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Abstract

Interactive video games often use vision-based
systems or wearables to track player move-
ments. Vision-based systems are privacy-invasive,
and wearables require frequent recalibration and
recharging.  Frequently-Modulated Continuous-
Wave (FMCW) radars have been proposed as an
alternative tracking solution addressing these prob-
lems. Working in the millimeter-wave (mmWave)
range, they capture scenes as point clusters, ensur-
ing privacy without attaching sensors to the user.
Previous research has shown their applicability in
rehabilitation, gait recognition, and smart home
appliances. This study focuses on integrating an
mmWave sensing device with an interactive version
of the Breakout video game. We propose a gen-
eral framework with three main modules — generat-
ing points, clustering them, and reconstructing the
player’s movements as in-game commands. Our
system enhances an already existing Kalman filter-
based tracking algorithm. Online experiments were
conducted to compare the proposed system to the
baseline algorithm. The proposed system decreases
the standard deviation on the estimated target loca-
tion by 33% against motionless targets, while main-
taining the baseline accuracy when tested on mov-
ing targets. Furthermore, it allows a higher game
refresh rate, thus smoothing in-game movements.
These results demonstrate the potential of FMCW
radars in enhancing interactive video game experi-
ences.

Keywords - mmWave, tracking, stationary, interac-
tive game

1 Introduction

Transparent screens are electronic displays that show content
while allowing people to see through them. Installed in pub-
lic areas, they function as versatile tools, blocking direct sun-
light and distributing information [1]. Figure 1 illustrates a
transparent screen deployment in the Rotterdam The Hague
Airport. To increase the utility of these screens, we suggest
adding interactive activities like video games. For instance,
a simple interactive version of the Breakout video game [2],
where the user navigates the paddle through physical move-
ment, would provide entertainment to the passengers. An ex-
ample game interface is shown in Figure 6¢ and a demonstra-
tion of the game played on a PC is available online '.
Knowing the precise user location is crucial to facilitate
such an interactive game. Tracking primarily relies on vision-
based systems or standalone controllers. However, both in-
troduce challenges that limit their applicability to public ar-
eas. Cameras are expensive, raise serious privacy concerns,
and require strict lighting. At the same time, it is impracti-
cal to assume that all passengers have a controller compatible
with our system. The limitations of these traditional tracking

"https://www.youtube.com/watch?v=IK 1 wbIBbjyI
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Figure 1: Transparent screens installed in the Rotterdam The Hague
Airport, displaying geometric figures and reducing the incoming
sunlight. Courtesy of VideowindoW [3].

methods emphasize the requirement for an alternative solu-
tion that offers accurate and convenient tracking in an indoor
setting.

Recent progress in radio-based technology and its applica-
tions presents promising opportunities for an innovative ap-
proach to tracking users in an interactive video game envi-
ronment. Frequently-Modulated Continuous-Wave (FMCW)
radars transmit electromagnetic waves and analyse the re-
flected signals to determine an object’s range, velocity, and
angle [4]. Working in the millimeter wave (mmWave) range,
these devices function indifferent to light. Furthermore, they
ensure privacy by capturing the scene as a cluster of points (or
a point cloud), as shown in Figure 6(a). Additionally, unlike
controllers, they require no sensors attached to the user.

However, despite the extensive research on mmWave de-
vices and their applications, there is a gap in their use for
interactive video games. State-of-the-art (SoA) systems have
three main limitations when considering a gaming applica-
tion. First, some focus on gesture classification rather than
continuous tracking [5], [6]. Second, others are vulnerable to
multipath interference, inevitable in indoor environments [7],
[8]. Lastly, there are also issues with the detection of station-
ary individuals, as systems lose track of the target when it is
not moving sufficiently long [9].

Consequently, these limitations motivate our investigation
into utilising an FMCW radar for real-time video game con-
trol. This paper aims to establish a novel approach to tracking
people in real time for the interactive video game Breakout,
using an mmWave radar. The main contributions of this work
are as follows:

* We design an interactive game system using mmWave
radar as a control module for Breakout. To understand
our work better, please refer to a demonstration of the

interactive game 2.

