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S U M M A RY

This dissertation addresses the increasing global demand for reducing greenhouse
gas emissions in the maritime industry. It provides methods and results on ship
energy performance assessment and enhancement using high-frequency operational
data. These methods can be used to inform operator decisions to increase operational
performance, to assess modifications to power and propulsion systems and its
control strategies and to evaluate hybrid propulsion and power generation systems
for future ship design for ships with similar operating profiles and conditions.
The developed methodologies can be implemented on a wide range of ship types
and missions, particularly on vessels with highly uncertain mission profiles and
operating conditions. The case in this work is the Holland class Ocean-going Patrol
Vessels (OPV) of the Royal Netherlands Navy, which are multi-function ships,
equipped with hybrid propulsion, that operate a very diverse operating profile
worldwide.

First, this study examines the energy performance assessment of ships, discussing
the limitations of existing energy efficiency measures such as the EEDI, EEXI, SEEMP,
and CII, which do not fully account for operational and environmental uncertainties.
It suggests a methodology to enrich datasets of operational data in case certain
parameters are not logged, and it provides a number of qualitative and quantitative
tools in the assessment of operational and environmental uncertainty, and energy
performance, at a ship and component level. In this way, this methodology provides
conclusions on design and operational decisions, such as the decision to equip
vessels with hybrid propulsion.

Secondly, this research introduces a digital twin modelling approach for energy
performance prediction using high-frequency operational data. This steady state ap-
proach combines statistical and well established first-principle techniques to model
system components and compensate for the accuracy of sensors and uncertain-
ties linked to information provided by the manufacturers and shipbuilder. Results
demonstrate the effectiveness of the adopted approach to predict carbon intensity
over more than seventy different and diverse actual sailing intervals with high
accuracy. The model shows not only a mean absolute percentage error of less than
5% on predicting instant fuel consumption on both mechanical and electrical modes,
but also a carbon intensity prediction accuracy within 2.5% with a 95% confidence
interval, which justifies a significant improvement over traditional models.

Finally, this study examines the design optimisation of ship energy systems.
Building on the conclusions of the previous chapters, it examines the topology
selection and sizing problem for the case study class of vessels. This chapter proposes
a robust multi-objective optimisation framework using actual sailing profiles. It

IX



X

proves its robustness using actual sailing profiles of different vessels of the same
class, and it examines new designs with environmental, financial and technical
objectives. Results highlight the importance of accounting for realistic operational
and environmental conditions in the design of ship energy systems, but also the
environmental and financial benefits of design by optimisation methods.

As a final note and recommendation, this dissertation encourages the collection
and use of operational data in design and operational decisions, and it offers tools
and directions in which carbon emissions of ship operations can be reduced in a
financially and technically viable manner.



S A M E N VAT T I N G

Dit proefschrift richt zich op de toenemende wereldwijde vraag naar verminder-
ing van broeikasgasemissies in de maritieme industrie. Het biedt methoden en
resultaten voor de beoordeling en verbetering van scheepsenergieprestaties met
behulp van hoogfrequente operationele data. Deze methodes kunnen toegepast
worden om scheepspersoneel te adviseren over hun bedieningskeuzes voor een
efficientere operatie, om aanpassingen aan de voortstuwing en energieopwekking en
diens regelstrategiën te vealueren en om ontwerpkeuzes voor hybride voortstuwing
en energieopwekking van nieuwe schepen met soortgelijke operatieprofielen en
operatiegebieden te evalueren. De ontwikkelde methodes kunnen toegepast worden
op een grote diversiteit aan scheepstypes en missies, en is vooral van toepassing op
dienstverlende schepen met een onzeker operatieprofiel en operatoegebied. De meth-
odes zijn toegepast op het praktijkvoorbeeld van een Holland klasse Ocean-going
Patrol Vessels (OPV) van de Koninklijke Marine, multifunctionele dienstverlenende
partrouilleschepen met diverse take die uitgesust zijn met hybride voortstuwing die
wereldwijd opereren met een divers operatieprofiel.

Allereerst, onderzoekt deze studie de energieprestatie-beoordeling van schepen
en bespreekt de beperkingen van bestaande energie-efficiëntiemaatregelen zoals
de EEDI, EEXI, SEEMP en CII, die niet volledig rekening houden met operationele
onzekerheden weersomstandigheden. Dit hoofdstuk stelt een methodologie voor om
datasets met operationele gegevens te verrijken wanneer bepaalde parameters niet
worden geregistreerd, en reikt een aantal kwalitatieve en kwantitatieve instrumenten
aan voor de beoordeling van operationele onzekerheden, weerscondities, en ener-
gieprestaties, op het niveau van schepen en componenten. Op deze manier levert
deze methodologie conclusies op voor ontwerpkeuzes en operationele beslissingen,
zoals de beslissing om schepen uit te rusten met hybride aandrijving.

Ten tweede introduceert dit onderzoek een digitale tweelingmodel-benadering
voor het voorspellen van energieprestaties met behulp van hoogfrequente opera-
tionele gegevens. Deze statische benadering combineert statistische en gevestigde
natuurkundige modelleertechnieken om systeemcomponenten te modelleren en te
compenseren voor de onnauwkeurigheid van sensoren en onnauwkeurigheid van
informatie die door fabrikanten en scheepsbouwers wordt verstrekt. De resultaten
tonen de effectiviteit van de gekozen aanpak om de koolstofintensiteit over meer
dan zeventig werkelijke vaarintervallen met hoge nauwkeurigheid te voorspellen.
Het model toont niet alleen een gemiddelde absolute procentuele fout van minder
dan 5% bij het voorspellen van het onmiddelijle brandstofverbruik in zowel mech-
anische als elektrische modi, maar ook een nauwkeurigheid bij het voorspellen van
de koolstofintensiteit binnen 2,5% met een betrouwbaarheidsinterval van 95% over
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een operatieprofiel, wat een aanzienlijke verbetering is ten opzichte van traditionele
modellen.

Tot slot onderzoekt deze studie de optimalisatie van het ontwerp van scheepsen-
ergiesystemen. Voortbouwend op de conclusies van de eerste hoofdstukken, wordt
het probleem van topologieselectie en dimensionering van schepen met hybride
voortstuwing en energieopwekking onderzocht. Dit hoofdstuk stelt een robuuste
multicriteria optimalisatie aanpak voor die nieuwe ontwerpen kan evalueren vanuit
milieubelastende, financiële en technische perspectieven op basis van echte en
onzekere operatieprofielen. De robuustheid wordt aangetoond aan de hand van
werkelijke vaarprofielen van verschillende schepen van dezelfde klasse en er worden
nieuwe ontwerpen met milieubelastende, financiële en technische doelstellingen
onderzocht. De resultaten laten zien hoe belangrijk het is om rekening te houden
met realistische operationele omstandigheden en weerscondities bij het ontwerpen
van scheepsenergiesystemen, maar ook wat de milieubelastingende en financiële
voordelen zijn van ontwerpen met optimalisatiemethoden.

Als laatste opmerking en aanbeveling moedigt dit proefschrift het verzamelen
en gebruiken van operationele gegevens in ontwerp- en operationele beslissingen
aan, en biedt het hulpmiddelen en richtingen waarin milieubelastende uitstoot van
scheepsoperaties op een financieel en technisch haalbare manier kunnen worden
verminderd.
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1
I N T R O D U C T I O N

1.1 climate change and maritime industry

Industrial revolution started in the 18th century and affected the lives of millions
of people. Primarily in Europe and the United States of America, it resulted in
significant economic and population growth, but also in crucial societal changes.
However, this improvement came at a cost. Characterised by the introduction of
machines and extensive fossil fuels consumption, it also resulted in substantial atmo-
spheric pollution with the abundance of long-lived gases like carbon dioxide (CO2),
methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs), collectively
called greenhouse gases (GHGs) [4]. The report presented by the Intergovernmental
Panel on Climate Change (IPCC) in 2023 [1] clarifies that the increase of GHGs
concentration in the atmosphere is accelerating as demonstrated in Figure 1.1, with
almost half of emissions after 1850, emitted in the last three decades.

This increase in GHGs proportionally affects the heat being trapped near the
earth’s surface, resulting in the so-called greenhouse phenomenon [5]. IPCC con-
cludes that GHGs together with other anthropogenic factors are unequivocally
the main cause of this phenomenon [1], [6], [7]. Climate change takes place at an
unprecedented speed, and its impact on mankind’s living environment is severe.
Observed changes include an increase in the mean sea level between 1901 and
2018 of 20 cm, an increase of the combined land and ocean surface temperature
in 2011-2020 compared to 1850-1900 of 1.1◦C, and the acidification of the oceans.
Just a look at the projection of global surface temperature by 2100 reveals that
a catastrophic increase of 4°C is possible as seen in Figure 1.2. Reports by IPCC
also indicate how vulnerable human and natural systems are to those changes,
irrespective of their cause, and relate numerous extreme events such as extreme hot
or cold temperatures, increased sea levels, and heavy precipitation to them. Finally,
they point to the injustice of climate change as vulnerable communities who have
historically contributed the least to it are disproportionately affected.

Attempts to tackle this phenomenon commenced with the establishment of the
United Nations Climate Change Secretariat and the adoption of the United Nations

1
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Figure 1.1: Yearly equivalent carbon dioxide emissions from year 1850 to 2019 [1].

Framework Convention on Climate Change (UNFCCC) in 1992 by participating
members. This convention set the basis for developed countries to accept respons-
ibility of high GHGs, take measures to mitigate anthropogenic effects on the en-
vironment, but also assist financially and technologically developing countries in
this direction. It was followed by the Kyoto Protocol (1997) and Paris Agreement
(2015) which came into force in February 2005 and November 2016, respectively.
The Kyoto Protocol established emission targets distributed into two commitment
periods, 2005 to 2012 and 2013 to 2020. The Paris Agreement established National
Determined Contributions (NDCs), meaning that each ratifying member country
has to set goals at a national level, keep track of all emission sources and regularly
report their progress.

This status quo can perform successfully for most industrial activities except
for two sectors. According to Bows-Larkin [8], international aviation and ship-
ping release their emissions in international airspace and waters which are not
covered by such policies. Those two sectors operate under the regulations of the
International Civil Aviation Organization (ICAO) and the International Maritime
Organization (IMO). The maritime industry still delivers more than 80% of global
trade, overcoming fluctuations caused by the COVID-19 pandemic [9]. In 2007,
international shipping CO2 emissions stood for 2.7% of the total global emissions.
Future economic growth and transport demand indicate that maritime carbon di-
oxide emissions will increase between 50% to 250% by 2050 compared to the 2012

level [10]. To reduce the impact of shipping on the environment, IMO adopted
mandatory energy efficiency measures already back in 2011 [11]. However, adopting
these measures did not prevent a further 9.6% increase in GHG emissions from
shipping between 2012 and 2018 [12]. Nevertheless and despite the large scale of
operations, IMO decided in its updated GHG reduction strategy not only to target
cutting those emissions in half by 2050 [13] but to aim for net-zero emissions around
the same period [14].
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Figure 1.2: Global surface temperature increase scenarios and observed values from year
1850 to 2100 [1].

1.2 legislation

The first step in regulating maritime industry GHG emissions was the amendment
of the 1973 International Convention for the Prevention of Pollution from Ships
(MARPOL) with Annex VI by the Marine Environment Protection Committee
(MEPC), IMO’s senior technical body on marine pollution matters, in 1997. This
Annex included, for the first time, requirements on air pollution and emissions
from ships. Furthermore, following an initiative by IMO, four studies assess the
current status and future trends of maritime emissions, conducted in 2000 [15], in
2009 [16], in 2014 [10] and 2020 [12]. The most prominent regulations by IMO require
ships to follow and keep a Ship Energy Efficiency Management Plan (SEEMP) and
comply with reference limits of indices and indicators that, in principle, indicate the
amount of carbon dioxide (CO2) emissions per transport work, also called carbon
intensity. Their calculation is done either on a single sailing point as in the case of
the Energy Efficiency Design Index (EEDI) [17] and Energy Efficiency Existing ship
Index (EEXI) [18] or by averaging the carbon footprint over a year of operations as
in the case of Carbon Intensity Indicator (CII) [19].

The energy efficiency of new ship designs for the majority of ship types is regu-
lated with EEDI. In a one-time calculation, all existing ships were also examined
using the EEXI. Although the name implies the assessment of the energy efficiency
of vessels, EEDI examines carbon intensity [20], [21] on a single sailing point de-
termined by the rated power of main propulsors and vessel resistance in calm water
conditions, favoring ships with smaller main engines and sailing at slower speeds.
Underpowered ships, though, do not comply with the initial goal of designing ships
with improved hulls, engines, and propellers [22]. They impose a safety concern
too, as the propulsion and manoeuvring in adverse sea conditions can be poor [23].
Moreover, one sailing point does not consider the operational and environmental
uncertainty at sea [24] and part-load efficiency as in the case of power take-off
generators that bring significant energy savings in off-design operating conditions.
Thus, EEDI is incomplete because it does not account for the entire life of a vessel
and it is flawed because it does not promote green operation [25]. Ultimately, using
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EEDI instead of actual operating profiles underestimates the lifetime energy savings
of different solutions and their use should be limited to early design phase approx-
imations [26]. Other transportation fields like the automotive and aviation have
already taken steps forward, as carbon emissions and fuel economy are evaluated
based on driving cycles and flight profiles accordingly [27], [28].

Operational phase decisions contribute equally to the carbon footprint of maritime
operations. That was the driving force behind the introduction of SEEMP, which
provides a framework for establishing and tracking the implementation of energy
related measures. Before 2023, the Energy Efficiency Operational Indicator (EEOI)
was voluntarily used to test the effectiveness of operational emission reduction
measures. This indicator expressed the average carbon intensity over a certain
number of voyages [29]. Decided in 2021 and coming into force for the first time
in 2023, operational energy efficiency is assessed using CII [30]. This indicator
provides an A to E energy labelling for most vessels based on their annual average
carbon intensity. Contrary to the volunteering philosophy of EEOI, the CII score
will impact vessel operations. Ships labelled as C will be offered a three-year period
to improve their efficiency, and ships labelled as E will be requested to urgently
upgrade their energy label the following year. While useful for evaluating the
operation of cargo vessels, the method is considered less valuable for ships with a
diverse operating profile, as the uncertainty of the operating speeds, in combination
with the uncertainty of the operating conditions, hinders fair comparison between
different missions. Moreover, balancing out the effect of this uncertainty over the
course of one year does not provide substantial feedback on the operational and
design decisions, especially in the case of multi-function vessels that do not perform
the same type of operations over time, as demonstrated in this dissertation.

However, IMO is not the only policy body (regulator) that has acted to reduce
maritime GHG emissions. Despite a lack of authority in international waters, differ-
ent countries can impose requirements on all ships calling their ports or territory.
The European Parliament, keeping track of a 2030 framework to cut domestic GHG
emissions by at least 40% compared to 1990 levels, has already introduced reg-
ulations in that direction. Regulation (EU) 2015/757 came into force in January
2018 and requires ships to accurately monitor, report and verify carbon dioxide
emissions, and nitrous oxide and methane emissions as of January 2024, and other
relevant information (MRV Maritime regulation) [31]. Furthermore, the European
Parliament and Council decided to include maritime in the Emissions Trading
System [32]. Finally, the Commission decided to approach emissions reduction from
an additional angle, other than solely improving energy efficiency on board. This
approach, expressed through the GHG intensity index, evaluates the equivalent
carbon dioxide emissions both from tank to wake (TtoW), but also from well to
tank (WtoT), per unit energy used [33], [34]. In this way, it promotes greater use of
renewable and low-carbon fuels and new technologies.

1.3 mitigation strategies

Mitigation of maritime contribution to climate change requires measures that can
be described as technological, operational, and market-based [35]. Focusing on the
first two categories and accounting for numerous studies in literature, Vergara,
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McKesson and Walczak [36] and Bouman, Lindstad, Rialland et al. [37] concluded
that a combination of technological and operational measures can potentially bring
a 75% reduction in maritime GHG emissions by 2050, but current technologies alone
cannot lead maritime industry decarbonisation.

The most high-impact technological measure is the use of alternative fuels like
carbon neutral synthetic fuels, biofuels, hydrogen, and ammonia. Their adoption re-
quires the development of cost effective power supply systems, and design solutions
to storage space and weight issues [38]. According to Horvath, Fasihi and Breyer
[39], hydrogen fuel cells are likely to be economically competitive against fossil
internal combustion engines for certain ship types and sizes by 2040, if they follow
their current projected development. The main drawback of such systems, though,
is the lower energy density compared to systems running on fossil fuels. Hence,
energy efficiency improvement is necessary to maintain financial competitiveness
without implementing a carbon dioxide cost.

Technological solutions also consider the selection of different system architectures
and control strategies [40]. Electrification of ships plays an important role in this,
though an electric propulsion system suffers from a number of disadvantages.
Hybrid propulsion systems are considered a promising alternative, though the right
sizing and selection of components is not a simple design problem and depends
very much on the actual operational profile of the vessel. Moreover, improved
hull design, reduced resistance, and propulsion augments are expected to provide
further savings.Therefore, in the design phase hull design, system architecture and
control should be evaluated over the actual operations of the vessel.

Supplementary to technological measures, a plethora of operational measures
such as optimal fleet capacity utilization, optimal ports operation and better advised
crew decisions, can provide similar or even higher savings. According to Bouman,
Lindstad, Rialland et al. [37], in particular weather-based route planning and exe-
cution can reduce carbon dioxide emissions up to 48%, optimal draught and trim
selection up to 10%, and vessel speed optimisation up to 60%. Of course, in order to
achieve these savings, these operational measures should be assessed with accurate
energy performance prediction models that take operational and environmental
uncertainties into account.

1.4 challenge

Previous paragraphs stressed the importance of reduced carbon footprint and en-
hanced energy performance of ship design and operations. The implementation of
different technical and operational solutions results in ships that are more complex
than in the past [40]. Both ship design and operation regularly involve solving a num-
ber of complex optimisation problems [41]. In particular, ship energy systems consist
of a large number of interacting components that show non-linear behaviour [42],
resulting in optimisation problems of non-linear environmental, social, economic,
and technical objective functions, and numerous constraints [43]. Moreover, these
objectives depend on many uncertain parameters as fuel, maintenance, and unit
capital costs.

Their evaluation requires simulation models which consider different system
limits and fidelity level [44], [45]. The trade-off between prediction accuracy and
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computational cost determines the model type, application scope, and fidelity level
and it has been discussed in the work of many authors [42], [46], [47]. The usual
practice in modelling components of ship energy systems is a combination of first
principle and semi-empirical models. These models are calibrated on information
provided by the component manufacturers or a number of special scale tests in
towing tanks [46]–[49], though accumulating modelling discrepancies result in large
prediction errors. Validation of those models can also become challenging. At a
component level, there is a number of calibration and validation examples [50]–[52].
However, such methodologies at a whole system level are lacking due to limited
sensor availability of monitoring platforms and diversity in systems architecture.

Ultimately, the successful integration of different technological and operational
solutions requires their assessment on scenarios that are realistic as to the actual
conditions at sea [53]. The usual consideration in literature is a limited number, if not
only one condition to describe the complex effect of operational and environmental
uncertainty at the different design and operational phases [54]–[57]. Therefore, novel
methodologies that consider the influence of diverse operational and environmental
conditions on energy efficiency are needed [58], [59].

1.5 opportunity

The increasing availability of high frequency operational data in contrast to bias-
sensitive noon reports has the potential to assist maritime industry with the eval-
uation of mandatory design and operational measures [60]–[62]. These datasets
and advancements in research on data-driven techniques can help the maritime
industry evaluate energy performance of ship operations, build computationally
efficient and accurate prediction models, and quantify uncertainty. Hybrid models
leveraging first-principle and data-driven modelling techniques show improved
accuracy and low running times compared to advanced physics-based models [51],
[52]. Large datasets of operational data are also used in the calibration and valida-
tion of those models [47]. Finally, the use of actual operating profiles or multiple
operating conditions improves the accuracy of lifetime energy saving evaluation
in optimisation problems [26], [58], [63]–[67]. In this work, we thus provide novel
methodologies to account for realistic operating conditions either in the case of
assessing operational procedures, developing digital twins that leverage traditional
and data-driven methods, and evaluating new energy system designs.

1.6 problem statement and research questions

Ship designers do not receive feedback on the actual operation of their designs
apart from sea acceptance trials. Hence ship design continues even to this day to
rely on sets of semi-empirical rules and formulas. Crews operating the vessels do
not receive a clear picture of the energy performance and environmental footprint
of different options offered to them either. Moreover, people managing a vessel
do not have tools that assist them in the comparison of different ship operations
from an environmental point of view. The availability of high-frequency operational
data provides an opportunity to assist maritime industry in taking a step further,
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both in the design and operation of ships. Thus, the following problem statement is
answered in this dissertation:

How can the collection, process and use of operational data, hence the feedback shown in
Figure 1.3, improve the operation and design of ships from an environmental, financial and
technical point of view?

This problem statement leads to a number of research questions. First, on the
energy performance assessment of ship operations:

• How can we quantify and depict operational and environmental uncertainty
using operational data analysis?

• What energy performance indicators can sufficiently describe ship operations
and provide feedback to both designers and operators of the vessels?

• Which parameters influence the attained energy performance?

then on the modelling of ship energy systems:

• Should we use first-principle, statistical, or hybrid models with large opera-
tional datasets?

• How can we achieve the best trade-off between prediction accuracy and
computational cost?

• What is a suitable prediction model formulation in terms of input, output and
utilised parameters?

• What is the selected time-dependency of a model calibrated and validated
over large datasets and used in optimisation iterations?

• Are steady-state models used in automotive sufficient in maritime applica-
tions?

• What needs to be the modelling fidelity level of different components?

and finally on the optimal design of ship energy systems:

• What is a complete and holistic optimisation framework for topology selection
and sizing of different system?

• What are the needed objectives?

• What are the sufficient simulation scenarios to capture actual operational and
environmental conditions at sea?

• What are the constraints?

• What is the mathematical optimisation problem type and solving method?

• How can a computational efficient digital twin be used to extend design space
exploration?



8 introduction

Figure 1.3: The missing feedback to designers and users in the maritime industry.

1.7 structure of the dissertation

This dissertation is structured around one introductory, three main body and
one conclusive chapter. Chapter 2 provides a methodology to assess the energy
performance of ship operations using high-frequency operational data, it provides
feedback to ship designers and operators, and it describes realistic operational and
environmental conditions to be utilised in the design of new ship energy systems.
Chapter 3 provides a steady-state digital twin approach for the carbon intensity
prediction of ships operation leveraging first-principle and data-driven techniques.
It accounts for the aggregate effect of both operational and environmental conditions
and balances computational cost and prediction accuracy. Chapter 4 provides a
design by optimisation framework for ship energy systems. This framework utilises
computationally efficient and accurate digital twin approaches as the one introduced
in Chapter 3 and it seeks the trade-off from an environmental, technical, and financial
perspective. Finally, Chapter 5 discusses the progress made towards the goal of
this dissertation, its limitations, its conclusions and the recommendations for future
research.

1.8 contribution

The main contribution of this dissertation with respect to energy performance
assessment of ship operations is fivefold:

• It casts light on the actual operational conditions under which vessels, espe-
cially multi-function ones, operate.

• It presents a method for enriching an operational dataset in case key paramet-
ers are missing, using well-established models.

• It uses the resulting dataset to evaluate the energy performance of the vessel
over the whole operational range, not only examining a limited number of
operating points.

• It introduces suitable energy performance indicators and visual tools in order
not only to assess the previous operation of the vessel, but also in order to
assist in enhancing its future performance.
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• It examines the impact of design and operational decisions on the resulting
energy performance of vessels equipped with hybrid propulsion.

The main contribution with respect to digital twin modelling approaches is a
methodology to build a digital twin of ship energy systems that can be used to
evaluate operational decisions, design changes, and contribute to enhanced future
designs. In particular:

• It accounts for realistic operational and environmental conditions.

• It demonstrates qualitative and quantitative tools for the systematic statistical
validation of models of the whole energy system in the presence of large
operational datasets.

• It proposes data-driven modelling techniques to compensate for uncertainty
related to sensor measurements and the limited availability of information
from shipbuilders and component manufacturers.

• It provides a case study that demonstrates the capability of steady-state models
coupled with data-driven techniques in accurately predicting fuel consumption
over actual dynamic and quasi-static sailing conditions.

• It provides a direct comparison between electrical and mechanical propulsion
over actual sailing profiles.

Finally, the main contribution with respect to ship energy system design by optim-
isation is:

• It provides a complete and holistic optimisation framework for the hybrid
propulsion topology selection and system sizing at the concept design stage.

• It uses the existing knowledge on actual operational and environmental con-
ditions variation, result of monitoring vessels of existing classes that serve
similar mission types, to find the necessary resolution of examined scenarios.

• This holistic framework takes into consideration environmental, financial
and technical objectives, and focuses on the demonstration of competing
mechanisms rather than on the case specific individual solutions.

