this enhances the prosthetics’ overall dexterity by enabling different grasping
patterns. However, multi-synergistic hands require multiple tendons routed independently through all
hand joints, which significantly increases the number of pulleys and the overall weight, size, and com-
plexity of the hand. These were the primary limitations of otherwise promising results of [24], making it
a promising direction for improvements in future work.

Further advancing the concept of adaptive synergies, Della Santina et al. [25] introduced the concept
of augmented adaptive synergies. Building upon the foundation of adaptive synergies, augmented
adaptive synergies utilize the inherent friction effects within tendon-driven differential mechanisms to
enhance controllability and dexterity by doubling the DoA per tendon by using one motor at each tendon
end, with the tendon running through the entire hand. An anthropomorphic robotic hand built using this
framework showed excellent grasping dexterity and even manipulation capabilities, proving it to be a
novel alternative in the complexity–dexterity tradeoff related to the design of multi-synergistic compliant
hands.

The identification of hand-synchronizedmotion as a highly promising research direction is evident. Most
recently, the introduction of augmented adaptive synergies has demonstrated the potential still to be
explored in unconventional research directions. Alternatively, the opportunity to incorporate multiple
grasping synergies in an adaptive synergies system is promising, too. Adding distinct eigengrasps or
fine motor adjustments of individual fingers can significantly increase the overall dexterity and adaptabil-
ity to various objects. A multi-synergistic approach comes with numerous challenges, such as weight,
size, and control complexity, mainly caused by increased actuation and transmission components. As
an alternative, adding individual finger control or additional grasping patterns to a synergistic design
appears highly feasible, as it takes up much less space than a multi-synergistic approach.

2.5. Design goal

As described in the previous sections, state-of-the-art prosthetic hands have shifted towards enhanc-
ing functionality while managing complexity and cost-effectiveness. Dislocatable joints offer improved
adaptability and resilience, mimicking human joint mechanics to better interact with varied objects and
environments. Meanwhile, traditional electric actuators remain practical for cost efficiency, especially
when combined with underactuated transmission architectures. Synergetic design has proven to be
cutting-edge technology, although there is still room for improvement. The incorporation of multiple
synergies is challenged by factors such as weight and size, resulting in a need for alternative actua-
tion and transmission strategies that could further increase the functionality of these adaptive hands.
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Addressing these challenges brings us to the primary objective of this thesis:

Developing a highly functional and low-complexity robotic hand

facilitated through an alternative exploratory actuation principle. This thesis aims to research an ap-
proach utilizing a single adaptive synergy to control the entire hand, with two additional individual actu-
ators in parallel to this synergy. The parallel actuators will each move one finger, one being the index
and the other the thumb. Other than performing adaptive grasping movements using the main synergy,
these two parallel motors can be utilized to move the index and thumb independently from the other
digits (such as for pinching) or together with the main synergy, thereby increasing the power output of
these primary function fingers.

This novel parallel actuation principle aims to become an alternative approach in the complexity-dexterity
tradeoff by increasing the functionality of a low-cost, adaptive synergy actuated hand with minimal in-
crease in complexity. To realize this, a prototype hand was made using the following design goals:

• High functionality
• Low complexity
• Anthropomorphic
• Robust

High functionality is often related to high complexity; however, the aim is to research the dexterous
capabilities of a prosthetic hand using the parallel actuation principle. By incorporating the parallel
actuators, the hand must have more sensible functionality than using only an adaptive synergy in the
design.

Conversely, the hand must be low-complexity, primarily in terms of control and the number and size
of the necessary parts. Naturally, there is an increase in complexity compared to a single actuator
adaptive synergy design, but the increase in functionality must be more significant than the increase in
complexity to prove the viability of the mechanism.

The hand size must aim to be anthropomorphic, as this is the primary limitation of multi-synergistic
actuation designs. One of the main complications during the assembly of sophisticated prosthetic
hands is tight tolerances because of strict size limitations. Scaling up the dimensions of the hand is
generally easier than scaling down, and thus, the aim should be to start at the lower side of average
human dimensions to prove the viability of the hand for amputees who lost a small hand.

Finally, robustness is an important design goal. Robust robotic hands must be able to withstand daily
use and perturbations from their environment while maintaining their functionality. Therefore, the design
will incorporate features that enhance its robustness and not negatively impact its precision.



3
Conceptual Design Exploration

This chapter embarks on a thorough exploration of the design journey undertaken throughout this
project. First, the design approach will be explained, highlighting key requirements for realizing the
hand’s design objectives. Additionally, the prototyping and iterative design processes will be intro-
duced, explaining the refinement process of all components to their eventual final stages.

Subsequent sections delve into specific components, starting with an exploration of the finger design.
This section will show the evolution of finger phalanges, highlighting their development from basic
working principles to their intricate final designs. Following the design of the digits, the focus will shift
to the thumb’s design, with particular attention to the joint connecting it to the palm. After discussing
the individual fingers, the integration of those fingers into the palm will be shown. This includes the
strategic placement of the fingers, the routing of actuation within the palm, and the positioning of all
motors utilized for the actuation of all the fingers.

Finally, the chapter will delve into the details of the system control design, providing insights into the
electrical design and control architecture required for realizing various grasping motions and the inte-
gration of these features into a finalized design.

10
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3.1. Design approach

A first general plan for the design of the hand can be seen in Figure 3.1. The design largely follows the
anatomy of the human hand, which has four fingers made up of 3 phalanges (proximal, intermediate,
and distal). Meanwhile, the thumb is simplified compared to a human hand. The palm of the prosthetic
hand is fabricated as one rigid piece, while a human hand uses metacarpal phalanges for all 5 fingers.
Although the 4 metacarpal phalanges of the digits are quite accurately represented as one rigid part,
the thumb’s metacarpal phalanx ensures its opposition capabilities. By simplifying all metacarpal pha-
langes into 1 rigid part, the prosthetic hand will lose a DOF. This will, however, significantly reduce both
the complexity of the design and its motion control.

To reduce the design and production time of the digits, all digits are made up of identical phalanx parts,
where the proximal (PP) and intermediate (IP) phalanges are identical for all fingers, and the distal
phalanges (DP) are the same across all five fingers.

All the interphalangeal joints will be rolling contact joints, as these joints accurately reproduce themotion
of a human finger joint, with the additional benefit of being a dislocatable joint. As part of the simpli-
fication of the thumb metacarpal phalanx, the MCP joint of the thumb will be simplified to a revolute
joint.

The actuation layout can also be seen in basic form, where a combined actuation connects all fingers
to a single actuator with additional parallel actuation routes for the index and thumb.

Figure 3.1: Illustration of the hand model featuring the proximal (PP), intermediate (IP), and distal (DP) phalanges. The joints,
denoted as RC (rolling-contact) and R (revolute), can be seen in between the phalanges and the palm, and the combined and

individual actuation routes are shown in orange and red, respectively.

3.1.1. Prototyping

All plastic parts were produced using FDM 3D printing machines. The palm parts were printed using
a Stratasys F170, using ABS material. All other parts were printed using a Prusa MK3 printer, using
standard PLA material. In theory, it is not needed to split these parts, the Stratasys machine results
in higher quality prints, but at the cost of longer printing times and lower print customizability. In the
end-product figure, the ABS and PLA can be easily distinguished due to the use of two different colours,
namely white for ABS and black for PLA.

The pulleys used in the transmission of the actuation were primarily printed using PLA material, except
themotor shaft pulleys, which were crafted from aluminium using CNC techniques to ensure higher load
capabilities. This distinction is important as the areas with aluminium pulleys experience the highest
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Figure 3.2: Illustration of the Whoopie Sling [26]

loads. If plastic pulleys were used in those locations, there would be a risk of tendon entrapment
or pulley breakage, as the tendon might cut into the plastic during movement, hindering the smooth
operation of the system.

The tendon used in the final product is made out of Dyneema. Dyneema is a high-strength synthetic
fibre known for its exceptional strength-to-weight ratio. In addition to its excellent strength-weight char-
acteristics, Dyneema rope allows for the use of splicing techniques. Splicing is a useful technique to tie
the ends of the tendon into itself, in contrast to a conventional knot. This technique results in not only
a stronger connection but also a cleaner and streamlined end result. The specific splicing technique
used is known as a ’Whoopie sling’, and an example of this can be seen in Figure 3.2.

Like many prototypes, the final product was created through an iterative design process. Multiple
iterations of parts were made until all individual parts performed to satisfaction. While not all iterations
will be showcased for the sake of brevity, specific refined parts will be presented to highlight the iterative
design process.
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3.2. Finger design

The finger phalanx design is nearly identical for all the phalanges. The middle, ring, and little finger
are all made exactly the same. The index finger works entirely on the same principles, with the added
change of allowing for two separate actuation routes.

3.2.1. Finger segments

Both the proximal and intermediate phalanges will be constructed the same way. A single phalanx is
made up of two parallel mirrored parts, with space in between them to allow for the tendon routing.

3.2.2. Finger joints

As mentioned in the introduction, the joints used in the finger joints will be rolling contact joints based on
the design of the Hillberry joint [14]. The principle of a rolling contact joint relies on two constraints that
combine to form a 1-DOF joint. The first constraint is rolling-without-slip, which can be implemented
using friction, gears, bands or cables. The second is a normal-contact constraint. This ensures that
the segments do not separate at the point of contact. This can be achieved through the use of elastic
elements such as springs or cables, such as in the Hillberry joint, or even using links. Using links,
however, would impede the desire to create joints that are dislocatable. Because the actuation is
transmitted using tendons, the force can only be transmitted in one direction. Thismeans a counterforce
is required as a resistance or return system. Using elastics is, therefore, the ideal solution, ensuring
all constraints for the rolling contact joint are met and facilitating the fingers’ return to their zero state
when removing the actuation force.

In Figure 3.3, a visual representation of a single rolling contact joint can be seen. The figure displays
the initial joint configuration, considered the zero configuration when local coordinate frames share the
same orientation and a different configuration with an angular displacement. A subscript convention is
used, where the first subscript indicates the link on which a variable is defined, and the second indicates
the adjacent link with which it forms the rolling contact joint, e.g. the radius of the profile on link zero is
denoted as r01, and the radius of the profile on link 1 is denoted as r10, highlighting their contact.

Figure 3.3: Single rolling contact joint before and after an angular displacement

As link 1 rolls without slipping on link 0, the point of contact moves. The relationship between the angle
defined by the motion of the point of contact and the relative angle between the links can be determined.
The angle of the motion of the point of contact is denoted as angles θ01 on link 0 and θ10 on link 1, and
the orientation of link 1 with respect to link 0 is denoted as θ1. The arc length defined by the moving
point of contact is the same for both links due to the set constraints. This can be expressed as

r01θ01 = r10θ10. (3.1)

Analyzing the triangle components, it becomes evident that
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θ1 = θ01 + θ10. (3.2)

Combining Equation 3.1 and Equation 3.2, the relationship between the relative angle between the
links and the angles defining the arc length of the rolling motion is found. If one of the angles is known,
the others can be found using:

θ1 = (1 +
r01
r10

)θ01 = (1 +
r10
r01

)θ10 (3.3)

The resulting coordinate transformation between the two links is therefore a simple series of transfor-
mations which can be written as

01T10 = R(θ01)P (r01 + r10)R(θ10) (3.4)

where T denotes the transformation between the frames,R() denotes a pure rotation in the plane, and
P () denotes a pure translation in the local frame.

For a single rolling contact joint, the forward kinematics formula is given by Equation 3.4. This accurately
describes the position and orientation of the tip of the link. The same logic can be applied to a longer
chain of links, such as the one in Figure 3.4. Where the links from left to right represent the palm, PP,
IP, and DP, respectively.

Figure 3.4: An illustration depicting the initial configuration of a four-link, three-joint chain representing the finger segments.

For this kinematic chain, the transformation from the fixed frame F01 to the moving frame F33 is de-
scribed by

0T3 = R(θ01)P (r1)R(θ10)P (l1)R(θ12)P (r2)R(θ21)P (l2)R(θ23)P (r3)R(θ32)P (l3) (3.5)

where r1 = r01 + r10, r2 = r12 + r21 and r3 = r23 + r32. As mentioned before, to reduce complexity and
increase ease of prototyping, the finger segments will be designed more uniformly than an anatomically
correct representation of the human finger. The radii of the different segments are therefore identical,
r1 = r2, r1 = r3, and the proximal and intermediate phalanx lengths are also equal: l1 = l2.

Using Equation 3.5, we can use forward kinematics (FK) to accurately estimate what the finger move-
ment will look like. In Figure 3.5, the end-effector (in this case the fingertip) is mapped for an equal joint
angle increment in the range

{
0 < θ < π

2

}
. Incrementing all joint angles by the same amount implies

that all phalanges move by an equal amount during the actuation of the finger.

In this scenario, the force applied to the tendon at the fingertip is transmitted through the finger segments
with minimal resistance due to the joints’ rolling contact nature. Additionally, since the tendon routing
is consistent throughout all segments and joint stiffness is considered the same, this contributes to a
more uniform distribution of forces and angles across the finger segments.

In practice, the finger is unlikely to behave perfectly, so to adjust its real-life kinematic behaviour, the
joint stiffness between each segment can be changed by changing the pretensions of the elastics.
This ensures that unwanted behaviour, such as that caused by friction or material imperfections, can
be negated.
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Figure 3.5: End-effector (fingertip) mapping, with intermediary links and rolling contact joints

3.2.3. Finger phalanx design

Now that the basic working principles of the rolling contact finger segments are known, some adapta-
tions can be made to make the finger more robust. As the finger segments only need to move in 1
direction, flexing from the rest position and extending back to the rest position, the movement in other
directions can be limited by incorporating physical stops. Using elastics as one of the ways to ensure
the contact constraint allows for some play when in its lowest energy state (the rest position). To make
the fingers more robust against perturbations in this state and to help guide them back from a flexion
state to the rest position, some physical stop will limit the following transformations:

• +z Rotation (Overextension)
• +y Translation
• ±z Translation

To prevent overextending the joints, the 180◦ circles can be changed to 90◦ circles. Changing the top
side of the joints to a ’square’ is advantageous for several reasons. One benefit of changing to quarter
circle joints is that it provides an excellent location to place the elastics, an illustration of which can
be seen in Figure 3.6. Additionally, the larger contact surface area allows for implementing another
physical stop, limiting the movement in the +y translation direction. Additionally, a possible line of
actuation is depicted, which will be further explored in the following section.

Figure 3.6: Quarter circle joint adaptation with elastic placement and line of actuation

An overview of an implementation containing all additional transformation restrictions can be seen in
Figure 3.7. Where extrusions on the front side of the phalanx aremade, matching upwith cut-outs on the
rear side of the phalanx. This creates an interlocking structure that limits the +y and −z translation and
the +z rotation. Because the assembled phalanx is made up of mirrored segments, the +z translation
is limited by the mirrored parts. The working principle of the rolling contact joint has not changed, as
this is still only facilitated by the quarter-circle tangent faces, which are kept intact.



3.2. Finger design 16

(a) Lateral view of two connected phalanx segments
(b) Lateral view of two connected phalanx segments

(Transparent)

(c) Front view of single phalanx segment (d) Rear view of single phalanx segment

(e) Isometric view of the assembly of two phalanges made up of the mirrored phalanx segments

Figure 3.7: CAD models illustrating finger phalanges from various perspectives: (a) Lateral view of two connected phalanges
displaying the interlocking mechanism preventing +y translation and the extrusion and cutout highlighted in red to prevent
translation along the negative z-axis. (b) The transparent lateral view of two connected phalanges shows the internal elastic
routing at the top and the interlocking mechanism, and the extrusion and cutout (without colour) prevent translation along the
negative z-axis. (c) The front view of a single phalanx showcases design details, including the red extrusion as part of the
interlocking system. (d) The rear view of a single phalanx highlights the cut-out in red as part of the interlocking system. (e)
Isometric view of assembled phalanx segments, forming two finger phalanges. Highlighted in red are the extrusions and
cut-outs that, in the assembled configuration, also limit the translation movement along the positive z-axis because of their

mirrored configuration
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3.2.4. Interphalangeal transmission

The transmission route of the tendon inside the phalanges significantly impacts the outputted force
and motion characteristics of the finger. The tendon is transmitted through the finger phalanges using
ball bearings and pulleys to minimize friction. The placement of said bearings and pulleys influence
the dynamical behaviour of the finger greatly. Placing the actuation line height lower on the segments
creates a bigger moment arm around the joint, increasing the force output. However, it is important to
ensure the tendon can not protrude outside the phalanges because that might cause it to get stuck or
damaged. Different transmission architectures inside the finger segments were empirically studied, as
seen in Figure 3.8. The options employ a ’triangle’ setup designed to enhance the overall stability of the
connection between the two mirrored parts and facilitate the kinematic behaviour of the intermediate
phalanx.