* We implement a novel technique reducing the variance
in stationary target tracking by 33% 3.

* We evaluate various signal processing techniques to in-
crease the game refresh rate.

This paper is structured as follows. Section 2 summarises
video game tracking systems and relevant mmWave radar ap-

Zhttps://youtu.be/O2M1cgol-eU
3Measured in standard deviation in the target location.
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plications. Section 3 introduces the challenges posed by us-
ing an mmWave radar as a tracking module in the interactive
video game Breakout. Subsequently, Section 4 presents the
proposed system design. The experimental setup is described
in Section 5, followed by an evaluation of the results in Sec-
tion 6. Section 7 discusses the limitations of this research,
and Section 8 examines the reproducibility and integrity of
our work. Finally, Section 9 concludes the paper by summa-
rizing our findings and listing potential future improvements.

2 Related Work

To our knowledge, no previous research has been done on
using an FMCW radar as a control module for a video game.
The following subsections consider multiple tracking systems
applied in the gaming industry, their limitations, and various
mmWave applications, as the motivation for our research.

2.1 Tracking Solutions in Interactive Games

There are two primary tracking systems categories — vision-
and controller-based. Here, we investigate the most popular
devices in each category and their shortcomings.

Vision-Based Systems
Vision-based systems primarily rely on an RGB camera, a
depth camera, or other motion capture modules [6]. A regular
RGB camera has several disadvantages. First, it cannot sense
the third dimension (depth), thus making it difficult to un-
derstand what a person is doing [10]. Second, a camera raises
privacy concerns by capturing sensitive and identifiable infor-
mation. Last, they are susceptible to poor lighting conditions,
resulting in low-quality images in a dark environment.
Microsoft Kinect is an example of a motion capture system.
It improves on the depth limitation posed by RGB technology,
using a depth sensor that comprises an infrared (IR) projector
and an IR camera [10]. Yet, it suffers a few major limitations,
beyond privacy and strict lighting inherent to the RGB cam-
era module. According to Zhang [10], heat or drift in the IR
laser might invalidate the calibration between the IR projector
and the IR camera, making the depth values inaccurate. Even
though recalibration is not particularly complicated, it brings
inconvenience to the user.

Standalone Controllers

The PlayStation Move Motion Controller 4 (or wand) works
together with the PlayStation Eye camera >, configured to de-
tect the illuminating sphere attached to the wand. Knowing
the sphere’s size, it can accurately compute the controller’s
3D coordinates. However, it tracks the player’s hand(s) only.
According to Tanaka et al., [11], upper-body motion can be
estimated using Inverse Kinematics but the resulting accu-
racy would be poor. They also report that frequent recali-
bration is required for an accurate system performance. Even
though quickly adopted by the users [12], recalibration would
cause inconvenience in an intense gameplay. Finally, Teix-
eira et al. [12] show that button placement is a drawback,
as users experience problems finding the appropriate button
when prompted to.

*https://en.wikipedia.org/wiki/PlayStation_Move
>https://en.wikipedia.org/wiki/PlayStation_Eye

2.2 mmWave Radar Applications

In this section, we discuss several relevant studies on tracking
and user identification, and gesture and whole-body move-
ment recognition, using a single mmWave radar.

Tracking and User Identification

Zhao et al. [9] propose a tracking and identification system,
called mID, consisting of three main modules. First, the gen-
erated points are grouped using DBSCAN, a density-based
clustering algorithm. Second, it uses the Hungarian algorithm
to associate identical objects across two consecutive frames
and create object-corresponding tracks. In addition, it uses a
Kalman filter as an unbiased estimator to predict the track’s
location when the target is “undetected due to occlusion or
temporary loss from the sensing region” [9, p. 35-36]. Fi-
nally, the system uses a long short-term memory (LSTM) unit
as an identity classifier. It uses a fixed-size bounding box to
form an occupancy grid and encapsulate the body shape in-
formation, and sequential occupancy grids to infer movement
characteristics. Their system achieved median position er-
rors of 0.16 m and identification accuracy of 89% when tested
with 12 participants.