• It demonstrates the stability of the suggested optimisation problem formula-
tion and solving algorithms.
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Figure 1.4: Structure of this dissertation.
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E N E R G Y P E R F O R M A N C E A S S E S S M E N T O F S H I P O P E R AT I O N S

This chapter is reproduced from [21]:

N. I. Vasilikis, R. D. Geertsma and K. Visser, ‘Operational data-driven energy per-
formance assessment of ships: The case study of a naval vessel with hybrid propul-
sion’, Journal of Marine Engineering and Technology, 2022. doi: 10.1080/20464177.
2022.2058690

abstract

Ship designers hardly ever receive feedback from the actual operation of their designs apart
from sea acceptance trials. Similarly, crews operating the vessels do not receive a clear
picture on the energy performance and environmental footprint of different options. This
chapter proposes an energy performance assessment methodology methodology based on
operational data from continuous monitoring. Subsequently, it applies the methodology
on an ocean patrol vessel of the Royal Netherlands Navy in order to identify the impact
of diverse operational conditions on energy performance over the whole operating range,
but also to examine the decision to equip the vessel with hybrid propulsion. Specifically, it
introduces the mean energy effectiveness indicator and mean total energy efficiency over
discretised vessel speed, as the main tool in quantifying the energy gains and losses to
assist in taking better advised design and operational decisions. Moreover, it demonstrates
a dataset enrichment procedure, using manufacturers information, in case not all needed
sensors are available. Results suggest that electrical propulsion was 15% to 25% less efficient
than the best mechanical propulsion mode, and on the overall energy performance of the
vessel, increasing speed by 1 knot caused 7% and 14% increase over the minimum CO2/mile
emissions between 8 and 14, and above 14 knots respectively.

2.1 introduction

The Intergovernmental Panel on Climate Change has concluded that greenhouse
gases together with other anthropogenic factors are extremely likely to be the main
cause of global warming and climate change [6]. Future economic growth and
transport demand indicate that maritime carbon dioxide emissions will increase
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between 50% to 250% by 2050 compared to the 2012 level [10]. At the same time,
legislation on energy efficiency enhancement and emissions, such as the IMO Energy
Efficiency Design Index (EEDI) and the Ship Energy Efficiency Management Plan
(SEEMP) aim to reduce carbon dioxide concentration. However, a reduction in
greenhouse gas emissions from shipping, within the same time interval, is only
expected in the most conservative and strict scenario.

2.1.1 Related work

When evaluating energy performance, naval architects come across high uncertainty
regarding the energy performance assessment of their implemented designs [55]–
[57]. Required propeller thrust while sailing at a certain vessel speed is one of the
main contributors to this uncertainty, which is transferred to the propulsion plant by
the component interaction mechanism described in [68]. The main factors causing
the uncertainty in propeller thrust are weather conditions, which show strong
geographical and seasonal variation, loading conditions [69], fouling level [70], [71],
acceleration phases [72] and manoeuvring activity [73]. Aiming to demonstrate the
extent of this issue, some studies present their results for a number of resistance-
thrust curves as in the case of Geertsma, Visser and Negeborn [46] and Geertsma,
Negeborn, Visser et al. [49], where three curves corresponding to trial, design and
off-design operational conditions were used, while other studies try to find thrust
curve bounds as in the case of Haseltalab and Negenborn [74]. It is more common
though for authors to assume resistance in calm water with no hull fouling, obtained
either from towing tank model tests or from using systematic series and empirical
formulas [75], [76], and evaluate added resistance according to ITTC [77] as in [78]
and [47].

Another challenge in the design phase is the prediction of the vessel’s speed
profile. As mentioned by Georgescu, Godjevac and Visser [54], design objectives
related to the power supply and propulsion system change at different design phases
and the operational profile knowledge level changes as well. System architecture
selection at the concept design phase relies significantly on the amount of time
spent sailing at various speeds, but unfortunately this knowledge is limited at
that stage and its estimation can prove to be difficult especially for naval vessels.
This is also the case with decisions at a later phase of the design process such
as component sizing, control strategy selection [2], [40], and subsystem working
parameters optimisation [79], [80]. Focusing on the aforementioned importance of
the operational profile, Yrjänäinen, Johnsen, Dæhlen et al. [81] proposed a profiling
tool based on high fidelity model-based simulations taking into account historical
weather data and task oriented split of the whole vessel’s mission requirements.
Ultimately, Jafarzadeh and Schjølberg [82] presented the effect of the operational
profile at a fleet level, by analysing the profiles for the majority of vessel types
sailing in Norwegian waters, while examining hybrid propulsion integration.
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2.1.2 Aim and contribution

Both thrust requirement and vessel speed profile heavily influence the working
points of the propulsion and power supply systems, hence the energy performance
of vessels. On the contrary, energy performance assessment of new and existing
designs, using EEDI and EEXI, respectively, does not account for the changes in
energy performance over the range of actual operational conditions and speeds
and thus leads to suboptimal designs [83]. Moreover, the suggested operational
energy performance assessment methodologies for all ships using EEOI and CII,
although offering a quantification tool for the different carbon dioxide emissions
levels within a certain time window, fail to provide insight into how operational
conditions influence attained energy performance as partly demonstrated in [84].

This chapter introduces an operational data-driven methodology for the energy
performance assessment of ship operations. Its novelty is fivefold:

• It casts light on the actual operational conditions under which vessels, espe-
cially multi-function ones, operate.

• It presents a method for enriching an operational dataset in case key paramet-
ers are missing, using well-established models.

• It uses the resulting dataset to evaluate the energy performance of the vessel
over the whole operational range, not only examining a limited number of
operating points.

• It introduces suitable energy performance indicators and visual tools in order
not only to assess the previous operation of the vessel, but also in order to
assist in enhancing its future performance.

• It examines the impact of design and operational decisions on the resulting
energy performance of vessels equipped with hybrid propulsion.

2.2 case study system description

The proposed methodology is suitable to investigate the energy performance of ships
with electrical propulsion, ships with mechanical propulsion and ships with hybrid
propulsion, equipped either with fixed or controllable pitch propellers. It requires
data from the ship’s monitoring system platform at a regular sampling frequency,
typically 1 to 3 seconds. The minimum required parameters are illustrated in
Figure 2.1 as measured parameters. In this chapter, the methodology is demonstrated
with data from a case study ocean patrol vessel, equipped with hybrid propulsion
and controllable pitch propellers, as described in Appendix A.

2.2.1 Case study dataset

The Integrated Platform Monitoring System (IPMS) installed on the vessel provides
continuous monitoring capabilities for a large number of operational parameters,
significantly improving the accuracy of energy performance evaluation over other
means, such as noon reports [60]. The dataset used in this analysis consisted of
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Figure 2.1: Depiction of the vessel’s energy system with measured and modelled parameters.

Table 2.1: Logged IPMS parameters used.

Parameter Symbol

Main diesel engine speed ne

Main diesel engine fuel consumption ṁf,e

Diesel generators speed ngen

Diesel generators power Pgen

Diesel generators fuel consumption ṁf,gen

PTI motor speed npti

PTI motor power Ppti

Propeller shaft speed npsh

Propeller shaft torque Mpsh

Propeller pitch p
Vessel speed through water vlog

Propulsion mode -
Sailing mode -

13 276 800 measurements at a 3 seconds time step δt, corresponding to 15 months
of operation. The 13 parameters included in this analysis are listed in Table 2.1. In
order to clean the data, the dataset was split into a number of voyages rejecting data
corresponding to periods that the vessel was out of operation. Some of the voyages
were rejected too for containing periods of faulty sensor functioning. This resulted
in processing a total number of 3 400 686 measurements per parameter or about 4

months of actual sailing operation.

2.2.2 Dataset restrictions

The available dataset does not include parameters for propeller thrust, main diesel
engine power and power delivered to the propeller as seen in Figure 2.1. This
means that the energy efficiency of the main diesel engines and propellers cannot be
directly evaluated using only measured parameters, since knowledge of the input
and output power level of each component is needed. All these three parameters
were modelled using the available working point parameters and manufacturers’
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data. Propeller thrust prediction model was the most complex of all because of the
higher number of derived parameters used in corresponding diagrams.

The use of first principle models based on manufacturers data of the performance
in factory acceptance conditions assumes the components maintain performance
under healthy condition. Therefore, the resulting extended dataset cannot be used
to evaluate component energy efficiency degradation. Moreover, the effect of system
degradation in the used dataset is expected to be limited, as data was collected
during the first 15 months of vessel life. In order to evaluate component, subsystem
and system energy efficiency degradation, the following additional sensors should
be installed:

• Thrust sensor on the propulsion shaft. This would enable to more accurately
establish thrust and evaluate propeller degradation separate from hull fouling
and the effect of weather conditions.

• Torque sensor or cylinder pressure measurement system to establish engine
mechanical or indicated torque and evaluate engine efficiency degradation.

• Torque sensor close to the propeller. This could be replaced by the torque
sensor on the output shaft of the gearbox, to evaluate degradation of gearbox
and shaft-line efficiency as one joint efficiency.

2.3 methodology

This chapter proposes a novel operational data-driven energy performance assess-
ment methodology that uses logged measurements of a ship’s monitoring system.
First, the method enriches the data by using manufacturers’ specifications and
figures to evaluate parameters that were not directly measured. Subsequently, the
instant value of a number of energy performance parameters is evaluated at a
vessel, power supply and propulsion subsystems, and component level. Finally,
mean values and standard deviations of those parameters over discretised vessel
speed or main diesel engine speed are used to explore the contributing factors to a
vessel’s energy performance and CO2 footprint.

2.3.1 Dataset enrichment

Measured IPMS parameters can be found in Figure 2.1. The work described in
this dissertation involves the enrichment of the examined dataset with a number
of parameters, most importantly total propeller thrust and main diesel engines
brake torque, utilising information provided by the shipbuilder and component
manufacturers. All relevant figures can be found in Appendix A.

First, propeller shaft power Ppsh was evaluated in kW using corresponding torque
Mpsh in kNm and speed npsh in rad/s as:

Ppsh = Mpsh npsh . (2.1)

Then, power delivered by the main diesel engines Pe, accounting for gearbox losses
Ploss,gb, in kW is given from:

Pe = Ppsh + Ploss,gb , (2.2)
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where gearbox losses Ploss,gb are modelled using the linear torque losses model
proposed in [85] and the data provided by the gearbox manufacturer:

Ploss,gb = c2 Pe + c1 ne
2 + c0 ne . (2.3)

c0 is equal to 0.0081, c1 is equal to 9.002e-05 and c2 is equal to 0.005. Power delivered
to the propeller PQ was evaluated afterwards, accounting for shaft losses Ploss,psh, in
kW from:

PQ = Ppsh − Ploss,psh . (2.4)

Torque propeller shaft losses Mloss,psh were also evaluated using manufacturer’s
data as a linear function of shaft speed, thus:

Ploss,psh =
(
c3 npsh + c2

)
npsh = c3 n2

psh + c2 npsh . (2.5)

Propeller thrust T in kN and thrust power PT in kW were established using the
following relations:

T = KT ρ n2
psh D4 , (2.6)

PT = T va , (2.7)

where ρ is salt water density equal to 1 025 kg/m3, D is propeller diameter in m
and va water speed in the ship’s wake in m/s, obtained from vessel speed through
water vlog in m/s and Taylor’s wake factor w as:

va = vlog (1 − w) . (2.8)

Thrust coefficient KT was evaluated by reading the corresponding propeller open wa-
ter diagram with advance coefficient J and pitch to diameter P/D values. Advance
coefficient J was evaluated from:

J =
va

npsh D
, (2.9)

Another important parameter evaluated is effective thrust power PTE in kW, as seen
in Figure 2.2:

PTE = T vlog =
T va

(1 − w)
=

PT

(1 − w)
, (2.10)

and finally, required propeller thrust Treq in constant speed sailing was evaluated
as a reference for obtained results, using ship towing resistance Rtow and thrust
deduction factor t from towing tank tests, as:

Treq = R =
Rtow

1 − t
. (2.11)
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Figure 2.2: Energy performance indicators and parameters involved.

2.3.2 Energy efficiency

The majority of ships use fossil fuels in order to meet their power supply needs. The
three main consumers on each ship in descending order are its main and auxiliary
engines, and its boilers. Boilers’ contribution is almost neglegible for all vessel
types except for oil tankers [10]. In conventional maritime power systems, chemical
energy saved in fuels is released as heat through combustion. Main engines, most
often diesel engines, convert this heat into work and provide it to the propellers
either directly or through reduction gearboxes. Then, propellers turn this work into
propulsion thrust in order to counter vessel resistance and accelerate the vessel.
Auxiliary diesel engines on the other hand convert heat to work, work to electrical
power and provide it to the electrical grid of the ship. These power conversions
and transmissions introduce a number of component, subsystem and whole system
energy efficiencies which in this study are evaluated from measured and derived
parameters as described in Section 2.3.1.

2.3.2.1 Component level

Main diesel engine efficiency ηe is defined as:

ηe =
Pe

Qf,e
=

Pe

ṁf,e hL , (2.12)

where Qf,e is heat flow released from fuel combustion in kW, ṁf,e is fuel consumption
in kg/s and hL stands for fuel lower heating value assumed equal to 42,500 kW/kg.
Diesel generator set efficiency ηgen is defined in a similar way:

ηgen =
Pgen

Qf,gen
=

Pgen

ṁf,gen hL , (2.13)

where Pgen is the electrical power provided in kW, Qf,gen corresponds to heat flow
in kW and ṁf,gen to fuel consumption in kg/s. Gearbox efficiency ηgb is defined as:

ηgb =
Ppsh

Psh
, (2.14)
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where Ppsh is power delivered to the propeller shaft in kW and Psh is the power
provided by the main diesel engines or the electrical motors to the intermediate
shaft in kW, as follows:

Psh =

Pe Other modes

Ppti PTI mode .
(2.15)

Propeller shaft efficiency ηpsh is evaluated using power delivered to the propeller
shaft Ppsh and to the propeller PQ in kW, as:

ηpsh =
PQ

Ppsh
. (2.16)

Finally, propeller efficiency ηprop is provided by:

ηprop =
PT

PQ
=

T va

PQ
, (2.17)

and open water propeller efficiency ηprop,ow using required propeller torque in open
water testing conditions MQ,ow by:

ηprop,ow =
PT

PQ,ow
=

T va

MQ,ow npsh

=
KT ρ n2

psh D4

KQ,ow ρ n2
psh D4

va

D npsh
=

KT

KQ,ow
J .

(2.18)

2.3.2.2 System and subsystem level

Power supply and propulsion subsystems energy efficiency was evaluated using
total heat flow Qf,tot, shaft power Psh for both power supply options defined in
Equation 2.15, and effective thrust power PTE in kW as:

ηsupply =
Psh

Qf,tot
=

Psh(
ṁf,e + ṁf,gen

)
hL , (2.19)

ηpropulsion =
PTE

Psh
. (2.20)

Ultimately, energy efficiency of the whole power system was provided by:

ηtot =
PTE

Qf,tot
=

Psh

Qf,tot

PTE

Psh
= ηsupply ηpropulsion . (2.21)

It must be noted that effective thrust power PTE was selected as the end point of
the energy chain defined in Equation 2.10, instead of effective towing power PE

seen in [86]. The main reason is that this analysis examines the dynamic energy
performance of the system while sailing under real operational conditions, on the
contrary to static considerations at the design phase, which are established through
scale model tests. As a result a thrust based power parameter seems more suitable
compared to ship’s towing Rtow or actual resistance R. Moreover, despite the IPMS
dataset restrictions described in Section 2.2.2, thrust parameter T can be directly
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measured using a thrust sensor. On the contrary, evaluation of actual resistance
R requires knowledge of the vessel’s actual and hydrodynamic added mass and
acceleration. In the case of using towing resistance Rtow, which is a theoretical
parameter as the vessel is not towed, information concerning thrust deduction factor
t is additionally needed.

Figure 2.3: Illustration of the relation between vessel energy effectiveness, total energy
efficiency and influencing factors.

2.3.3 Vessel energy effectiveness

Mission requirement of most vessels is the transportation of a certain payload over
an indicated distance. This is achieved, as discussed in the previous subsection, by
consuming fuel resources into their power systems. Energy efficiency ηtot of the
whole system provides a good indication on the fraction of resources that turns
into useful output, but it does not offer though any information on the amount of
resources required by the vessel in the first place. A factor providing resources ’paid’
in order to reach a certain transportation level seems more appropriate. Effectiveness,
in contrast to efficiency, appears to conceptually describe this difference to an
adequate degree, hence is the term selected in this analysis. Figure 2.3 provides a
graphical representation of the used terminology and the influencing factors.

Literature on mechanical engineering applications, specifically on heat exchange
applications, determines effectiveness as the ratio of actual heat transfer rate to
the theoretical maximum [87], [88], but such a consideration in the case of energy
conversion and transmission is already described by exergy or also called rational
efficiency [89]. Finally, Sui, Stapersma, Visser et al. [47] also discuss the use of this
term in the energy analysis of maritime systems, but proceed with a different set of
definitions.

In this study, we use in the assessment of the vessel’s energy performance, the
energy effectiveness indicator defined as:

ζ =
Mf,tot

W d
=

ṁf,tot

W v
, (2.22)



20 chapter 2

where Mf,tot is the total amount of fuel consumed, d is the covered distance, v is
vessel speed, and W a typical transportation weight.

When deadweight and displacement do not show significant variation, as in
the case of patrol vessels, we can ignore the weight term W and consider covered
distance as the main operational benefit. By further not accounting for current
effects, vessel speed through water vlog is used. Consequently, energy effectiveness
indicator is provided by:

ζfpd =
ṁf,tot

vlog
=

ṁf,e + ṁf,gen

vlog
. (2.23)

Accounting for the environmental impact and aligned with the indices and
indicators introduced by IMO, the cost of sailing can also be expressed by the
production of carbon dioxide emissions ṁCO2 . The energy effectiveness indicator
can also be written then as:

ζcpd =
ṁCO2

vlog
=

ṁf,tot fCO2

vlog
, (2.24)

where fCO2 is the mass ratio constant between carbon dioxide emissions and fuel.
Fuel composition plays an important role on this constant. The first IMO greenhouse
gas study [15] suggested a value of 3.170 for all fuel types, the second study [16]
a value of 3.021 for heavy fuel oil and 3.082 for marine gas and diesel oils, while
EEDI calculation methodology a value of 3.110.

2.3.3.1 Mean energy effectiveness indicator and standard deviation

Vessels sail in operational conditions that vary a lot, posing different energy require-
ments. Application of all previously mentioned energy efficiency and effectiveness
indicators results in a population of instant values as seen for instance in the case of
propeller thrust in Figure 2.4. Despite the fact that these populations provide the
limits of actual vessel operation, they do not offer any information on the achieved
energy performance of the vessels.

In order to overcome this issue, this methofdology introduces weighted mean
energy effectiveness indicator ζfpd¯ and corresponding standard deviation ζfpdσ

over
discretised vessel speed v as the main energy performance assessment tool utilizing
operational data, as follows:

ζfpdµ
(v) =

n
∑

i=1
ζfpdi

Ni

n
∑

i=1
Ni

, (2.25)

ζfpdσ
(v) =

√√√√√√√
n
∑

i=1

(
ζfpdi

− ζfpdµ

)2
Ni

n
∑

i=1
Ni − 1

, (2.26)

where ζfpmi
is one of the n different energy effectiveness indicator values found

within the limits [v − δv/2, v + δv/2), and Ni play the role of weights, being the
number of measurements for each different value i. The same formulas were used for
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Figure 2.4: Two dimensional histogram, mean value, and standard deviation of evaluated
total propeller thrust over discretised vessel speed.

Table 2.2: Reference weather and fouling conditions.

Condition Sea state Wind speed Fouling

trial 0 max 5 knots no
design 4 max 21 knots (Beaufort scale 5) 6 months out of dock
off-design 6 max 47 knots (Beaufort scale 9) 6 months out of dock

calculating discretised mean value and standard deviation of every other parameter
or energy performance indicator.

Finally, the importance of mean energy effectiveness indicator can be seen from
its relation to the actual amount of fuel consumed while sailing at a certain speed
Mf(v) and the carbon dioxide emissions MCO2(v), which are provided by:

Mf(v) =
n

∑
i=1

ṁf,toti Ni δt = ṁf,totµ

n

∑
i=1

Ni δt

=
ṁf,totµ

v
v Ntot δt = ζfpdµ

v Ntot δt ,

(2.27)

and

MCO2(v) = ζcpdµ
v Ntot δt . (2.28)

Equations 2.27 and 2.28 suggest that using an estimation of the mean energy
effectiveness indicators ζfpdµ

(v) and ζcpdµ
(v) over the whole vessel speed range and

of the operational profile Ntot(v), we can estimate the total amount of required fuel
and carbon dioxide emissions within a certain time horizon, necessary in life-cycle
assessment analyses.
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2.4 results and discussion

This section presents and discusses the results of the proposed methodology with the
case study Holland class patrol vessel. First, it discusses the operational uncertainties
under which the vessel sailed. Then, it demonstrates the use of mean energy
effectiveness indicator in describing the energy performance of the vessel, both
within an examined period and for future predictions, and it also stresses the
importance of vessel speed profile in life cycle fuel cost assessments. Next, it
demonstrates how total system, subsystem and component energy efficiency analysis
can be used to improve the design and provide feedback to operators on the
available operational modes, and finally, it discusses on the decision to adopt hybrid
propulsion by the case study vessel.

2.4.1 Operational uncertainties

The impact of the various uncertainties that influence the operating profile and
therefore energy performance of multifunction vessels is best demonstrated by
the thrust distribution that the vessel encounters, presented in the dimensions
vessel speed and thrust. Figure 2.4 shows the frequency of occurence, mean value
and standard deviation of thrust, against three curves used at the design phase
of the vessel. Those curves correspond to trial, design and off-design operational
conditions, and they were produced by running model tank tests. Their description
is given in Table 2.2. This figure clearly demonstrates that propeller thrust during
normal operating conditions can actually vary as much as 25% of its nominal
value, within the one standard deviation range, near full speed and 100% near
half speed. This variation is caused by environmental factors like wind and waves,
by operational factors like loading condition and rudder activity, by maintenance
conditions such as propeller and hull fouling, and also by ship acceleration and
deceleration. The evaluated mean propeller thrust is in good agreement with the

(a) (b)

Figure 2.5: Propeller thrust (b) and vessel speed through water (a) with highlighted areas of
bounded virtual shaft speed. Hypothetical acceleration and deceleration phases
are also demonstrated.

design curve, being equal between 8 and 10 knots and within 5% between 7 and
18 knots. Below 7 knots, however, the design curve does not intersect zero thrust
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at zero ship speed, as it assumes head wind. Therefore, the quadratic fit through
the design resistance at an intermediate speed of 7 to 10 knots should be assumed
for low ship speeds, up to 7 to 10 knots, to account for wind from all directions, if
measured mean value of thrust is not available. Above 18 knots, mean thrust leans
towards the trial conditions curve. The resulting mean value of evaluated thrust as
a function of ship speed is a good measure for life cycle analysis, as it accounts for
the average load over the various ship speeds. Furthermore, we observe that thrust
is indeed bounded between the trial and off-design curves, but the vessel hardly
ever sailed in such adverse weather conditions as described by the off-design curve.
Thus, using this curve as a design driver might be over-conservative.

Figure 2.4 also shows that the thrust-vessel speed distribution is not uniformly dis-
tributed. Diagonal areas of increased frequency of occurrence exist. As demonstrated
in Figure 2.5, these areas refer to constant virtual shaft speed setting, provided by:

nvirt =
p − p0

pnom − p0
nprop , (2.29)

where p is propeller pitch, p0 is zero thrust pitch, pnom is nominal pitch and nprop is
propeller speed. According to Geertsma, Negeborn, Visser et al. [49], virtual shaft
speed, being linearly related to vessel speed is the command provided by the crew
to the propulsion system. This means that in order to either accelerate or decelerate
to a different sailing speed, an increased or decreased virtual shaft speed is set. Due
to vessel inertia, thrust moves to another diagonal under almost constant speed
and then speed and thrust balance at the intersection point with the theoretical
resistance curve shown in the same figure.

0 2 4 6 8 10 12 14 16 18 20 22

Vessel speed through water [knots]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
o
ta

l
en

er
gy

e/
ci

en
cy

(2
to

t)
[-

]

0 (0)

10 (31)

20 (62)

30 (93)

40 (124)

50 (156)

60 (187)

70 (218)

80 (249)

90 (280)

100 (311)

V
es

se
l

en
er

gy
e,

ec
ti

v
en

es
s

in
d

ic
a
to

r
(1

fp
d
)

[k
g
/m

il
e

(k
g

C
O

2
/
m

il
e)

]

op.pro-le (design)

op.pro-le (actual)

(7) 2tot

(7) 1fpd

Figure 2.6: Mean energy effectiveness indicator and mean total energy efficiency over dis-
cretised vessel speed, with additional demonstration of the difference between
the design and the actual vessel speed profile.
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2.4.2 Vessel’s energy performance and CO2 footprint

This chapter introduced the use of mean energy effectiveness indicator, providing
the fuel-carbon resource cost of sailing at a certain vessel speed under various
operational conditions, as the main tool in quantifying the obtained energy per-
formance and carbon dioxide footprint of ships within an examined period. It also
distinguished between energy effectiveness, and total energy efficiency expressing
the ability of the system to exploit a certain amount of fuel resources. Figure 2.6
visualises this information by presenting mean energy effectiveness indicator and
mean total energy efficiency against discretised vessel speed through water.