The routing configuration used in Figure 3.8a, with variablesH1 = 6mm andH2 = 7mm, demonstrated
superior performance and, consequently, is implemented in the final design.

(a)

(b)

Figure 3.8: Lateral view of two mirrored tendon routing configurations for interphalangeal actuation transmission: optimization
through empirical testing of variable heights (H1 and H2) in configurations (a) and (b). The orange line represents the tendon,

and the pulleys are highlighted in blue, utilizing ball bearings for reduced friction.

3.2.5. Fingertip design

While the first two phalanges share identical designs, the fingertip has its own set of unique consid-
erations. Unlike the first two phalanges, which have rolling contact joints on both ends, the fingertip,
being the end-effector, needs only one. This reduction in joint complexity allows for more flexibility in
sizing, enabling adjustments to enhance anthropomorphism. The routing works similarly to the other
two phalanges, except that the tendon terminates at the fingertip (see Figure 3.9. Like in the other
phalanges, a triangle configuration is employed; however, there is no need for a ball bearing on the
second pin, as the tendon remains stationary. Nevertheless, this triangle configuration is necessary
to ensure the tendon cannot protrude from the fingertip while moving. A notable difference lies in the
routing for the return elastics. As this is the last phalanx, the elastic concludes in a knot. By changing
the direction of the elastic routing slightly toward the interior of the phalanx, the knot will be concealed
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(a) (b)

(c)

Figure 3.9: The final version of the fingertip design showcasing (a) a lateral view and (b) an isometric view of one segment, (c)
showing a sectioned rear view from the final fingertip assembly. Key features include the droplet-shaped exit hole for the

elastic, as well as the cutout and chamfered extrusion around the leftmost pinhole, designed to recess the ball bearing (purple)
and pulley (blue) into the segment while retaining low-friction routing of the tendon (orange). The straight pin (yellow) holds the

mirrored segments together while also functioning as the axis of rotation for the bearing.

inside the phalanx. The exit hole, resembling the shape of a water droplet, serves a functional purpose
in maintaining the secure placement of the elastic. Note also the cutout and chamfered extrusion sur-
rounding the leftmost pinhole. The chamfered extrusion is essential to prevent contact between the ball
bearing and pulley with the finger segment. This design feature is crucial because when the edge is
chamfered, it only comes into contact with the innermost casing of the ball bearing. This ensures that
friction remains minimal, allowing the mechanism to operate smoothly. However, this increases the
overall width of the finger phalanx, so to counteract that, a cutout around the pulley is made, recessing
the pulley into the segment and streamlining the design. This chamfered extrusion design feature is
used throughout the entire hand where ball bearings are used.

3.2.6. Finger assembly

To finalize the fingers, the chamfered extrusion and a surrounding cutout have also been implemented
in the two most proximal phalanges. Additionally, the height of the segments has been reduced. Hu-
man finger phalanges can be approximated as cylinders, whereas the design of the prosthetic finger
phalanges is more accurately represented as unsymmetrical blocks. To increase the likeliness of the
designed fingers to human fingers, the height of the top half of the segments has been lowered while
leaving the bottom side unchanged to retain its kinematic functionality. By lowering the height and
embedding the pulleys into the finger segments, the perimeter of the designed fingers is comparable
to the circumference of average human fingers.

As mentioned in section 3.1, the middle, ring, and little finger require a single actuation routing (SAR).
The index finger, however, will need 2 actuation routes (DAR). The implementation of this is relatively
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simple; the two routes use identical configurations and are placed parallel, with a separation part be-
tween them. This separation part has a capsule-like shape, which does not protrude outside of the
finger segments. Additionally, the separation part uses the same chamfered extrusions as the finger
segments on both sides. This ensures that the bearings are aligned and retain their frictionless func-
tionality. The final design of both the SAR and DAR fingers can be seen in Figure 3.10.

Because the additional actuation routing and its required separation part significantly increase the fin-
ger’s width, the cutouts are deeper than the other digits, embedding the pulleys even more into the
finger segments. The total width of the index finger is only 2mm larger compared to the other 3 digits,
sitting at 12mm and 10mm, respectively.

The following table shows average human finger dimensions compared to the dimensions of the de-
signed single and double-routing fingers:

Table 3.1: Comparison of average dimensions: human (adult) finger, single-actuated, and double-actuated fingers (in
millimeters)

Finger dimensions Human (adult) finger Single-actuation finger Double-actuation finger
[mm] [mm] [mm]

Length 83.0 85.72 85.72
Width 20–25 10 12
Height x 15.5 15.5
Circumference/Perimeter 50–64 51 55

Table 3.2: Comparison of finger phalanx length of humans and designed single and double actuation finger (in millimeters) [27]

Phalanx Human Designed phalanges
[mm] [mm]

Proximal 38.0 30.0
Median 23.1 30.0
Distal 21.9 25.7
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(a) (b)

(c)

(d) (e)

(f)

Figure 3.10: The final versions of both the single (SAR) and double actuation routing (DAR) design showcasing: (a) a partially
transparent lateral view (SAR), (b) a top and bottom view (SAR), (c) a partially transparent isometric view (SAR). (d) Provides a
frontal sectioned view of both fingers, revealing internal structures, the main actuation tendon (orange) and individual actuation
tendon (red). (e) Presents a dimetric view (DAR) concealing one side of the finger to reveal the internal structure, showcasing
the dual actuation routing design and its separation part. (f) Shows a partially transparent isometric view (DAR) of the index
finger. Note the droplet-shaped exit hole in both fingertips for the elastic and the different cutouts surrounding the pulleys and

ball bearings. The straight pins (yellow) hold the mirrored segments together to form the finger phalanges while also
functioning as the bearings’ rotation axis and the tendon’s endpoint.
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3.3. Thumb design

This section will explore the design intricacies of the prosthetic hand’s thumb. Unlike complex coun-
terparts in human anatomy or fully actuated prosthetic options on the market, the emphasis of the
designed thumb is on a simplified approach. The designed thumb is made up of three phalanges and
three joints. The two distal joints are flexion-extension joints, similar to a human hand, but the MCP
joint will be simplified to a 1-DOF joint. Because the prosthetic thumb design prioritizes essential grasp-
ing functionalities, the decision to simplify the MCP joint is pragmatic. Time constraints inherent in the
prototype development process of this thesis required a compromise between the overall functionality
and feasibility of the design.

The design of the thumb tip and proximal phalanx (the thumb does not possess an intermediate phalanx)
from the index finger can be reused for the thumb. As the DIP and PIP joints in the thumb are also
1-DOF flexion-extension joints, the same rolling contact joints can be used. Because the thumb is
actuated using the synergy and an individual motor, the double actuation routed configuration from
the index finger is used. The main difference between the digits and the thumb is the metacarpal
phalanx. For the digits, these phalanges are made up of the same part, namely the palm. For the
thumb, however, this phalanx will facilitate the opposition-retroposition movement needed for grasping
objects. The following section will go in-depth into the design of this phalanx and the resulting final
design for the thumb.

3.3.1. Metacarpal phalanx

The design of the metacarpal phalanx for the thumb was a critical part of this project. The prototype’s
final grasping capabilities heavily depend on this complex part. While using rolling contact joints in
the flexion-extension joints used in the fingers is worthwhile, the directional changes needed for the
actuation in the metacarpal phalanx would significantly overcomplicate the thumb design if the MCP
joint was made similarly. Therefore, the opposition movement will be facilitated by a revolute pin joint.

The metacarpal phalanx’s design merges two distinct parts. The distal side of the phalanx facilitates
the flexion-extension movement, being one side of a rolling contact joint, whereas the proximal side is
used for the revolute joint. Inside the phalanx, the bearings’ rotational axes are rotated by 90 degrees
to ensure the transmitted forces result in the correct rotational movements of the joints. In Figure 3.11,
the thumb design can be seen in detail, showing the assembly together with the phalanges from sec-
tion 3.2. In Figure 3.11a, the assembled thumb is shown in a slightly flexed state, with the revolute
axis highlighted on the green pin (y-axis), which will be secured into the palm in section 3.4. The
other subfigures highlight the MCP in more detail from different perspectives. The design idea for the
thumb is based on the same idea as the other digits, being constructed out of two mirrored parts with a
separation part between the two actuation routes. However, because of the directional changes, one
side of the mirror is split into two parts. If it had not been for this splitting, the actual assembly of the
MCP would have been impossible. Unfortunately, this setup does impact the structural integrity of the
part. After some experiments, additional measures were taken to keep the mirrored parts securely
connected, namely adding glue to the straight pins and, more importantly, the addition of a screw for
each mirrored segment. These measures ensure that the thumb’s MCP can withstand all the forces
and perturbations it might encounter.

The separation part used in the revolute part of the MCP has undergone some changes from the other
separation parts. The top of the part is widened to allow an elastic to be guided through. This elastic
will be attached to the palm and function as the return mechanism for the thumb’s abd-add movement.
This will become apparent when the thumb is placed in the palm, in section 3.4. It can be seen in
Figure 3.11 that two pulleys protrude out of the MCP. Initially, these pulleys were located at the pin
closest to the rolling contact joint; however, after some tests, it was found that the thumb performed
better in the configuration shown. This was primarily due to irregular misalignment of the tendon in the
original configuration, which caused it to get stuck. Another solution to this is adding pulleys to all the
bearings. However, this would significantly increase the overall size of the part, and it was therefore
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deemed undesirable. The primary concern with the protruding pulleys was their possible contact with
the grasped object, causing a restriction on the movement. However, this did not significantly impact
the final prototype, primarily due to the location of said pulleys and the addition of a glove on the hand.

(a)

(b) (c)

(d)

Figure 3.11: Final version of the thumb design showcasing: (a) a dorsal (top) view of the thumb including the revolute axis of
rotation as a green pin, (b) an isometric view of the thumb’s MCP joint, (c) an isometric view of the MCP joint (rotated 90

degrees from (b)), (d) a frontal view of the thumb’s MCP joint showing the flexion-extension rolling contact joint. The straight
pins (yellow) hold the mirrored segments together to form the finger phalanges while functioning as the bearings’ rotation axis

and the tendon’s endpoint.
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The thumb’s actuation transmission adheres to the same setup as the index finger, albeit with slightly
more complex routing in the MCP. Two tendons are attached at the fingertip and run through the finger
so that all joints follow the desired kinematic behaviour. In Figure 3.12, themain and individual actuation
tendons can be seen in orange and red, respectively. The main tendon runs along the dorsal side of the
thumb and, through the directional changes in the MCP, ends at the distal side of the thumb (viewed
from the wrist). The individual actuation tendon runs along the palmar side and conversely ends at
the most proximal side of the thumb (from the wrist). The individual actuation tendon runs over the
last pulley, whereas the main tendon runs under the last pulley. This is done to ensure the tendons
always remain in tension and contact with the pulleys and bearings, both in the MCP and the rest of
the actuation route inside the palm. This will become evident in the following section, where the thumb
and the other fingers will be placed within the palm and connected to their required motors.

(a) (b)

Figure 3.12: Tendon routing within the thumb’s designed Metacarpal phalanx. The tendon used for the main synergy actuation
is depicted in orange (a), whereas the individual actuation tendon is depicted in red (b). The pulleys used to transmit the

tendon forces are rotated 90 degrees inside the phalanx to facilitate the correct movement of both the rolling contact joints and
the revolute joint.
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3.4. Palm design

The palm design is an integral part of the entire hand. The placement of the fingers in the palm and the
internal routing structure are two key features that make the hand function. Additionally, the placement
of the motors that actuate the hand defines its size and the configuration layout for the pulleys that
transmit the actuation throughout the hand. The main actuation route used for the synergy grasp
connects all the tendons from the fingertips to the main motor, whereas the individual actuation of the
thumb and index finger go straight to their respective motors. As these motors are significantly smaller
than the motor used for the main synergy, they can be embedded into the palm to reduce the overall
thickness of the design. The following sections explain the construction layout of the different layers
used to form the palm and the internal actuation structure. Additionally, the placement of the fingers is
discussed to ensure the prototype is capable of achieving the desired grasp and pinch movements.

The palm is made up of three separate layers that are connected to form one uniform part. The bottom
layer (palmar side) forms the contact surface between the hand and the world it interacts with. Addi-
tionally, it houses the transmission connecting the fingers to the main motor and the motors used for
the individual actuation of the index and thumb. This layer is connected to a cover part with mirrored
versions of all the cutouts needed to clamp the bearings and other parts. This second layer will also
provide connection points for the main motor used to move the hand and the required electronics to
finally control the hand. Finally, one last part is placed over the main motor and electronic to create a
smoother finish.

3.4.1. Finger and thumb placement

Starting with the placement of the fingers, as for the digits, a connection part between the earlier shown
finger segments is screwed into the palm. The orientation of the middle finger is in line with the longi-
tudinal axis of the hand, as viewed from the wrist. The index finger is rotated from the middle finger at
a 5◦ angle to the radial side of the hand, and the ring finger is rotated 8◦ to the ulnar side of the hand.
The little finger, in turn, is placed at an angle of 10◦ from the ring finger. These orientations are chosen
because the designed MCP joint in the digits only allows for 1DOF rotation (flex-ext), disregarding the
abd-add capabilities found in human fingers. Although the resting angles (abd-add) of human digits are
usually higher (between 10 to 20 degrees), orienting the digits at such a high angle would negatively
impact the grasping capabilities of prevalent cylindrical objects. However, placing the fingers at a slight
angle increases the grasping capabilities of the hand for objects with non-uniform shapes. Placing the
digits at an angle also changes their location in the coronal plane, ensuring the middle finger is the
most distal digit, followed by the index and ring finger, with the little finger being the most proximal of
the digits. Because of this orientation and location configuration, the hand will have increased grasping
capabilities compared to a design with all fingers in a straight orientation at the same distal location in
the palm.

The thumb’s placement and orientation need consideration of several design requirements and limita-
tions. Because the thumb’s MCP joint is simplified compared to a human hand, its work space is also
limited. The hand must be able to perform a standard power grasp and pinch. For a pinch, the thumb
tip and index tip must line up in a flexed state to create a contact area for objects to be held in to achieve
a functional pinch. Because the designs for the index and thumb are already finalised, an assembly
can be made of the palm and fingers to determine the thumb’s optimal position. In Figure 3.13, an
initial design for the palm can be seen that was used for the positioning of the fingers. The thumb
orientation is set at 20◦ from the longitudinal axis of the palm, ensuring that the pinch can be achieved
while retaining its more standard power grasping capabilities.
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(a) Dorsal view (b) Palmar view

(c) Isometric view

Figure 3.13: Multiple aspects of the finger positioning in the bottom part of the palm. The digits are set at differing angles from
the longitudinal axis, which also alters their positions. The thumb is set at a 20◦ angle to ensure the hand is capable of both

power grasps and pinch movements.
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Now that all the finger positions are established, the tendon routing and motor placement inside the
palm can be finalized. First, the main synergy actuation will be discussed, after which the individual
actuation of the thumb and index will be realized.

3.4.2. Tendon routing

As mentioned in section 3.2, the tendons used to actuate the fingers are attached to the fingertips. If
every finger uses its own specific tendon, this would leave 5 tendon ends (disregarding the individual
actuation tendons) to be connected within the palm. Although this is possible with some clever con-
nection knots and complex internal routing, there is an easier way of achieving synergy actuation. A
transmission scheme was created that connects the four digits into two tendon loops. One loop runs
from the fingertip of one digit to the one closest to it. These loops are then connected to a different
tendon, which runs from the thumb to the main motor, using two ’sliders’. These sliders can be seen in
Figure 3.14. The part houses two pulleys that serve as the connection between the digit-loops and the
thumb-motor tendon. These sliders will be placed within cutouts in the palm to ensure low palm thick-
ness. The cutouts are dimensioned larger than the sliders, which, combined with the pretension in the
tendons, ensures that the sliders are free-floating inside the palm. Ideally, this design choice ensures
a minimum increase in friction due to these parts; however, should the sliders come into contact with
the palm, these cutouts will ensure they remain level and correctly oriented.