As mentioned, mID uses the Hungarian algorithm to assign
existing tracks to current measurements, with a step thresh-
old defining the maximum distance between a track and its
assigned measurement. However, a small threshold cannot
support abrupt movements due to the large distance in the
target’s location. Conversely, a large threshold value could
wrongly associate a new target with an old track. This makes
the system less effective in highly dynamic environments.

Movement Recognition

Liu et al. [5] developed a four-module arm gesture recog-
nition system, mmHomeGes, applied in smart home scenar-
ios. First, it transforms raw mmWave signals into a reflec-
tion point cloud that depicts the performed gesture. Then,
it removes interference by separating potential users from
noise via UDAN, a novel user discovery algorithm [5]. Sub-
sequently, a Hidden Markov Model determines whether the
captured motion is among the defined arm gestures. Last, a
shallow neural network and another Hidden Markov Model
are used to respond to users’ gestures in real time. mmHome-
Ges archives a recognition accuracy of 95.30% across vari-
ous smart home scenarios, despite the impact of surrounding
movements and concurrent gestures.

S. An and U. Ogras [6] proposed an assistive rehabilita-
tion system, MARS. It preprocesses the point cloud data to a
lower dimension and utilises a convolutional neural network
(CNN) to reconstruct 19 human joints and skeletal move-
ments. When evaluated against ten specific rehabilitation
movements, MARS achieved an average mean absolute er-
ror of 5.87 cm for all joint positions, with a maximum error
of 7° for the knee angle, and 13° for the elbow angle.

Singh et al. [7] develop a human activity recognition sys-
tem focusing on five full-body movements — walking, jump-
ing, jumping jacks, squats, and boxing. Their system, Rad-
HAR, preprocesses the generated point cloud into a voxelised
representation, standardising the input size. It then uses a
sliding window to combine multiple frames before feeding
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them into a classifier. The study examined how spatial and
temporal dependencies in the data impact classifier perfor-
mance. They concluded that the best results are achieved
by combining time-distributed CNN layers for spatial feature
learning and bi-directional LSTM layers for capturing tempo-
ral dependency. The results presented in this study reveal the
importance of assuming temporal and spatial dependencies in
sequential point cloud data.

The remarkable performance achieved in these studies
demonstrates the capabilities of mmWave radars in various
applications, ranging from user tracking to complex move-
ment recognition. However, these applications are restricted
to controlled environments such as smart homes, rehabilita-
tion systems, or specific physical activities. Consequently, the
reviewed works do not address the complexities introduced
by a highly dynamic, real-time environment, such as those
found in interactive video games. Video games involve rapid,
unpredictable movements and periods of little-to-no move-
ment, and require instantaneous feedback, posing significant
challenges.

3 Three Problems in Using mmWave
Technology in Breakout

We have identified three challenges in integrating an
mmWave radar as a paddle control for the video game Break-
out. The first problem is inherent to the radar technology —
the sensor captures few points on stationary targets. This
makes predicting the exact location of a static object diffi-
cult. The second challenge arises from integrating the sensing
technology into the game environment. A mismatch between
the radar sampling rate and the game refresh rate results in
snappy paddle movement. The third problem is caused by
wave reflections from static and dynamic objects, resulting in
ghost clusters being captured. In the following subsections,
we explore these issues and their impact on the system.