The results suggest that although mean total energy efficiency gradually increases
to its maximum value of 28% near full speed, mean energy effectiveness indicator
shows a convex curve behaviour with a minimum value of 44 kg/mile or 137 kg
CO2/mile near 7 knots, and maximum values of 95 kg/mile or 296 kg CO2/mile
and 98 kg/mile or 305 kg CO2/mile at 2 and 20 knots respectively. Specifically:

• Below 4 knots mean energy effectiveness indicator increases by 20 kg/mile or
62 kg CO2/mile per 1 knot drop.

• Between 4 and 6 knots mean energy effectiveness indicator increases by 3.5-4
kg/mile or 11-12 kg CO2/mile per 1 knot drop.

• Between 6 and 8 knots mean energy effectiveness indicator is almost constant,
equal to 45-46 kg/mile or 140 kg CO2/mile.

• Between 8 and 14 knots mean energy effectiveness indicator increases by 3

kg/mile or 9.3 kg CO2/mile per 1 knot increase.

• Above 14 knots mean energy effectiveness indicator increases by 6 kg/mile or
18.6 kg CO2/mile per 1 knot increase.

Mean energy effectiveness indicator can also be used in life cycle fuel cost and
carbon emissions analyses, when specific operational conditions are not taken into
account, coupled with the prediction of the vessel’s speed profile, according to
Equations 2.27 and 2.28.

Figure 2.6 also presents the difference between the actual vessel’s speed profile,
which is associated with the high frequency of occurence of certain virtual shaft
speed settings shown in Figure 2.4, and the design profile reported in [90]. The
crew sailed more frequently below 10 knots, less frequently between 10 and 14, and
more frequently between 14 and 17 knots. It also sailed less above 17 knots, and
hardly ever sailed above 20 knots while the design scenario considered 8% of total
sailing time. The design scenario, which considered increased fuel consumption by
25%, suggests key sailing speeds of 14 to 15 and 19 to 21 knots, while our analysis
indicates 14 to 16, and 17 knots.

2.4.3 Energy performance on different operational modes

The previous section discussed the use of mean energy effectiveness indicator,
instead of EEOI or CII, in the energy performance assessment of ships. Important
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Figure 2.7: Mean value pitch to diameter and rotational speed over discretised virtual shaft
speed of port (P) and starboard (S) propellers.
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Figure 2.8: Working points of port (P) and starboard (S) main diesel engines, on 1 MDE
trailing and 2 MDEs transit and manoeuvring modes.

advantage of our proposed methodology is the additional feedback it provides on
the design and use of the different available operational modes, accounting for
actual operational conditions.

2.4.3.1 Description of the available operational modes

The vessel can sail on one of the six different operational modes found in Table 2.3.
Figure 2.7 provides the resulting combinator curves for the four operational modes
used by the crew under normal mission requirements, and Figure 2.8 the resulting
working points of the main diesel engines. Sailing on 2 MDEs manoeuvring mode
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Figure 2.9: Vessel speed profile of all operational modes.

Table 2.3: Operational modes.

2 main diesel engines transit
manoeuvring

1 main diesel engine trailing at full pitch
shaft brake at 0-pitch
blocked shaft at full pitch

2 electrical motors

involves a conservative pitch strategy in comparison to transit mode, resulting in
higher propeller speed. The decreased pitch value is a measure against diesel engine
overloading, thus manoeuvring mode should be used mainly during operations with
high manoeuvrability requirements, such as entering and leaving port, close-quarters
operations and emergency manoeuvres. 2 PTIs mode on the other hand increases
directly to maximum pitch, since the electrical motors can provide maximum torque
without the risk of overloading. Moreover, 1 MDE trailing mode also involves a
conservative pitch strategy compared to the 2 MDEs transit mode, as the whole
load is provided by one engine. The trailing shaft is let to move freely at full pitch,
although being restricted to maintain at least 50 rpm, thus not allowing sailing
below 9 knots. Propelling on one main diesel engine offers another two options
regarding the second shaft. 0-pitch mode includes the second propeller to reduce its
speed by setting zero pitch. This mode normally precedes the final option of the
blocked mode, when the shaft brake brings the second propeller to a full stop at full
pitch. 0-pitch and blocked modes are usually selected when the vessel undergoes
some kind of propulsion system maintenance. Furthermore, Figure 2.9 provides how
often and at what speed are the operational modes used. 2 MDEs-transit is the most
frequently used mode above 12 knots, while 2 PTIs mode is the most frequently
used below 9 knots. 2 MDEs-manoeuvring mode is used across almost the whole
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Figure 2.10: Mean value and standard deviation of the energy effectiveness indicator, over
discretised vessel speed, on the main operational modes.

speed range, although not being the primary choice at any of them. Finally, one
main diesel engine operation, especially on trailing mode, is used regularly between
9 and 16 knots.

Figure 2.11: Mean value of the evaluated total propeller thrust on the main operational
modes.
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2.4.3.2 Energy effectiveness on different operational modes

Figure 2.10 presents the two dimensional distribution of vessel energy effectiveness
indicator and the corresponding standard deviation curves. We observe that the
effect of the non-uniformly distributed virtual shaft speed settings seen in Figure 2.4
is also visible in this figure, and that standard deviation varies between 15 kg/mile
below 10 knots, and 10 kg/mile above 10 knots. This corresponds to 30% and 15%
of mean value respectively, and it clearly suggests that the selection of operational
mode and varying operational conditions can significantly affect the resulting energy
performance of the vessel within short time windows.

Figure 2.10 also provides the mean energy effectiveness indicator curves for the
four main operational modes. We observe that mean energy effectiveness indicator
can vary significantly among the different modes. 2 MDEs transit mode appears to
be the most effective mode above 10 knots with the exception of some short speed
ranges. 2 MDEs manoeuvring mode on the other hand was clearly the less effective
mode. 1 MDE trail mode shows a slightly better energy performance than the trasit
mode above 13 knots and finally, 2 PTIs mode shows a similar energy performance
with transit mode below 6.5 knots, and a clearly better performance between 6.5
and 10 knots.

2.4.3.3 The effect of required thrust on energy effectiveness

The mean energy effectiveness indicator when sailing on 2 PTIs was significantly
lower than on all other modes above 6.5 knots, suggesting that electrical propulsion
offers significant fuel savings. However, comparing mean total energy efficiency of
the system, as discussed in the next section, reveals that transit mode was more
efficient. The lower mean energy effectiveness indicator value is caused by the
fact that running on the electrical motors was selected while sailing on a lighter
propeller curve as seen in Figure 2.11, mainly under favourable weather conditions
as supported by the corresponding actual wind histograms in Figure 2.12. In order
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Figure 2.12: Histograms of actual wind speed in the longitudinal direction, where negative
values correspond to head wind. Results bounded between 3.5 and 10 knots of
sailing speed.
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to understand this better, we need to examine the following equation on the relation
of energy effectiveness indicator ζ with required propeller thrust T, total energy
efficiency ηtot, and fuel calorific value hL. Based on Equations 2.22 and 2.21, and
furthermore by ignoring the typical weight W as discussed in Section 2.3.3:

ζ =
ṁf,tot

v
=

ṁf,tot hL

T v
T
hL =

1
ηtot

T
hL . (2.30)

This equation suggests that the vessel’s energy effectiveness while sailing at a certain
speed is directly linked to the highly uncertain thrust requirement. Therefore, mean
energy effectiveness indicator curves presented in Figure 2.10 describe the attained
energy performance on the different operational modes, but they correspond to the
operational conditions under which those modes were used. Already in Figure 2.11,
we can find mean thrust for the examined modes. It is apparent that mean energy
effectiveness curves qualitatively follow the mean thrust curves on each mode.

In order to make a more fair energy performance comparison among different
operational modes, we examine the total energy efficiency of the system. Energy
efficiency at a whole system and subsystem level is mainly determined by the
component working points. While the working points shift due to changing thrust
requirements for a given virtual shaft speed setting, the total energy efficiency
change is indirect, and of a significantly lower scale than the thrust level change
itself.

2.4.3.4 Energy efficiency on different operational modes

Figure 2.13 presents the comparison of the mean total system energy efficiency over
discretised vessel speed for the different operating modes. This figure shows that
the most energy efficient mode was the 2 MDEs transit one, with a maximum value
of mean total energy efficiency equal to 28.5% at 18 knots. Manoeuvring mode was
approximately 10 to 15% less efficient above 7 knots, and 1 MDE trail mode was 10

to 20% less efficient. Subsystem and component efficiency plots, shown in Figures
2.14, 2.15 and 2.16, indicate the main cause in both cases was the inferior propeller
efficiency. Figure 2.7 suggests that this happens because of the the reduced pitch
of the manoeuvring mode required to ensure the main engine has more margin to
support faster acceleration of the engine and ship, and by the increased propeller
speed of the trailing mode in order to provide all thrust by a single shaft. Finally,
Figure 2.8 also confirms that the engine is operated at a conservative operating
strategy as stated in [46], as the mean operating points in transit mode are well
below the theoretical propeller curve.

2.4.4 Hybrid propulsion

Hybrid propulsion was selected for the case study patrol vessel in order to prevent
main engines fouling and improve energy efficiency at low speed, as diesel engines
operating at low power risk fouling due to carbon build-up and show high specific
fuel consumption. Figure 2.13, however, shows that the overall power system energy
efficiency of running on the electric motors in 2 PTIs mode was 15 to 25% worse than
on the 2 MDEs transit mode. The subsystem efficiencies, presented in Figures 2.14
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and 2.15 and the component efficiencies in Figure 2.16 provide insight into the cause
of the poor efficiency of the 2 PTIs mode. Figures 2.14 and 2.15 clearly show that
despite mean propulsion efficiency on the electrical motors improves compared to
the 2 MDEs transit mode by up to 10% above 6 knots, mean power supply efficiency
is significantly lower by 15% to 25%. Nevertheless, if mission requirements allow low
speed transit, it is still advisable to sail near the maximum power of the electrical
motors as long as engine fouling is still prevented, since the energy effectiveness in
that speed range is low and the amount of fuel consumed is comparably less than
at higher speeds.

First, we examine the components of the power supply subsystem. Mean diesel
generators energy efficiency was between 32 and 35% when running on the electrical
motors, compared to 34% on 2 MDEs transit mode. This is already 3% lower than
the mean main diesel engine energy efficiency. We also need to consider that an
electrical motor’s nominal energy efficiency is usually equal to 94-97% [91]. The
optimal power allocation of the diesel generators could bring significant energy
efficiency gains, as running on three instead of two generators causes the efficiency
to drop by 5 to 10%, as seen in Figure 2.17. This is also the case though when not
running on the electrical motors, as the diesel generator efficiency can be improved
by 10%, from 36% to 40%, by running one diesel generator instead of two diesel
generators as soon as the risk of total electrical failure due to generator failure is
acceptable.

On the propulsion subsystem efficiency, gearbox losses on the electrical motors
are very high, equal to 7% at 9 knots and 12% at 6 knots, which is 5% less efficient
than in transit mode. This is caused by the extra-stage double reduction gearbox
needed to reduce the 1 800 rpm to 105 rpm. This additional reduction stage could
have been prevented by selecting an electric motor with a nominal speed of 450

rpm, with 8 pole pairs instead of 2. If the electric motor had been fitted directly
on the shaft, all gearbox losses could have been omitted completely. However, this
would have required a significantly larger and more expensive electric motor.

2.5 conclusions and future research

Maritime industry must reduce its greenhouse gas emissions in the coming decades.
While indices and indicators as the EEDI and EEOI are useful in the energy per-
formance assessment of cargo vessels, they do not provide sufficient insight into
the operation of multifunction vessels with diverse operational profiles. In order to
provide this insight, operational uncertainties need to be addressed, so as to improve
both the design and the use of vessels for the actual operational conditions. In this
direction, this chapter proposed a novel operational data-driven methodology, that
uses logged measurements of a ship’s automation system, which was applied on
the energy performance and environmental footprint assessment of an ocean patrol
vessel belonging to the Royal Netherlands Navy.

Ships equipped with mechanical, electrical and hybrid propulsion can benefit
from the following conclusions and recommendations on the methodology:
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Figure 2.13: Mean total energy efficiency over discretised vessel speed on the main opera-
tional modes.

Figure 2.14: Mean power supply energy efficiency on the main operational modes.

Figure 2.15: Mean power propulsion energy efficiency on the main operational modes.
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(a) (b)

(c) (d)

Figure 2.16: Component level mean energy efficiencies over discretised vessel speed on the
main operational modes.

• Operational conditions such as weather conditions, loading conditions, hull
fouling and manoeuvring cause extensive variation of propeller thrust over its
mean value at a given vessel speed.

• Mean energy effectiveness indicator for all operational modes combined,
as introduced in this chapter, is a good measure for the assessment of the
achieved energy performance and carbon footprint, and for life cycle fuel
consumption and carbon analyses. It provides the operator with insight into
the most effective sailing speed, and the cost of sailing faster, but it should not
be used to compare the energy performance of different operational modes as
it can be distorted due to diverse thrust levels.

• The two dimensional histogram of discretised energy effectiveness indicator
over ship speed, and the corresponding standard deviation curves indicate the
uncertainty in the vessel’s energy performance, caused by discrete operator
settings and the varying operational conditions.

• Mean total energy efficiency can be used to compare different operational
modes due to its small variation over varying thrust levels.
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(a) (b)

Figure 2.17: The difference of electrical propulsion on diesel generators electrical power
supply, allocation and energy efficiency. (a) Combined electrical power supply
histogram and energy efficiency of the diesel generators, with and without
running on the electrical motors. (b) Diesel generators load histogram with and
without running on the electrical motors.

• System, subsystem and component level mean energy efficiency evaluation can
provide the designers with feedback on the design choices over the complete
vessel operating profile in actual and uncertain operating conditions.

• Life cycle fuel consumption prediction will most likely be inaccurate without
a reliable operational profile prediction.

The proposed methodology provides the following feedback to the operators of
the vessel:

• Crew decisions, as the selection of operational mode and the selection of
vessel speed, have a similar impact on overall energy performance as design
decisions.

• Despite the high energy efficiency of most components at high sailing speed,
the vessel consumes less fuel per mile in the range of 30 to 40% of nominal
speed.

• Mean energy effectiveness indicator change for a 1 knot speed change is a
good advisor for sailing speed selection.

• The operators appear to have a strong preference for certain discrete speed
settings.

• While using electrical propulsion can be less efficient than mechanical propul-
sion, it can prevent fouling of the diesel engines at low loads. Therefore,
for long transits at low speeds, running on the electrical motors is still ad-
visable. Similarly, if speeds above the motors maximum speed are required,
sailing on one engine can also reduce maintenance, if the one-shaft reduced
manoeuvrability is acceptable.
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The proposed methodology provides the following feedback to the designers of
the vessel:

• Reducing the electrical motors speed with two reduction stages leads to
significant gearbox losses. Fuel savings can be achieved by reducing the speed
of the motors, thus the number of reduction stages, if the increased size of the
motors is acceptable, and by optimally selecting the number and size of the
diesel generators.

• While designers often consider gearbox and shaft losses insignificant, losses at
part load are significant and can impact design choices.

• The effect of part load component losses causes total energy efficiency of the
system to drop by almost 50% at half vessel speed compared to the nominal
speed. Therefore, the use of numerous design points in order to reduce the
fuel use and CO2 emissions of vessels is recommended.

Future work could focus on a number of aspects to be investigated. First, in order
to draw safer conclusions on the energy performance of different operational modes,
we recommend the use of first principle models in examining all options under
the same operational conditions. Moreover, the application of this methodology
on a dataset which includes propeller thrust and torque, and main diesel engine
torque sensor readings would make it possible to examine main diesel engine
energy efficiency degradation, and propeller and hull fouling. Finally, while mean
energy effectiveness provides useful insight for general trends for journey planning,
route optimisation algorithms require fuel consumption prediction for the specific
conditions the vessel is sailing in. The data analysis proposed in this work is not
applicable for this type of analysis. Either first principle models, or machine learning
algorithms would be required to identify the effect of specific operational conditions.
However, the enriched dataset proposed in this work can be used by such machine
learning algorithms.

The proposed methodology, using operational data from continuous monitoring,
provides insight into the impact of operator and design choices for ships, and it
allows the better assessment of technical and operational measures. For the case
study, a 2 knots increase of the sailing speed between 8 and 14 knots causes a 14%
increase of the CO2 emissions, and a 27% increase above 14 knots. Similarly, an
improved design including better auxiliary power allocation and the use of less or
no gearbox reduction stages, can additionally save approximately 15 to 20% on CO2

emissions, thus mitigating the environmental impact of ship operations.
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This chapter is reproduced from [92]:

N. Vasilikis, R. Geertsma and A. Coraddu, ‘A digital twin approach for maritime car-
bon intensity evaluation accounting for operational and environmental uncertainty’,
Ocean Engineering, vol. 288, p. 115 927, 2023. doi: 10.1016/j.oceaneng.2023.115927

abstract

Maritime industry has set ambitious goals to drastically reduce its greenhouse gas emissions
by stipulating and enforcing a number of energy assessment measures. Unfortunately,
measures like the EEDI, EEXI, SEEMP and CII do not account for the operational and
environmental uncertainty of operations at sea, even though they do provide a first means
of evaluating the carbon footprint of ships. The increasing availability of high-frequency
operational data offers the opportunity to quantify and account for this uncertainty in
energy performance predictions. Current methods for evaluating and predicting energy
performance at a whole energy system level do not sufficiently account for operational and
environmental uncertainty. In this work, we propose a digital twin that accurately predicts
the fuel consumption and carbon footprint of the hybrid propulsion system of an Ocean-going
Patrol Vessel (OPV) of the Royal Netherlands Navy under the aggregate effect of operational
and environmental uncertainty. It combines first-principle steady-state models with machine
learning algorithms to reach an accuracy of less than 5% MAPE on both mechanical and
electrical propulsion, while bringing a 40% to 50% improvement over a model that does
not utilise machine learning algorithms. Results over actual voyage intervals indicate a
prediction accuracy of consumed fuel and carbon intensity within 2.5% accounting for a
confidence interval of 95%. Finally, the direct comparison between mechanical and electrical
propulsion showed no clear energy-saving benefits and a strong dependency of the results on
each voyage’s specific operational and environmental conditions.
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3.1 introduction

Human influence has unequivocally warmed the atmosphere and oceans, and
the current speed of climate change and its impact on the living environment for
mankind is unprecedented [7]. To reduce the impact of shipping on the environment,
the International Maritime Organization (IMO) adopted mandatory energy efficiency
measures textcolorredalready back in 2011 [11]. However, adopting these measures
did not prevent a further 9.6% increase of green house gas emissions from shipping
between 2012 and 2018 [12]. Therefore, additional measures are urgently needed to
reach a 40% reduction of carbon emissions per transport work by 2030 compared to
2008 [13].

Literature provides a wide range of technological and operational solutions to
comply with these measures [36], [37], [93], [94]. The main difficulty in their energy
performance assessment, though, is the high uncertainty level of the required power
for propulsion, mission, and auxiliary loads at the different design and operational
phases [54]–[57]. This uncertainty is mainly caused by the heterogeneous operational
and environmental conditions ships operate in, as demonstrated by Parkes, Sobey
and Hudson [53] for merchant vessels and by Vasilikis, Geertsma and Visser [21] for
multi-function service vessels.

Current IMO regulations and regulations in preparation by international authorit-
ies such as IMO and the European Union require ships to comply with reference
limits of indices and indicators that, in principle, indicate the amount of carbon
dioxide (CO2) emissions per transport work. Their calculation is done either on
a single sailing point as in the case of EEDI [17] and EEXI [18] or by averaging
the carbon footprint over a year of operations as in the case of CII [19]. However,
Lindstad, Borgen, Eskeland et al. [24] demonstrated that one sailing point does not
consider the operational and environmental uncertainty at sea. Moreover, balancing
out the effect of this uncertainty over the course of similar voyages does not provide
substantial feedback on the operational and design decisions, especially in the case
of multi-function vessels that do not perform the same type of operations over
time [21]. Therefore, this work aims at developing a digital twin that accounts for
both operational uncertainty and unpredictability in environmental conditions.

The use of actual operating profiles or multiple operating conditions can improve
the accuracy of the assessment of lifetime energy savings when comparing the
impact of novel operational procedures and energy efficiency measures or design
solutions [26], [63], [64]. The advent of new technological advances in collecting,
storing, and transferring data has the potential to support the maritime industry
to evaluate operational and design measures over more realistic operating con-
ditions [61], [62]. The increasing availability of high frequency operational data
in contrast to bias-sensitive noon reports and research on data-driven techniques
makes it possible to quantify operational and environmental uncertainties and
accurately assess the energy efficiency of real-time operations [60]. In this work, we
thus provide a novel methodology to account for realistic operating conditions in
evaluating operational procedures leveraging digital twin technologies that utilise
high frequency operational data.
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3.1.1 Related Work

Uncertainties in operational and environmental conditions significantly affect the
energy efficiency of power and propulsion systems [58], [59]. Operational uncer-
tainty is the result of differences in loading condition, rudder activity, hull, and
propeller fouling, but also of the selected vessel speed and acceleration. Alternat-
ively, environmental uncertainty is mainly related to wind and wave conditions,
currents, and ambient air and sea temperatures. Many authors account for those
uncertainties differently by formulating their problem accordingly.

Some studies examine the efficiency of the whole energy conversion chain of
ships’ power supply and propulsion systems. Shi, Grimmelius and Stapersma [78]
and Sui, Stapersma, Visser et al. [47] evaluate fuel consumption over the whole vessel
speed range, accounting for one resistance curve that is assumed representative of
the ship’s operation. Other studies provide results for multiple resistance curves in
order to demonstrate the effect of different weather and hull fouling conditions [46],
[49]. Another practice is to provide the total fuel consumed over certain sailing time
periods. For example, Sui, Vos, Stapersma et al. [48] estimated energy gains over three
voyages that each involved three parts of different sailing speeds and sea margins
and a number of maneuvers. Moreover, Trivyza, Rentizelas and Theotokatos [26],
[65] used actual vessel speed distributions, and finally, some authors examined
actual vessel speed time profiles for energy management applications [2], [66]. While
these approaches partly consider the effect of diverse conditions on system-level
energy performance with multiple single-point conditions, they do not account for
the full spread of actual conditions.

Another set of studies focuses on individual operational and environmental
parameters. They usually use hindcast data of monitored weather, vessel speed, and
loading parameters. The main applications are on weather routing problems [95]–
[97], on operational parameters optimisation as trim [69] and vessel speed [98], but
also on identifying hull fouling [70]. Monte Carlo simulations have also been used
to quantify uncertainty on attained energy efficiency [99], [100]. Furthermore, there
is a third branch of studies that examine the energy performance of individual
components and subsystems. They use statistical distributions of the main engine,
auxiliary engine, and thermal power for thermodynamic cycle optimisation [58],
[79], [80] or a number of typical steady state operating conditions [101]. A similar
strategy uses these power profiles in the time domain to examine different system
configurations [102]–[104]. The work proposed in this chapter differs from these
studies as it examines the aggregate effect of different operational and environmental
conditions over selected voyages of the complete energy system rather than each
parameter or subsystem separately.

Fuel consumption prediction of ships usually requires the development and use
of simulation models of their energy systems [44], [45]. Literature provides many
examples of such models, which usually consider different system limits and fidelity
level. In general, simulation models can be categorised into first-principle models,
that provide insight in the underlying physical processes, semi-empirical models,
that use the experience of similar systems, and empirical models, that are built
using the preceding knowledge of the examined system’s operation. Another way
to categorise different models is a division into dynamic and steady-state models,
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based on whether they consider dynamic phenomena or not. Finally, simulation
models can also be categorised into stochastic and deterministic models, depending
on whether they consider the uncertainty of the input and output parameters or
not. The application scope determines what would be a suitable model type and
what should be the necessary fidelity level.

This trade-off between model type, application scope, and fidelity level has been
discussed by many authors [42], [46], [47]. Energy performance prediction of ship
energy systems usually utilises steady state models [26], [47], [48], [65], [66], [78].
This is a practice followed in automotive applications as well [105]–[107]. Those
models usually consist of two or three-dimensional look-up tables provided by
component manufacturers or they are the result of regression analysis over a certain
amount of available data. Some models use constant energy efficiencies to model
different components too. In general, the modelled components include the main
propulsion engines, gearboxes, shafts, and propellers. In some cases, auxiliary
power generation is modelled too. Control strategy applications on the other hand
require the use of dynamic models [46], [108], [109]. In the specific case of energy
management applications, both steady state [66] and dynamic [2], [73], [110] models
of the energy system can be used.

Prediction of fuel consumption in certain environmental and operational con-
ditions usually follows two modelling strategies. The first combines steady state
energy system models with semi-empirical resistance prediction models [111] or
more advanced computer fluid dynamics models [95]. The second uses statistical
models to predict fuel consumption in a one step calculation as in [69] or in a two
step main shaft propulsion power and fuel consumption prediction [98]. A review
of statistical models and methods used in the fuel consumption prediction of ships
can be found in [112], [113]. The modelling strategy in this chapter differs from
this practice as the main aim is to preserve the first principle understanding of the
system components.

Finally, energy performance analysis and optimisation at a component and sub-
system level is also dominated by the use of steady state models, although these
models can vary in their level of detail. For example, applications in finding optimal
configurations use look-up tables [102]–[104], but applications on optimising ther-
modynamic working cycles require much more detailed models based on energy
efficiency analysis [101] or even exergy analysis [58], [79], [80]. Those studies focus
on the low-level examination of the system, nevertheless, they confirm the general
practice of sacrificing time dependency for more detailed models and a higher
number of simulations.