(a) Isometric view (b) Transparent isometric view

(c) Sectioned side view

Figure 3.14: Isometric (a,b) and sectioned (c) views of the designed slider part. Two mirrored parts (grey) surround two
bearings (purple) and pulleys (blue), each connected to one side of the tendon routing.

The placement of these sliders within the palm can be seen in Figure 3.15, where the fingers can be
seen in both an extended and flexed state using the actuation routing in the palm. By applying a force
at the tendon end that runs from the thumb to the main motor, the thumb flexes and the sliders are
moved towards the wrist. Because the two-digit tendon loops are fixed in length, the movement of the
sliders flexes the digits simultaneously with the thumb, creating a grasping movement. Although the
pulley placement inside the palm might seem strange initially, this is done while keeping the individual
motor placements in mind. Because the overall palm thickness can be significantly reduced by placing
the motors inside the palm instead of on top, there must be space left to do this. This is the prime
reason for making the slider cutouts to the far right, while pulleys are placed specifically to transmit the
tendon from the digits to the sliders in a straight actuation line to keep the tendon from dislocating. The
pulley used to connect the two sliders (depicted in a darker blue) has a bigger diameter than the other
pulleys. The prime reason for that is the increased load on that specific part, as the forces needed for
bending every finger are all transmitted over this pulley. Increasing the diameter of the pulley will make
it more resistant to wear and friction from the tendon, as it disperses the load over a larger surface area
and has more material to begin with.
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(a) Fingers extended (b) Fingers flexed

Figure 3.15: Extended and flexed configuration of the prototype. The thumb will make a flexion movement by applying a force
on the tendon running from the thumb. Additionally, because that tendon is guided through the sliders connected to two tendon

loops, which in turn are connected to the digits, the remaining fingers will also flex and complete the grasping movement.

3.4.3. Motor placement

The placement of the individual motors can be seen in Figure 3.16. Both motors are placed close to
their respective fingers to reduce power dissipation caused by friction. The individual motors benefit
more from this than the main motor that actuates the entire hand, as the main motor has a significantly
higher power output. The motors used for the individual actuation of the fingers are Pololu High-Power
Micro Gearmotors, of which detailed specifications can be found in Table B.1. These motors were
chosen because they were readily available, and initial testing on zero-load fingers showed adequate
results. Their dimensions allow for placement inside the palm, where small cutouts were made to help
secure themotors. Themotor used for the index finger had enough space to allow themotor to be wholly
integrated into the palm, whereas the thumb motor required some changes to the palm design. The two
main reasons are the limited space surrounding the thumb and the necessary alignment of the motor
pulley with the pulley guiding the tendon out of the thumb. For these reasons, the motor is elevated
slightly so that the motor pulley is placed above the guiding pulley. The transmissions of both the main
and individual tendons surrounding the thumb joint can be seen in Figure 3.17. Reflecting on the design
choice of running the tendon up and under the most proximal pulley in the thumb in section 3.3, this
decision was made in congruence with the palm design to facilitate the individual and synergy actuation
routes. By transmitting the tendon in this fashion, the main actuation route is consistently in the same
plane, and the individual actuation route remains in tension due to the placement of the motor over
the first palm pulley. The same is true for the motor used in the index actuation; because the motor
is placed in a cutout in the palm, the actuation line is planar, and as an added benefit, the motor is
press-fit in the palm to keep it from moving.

As can be seen in Figure 3.16, the tendon used in the main actuation runs to a pulley in the bottom right
of the palm that changes the direction of actuation to the dorsal side of the palm. The tendon will run
through the cover layer up to the motor, placed directly above it. This cover layer will be attached to
the bottom layer using nuts and bolts, placed along the edges of the palm that have increased surface
area to ensure optimal clamping.
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Figure 3.16: Individual motor placement inside the palm ..

(a) Individual tendon routing (b) Main actuation routing

Figure 3.17: Routing configurations for both the main and individual routing. In (a), the red tendon can be seen routed within
the MCP towards the motor pulley, where it is connected to a straight pin. In (b), the main synergy routing can be seen running
over a bearing into the palm. Note that the tendon routings use a different configuration to retain tension and help realize the
actuation. The motor used for the individual actuation is elevated with respect to the palm so that it can be placed above the

pulley that guides the tendon from the thumb into the palm.
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The motor assemblies used to actuate the index and thumb individually can be seen in an exploded
view in Figure 3.18. The drive pulleys are different for the index and thumb because the thumb has
more space than the index. This results in a machined aluminium 4x10mm pulley for the thumb and a
3x8 mm plastic pulley for the index. Both use a pin which runs through the pulley, to which the tendon
can attach using a looped knot (whoopie sling). The motors squared off top and bottom allow for custom
mounting parts or simply clamping them down, which can be seen when the cover layer is placed in
Figure 3.20. The acquired motor assembly can be modified to add a magnetic encoder and magnet to
the motor axis. This axis is a direct extension out of the motor and not of the output shaft, which rotates
at a different rate due to the 75:1 gearbox. This means that transformations to the encoder data must
be performed to calculate the current output position of the motor and accompanying fingers. This will
be explained in more detail in section 3.5.

Figure 3.18: Exploded view of the individual motor assemblies. Components include: (1) Magnet, (2) Magnetic encoder, (3)
Encoder shaft, (4) Pololu brushless DC motor, (5) 75:1 Pololu gearbox, (6) Motor shaft, (7) Drive pulley, (8) Tendon-pulley pin.

The main motor uses a slightly different approach than the individual ones; see Figure 3.19. Because of
the size and shape of the Maxon DCX19s motor used (detailed specifications can be found in Table B.2,
a more robust mounting bracket was designed, to which it can rigidly connect with screws. Additionally,
the encoder-magnet setup is moved from the back to the front of the motor, connecting directly to the
drive shaft. The drive pulley has a centred cutout in which magnets can be placed. The encoder must
be placed as centred as possible in front of it and thus has its own mounting bracket, which connects
directly to the motor mounting bracket and the palm cover part. This encoder setup ensures that the
encoder data can be directly related to the drive pulley’s output position, making controlling it more
straightforward than the setup used for the individual motors. The final placement of all the motors
together with the part that encloses the palm can be seen in Figure 3.20.
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Figure 3.19: Exploded view of the main motor assembly. Components include: (1) Maxon DCX 19s motor, (2) Motor mounting
bracket, (3) Motor mounting screws, (4) Drive pulley, (5) Tendon-pulley pin, (6) Magnets, (7) Magnetic encoder, (8) Encoder

mounting bracket.
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The palm cover encloses the inner transmission with mirrored cutouts for the pins and sliders. A cutout
for the index motor is made so the cover part clamps down the motor and keeps it from moving. The
cutout for the thumb motor goes all the way through because this motor is placed higher in the plane.
Therefore an additional clamping part is made, which slots into the gearbox of the thumb motor, which
is connected by screws to the palm to keep it from moving. Note also the two round holes placed
directly above the thumb’s MCP. These are used to run the elastic from the thumb’s MCP to the palm,
which functions as its elastic return to the rest position. One of the power pins of the main motor is bent
to ensure it remains within the boundaries of the palm, which helps create a uniform shape when the
final protection cover is installed. The main motor’s drive pulley is placed directly above the pulley that
guides the tendon out of the palm. This is necessary to ensure that the tendon does not dislodge and
remains within its low-friction pulley setup.

Figure 3.20: Enclosement of the palm and final motor placement within and on top of the cover layer. The thumb motor is
placed partly within the palm and secured using a custom 3D-printed bracket and screws. The index motor is fully enclosed by
the cover layer acting as the clamping mechanism to secure it completely. The main motor is secured to the palm using its

mounting bracket and screws attached both to the cover layer and all the way through the hand to ensure it remains perfectly
aligned with the actuation tendon.
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3.5. System controller

The system controller enables precise and intuitive control over the prototype’s movements. The follow-
ing section discusses the design and implementation of the system controller for the prototype, which
plays a crucial role in its overall functionality. The system controller consists of key components such
as a microcontroller, motor drivers, a control station (in this case, a computer), and electronic wiring, all
integrated to ensure efficient operation. Having finalized the design of the previous parts of the pros-
thetic hand, including all the CAD parts, transmission architecture, and motor placement, the focus will
next be on the details of the control system architecture. Key elements of the control architecture in-
clude implementing a PID (Proportional-Integral-Derivative) control of the motors for precise movement
regulation, facilitated by the motor encoders for real-time feedback on motor position and velocity, and
establishing the system communication between the controller and the prototype. Subsequent sections
will explain in detail the electronic design architecture and the implementation of all required parts into
the prototype.

3.5.1. Electronic design architecture

The electronic design architecture is made up of several key components. An overview in the form of a
block diagram can be seen in Figure 3.21, where the basic steps taken for creating motion are shown.
The command console sends a command in the form of a desired position to the microcontroller. The
microcontroller transforms this position command to a pulse-width-modulation (PWM) signal to the
motor drivers. The motor drivers use this signal to power the motors, which, when they start moving,
send their current measured position back to the microcontroller. The microcontroller adjusts the PWM
signal based on the error between the desired and measured positions and keeps doing this until
the desired position is achieved. This loop transforms desired motions into the actual movement of
the hand, resulting in grasping motions. In the following sections, the microcontroller, motor drivers,
command console, encoders, and the integration of these parts will be discussed in detail.

Figure 3.21: Block diagram for motion control. The command console sends a desired position command to the
microcontroller, which uses this input and transforms it into motor commands using a PID algorithm. The output command is a
PWM signal which is translated by the motor drivers to actually drive the motors, where the motor encoders read their current

position which is used as the feedback for the microcontroller to adjust its output signal.

Microcontroller
The microcontroller has the most important function in the electronic design architecture, being respon-
sible for processing the inputs from the command console and sensors (the encoders) and transforming
this into actuation signals for the motor drivers. For this project, the ESP-32 microcontroller was se-
lected based on several criteria.

Number of pins

One of the primary considerations in selecting the microcontroller was the number of available pins.
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The ESP-32 offers 30 GPIO (General purpose input/output) pins, including analog and digital pins,
and an SDA (serial data line) and SCL (serial clock line) pin, necessary to accommodate the different
sensors and motor drivers. Not all of these 30 pins are actually useful, as certain pins have specific
functions, but the ESP-32 does have all the required pins, so additional processing components are
not needed.

Physical size

Another important factor in the selection process was the physical size of the microcontroller. Because
one of the design criteria is to keep the size of the hand to a minimum, it would be a great benefit to fit
the microcontroller onto the hand compactly. The ESP-32’s 58 x 29 mm sizing makes it a very suitable
option, given its required number of pins.

Processing speed

Processing speed is crucial for real-time control applications such as for the prosthetic hand prototype.
The ESP-32 microcontroller has a dual-core processor with clock speeds up to 240MHz, providing am-
ple computational power to handle the control algorithm, sensor data processing, and communication
tasks with the command console. This high processing speed ensures responsive operation of the
hand, allowing for precise and natural movement.

As seen in Figure 3.21, the microcontroller is able to transform desired position inputs into a motor
movement that matches this input. It does this by using a PID (Proportional-Integral-Derivative) control
algorithm. This algorithm is widely used to regulate the output of a system to achieve a desired set-
point (the position). The control algorithm is made up of three terms, each with its own function. The
proportional term (P) uses the current error, which is the difference between the desired setpoint and
the measured position coming from the sensors. The integral term (I) uses the cumulative sum of past
errors over time. The integral term integrates the error over time, which helps correct long-term errors
and ensures that the motors reach and maintain their setpoint over time. Finally, the derivative term
(D) uses the rate of change of the error. By using the rate of change, the derivative term can dampen
the control signal when the error decreases rapidly, which helps prevent overshooting and oscillations.

In a PID controller, the outputted signal is a weighted sum of all three terms, each multiplied with
a respective gain coefficient: Kp,Ki, and Kd. These coefficients need to be tuned to optimize the
controller and achieve the desired behaviour, which can be done experimentally through trial and error.
An example of this in pseudocode is as follows:

previous_error = 0
integral = 0
Start:

error = setpoint – input
integral = integral + error*dt
derivative = (error – previous error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait (dt)

Goto Start

The output value, which is made up of all three terms and their respective gains, can be used to set the
motors to a specific power or speed. This is done in the form of a PWM (pulse width modulation) signal.
Because the motors used in this prototype are DCmotors, they cannot be set at a desired speed directly.
For that to work, we need to send a signal to the motors, which translates to our desired behaviour. The
PWM signal does just that, as it sends this signal to the motor drivers, which can transform this signal
into the desired behaviour. PWM is a method used to control the amount of power delivered to a load
(the motors) by rapidly switching a digital signal on and off. The average power delivered to the load
is controlled by varying the pulse width while the signal frequency remains constant. In an 8-bit PWM
signal, which was used, the duty cycle can vary from 0 to 255, with 255 representing the maximum
power output and 0 no output at all. The duty cycle refers to the proportion of time the signal is in the
’on’ state compared to the total period of the signal. So, when the desired position is far from the current
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position, the duty cycle would be set at 255 for 100% ’on’ time, whereas if the current position is close,
it would be closer to 64, which equals around 25% ’on’ time.

Motor drivers
Although the microcontroller is great for calculating required outputs, incorporating measured data, and
dealing with commands, it cannot supply enough power to the motors to make them work. For that,
we need specific motor drivers. The microcontroller outputs the required signal in a low-voltage form
(the PWM signal) to the motor drivers, which are connected to a power source, the microcontroller,
and the motors themselves. This project uses two different motor drivers: the Pololu DRV8833 dual
motor driver for the two Pololu motors used in the actuation for the index and thumb and the Adafruit
DRV8871 motor driver, used to drive only the bigger Maxon motor. Both are H-bridge motor drivers,
the difference being that the DRV8833 can power two motors at a lower voltage (both 6V), whereas the
DRV8871 can only power one motor but at a higher voltage (12V). An H-bridge motor driver consists
of four switches in an ”H” configuration. The motor is connected between the two vertical legs of the
”H”, and the switches control the current flow through the motor. By rapidly switching the switches
on and off using the PWM signal, the average voltage applied to the motor can be controlled, thereby
controlling the power and speed. The wiring diagram for the DRV8833 dual motor driver can be seen in
Figure 3.22, connected to the microcontroller, power source and DC motors. The wiring diagram is the
same for the DRV8871; however, this one only needs 2 GPIO’s and one output pair to a single DCmotor.
To further reduce the complexity of the overall system, a single power supply is used for the hand: a
Basetech BT-3010, adjustable 0-30V DC power supply. This supply is set at 12V to accommodate the
main Maxon motor. A DC-DC converter is then used before the dual motor driver to convert the 12V to
5.3V, which is enough for the smaller Pololu motors.

Figure 3.22: Wiring diagram for connecting a DRV8833 dual motor driver to a microcontroller and power source [28].

Command console
The command console acts as the interface between the user and the prosthetic hand. In the case
of this prototype, the command console is a very simplistic version of what any future real-life product
would use. A computer is connected to the microcontroller using a USB cable, which is used to transmit
commands to the hand. As there is no sensory feedback on the position or force of the fingers during a
grasp (just the motor position), a GUI (graphical user interface) was made to explore the behaviour of
the hand for specific positional inputs. In this manner, empirical evidence could be gathered to complete
experiments that validate the hand’s performance, which will be talked about in more detail in chapter 4.
The GUI on the command console can be seen in Figure 3.23. The GUI is comprised of four buttons
and three text boxes. The buttons are used to start the device, read the current motor positions, stop
the device, and finally send the desired positional values to the motors using the three text boxes. The
communication runs through the serial socket (USB port), where the microcontroller and GUI can read
and send commands to each other as required. As seen in Figure 3.23, the main and individual motor
inputs are differentiated as degrees and ticks, respectively. Further explanation of this is provided in
the following segment.
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Figure 3.23: Graphical User Interface for the control of the prototype. Multiple buttons to start, read current position, stop, and
send required positional commands using three text boxes to finely adjust values.