3.1 Few Cluster Points on a Static Target

A non-moving person produces a weaker signal, reducing the
number of captured points and making it difficult to identify
them as a human. In contrast to the general motionless ob-
ject detection problem, this research focuses on continuously
tracking a target that stops moving. Since the target is actively
tracked until it stops, the processing unit retains knowledge
of its last known position and covering region. This allevi-
ates the higher-level detection issue but introduces another
problem, shown on Figure 2. As we can observe, sampling
a limited number of points within the area results in a high
variance in the static target’s expected center of mass. Inte-
grated into Breakout, this system misbehaviour causes high
variance in the paddle location, as illustrated by the blurred
effect in Figure 3b. Thus, it becomes crucial to minimise the
noise introduced by the low number of points.

3.2 Refresh Rate Mismatch

Another challenge is the discrepancy between the radar sam-
pling rate and the refresh rate, required for a smooth user
experience. The radar samples a point cloud every 100 ms,
while the game screen is updated every 50 ms. Thus, every
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Figure 2: Tracking a stationary target, positioned right in front of
the radar. The relative player position is measured in a dimension,
perpendicular to the radar-to-player direction vector.

(a) (b)

Figure 3: Low-opacity snapshot overlay over 106 consecutive
frames, throughout which the target is static. The darker the paddle
color shade is, the more frequently the paddle appears there. Desired
behaviour (a) and observed behaviour (b).

second game frame processes a point cloud. However, with
no new information in the other frames, a naive reconstruc-
tion that uses the current user’s position to place the paddle
results in snappy movement. This behavior is illustrated in
Figure 4. As we can observe, the paddle is moved only ev-
ery second frame, disrupting the seamless interaction players
expect.

3.3 Ghost Targets

In an environment with a substantial number of objects, wave
reflections are common. They might result in the so-called
ghost objects — nonexistent point clusters that the radar de-
tects after multiple reflections of surrounding objects. Ghost
objects can introduce a second target, which can mislead the
system. If the ghost target is far from the real one, the sys-
tem might track the ghost instead. If the ghost target is close,
it can deceive the system into believing the tracked object is
larger. When the real target is stationary, the expanded cluster
dimensions caused by a nearby ghost could increase noise.
However, if the real target starts moving, the system might
continue to track that ghost.

In this paper, we focus on addressing the former two prob-
lems — reducing the variance in static target tracking and cre-
ating a framework that allows a high refresh rate.

4 System Design

In this section, we describe the design of our interactive video
game system using the IWR1443BOOST radar [13]. First,
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Figure 4: The paddle position at every frame. The radar generates a
point cloud every 100 ms, whereas the game screen is updated every
50 ms. A reconstruction using the current player’s position updates
the paddle every 100 ms, resulting in snappy movement.

Transparent|
Screen

Figure 5: Environmental Setup. The labels indicate the radar, cir-
cled in red, the transparent screen, behind it, and the 2-m-wise play-
ground.

we outline the development and evaluation environment, in-
cluding radar placement and the recognised player area. Sec-
ond, the radar configuration is detailed, specifying key pa-
rameters and their values. Last, we discuss the software com-
ponent, tracking the user and reconstructing their movements.

4.1 Setup

The environment is depicted in Figure 5. The radar is placed
at 0.75 m height. Other placement positions, specifically 1 m
and 1.5 m, were considered, and it was empirically concluded
that higher placement results in fewer generated points. The
playground is a two-metre wide strip, positioned at a two me-
tres distance to the radar, where the user is detected and can
interact with the system. The transparent screen, visualising
the game, is placed right behind the radar.

Point Generation Tracking Game Environment

(a) (b) ()

Figure 6: System Overview. Point generation module (a). Track-
ing module responsible for clustering and monitoring location and
direction over time (b). The game environment controls the paddle
using the tracks (c).

4.2 Radar Configuration

The configuration is generated using the Texas Instruments
Demo Visualiser ®. Further details on all configured parame-
ters are shown in Table 1.