3.1.2 Gaps

Actual operational and environmental conditions are used coupled with empirical
models to examine energy efficiency gains from optimising operational decisions
such as weather routing, vessel speed selection, and optimal loading of vessels.
When the focus lies on alternative system configurations and settings, technological
innovations are tested on scenarios that are not representative of the actual condi-
tions at sea. Hence, a methodology on the aggregate effect of actual operational
and environmental conditions is missing. Moreover, ship energy systems consist
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of a large number of interacting components that show non-linear behaviour [42].
Modelling discrepancies of those components result in accumulating prediction
errors. On the occasion that large datasets of operational data are available, calib-
ration and validation of the whole energy system model become challenging too.
At a component level, there is a number of examples of calibrating, validating, and
enhancing the accuracy of different models as in the case of main diesel engines [51],
[52], [114]. However, such methodologies at a whole system level are lacking due
to different sensor availability of monitoring platforms and diversity in system
architecture.

3.1.3 Aim and contribution

This chapter presents an accurate and computationally low-cost operational data-
driven methodology that can predict the fuel consumption and carbon footprint of
ship operations under the aggregate effect of diverse and uncertain operational and
environmental conditions and use this methodology to establish optimal settings
and evaluate future design alternatives. The contribution of this chapter can be
summarised as follows:

• It provides a methodology to build a digital twin of ship energy systems that
can be used to evaluate operational decisions, design changes, and contribute
to enhanced future designs.

• It proposes a novel methodology to account for realistic operational and
environmental conditions.

• It proposes a systematic methodology to validate models of the whole energy
system in the presence of large operational datasets.

• It proposes statistical modelling techniques to compensate for uncertainty
related to sensor measurements and the limited availability of information
from shipbuilders and component manufacturers.

• It provides a case study that demonstrates the capability of steady-state models
coupled with data-driven techniques in accurately predicting fuel consumption
over actual dynamic and quasi-static sailing conditions.

• It provides a direct comparison between electrical and mechanical propulsion
over actual sailing profiles.

The rest of this chapter is organised as follows. Section 3.2 presents the main
characteristics of the examined vessel and the used datasets. Section 3.3 presents
our proposed methodology to build and utilise a digital twin of the vessel’s energy
system. Section 3.4 provides a description of the data-driven techniques applied.
Section 3.5 provides all accuracy metrics for the developed models. Section 3.6
presents our results and Section 3.7 the drawn conclusions.
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3.2 case study vessel and dataset description

The case study vessel in this chapter is a Holland class Ocean Patrol Vessel (OPV) of
The Royal Netherlands Navy (RNLN). Appendix A provides a more detailed de-
scription of this class of vessels that are equipped with hybrid propulsion, including
a schematic representation of the energy system, component specifications and per-
formance diagrams provided by component manufacturers and the shipbuilder. The
proposed methodology utilises operational data logged by the automation system of
the vessel. Cleaning and pre-processing was done as in [115], but vessel speed was
selected as the prime parameter and the top and bottom 0.1% percentile was used
to discard outliers instead of standard deviation. The used dataset is characterised
by a sampling frequency of 3 seconds and covers a time window of 15 months. The
main parameters used in this chapter are reported in Table 3.1. These parameters
are all measured by the automation system, except for the thrust parameter, which
is estimated based on the dataset enrichment methodology described in the authors’
earlier work [21].

The examined vessel uses a number of operational modes in order to serve its
multifunction mission. The focus of this study lies in the two main operational
modes. The first one is designed for sailing on two main diesel engines while in
transit, from now on referred to as Mechanical Mode (MM). The second main mode
is designed for patrolling or low speed transits up to 10 knots on the two electric
motors, from now on referred to as Electrical Mode (EM). Figure 3.1 provides the
distribution of the dataset parameters for the examined two propulsion options.
Vessel operation below 5 knots is discarded as part of manoeuvring which does not
have an important impact on attained energy performance and carbon footprint.

Table 3.1: Dataset parameters.

Parameter Unit

Vessel speed through water [knots]
Propeller pitch to diameter [-]
Propeller thrust [kN]
Propeller shaft speed [rpm]
Propeller shaft torque [kNm]
Electrical motors power [kW]
Generated electrical power [kW]
Main diesel engines fuel consumption [kg/h]
Diesel generators fuel consumption [kg/h]
Ambient air temperature [degree]
Time [sec]
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Figure 3.1: Dataset parameters distribution.
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Figure 3.2: Schematic representation of the proposed methodology.

3.3 methodology

The methodology of this chapter proposes a two-phase approach to
accurately predict the energy performance of complex ship energy
systems under realistic operational and environmental conditions, by
leveraging steady-state first-principle models [21], [47], [99] and the
high-frequency operational data described in Section 3.2, as follows:

• Phase I: a DT [116], [117] of the vessel’s hybrid energy system
is developed to capture the quasi-static behaviour of the vessel
in terms of energy, fuel consumption, and emissions. Due to
the hybrid approach of using data-driven and first-principle
techniques, we can achieve accurate predictions that capture the
aggregate effect of operational and environmental uncertainty.
The description of this DT is reported in Section 3.3.1 and its
validation in Section 3.5.

• Phase II: the developed DT is employed in predicting the energy
performance (i.e., fuel consumption) and carbon intensity of the
vessel over a number of actual voyages, and it also provides a dir-
ect comparison between Mechanical Mode (MM) and Electrical
Mode (EM).

A schematic representation of the methodology can be found in Fig-
ure 3.2.

3.3.1 Phase I: Digital Twin Development

The developed DT predicts the fuel consumption of main diesel en-
gines and generators and the propeller shaft torque for tuples of
different vessel speed, propeller thrust, and ambient temperature. For
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Figure 3.3: Flowchart of the Digital Twin

each component depicted in Figure 3.3, a short description of the
modelling approach follows in the next subsections.

First, the model evaluates water speed in the ship’s wake va from
vessel speed v:

va = (1 − w) v , (3.1)

using Taylor’s wake fraction w which is provided by towing tank
tests (Figure A.3 in Appendix A). Next, it evaluates rotational speed n
and pitch p of the controllable-pitch propeller based on an iteration
algorithm described in Figure 3.4. This algorithm iterates to the pitch
setting for the given vessel speed using the fixed-pitch propeller
matching algorithm and the ship’s combinator curve as reported in [68]
to estimate rotational speed. Propeller’s thrust coefficient KT,ship curve
is provided by:

KT,ship =
T

ρ v2
a D2 J2 , (3.2)
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Figure 3.4: Controllable pitch propeller pitch and rotational speed evaluation
algorithm.

where T is propeller thrust, ρ is water density, D is propeller diameter
and J is the advance coefficient. The initial value for virtual shaft
speed nvirt,i is assumed a linear function of vessel speed:

nvirt,i = c1 v − c0, v > 2knots . (3.3)

Propeller pitch is provided as a function of virtual shaft speed nvirt

using the corresponding combinator curve for the selected operational
mode in Figure 3.5. Thrust coefficient curves KT are established with
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Figure 3.5: Combinator curves.

the propeller open water diagrams, as shown in Figure 3.6. Propeller



3.3 methodology 45

0 0.5 1 1.5

-1

-0.5

0

0.5

Figure 3.6: Thrust coefficient open water diagram.

speed is evaluated using the advance coefficient as follows:

n =
va

J D
. (3.4)

Virtual shaft speed nvirt is provided by:

nvirt =
p − p0

pnom − p0
n , (3.5)

where p0 is zero thrust pitch and pnom is nominal pitch. Following the
successful convergence of the iteration procedure, the pitch value and
the advance coefficient are used in to establish the torque coefficient
in open water conditions KQ,o using Figure 3.7. Propeller torque in
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Figure 3.7: Torque coefficient open water diagram.

open water conditions MQ,o is then estimated from:

MQ,o = KQ,o ρ n2 D5 , (3.6)

while propeller torque MQ is evaluated using the relative rotative
efficiency ηRQ:

MQ =
MQ,o

ηRQ
, (3.7)
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the background of which is discussed in the following two paragraphs.
The use of propeller open water diagrams in predicting propeller
thrust, torque, and speed is based on decoupling the problem of the
self-propelled ship into the problem of open water propeller opera-
tion and the problem of the towed ship [118]. It uses scale models
in static operating points, while recently including the effect of con-
trol strategies and the scaling challenges this introduces have been
demonstrated in [119]. Typically, a selection between thrust or torque
identity is made by introducing relative rotative efficiency. It is usual
to select the first option of thrust identity, suggesting that the thrust
coefficient stays the same in actual and open water conditions [120].
Literature provides semi-empirical formulas for evaluating relative
rotative efficiency as in [121]. The use of those formulas corresponds
to nominal design conditions, and their accuracy on modern ships
and off-design conditions has not been examined [122].

Nonetheless, the availability of operational data offers the opportun-
ity to assess the accuracy of those formulas in design and off-design
conditions. The utilised IPMS dataset includes measurements of pro-
peller torque, pitch, rotational speed, and vessel speed. Equation 3.6
provides an estimation of propeller torque in open water conditions. In
theory, the fraction of this torque value with measured torque provides
an estimation of the relative rotative efficiency η̂RQ:

η̂RQ =
MQ,o

MQ
, (3.8)

where the hat symbol is used to distinguish our estimation to the
theoretical value ηRQ, as it involves uncertainty related to the accuracy
of our measurements and of the diagrams used. Parameters like the
thrust deduction factor t, wake factor w, and the relative rotative
efficiency are usually used to compensate for this uncertainty [123].
In this chapter, the estimated relative rotative efficiency based on
Equation 3.8, from this point called propeller uncertainty correction
factor, is modelled as a statistical model following the procedure
described on Section 3.4.

Furthermore, the model evaluates propeller shaft torque Mpsh us-
ing the propeller torque and propeller shaft torque losses Mloss,psh
according to:

Mpsh = MQ + Mloss,psh , (3.9)

where the latter is provided as a linear function of shaft speed by the
manufacturer,

Mloss,psh = c3 n + c2 , (3.10)
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Consequently, propeller shaft power is evaluated from Ppsh = Mpsh n 2π.
Main diesel engine power Pe and electrical motor power Pm are estim-
ated based on gearbox losses Ploss,gb:

Pe = Ppsh + Ploss,gb , (3.11)

Pm = Ppsh + Ploss,gb . (3.12)

The linear torque losses model proposed in [85] is used. It is calibrated
with the data provided by the gearbox manufacturer as a function of
input power and speed:

Ploss,gb =

c6 Pe + c5 ne
2 + c4 ne (MM),

c9 Pm + c8 nm
2 + c7 nm (EM),

(3.13)

where ne and nm derive using the corresponding speed reduction
ratios re and rm:

ne = re n , (3.14)

nm = rm n . (3.15)

Following the substitution of Equations 3.11 and 3.12, gearbox losses
are given from:

Ploss,gb =
c6 Ppsh + c5 ne

2 + c4 ne

(1 − c6)
, (3.16)

Ploss,gb =
c9 Ppsh + c8 nm

2 + c7 nm

(1 − c9)
. (3.17)

Fuel consumption of the main diesel engines ṁf,e is evaluated from
the specific fuel consumption be as:

ṁf,e =
be Pe 3600

1000
, (3.18)

which is interpolated using speed ne and power Pe from Figure 3.8.
This look-up table was built out of the brake specific fuel consumption
contour curves provided by the manufacturer in [90], corrected with
the available dataset according to Table 3.2.

Table 3.2: Original brake specific fuel consumption contour lines provided
by the manufacturer and percentage correction.

be correction be correction be correction
[g/kWh] [g/kWh] [g/kWh]

236 -1.7 % 213 no 199 +1.5 %
230 -1.7 % 209 no 195 +1.5 %
217 no 204 no 193 +2.1 %
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Figure 3.8: Brake specific fuel consumption map of the main diesel engines.

The electrical power delivered to the motors Pm,el is evaluated based
on their energy efficiency ηm and delivered power Pm:

Pm,el =
Pm

ηm
. (3.19)

The energy efficiency of the motors is modelled as a function of the
delivered power as:

ηm = c12 z2 + c11 z + c10 , (3.20)

where

z = log Pm . (3.21)

The constants are estimated based on the test results for an induction
motor provided in Kalikatzarakis, Geertsma, Boonen et al. [2].
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Figure 3.9: Electrical motor’s energy efficiency against produced power.
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Fuel consumption of the diesel generators ṁf,gen is derived from the
specific fuel consumption bgen as:

ṁf,gen =
bgen Pgen 3600

1000
. (3.22)

Specific fuel consumption is modelled using the available dataset
parameters as a function of the total generated electrical power Pgen:

bgen =
c14

Pgen
+ c13 , (3.23)

which is the sum of the hotel load Photel and the power provided to
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Figure 3.10: Diesel generators’ specific fuel consumption against produced
electrical power.

the electrical motors Pm,el:

Pgen = Photel + Pm,el . (3.24)

The mission system and auxiliary electrical load clearly is influenced
by many factors, such as the mission of the vessel that determines
which sensor and weapon systems are active and the activities the
crew are undertaking. From the dataset, we have established that the
correlation with outside air temperature Tair is the strongest correlation
for all parameters. This is caused by the fact that the electrical capacity
of the chilled water plant for cooling of all systems is one of the largest
electrical non-propulsion loads and directly influenced by the outside
air temperature. Thus, hotel electrical load Photel is modelled as a
quadratic function of the external air temperature Tair as derived from
the analysis of the dataset:

Photel = c17 Tair
2 + c16 Tair + c15 . (3.25)

Ultimately, total fuel consumption of the vessel ṁf,tot is provided by:

ṁf,tot = ṁf,e + ṁf,gen . (3.26)

All model constants can be found in Table 3.3.



50 chapter 3

0 10 20 30 40

500

550

600

650

700

750

Figure 3.11: Electrical hotel load as a function of ambient air temperature.

Table 3.3: Model Constants

Initial Virtual Shaft Speed Gearbox Losses (MM) Electrical Motors

c0 11 c4 0.0081 c10 0.2161

c1 7.9 c5 9.002e-05 c11 0.553

c6 0.0050 c12 -0.1065

Propeller shaft losses Gearbox Losses (EM) Diesel Generators

c2 1.4 c7 0.00297 c13 230.7

c3 0.0134 c8 1.025e-05 c14 10.05

c9 0.0050

Ambient Temperature

c15 530 c16 0.6 c17 0.099

3.3.2 Phase II: Carbon Intensity Evaluation

The second phase of our methodology examines the hypothesis that
the developed DT can accurately predict carbon emissions over a se-
lection of actual voyage intervals in line with existing regulations [19].
The selection of those intervals involved finding periods of at least
four hours of continuous sailing on the same operational mode. The
total duration ∆t, covered distance ∆s, and total amount of consumed
fuel Mf,tot was approximated by midpoint rule numerical integration
as follows:

∆t =
∫

dt ≃
N

∑
j=1

δt = N δt , (3.27)

∆s =
∫

vlog dt ≃
N

∑
j=1

vlog δt , (3.28)

Mf,tot =
∫

ṁf,tot dt ≃
N

∑
j=1

ṁf,tot δt . (3.29)
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Mean sea margin SM was evaluated as the mean difference of thrust
and calm water resistance R0:

SM = (T − R0) /R0 . (3.30)

Mean speed v = ∆s/∆t and Carbon Intensity (CI) derive as:

CI =
Mf,tot fCO2

∆s
, (3.31)

where fCO2 is the carbon factor equal to 3.206 for diesel oil according
to EEDI regulations [17]. The evaluated characteristics of the selected
intervals can be found in Tables 3.8 and 3.9 in the case of mechanical
and electrical propulsion, respectively. The prediction accuracy of the
selected intervals is examined using the Mean Average Percentual
Error (MAPE) of total fuel consumption ṁf,tot, and the Absolute Per-
centage Error (APE) of the predicted amount of consumed fuel Mf,tot,
consequently carbon intensity.

The last step of phase II is the selection of non-dynamic intervals
to simulate the energy performance of the vessel in MM and EM and
provide a direct comparison between them.

3.4 data-driven models

One of the objectives of this study is to develop a model for pre-
dicting the propeller uncertainty correction factor, denoted as η̂RQ,
based on the input parameters outlined in Table 3.4. This model will
utilize the data described in Section 3.2. Figure 3.12 illustrates the
histogram of relative frequencies for the target feature in both MM
and EM. This learning problem can be formulated as a supervised Ma-
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Figure 3.12: Propeller uncertainty correction factor η̂RQ histogram of relative
frequencies obtained from the IPMS dataset.

chine Learning (ML) problem, specifically a regression problem [124].
In regression analysis, an input space X ⊆ Rd is comprised of d
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Table 3.4: List of inputs and outputs of the ML models.

Space Symbol Description Unit

v Vessel speed [kn]
Input T Thrust [kN]

p Pitch [-]
n Shaft speed [rpm]

Output η̂RQ Propeller uncertainty correction factor [–]

features (in this case, the four parameters in Table 3.4). The output
space, Y ⊆ R, corresponds to η̂RQ. A dataset of n examples, denoted
as Dn = (x1, y1), · · · , (xn, yn), represents input/output relationships
where xi ∈ X and yi ∈ Y ∀i ∈ 1, · · · , n. The aim is to learn the un-
known input/output function µ : X → Y based solely on Dn. An
ML regression algorithm A , characterized by its hyperparameters H,
selects a model f from a set of potential models F based on avail-
able data A H : Dn × F → f . The set F is typically unknown and
depends on the choices of A and H. Various ML algorithms exist
in the literature [124]–[127]. However, according to the no-free-lunch
theorem [128], there is no a priori method for determining the best ML
algorithm for a specific application. Therefore, this study will consider
an assortment of state-of-the-art ML algorithms.

The accuracy of model f in approximating µ is evaluated using a
prescribed metric M : f → R. Multiple metrics are available for regres-
sion analysis in ML [129]. However, due to the physical significance
of η̂RQ, this study will focus on four primary metrics: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Relative Error
in Percentage (REP), and the Coefficient of Determination (R2). To
identify the most suitable ML algorithms and their corresponding
optimal hyperparameters, as well as to evaluate the performance of
the final model based on the desired metrics, a statistically consistent
Model Selection (MS) and Error Estimation (EE) process was con-
ducted. The methodology for this process is detailed in Section 3.4.2,
following the recommendations presented in [130].

3.4.1 Machine Learning Models

This section provides a concise overview of the four algorithms em-
ployed in this study, highlighting the fundamental concepts, usage,
and hyperparameters associated with each algorithm. The chosen
algorithms represent the most effective approaches within the four
primary families of ML regression algorithms [124]–[127]: Linear Meth-
ods[131], Kernel Methods [132], Ensemble Methods [133], and Neural
Networks [125].



3.4 data-driven models 53

3.4.1.1 Linear Methods

Regularized Least Squares (RLS) is a regression method that intro-
duces a regularization term to the traditional least squares problem
to control the complexity of the model and prevent overfitting. The
objective of RLS is to minimize the sum of squared residuals, similar
to ordinary least squares, but with an additional penalty term that
discourages large values of the model parameters. The regularization
term is typically a function of the model parameters, such as the L2

norm (also known as Ridge regression) or the L1 norm (also known
as Lasso regression). The L2 norm encourages small parameter values,
leading to a more stable model with lower variance, while the L1

norm can lead to sparse solutions, where some parameters are exactly
zero, effectively performing feature selection. The balance between
the fit to the data and the regularization is controlled by the only
hyperparameter of this algorithm λ. A larger λ increases the impact
of the regularization term, leading to a simpler model, while a smaller
λ allows the model to fit more closely to the data, potentially at the
risk of overfitting.

3.4.1.2 Neural Networks

Neural Networks, inspired by human brain neurons, are complex net-
works built from numerous perceptrons [134]. Their structure consists
of layers linked by weights, determined through backpropagation [135].
A network with a single hidden layer is a shallow neural network,
while one with multiple hidden layers is a deep neural network. Deep
networks excel in complex computations and learning high-level fea-
tures, improving predictive accuracy. Despite Cybenko’s Universal
Approximation Theorem [136] suggesting equal representational capa-
cities for both architectures, deep networks often outperform shallow
ones in tasks like natural language processing and image analysis.

Given our study’s limited sample size and unstructured features,
we chose a shallow neural network to avoid overfitting [125], [137].
We used the Multilayer Perceptron Network (MLP) [125], [137] with
Dropout architecture, which has a single hidden layer. The training
process uses adaptive subgradient methods for dynamic learning rate
adjustments. We optimized various hyperparameters during the MS
phase [125], including the number of neurons in the hidden layer,
dropout rate, batch size percentage, learning rate, fraction of gradient
to retain, learning rate decay, and the activation function. By tuning
these hyperparameters, we optimised the performance of our MLP
model for the given task.

3.4.1.3 Kernel methods

Kernel Methods are algorithms that use the ’Kernel trick’ to trans-
form linear methods for non-linear problems [138]. They use kernel
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functions to map input data into a higher-dimensional space, enabling
linear separability for non-linear problems. This mapping allows the
computation of inner products in the feature space without expli-
cit high-dimensional computations, extending linear algorithms to
work efficiently in the transformed space. Kernel methods balance
empirical performance and model complexity [124], [132]. Empirical
performance, measured by a pre-defined metric, assesses the model’s
fit and prediction reliability. Model complexity, evaluated by various
measures, assesses the solution space complexity. Higher complexity
can fit more functions but risks overfitting. Therefore, kernel methods
aim to strike an optimal balance between these two aspects: achieving
high performance on the data without over-complicating the model.

Support Vector Regression (SVR) is a well-known and efficient
Kernel method technique. It uses Support Vector Machines (SVMs)
principles and hyperparameters like the kernel function, often set to
a Gaussian or Radial Basis Function (RBF) kernel for its flexibility in
modeling complex, non-linear relationships [139]. The kernel hyper-
parameter, γ, controls the non-linearity of the decision boundary and
the kernel function’s shape and scale. A small γ leads to a more linear
boundary, while a large γ creates a more complex, non-linear bound-
ary. The regularization hyperparameter, C, balances model accuracy
and solution complexity. A small C allows more misclassifications for
a simpler boundary, while a large C aims for higher accuracy, poten-
tially at the cost of a more complex boundary. Both γ and C are critical
to the performance of the SVR model and need to be meticulously
tuned during the MS phase to ensure optimal model performance.

3.4.1.4 Ensemble methods

Ensemble methods, like Random Forests, use the ’wisdom of the
crowd’ principle by integrating many simple, independent models to
form a more complex and effective one. Random Forests are notable
examples, using Decision Trees (DT) as their base models. A DT is
a flowchart-like structure where each internal node represents a fea-
ture test, each branch shows the test’s outcome, and each leaf node
indicates the tree’s output. A path from the root to a leaf represents a
model rule. DT are built recursively to a specified depth, with each
node constructed from the attribute and cut that best split the samples
into two subsets, based on information gain. RF enhances bagging,
a process where each DT is independently constructed using a boot-
strap sample of the dataset, with random subset feature selection. This
approach uses different bootstrap samples of the data for each DT
and alters how DTs are constructed. RF splits each node using the
best among a subset of predictors, randomly chosen at that node. The
final prediction is derived from a straightforward majority vote. The
accuracy of the final RF model primarily hinges on three factors: the
number of trees in the forest, the accuracy of each tree, and the correl-
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ation between them. As the number of trees in the forest increases, the
accuracy for RF converges to a limit. Simultaneously, it improves as
the accuracy of each tree increases, and the correlation between them
diminishes. Several hyperparameters shape the performance of the
final model, including the number of trees, the number of samples
to extract during the bootstrap procedure, the depth of each tree, the
number of predictors used in each subset during the growth of each
tree, and finally, the weights assigned to each tree.

3.4.2 Model Selection and Error Estimation

MS and Empirical EE are critical tasks in the application of ML al-
gorithms, focusing on hyperparameter tuning and performance evalu-
ation. Resampling techniques, frequently used due to their effective-
ness in various scenarios, will be implemented in this study. Though
alternative methods exist within Statistical Learning Theory, they often
underperform resampling techniques in practice. Resampling tech-
niques work by resampling the original dataset Dn once or multiple
times (nr), either with or without replacement, to generate three in-
dependent datasets: the learning set Lr

l , validation set V r
v, and test

set T r
t , where r ∈ 1, · · · , nr. These datasets adhere to the following

conditions:

Lr
l ∩ V r

v = ⊘, Lr
l ∩ T r

t = ⊘, (3.32)

V r
v ∩ T r

t = ⊘ Lr
l ∪ V r

v ∪ T r
t = Dn (3.33)

To perform MS, i.e., select the optimal combination of hyperpara-
meters H from a set of possibilities H for the algorithm AH, we use
the following procedure

H∗ : arg min
H∈H

nr

∑
r=1

M(AH(Lr
l ),V r

v), (3.34)

Here, AH(Lr
l ) represents a model built using algorithm A with its

set of hyperparameters H and data Lr
l , and M( f ,V r

v) is the desired
metric. H∗ should minimize error on a dataset independent from the
training set since Lr

l is independent from V r
v.