Encoders
As mentioned in the exploded views of both motor assemblies (Figure 3.18 and Figure 3.19), the en-
coders are placed in different locations in the motor assembly. The Pololu motor-encoder assembly is
predesigned in this way, whereas the Maxon encoder assembly is custom-made. The rotary encoders
used in the Pololu assembly are very easy to implement in the EDA, as two pins on the encoder can be
connected to the microcontroller to count ’ticks’. Each tick corresponds to a small increment of rotation
of the motor axis, which can be used to track the motor’s position (or speed). The Pololu encoder has
a resolution of 6 counts per revolution per revolution of the motor shaft when counting both edges of
a single channel (which is the case). To compute the counts per revolution of the gearbox shaft (the
drive shaft), we can multiply this number by the gear ratio, in this case: 75 ∗ 6 = 450. In other words,
450 ticks correspond to a single full rotation of the drive shaft of the individual Pololu motors.

The Maxon motor, however, needs some additional calculation steps. Although the positional data
being collected is already directly related to the output axis and pulley, the encoder used is not a rotary
encoder as they are not mounted on a shared physical axis. The alignment of the magnets and encoder
is, therefore, not as accurate and will require some transformational calculations. The encoder uses a
3D hall sensor, which is able to measure the x, y, and z distance between the sensor and the magnets
placed inside the pulley. In this configuration, the z-distance remains constant as this is the rotational
axis. The x- and y-distances can then be used to calculate the angle of rotation of the magnets by
employing trigonometric functions. Specifically, the arctangent function can be applied to the ratio of
the y-distance to the x-distance, yielding the angle of rotation in two dimensions. An example of what
this sensory data looks like can be seen in Figure 3.24, where the measured x and y distances can be
seen in a 90◦ phase shift. When using two signals 90◦ out of phase, it is possible to calculate the angle
using the arctangent function θ = atan(x/y) for the full 360◦ range. As the alignment of the magnets
with the encoder was not perfect, a small offset for both the measured x- and y-distance was required to
centre the data around the 0-axis. These offsets were determined by rotating the motor and calculating
the respective average data of the x- and y-distances.

Figure 3.24: Measured x- and y-distance with 90◦ phase shift. Ideal data with no offset or scaling required for further
calculation of angle [29].

By using these trigonometric functions, we can measure the current drive shaft angle in a range from
0-360◦. However, this range is too small to perform all required grasping motions. This range needs
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to be increased to enable full power grasps, where the motor may need to rotate multiple times. This
can be achieved programmatically by making use of quadrants. The number of additional turns can be
calculated by comparing the current measured angle quadrant to the previous quadrant. The following
code snippet was used to do that:

1 void checkQuadrant(float encoderPos)
2 {
3 // Define 4 quadrants (Q) in the 0-360 range.
4 if (encoderPos >= 0 && encoderPos <= 90) Q = 1;
5 else if (encoderPos > 90 && encoderPos <= 180) Q = 2;
6 else if (encoderPos > 180 && encoderPos <= 270) Q = 3;
7 else if (encoderPos > 270 && encoderPos < 360) Q = 4;
8

9 if (Q != oldQ) // if quadrant has changed
10 {
11 if (Q == 1 && oldQ == 4) {numberOfTurns++;} // 4 --> 1 transition: CW rotation
12 else if (Q == 4 && oldQ == 1) {numberOfTurns --;} // 1 --> 4 transition: CCW rotation
13 oldQ = Q; // update to the current quadrant
14 }
15 // Actual total angle is the number of turns (+/-) converted to degrees, plus the current

measured angle within the 0-360 range.
16 totalAngle = (numberOfTurns * 360) + encoderPos;
17 }

Using this simple code, the motor’s available number of readable rotations is increased, and thus, the
motor can finally be used to grasp objects. Before showcasing the hand’s interaction with real-life ob-
jects, the design will be finalized by integrating the recently discussed required electronic components
into the hand.

3.5.2. Integration of electronic components

Now that we better understand the different functionalities of all the electronic components, the parts can
be integrated into the design to finalize the prototype. Although attention was given to the size limitations
of all parts, repairability and adjustability are even more critical in the prototype phase. Therefore, the
motor drivers are kept outside the hand prototype, whereas the microcontroller is fully integrated into
the design. The placement of the microcontroller can be seen in Figure 3.25, where the microcontroller
is mounted on the palm using a triangular bracket. The microcontroller is placed at an angle, sloping
upwards toward the motor. This ensures that the final cover layer can also be sloped, reducing the
hand’s overall size. The microcontroller is placed above the index motor and is easily accessible by
the other motors. The smaller motors both need five electronic wires, three of which run directly to
the microcontroller. The remaining two wires are needed for the power and run out of the hand’s wrist
towards the motor drivers and shared power source. The main motor’s power wires also run out of the
hand via the wrist, whereas the four wires needed for the encoder run directly to the microcontroller.
Finally, to protect all of the electronic wiring and create a smooth, uniform hand, a final cover layer
is secured on the hand. The cover layer has four cutouts above the Maxon motor to improve heat
dissipation. The cover layer is attached using three screws to make it easily removable for accessing
the electronics.
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(a) (b)

(c) (d)

Figure 3.25: Finalized assembly of the complete robotic hand. Integration of the microcontroller into the design (a,b) using a
custom 3D-printed mounting bracket to reduce the final size of the palm. Final cover layer design in (c,d) to protect the

electronics and create a homogenous design that fully encloses the palm.



4
Experiments and Results

In this chapter, the experiments conducted to assess the quality and performance of the prototype
will be elaborated on. There were two main goals in these experiments: to validate the functionality
and effectiveness of the device and to gather insights for further refinement or improvement. Different
experiments were conducted using both qualitative and quantitative approaches. First, the qualita-
tive experiments will be detailed, focusing on understanding the prosthetic hand’s behaviour and its
interaction with various objects. Next are the quantitative experiments aimed at objectively measuring
the specific performance of the hand to directly compare it to other on-the-market prosthetic hands.
These quantitative measurements offer empirical evidence to identify the prototype’s strengths and
possible improvement points. For all experiments, a glove was fitted over the designed hand. This
helps increase the friction between the hand and its environment, increasing its grasping capabilities,
especially for slippery and thin or small objects. Additionally, it increases the anthropomorphic look of
the hand as the plastic components are hidden.

4.1. Finger experiments

This section will focus on the functionality of the individual fingers, showcasing features and capabilities,
including individual finger movement of the index and thumb, softness, and quantification of the force
exerted by each finger.

4.1.1. Index and Thumb movement

The two motors used for moving the index and thumb can be individually and congruently controlled.
This results in three distinct movement scenarios: moving only the index, moving only the thumb, and
performing an open pinch (pinching with the three remaining digits in an extended state). The first
scenario can be seen in Figure 4.1, where the index finger goes from an extended to flexed state from
left to right.

37
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(a) (b) (c) (d) (e)

Figure 4.1: Photosequence of index-only movement.

The second scenario, moving only the thumb, results in two movements, first the thumb’s abduction
and second the thumb’s flexion. This can be seen in Figure 4.2, where the abduction is visible in the
three left frames and flexion in the right two.

(a) (b) (c) (d) (e)

Figure 4.2: Photosequence of thumb-only movement, including the abduction movement in the first
three frames, after which the flexion movement completes the motion.

Finally, when the index and thumb are actuated congruently, the hand performs an open pinch seen in
Figure 4.3. The thumb and index fingertips come into contact at a slight angle.

(a) (b) (c) (d) (e)

Figure 4.3: Photosequence of open-pinch movement, individual actuation of the index and thumb to
achieve pinch movement while other digits remain in resting state.

4.1.2. Soft features and finger interconnectedness

Because of the finger joint design, the fingers exhibit interesting soft behaviour. The joints are dislocat-
able, which means they are able to withstand perturbations and return to their resting state.
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Dislocation figures

Another feature resulting from the underactuated design is the direct finger interconnectedness. This
results in adaptable behaviour relative to the object’s shape and size, which can also be shown by
perturbing a single finger and observing the behaviour of the other digits. As seen in Figure 4.4, when
the fingers are moved to a slightly flexed state and perturbations are applied to a single finger, the hand
behaves as expected. When one finger is in an extended state, and another finger is also moved to an
extended state, the initially extended finger flexes back to the original slightly flexed state. The finger
pairs (little-ring and middle-index) display this behaviour most noticeably because the friction losses for
a single pair are lower than those of one pair to another.

(a) (b) (c) (d)

Figure 4.4: Showcase of direct internal connection between the fingers. Each figure displays the next digit being moved, so (b)
displays the movement of the ring finger, which results in the return of the little finger; (c) displays the movement of the middle

finger, which results in the return of the ring finger and so forth.

4.1.3. Force measurements

The fingertip force wasmeasured for all individual fingers. The forces aremeasured using a 1-dimensional
load sensor. The measurement setup can be seen in Figure 4.5. The load cell measures the force ex-
erted by the fingertips in a flexed state and is aligned with each finger for their respective measurement.
A 5 kg load is clamped down on one side, and a force is exerted on the other end. The load cell contains
a strain gauge that changes resistance when subjected to mechanical strain. The change in electrical
resistance is very small and thus is amplified using a HX711 load cell amplifier. The amplifier is con-
nected to a PC using a USB cable, where an Arduino IDE script reads the measured data and converts
the electrical data to force outputs.
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Figure 4.5: Force measurement setup for individual fingers using a 1-dimensional load cell

The fingertip forces were measured using only the Maxon motor, only the individual motor (index and
thumb), and both the Maxon and individual motor at the same time (index and thumb). The results can
be seen in Table 4.1.

Table 4.1: Fingertip force measurements using three motor setups

Little finger Ring finger Middle finger Index finger Thumb
Maxon motor 4.58 N 3.05 N 3.12 N 2.69 N 0.88 N
Pololu motor - - - 1.06 N 2.12 N
Maxon and Pololu - - - 3.31 N 2.53 N

The measured forces vary significantly for each finger, which can be explained by multiple things. The
first reason is the measurement setup used for these experiments, which influences the thumb mea-
surement when using just the Maxon motor. Because the hand is underactuated, all of the fingers
move when using the Maxon motor. This creates the grasping motion of the hand, which hinders the
measurement of the thumb tip in this setup. Because the thumb first abducts and only then starts
flexing, the other fingers obstruct a direct connection between the thumb tip and the load sensor. Two
other things to note are the individual force measurements when only using the Maxon motor (note the
force decreases from little finger to index) and the difference between the Pololu motor measurements.
These will be explained in more detail in chapter 5.
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4.2. Hand experiments

4.2.1. Functional objects

The prototype can perform different power grasps using only the main actuation motor. The hand’s
adaptability ensures it can grasp variously sized objects, as seen in Figure 4.6. The positional control
command sent to the motor was set at 900◦ for the three rigid objects, whereas the soft ball used a
1050◦ command because the object size reduces when applying pressure. The fingers can be seen
to interact with the object in a manner specific to the surface it encounters. For example, for the rigid
blue ball, the object is relatively small, and as such, the little and ring fingers flex completely, which
provides a counteracting force for the thumb to ensure the object remains in the hand. On the other
hand, the pear’s middle finger is angled because the surface it encountered was initially too steep;
however, when the surface flattened, the contact surface and friction increased, and the object was
grasped more securely. Lastly, the plastic bottle is grasped using a standard cylindrical wrap, where
the fingers grip around the circumference of the bottle with moderate pressure.

(a) (b) (c) (d)

Figure 4.6: Power grasps of various objects showcasing adaptability to object shapes. Objects from left to right: Rigid ball,
Soft ball, Plastic pear, Plastic bottle.

In Figure 4.7, a photo sequence of the steps taken to successfully pinch a cherry can be seen. In
figures a-e the first movement of the hand can be seen, where an actuation command was sent to all
three motors. The first command ensures the cherry can be held independently by the hand (e), after
which the fingers are actuated once more to create a closed pinch movement (pinch with thumb-index
with all other digits flexed to the palm). This sequence creates a realistic object approach to a fully
completed pinch, which can securely hold the cherry even when perturbed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Photosequence of pinch grasp on a cherry. An initial approach is made to hold the cherry independently, after
which the hand is closed further to complete a fully closed pinch, which holds the cherry securely.

In Figure 4.8, two different approaches to the same object can be seen. In (a), a power grasp using only
the main actuation degree is used to hold the grapes. In (b), an open pinch is performed using primarily
the individual actuation degrees to create an open pinch that holds the grapes more naturally. These
distinct grasping strategies demonstrate the versatility of the prototype in handling delicate objects like
grapes (in this case, plastic grapes).
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(a) (b)

Figure 4.8: Comparison of two grasping options for the same object (grapes), power grasp (a) is obtained using the main
actuation. The open pinch is obtained using a combination of all three actuation degrees.

In Figure 4.9, different pinch grasps can be seen to grasp different objects. In (a), a thin circular disk
is held primarily using the individual actuation degrees, with additional support provided by the main
actuation degree. In (b), a marker is held using a fully closed pinch; in (c), the remaining digits are not
flexed completely while holding a normal pen. Both create a natural grasping option that can be used
to utilize the objects.

(a) (b) (c)

Figure 4.9: Grasping objects using open pinch: (a) disk; and closed pinch: (b) Marker, (c) Pen.

Finally, another great example of the hand’s versatile object-handling capabilities can be seen in Fig-
ure 4.10. An initial approach is made to pinch the rubber duck between the index and thumb, after
which a power grasp is done to hold both the duck and a soft ball. This shows both the hand’s adapt-
ability to object shapes and the possibility of sequentially grasping two different objects distant from
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(a) (b)

Figure 4.10: Sequential grasping of two objects: (a) Pinching the rubber duck to hold it independently by primarily using the
two individual actuation degrees, (b) Power grasping the soft ball using the main actuation degree after the original pinch.

each other.

4.2.2. Tasks

In addition to grasping and holding various objects securely, the prototype can also perform tasks with
various functional objects. The first task can be seen in Figure 4.11, where a photo sequence shows
the use of tweezers to grasp a thin piece of sandpaper. Figures a-e show a closed pinch sequence,
where the tweezers are closed step-by-step. In (f), the pinch is opened slightly to open the tweezers
and allow for the placement of the sandpaper. In (g), the pinch is closed completely again to fully pinch
the tweezers, thereby holding the sandpaper securely and completing the task.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.11: Photosequence of pinch task using a tweezer. An initial approach is made to hold the cherry independently, after
which the hand is closed further to complete a fully closed pinch, which holds the cherry securely.

The next task involved the use of a surgical clamp. Once instigated, the clamp uses a ratcheting system
to retain its clamping force. However, to engage the ratcheting system, a significant force is required,
dependent on the size and rigidness of the object. In this case, the object to be grasped was an
electrical wire, which was highly rigid and relatively thick. The surgical clamps ’ears’ were placed over
the index and thumb, after which the main actuation degree was used to close the hand sequentially.
The first step brought the clamp in a more natural orientation, after which an electrical wire was held
between the clamp’s jaws. Additional actuation steps were then taken to close the hand further, totally
securing the electrical wire in the clamp’s jaws. The ratcheting system was not engaged for this object.
However, it was able to withstand perturbations (pulling) on the wire and thus performed to satisfaction.
Because the ratchet was not engaged, the fingers could also be extended back to the configuration
seen in (a).

(a) (b) (c) (d) (e) (f)

Figure 4.12: Photosequence of grasping task using a surgical clamp. An initial actuation command is sent to get the clamp in a
realistic orientation, after which a wire is placed inside the jaw of the clamp. The hand is actuated further, closing the clamp

further, thereby clamping the electric wire securely, completing the task.

The final task to be performed was holding and activating a power drill. The power drill used in the task is
a Bosch IXO V, weighing 300 g [30]. As seen in Figure 4.13, the hand could hold the drill independently
in a natural way. The activation of the drill was more challenging, as in (c) the hand seemed to hold the
drill well enough to activate it but did, in fact, not. In (d), however, the index finger gripped the activation
trigger more successfully and was able to activate the power drill, thereby completing the task.
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(a) (b) (c) (d)

Figure 4.13: Power drill task where: (a) the drill is held in front of the hand, (b) the first actuation is done to hold the drill
independently, (c) the actuation is at a maximum, but grasp did not result in the drill turning on, and (d) the actuation at a

maximum which did turn on the power drill.