Table 1: Configuration Parameters

Parameter Value
SDK version 2.1
Transmitting Antennas 3
Receiving Antennas 4

Maximum Unambiguous Range (m) 8.02
Peak Grouping in Range Direction 0
Peak Grouping in Doppler Direction 0
Clutter Removal 1
Threshold Scale in CFAR Message

4.3 Software

To facilitate an interactive video game, our system requires
three independent modules — point generation, tracking, and
game environment, as illustrated in Figure 6. First, an FMCW
radar captures the scene as a point cloud. The second module
clusters the points into tracks. Each track represents an object
(in our case, a person) and must be independently tracked
throughout the subsequent frames. The third module is re-
sponsible to emulate the game and register appropriate user
actions as control commands. The implementation is pub-
licly available on our GitHub repository [14]. In the rest of
this section, we describe the tracking and reconstruction mod-
ules in detail.

Tracking

The tracking algorithm extends a system developed by Par-
litsis [15]. Tts tracking module works as follows. Once the
point cloud is generated, the points are clustered using DB-
SCAN. A track is created for each cluster, and its state is con-
tinuously monitored in the subsequent measurement frames.
First, the target’s location, direction, and speed are estimated
using Kalman filter. Subsequently, the newly captured points
are assigned to the closest track, based on the expected track
positions. Points that are not within any track bounding box

®https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_
Visualizer/ver/2.1.0/
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are considered outliers. They are processed using DBSCAN
and new dynamic targets are created, for instance, on people
entering the scene. Following, the Kalman filter is updated
using the measurement. Despite being considered a more ac-
curate estimator than single measurements, the Kalman filter
easily loses a target that moves quickly during experiments.
The root problem is not identified, as it was not the primary
focus of this research. The existing system already overcomes
this issue. It adjusts the updated state along the x-axis, con-
sidering the distance between the updated state and the mea-
sured target location. Specifically, it adds a fraction of this
distance to the state estimate, placing greater importance on
precise measurements

Inspired by the group tracking algorithm GTRACK [16]
developed by Texas Instruments, we expanded the track state
update step to reduce the variance on static targets. In partic-
ular, the track state is updated based on its previous status and
estimated velocity, the points assigned in this measurement,
and their properties. The flow diagram in Figure 7 shows the
decisions and the corresponding state changes.

The decision process is divided into two main branches
based on whether any measurement points are assigned to a
target. If no new data is associated with a target, the current
track status is considered. If the target is static, the update
step is skipped. If the target is dynamic, its estimated speed
determines the next step — if the speed is below a threshold,
the target is assumed to have stopped, and otherwise, it is
considered occluded by another target and assumed to con-
tinue moving. Conversely, when new points are associated
with a target, the number of dynamic points among them is
evaluated. If this number exceeds a threshold, the target is
considered dynamic and updated accordingly. If the number
of dynamic points is below the threshold, the track’s current
status is assessed. If the target is static, the update step is
skipped, while if it is dynamic, its estimated speed is con-
sidered. Similar to the other branch, a speed lower than a
threshold value suggests the target has stopped, while higher
speeds indicate continued movement.

We explore the influence of three particular parameters on
the system behavior. The first, the point velocity threshold V,,
determines the minimal speed necessary to consider a point
dynamic. The second, the dynamic points count threshold
N, determines the number of dynamic points needed to clas-
sify a target as dynamic. The third one, the target velocity
threshold V; (or minVelocityStopNoDyn in Figure 7) defines
the speed, below which a target with few dynamic points is
considered stopped. Specific threshold values are further in-
vestigated in Section 5.1.

Reconstruction

As our system uses the Breakout video game, the reconstruc-
tion module focuses on positioning the paddle based on the
player’s location. To overcome the snappy movement prob-
lem discussed in Section 3.2, we implement a signal process-
ing technique known as moving average [17]. This method
uses a sliding window to process the most recent data points.
In particular, we calculate the most recent user location at
each frame. We either use a past measurement, when the
frame is between measurements or the current measurement.

We calculate the average of the most recent user locations
over the last three frames. This average guides the paddle’s
placement. While effective in smoothing the movement, this
approach introduces delay by considering past measurements
when determining the current paddle location. In this pa-
per, the delay measures the time required for the system to
position the paddle according to the user’s movement. Fur-
ther information about the optimal window length W; and
detailed evaluation can be found in Section 5.2. In addition,
Section 5.2 considers another smoothing technique, namely
interpolation.