To perform EE, which assesses the performance of the optimal
model f A = AH(Dn), we use the following procedure

M( f ∗A ) =
1
nr

nr

∑
r=1

M(AH∗(Lr
l ∪ V r

v), T r
t ). (3.35)

Since the data in Lr
l ∪ V r

v are independent of the ones in T r
t , M( f ∗A )

is an unbiased estimator of the true performance, measured with the
metric M, of the final model [130].
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In this work, we will rely on Complete 10-fold cross-validation,
which means setting

nr ≤
(

n
k

)(
n − n

k
k

)
, (3.36)

l = (k − 2)
n
k

, (3.37)

v =
n
k

, (3.38)

and

t =
n
k

(3.39)

and the resampling must be done without replacement [130]. The
large size of the two utilized datasets, 1 331 972 and 338 918 elements
in MM and EM respectively, guarantee sufficient representation of all
parameters in the learning, validation and testing datasets. Finally,
the performance of the models in terms of accuracy is measured in
accordance with different metrics: four quantitative (MAE, MAPE,
REP, and R2) [140] and two qualitative such as the scatter plot actual
versus predicted value and the histogram of the Absolute Percentage
Error [141].

3.5 models validation

This section provides the attained accuracy results of the four different
ML algorithms of Section 3.4 used to model the propeller uncertainty
correction factor, and the prediction accuracy of the developed digital
twin.

3.5.1 Propeller uncertainty correction factor

In this section, we will report the performance of the ML models
described in Section 3.4, using the validation approaches described
in Subsection 3.4.2, and considering the different propulsive modes
(i.e., MM and EM). In particular, we will compare the results of the
different algorithms employed to build the models (RF, SVR, MLP,
RLS). Table 3.5 reports the different metrics used to evaluate the
performance for all algorithms employed and the different propulsive
modes. Figure 3.13 provides a corresponding visual representation.
Figure 3.14 and Figure 3.16 report the scatter plot for the best algorithm
(RF) on each propulsive mode, while Figure 3.15 and Figure 3.17 report
the absolute percentage error histogram of relative frequencies.

From Table 3.5 and Figure 3.13, it is possible to observe that: i)
the selected RF algorithm outperformed the rest of the examined
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algorithms on both propulsion modes, ii) the difference among the
different algorithms was relatively bigger in EM compared to MM,
with a 5.8% and 3.0% MAPE improvement, respectively. As expected,
the RLS algorithm showed limited learning capability both on MM
and EM. The inferior performance of the algorithms on EM compared
to MM is possibly attributed to the pitch feature that stays almost
constant on EM.

Table 3.5: ML models validation: quantitative metrics (MAPE, MAE, REP)
employed to evaluate performance of all examined algorithms (RF,
SVR, MLP and RLS), on both propulsive modes (MM and EM).

Mechanical Mode (MM)

Algorithm MAPE MAE REP
[%] [−] [%]

RF 3.72 ± 0.04 0.041 ± 0.001 6.04 ± 0.02

SVR 3.97 ± 0.08 0.044 ± 0.001 6.41 ± 0.17

MLP 4.12 ± 0.05 0.045 ± 0.001 6.60 ± 0.10

RLS 6.71 ± 0.87 0.097 ± 0.013 9.75 ± 0.96

Electrical Mode (EM)

RF 3.95 ± 0.01 0.043 ± 0.001 6.61 ± 0.03

SVR 4.94 ± 0.14 0.054 ± 0.002 7.86 ± 0.31

MLP 5.64 ± 0.04 0.061 ± 0.001 8.08 ± 0.06

RLS 9.78 ± 0.96 0.120 ± 0.002 12.61 ± 1.03

3.5.2 Digital Twin

The prediction accuracy of the developed DT over the two operational
mode datasets is reported here using the metrics in Section 3.4.2.
Table 3.6 shows the DT performances using the most performing ML
model (RF), assessed over the IPMS operational data on both MM and
EM. The prediction capability of the DT accounting for the effect of
actual operational and environmental conditions is confirmed by total
fuel consumption MAPE of 3.7% in EM and 4.9% in MM. MAE values
of main diesel engines and diesel generators also stand below 2% of
nominal values. The prediction accuracy of the other parameters lies
below 5.5% MAPE as well. Considering that both datasets contain
highly dynamic operating points and that the logging rate of 3 seconds
did not average this behaviour, the prediction capability of the quasi-
static approach used for the DT is confirmed.

Table 3.7 shows the DT performances without using an ML model.
Relative rotative efficiency was estimated using the semi-empirical
formula for twin-screw ships provided by Holtrop and Mennen [3].
This formula uses hull prismatic coefficient, longitudinal centre of
buoyancy, and nominal propeller pitch to diameter ratio, resulting in a
value equal to 0.976. Results demonstrate the significant improvement
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Figure 3.13: ML models validation: quantitative metrics (MAPE, MAE, REP)
employed to evaluate the performance of all examined al-
gorithms (RF, SVR, MLP, and RLS), on both propulsive modes
(MM and EM).

in accuracy from integrating ML in our DT. The improvement becomes
more apparent on MM as pitch value variates from the nominal value
used by the semi-empirical formula. The smaller improvement from
using ML on EM is explained by the nominal pitch value resulting
from sailing mostly above 50 rpm virtual shaft speed as can be seen
in Figure 3.5.
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Figure 3.14: ML models validation: scatter plot for RF (the best algorithm
identified in Section 3.5.1) on MM (see Table 3.5).
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Figure 3.15: ML models validation: absolute percentage error histogram of
relative frequencies for RF (the best algorithm identified in Sec-
tion 3.5.1) on MM (see Table 3.5).

3.6 results

3.6.1 Voyage intervals

In the previous section, the capability of the digital twin to predict
instant fuel consumption of the vessel and most logged parameters
was confirmed. This section provides prediction results over the selec-
ted twenty two electrical propulsion and fifty mechanical propulsion
voyage intervals that we selected for evaluating the method against
real operating conditions. Figure 3.18 provides an example of five
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Figure 3.16: ML models validation: scatter plot for RF (the best algorithm
identified in Section 3.5.1) on EM (see Table 3.5).
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Figure 3.17: ML models validation: absolute percentage error histogram of
relative frequencies for RF (the best algorithm identified in Sec-
tion 3.5.1) on EM (see Table 3.5).

typical voyage intervals. It provides qualitative means to examine
the variation of operational and environmental conditions, that can
be assessed using the spread of vessel speed and propeller thrust in
corresponding figures. The main characteristics of the selected voyage
intervals as duration, average speed, total fuel consumption and car-
bon intensity, but also the achieved MAPE of the predicted instant fuel
consumption and APE of consumed fuel and carbon intensity over the
intervals can be found for MM in Table 3.8 and for EM in Table 3.9.

Results suggest that the average prediction accuracy over a voyage
interval on EM, with a 95% confidence interval, is 1.65± 0.49%. At the
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Table 3.6: DT performances using the most performing ML model (RF), as-
sessed over the two operational modes IPMS datasets.

Mechanical Mode (MM)

Feature MAPE MAE REP R2

ṁf,tot 4.9 % 40.1 kg/h 4.7 % 0.984

ṁf,gen 4.4 % 6.8 kg/h 6.0 % 0.452

ṁf,e 6.2 % 38.8 kg/h 5.2 % 0.985

ePgen 4.2 % 25.1 kW 5.3 % 0.481

Pm - - -
Mpsh 4.4 % 3.8 kNm 5.3 % 0.977

p 0.5 % 0.004 2.2 % 0.862

n 0.4 % 0.6 rpm 1.2 % 0.995

Electrical Mode (EM)

ṁf,tot 3.7 % 10.4 kg/h 4.7 % 0.913

ṁf,gen 3.7 % 10.4 kg/h 4.7 % 0.913

ṁf,e - - - -
ePgen 3.6 % 40.2 kW 4.4 % 0.941

Pm 5.3 % 12.4 kW 6.3 % 0.966

Mpsh 5.4 % 1.4 kNm 6.9 % 0.933

p 0.2 % 0.002 1.0 % 0.338

n 0.6 % 0.4 rpm 1.0 % 0.995

Table 3.7: DT performances using the Holtrop and Mennen [3] semi-empirical
formula, assessed over the two operational mode IPMS datasets.

Mechanical Mode (MM)

Feature MAPE MAE REP R2

ṁf,tot 10.4 % 101.3 kg/h 11.0 % 0.918

ṁf,gen 4.4 % 6.8 kg/h 6.0 % 0.452

ṁf,e 13.1 % 102.1 kg/h 12.5 % 0.911

ePgen 4.2 % 25.1 kW 5.3 % 0.481

Pm - - -
Mpsh 12.9 % 13.0 kNm 14.0 % 0.839

p 0.5 % 0.004 2.2 % 0.862

n 0.4 % 0.6 rpm 1.2 % 0.995

Electrical Mode (EM)

ṁf,tot 5.6 % 16.2 kg/h 6.8 % 0.818

ṁf,gen 5.6 % 16.2 kg/h 6.8 % 0.818

ṁf,e - - - -
ePgen 6.2 % 70.1 kW 7.1 % 0.849

Pm 9.9 % 26.5 kW 11.9 % 0.876

Mpsh 10.6 % 2.8 kNm 12.2 % 0.788

p 0.2 % 0.002 1.0 % 0.338

n 0.6 % 0.4 rpm 1.0 % 0.995

same time, MAPE of instant fuel consumption is equal to 3.36± 0.35%.
This shows that increased prediction errors for individual samples of
a voyage have a smaller overall impact on a voyage time scale, due to
the random sampling behaviour, which is cancelled out over a high
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amount of samples. This observation is also confirmed for MM with
an average prediction accuracy over a voyage of 2.16 ± 0.35% and an
instant fuel consumption MAPE of 3.79 ± 0.52%. These errors are of
the same scale with the accuracy of many fuel consumption sensors
at ±1% [51], which means that the prediction accuracy is partially
limited by the accuracy of the sensors.
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(d) Interval No 4 (MM), thrust over speed.
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(f) Interval No 15 (MM), thrust over speed.
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(h) Interval No 6 (EM), thrust over speed.

Figure 3.18: Typical voyage intervals.
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3.6.2 Comparison of electrical and mechanical propulsion

In this section, we provide the results of comparing mechanical and
electrical propulsion over ten voyage intervals characterised by non-
dynamic conditions when the ship transits between 5 and 10 knots
without manoeuvring. During these voyage intervals, the operator can
run on either MM or EM. Alternatively, during manoeuvring intervals,
which are excluded in this comparison, the operator often has to select
MM to have sufficient power available for the manoeuvres. The main
constraint of running in EM is the electrical motor’s maximum power,
which limits the maximum ship speed for these voyage intervals to 10

knots.
The comparison of the fuel consumption prediction between MM

and EM is presented in Table 3.10. Figure 3.19 provides a visual rep-
resentation of the result and main influencing parameters. According
to the simulation comparison, MM would be, on average, 1.2 ± 1.7%
less efficient than EM, and the vessel would consume just 0.67% more
fuel in those ten voyage intervals combined. Nevertheless, it appears
that higher mean sea margin and speed favors MM. It is interesting
to compare these results with the results of previous work by Vasi-
likis, Geertsma and Visser [21]. In the data analysis performed on
the same vessel’s data, electrical propulsion appeared less efficient,
but this was the case for the specific operational and environmental
conditions for each mode selected, thus not comparing under similar
conditions. Hence, we conclude that simulation of the vessel’s energy
performance on the exact same voyage intervals demonstrates that
there are no clear energy efficiency benefits from sailing on one of the
two operational modes, while many other influencing parameters can
have a more significant impact on attained energy performance.

3.7 conclusions and recommendations

This work proposes a method to evaluate and predict carbon intensity
in true operational and environmental conditions. This method can
be used to provide insight and guidance to improvements in the op-
eration and design of ship propulsion and power systems to achieve
more energy efficient designs and reduce the carbon intensity of ship
operation over the lifetime of a vessel. This chapter proposes a novel
digital twin that accurately predicts the fuel consumption and carbon
intensity of mechanical, electrical, and hybrid propulsion systems
under the aggregate effect of operational and environmental uncer-
tainties. A combined approach with first principle steady state models
and machine learning models allows us to predict instantaneous fuel
consumption with an accuracy of less than 5% MAPE and carbon
intensity over voyage intervals within 2.5% at a confidence interval of
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Figure 3.19: Comparison of MM and EM energy performance on the selected
ten EM voyage intervals.
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95% for the case study OPV. The use of machine learning algorithms
contributes to improving prediction accuracy on the scale of 35 to 50%.

This work provides proof that steady state models can accurately
predict fuel consumption and carbon footprint during both dynamic
manoeuvring and constant speed operations. The prediction accuracy
of the total amount of consumed fuel and carbon intensity over a
sufficiently long voyage is higher than the point wise accuracy of
the model. A combination of first principle and machine learning
models can be used to overcome uncertainty due to inaccurate sensor
readings and manufacturers’ data, the scale effect of hull and propeller
measurements, true operational conditions, and dynamic operational
decisions. We expect using data from a thrust sensor can provide even
more accurate predictions, as thrust measurement enables separating
the effect of uncertainty due to the environmental conditions and
scale effects from the effect of uncertainties in the efficiency of the
propulsion plant due to inaccurate manufacturers’ data and sensor
readings.

The proposed method can be used to make accurate comparisons
between different operating modes for real operating profiles represen-
ted by typical voyages under various conditions. The case study patrol
vessel’s results indicate that electrical propulsion does not provide
statistically significant fuel and carbon savings, even though elec-
trical mode can prevent the main diesel engines from running at low
speed and can reduce noise levels. This result emphasises the need
to evaluate and predict carbon intensity with models that account for
operational and environmental conditions. In future work, we intend
to demonstrate how the method can be applied to the evaluation of
propulsion and power systems configuration modifications, but also
to the evaluation of alternative design options for ships with a similar
operating profile.
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Table 3.8: Comparison between the MAPE of the instant fuel consumption
and the APE of the amount of fuel and carbon intensity over the
selected mechanical mode (MM) voyage intervals.

Duration Mean Mf,tot Carbon MAPE APE
speed intensity ṁf,tot Mf,tot / CI

[hours] [knots] [tons] [kgCO2\nm] [%] [%]

1 10.2 12.2 6.2 160.9 5.82 2.73

2 6.2 15.7 6.2 201.8 4.62 3.82

3 5.8 17.2 8.1 258.8 4.40 2.54

4 5.0 9.7 2.4 159.4 11.18 1.74

5 8.8 10.3 4.8 169.9 7.07 0.69

6 5.8 18.7 11.5 342.5 2.77 1.41

7 5.4 17.0 7.3 254.4 4.30 4.06

8 9.1 18.7 16.4 308.8 3.32 3.00

9 13.5 17.9 21.8 289.4 2.80 2.03

10 7.0 13.6 5.4 182.8 2.81 0.91

11 16.4 17.5 24.7 274.8 3.20 2.65

12 9.0 17.8 16.3 325.2 2.21 1.85

13 13.6 16.3 17.9 258.9 1.99 0.97

14 18.5 15.2 22.2 253.2 2.79 1.72

15 18.1 15.8 24.1 271.7 2.26 1.60

16 5.0 11.5 3.3 182.5 9.56 1.53

17 16.3 13.6 16.6 238.8 4.79 1.49

18 8.3 13.0 7.3 214.1 3.06 0.59

19 25.8 13.4 24.1 224.1 3.52 2.30

20 10.8 15.7 15.1 284.6 2.83 0.97

21 14.5 14.4 14.8 227.0 2.00 0.92

22 3.9 14.8 4.3 241.1 1.97 0.92

23 12.3 15.1 13.6 234.0 2.08 1.81

24 11.7 14.9 12.7 233.8 2.30 1.62

25 13.3 12.9 9.4 175.7 4.61 2.29

26 10.8 13.3 7.4 165.7 5.23 2.58

27 9.6 15.5 9.8 211.5 3.37 2.65

28 11.4 17.1 14.5 239.8 1.89 0.33

29 7.7 14.4 6.1 178.8 2.78 0.82

30 10.6 16.4 13.6 251.8 2.83 1.40

31 10.6 15.9 14.0 267.8 4.36 4.25

32 13.4 14.3 13.2 222.3 6.73 4.05

33 7.9 15.8 8.6 220.1 3.58 2.07

34 20.0 14.4 16.9 188.0 3.29 0.24

35 25.2 18.2 39.3 275.2 2.82 2.56

36 15.8 14.0 11.7 170.0 4.24 3.90

37 23.0 15.0 20.9 194.5 3.48 2.70

38 24.5 15.2 22.1 190.7 2.50 1.94

39 14.6 15.9 15.2 210.6 3.37 2.16

40 12.4 16.6 16.2 252.5 3.21 3.00

41 4.7 16.8 6.1 247.6 1.95 0.61

42 17.8 16.7 23.1 249.7 2.08 0.39

43 15.7 17.1 21.2 254.0 2.40 1.42

44 23.2 16.9 29.0 236.3 4.47 4.42

45 12.2 16.4 13.9 220.9 4.81 4.79

46 8.3 14.9 7.6 196.1 4.39 4.37

47 16.9 14.7 14.8 190.6 4.43 3.79

48 15.7 13.9 13.0 191.3 3.71 1.59

49 28.1 15.1 27.8 209.3 4.63 1.96

50 10.0 18.8 16.8 285.0 4.69 3.87

Average 3.79 ± 0.52 2.16 ± 0.35
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Table 3.9: Comparison between the MAPE of the instant fuel consumption
and the APE of the amount of fuel and carbon intensity over the
selected electrical mode (EM) voyage intervals.

Duration Mean Mf,tot Carbon MAPE APE
speed intensity ṁf,tot Mf,tot / CI

[hours] [knots] [tons] [kgCO2\nm] [%] [%]

1 5.3 9.3 1.7 110.1 4.02 3.23

2 9.1 6.2 1.9 109.2 3.88 1.19

3 7.1 7.3 1.9 119.8 3.75 0.46

4 8.0 7.9 2.2 109.8 3.95 3.46

5 10.5 7.4 3.0 123.2 4.08 3.14

6 13.2 8.0 3.7 111.0 2.91 2.27

7 4.7 7.8 1.3 119.3 3.20 2.25

8 9.8 5.3 2.1 127.9 4.75 3.42

9 10.1 7.4 2.7 118.2 2.58 2.29

10 5.3 7.4 1.5 118.2 2.54 1.82

11 13.1 7.0 4.5 157.6 1.92 0.83

12 21.2 8.0 7.5 142.5 4.43 3.25

13 10.1 8.1 3.5 138.7 4.31 0.14

14 12.6 6.4 3.5 140.0 3.38 1.31

15 8.5 7.1 2.5 134.7 2.32 0.90

16 6.8 6.8 2.0 136.3 2.88 1.83

17 11.3 4.9 2.5 143.2 3.77 0.93

18 9.2 6.3 2.3 129.6 3.59 0.23

19 11.4 5.9 2.9 135.5 3.24 1.03

20 22.6 6.2 5.8 132.7 2.77 0.73

21 21.0 7.1 5.6 120.5 3.55 0.85

22 13.7 8.0 4.2 124.7 2.03 0.69

Average 3.36 ± 0.35 1.65 ± 0.49

Table 3.10: Total fuel consumption prediction on mechanical (MM) and elec-
trical mode (EM) on selected electrical propulsion voyage inter-
vals.

Mean Mean Actual Predicted
Speed SM EM EM MM MM to EM

[knots] [%] [tons] [tons] [tons] [%]

1 9.3 24 1.67 1.72 1.78 +3.1
6 8.0 26 3.65 3.74 3.79 +1.6
7 7.8 55 1.35 1.38 1.40 +1.3
9 7.4 46 2.74 2.80 2.90 +3.4

10 7.4 43 1.46 1.49 1.53 +2.6
11 7.0 133 4.51 4.47 4.33 - 3.3
13 8.1 85 3.54 3.54 3.45 - 2.6
14 6.4 105 3.53 3.58 3.63 +1.5
15 7.1 88 2.53 2.55 2.57 +1.0
18 6.3 75 2.35 2.34 2.42 +3.3

Total 27.33 27.61 27.80 +0.7

Average +1.2 ± 1.7
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A R O B U S T M U LT I - O B J E C T I V E O P T I M I S AT I O N
F R A M E W O R K F O R T H E D E S I G N O F S H I P E N E R G Y
S Y S T E M S

This chapter is an extended version to the single objective methodology
presented in [142]:

N. Vasilikis, R. Geertsma, L. Oneto et al., ‘A design by optimisation
approach for hybrid propulsion systems sizing using actual sailing
profiles’, Proceedings of the ASME 43rd International Conference on Ocean,
Offshore & Arctic Engineering (OMAE), 2024

abstract

Mitigation of climate change requires the transportation sector to reduce
its carbon footprint, hence improve its energy efficiency. In that direction,
electrification of ships is taking place at a fast pace. In particular, ships with
hybrid propulsion and power supply are considered promising alternatives to
ships with typical diesel mechanical propulsion. Nevertheless, an increased
number of parameters crucially influences the energy performance and car-
bon footprint of hybrid ships. Such parameters are the electrical hotel load,
individual sailing profiles, selection of component maker, volume and weight
restrictions, but also the additional financial cost, both capital and operational.
The energy performance of new designs for most ship types in the maritime
industry is examined with the regulated Energy Efficiency Design Index
(EEDI). However, its limited consideration of one design point in calm water
conditions, determined by the installed rated power of the main propulsors, is
characterised as insufficient, if not dangerous. The automotive and aviation
industries have already adopted measures that assess the energy performance
of new designs over defined operating cycles, such as the Worldwide harmon-
ised Light-duty vehicles Test Cycle (WLTC) or the Landing and Take-Off
cycle (LTO). This chapter proposes a new methodology for the sizing of hybrid
propulsion systems, and demonstrates it in the use case of the ‘Holland class’
ocean patrol vessels of the Royal Netherlands Navy. This methodology uses

69
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high-frequency operational data logged by the vessel’s automation system to
get the actual sailing profiles of three individual vessels. A state-of-the-art
digital twin approach leveraging data-driven and first principle models of the
vessels’ energy system, developed by the authors in a previous stage, is used
to predict fuel consumption and carbon intensity of ship operations under
actual operational and environmental conditions. The developed optimisation
methodology is compared to the benchmark methodology that integrates com-
mon assumptions at the design stage and regulated procedures. The solution
of the resulting multi-objective optimisation problem demonstrates a carbon
intensity improvement in the scale of 5% and an operational expenditure one
in the scale of 10%, while actual sailing profiles are needed to reach safer
conclusions.

4.1 introduction

The maritime industry still delivers more than 80% of global trade,
overcoming fluctuations caused by the COVID-19 pandemic [9]. Des-
pite the large scale of operations, the International Maritime Organisa-
tion (IMO) decided in its updated greenhouse gases (GHGs) reduction
strategy not only to cut those emissions in half by 2050 [13], but to
aim for net-zero emissions around the same period [14]. In many
cases, electrification of ships has been appointed the way forward,
though a pure electrical propulsion system suffers from a number
of disadvantages with the increased conversion losses near top ship
speed being the most prominent [40]. Hybrid propulsion systems
are considered a promising alternative, though the right sizing and
selection of components is not a simple design problem, due to the
exploding size of the design space [54].

The energy performance of the majority of new ships is regu-
lated with the Energy Efficiency Design Index (EEDI) [17]. Although
the name implies assessing the vessel’s energy efficiency, this index
provides carbon emissions per transport work, or carbon intensity,
on a single sailing point determined by the rated power of main
propulsors and a vessel’s resistance in calm water conditions. As a
consequence, it does not examine part-load energy savings of different
hybrid propulsion systems and it does not consider the operational
and environmental uncertainty at sea [24]. Additionally, its use in
the design of ships instead of actual operating profiles of real ships
tends to underestimate the lifetime energy savings of different energy
solutions [26]. Other transportation fields like the automotive and
aviation point in the same direction, evaluating carbon emissions and
fuel economy on driving cycles and flight profiles accordingly [27],
[28].
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Figure 4.1: Optimisation of ship energy systems.

Design of ship energy systems involves additional difficulty due
to a large number of components, their non-linear behaviour, and
interconnection [42]. Recently increased requirements on ship energy
performance impose the design of more complex ship energy systems
than in the past as well [40]. A usual practice is to design ships
according to sets of empirical rules [143]. However, ship design by
optimisation has already established its superior performance [41],
with the detail and type of problems addressed changing at different
design phases [54] as suggested in Figure 4.1.

As early as in concept design, energy performance analysis and
optimisation problems include topology selection and sizing of propul-
sion and power supply components [20]. At a later stage, problems
involve sizing and energy management [144], [145]. Different fuel
types are examined for the energy transition and maritime decarbon-
isation as well [65]. Finally, another branch of optimisation problems
focuses on the optimal design and operation of specific components
like propellers [64], [94], [146], engines [147], and subsystems [58],
[101]. Regardless of the application, the usual objectives of the con-
sidered optimisation problems can be categorised as environmental,
social, economic, and technical [43].

Environmental problems usually involve minimising greenhouse
gas emissions, mainly carbon dioxide emissions, but also other exhaust
gas pollutants, thermal pollution, noise pollution, and land deteriora-
tion. The examined time window also varies from static single-point
calculations, as in the case of EEDI, to life-cycle assessments that eval-
uate gas emissions over the building, operation, and dismantling of
ships [148]. Finally, the minimisation of carbon emissions should not
be confused with maximising the energy efficiency of energy systems
as demonstrated in Chapter 2 and in literature [20], or with reducing
nitrogen (NOx) and sulphur (SOx) oxides, and primary particulate
matter (PM) emissions.