4.2.3. Grasp force measurements

The grasping force was measured using the same load cell as the individual fingers. The load cell
needs to be secured at one end and ’bent’ at the other, so a custom cylinder part was made to create
a graspable object. The CAD design for the cylinder can be seen in Figure 4.14, as well as the mea-
surement setup. Two halves of a cylinder are 3D printed and connected to one end of the load cell
using screws and spacers. By grasping the cylinder, the free space between the two cylinder halves
allows the parts to move and create a bending moment on the load cell. The load cell is 1-dimensional,
which means the measured force is only an indication of the true grasping force, as the pressure of
the grasp comes from all directions. Nevertheless, the obtained measurements serve as an indication
to compare the designed hand to prosthetic hands on the market, of which the results can be seen in
Table 4.2. The same load cell measurement setup configuration was used as for the individual fingers:
an HX711 load cell amplifier connected to a PC using a USB cable, with an Arduino script running and
converting the measured data to output forces.
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(a) Isometric view of load cell-cylinder design (b) Side view of load cell-cylinder design

(c) Measurement setup

Figure 4.14: Design and measurement setup using the load cell-cylinder to measure grasp forces. The load cell is securely
connected to the cylinder using screws and spacers.

Table 4.2: Force measurement comparison using the load cell-cylinder setup (* Max load cell measurement capability equal to
50 N)

Prototype I-Limb Varispeed+
Measured forces [N] 36.35 40.29 50*

Note that the load cell used in the measurement setup was rated for maximum loads of 5 kg ( 50
N). Therefore, any measurement above this limit was capped at 50 N (the Varispeed+). Because the
orientation of the cylinder during the grasp significantly impacts the measured results, this was kept as
constant as possible, meaning that all the forces measured were in the direction from fingertips to palm
(in-line with the screws in Figure 4.14).
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4.2.4. Encoder data

The encoder data can serve as a visual representation of the movement of the hand after an actuation
command. In Figure 4.15, the error (desired position - current measured position) is plotted over time
during a free motion movement. A command of 270◦ is given as the desired position, and the motor
can be seen to reduce this error smoothly and rapidly. There is no overshoot, and the steady-state
error is around 10 degrees. This could be further reduced by tuning the PID parameters, but this was
deemed sufficiently accurate during the prototype testing. The response time is fast at around 80 ms
for an initial 270◦ error.

Figure 4.15: PID error values during a free movement grasp with positional command of 270◦.

To investigate the behaviour of the hand further, the PID error values of a free movement were also
compared to the grasping of an object. In Figure 4.16, the error value plot of a free movement with an
initial error of 800◦ can be compared to the error value plot during the grasp of a plastic bottle. Note
that the free movement again has a steady-state error of around 10 degrees, whereas the grasp of
the plastic bottle results in a steady-state error of around 80 degrees. The larger error when grasping
the object is likely due to the object resisting movement due to its high rigidity. Fine-tuning the PID
parameters could reduce this but also affect performance in other situations. This highlights one of
the challenges of finding the optimal balance in tuning the controller parameters. The response time of
both plots is nearly identical, at around 1000ms. However, a difference in the error decrease phase can
be seen throughout both movements, where the plastic bottle offers resistance and causes a decrease
in the slope of the error reduction, which the controller then compensates.
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Figure 4.16: Comparison of PID error values between free movement and grasping of a plastic bottle. The plot illustrates the
difference in steady-state error and error reduction behaviour between the two movements, highlighting the challenges of

controller tuning in varied manipulation tasks.
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4.3. Experimental inputs

This section provides an overview of the input parameters utilized throughout the experiments. The fol-
lowing Table 4.3 summarizes the key inputs employed in the finger and hand experiments, highlighting
the best-performing inputs derived from multiple trial variations.

Table 4.3

Experiment name Main motor command Index command Thumb command

Basic full closure 1100 0 0
Only index 0 1000 0
Only Thumb 0 0 750
Two-finger pinch-open 0 800 900

Sequence pinch-open 0→400 800→1000 700→700
Pinch-close 1100 800 500
Sequence Pinch-close 600→1050 700→900 500→500

Power rigid ball 900 0 0
Power soft ball 1050 0 0
Power Pear 900 0 0
Power Cola bottle 900 0 0
Pinch-Close Marker 550→700 700→700 350→350
Pinch-Close Cherries 550→900 450→900 450→450
Pinch-Open Disk 350 900 400
Pinch-Open Grapes 250 800 400
Pinch-Close Pen 550→700 700→700 350→350

Task Tweezer 0→400→800↔1150 800→1100 500→500
Task Surgical clamp 400→850 0 0
Task Power drill 500→ 1000 0 0

Force measurement: Individual fingers 1000 0 0
Force measurement: Grip force 1100 850 450



5
Discussion

This chapter draws conclusions and reflects on the performance of the designed prototype, improve-
ment points and limitations, experimental suitability and results evaluation, and future work and alter-
native approaches.

In this thesis, we have developed an adaptive synergy actuated hand with additional parallel actuators
to help increase functionality and performance. Experiments have demonstrated that the design per-
forms promisingly and achieves all of its set design goals. The hand is highly functional, low-complexity,
robust, and adequately anthropomorphic. The hand’s high functional capabilities are shown by its suc-
cessful completion of numerous grasping tasks and force comparisons to other prosthetic hands. The
control of the hand is very straightforward, using low-complexity algorithms and simple fabrication tech-
niques. A highlight of the robustness is the dislocatability of the fingers and their ability to perform
adaptive grasps without the need for complex sensorization. Finally, the design is very comparable to
that of a human hand in terms of size and finger build, except for some details, which will be explained
further in a later section.

One of the main goals of this research was to further explore the possibilities within synergistic actuation
design principles. Because proper multi-synergistic approaches take up significant amounts of space,
reducing its viability for prosthetic hand design, an adaptation to this concept was sought that utilizes the
synergistic approach but is more easily implemented in prosthetic hand design. Therefore, only the first
synergy is used for the hand’s main grasping functionality in the form of an adaptive synergistic design,
with the addition of two small motors that enable a secondary actuation in the form of a pinch movement
and an additional benefit of moving the thumb and index individually. Because the small motors each
only actuate a single finger, the transmission architecture is a relatively easy and small incorporation
into the hand. As seen in the experiments and results, the prototype works as intended, where the
first synergy maximizes its adaptable underactuated nature to grasp objects of all shapes and sizes
with ease, and the secondary actuators are utilized for objects that require a more delicate pinch. The
versatility of the hand is significantly increased by the addition of these secondary actuators, especially
when the actuation degrees are combined sequentially or in parallel. By changing the command inputs,
the user can create various unique grasping patterns to fit the required needs optimally. Examples are
additional index-thumb force during power grasp, open pinch, closed pinch, and intermediary forms
of a closed pinch, where the remaining digits moved only partly. Additionally, the robustness of the
dislocatable joints is shown, as they are able to return from dislocations and smaller perturbations. In
conclusion, this novel actuation architecture, in combination with other design features, has proven to
be a noteworthy improvement in increasing the functionality of low-complexity prosthetic hands.

Throughout the research of this thesis, several specific areas for improvement have emerged. Many
of these improvements are already in place due to the iterative design process; however, some areas
require additional attention. The primary issue during the prototype testing phase was the need for
more performance of the smaller individual motors. The Pololu motors were readily available in the lab
and were deemed good enough after some basic testing for the prototype. Unfortunately, issues began
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appearing after the complete incorporation of the motors, two of which were critical: the motor power
and the encoder setup. First, the motor power, although initial testing showed the motors could move
the fingers, even with return elastics installed, no further load tests were performed, which turned out to
be one of the primary deficits, as the motors could not always overcome the higher power requirements
needed for interaction with objects, such as pinching a thin object using only the small motors. The
second critical issue was the flawed motor-encoder configuration used for these motors. The encoders
are soldered to the motor’s power pins, but these pins are too short to create a robust connection
and are thus very susceptible to perturbations. Pololu has since tackled this issue, resulting in a new
design pair for the motor and encoder, but unfortunately, it could not be incorporated into this project.
This faulty connection is likely to have also impacted the power output performance of the motors, as
this meant the motors were not always properly connected to their power source.

Another motor-related improvement was revealed by testing the individual finger forces of the hand.
As seen in Table 4.1, the fingertip forces decrease from the little finger to the index finger. This is
due to the friction losses and designed transmission architecture. The main tendon running from the
thumb, through the two-digit loops, to the Maxon motor could be adapted to reverse this. The digits with
preferred maximum fingertip forces are the index and middle fingers, but because the main motor is
placed on the right side of the palm (dorsal view), it is almost directly in line with the little finger. Friction
losses are thus the lowest for this finger, which could be altered by changing the routing to end with the
index-middle finger loop, resulting in maximum fingertip force for this pair.

At the beginning of the project, the decision was made to design all four digits identically. The prime
reason for that was to save time on design and production, and additionally, the kinematic behaviour of
all digits would be identical. These assumptions were correct, although one unforeseen disadvantage
surfaced when the glove was assimilated into the prototype. The digit and the individual phalanges
were dimensioned to recreate human averages, which works well for the index-, middle- and ring fingers.
However, the little finger has a significant size discrepancy compared to the other digits. This oversized
little finger resulted in the need for relief cuts in the glove because the little finger was too long, creating
tension throughout the glove, which impacted the hand’s kinematic behaviour. The relief cuts functioned
well; thus, the issue was mitigated sufficiently. However, two other solutions would be to fabricate a
custom glove or, more importantly, change the dimensions of the little finger to a more realistic sizing.
Because the little finger uses the same parts as the middle- and ring fingers to reduce fabrication
time, they are the same size; however, to increase anthropomorphism, the little finger should be made
smaller.

Various qualitative and quantitative experiments were conducted on the prototype to validate its perfor-
mance and allow for comparison to other prosthetic hands on the market. The quantitative experiments
in the form of force measurements primarily compare individual fingers or other prosthetic hands on
the market. The individual fingertip force measurements merely compare the fingers and do not fully
comprehend the actual fingertip forces. Since the hand is underactuated and thus adaptive to its envi-
ronment, the digits that do not come into contact with the load cell continue moving to flex completely.
In contrast, the fingertip to be measured is stopped due to the contact, where it applies a portion of its
maximum force, which only increases when the other fingers are flexed completely. The inherent adapt-
ability of the hand thus makes direct fingertip force measurements difficult. However, possible hand
improvements were found because of these measurements, in the form of (un-) desirable behaviour
with more force output in the less critical digit pair.

The load cell cylinder setup to measure the grasping force of the hand is not truly representative of the
grasping force of the hand or the hands on the market. As mentioned, the load cell is one-dimensional
and thus only measures force in one direction. Grasping force is more accurately represented as a
two—or even three-dimensional pressure surrounding the grasped object. By measuring only one
direction of the applied force, the measured forces are significantly undervalued compared to the true
capabilities of the hands.

The qualitative experiments conducted in the form of grasping functional objects and performing tasks
represent the hand’s capabilities relatively well. In literature, a hand’s performance is often related to
the speed and accuracy during a grasping sequence of multiple objects, such as the Box and Block
test [31], the Action Research Arm test [32], and the Virtual Egg test [33]. However, the current state of
the hand does not allow for the movement of the hand in such a fashion. Instead, the hand remained
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stationary, allowing for the assessment of grasping capabilities alone. When the control architecture
and moveability of the hand are further improved, for example, by using triggers or sensors, these
qualitative experiments can be used as a good indication of quantified performance.

Overall, the obtained results merit further research. The promising results obtained with this prototype
can be easily improved upon by implementing several changes to the design, including an upgrade to
the motor, an optional internal transmission change to further benefit the primary digit pair, and a size
reduction of the little finger to fit the surrounding glove better. By implementing these relatively simple
changes in the design and making the design fully self-contained, further quantification of the hand’s
performance compared to others can validate its true benefits.

Finally, a note on future work concerns an adaptation to the actuation architecture. Currently, the
individual actuation degrees used for the index and thumb are designed in parallel with the primary
actuation degree. An interesting adaptation to this would be to change from a fully parallel structure to
one both in series and in parallel. For example, a tendon runs from the thumb’s motor through the thumb
to the main motor, and the tendon from the index motor runs through the index finger to the fingertip
of the middle finger. This actuation scheme creates an alternative similar to the augmented adaptive
synergies in the Softhand 2 [25], which exploits the internal friction encountered in tendon systems
and turns it into an advantage. By doing so, the Softhand 2 is able to execute in-hand manipulation,
which is something this prototype was not able to do adequately and would thus serve as a valuable
contribution. By varying combinations of parallel and in-series motors, new interesting combinations
with unique, versatile capabilities can be researched, moving the field of prosthetic hand design forward,
one grasp at a time.
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A
Source Code

Python source code used on the command console. The code creates a GUI element that can com-
municate with the Serialsocket on which the microcontroller is connected.

1 from PyQt5.QtCore import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtGui import QFont
4 import numpy as np
5 import pyqtgraph as pg
6 import time
7 import signal
8 import sys
9 import collections

10 from Worker import Worker
11 from UDPtest import SerialSocket
12 import matplotlib.pyplot as plt
13

14 DEFAULT_STYLE = """
15 QProgressBar{
16 border: 2px solid grey;
17 border-radius: 5px;
18 text-align: center
19 }
20

21 QProgressBar::chunk {
22 background-color: green;
23 width: 10px;
24 margin: 1px;
25 }
26 """
27 DEFAULT_STYLE_1 = """
28 QProgressBar{
29 border: 2px solid grey;
30 border-radius: 5px;
31 text-align: center
32 }
33

34 QProgressBar::chunk {
35 background-color: lightblue;
36 width: 10px;
37 margin: 1px;
38 }
39 """
40

41 class SerialSocketMock:
42 def __init__(self):
43 self.mock_data = iter([b'Status:␣Mock␣data␣received\n'])
44

45 def send_data(self, data):
46 print("Mock:␣Sending␣data:", data)
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47

48 def receive_data(self):
49 try:
50 return next(self.mock_data)
51 except StopIteration:
52 return b''
53

54 class App(QMainWindow):
55 def __init__(self, parent=None):
56 super(App, self).__init__(parent)
57

58 self.setWindowTitle("GUI␣Robotic␣Hand␣Control␣panel")
59

60 self.esp32 = SerialSocketMock()
61 self.startTime = time.time()
62

63 # Create QLineEdit widgets for hand, index, and thumb input
64 self.hand_input = QLineEdit(self)
65 self.index_input = QLineEdit(self)
66 self.thumb_input = QLineEdit(self)
67

68 # Set up the main layout with QGridLayout
69 main_layout = QGridLayout()
70 main_layout.setContentsMargins(1, 1, 1, 1) # Set small margins
71 main_layout.setSpacing(1) # Set small spacing
72

73 for i in range(3):
74 main_layout.setColumnStretch(i, 1)
75

76 # Create button widgets and add them to specific positions in the layout
77 savePosition = QPushButton('Start␣ESP32', self)
78 savePosition.clicked.connect(self.start)
79 main_layout.addWidget(savePosition, 0, 0, 1, 1) # (row, column, rowspan, colspan)
80

81 readHandPosition = QPushButton('Read␣Hand␣Position', self)
82 readHandPosition.clicked.connect(self.readPosition)
83 main_layout.addWidget(readHandPosition, 0, 1, 1, 1)
84

85 stop_ = QPushButton('Stop', self)
86 stop_.clicked.connect(self.stopHand)
87 main_layout.addWidget(stop_, 0, 2, 1, 1)
88

89

90

91 # Add QLabel as the title for each input
92 hand_title = QLabel("Hand<br>Input:␣degrees<br>(+Close␣/␣-Open)")
93 index_title = QLabel("Index<br>Input:␣encoder␣Ticks<br>(+Close␣/␣-Open)")
94 thumb_title = QLabel("Thumb<br>Input:␣encoder␣Ticks<br>(+Close␣/␣-Open)")
95

96 title_font = QFont("Arial", 12, QFont.Bold)
97 hand_title.setFont(title_font)
98 index_title.setFont(title_font)
99 thumb_title.setFont(title_font)

100

101 main_layout.addWidget(hand_title, 1, 0, 1, 1)
102 main_layout.addWidget(self.hand_input, 2, 0, 1, 1)
103 # send_hand_button = QPushButton('Send Hand', self)
104 # send_hand_button.clicked.connect(self.send_hand)
105 # main_layout.addWidget(send_hand_button, 3, 0, 1, 1)
106

107 main_layout.addWidget(index_title, 1, 1, 1, 1)
108 main_layout.addWidget(self.index_input, 2, 1, 1, 1)
109 # send_index_button = QPushButton('Send Index', self)
110 # send_index_button.clicked.connect(self.send_index)
111 # main_layout.addWidget(send_index_button, 3, 1, 1, 1)
112