5 Evaluation

Four types of experiments are conducted. Each experiment
follows one of the guidelines that specify the player’s actions.

Type 1: Staying straight right in front of the radar, feet to-
gether. This experiment mimics a person about to start
the game, or waiting for the ball to reach the paddle
in a low-speed game.

Type 2: Staying straight right in front of the radar, feet apart.
This experiment mimics a person waiting for the ball
to reach the paddle in a high-speed game.

Type 3: Move sideways with feet apart, facing the radar, and
staying within the designated playground. The actor
should stop for a second every time they reach the
playground border before they move to the other end.
This experiment mimics a person trying to position
the paddle where the ball would be in a low-speed
game.

Type 4: Move sideways with feet apart, facing the radar, and
staying within the designated playground. The actor
should constantly move end-to-end and change their
direction. This experiment mimics a person trying to
position the paddle where the ball would be in a high-
speed game.

Each conducted experiment is recorded and publicly avail-
able on our GitHub repository [18], stored in comma-
separated value files (or logs). However, as the player starts
and stops the system manually, the logs include data captured
while the player moves towards the playground at the begin-
ning, and towards the system to shut it down, at the end. To
accurately assess the system behaviour, these preceding and
succeeding frames are excluded during evaluation. These de-
tails and a label indicating the experiment type are specified
in a separate text file within each experiment. In the follow-
ing subsections, we consider how changing the tracking and
reconstruction modules impacts the system performance.

5.1 Tracking

This section investigates different values for the three key pa-
rameters identified in Section 4.3 — the point velocity thresh-
old V,, the dynamic point count threshold N4, and the target
velocity threshold V.

Radial Velocity Threshold for Dynamic Points
To label a point as dynamic, its velocity must exceed V.
The radar’s resolution for radial velocity is 0.13m/s. In
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Figure 8: Comparison between the system behaviour across two
threshold values V},, used to determine whether a point is dynamic.
Against a dynamic target, with V,, = 0.15m/s, the system loses
track of the target between frames 175 and 225, and 250 and 290.

other words, all recorded velocities are multiple of 0.13 m/s.
Therefore, the system’s behaviour changes only once V), sur-
passes the next multiple of 0.13m/s. For instance, V, =
0.14m/s and V,, = 0.20m/s result in identical point labels,
but a value greater than 0.26 m/s introduces a difference.
However, as illustrated in Figure 8, any non-zero V), results
in poor performance when tracking a moving target.

Dynamic Point Count Threshold to Update Estimators

When points are associated with a track, the subsequent deci-
sion in Figure 7 is based on whether there are dynamic points
among them. Even though the decision poses the question
“Are all these points Static Points”, GTRACK considers a
non-zero threshold N, on the minimal number of dynamic
points necessary to update the state and the corresponding
estimators. Intuitively, a higher value results in a more sta-
ble estimate on a static target, but introduces a delay or loses

a dynamic target. Conversely, a smaller value responds to
movements with little delay but produces a noisy estimate on
a stationary target. This behavior is visualised in Figure 9,
which compares four values. As we can observe, Ny = 6
is already large, as the system loses the moving target (b),
whereas, with N; = 0, the system performs badly against a
non-moving target (a).

Maximal Velocity of Static Target

The velocity of a target is calculated as the average velocity
of all points associated with that target. To label a target as
dynamic when insufficient dynamic points are recorded, its
velocity must be above V;. Otherwise, it is considered stop-
ping and labeled as static. We examine several threshold val-
ues —0.5m/s, 0.15m/s, and 0.04 m/s. While V; = 0.5m/s
is used in GTRACK, the latter values are empirically cho-
sen based on observations of the velocities when a track sta-
tus changes. For instance, when a moving target is consid-
ered stationary, or a static one is detected at a new location.
A lower threshold value improves target tracking accuracy,
while a higher threshold value reduces the variance in static
target tracking. Figure 10 illustrates the system behaviour
with the three different thresholds. The system performs
worst with V; = 0.04m/s, while with V; = 0.15m/s and
V: = 0.5m/s exhibits similar behavior in tracking a static
target. However, any value higher than 0.04 m/s is shown to
cause misbehavior on dynamic targets.