Financial objectives include indicators such as capital expenditure
(CAPEX), operational expenditure (OPEX), life-cycle cost (LCC), cost-
benefit analyses, present worth value of costs (PWF), and years of
investment return. Capital expenditure usually involves purchasing
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costs, while operational expenditure consists mainly of fuel, lubrica-
tion, and maintenance cost [65], [101], [104]. Lately, with the increasing
complexity of systems, the cost of replacing batteries is also con-
sidered [149]. Last but not least, technical objectives refer to reserved
machine room volume and the total weight of the propulsion system.

As discussed in the previous paragraphs, carbon footprint assess-
ment using the EEDI is criticised. Some studies consider carbon emis-
sions over several static operating conditions as an alternative [150].
Chapter 3 discussed various input scenarios for the analysis and op-
timisation of ship energy systems. Those include the use of calm
water and design resistance curves from towing tank tests, different
vessel speed, mechanical, auxiliary, thermal and cooling power pro-
files, either as distributions or time-series. Mechanical profiles involve
either shaft or propulsion power evaluated by vessel speed profiles
and resistance curves or directly measuring shaft torque.

In this chapter, a decision was made to examine the optimal sizing
and topology of a hybrid propulsion system using the attained car-
bon intensity, capital expenditure, operational expenditure, and total
weight of the main system components. The proposed framework
adopts actual sailing profiles from the continuous monitoring of three
sister ships described by vessel speed and propeller thrust, for the
following reasons:

• The increased thrust level over calm water resistance at corres-
ponding speed captures the aggregate effect of different opera-
tional and environmental conditions.

• It allows the use of more detailed component maps integrat-
ing functioning over different shaft speed compared to power
profiles, not only energy efficiencies dependent on power.

• Such vessel operational profiles can be used both with mech-
anical and electrical propulsion utilising different combinator
curves.

The results of Chapter 3 suggest that this vessel speed and thrust
consideration combined with a steady-state digital twin leveraging
first-principle and operational data-driven techniques is accurate and
computationally inexpensive in predicting carbon intensity over voy-
age intervals of at least 4 hours of continuous sailing. As a result, it
is integrated in the design optimisation framework proposed in this
chapter.

4.1.1 Relative work

Literature provides numerous studies on the design optimisation of
ship energy systems [144], [145], [150]. Taking into account the ele-
ments of an optimisation problem, such as the number and nature
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of objectives, the different simulation scenarios, the case study ap-
plication itself, the selected mathematical formulation and solvers,
classification can be done in different ways. Since our study focuses on
a framework for the design optimisation of hybrid propulsion systems,
we categorise literature examples based on application, as shown in
Figure 4.1.

Purely on topology selection, Livanos, Theotokatos and Pagonis
[151] compared techno-economic performance using LCC and envir-
onmental performance using EEDI for a number of alternatives to
the original diesel engine plant of a Ferry/Ro-Ro vessel using steady
state models. Again, on topology selection, though optimising the
size as well, lies the work by Trivyza, Rentizelas and Theotokatos
[65]. This study examines the simultaneous minimisation of three
types of emissions and life cycle cost for a large number of available
technologies. It utilises steady state models to simulate operation
over a number of operating states and a non-dominated sorting ge-
netic algorithm (NSGA-II) to solve the multi-objective combinatorial
optimisation (MOCO) problem.

Solely focused on the sizing of components, Solem, Fagerholt,
Erikstad et al. [152] optimised a diesel-electric system configuration
over a number of working points while considering area size violation
as a lost cargo profit in their cost objective. The examined options
in their study are actual engine models of different manufacturers
and they solve their problem using the branch and bound technique.
Sakalis and Frangopoulos [101] optimise the size of main diesel en-
gines by minimising present worth cost (PWC) using a genetic al-
gorithm, although going deeper in modelling in detail exhaust heat
treatment. Their analysis manifests the use of genetic algorithms in
maritime energy system optimisation problems.

On energy management, Ancona, Baldi, Bianchi et al. [104] examined
load allocation on a diesel mechanical and diesel hybrid system of a
cruise ship. The objective function consists of the cost of fuel, main-
tenance, and the cost of buying electricity from the national grid.
Furthermore, they introduce a regulatory, fictitious cost used to pri-
oritise or penalise certain strategies. Their analysis uses mechanical,
electrical, thermal, and cooling hourly power profiles over winter,
summer, and spring/autumn. They also use a genetic algorithm and
perform a deeper financial investment and environmental analysis
on the optimal system obtained. Dedes, Hudson and Turnock [103]
also optimised power allocation of main diesel engines, diesel gen-
erators and electricity storage means finding the global minimum
of fuel consumption between charging and discharging mode. They
additionally point out the importance of optimally sizing the system.
Finally, Balsamo, Capasso, Lauria et al. [153] used dynamic program-
ming to find the optimal battery current of a system that consists
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of batteries and supercapacitors on a fast craft, in order to minimise
charging/discharging fluctuations.

Another branch of studies works on both the sizing and energy
management of components. Zhu, Chen, Wang et al. [66] optimised
the size of diesel generators and batteries on a hybrid anchor handling
tug supply vessel and the energy management rule-based parameters.
The operation of the tug involves shore charging. Interesting in their
methodology is the modelling of motors and generators performance
of different size with the scaling technique of Willans line that uses
principal dimensions, which they used as design variables. In their
consequent work, they continued their single-objective optimisation
work in a bi-objective optimisation problem [67]. Wang, Shipurkar,
Haseltalab et al. [154] also worked on the optimal sizing and control
of an examined hybrid system of an offshore support vessel utilising
batteries and fuel cells, with the introduction of a double layer optim-
isation methodology. Specifically the upper layer optimisation involves
the optimal sizing of main diesel engines, batteries and fuel cells, while
the inner one the optimal load allocation. The used objectives in their
work are CAPEX, OPEX, and emissions.

A different category of studies examines systems in more detail
and focuses on optimising the working parameters of thermodynamic
cycles. For example, Baldi, Larsen and Gabrielii [58] optimised the
organic Rankine cycle of a suggested waste heat recovery (WHR)
system of a product/chemical tanker. This work contributes to the
substantial improvement of energy efficiency by accounting for part-
load operation, comparing results on a single design point, a design
and part-load point, and the actual power propulsion and auxiliary
power profiles over one year. Shu, Liu, Tian et al. [80] reaches a similar
conclusion with the comparison of optimal WHR operation based on
six operating conditions and the most frequent (design) condition.

Finally, there is a last category of studies that focuses on the op-
timisation of the performance of certain components. For example,
minimising the fuel consumption of a four-stroke turbocharged diesel
engine by selecting the speed of turbocharger, start angle of injection,
intake valve timing, and amount of injected fuel Tadros, Ventura and
Soares [147] or the optimisation of the performance of diesel engines
and propellers using two distinct optimisation modules Tadros, Ven-
tura and Soares [155]. Design optimisation of propellers, especially
controllable-pitch ones, has been the subject of many studies which
recently focus on overall fuel consumption of propulsion systems
rather than the energy efficiency of the propeller itself [64], [94], [146].
The scenarios examined in their design are usually sets of thrust and
rotational speed, while genetic algorithms are mainly used as solvers.

Ultimately, a look at design optimisation in other transportation
fields shows the aforementioned use of driving cycles and flight pro-
files in the evaluation of fuel efficiency. In automotive, fuel economy
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and carbon emissions are evaluated on driving cycles as the World
harmonised Light-weighted Testing Cycle (WLTC) [27]. These speed
profiles refer to a combination of urban and highway driving and
translate to certain speed torque tuples for a selected vehicle. In avi-
ation, fuel economy and emissions are evaluated over flight profiles,
such as the landing and take-off (LTO) and the cruise, climb, and
descent (CCD) cycles. Although these procedures are already more
detailed than EEDI, emission performance gaps have been observed
between real world driving and laboratory testing [156], a gap that
following the ’diesel gate’ scandal was estimated at 30-40% [157],
[158]. For this reason, research in both automotive and aviation moves
into the direction of adopting more realistic running profiles through
the statistical analysis of actual driving and flight profiles [159]–[161].
Latest maritime literature follows this approach with a number of
publications either indicating the necessity or aiming to provide oper-
ational profiles for ships either as power profiles of main engines or
vessel speed and draft profiles [162]–[164].

4.1.2 Research gap

The usual consideration in the design optimisation literature of ship
energy systems is a limited number, if not only one operational condi-
tion to describe the complex effect of weather conditions and propeller
and hull fouling. Moreover, the modelling framework using power
profiles does not support the distinction and demonstration of the
effect of those different conditions on the examined objectives as well.
Finally, design optimisation at an energy system level usually uses the
total cost of purchasing and operating a system. This consideration is
sensitive to selected fuel, maintenance and unit capital costs, and it
does not demonstrate the effect of capital investment on carbon foot-
print reduction and operational costs, important to maritime industry
stakeholders.

4.1.3 Aim and contribution

The contribution of this work is summarised hereafter: It provides a
complete and holistic optimisation framework for the hybrid propul-
sion topology selection and system sizing at the concept design stage.
It uses the existing knowledge on actual operational and environ-
mental conditions variation, result of monitoring vessels of existing
classes that serve similar mission types, to find the necessary resolution
of the examined scenarios. This holistic framework considers envir-
onmental, financial, and technical objectives and focuses on demon-
strating competing mechanisms rather than case-specific individual
solutions. Its computational efficiency and prediction accuracy allows
the extended design space exploration that is not limited to the se-
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lection of individual components but extends to the performance
modelling of a continuous space of solutions, as described in Sec-
tion 4.2. Finally, it demonstrates the stability and efficiency of the
proposed optimisation problem formulation.

4.2 case study

4.2.1 Original design

The case study design is the Holland class ocean patrol vessels designed
by DAMEN group for the Royal Netherlands Navy (RNLN). A total of
four vessels was built between 2008 and 2011. The vessels are equipped
with hybrid propulsion. Two controllable pitch propellers are driven
either mechanically by two main diesel engines or electrically by two
electrical motors. Speed is reduced in two two-stage gearboxes and
electrical power is produced by three diesel generators. A detailed
description of the vessels is provided in Appendix A.

4.2.2 Alternative designs

The examined alternative designs include the resizing of the electrical
power supply and propulsion of the vessels, adding the power take-off
option which allows electrical motors to perform as shaft generators.
The main parameter describing the size of the electrical system is the
size of the two electrical motors. The vessel is equipped with two low
speed induction motors rated at 400 kW. At this rating, the vessel can
sail up to 10 knots in calm water conditions, preventing the main diesel
engines from running at loads that are lower than 15%, an operating
area that shows increased brake specific fuel consumption and results
in additional maintenance cost. Electrical propulsion also offers the
advantage of less noise nuisance. Larger electrical motors would allow
vessels to sail on electrical propulsion at higher speeds, as shown in
Figure 4.2. Larger electrical motors can be both high and low voltage
up to approximately 2 200 kW and high voltage above that rating. High
voltage motors for marine applications, typically utilise 3 300, 6 600,
and 11 000 V, compared to 440 V and require additional modifications
to the power system architecture, such as adding transformers for
both the propulsion converters and the mission system and auxiliary
loads. It is not the scope of this study a detailed design of the electrical
system of the vessel, as this takes place at a more advanced part of the
design process. This range of voltages refers to medium voltage shore
applications. ABB offers a variety of high frequency electrical motors
for marine applications, the weight and rating of which can be found in
Figure 4.3. Furthermore, these electrical motors are able to run at lower
speeds, comparable to main diesel engines’ nominal speed of 1,000

rpm. This allows the motors and the main diesel engines to share the



4.3 methodology 77

Figure 4.2: Thrust limit over vessel speed for electrical motors of different
rated power.

same single reduction stage gearbox. On the electrical power supply,
larger motors require larger electricity production. The total electricity
production of the current design stands at 3x 910 kW. The specific
fuel consumption and weight of different diesel generators available
in the market can be found in Figures 4.4 and 4.5. Catalogue specific
fuel consumption of diesel generators has a tolerance of +5% usually
without engine driven pumps, it refers to fuel of lower calorific value
47 700 kJ/kg, ISO fuels, and ISO standard reference conditions, and it
does not include the effect of ageing which can cause an increase of
up to 2% [165], [166]. Engine driven pumps can add 2.5% as well [11].
As a consequence, our study considers a conservative increase of 8%
over the catalog value to compensate for operation in actual working
conditions and non-ISO fuels.

4.3 methodology

This chapter provides an optimisation framework for the topology
selection and sizing of the hybrid propulsion system of ships. This
framework evaluates different systems from an environmental, finan-
cial, and technical perspective, accounting for realistic operational and
environmental conditions. The simulation of the vessel’s operation
utilises a state-of-the-art digital twin approach for the modelling of the
vessel’s energy system leveraging first-principle and operational data-
driven techniques as described in Chapter 3. This model, although
computationally expensive to build, it is sufficiently inexpensive to use
in design optimisation applications. The methodology is summarised
in Figure 4.6, and it is fully described in this section.
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Figure 4.3: Weight of available electrical motors.

Figure 4.4: Catalogue nominal specific fuel consumption of available market
diesel generators.
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Figure 4.5: Weight of the different diesel generators.
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Figure 4.6: Design by optimisation framework.

4.3.1 Problem Description

As discussed in the introduction of this chapter, topology and sizing
optimisation has emerged as an innovative technique in the design
of ship energy systems, particularly for hybrid systems. It employs
advanced computational methods to determine the most efficient and
effective layout and size within a specific design space, aiming to
achieve the best performance under given constraints. For marine
power supply and propulsion systems, this means determining the
optimal configuration of components – such as combustion engines,
electric motors, energy storage systems, and transmission elements
– to ensure seamless power delivery, reduce fuel consumption, and
minimise environmental impact. This study concentrates on the op-
timal design of future classes of ships based on results of analysis and
modelling over operational data available from the monitoring of three
vessels of the same class that were operated under diverse operational
and environmental conditions. A detailed description of the examined
class of vessels can be found in Appendix A. Based on the number
and type of components, it is possible to define a number of para-
meters that can be optimised. Some of them will be kept fixed, while
some will be optimised as seen in Table 4.1. The examined problem
focuses on the electrical propulsion system of the vessel, hence all new
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Table 4.1: Original Powertrain design associated parameters’ value.

Parameter Symbol Value Unit
Optim-

ized

Main diesel engine nominal power Pe 5 400 [kW]
Main diesel engine nominal speed ne 1 000 [rpm]
Gearbox reduction stage 1 re 4.355 [-]
Gearbox reduction stage 2 rm 17.88 [-]
Electrical motors nominal power Pm 400 [kW] ✓
Electrical motors nominal speed nm 1788 [rpm]
Number of type a diesel generators Na 2 ✓
Power rating of type a diesel generators Pa 910 [kW] ✓
Number of type b diesel generators Nb - ✓
Power rating of type b diesel generators Pb - [kW] ✓

designs considered use the same main diesel engines, propellers, shaft
lines and combinator curves. We further assume that both mechanical
and electrical propulsion use the first reduction stage of the original
two-stage reduction gearboxes. New designs will still involve two
electrical induction motors. The main design parameters concern the
size of the two electrical motors and the number and size of diesel
generators. The number of different types of diesel generators is set to
two based on common design practise, from now on type a and type b.
The performance of different designs is examined on the design vessel
speed profile under calm water and design conditions, but also on the
actual operational and environmental sailing conditions encountered
by the three vessels of the class.

4.3.2 Optimisation problem formalisation

The developed optimisation framework aims to minimise four ob-
jectives, be them carbon intensity CI, operational expenditure Copex,
capital expenditure Ccapex and total weight Wtot, written as:

min
x

CI ( x, p, i) , (4.1)

min
x

Copex ( x, p, i) , (4.2)

min
x

Ccapex( x, p) , (4.3)

min
x

Wtot ( x, p) , (4.4)

where x is the set of independent design variables:

x = ( Pm, Na, Pa, Nb, Pb) , (4.5)

with Pm being the power rating of the electrical motors, Na, Pa, Nb, Pb
the number and power rating of the type a and type b diesel generators
and:

Pm, Pa, Pb ∈ R and Na, Nb ∈ I. (4.6)
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p is the set of fixed parameters as discussed in the problem description
and demonstrated in Table 4.1, and i is the optimisation input scenario
described by vessel speed v, propeller thrust T, the probability of
occurrence p(v, T), and external air temperature Tair:

i = { v, T, p(v, T), Tair} . (4.7)

The optimisation problem is subject to a number of boundary con-
straints (see Table 4.2):

Pl
m ≤ Pm ≤ Pu

m , (4.8)

Nl
a ≤ Na ≤ Nu

a , (4.9)

Pl
a ≤ Pa ≤ Pu

a , (4.10)

Nl
b ≤ Nb ≤ Nu

b , (4.11)

Pl
b ≤ Pb ≤ Pu

b , (4.12)

Na + Nb ≤ 5 . (4.13)

Diesel generators power range lies between the smallest available
engine by the manufacturers and engines that do not violate the
height of the main diesel engines by more than 50%. Finally, the
number of diesel generators of type a, b, and the total number of
them is bounded based on the common practise in similar vessel type
designs to comply with weight, space and maintenance spare parts
limitations.

One technical constraint secures that sufficient electrical power is
installed:

Na Pa + Nb Pb ≥
(

2 Pm

ηm
+ max Photel

)
1

Lmax
, (4.14)

where maximum electrical hotel power under typical operation is set
at 710 kW, the maximum running load of the diesel generators Lmax is
equal to 0.85 and the nominal efficiency of the motors ηm is equal to
0.934.

Another technical constraint prevents the installation of unnecessary
diesel generators:

Na Pa + (Nb − 1) Pb ≤
(

2 Pm

ηm
+ max Photel

)
1

Lmax
, (4.15)

or in the case of Nb = 0:

(Na − 1) Pa ≤
(

2 Pm

ηm
+ max Photel

)
1

Lmax
. (4.16)

Furthermore, there is a redundancy constraint as the maximum hotel
load needs to be served by a single diesel generator, hence:

Pa, Pb ≥ max Photel

Lmax
. (4.17)
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Table 4.2: Design variables and lower/upper bounds.

Lower bound Upper bound Unit

Symbol Value Symbol Value

Pl
m 200 Pu

m 5 500 [kW]

Nl
a 1 Nu

a 5 [-]

Pl
a 700 Pu

a 4 529 [kW]

Nl
b 0 Nu

b 4 [-]

Pl
b 700 Pu

b 4 529 [kW]

4.3.3 Objective functions

4.3.3.1 Carbon intensity

In this work, CI is evaluated as the fraction of carbon dioxide emissions
MCO2 and covered distance ∆s over the examined period ∆t:

CI =
MCO2

∆s
(4.18)

Carbon dioxide emissions are evaluated as a double integral of speed
v and thrust T:

MCO2 =

v T∫∫
ṁf(v, T) fCO2 p(v, T) ∆t dv dT (4.19)

≃ ∑
v

∑
T

ṁf(v, T) p(v, T) ∆t fCO2 δv δT , (4.20)

where p(v, T) is the probability of occurrence of a (v, T) tuple, fCO2 is
the carbon coefficient fCO2 equal to 3.206 as in EEDI calculation [17]
and ṁf is the total fuel consumption estimated using the digital twin
approach described in Chapter 3 for certain vessel speed v, propeller
thrust T, and ambient temperature Tair. Covered distance is calculated
in a similar manner as:

∆s =

v T∫∫
v p(v, T) dv dT ≃ ∑

v
∑
T

v p(v, T) δv δT . (4.21)

Fuel consumption of diesel generators and electrical motors of
different size is simulated using the nominal specific fuel consumption
values in Figure 4.4 and the normalised part load behaviour described
in Figures 4.7 and 4.8.

4.3.3.2 Operational expenditure

Net present value of the operational expenditure Copex is evaluated
from the yearly amount Copex,y:

Copex =
Ny

∑
y=1

Copex,y

(
1 + if
1 + im

)y

, (4.22)
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Figure 4.7: Normalised energy efficiency of the electrical motors [2].

Figure 4.8: Normalised specific fuel consumption of the diesel generators.

accounting for inflation rate if, market interest rate im and years in
consideration Ny. Example values from literature and the selection
of this study can be found in Table 4.3. Operational expenditure in a

Table 4.3: Inflation rate if, market interest im and years under consideration
Ny in this study and examples in literature.

im if Ny

[151] 10% - 20

[101] 8% 3% -
[65] 7% - 25

This study 8% 3% 25

certain year consists mainly of the fuel Cfuel and maintenance Cmaint

cost.

Copex,y = Cmaint + Cfuel , (4.23)
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Fuel cost is given from:

Cfuel =
(

Mf,g + Mf,e
)

cf , (4.24)

where

Mf,e =

v T∫∫
ṁf,e(v, T) p(v, T) ∆t dv dT , (4.25)

Mf,g =

v T∫∫
ṁf,g(v, T) p(v, T) ∆t dv dT , (4.26)

is the total fuel mass consumed by the main diesel engines and diesel
generators respectively. Fuel price for marine diesel oil was selected at
630 €/ton. Maintenance cost Cmaint is given from the maintence cost
of main diesel engines Cmaint,e, diesel generators Cmaint,g and electrical
motors Cmaint,m:

Cmaint = Cmaint,e + Cmaint,g + Cmaint,m , (4.27)

Cmaint,e =

v T∫∫
2 Pe cµ,e p(v, T) ∆t dv dT , (4.28)

Cmaint,g =

v T∫∫
∑ Pg cµ,g p(v, T) ∆t dv dT , (4.29)

Cmaint,m = 2 Pm cµ,m , (4.30)

where cµ are maintenance cost coefficients providing the cost of a
running hour per unit rated power. We use a value of 0.015 €/kWh
both for diesel main engines and generators as in [104], and 1% of
capital expenditure for the electrical motors [149].

4.3.3.3 Capital expenditure

Capital expenditure Ccapex of the main components of the system
consists of the capital costs of main diesel engines Ccapex,e, diesel
generators Ccapex,g, and electrical motors Ccapex,m:

Ccapex,g = ∑ Pg cg , (4.31)

Ccapex,e = 2 Pe ce , (4.32)

Ccapex,m = 2 Pm cm . (4.33)

where cg, cm, and ce are the purchase cost coefficients of the diesel
generators, electrical motor, and main diesel engines respectively in
euros per unit rated power (€/kW).

4.3.3.4 Total weight

Total weight of the main power supply and propulsion components
Wtot is given from:

Wtot = 2 We + 2 Wm + ∑ Wg , (4.34)
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where Wa, Wb, Wm are the weights of the type a and b diesel generators
and electrical motors that can be evaluated from Figures 4.3 and 4.5
respectively, and We is the weight of each main diesel engine which
goes to zero in a fully diesel electric configuration:

We =

 36.1 Pm ≤ 5 500 kW

0.0 otherwise
(4.35)

4.3.3.5 Redundancy terms

The solution of the introduced optimisation problem provides the re-
quired electrical motors and diesel generators to serve sufficiently the
examined operational scenarios. The actual energy system consists of
one more diesel generator, able to serve the hotel load for redundancy
purposes. We need to account for this with the following redundancy
parameters on the capital expenditure:

Ccapex,red =

min ( Pa, Pb) cg, min ( Pa, Pb) ≤ Pg,thr ,

840 cg, min ( Pa, Pb) > Pg,thr ,
(4.36)

and total weight:

Wred =

min ( Wa, Wb) , min ( Pa, Pb) ≤ Pg,thr ,

16.7, min ( Pa, Pb) > Pg,thr .
(4.37)

The distinction below and above the power threshold Pg,thr is used to
balance prioritising a larger number of identical diesel generators to
unnecessary installed power. In this work it was picked equal to 1 000

kW.

4.3.4 Problem resolution

The multi-objective optimisation problem reported in Equations 4.1-
4.17 can be formulated and solved following a different number of
strategies [167]. In this paper, we adopt a formulation of the problem
into a single objective framework by converting the multiple objectives
into a weighted sum of the normalised objectives, as detailed in [168]:

min
x

λ1 CI( x, p, i) +λ2 Copex( x, p, i)

+λ3 Ccapex( x, p) + λ4 Wtot( x, p) ,
(4.38)

where λi ∈ [0, 1] defines the importance of the different objectives,
i.e., for λi → 1, authors care more about the weight than the ultimate
compressive strength and vice-versa for λi → 0, and λ1 + λ2 + λ3 +

λ4 = 1. Solving Equation (4.38) for different values of λ allows for the
creation of the so-called Pareto frontier in a computationally efficient
way [168].
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4.3.5 Optimisation algorithms

Optimisation problems can be classified according to a number of
criteria. A typical distinction is in constrained and unconstrained prob-
lems based on the presence or absence of linear or non-linear equality
or inequality relations among decision variables, and in linear and
non-linear problems based on the linearity of the objective function
or functions. Another important aspect is whether decision variables
are real or integer. Many of the mathematical optimisation algorithms
discussed in the following paragraphs are originally developed for
the case of real variables, making the solution of integer program-
ming problems challenging [169]. Other classes of problems include
deterministic and stochastic programming, separable, single or multi-
objective programming, and finally, static, dynamic, and intertemporal
static programming based on the way they handle time.

Solving algorithms in most textbooks fall under three main categor-
ies, search methods, calculus (gradient based) methods and stochastic
or evolutionary methods [170]–[172]. Search methods and evolutionary
methods do not guarantee global optimality of the result solutions. Op-
timisation problems that seek the optimal value of decision variables
over time are usually making use of calculus of variations methods or
if they include sequences of decisions, dynamic programming meth-
ods. In case of no time-dependency and discretisation, these problems
are turned into multiple static optimisation problems. The solvers
used depend on the nature of the examined problem.