113 main_layout.addWidget(thumb_title, 1, 2, 1, 1)
114 main_layout.addWidget(self.thumb_input, 2, 2, 1, 1)
115 # send_thumb_button = QPushButton('Send Thumb', self)
116 # send_thumb_button.clicked.connect(self.send_thumb)
117 # main_layout.addWidget(send_thumb_button, 3, 2, 1, 1)
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118

119 # send_hand_button = QPushButton('Send Hand Value', self)
120 # send_hand_button.clicked.connect(lambda: self.send_value(self.hand_input, self.

moveHandCCW))
121 # main_layout.addWidget(send_hand_button, 3, 0, 1, 1)
122

123 # send_index_button = QPushButton('Send Index Value', self)
124 # send_index_button.clicked.connect(lambda: self.send_value(self.index_input, self.

moveIndex))
125 # main_layout.addWidget(send_index_button, 3, 1, 1, 1)
126

127 # send_thumb_button = QPushButton('Send Thumb Value', self)
128 # send_thumb_button.clicked.connect(lambda: self.send_value(self.thumb_input, self.

moveThumb))
129 # main_layout.addWidget(send_thumb_button, 3, 2, 1, 1)
130

131

132 # send_hand_button = QPushButton('Send Hand Value', self)
133 # send_hand_button.clicked.connect(lambda: self.send_value(self.hand_input, self.

moveHandCCW))
134 # main_layout.addWidget(send_hand_button, 3, 0, 1, 1)
135

136 # send_index_button = QPushButton('Send Index Value', self)
137 # send_index_button.clicked.connect(lambda: self.send_value(self.index_input, self.

moveIndex))
138 # main_layout.addWidget(send_index_button, 3, 1, 1, 1)
139

140 # send_thumb_button = QPushButton('Send Thumb Value', self)
141 # send_thumb_button.clicked.connect(lambda: self.send_value(self.thumb_input, self.

moveThumb))
142 # main_layout.addWidget(send_thumb_button, 3, 2, 1, 1)
143 send_values_button = QPushButton('Send␣Values', self)
144 send_values_button.clicked.connect(self.send_values)
145 main_layout.addWidget(send_values_button, 3, 0, 1, 3)
146

147 central_widget = QWidget()
148 central_widget.setLayout(main_layout)
149 self.setCentralWidget(central_widget)
150

151 self.angle = 0
152 self.curr = collections.deque(maxlen=100)
153 self.que = collections.deque(maxlen=100)
154 for i in range(100):
155 self.que.append(0)
156 self.pos = collections.deque(maxlen=100)
157 for i in range(100):
158 self.pos.append(0)
159

160 self.plotRunning = True
161 self.plotting = True
162

163 self.threadpool = QThreadPool()
164 self.readData = Worker(self.print_esp32)
165 self.readData.signals.result.connect(self.readData.print_output)
166 self.readData.signals.progress.connect(self.readData.progress_fn)
167 self.threadpool.start(self.readData)
168

169 self.t = np.linspace(0, 100, 100)
170

171 self.status_message = bytes([0])
172 self.ESP32connected = False
173

174 def updatePlots(self):
175 self.ErrorPlot.clear()
176 self.ErrorPlot.plot(self.t, self.que)
177 self.PositionPlot.clear()
178 self.PositionPlot.plot(self.t, self.pos)
179 self.statusBox.setPlainText(self.status_message.decode())
180

181 def print_esp32(self, progress_callback):
182 while self.plotting:
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183 d = self.esp32.receive_data()
184 if d[0:5] == b'Error':
185 self.que.append(float(d[7:12].decode()))
186 elif d[0:5] == b'RAngle':
187 self.angle.append(float(d[7:12].decode()))
188 elif d[0:8] == b'Position':
189 if len(d) > 15:
190 if d[10] == b'-':
191 self.pos.append(-float(d[11:15].decode()))
192 else:
193 self.pos.append(float(d[11:15].decode()))
194 elif d[0:5] == b'Speed':
195 self.vel.append(float(d[7:12].decode()))
196 elif d[0:5] == b'Current':
197 self.curr.append(float(d[7:12].decode()))
198 elif d[0:5] != b'':
199 print(d.decode())
200 time.sleep(0.005)
201

202

203 # self.esp32.send_data: input a list with following variables: [cmd, targethand,
targetIndex, targetThumb]

204 def start(self):
205 self.esp32.send_data([4, 0, 0, 0])
206

207 def stopHand(self):
208 self.esp32.send_data([1, 0, 0, 0])
209

210 def moveHandCCW(self, degrees):
211 degrees = -degrees
212 self.esp32.send_data([2, degrees,0, 0])
213

214 def moveThumb(self, ticks_thumb):
215 ticks = ticks_thumb
216 time.sleep(.002)
217 self.esp32.send_data([5, 0, 0, ticks])
218

219 def moveIndex(self, ticks):
220 ticks = -ticks
221 self.esp32.send_data([6, 0, ticks, 0])
222

223 def movePinch(self, tick_index, tick_thumb):
224 tick_index = -tick_index
225 tick_thumb = tick_thumb
226 self.esp32.send_data([7, 0, tick_index, tick_thumb])
227

228 def moveHandAndFingers(self, degrees, tick_index, tick_thumb):
229 degrees = -degrees
230 tick_index = -tick_index
231 tick_thumb = tick_thumb
232 self.esp32.send_data([8,degrees,tick_index,tick_thumb])
233

234 def readPosition(self):
235 self.esp32.send_data([3, 0, 0, 0])
236

237 def writePosition(self):
238 self.esp32.send_data([6, int(self.positionDegree.text())])
239

240 def closeEvent(self, event):
241 self.plotRunning = False
242 self.plotting = False
243 self.esp32.send_data([4, 0, 0, 0])
244 print("Closing")
245

246

247

248 def send_values(self):
249 try:
250 hand_value = self.hand_input.text()
251 index_value = self.index_input.text()
252 thumb_value = self.thumb_input.text()
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253

254 if hand_value and index_value and thumb_value:
255 try:
256 hand_value = float(hand_value)
257 index_value = float(index_value)
258 thumb_value = float(thumb_value)
259 # print(index_value, thumb_value)
260 self.moveHandAndFingers(hand_value, index_value, thumb_value)
261 except ValueError:
262 print("Invalid␣input.␣Please␣enter␣valid␣numeric␣values.")
263 else:
264 print("Invalid␣input.␣Please␣enter␣valid␣numeric␣values␣in␣all␣text␣boxes.")
265 # if index_value and thumb_value:
266 # try:
267 # index_value = float(index_value)
268 # thumb_value = float(thumb_value)
269 # print(index_value, thumb_value)
270 # self.movePinch(index_value, thumb_value)
271 # except ValueError:
272 # print("Invalid input. Please enter valid numeric values.")
273 # else:
274 # # Run different code when either index_value or thumb_value is not None
275 # if index_value:
276 # # Code for when only index_value is not None
277 # index_value = float(index_value)
278 # self.moveIndex(index_value)
279

280 # if thumb_value:
281 # # Code for when only thumb_value is not None
282 # thumb_value = float(thumb_value)
283 # self.moveThumb(thumb_value)
284 # if hand_value:
285 # hand_value = float(hand_value)
286 # self.moveHandCCW(hand_value)
287

288

289 except ValueError:
290 print("Invalid/No␣input.␣Please␣enter␣valid␣numeric␣values.")
291

292

293 if __name__ == '__main__':
294 app = QApplication(sys.argv)
295 thisapp = App()
296 thisapp.resize(1200, 200)
297 thisapp.show()
298 try:
299 def signal_handler(signal, frame):
300 thisapp.plotRunning = False
301 thisapp.plotting = False
302 print('You␣pressed␣Ctrl+C!')
303 sys.exit(0)
304

305 signal.signal(signal.SIGINT, signal_handler)
306 signal.signal(signal.SIGTERM, signal_handler)
307 signal.signal(signal.SIGILL, signal_handler)
308 signal.signal(signal.SIGABRT, signal_handler)
309 app.exec_()
310 except Exception as e:
311 print('Error:␣' + str(e))
312 thisapp.plotting = False
313 thisapp.plotRunning = False
314 sys.exit(0)

C++ source code that is run on the microcontroller. The primary function is the task manager and
running PID algorithms and data handling.

1

2 #include "myo.h"
3 #include "c3dhall11.h"
4 #include "PID.h"
5 #define MIN_MAX_MAGNET 10
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6 #define pi 3.14
7 #define cw 0 // close
8 #define ccw 1 //open
9

10 armband myo; // Myo BLE Armband
11

12 uint8_t *emgData_raw = NULL;
13 unsigned emgData[2] ={0};// {0,3,4,8};
14

15 static unsigned emgCnt = 0;
16 static unsigned status_ = 0;
17 static uint8_t Q = 0;
18 static uint8_t oldQ = 5;
19 static const int EMGtaskCore = 0;
20 static const int MOTORtaskCore = 1;
21 static float totalAngle;
22 static int numberOfTurns = 0;
23 static const int SOB_pin = 2;
24 static int encoderOffset = 0;
25 static int OldPos[4] = {0};
26 static float speed = 0;
27 static uint32_t oldTime = millis();
28 static bool initialized = false;
29 static float x_adjustment = -4.2;//20.14;
30 static float y_adjustment = -4.75;//30.00;
31

32 // PID values Joost
33 int counter = 0;
34 int pos = 0;
35 long prevT =0;
36 float eprev = 0;
37 float eprev_hand = 0;
38 float eprev_thumb = 0;
39 float eprev_index = 0;
40 float eintegral=0;
41 float Kp_main= 0.8f;
42 float Ki_main= 0.f;
43 float Kd_main= 0.02f;
44

45 float Kp_hand= 0.8f;
46 float Ki_hand= 0.f;
47 float Kd_hand= 0.02f;
48

49 float Kp_index= 1.8f; //Begon op .8f
50 float Ki_index= 0.f;
51 float Kd_index= 0.08f;
52

53 float Kp_thumb= 2.5f; //Begon op .8f
54 float Ki_thumb= 0.f;
55 float Kd_thumb= 0.08f;
56

57 const char* names[3] = {"Rest","Flex", "Extend"};
58 bool emgalert = false;
59

60 int directionPin = 6;
61 static int emg_rms = 0;
62 const int mainMotorPin1 = 26; //!!
63 const int mainMotorPin2 = 25; //!!
64 const int thumbMotorPin1 = 12;
65 const int thumbMotorPin2 = 17;
66 const int indexMotorPin1 = 18; //!!
67 const int indexMotorPin2 = 13; //!!
68 const int motorChannel[6] = {0,1,2,3,4,5};
69

70 int motorCurrent = 0;
71

72 const int EncoderThumbA = 4;
73 const int EncoderThumbB = 19;
74 const int EncoderIndexA = 2; //!!
75 const int EncoderIndexB = 5; //!!
76
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77

78 int last_state_IA = 0;
79 int last_state_TA = 0;
80

81 volatile long encoderThumbCount = 0;
82 volatile long encoderIndexCount = 0;
83

84 TwoWire I2Cone = TwoWire(0);
85 C3dhall11 encoder;
86 c3dhall11_data_t sensor_data;
87 bool deleteTask;
88

89 TaskHandle_t xHandle = NULL;
90

91 void initPosition(bool *delTask){
92 int pos_temp = 0;
93 encoderOffset = 0;
94 for(uint8_t i = 0; i<50; i++){
95 checkQuadrant(readAngle());
96 // if (round(totalAngle) != round(113.25)){
97 pos_temp += totalAngle;
98 // Serial.println(numberOfTurns);
99 // }

100 // else{
101 // Serial.println("Angle is 113.25, if this is the actual average please move the

motor slightly..");
102 // }
103 delay(20);
104 }
105 // Serial.print(pos_temp);
106 encoderOffset = (pos_temp/49);
107 Serial.print("EncoderOffset␣=␣");Serial.println(encoderOffset);
108 pos_temp=0;
109

110 *delTask = true;
111 }
112

113 /*
*******************************************************************************************************

114 SET CALLBACKS WHEN RECEIVING DATA
115 *******************************************************************************************************

*/
116

117 void batteryCallback(BLERemoteCharacteristic* pBLERemoteCharacteristic , uint8_t* pData,
size_t length, bool isNotify) {

118 myo.battery = pData[0];
119 Serial.print("Battery:␣");
120 Serial.println(myo.battery);
121 }
122

123 void imuCallback(BLERemoteCharacteristic* pBLERemoteCharacteristic , uint8_t* pData, size_t
length, bool isNotify) {

124 Serial.print ("EMG:␣\t");
125 for (int i = 0; i < length; i++) {
126 Serial.print(pData[i]);
127 Serial.print("\t");
128 }
129 Serial.println(millis());
130 }
131

132 void emgCallback(BLERemoteCharacteristic* pBLERemoteCharacteristic , uint8_t* pData, size_t
length, bool isNotify) {

133 emgData_raw = pData;
134 /*Serial.print ("EMG: \t");
135 for (int i = 0; i < length; i++) {
136 Serial.print(pData[i]);
137 Serial.print("\t");
138 }
139 Serial.println(millis());
140 */
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141 }
142 void readCurrent(void * pvParameters){
143 while(true){
144 Serial.println(analogRead(15)*3);
145 delay(500);
146 }
147 }
148 void processSerialData(void * pvParameters ){
149 int targetPos_hand = 0;
150 int targetPos_index = 0;
151 int targetPos_thumb = 0; // Added for the thumb target position
152 float error = 0.0;
153 int cmd = 0;
154 char *token;
155 char inputString[50];
156 int input[8];
157 // while(true) {
158 // if(int j = Serial.available()){
159 // for (uint8_t i = 0; i < 3; i++) {
160 // input[i] = Serial.parseInt();
161 // }
162 // for (uint8_t i = 3; i < j; i++) {
163 // Serial.read();
164 // }
165 // Serial.print("Command: "); Serial.println(input[0]);
166 // Serial.print("Target Position: "); Serial.println(input[1]);
167 // Serial.print("Target Position 2: "); Serial.println(input[2]);
168 // cmd = input[0];
169 // targetPosition = input[1];
170 // targetPos_thumb = input[2];
171

172 // }
173 while (true) {
174 if (int j = Serial.available()) {
175 Serial.readBytesUntil('\n', inputString, sizeof(inputString)); // Read until newline
176 token = strtok(inputString, ",");
177

178 // Parse up to 3 integers
179 for (uint8_t i = 0; i < 4 && token != NULL; i++) {
180 input[i] = atoi(token);
181 token = strtok(NULL, ",");
182 }
183

184 // Skip the rest of the input
185 while (Serial.available()) {
186 Serial.read();
187 }
188

189 Serial.print("Command:␣"); Serial.println(input[0]);
190 Serial.print("Target␣Hand:␣"); Serial.println(input[1]);
191 Serial.print("Target␣Index:␣"); Serial.println(input[2]);
192 Serial.print("Target␣Thumb:␣"); Serial.println(input[3]);
193

194 cmd = input[0];
195 targetPos_hand = input[1];
196 targetPos_index = input[2];
197 targetPos_thumb = input[3];
198 }
199

200 if(cmd == 1){
201 ledcWrite(cw, 0);
202 ledcWrite(ccw, 0);
203 ledcWrite(2,0);
204 ledcWrite(3,0);
205 ledcWrite(4,0);
206 ledcWrite(5,0);
207 cmd = 0;
208 }
209 else if(cmd == 2){
210 pidHand(&targetPos_hand, &cmd);
211 // pidPosition(&targetPosition, &error,&cmd);
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212 }
213 else if(cmd == 3){
214 checkQuadrant(readAngle());
215 Serial.print("Hand␣total␣angle␣=␣");Serial.println(totalAngle);delay(2);
216 Serial.print("Thumb␣encoder␣count␣=␣");Serial.println(encoderThumbCount);delay(2);
217 Serial.print("Index␣encoder␣count␣=␣");Serial.println(encoderIndexCount);delay(2);
218 cmd = 0;
219 }
220 else if(cmd==4){
221 initialize();
222 cmd = 0;
223 }
224 else if (cmd==5){
225 // int c = encoderThumbCount;
226 // int target = targetPosition + c;
227 pidThumbMotor(&targetPos_thumb, &cmd);
228 }
229 else if (cmd==6){
230 // int c = encoderIndexCount;
231 // int target = targetPosition + c;
232 pidIndexMotor(&targetPos_index, &cmd);
233 }
234 else if (cmd==7){
235 pidPinch(&targetPos_index, &targetPos_thumb, &cmd);
236 }
237 else if (cmd==8){
238 pidHandAndFingers(&targetPos_hand, &targetPos_index, &targetPos_thumb, &cmd);
239 }
240 else{
241 if(initialized){
242 ledcWrite(0, 0);
243 ledcWrite(1, 0);
244 ledcWrite(2, 0);
245 ledcWrite(3, 0);
246 ledcWrite(4, 0);
247 ledcWrite(5, 0);
248