Post-Tuning Comparison

Based on the discussed hyperparameter tuning, V,, = 0m/s,
Ny =4,and V; = 0.04m/s. Tested on stationary targets, the
improved tracking module achieves an average of 3.02cm
standard deviation in static target tracking. In comparison,
the baseline implementation, applied to the same experimen-
tal data, results in approximately 1.5 times larger standard
deviation, specifically 4.52 cm.
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Figure 9: Comparison of system behaviour across four different threshold values Ny, defining the number of dynamic points necessary to
classify a target as dynamic. (a) For a static target, a higher threshold decreases variance. (b) For a dynamic target, a threshold over four leads
to losing the target. The experiments are run using V; = 0.04m/s and V,, = Om/s.
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Figure 10: Comparison between the system behaviour across three different threshold values V;, defining the maximal velocity allowed on
a stationary target. (a) For a static target, a higher threshold decreases variance. (b) For a dynamic target, a threshold value above 0.04 m/s
leads to losing the target. The experiments are run using V, = 0.04m/s and Ny = Om/s.
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Figure 11: Comparison between the baseline and extended algorithm in dynamic target tracking. (a) The extended algorithm accurately tracks
a dynamic target in constant motion. (b) The extended algorithm signal is more stable when the dynamic target temporarily stops.



Evaluated on a dynamic target, the state machine does not
hinder the tracking performance. As observed in Figure 11,
the system accurately follows a target in motion. In addition,
it shows significant improvement in stabilising a target track
once it temporarily stops.

5.2 Reconstruction

As discussed in Section 3.1, a low sensor sampling rate and
high in-game refresh rate result in snappy paddle movement.
Here we investigate two solutions, aiming to smooth the user
experience — interpolation and moving average window.

Inter-Frame Interpolation

The Kalman filter predicts where the player will be in the
subsequent measurement. Based on the distance between the
last measured player position and the prediction, we adjust
the paddle, moving it towards the estimated location. Even
theoretically sound, this approach shows limited practical im-
provement. Specifically, against a dynamic target, this tech-
nique moves the paddle by 0.97 pixels between measure-
ment frames. It is observed that the velocity estimated by
the Kalman filter in the x-axis is relatively small. We believe
this discrepancy is the reason behind the poor performance of
the regular tracking module, as discussed in Section 4.3.

Moving Average

In contrast to interpolation, averaging multiple past measure-
ments does not rely on estimates. However, as discussed in
Section 4.3, it introduces a response-time delay. As shown
in Figure 12, using a larger window increases this delay and
compromises the system’s accuracy. In the experiment, the
radar samples a point cloud every 100 ms, while the game
screen refreshes every 50 ms. Therefore, there is a single
intermediate frame between every two consecutive measure-
ments. The minimal window size required to keep the paddle
constantly in motion during user movement is W; = 2, re-
sulting in a 50-ms delay. Generally, updating the game screen
every % x 100 ms while keeping the radar sampling rate re-
sults in R—1 intermediate frames. Thus, the minimal window
length is W; = R and the introduced delay is % x 100 ms.
In summary, while this approach supports a higher refresh
rate, it incurs a delay of up to 100 ms, introducing a trade-off
between smooth experience and responsiveness.