Search methods or region elimination methods do not require the
objective function to be continuous, they are also suitable in the case
of discrete variables, it is sufficient though the functions to be unim-
odal [171]. The main philosophy behind those methods is the compar-
ison of the objective function value at two different points. In the case
of single variable functions, example methods are the Swann method
and golden section search. In the case of multi-variable functions,
example methods are the univariate method, simplex method and its
improved version Nelder and Mead method, Hook and Jeeves method
and its improved version Rosenbrock method, and Powell method.

Calculus (gradient) methods impose additional requirements on
the objective function, as it needs to be unimodal, continuous and
differentiable. Example methods in the single variable function case
are Newton-Raphson method, Bisection method, and Secant method,
while a well known method in the case of multi-variable functions is
the generalised reduced gradient method. A special category that uses
the benefits of gradient methods is the polynomial approximation
methods, with sequential linear and quadratic programming methods
(SLP & SQP) being two widely used examples.

A distinct class of algorithms simulates biological, molecular and
neurological phenomena [173]. Examples are genetic and evolutionary
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algorithms, simulated annealing, and Particle swarm optimization
among others. Genetic algorithms are mainly used because of the
nature of ship energy systems optimisation problems:

• no analytical description of objective functions is regularly the
case

• non-continuous objective functions or first derivative function

• integer decision variables

4.3.6 Selected algorithm

The introduced multi-objective optimisation problem of Equations 4.1-
4.17 and 4.38 has a non-linear and non-convex objective function
and a series of non-linear constraints. Taking into account the integer
nature of some of the decision variables in Equation 4.7, the introduced
problem can be classified as a Mixed-Integer Non-Linear Programming
(MINLP) problem. In order to solve it, different approaches can be
exploited [174]. In fact, a series of no-free-lunch theorems [175] ensure
that there is no way to choose a-priori the best optimisation algorithms
for a particular problem, and the only option is to empirically test
multiple approaches verifying which is actually the best one.

Recognising the challenges, heuristic approaches like Genetic Al-
gorithms (GA) or Simulated Annealing (SA) can be considered viable
solution strategies as reported in the relevant literature [168], [171].
These may not guarantee absolute optimality, but they have demon-
strated prowess in delivering high-quality solutions within restricted
time frames [171]. Nonetheless, with heuristic methods, managing
constraints effectively is important, and penalty methods need to be
employed to ensure the constraints are respected [176]. Since the con-
vergence of all these algorithms is influenced by the starting point,
multi-start strategies are followed [177].

In this study, as demonstrated in Figure 4.6, we use a genetic al-
gorithm using the ga function of the Matlab 2022a1 environment
within a multi-start loop. As starting points, this methodology uses:
(i) the original system configuration and size (ii) 100 in the case of
single optimisation and 50 in the case of multi-objective optimisation,
random points uniformly distributed in the domain induced by the
constraints of Equations 4.8 - 4.17. Table 4.4 summarises the parameter
settings of the implemented algorithm. The resulting best solution of
the genetic algorithm is then provided to a gradient method like the
interior-point algorithm.

1 https://www.mathworks.com/

https://www.mathworks.com/
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Table 4.4: Parameters setting for the different optimisation algorithms.

Parameter Value(s)

Population size 300

Elite count 250

Crossover fraction 0.7
Crossover function "crossoverscattered"
Max generations to stall 30

Function tolerance 1e-4
Constraint tolerance 1e-4
UseParallel "true"

4.3.7 Optimisation scenarios

The design by optimisation methodology described in this chapter uses
the actual sailing profiles of three sister vessels, but generalises to using
sailing profiles of vessels that serve similar missions. These scenarios
are then compared with simple ones based on calm water resistance
and design conditions commonly used at the concept design phase
that are treated as benchmarks. Sailing profiles are described by vessel
speed and propeller thrust, and a complete scenario in the context of
this work consists of a sailing profile described with tuples of vessel
speed v and thrust T, the frequency of occurrence of each tuple p(v, T),
and the external air temperature Tair that is statistically correlated to
the electrical hotel load as seen in Figure 3.11. Figures 4.9b, 4.9d
and 4.9f provide the joint probability distribution of vessel speed and
thrust in the case of the the three OPVs. Benchmark scenarios use a
typical speed profile of an OPV (see Subfigure 4.9g), and three cases
for ship resistance (see Subfigure 4.9h). A calm water resistance curve
based on scale model towing tank tests, a fixed percentage increase in
resistance over calm water conditions, and a design resistance curve
that is the result of sea keeping tank tests at certain environmental
conditions.

All elements can be found in Figure 4.9, and they are summarised
in Table 4.5. The time spent at sea was assumed as 20% of a calendar
year (see Table A.4).
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Figure 4.9: Elements of optimisation scenarios.
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4.4 results

4.4.1 Single-objective optimisation

This section discusses the results of the four single-objective optim-
isation problems described by Equations 4.1 - 4.4. The result of these
problems is useful in understanding the individual influence of each
objective on the optimal design of the examined system. Being simpler
than the multi-objective problem, they make it possible to identify
the influence of the different optimisation scenarios on the optimal
solutions as well. Mathematically, these problems derive from Equa-
tion 4.38 setting λi = 1, λj = 0, ∀ i, j ∈ [1, 4], j ̸= i. Carbon intensity
and operational expenditure required the simulation of the energy
system’s operation over the examined operating scenarios, while total
weight and capital expenditure were just calculated over different
feasible solutions. The original design mentioned in the results refers
to the original size of electrical motors, diesel generators, and man-
ufacturers, though with a gearbox of a single reduction stage rather
than two on electrical mode.

The decisive factor for carbon intensity minimisation is the nominal
specific fuel consumption curve found in Figure 4.4. Table 4.7 provides
the results for the carbon intensity optimisation problem in the case of
calm water and design conditions, and sailing profiles of three class
vessels. It comes not as a surprise that the size of diesel generators
that appears in different solutions is 1 870 or 3 230 kW. Slightly smaller
diesel generators have a worse nominal specific fuel consumption,
and slightly bigger ones operate at a lower load for the same specific
fuel consumption which based on Figure 4.8 indicates an overall
higher fuel consumption. The size of the electrical motors is driven
by the fuel efficiency of the diesel generators. Carbon intensity is
proportionally related to fuel consumption hence the result is one big
engine compared to multiple small ones.

Operational expenditure consists of the cost of fuel and mainten-
ance. The assumption in this work is that the maintenance cost in
€/hour depends on the nominal power of the engine. According to
this assumption, running smaller and cheaper to maintain per hour
diesel generators is better than bigger engines. The same applies to
running on electrical propulsion instead of main diesel engines at
lower speeds, as their maintenance cost per running hour is higher,
proportional to rated power. Table 4.8 provides the results of the op-
erational expenditure minimisation problem. Savings in the scale of
one million euros in net present value are established in all scenarios.
Again calm water with sea margin and design conditions overestimate
savings, but also the height of operational expenditure as well in a 25

year horizon.
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Table 4.5: Optimisation scenarios.

v, T, p(v, T) Tair Photel

[°C] [kW]

Calm Figure 4.9g & 4.9h 25.0 605

Calm +25% Figure 4.9g & 4.9h 25.0 605

Design Figure 4.9g & 4.9h 25.0 605

Vessel 1 Figure 4.9b 23.4 600

Vessel 2 Figure 4.9d 22.3 590

Vessel 3 Figure 4.9f 20.8 585

The mathematical optimisation solution is trivial in the case of cap-
ital expenditure and total weight of the energy system. This happens
because the increase in the size of electrical motors is not followed by
a decrease in the size of main diesel engines. Therefore, the optimal
solution is the smallest electrical propulsion part.

A general observation on the results of both the CI and OPEX
problems is that the different environmental and operational condi-
tions established by each vessel influence the optimal solution of the
problem and the achieved height of savings. As an example, power
take-off has marginal effect for the heavier conditions that vessel 3

sailed into. Improvement of CI was smaller compared to OPEX in all
input scenarios as well.

Table 4.6: Objectives value in the case of the original design.

Input Decision variables Objectives

pto Pm Pgen CI OpEx
[-] [kW] [kW] [kgCO2/nm] [x103 €]

Calm no 2x 400 2x 910 179.7 -
Calm +25% no 2x 400 2x 910 210.8 16 853

Design no 2x 400 2x 910 236.0 18 724

Vessel 1 no 2x 400 2x 910 203.7 14 610

Vessel 2 no 2x 400 2x 910 199.0 13 761

Vessel 3 no 2x 400 2x 910 215.0 13 189

CapEx Wtot

[x103 €] [tons]

- no 2x 400 2x 910 3 681 116.5

4.4.2 Capital expenditure and total weight

Capital expenditure and the total weight of the system are both para-
meters of significant importance in the design of a system. Especially
in the way modelled in this work, they also seem to have an almost
linear correlation as can be seen in Figure 4.10. This figure demon-
strates an example of one thousand randomly built system designs,
demonstrating an R2 value of 0.97. This correlation allows us to move
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Table 4.7: CI minimisation results including percentage the improvement to
benchmark case.

Input Decision variables Objective

pto Pm Na Pa Nb Pb CI
[-] [kW] [-] [kW] [-] [kW] [kgCO2/mile]

Calm no 2x 1 420 1x 3 245 2x 895 ( -3.5 %) 173.3
yes 2x 1 366 1x 3 230 2x 904 ( -4.6 %) 171.4

Calm +25% no 2x 1 698 1x 3 230 3x 880 ( -2.7 %) 205.2
yes 2x 1 276 1x 3 230 1x 952 ( -3.4 %) 203.6

Design no 2x 1 260 1x 840 1x 3 230 ( -2.4 %) 230.3
yes 2x 1 383 1x 3 291 2x 891 ( -3.1 %) 228.7

Vessel 1 no 2x 1 350 1x 824 2x 3 230 ( -2.9 %) 197.9
yes 2x 1 370 1x 3 271 2x 839 ( -3.9 %) 195.8

Vessel 2 no 2x 1 175 2x 835 1x 3 230 ( -2.9 %) 193.2
yes 2x 1 250 1x 3 234 1x 839 ( -3.9 %) 191.2

Vessel 3 no 2x 700 4x 835 - - ( -2.9 %) 208.8
yes 2x 1 406 1x 3 231 2x 855 ( -3.5 %) 207.5

Table 4.8: Net present value of OPEX including the percentage improvement
to benchmark case.

Input Decision variables Objective

pto Pm Na Pa Nb Pb OpEx
[-] [kW] [-] [kW] [-] [kW] [x103 €]

Calm no 2x 1 823 3x 1 004 2x 1 233 ( -10.9 %) 13 118

yes 2x 1 741 1x 1 901 4x 835 ( -12.4 %) 12 894

Calm +25% no 2x 1 770 2x 837 3x 1 213 ( -9.1 %) 15 323

yes 2x 1 800 1x 1 873 4x 884 ( -10.0 %) 15 164

Design no 2x 2 125 3x 835 2x 1 870 ( -8.2 %) 17 181

yes 2x 2 128 1x 3 254 4x 897 ( -9.2 %) 17 008

Vessel 1 no 2x 2 151 3x 839 2x 1 881 ( -9.5 %) 13 229

yes 2x 2 195 1x 3 232 4x 830 ( -11.0 %) 13 004

Vessel 2 no 2x 2 423 2x 1 876 3x 1 072 ( -9.2 %) 12 495

yes 2x 2 170 1x 3 236 4x 863 ( -10.5 %) 12 317

Vessel 3 no 2x 2 254 2x 1 875 3x 934 ( -9.2 %) 11 983

yes 2x 2 191 2x 1 871 3x 878 ( -9.7 %) 11 908

on the optimisation procedure accounting for one of the two, in this
case capital expenditure, and report the value of total system weight.
Hence, we proceed with λ4 = 0.

4.4.3 Multi-objective optimisation

Multi-function ships are complex ships that need to serve many types
of missions. This means that their design unavoidably requires a per-
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Table 4.9: Computational efficiency of the genetic algorithm over 100 al-
gorithm starts: (K) Average number of generations per start, (L)
Average number of fitness function calls per start, (M) Average
running time per start.

CI problem OpEx problem

pto K L M K L M
[-] [-] [-] [sec] [-] [-] [sec]

Calm no 40 8 003 252 41 8 334 300

yes 38 7 680 225 51 10 326 439

Calm +25% no 37 7 450 232 45 9 132 379

yes 39 7 942 273 55 11 059 559

Design no 41 8 259 339 47 9 358 482

yes 37 7 536 308 48 9 638 413

Vessel 1 no 38 7 637 322 47 9 498 532

yes 38 7 644 315 55 10 954 772

Vessel 2 no 36 7 349 572 47 9 420 1 015

yes 37 7 566 734 46 9 191 1 103

Vessel 3 no 40 7 991 876 49 9 768 1 360

yes 37 7 493 659 49 9 839 532

Figure 4.10: Linear correlation of capital expenditure (CapEx) and total
weight of the system Wtot for 10 000 randomly generated designs.

formance trade-off evaluated with a number of objectives. This section
provides the results of the multi-objective optimisation problem and
solving strategy introduced in Section 4.3. The result of the optimisa-
tion algorithm is a number of solutions that form the so-called Pareto
front. Figure 4.11 provides a visual representation of the Pareto front,
and Tables 4.10 and 4.11 provide details of different solutions. The
input scenario in the case of the multi-objective optimisation problem
is the actual sailing profile of vessel 1. Power take-off is also considered
in problem solutions.

Figure 4.12 allows the examination of the Pareto front from dif-
ferent angles. We pay attention to the qualitative characteristics of
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these figures, as absolute values are influenced by the values used for
different costs. It is clear that carbon intensity can improve at the cost
of additional capital expenditure, but there is a limit after which it
increases again. The same applies to carbon intensity against opera-
tional expenditure. On the trade-off between capital and operational
expenditure, we observe that increased investment brings improved
operational costs, though this improvement rate slows down with
additional investment.

Another observation on those results is that based on the influence
of each objective, the optimal solution varies (see Figure 4.13). The
electrical motor size of the original design at 400 kW forms a lower
bound, while motors that are five or six times larger at 2 200 kW
form an upper bound. In more than half of cases, only type a diesel
generators are used. Moreover, in the majority of solutions only one
type a diesel generator is used, while type b ones can vary significantly
in number. We also observe that type b generators are usually smaller
in rated power compared to type a.

4.4.4 Computational efficiency

Table 4.9 provides metrics on the computational efficiency of the
algorithm in the case of single objective optimisation problems of
CI and OpEx. Tables 4.12 and 4.13 provide the same metrics in the
case of the multi-objective optimisation problem. Genetic algorithms
are considered computationally demanding algorithms [150]. Results
show that each start of the algorithm requires thousands of fitness
function calls. We observe that the CI problem requires around 30%
less calls than the OpEx problem. Fitness function calculation times
of more than a couple of seconds, and the lack of parallel computing
would lead to solving times much higher than a single day for each
one of the 83 different problems solved to form the Pareto front. It
is also important to notice the significant increase in computational
time from the use of the actual sailing profiles of the vessels. Despite
this challenge, the selected optimisation framework delivered quality
results within the limits of computers capable of supporting parallel
running of at least five workers.

4.5 conclusions

This chapter provided a design by optimisation framework for the
optimal design of the energy system of multi-function vessels from an
environmental, financial and technical perspective. This framework
is based on the actual sailing profiles of vessels following similar
missions, and utilises an accurate and computationally inexpensive
digital twin approach for the prediction of the ship’s operation. This
methodology can generalise in the case of retro-fitting existing ves-
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Figure 4.11: Multi-dimensional Pareto front.

sels, though constraints on the dimension of system components are
expected to be stricter. It can also generalise in the case of different
propulsion or power supply systems, or for ships of different type,
although it is expected to benefit more ships that sail under diverse
operational and environmental conditions.

This chapter demonstrates this framework on the topology selection
and sizing of the hybrid propulsion system of an ocean patrol vessel.
The electrical propulsion system of the case study vessels can be used
as an alternative to mechanical propulsion, but it can not operate
simultaneously with it. For this reason only the electrical propulsion
and electrical power supply system is resized, demonstrating the
potential in reducing carbon emissions and operational costs.

The main conclusions extracted are summarised hereafter:

• The different solution and attained environmental, financial and
technical performance for the different actual sailing profiles
of the three vessels of the same class indicate the difficulty in
identifying the best trade off among different designs in actual
operation.

• Calm water conditions or design conditions resulting from a sea
margin superposition can be misleading leading to overestim-
ated energy savings and not optimal designs.

• The proved accurate steady-state modelling approach adopted
in this optimisation framework allows the use of joint probability
distributions of vessel speed and thrust to describe operational
profiles, significantly reducing computational time offering the
opportunity of exploring a wider design space.

• Jump discontinuities in nominal specific fuel consumption and
weight attributed to different diesel generator families reduce
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Figure 4.12: Two dimensional views of the Pareto front with solutions col-
oured on the total system weight in tons.
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Figure 4.13: Histograms of the independent design variables of the multi-
objective optimisation problem solution.
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the effect of different operational and environmental conditions
on the optimal problem solution.

• A percentage increase over calm water conditions is not rep-
resentative of the actual environmental and financial life-cycle
footprint of ship operations.

• Designs with an increased electrical motor size coupled with
multiple small diesel generators lead to a decreased life-cycle
operational cost.

• The use of electrical propulsion has the potential to reduce
maintenance cost if propulsion power is provided by diesel gen-
erators that are relatively small compared to the main engines,
and which have a lower maintenance cost per running hour.

• Designs with an increased motor size coupled with a smaller
number of large diesel generators lead to improved carbon in-
tensity due to improved fuel efficiency, though at the expense of
higher capital and operational cost, and additional weight.

• Power take-off option improves attained carbon intensity in all
operating scenarios resulting to different optimal solutions in
most of the examined cases.

• Increasing capital investment reduces operational costs at a de-
creasing rate before stabilising. This is not the case for carbon
intensity, where the initial decrease is followed by an increase
indicating a certain capital investment that minimises carbon
footprint.
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Table 4.10: Solution of the multi-objective optimisation problem.

λ1 λ2 λ3 λ4 Pm Na Pa Nb Pb CI OPEX CAPEX Wtot

[-] [-] [-] [-] [kW] [-] [kW] [-] [kW] [kgCO2/mile] [x103 €] [x103 €] [tons]

- 1.000 0.000 0.000 0.000 1 352 1x 3 257 2x 862 195.8 13 296.1 4 831.2 189

- 0.000 1.000 0.000 0.000 2 196 1x 3 236 4x 835 197.9 13 004.0 5 435.1 225

- 0.000 0.000 1.000 0.000 250 1x 1 468 - - 200.5 14 966.4 3 523.8 116

1 0.100 0.900 0.000 0.000 2 120 1x 3 235 4x 918 197.6 13 005.9 5 575.2 229

2 0.087 0.783 0.130 0.000 1 720 1x 1 870 4x 835 198.3 13 070.5 4 926.4 201

3 0.071 0.643 0.286 0.000 1 415 1x 1 870 3x 848 197.3 13 210.5 4 632.7 184

4 0.059 0.529 0.412 0.000 747 1x 1 870 1x 857 196.7 13 615.4 4 002.4 148

5 0.040 0.360 0.600 0.000 410 1x 1 877 - - 197.4 14 003.6 3 677.0 122

6 0.200 0.800 0.000 0.000 2 091 1x 3 234 4x 914 197.4 13 009.7 5 565.4 229

7 0.174 0.696 0.130 0.000 1 740 1x 3 233 2x 1 003 196.3 13 091.0 4 938.7 194

8 0.143 0.571 0.286 0.000 840 1x 1 873 1x 1 114 196.8 13 561.8 4 093.3 146

9 0.118 0.471 0.412 0.000 430 1x 1 924 - - 197.3 13 976.6 3 694.8 124

10 0.080 0.320 0.600 0.000 410 1x 1 873 - - 197.4 14 003.2 3 675.8 126

11 0.300 0.700 0.000 0.000 2 063 1x 3 236 4x 903 197.3 13 016.7 5 544.9 228

12 0.261 0.609 0.130 0.000 1 663 1x 3 230 2x 906 196.1 13 102.1 4 888.2 192

13 0.214 0.500 0.286 0.000 840 1x 1 873 1x 1 089 196.8 13 560.0 4 084.3 146

14 0.176 0.412 0.412 0.000 420 1x 1 898 - - 197.3 13 983.9 3 685.3 120

15 0.120 0.280 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

16 0.350 0.650 0.000 0.000 2 041 1x 3 232 4x 857 197.1 13 020.1 5 461.2 226

17 0.304 0.565 0.130 0.000 1 640 1x 3 260 2x 863 196.0 13 112.7 4 851.9 190

18 0.250 0.464 0.286 0.000 817 1x 1 870 1x 1 033 196.8 13 580.6 4 062.2 149

19 0.206 0.382 0.412 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.6 120

20 0.140 0.260 0.600 0.000 330 1x 1 675 - - 197.8 14 183.6 3 601.5 116

21 0.400 0.600 0.000 0.000 1 999 1x 3 231 4x 852 196.9 13 031.9 5 450.1 225

22 0.348 0.522 0.130 0.000 1 642 1x 3 276 2x 858 196.0 13 113.7 4 853.0 190

23 0.286 0.429 0.286 0.000 770 1x 1 962 1x 835 196.7 13 604.0 4 020.6 147

24 0.235 0.353 0.412 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.6 120

25 0.160 0.240 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

26 0.450 0.550 0.000 0.000 1 747 1x 3 231 3x 839 196.2 13 077.8 5 116.7 207

27 0.391 0.478 0.130 0.000 1 661 1x 3 234 2x 902 196.1 13 102.3 4 885.4 192

28 0.321 0.393 0.286 0.000 740 1x 1 926 1x 871 196.8 13 623.2 4 030.8 143

29 0.265 0.324 0.412 0.000 420 1x 1 898 - - 197.3 13 983.9 3 685.3 120

30 0.180 0.220 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

31 0.500 0.500 0.000 0.000 1 743 1x 3 230 3x 839 196.2 13 077.2 5 116.3 207

32 0.435 0.435 0.130 0.000 1 640 1x 3 288 2x 849 196.0 13 115.3 4 846.7 190

33 0.357 0.357 0.286 0.000 740 1x 1 872 1x 835 196.7 13 613.9 3 987.4 145

34 0.294 0.294 0.412 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.5 120

35 0.200 0.200 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

36 0.550 0.450 0.000 0.000 1 701 1x 3 262 3x 875 196.1 13 089.5 5 175.8 208

37 0.478 0.391 0.130 0.000 1 610 1x 3 264 2x 867 196.0 13 138.5 4 855.9 190

38 0.393 0.321 0.286 0.000 740 1x 1 882 1x 835 196.7 13 615.4 3 990.9 136

39 0.324 0.265 0.412 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.5 120

40 0.220 0.180 0.600 0.000 330 1x 1 674 - - 197.8 14 183.5 3 601.1 116

41 0.600 0.400 0.000 0.000 1 701 1x 3 231 3x 835 196.1 13 086.0 5 109.2 207

42 0.522 0.348 0.130 0.000 1 640 1x 3 270 2x 857 196.0 13 114.6 4 849.8 190

43 0.429 0.286 0.286 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.6 120

44 0.353 0.235 0.412 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.6 120

45 0.240 0.160 0.600 0.000 330 1x 1 672 - - 197.8 14 183.2 3 600.3 116

46 0.650 0.350 0.000 0.000 1 700 1x 3 236 3x 875 196.1 13 088.0 5 166.7 208

47 0.565 0.304 0.130 0.000 1 370 1x 3 271 1x 1 035 195.9 13 296.3 4 588.9 174

48 0.464 0.250 0.286 0.000 420 1x 1 900 - - 197.3 13 984.1 3 685.8 120

49 0.382 0.206 0.412 0.000 420 1x 1 899 - - 197.3 13 984.1 3 685.7 120

50 0.260 0.140 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126
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Table 4.11: Solution of the multi-objective optimisation problem. (continue).