249 }
250

251 }
252 delay(4);
253

254 }
255 }
256

257 // void processEMGData(void * pvParameters ){
258 // while(myo.connected) {
259 // if( emgData_raw != NULL){
260 // emgData[0] += (abs(int8_t(emgData_raw[3])) + abs(int8_t(emgData_raw[4])))/2;
261 // emgData[1] += (abs(int8_t(emgData_raw[7])) + abs(int8_t(emgData_raw[0])))/2;
262 // emgCnt++;
263

264 // if(emgCnt > 4){
265 // int8_t extensors = (emgData[0]/emgCnt);
266 // int8_t flexors = (emgData[1]/emgCnt);
267 // if(flexors > threshold && extensors < (threshold/2)){
268 // emg_rms = abs(flexors);
269 // status_ = 1;
270 // }
271 // else if(extensors >threshold && flexors < (threshold/2)){
272 // emg_rms = abs(extensors);
273 // status_ = 2; //Serial.println("Wrist Extension.");
274 // }
275 // else
276 // status_ = 0; //Serial.println("Rest");*/
277

278 // emgCnt = 0;
279 // emgData[0] = 0;
280 // emgData[1] = 0;
281 // emgData[2] = 0;
282 // emgData[3] = 0;



65

283 // }
284 // }
285 // delay(10);
286 // }
287 // }
288

289 // void MyoDisconnectTask( void * pvParameters ){
290 // while(true){
291 // // Detect disconnection
292 // if (!myo.connected) {
293 // status_ = 0;
294 // Serial.println ("Device disconnected: reconnecting...");
295 // myo.connect();
296 // Serial.println (" - Connected");
297 // myo.set_myo_mode(myohw_emg_mode_send_emg , // EMG mode
298 // myohw_imu_mode_none , // IMU mode
299 // myohw_classifier_mode_disabled); // Classifier mode
300 // myo.emg_notification(TURN_OFF)->registerForNotify(emgCallback);
301 // }
302 // delay(100);
303 // }
304 // }
305

306 void readPositionTask(void *pvParameters){
307 bool *delete_;
308 delete_ = (bool *)pvParameters;
309 while(true){
310 checkQuadrant(readAngle());
311 // Serial.print("Hand Position: ");
312 // Serial.println(totalAngle);
313 // Serial.print("Thumb Count: ");
314 // Serial.println(encoderThumbCount);
315

316 // Serial.print("measured_xy_angle: ");
317 // Serial.println(sensor_data.angle);
318 delay(1);
319 if(*delete_ == true){
320 if( xHandle != NULL )
321 {
322 vTaskDelete( xHandle );
323 }
324 }
325 }
326 }
327

328 // void MotorControlTask(void *pvParameters){
329 // while(true){
330 // if(totalAngle >0 || totalAngle < 360){
331 // switch(status_){
332 // case 0:
333 // ledcWrite(0, 0);
334 // ledcWrite(1, 0);
335 // Serial.print("Status: ");Serial.print(names[status_]); Serial.print("RMS: ");

Serial.println(emg_rms);
336 // break;
337 // case 1:
338 // //digitalWrite(directionPin, HIGH); // sets the digital pin 13 on
339 // ledcWrite(0, 0);
340 // ledcWrite(1, emg_rms);
341 // Serial.print("Status: ");Serial.print(names[status_]); Serial.print("RMS: ");

Serial.println(emg_rms);
342 // break;
343 // case 2:
344 // //digitalWrite(directionPin, LOW); // sets the digital pin 13 on
345 // ledcWrite(0, emg_rms);
346 // ledcWrite(1, 0);
347 // Serial.print("Status: ");Serial.print(names[status_]); Serial.print("RMS: ");

Serial.println(emg_rms);
348 // break;
349 // default:
350 // ledcWrite(0, 0);
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351 // ledcWrite(1, 0);
352 // Serial.print("Status: ");Serial.print(names[status_]); Serial.print("RMS: ");

Serial.println(emg_rms);
353 // break;
354

355 // }
356 // }
357

358 // delay (100);
359 // }
360 // }
361

362 void checkQuadrant(float encoderPos)
363 {
364 // ----- Quadrant 1
365 if (encoderPos >= 0 && encoderPos <= 90) Q = 1;
366 else if (encoderPos > 90 && encoderPos <= 180) Q = 2;
367 else if (encoderPos > 180 && encoderPos <= 270) Q = 3;
368 else if (encoderPos > 270 && encoderPos < 360) Q = 4;
369

370 if (Q != oldQ) // if we changed quadrant
371 {
372 if (Q == 1 && oldQ == 4){numberOfTurns++;} //

4 --> 1 transition: CW rotation
373 else if (Q == 4 && oldQ == 1) {numberOfTurns --;}

// 1 --> 4 transition: CCW rotation
374 oldQ = Q; //update to the current quadrant
375 }
376 totalAngle = (numberOfTurns * 360) + encoderPos - encoderOffset; //number of

turns (+/-) plus the actual angle within the 0-360 range
377 // Serial.print("encoderPos = ");Serial.println(encoderPos);
378 // Serial.print("NoT: ");Serial.print(numberOfTurns);Serial.print("ePos: ");Serial.print(

encoderPos);Serial.print("eOff: ");Serial.println(encoderOffset);
379 }
380 float readAngle(){
381 if (C3DHALL11_OK == encoder.read_data(&sensor_data)){
382

383 float angle = ((atan2(sensor_data.x_axis+x_adjustment, sensor_data.y_axis+
y_adjustment)+pi) * 180/pi);

384 // Serial.print("RAngle: ");Serial.println(angle);
385 return angle;
386 }
387 else return -0.f;
388 }
389

390 void updateEncoderThumb() {
391 // Read the current state of both encoder pins
392 // int stateA = digitalRead(EncoderThumbA);
393 // int stateB = digitalRead(EncoderThumbB);
394

395 // // Combine the states to get the quadrature encoding
396 // int encoderValue = (stateA << 1) | stateB;
397

398 // // Update the encoder count based on the quadrature encoding
399 // switch (encoderValue) {
400 // case 0: case 3:
401 // encoderThumbCount++; // Clockwise rotation
402 // break;
403 // case 1: case 2:
404 // encoderThumbCount --; // Counterclockwise rotation
405 // break;
406 // default:
407 // // Invalid state, do nothing
408 // break;
409 // }
410 int state_TA = digitalRead(EncoderThumbA);
411 int state_TB= digitalRead(EncoderThumbB);
412

413

414 if (state_TA != last_state_TA){
415 if (state_TA == state_TB){
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416 //Clockwise rotation
417 encoderThumbCount ++;
418 }
419 else{
420 //Counterclockwise rotation
421 encoderThumbCount --;
422 }
423 }
424

425 //Update last state
426 last_state_TA = state_TA;
427

428 //Optional: You may want to add a delay here to avoid rapid position changes
429 // delay(1);
430

431 }
432

433 void updateEncoderIndex() {
434 // Read the current state of both encoder pins
435 // int stateC = digitalRead(EncoderIndexA);
436 // int stateD = digitalRead(EncoderIndexB);
437

438 // // Combine the states to get the quadrature encoding
439 // int encoderValue2 = (stateC << 1) | stateD;
440

441 // // Update the encoder count based on the quadrature encoding
442 // switch (encoderValue2) {
443 // case 0: case 3:
444 // encoderIndexCount++; // Clockwise rotation
445 // break;
446 // case 1: case 2:
447 // encoderIndexCount --; // Counterclockwise rotation
448 // break;
449 // default:
450 // // Invalid state, do nothing
451 // break;
452 // }
453 // }
454 int state_IA = digitalRead(EncoderIndexA);
455 int state_IB= digitalRead(EncoderIndexB);
456

457

458 if (state_IA != last_state_IA){
459 if (state_IA == state_IB){
460 //Clockwise rotation
461 encoderIndexCount ++;
462 }
463 else{
464 //Counterclockwise rotation
465 encoderIndexCount --;
466 }
467 }
468

469 //Update last state
470 last_state_IA = state_IA;
471

472 //Optional: You may want to add a delay here to avoid rapid position changes
473 // delay(1);
474 }
475

476 // int connect_Myo(){
477 // Serial.println ("Connecting to Myo Armband");
478 // myo.debug = true;
479 // myo.connect(); // Connect to the myo
480 // Serial.println (" - Connected");
481

482 // myo.set_myo_mode_();
483 // delay(10);
484 // Serial.println ("EMG mode set!");
485 // myo.set_sleep_mode(1);
486 // Serial.println ("Sleep mode set!");
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487

488 // //myo.battery_notification(TURN_ON)->registerForNotify(batteryCallback);
489 // //myo.gesture_notification(TURN_OFF)->registerForNotify(gestureCallback);
490 // myo.registerEMGCallback(emgCallback);
491 // Serial.println ("EMG set!");
492

493 // delay(500);
494 // return 0;
495

496 // }
497

498 void pidHand(int* setpoint, int *status){
499 // int myNum[3] = {10, 20, 30};
500 // int motorChannel[2] = {0,1};
501 checkQuadrant(readAngle()); // returns totalAngle
502 int e = *setpoint-totalAngle;
503 // Serial.print("e = ");
504 // Serial.println(e);
505

506 // if (totalAngle <-720){
507 // *status = 0;
508 // return;
509 // }
510

511 // if ((e > 8) || (e < -8)){
512

513 long currT = micros();
514

515 float deltaT = ((float)(currT-prevT))/1.0e6;
516 prevT = currT;
517

518 // int e = *setpoint-totalAngle;
519

520 float dedt = (e-eprev)/(deltaT);
521

522 eintegral = eintegral + e*deltaT;
523

524 // Control signal U
525 float u = Kp_main*e + Kd_main*dedt + Ki_main*eintegral;
526

527 // motor power
528 float pwr = fabs(u);
529 if (pwr>180){
530 pwr=180;
531 }
532 Serial.println(e);
533

534 // if (pwr < 30){
535 // pwr = 30;
536 // }
537

538 int dir = 1;
539 if (u<0){
540 dir = -1;
541 }
542 // Serial.print("pwr set at: ");
543 // Serial.println(pwr);
544 int moto1 = motorChannel[0];
545 int moto2 = motorChannel[1];
546 setMotor(moto1, moto2, dir,pwr);
547 // Serial.print("Error e: ");
548 // char errorprint = e;
549 // Serial.println(errorprint);
550

551 eprev = e;
552 // checkQuadrant(readAngle());
553

554

555 // if ((e < 5) && (e > -5)){
556 // *status = 0;
557 // Serial.println(e);
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558 // return;
559 // }
560 }
561

562 void pidIndexMotor(int* setpoint, int *status){
563 // int myNum[3] = {10, 20, 30};
564 // int motorChannel[2] = {2,3};
565 int fingerAngle = encoderIndexCount;
566 // Serial.println("pidFingerMotor running.. ");
567

568 // int motorChannel[2] = {4,5};
569 // Serial.println("Index finger moving");
570

571 // int target_update = 0;
572 // if (target_update == 0){
573 // // int target = 0;
574 // int target = fingerAngle + *setpoint;
575 // int e = target - fingerAngle;
576 // Serial.print("e = ");
577 // Serial.println(e);
578 // target_update ++;
579 // }
580 // int target = fingerAngle + *setpoint;
581

582 int e = *setpoint-fingerAngle;
583 // Serial.print("Error:");
584 // Serial.println(e);
585 // Serial.print("fingerAngle = ");
586 // Serial.println(fingerAngle);
587

588

589 // if (fingerAngle > 1800){
590 // *status = 0;
591 // return;
592 // }
593

594 // if ((e > 8) || (e < -8)){
595

596 long currT = micros();
597

598 float deltaT = ((float)(currT-prevT))/1.0e6;
599 prevT = currT;
600

601 // int e = *setpoint-fingerAngle;
602 // Serial.print("setpoint = ");
603 // Serial.println(*setpoint);
604 // Serial.print("fingerAngle = ");
605 // Serial.println(fingerAngle);
606

607 float dedt = (e-eprev)/(deltaT);
608

609 eintegral = eintegral + e*deltaT;
610

611 // Control signal U
612

613 float u = Kp_index*e + Kd_index*dedt + Ki_index*eintegral;
614 Serial.println(u);
615

616 // motor power
617 float pwr = fabs(u);
618 if (pwr>250){
619 pwr=250;
620 }
621

622 int dir = 1;
623 if (u<0){
624 dir = -1;
625 }
626

627

628 int moto1 = motorChannel[4];
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629 int moto2 = motorChannel[5];
630 // Serial.print("Moto1: ");Serial.println(moto1);
631 // Serial.print("Moto2: ");Serial.println(moto2);
632 setMotor(moto1, moto2, dir,pwr);
633

634

635 eprev = e;
636

637 }
638

639 void pidThumbMotor(int* setpoint, int *status){
640 // int myNum[3] = {10, 20, 30};
641 // int motorChannel[2] = {2,3};
642 int fingerAngle = encoderThumbCount;
643 // Serial.println("pidFingerMotor running.. ");
644

645 // int target_update = 0;
646 // if (target_update == 0){
647 // // int target = 0;
648 // int target = fingerAngle + *setpoint;
649 // int e = target - fingerAngle;
650 // Serial.print("e = ");
651 // Serial.println(e);
652 // target_update ++;
653 // }
654 // int target = fingerAngle + *setpoint;
655

656 int e = *setpoint-fingerAngle;
657 // Serial.print("Error:");
658 // Serial.println(e);
659 // Serial.print("fingerAngle = ");
660 // Serial.println(fingerAngle);
661

662

663 // if (fingerAngle > 1800){
664 // *status = 0;
665 // return;
666 // }
667

668 // if ((e > 8) || (e < -8)){
669

670 long currT = micros();
671

672 float deltaT = ((float)(currT-prevT))/1.0e6;
673 prevT = currT;
674

675 // int e = *setpoint-fingerAngle;
676 // Serial.print("setpoint = ");
677 // Serial.println(*setpoint);
678 // Serial.print("fingerAngle = ");
679 // Serial.println(fingerAngle);
680

681 float dedt = (e-eprev)/(deltaT);
682

683 eintegral = eintegral + e*deltaT;
684

685 // Control signal U
686

687 float u = Kp_thumb*e + Kd_thumb*dedt + Ki_thumb*eintegral;
688 Serial.println(u);
689

690 // motor power
691 float pwr = fabs(u);
692 if (pwr>255){
693 pwr=255;
694 }
695

696 int dir = 1;
697 if (u<0){
698 dir = -1;
699 }
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700

701 int moto1 = motorChannel[2];
702 int moto2 = motorChannel[3];
703 // Serial.print("pwr = ");
704 // Serial.println(pwr);
705 // Serial.print("Moto1: ");Serial.println(moto1);
706 // Serial.print("Moto2: ");Serial.println(moto2);
707 setMotor(moto1, moto2, dir,pwr);
708

709

710

711 eprev = e;
712

713 }
714

715 // if ((e < 5) && (e > -5)){
716 // *status = 0;
717 // Serial.println(e);
718 // return;
719 // }
720 // return;
721

722

723 void pidPinch(int* setpoint_index, int*setpoint_thumb, int *status){
724 // int myNum[3] = {10, 20, 30};
725 // int motorChannel[2] = {2,3};
726 int ThumbAngle = encoderThumbCount;
727 int IndexAngle = encoderIndexCount;
728 // Serial.println("pidFingerMotor running.. ");
729

730 // int target_update = 0;
731 // if (target_update == 0){
732 // // int target = 0;
733 // int target = fingerAngle + *setpoint;
734 // int e = target - fingerAngle;
735 // Serial.print("e = ");
736 // Serial.println(e);
737 // target_update ++;
738 // }
739 // int target = fingerAngle + *setpoint;
740

741 int e_thumb = *setpoint_thumb-ThumbAngle;
742 int e_index = *setpoint_index-IndexAngle;
743 // Serial.print("Error:");
744 // Serial.println(e);
745 // Serial.print("fingerAngle = ");
746 // Serial.println(fingerAngle);
747