6 Discussion and Limitations

Despite the achieved improvements in the tracking module
and the proposed interactive video game framework, this re-
search is limited in three aspects. First, the experiments are
conducted in a small room where the conditions are different
in comparison to a big indoor public area. Fewer dynamic
objects (e.g. people), closer distances, and potentially more
reflections are closely related to the radar configuration and
system implementation. Thus, the optimal parameters found
are specific to the development environment, and applying
the system elsewhere might require further tuning. Second,
limited access to infrastructure, including FMCW radar and
transparent screens, did not allow continuous live evaluation
and hindered development. For instance, the experiments are
conducted at 20 fps and can be only simulated at 10 or 20
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w,=15
400

200

Paddle position (pixels)

100

0 \J
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Figure 12: Comparison between paddle position over time across
two moving window lengths W;. In particular, the paddle position
is averaged over the last 1/, measurements. Against a dynamic tar-
get, W, = 3 efficiently smooths the movement, introducing a small
delay. The delay with W; = 15 is already noticeable.

fps. Furthermore, the game environment is predominantly
visualized on a laptop screen. The visualisation disparity ’
might have hidden problems such as worse user experience
due to bigger paddle displacements. Therefore, the game re-
fresh rate should be adapted to foster a smooth user experi-
ence based on the screen size and resolution. Last, only one
person interacted with the system, and the research work is
based on their interactions, which do not represent diverse
movement patterns.

7 Responsible Research

This research work is compliant with Chapters 2 and 3 from
the Netherlands Code of Conduct [19], as conducted by
Kaloyan Fachikov, a student at Technische Universiteit (TU)
Delft, under the supervision of Dr. Girish Vaidya and Assoc.
Prof. Marco Zuiiiga Zamalloa.

Transparency is ensured by reporting the experimental
setup, including the environment setting and the performed
movement sequence. Elaborating on the process, and exten-
sively explaining each configuration decision, together with
open-sourcing the system [14], and the experiments and the
evaluation framework (as a Jupyter Notebook) [18], makes
the results verifiable. In addition, elaborating on the limita-
tions that hindered our research and their impact on our work
helps us determine whether our findings and conclusions are
reliable and generalisable. Furthermore, this non-funded re-
search is guided solely by scientific and scholarly considera-
tions, as part of the CSE3000 Research Project course at TU
Delft, and there are no conflicting interests that could com-
promise our findings.

As our research involves participants, i.e., people who in-
teract with the system, it is important to ensure that they
are aware of the information our system processes. Since
mmWave technology uses millimeter waves and reflections,
it cannot capture personal information. The sparse point
clouds generated hinder accurate environmental reconstruc-

"Laptop screen resolution is 1920 x 1080 pixels, at size 34.5 x
19.4 cm, while transparent screen resolution is 3840 x 2160 pixels,
at size 144.5 x 81.3 cm.



tion. Consequently, the experimental data stored during de-
velopment does not contain identifiable information about the
player or details about the surroundings Additionally, during
real-time gameplay, the system does not store the generated
points. Lastly, the research team is the only entity interacting
with the system, thus consent is not required.

8 Conclusions and Future Work

In this paper, we propose an interactive video game system
utilising an FMCW radar as a tracking device. Working in the
millimeter-wave range, the sensor ensures privacy but gener-
ates a sparse point cloud. This introduces several challenges,
including noise when tracking a stationary target. Integrating
an mmWave radar in an interactive video game poses addi-
tional problems, such as lag and delay. Our work shows that
a track-state transition module processing the points count
and their velocities improves system accuracy. It reduces the
standard deviation on a static target location from 4.52 cm to
3.02 cm while preserving tracking accuracy on dynamic tar-
gets. We compare two reconstruction policies, which allow
a higher refresh rate. The moving average, which does not
rely on the estimator accuracy, achieves superior improve-
ments in user experience, particularly in smoothing paddle
movement. Three possible extensions to our framework are
identified. First, to extend the system’s capability to sup-
port multiplayer video games, work in user identification is
needed. Second, a ground truth dataset should be composed
and used to quantitatively evaluate the system’s performance.
Finally, investigating ghost objects and interference removal
techniques could significantly improve system performance
in crowded public areas.
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