λ1 λ2 λ3 λ4 Pm Na Pa Nb Pb CI OPEX CAPEX Wtot

[-] [-] [-] [-] [kW] [-] [kW] [-] [kW] [kgCO2/mile] [x103 €] [x103 €] [tons]

51 0.700 0.300 0.000 0.000 1 702 1x 3 245 3x 836 196.1 13 089.6 5 114.9 207

52 0.609 0.261 0.130 0.000 1 350 1x 3 259 1x 1 004 195.9 13 304.2 4 572.2 174

53 0.500 0.214 0.286 0.000 420 1x 1 900 - - 197.3 13 984.1 3 685.7 120

54 0.412 0.176 0.412 0.000 410 1x 1 883 - - 197.4 14 004.3 3 679.3 118

55 0.280 0.120 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

56 0.750 0.250 0.000 0.000 1 664 1x 3 230 3x 860 196.0 13 099.9 5 141.6 207

57 0.652 0.217 0.130 0.000 950 1x 3 245 - - 196.1 13 571.6 4 190.6 153

58 0.536 0.179 0.286 0.000 420 1x 1 906 - - 197.3 13 984.9 3 688.2 121

59 0.441 0.147 0.412 0.000 330 2x 835 - - 197.8 14 175.3 3 598.3 126

60 0.300 0.100 0.600 0.000 330 1x 1 674 - - 197.8 14 183.4 3 601.0 116

61 0.800 0.200 0.000 0.000 1 640 1x 3 298 3x 838 196.0 13 115.5 5 132.9 206

62 0.696 0.174 0.130 0.000 950 1x 3 241 - - 196.1 13 570.7 4 189.0 153

63 0.571 0.143 0.286 0.000 420 1x 1 900 - - 197.3 13 984.1 3 685.8 120

64 0.471 0.118 0.412 0.000 330 1x 1 675 - - 197.8 14 183.6 3 601.5 116

65 0.320 0.080 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

66 0.850 0.150 0.000 0.000 1 640 1x 3 239 3x 848 196.0 13 109.8 5 125.4 207

67 0.739 0.130 0.130 0.000 940 1x 3 243 - - 196.2 13 582.8 4 189.3 153

68 0.607 0.107 0.286 0.000 420 1x 1 899 - - 197.3 13 984.0 3 685.6 120

69 0.500 0.088 0.412 0.000 330 1x 1 677 - - 197.8 14 183.7 3 602.0 116

70 0.340 0.060 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126

71 0.900 0.100 0.000 0.000 1 613 1x 3 272 2x 836 196.0 13 136.6 4 825.9 189

72 0.783 0.087 0.130 0.000 950 1x 3 239 - - 196.1 13 570.4 4 188.6 153

73 0.643 0.071 0.286 0.000 420 1x 1 900 - - 197.3 13 984.1 3 685.9 120

74 0.529 0.059 0.412 0.000 325 2x 835 - - 197.8 14 213.1 3 597.9 126

75 0.360 0.040 0.600 0.000 325 1x 1 660 - - 197.9 14 222.0 3 595.7 116

76 0.950 0.050 0.000 0.000 1 450 1x 3 259 2x 905 195.9 13 234.4 4 883.6 191

77 0.826 0.043 0.130 0.000 940 1x 3 244 - - 196.2 13 583.0 4 189.6 153

78 0.679 0.036 0.286 0.000 410 1x 1 875 - - 197.4 14 003.4 3 676.6 123

79 0.559 0.029 0.412 0.000 325 1x 1 673 - - 197.9 14 223.2 3 600.4 116

80 0.380 0.020 0.600 0.000 330 2x 835 - - 197.8 14 175.3 3 598.2 126
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Table 4.12: Computational efficiency of the multi-objective optimisation problem solving algorithm over
50 algorithm starts.

λ1 λ2 λ3 λ4 Average number of Average number of Average running
generations fitness function calls time

per start per start per start
[-] [-] [-] [-] [-] [-] [min]

- 1.000 0.000 0.000 0.000 37 7 485 21

- 0.000 1.000 0.000 0.000 54 10 940 16

- 0.000 0.000 1.000 0.000 69 13 872 18

1 0.100 0.900 0.000 0.000 57 11 366 19

2 0.087 0.783 0.130 0.000 53 10 656 20

3 0.071 0.643 0.286 0.000 43 8 710 20

4 0.059 0.529 0.412 0.000 48 9 723 26

5 0.040 0.360 0.600 0.000 60 11 937 29

6 0.200 0.800 0.000 0.000 56 11 244 28

7 0.174 0.696 0.130 0.000 53 10 676 49

8 0.143 0.571 0.286 0.000 42 8 490 28

9 0.118 0.471 0.412 0.000 45 9 108 23

10 0.080 0.320 0.600 0.000 56 11 291 18

11 0.300 0.700 0.000 0.000 57 11 445 19

12 0.261 0.609 0.130 0.000 53 10 558 26

13 0.214 0.500 0.286 0.000 46 9 285 26

14 0.176 0.412 0.412 0.000 52 10 357 25

15 0.120 0.280 0.600 0.000 57 11 397 29

16 0.350 0.650 0.000 0.000 53 10 594 48

17 0.304 0.565 0.130 0.000 50 10 054 32

18 0.250 0.464 0.286 0.000 45 9 096 22

19 0.206 0.382 0.412 0.000 52 10 456 16

20 0.140 0.260 0.600 0.000 58 11 669 20

21 0.400 0.600 0.000 0.000 54 10 759 25

22 0.348 0.522 0.130 0.000 50 10 136 28

23 0.286 0.429 0.286 0.000 48 9 719 23

24 0.235 0.353 0.412 0.000 47 9 549 22

25 0.160 0.240 0.600 0.000 56 11 322 49

26 0.450 0.550 0.000 0.000 50 10 144 32

27 0.391 0.478 0.130 0.000 49 9 916 23

28 0.321 0.393 0.286 0.000 44 8 773 22

29 0.265 0.324 0.412 0.000 50 10 081 34

30 0.180 0.220 0.600 0.000 56 11 295 51

31 0.500 0.500 0.000 0.000 52 10 424 30

32 0.435 0.435 0.130 0.000 48 9 671 19

33 0.357 0.357 0.286 0.000 46 9 270 19

34 0.294 0.294 0.412 0.000 51 10 314 47

35 0.200 0.200 0.600 0.000 59 11 799 37

36 0.550 0.450 0.000 0.000 52 10 353 20

37 0.478 0.391 0.130 0.000 49 9 829 24

38 0.393 0.321 0.286 0.000 46 9 278 31

39 0.324 0.265 0.412 0.000 54 10 921 49

40 0.220 0.180 0.600 0.000 60 12 103 35

41 0.600 0.400 0.000 0.000 52 10 389 18

42 0.522 0.348 0.130 0.000 44 8 935 19

43 0.429 0.286 0.286 0.000 46 9 278 27

44 0.353 0.235 0.412 0.000 52 10 361 22

45 0.240 0.160 0.600 0.000 59 11 772 24

46 0.650 0.350 0.000 0.000 51 10 200 21

47 0.565 0.304 0.130 0.000 45 9 081 25

48 0.464 0.250 0.286 0.000 48 9 597 24

49 0.382 0.206 0.412 0.000 54 10 755 26

50 0.260 0.140 0.600 0.000 57 11 500 30
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Table 4.13: Computational efficiency of the multi-objective optimisation problem solving algorithm over
50 algorithm starts. (continue)

λ1 λ2 λ3 λ4 Average number of Average number of Average running
generations fitness function calls time

per start per start per start
[-] [-] [-] [-] [-] [-] [min]

51 0.700 0.300 0.000 0.000 48 9 597 20

52 0.609 0.261 0.130 0.000 45 9 084 13

53 0.500 0.214 0.286 0.000 49 9 766 14

54 0.412 0.176 0.412 0.000 53 10 562 13

55 0.280 0.120 0.600 0.000 60 12 024 57

56 0.750 0.250 0.000 0.000 47 9 553 39

57 0.652 0.217 0.130 0.000 44 8 951 42

58 0.536 0.179 0.286 0.000 47 9 518 21

59 0.441 0.147 0.412 0.000 54 10 885 16

60 0.300 0.100 0.600 0.000 61 12 170 17

61 0.800 0.200 0.000 0.000 45 9 053 29

62 0.696 0.174 0.130 0.000 48 9 747 24

63 0.571 0.143 0.286 0.000 49 9 869 19

64 0.471 0.118 0.412 0.000 55 10 948 52

65 0.320 0.080 0.600 0.000 55 11 086 45

66 0.850 0.150 0.000 0.000 47 9 400 43

67 0.739 0.130 0.130 0.000 48 9 593 12

68 0.607 0.107 0.286 0.000 49 9 896 12

69 0.500 0.088 0.412 0.000 51 10 318 33

70 0.340 0.060 0.600 0.000 60 12 055 27

71 0.900 0.100 0.000 0.000 43 8 746 25

72 0.783 0.087 0.130 0.000 49 9 766 26

73 0.643 0.071 0.286 0.000 52 10 452 24

74 0.529 0.059 0.412 0.000 53 10 574 25

75 0.360 0.040 0.600 0.000 60 12 063 36

76 0.950 0.050 0.000 0.000 41 8 210 14

77 0.826 0.043 0.130 0.000 43 8 643 26

78 0.679 0.036 0.286 0.000 49 9 872 25

79 0.559 0.029 0.412 0.000 55 11 074 27

80 0.380 0.020 0.600 0.000 65 12 973 36



5
R E F L E C T I O N

Ship designers and operators receive feedback on their designs and
decisions only on a limited number of occasions like in ship acceptance
trials. This feedback corresponds to calm water conditions that are
usually not representative of the actual conditions during operations in
most geographical places and calendar months. Chapter 1 framed this
issue, and it suggested the use of operational data with the following
problem statement:

How can the collection, processing and use of operational data improve the
operation and design of ships from an environmental, financial, and technical
point of view?

In this direction, Chapter 2 provided a methodology to assess the
energy performance of ship operations using high-frequency oper-
ational data, it provided feedback to ship designers and operators,
and it described realistic operational and environmental conditions
to be utilised in the design of new ship energy systems. Chapter 3

provided a steady-state digital twin approach for the carbon intensity
prediction of ship operations leveraging first-principle and data-driven
techniques. It accounted for the aggregate effect of both operational
and environmental conditions, and it balanced computational cost
and prediction accuracy. Chapter 4 provided a design by optimisation
framework for ship energy systems. This framework utilised compu-
tationally efficient and accurate digital twin approaches as the one
introduced in Chapter 3, and it sought the trade-off from an envir-
onmental, technical, and financial perspective. Finally, this chapter,
Chapter 5, discusses the progress made towards the goal of this dis-
sertation summarising and reflecting on the results and conclusions
from Chapter 2 to 4, and identifying the conclusions, limitations and
recommendations of this dissertation.
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5.1 conclusions

Distilled from the whole of this dissertation, this paragraph summar-
ises the key findings of the work conducted as answers to the research
questions introduced in Chapter 1.

5.1.1 Energy performance assessment of ship operations

How can we quantify and depict operational and environmental uncertainty
using operational data analysis?

Operational and environmental uncertainty is addressed in all three
main chapters of this dissertation. Chapter 2 proposes the qualitative
depiction of its aggregate effect on the two-dimensional histogram
of propeller thrust against vessel speed. Quantitative means evaluate
mean thrust over discretised vessel speed and standard deviation,
especially in comparison to the vessel’s resistance in calm water con-
ditions or design resistance curves. Chapter 2 also focuses on the
influence of diverse conditions on the energy efficiency of different
components that is usually overlooked in many pieces of work in
maritime literature. Moreover, Chapter 3 demonstrates the result of
those diverse conditions on the accuracy of the developed digital
twin, and Chapter 4 their influence on the solution of different design
optimisation problems.

What energy performance indicators can sufficiently describe ship oper-
ations and provide feedback to both designers and operators of the vessels?

At a whole system level, mean energy effectiveness indicator and total
energy efficiency over discretised vessel speed can sufficiently describe
attained energy performance, as described in Chapter 2. Specifically,
the extra dimension provided in carbon intensity evaluation compared
to Carbon Intensity Indicator (CII) calculation allows energy perform-
ance specialists and operators of the vessels to distinguish between the
effect of sailing speed and that of sailing conditions. Feedback to the
vessel designers was acknowledged to be misleading, as those indicat-
ors refer to the sailing conditions encountered by the vessel; thus, they
cannot provide conclusions on the comparison of operational decisions
such as sailing mode selection. As a result, simulations comparing
energy performance under the same conditions are needed.

Which parameters influence the attained energy performance?

Literature provides examples of indicators aiming to describe the
attained energy performance of ship operations. Until recently, these
indicators expressed carbon intensity or in other words the carbon
cost of a certain transport work, but future trends additionally con-
sider the carbon footprint of fuel production. For a specific vessel
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that consumes a specified type of fuel, a combination of operational
and environmental decisions and uncertainties influences its energy
performance. Selection of speed, operational mode, loading of the
vessel, and selected route are important operational decisions driving
resulting carbon intensity. Hull and propeller fouling decrease energy
performance by a percentage that is difficult to measure, offering less
opportunities for corrective actions as well. Ultimately, environmental
conditions like wind and wave conditions, currents, and ambient air
and sea temperatures influence energy performance by alternating
ship resistance, hence propulsion power, needed electrical power and
cooling of different components.

5.1.2 Ship energy systems modelling

Should we use first-principle, statistical, or hybrid models with large opera-
tional datasets?

First-principle models have been the main way of modelling ship
energy systems in scientific literature. However, the recent increase in
the availability of operational data, computational resources, and free
libraries that can be used without fundamental knowledge of statistical
inference has given rise to the development of many statistical models
of ship energy systems. Those models though, demonstrate poor
extrapolation performance. The latest trend in modelling ship energy
systems involves hybrid models, which combine benefits of the two
modelling approaches, while maintaining an understanding of the
physical system and the effect of design and operational decisions
on different components efficiency. This dissertation demonstrates an
example of such an approach through the first principle modelling of
components, and the use of statistical models to compensate for the
uncertainty related to real scale propeller operation in the ship’s wake,
and uncertainty regarding the available healthy condition operation
of system components.

What is a suitable prediction model formulation in terms of input, output
and utilised parameters?

Models of ship energy systems usually follow two formulation ap-
proaches. The first one uses fuel consumption of different components
as an input and the output is the vessel’s speed based on the resistance
of the vessel, as in the case of designing system controllers. The second
one uses vessel speed as an input to predict the output which is fuel
consumption of main consumers. Energy management, component
sizing, topology selection applications use the second. The resistance
of the vessel influences the results of both formulations. Calm water
resistance, sometimes following the superposition of a sea margin
is a typical assumption. Sometimes, a resistance curve as a result of
specific conditions for wind, waves and hull fouling is used. In the
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context of this dissertation that focuses on the topology selection and
sizing of a hybrid propulsion system, vessel speed and thrust joint
probability distribution is selected, as it describes the aggregate effect
of operational and environmental conditions at sea over a certain time
period of sailing in certain geographical areas. In this way, simulation
is not done over the span of some hours, months, or even a year of
operations that would result in computationally expensive simula-
tions that are also relatively independent of the exact environmental
conditions. Of course, such a formulation stands under the assump-
tion of steady-state conditions that are not dependent on previous
computational steps.

What is the selected time-dependency of a model calibrated and validated
over large datasets and used in optimisation iterations? Are steady-state
models used in automotive sufficient in maritime applications?

According to the validation results of the digital twin approach presen-
ted in Chapter 3, the average accuracy of a first-principle steady-state
model in predicting carbon intensity over voyages of a couple hours
of continuous sailing is in the scale of 10-12%. Bearing in mind that
this corresponds to thousands of sailing points and not only a couple
of them, their prediction capability proves good. The use of statistical
models though in combination with first-principal models demon-
strated a prediction accuracy of the steady-state digital twin, better
than 5% of mean absolute percentage error.

What needs to be the modelling fidelity level of different components?

Ship energy systems consist of many components that show non-linear
behaviour. Detailed first-principle modelling of all those components
would result in increased computational cost. It is common practise
when modelling the whole energy system of the vessel to use semi-
empirical models to model gearboxes and shaft losses. The practise
of using just a constant efficiency even in part-load operation was
shown in Chapter 2 to be non-accurate. Propeller modelling using
open water diagrams demonstrates sufficient accuracy for energy effi-
ciency applications, though translation of open water scale-results into
real scale wake performance can be challenging, as seen in Chapter 3.
Differences can be observed in modelling main and auxiliary power
suppliers, for example diesel engines with the modelling complex-
ity increasing when prediction of transient behaviour is important.
The results of this dissertation demonstrate the sufficiency of regres-
sion models and fuel consumption maps in predicting both instant
fuel consumption, but especially the amount of fuel consumed over
continuous operating periods of more than four hours.

How can we achieve the best trade-off between prediction accuracy and
computational cost?
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The answer to this research question summarises the answer provided
to previous research questions on modelling approaches. A sufficient
trade-off is characterised by the selected modelling type, first prin-
ciple, statistical or hybrid, modelling formulation, time-dependency
and modelling fidelity. This dissertation concludes that a steady-state
hybrid model of main system components using propeller thrust and
vessel speed can accurately predict energy performance indicators un-
der the aggregate effect of operational and environmental uncertainty
at computational time feasible to handle, even by computationally
expensive algorithms like the genetic ones.

5.1.3 Design by optimisation of ship energy systems

What is a complete and holistic optimisation framework for topology selection
and sizing of different systems?

Such a framework in the context of this work needs to address rep-
resentative simulation scenarios, optimisation objectives examining
decisions from different angles, design variables and problem formu-
lation describing the examined problem, and a problem resolution
allowing the selection of converging and computationally efficient
solvers. In Chapter 4, such a framework is proposed for the hybrid
propulsion system of an ocean patrol vessel, the details of which are
provided as answers to the following research questions.

What are the needed objectives?

Many techno-economic analyses involve environmental, financial and
technical objectives. Results obtained in this dissertation suggest that
the optimal system design can vary with the prioritisation of different
objectives. The environmental aspect in this work is described using
carbon intensity evaluation over actual sailing profiles, the financial
using capital and operational expenditure, and the technical evaluating
the total weight of the system. Other emissions such as nitrogen or
sulphur oxides (NOx and SOx), contribute mainly to air contamination,
require much more detailed models and fall out of the scope of this
work. On the financial part, capital and operational expenditure are
used instead of life cycle cost, as the sensitivity of the result on fuel
and acquisition prices can implement bias. Finally, technical objectives
can also include minimisation of captured volume or arrangement of
the system, though this is not the case in naval vessels where weight
is prioritised, and this interferes with a different branch of research
topics.

What are the sufficient simulation scenarios to capture actual operational
and environmental conditions at sea?

The specific operational and environmental conditions encountered
by a vessel influence drastically optimal design decisions. The clearest
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indication of the importance of using actual profiles in the optimisation
of ship energy systems’ operation is the result of the different optimal
solutions obtained for the different profiles of the three vessels.

What are the constraints?

In this work, constraints were organised into bound constraints for the
decision variables, technical, redundancy, and efficiency constraints.
Bounds were selected, based on the experience of similar systems.
Technical constraints include the installation of sufficient electricity
supply of the system, avoid the installation of unnecessary electrical
supply. Redundancy calls for the hotel load being served by only one
diesel engine.

What is the mathematical optimisation problem type and solving method?

Ship energy system architecture, sizing and energy management op-
timisation problems usually involve a mix of integer and real value
decision variables. The nature of most used objective functions is
non-linear, so are most of the constraints of the problem. Apart from
being non-linear, those objectives are also non-convex, thus multi-starts
methodologies need to be applied in order to find globally optimal
solutions.

How can a computational efficient digital twin approach be used to extend
design space exploration?

An extended design space exploration over rich simulation scen-
arios and with methods calculating objective function values some
thousands of times would be almost impossible to handle in reas-
onable times, even with the increased computational capabilities of
super-computers like Delftblue supercomputer. The steady-state hy-
brid modelling approach introduced in Chapter 3 coupled with simu-
lation over actual sailing profiles through the use of the actual vessel
speed and thrust distributions, allows the simulation of a candidate
design of the system over more than a year of operations in the scale
of multiple seconds. This improvement of computational speed allows
the assessment of thousands of designs over hundreds of sailing points
corresponding to conditions representative of the conditions at sea.

5.2 limitations

This dissertation involves assumptions that were either unavoidable
due to the availability of data or information, or important in making
the problem solvable with respect to the available computational and
time resources.
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5.2.1 Dataset restrictions

The available dataset does not include logged parameters of propeller
thrust, main diesel engine torque and propeller torque. These para-
meters were modelled using logged parameters for the components
working points and available manufacturers’ data. These models as-
sume the components maintain performance under healthy condition.
Therefore, the resulting extended dataset cannot be used to evaluate
component energy efficiency degradation, but only energy efficiency
under healthy and clean conditions.

5.2.2 Modelling

This piece of work focused on the prediction accuracy of carbon
intensity over voyage intervals of at least five hours of continues
sailing. An overall accuracy of 5% mean absolute percentage error
justifies the capabilities of such a modelling approach. This doesn’t
mean that the point-wise accuracy of the developed model is the same.
At the core of steady state modelling, we accept that the model might
be inaccurate on transient or highly dynamic sailing points.

5.2.3 Data quality

The developed methodologies accept logged data as ground truth. It is
not the scope of this work to consider the accuracy of sensor readings
or the performance data provided by the component manufacturers
and shipbuilder.

5.3 recommendations

In addressing the research objectives, some topics have not been fully
explored, and several new questions have arisen. Of note are the
following recommendations for future research:

• A genetic algorithm is a computationally expensive evolution-
ary solving algorithm that in return provides quality results in
mixed-integer non-linear optimisation programming problems.
One research direction could exploit alternative problem for-
mulations that allow the use of more computationally efficient
gradient or search optimisation algorithms.

• Alternative optimisation problem formulations selecting from a
number of actual diesel generators, thus solve a multi-objective
combinatorial optimisation problem (MOCO).

• Installation of a thrust sensor would allow the examination of
hull fouling and propeller performance degradation.
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• Installation of a main engine torque sensor would allow the
examination of main engine energy efficiency degradation.

• The recommended modelling approach could be used in optim-
isation problems also considering hybrid power supply, with the
use of batteries and fuel cells, or with the design of different
operational modes.



A
T H E C A S E S T U D Y V E S S E L S

Figure A.1: A dry-docked Holland class vessel.

The examined vessels in this dissertation are three Holland class
Ocean Patrol Vessels (OPVs) of the Royal Netherlands Navy (RNLN),
as the one seen in Figure A.1 1. This class of vessels is equipped with
a hybrid propulsion system architecture. A schematic representation
of their energy system can be found in Figure A.2. Two controllable
pitch propellers are driven either mechanically by two main diesel
engines or electrically by two electrical motors. Propeller shaft speed is
reduced by two gearboxes which utilise one speed reduction stage in
the case of mechanical propulsion or two stages in the case of electrical
propulsion. Electrical power is provided by three diesel generators.
All component specifications can be found in Table A.1. In order to

1 https://www.damennaval.com/

111

https://www.damennaval.com/


112 the case study vessels

Figure A.2: The initial considered topology: (a) main diesel engine, (b) elec-
trical motor, (c) gearbox, (d) controllable-pitch propeller, (e) diesel
generator.

serve their multi-function mission, the examined OPVs use a number
of operational modes. Table A.2 provides a description of the available
operational modes.

The work conducted under this dissertation is based on operational
data logged by the vessels’ Integrated Platform Monitoring System
(IPMS). A list of those parameters can be found in Table A.3. These
parameters are all measured by the automation system, except for the
thrust parameter, which is estimated based on the dataset enrichment
methodology described in Chapter 2. Cleaning and pre-processing
was done as in [115], but vessel speed was selected as the prime
parameter and the top and bottom 0.1% percentile was used to discard
outliers instead of standard deviation. The datasets are characterised
by a sampling frequency of 3 seconds and cover a time window as
seen in Table A.4.

Component manufacturers and the shipbuilder of the case study
vessels provide information that is essential in building and validating
the models introduced in this dissertation. This information includes
resistance and propulsion tests of scale models in towing tank ex-
periments, results of computer fluid dynamics (CFD) simulations,
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Table A.1: Component specifications.

Diesel generators Value Unit

Nominal power 910 [ekW]
Nominal speed 1 800 [rpm]
Nominal fuel consumption (ISO) 235 [kg/h]

Main diesel engines

Nominal power 5 400 [kW]
Nominal speed 1 000 [rpm]
Nominal fuel consumption (ISO) 1 077 [kg/h]

Electrical motors

Nominal power 400 [kW]
Nominal speed 1 788 [rpm]

Gearboxes

Reduction ratio (MDE) 4.355 [-]
Reduction ratio (M) 17.880 [-]

CPP Propellers

Diameter 3.2 [m]
Nominal pitch to diameter 1.221 [-]
Zero-thrust pitch to diameter 0.144 [-]

Table A.2: Operational modes.

2 main diesel engines transit
manoeuvring

1 main diesel engine trailing at full pitch
shaft brake at 0-pitch
blocked shaft at full pitch

2 electrical motors

open water diagrams for the controllable-pitch propellers installed.
Figure A.3 provides an estimation of Taylor’s wake fraction w over
vessels speed, and Figure A.4 provides the corresponding thrust de-
duction factor t. Moreover, Figure A.5 provides resistance curves in
calm water and design conditions. Finally, Figures A.7 and A.8 provide
the thrust and torque coefficients of the open water diagrams.
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Table A.3: Logged IPMS parameters used.

Parameter Unit

Main diesel engine speed [rpm]
Main diesel engine fuel consumption [kg/h]
Diesel generators speed [rpm]
Diesel generators power [kW]
Diesel generators fuel consumption [kg/h]
Electrical motor speed [rpm]
Electrical motor power [kW]
Propeller shaft speed [rpm]
Propeller shaft torque [kNm]
Propeller pitch to dimaterer [-]
Vessel speed through water [knots]
Propulsion mode -
Sailing mode -
Ambient air temperature [◦C]
Relative wind speed [knots]
Time [sec]

Table A.4: Timespan and sailing days for the three examined vessels.

Vessel 1 Vessel 2 Vessel 3

Timespan 440 573 958

Sailing time 87 103 131

Figure A.3: Taylor’s wake fraction based on towing tank tests.
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Figure A.4: Thrust deduction factor.

Figure A.5: Resistance curves from towing tank tests.
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Figure A.6: Combinator curves: (MM) mechanical mode, (EM) electrical
mode.
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Figure A.7: Thrust coefficient open water diagram.
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Figure A.8: Torque coefficient open water diagram.
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