748

749 // if (fingerAngle > 1800){
750 // *status = 0;
751 // return;
752 // }
753

754 // if ((e > 8) || (e < -8)){
755

756 long currT = micros();
757

758 float deltaT = ((float)(currT-prevT))/1.0e6;
759 prevT = currT;
760

761 // int e = *setpoint-fingerAngle;
762 // Serial.print("setpoint = ");
763 // Serial.println(*setpoint);
764 // Serial.print("fingerAngle = ");
765 // Serial.println(fingerAngle);
766

767 float dedt_thumb = (e_thumb-eprev_thumb)/(deltaT);
768 float dedt_index = (e_index-eprev_index)/(deltaT);
769

770 eintegral = 0;//eintegral + e*deltaT;
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771

772 // Control signal U
773

774 float u_thumb = Kp_thumb*e_thumb + Kd_thumb*dedt_thumb + Ki_thumb*eintegral;
775 float u_index = Kp_index*e_index + Kd_index*dedt_index + Ki_index*eintegral;
776 // Serial.println(u);
777

778 // motor power
779 float pwr_thumb = fabs(u_thumb);
780 float pwr_index = fabs(u_index);
781

782 if (pwr_thumb >255){
783 pwr_thumb=255;
784 }
785 if (pwr_index >255){
786 pwr_index=255;
787 }
788

789 int dir_thumb = 1;
790 if (u_thumb<0){
791 dir_thumb = -1;
792 }
793 int dir_index = 1;
794 if (u_index<0){
795 dir_index = -1;
796 }
797

798 int motoT1 = motorChannel[2];
799 int motoT2 = motorChannel[3];
800 int motoI1 = motorChannel[4];
801 int motoI2 = motorChannel[5];
802 // Serial.print("pwr = ");
803 // Serial.println(pwr);
804 // Serial.print("Moto1: ");Serial.println(moto1);
805 // Serial.print("Moto2: ");Serial.println(moto2);
806 setMotor(motoT1, motoT2, dir_thumb, pwr_thumb);
807 setMotor(motoI1, motoI2, dir_index, pwr_index);
808

809

810

811 eprev_thumb = e_thumb;
812 eprev_index = e_index;
813

814 }
815

816 void pidHandAndFingers(int* setpoint_hand, int* setpoint_index, int*setpoint_thumb, int *
status){

817 // int myNum[3] = {10, 20, 30};
818 // int motorChannel[2] = {2,3};
819 checkQuadrant(readAngle());
820 int HandAngle = totalAngle;
821 int ThumbAngle = encoderThumbCount;
822 int IndexAngle = encoderIndexCount;
823 // Serial.println("pidFingerMotor running.. ");
824

825 // int target_update = 0;
826 // if (target_update == 0){
827 // // int target = 0;
828 // int target = fingerAngle + *setpoint;
829 // int e = target - fingerAngle;
830 // Serial.print("e = ");
831 // Serial.println(e);
832 // target_update ++;
833 // }
834 // int target = fingerAngle + *setpoint;
835 int e_hand = *setpoint_hand-HandAngle;
836 int e_thumb = *setpoint_thumb-ThumbAngle;
837 int e_index = *setpoint_index-IndexAngle;
838 // Serial.print("Error:");
839 // Serial.println(e);
840 // Serial.print("fingerAngle = ");
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841 // Serial.println(fingerAngle);
842

843

844 // if (fingerAngle > 1800){
845 // *status = 0;
846 // return;
847 // }
848

849 // if ((e > 8) || (e < -8)){
850

851 long currT = micros();
852

853 float deltaT = ((float)(currT-prevT))/1.0e6;
854 prevT = currT;
855

856 // int e = *setpoint-fingerAngle;
857 // Serial.print("setpoint = ");
858 // Serial.println(*setpoint);
859 // Serial.print("fingerAngle = ");
860 // Serial.println(fingerAngle);
861 float dedt_hand = (e_hand - eprev_hand)/(deltaT);
862 float dedt_thumb = (e_thumb-eprev_thumb)/(deltaT);
863 float dedt_index = (e_index-eprev_index)/(deltaT);
864

865 eintegral = 0;//eintegral + e*deltaT;
866

867 // Control signal U
868 float u_hand = Kp_hand *e_hand + Kd_hand *dedt_hand + Ki_hand *eintegral;
869 float u_thumb = Kp_thumb*e_thumb + Kd_thumb*dedt_thumb + Ki_thumb*eintegral;
870 float u_index = Kp_index*e_index + Kd_index*dedt_index + Ki_index*eintegral;
871 // Serial.println(u);
872

873 // motor power
874 float pwr_hand = fabs(u_hand);
875 float pwr_thumb = fabs(u_thumb);
876 float pwr_index = fabs(u_index);
877

878 if (pwr_hand >200){
879 pwr_hand=200;
880 }
881 if (pwr_thumb >255){
882 pwr_thumb=255;
883 }
884 if (pwr_index >255){
885 pwr_index=255;
886 }
887

888 int dir_hand = 1;
889 if (u_hand <0){
890 dir_hand = -1;
891 }
892 int dir_thumb = 1;
893 if (u_thumb<0){
894 dir_thumb = -1;
895 }
896 int dir_index = 1;
897 if (u_index<0){
898 dir_index = -1;
899 }
900

901

902 int motoH1 = motorChannel[0];
903 int motoH2 = motorChannel[1];
904 int motoT1 = motorChannel[2];
905 int motoT2 = motorChannel[3];
906 int motoI1 = motorChannel[4];
907 int motoI2 = motorChannel[5];
908 // Serial.print("pwr = ");
909 // Serial.println(pwr);
910 // Serial.print("Moto1: ");Serial.println(moto1);
911 // Serial.print("Moto2: ");Serial.println(moto2);
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912 setMotor(motoH1, motoH2, dir_hand, pwr_hand);
913 setMotor(motoT1, motoT2, dir_thumb, pwr_thumb);
914 setMotor(motoI1, motoI2, dir_index, pwr_index);
915

916

917 eprev_hand = e_hand;
918 eprev_thumb = e_thumb;
919 eprev_index = e_index;
920

921

922 // if (counter == 80){
923 Serial.print("E_hand:␣");Serial.println(e_hand);//Serial.print(" E_index: ");Serial.print(

e_index);Serial.print(" E_thumb: ");Serial.println(e_thumb);
924 // Serial.print("Position: ");Serial.println(HandAngle);
925 // counter = 0;
926 // }
927 // counter++;
928

929 }
930

931

932 void setMotor(int moto1, int moto2, int dir, int pwmVal){
933 if (dir==1){
934 ledcWrite(moto1, pwmVal);
935 ledcWrite(moto2, 0);
936 }
937 else if (dir == -1){
938 ledcWrite(moto1, 0);
939 ledcWrite(moto2, pwmVal);
940 }
941 else{
942 ledcWrite(moto1, 0);
943 ledcWrite(moto2, 0);
944 }
945

946

947 }
948 // void pidPosition(int* setpoint, float* error, int *status){
949

950 // oldTime = millis();
951 // checkQuadrant(readAngle());
952

953 // if(totalAngle <-720){
954 // *status = 0;
955 // return;
956 // }
957

958

959 // *error = *setpoint - totalAngle;
960 // while (*error > 10){
961 // float proportional = PIDParams.Kp * (*error);
962

963 // PIDParams.integrator = PIDParams.integrator + 0.5f * PIDParams.Ki * PIDParams.T *
((*error) + PIDParams.prevError);

964

965 // /* Anti-wind-up via integrator clamping */
966 // if (PIDParams.integrator > PIDParams.limMaxInt) {
967 // PIDParams.integrator = PIDParams.limMaxInt;
968 // } else if (PIDParams.integrator < PIDParams.limMinInt) {
969 // PIDParams.integrator = PIDParams.limMinInt;
970 // }
971 // /*
972 // * Derivative (band-limited differentiator)
973 // */
974 // // PIDParams.differentiator = -(2.0f * PIDParams.Kd * (totalAngle - PIDParams.

prevMeasurement) /* Note: derivative on measurement, therefore minus sign in front
of equation! */

975 // // + (2.0f * PIDParams.tau - PIDParams.T) * PIDParams.
differentiator) / (2.0f * PIDParams.tau + PIDParams.T);

976 // //Serial.println(PIDParams.integrator);
977 // /*
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978 // * Compute output and apply limits
979 // */
980 // PIDParams.out = proportional + PIDParams.integrator;//int(proportional + PIDParams

.integrator + PIDParams.differentiator);
981 // if (PIDParams.out > PIDParams.limMax) PIDParams.out = int(PIDParams.limMax);
982 // else if (PIDParams.out < PIDParams.limMin) PIDParams.out = int(PIDParams.limMin);
983

984 // // Serial.print("PID Output: ");Serial.println(PIDParams.out);
985 // // if(abs(PIDParams.out) < 10) *setpoint = totalAngle;
986 // /* Store error and measurement for later use */
987 // PIDParams.prevError = *error;
988 // //Serial.print("Speed: "); Serial.println(speed);
989 // //if(abs(speed) < 1) PIDParams.out = 0;
990 // if(abs(PIDParams.out) < 10){
991 // PIDParams.out = 0;
992 // }
993 // PIDParams.prevMeasurement = totalAngle;
994 // if(PIDParams.out<0){
995 // ledcWrite(cw, abs(PIDParams.out));
996 // ledcWrite(ccw, 0);
997 // }
998 // else if (PIDParams.out>0){
999 // ledcWrite(cw, 0);

1000 // ledcWrite(ccw, PIDParams.out);
1001 // }
1002 // else{
1003 // ledcWrite(cw, 0);
1004 // ledcWrite(ccw, 0);
1005 // }
1006 // // Serial.print("Output: "); Serial.println(PIDParams.out);
1007 // // Serial.print("Error: "); Serial.println(PIDParams.prevError);
1008

1009 // // speed = totalAngle-PIDParams.prevMeasurement;
1010 // checkQuadrant(readAngle());
1011 // }
1012 // // Serial.print("Error: "); Serial.println(error);
1013 // // Serial.print("Position: "); Serial.println(totalAngle);
1014

1015

1016 // }
1017

1018 void initialize(){
1019

1020 pinMode(mainMotorPin1, OUTPUT);
1021 pinMode(mainMotorPin2, OUTPUT);
1022 pinMode(thumbMotorPin1, OUTPUT);
1023 pinMode(thumbMotorPin2, OUTPUT);
1024 pinMode(indexMotorPin1, OUTPUT);
1025 pinMode(indexMotorPin2, OUTPUT);
1026

1027 pinMode(EncoderThumbA, INPUT);
1028 pinMode(EncoderThumbB, INPUT);
1029 pinMode(EncoderIndexA, INPUT);
1030 pinMode(EncoderIndexB, INPUT);
1031

1032

1033 ledcSetup(0, 20000, 8); // Setup for all channels
1034 ledcSetup(1, 20000, 8);
1035 ledcSetup(2, 16000, 8);
1036 ledcSetup(3, 16000, 8);
1037 ledcSetup(4, 20000, 8);
1038 ledcSetup(5, 20000, 8);
1039

1040 ledcAttachPin(mainMotorPin1, 0);
1041 ledcAttachPin(mainMotorPin2, 1);
1042 ledcAttachPin(thumbMotorPin1, 2);
1043 ledcAttachPin(thumbMotorPin2, 3);
1044 ledcAttachPin(indexMotorPin1, 4);
1045 ledcAttachPin(indexMotorPin2, 5);
1046

1047 delay(100);
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1048 Serial.println("Status:␣Motor␣pins␣assigned.");
1049 delay(10);
1050

1051 int controlMode = 1;
1052 Serial.println("Status:␣Connecting␣encoder..");
1053 delay(10);
1054 I2Cone.begin(21,22);
1055 encoder.setI2CInstance(&I2Cone);
1056 uint8_t new_address=0x0A;
1057 encoder.set_address(new_address);
1058 encoder.default_cfg();
1059 bool encoder_connected = false;
1060 deleteTask = false;
1061

1062 attachInterrupt(digitalPinToInterrupt(EncoderThumbA), updateEncoderThumb, CHANGE);
1063 // attachInterrupt(digitalPinToInterrupt(EncoderThumbB), updateEncoderThumb , CHANGE);
1064 attachInterrupt(digitalPinToInterrupt(EncoderIndexA), updateEncoderIndex, CHANGE);
1065 // attachInterrupt(digitalPinToInterrupt(EncoderIndexB), updateEncoderIndex , CHANGE);
1066 last_state_IA = digitalRead(EncoderIndexA);
1067 last_state_TA = digitalRead(EncoderThumbA);
1068

1069 while(!encoder_connected){
1070 if (encoder.check_communication()==C3DHALL11_OK){
1071 Serial.println("Status:␣Encoder␣connected");
1072 delay(100);
1073 encoder_connected = true;
1074 //sensor[i].offsetCalibration();
1075 } else{
1076 Serial.println("Status:␣Encoder␣error");
1077 delay(1000);
1078 }
1079 }
1080

1081 xTaskCreate(
1082 readPositionTask, /* Function to implement the task */
1083 "ReadPosition", /* Name of the task */
1084 10000, /* Stack size in words */
1085 (void *)&deleteTask, /* Task input parameter */
1086 20, /* Priority of the task */
1087 &xHandle /* Task handle. */
1088 ); /* Core where the task should run */
1089

1090 initPosition(&deleteTask);
1091

1092 // if(controlMode == 0){
1093 // connect_Myo();
1094 // xTaskCreatePinnedToCore(
1095 // MyoDisconnectTask, /* Function to implement the task */
1096 // "MyoDisconnectTask", /* Name of the task */
1097 // 10000, /* Stack size in words */
1098 // NULL, /* Task input parameter */
1099 // 0, /* Priority of the task */
1100 // NULL, /* Task handle. */
1101 // 0); /* Core where the task should run */
1102

1103 // xTaskCreatePinnedToCore(
1104 // processEMGData, /* Function to implement the task */
1105 // "processEMGData", /* Name of the task */
1106 // 10000, /* Stack size in words */
1107 // NULL, /* Task input parameter */
1108 // 1, /* Priority of the task */
1109 // NULL, /* Task handle. */
1110 // 0); /* Core where the task should run */
1111

1112 // xTaskCreatePinnedToCore(
1113 // MotorControlTask, /* Function to implement the task */
1114 // "MotorControlTask", /* Name of the task */
1115 // 10000, /* Stack size in words */
1116 // NULL, /* Task input parameter */
1117 // 2, /* Priority of the task */
1118 // NULL, /* Task handle. */
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1119 // 0); /* Core where the task should run */
1120 // }
1121 initialized = true;
1122 }
1123

1124 void setup()
1125 {
1126 Serial.begin(230400);
1127 delay(10);
1128 xTaskCreatePinnedToCore(
1129 processSerialData, /* Function to implement the task */
1130 "SerialData", /* Name of the task */
1131 10000, /* Stack size in words */
1132 NULL, /* Task input parameter */
1133 10, /* Priority of the task */
1134 NULL, /* Task handle. */
1135 0); /* Core where the task should run */
1136

1137 }
1138

1139

1140 void loop()
1141 {
1142

1143 }



B
Appendices

Table B.1: Specifications of the Pololu miniature brushed DC metal gearmotor with a gearbox cross-section of 10×12 mm and
a 9 mm long, 3 mm diameter D-shaped gearbox output shaft.

Motor specifications
Size 10 x 12 x 25 mm
Gear ratio 75.81:1
No-load speed @ 6V 410 rpm
Stall current @ 6V 1.6 A
Stall torque @ 6V .13 Nm
Max output power @ 6V 1.4 W
Max efficiency @ 6V 40 %
Speed at max efficiency 340 rpm
Torque at max efficiency 0.023 Nm
Current at max efficiency 0.34 A
Output power at max efficiency 0.80 W
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Table B.2: Specifications of the Maxon DCX19s motor with a 62:1 GPX19 gearbox

Motor specifications
Size 19 x 68.7 mm
Gear ratio 62:1
No-load speed @ 12V 12700 rpm
Stall current @ 12V 8.26 A
Stall torque @ 12V .735 Nm
Max output power @ 12V 16.1 W
Max efficiency @ 12V 82.2 %
Speed at max efficiency 1080 rpm
Torque at max efficiency 0.114 Nm
Current at max efficiency 1.35 A
Output power at max efficiency 16.1 W
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