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A B S T R A C T

Exposing residential consumers to real-time pricing (RTP) can yield significant efficiency gains, but may also
pose challenges due to the inherent complexity. Using an extensive spectrum of temporal granularities for retail
electricity pricing, we analyze to what extent these capture the benefits of RTP while concurrently considering
the influence of three distribution tariff types in distorting the pricing signal. Via a mixed complementarity
model, we consider both operational and investment decisions at retail as well as wholesale levels, accounting
for their interdependencies. Our analysis reveals three key findings. Firstly, we find that decreasing temporal
granularity of retail electricity prices increases total system cost due to an increasingly inefficient generation
mix, however, three-hourly or six-hourly pricing can approximate RTP benefits. Secondly, decreasing temporal
granularity of retail electricity prices raises average offtake and lowers average injection prices for consumers
due to changes in wholesale market prices as well as consumption patterns of consumers. Thirdly, capacity-
based tariffs reduce system offtake peaks and associated price increases by incentivizing battery discharge
during peak consumption while volumetric tariffs, over-incentivizing solar PV investments, result in highest

offtake prices and injection peaks.
1. Introduction

With growing adoption of distributed energy resources (DER), such
as solar photovoltaics (PV) and battery energy storage systems (BESS),
distribution systems transition from passive to active networks en-
compassing consumers with diverse load and generation profiles. This
highlights the importance of sending price signals, including distribu-
tion tariffs and retail electricity prices,2 that reflect drivers of system
costs and are consistent with one another [2].

Historically, residential consumers have been exposed to constant
electricity prices. Lack of exposure to wholesale prices for electricity
precludes consumer operational and investment decisions from being
system optimal, introducing additional costs and economic inefficien-
cies [3,4]. Allowing retail electricity prices to be more cost-reflective by
means of temporal variation is generally viewed to have a number of
benefits, among which: reducing the dead-weight loss arising from dif-
ferences in wholesale and retail electricity prices [5,6] better aligning
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3001, Belgium.
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2 Throughout the text we will use the terms ‘distribution tariff’ to refer to network charges, and ‘retail electricity prices’ to refer to the electricity prices, seen

by residential consumers.
3 For a complete review on time-varying electricity pricing schemes we refer interested readers to [1].

the distributed decisions with the efficient operation and planning of
the power system [7], reducing the need for back-up generation capac-
ity [8] and yielding greater distributional equity [9]. Furthermore, the
transition to higher demand elasticity rates, suggests a future landscape
where economic inefficiencies due to ‘mispricing’ may become even
more pronounced, emphasizing the urgency for policies that ensure
pricing mechanisms accurately reflect the underlying costs of electricity
provision [6].

Several time-varying retail electricity pricing schemes of diverse
complexity exist. These differ in (1) temporal granularity, meaning the
frequency with which retail electricity prices change and (2) timeliness,
meaning the delay between when the retail electricity price is set vs. in
effect, or in other words, how dynamic the retail price is with regards
to real-time market conditions [10].3 Currently, in the European Union
(EU), time-of-use (TOU) pricing is the most common, being applied in
at least 17 member states [11]. In TOU pricing, prices vary in blocks
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Nomenclature

Parameters

𝛿 Self-discharge rate of storage.
𝑤𝐼𝑛𝑗 Maximum injection power, MW.
𝑤𝑜𝑓𝑓 Maximum offtake power, MW.
𝛱𝑑 Weight of representative day 𝑑.
𝐴𝐹 𝑔𝑒𝑛

𝑑,𝑡,𝑘 Availability factor of generator 𝑘 on day 𝑑, hour 𝑡.
𝐴𝐹 𝑝𝑣

𝑑,𝑡,𝑗 Availability factor of solar PV of consumer 𝑗 on day
𝑑, hour 𝑡.

𝐶𝑅 Charge/discharge rate of storage.
𝐷𝑑,𝑡,𝑗 Demand of consumer 𝑗 on day 𝑑, hour 𝑡, MWh.
𝐷𝑛𝑟𝑒𝑠

𝑑,𝑡 Non-residential demand on day 𝑑, hour 𝑡, MWh.
𝐼𝐶𝑔𝑒𝑛

𝑘 Annualized investment cost of generator 𝑘,
e/MW/year.

𝑇𝐶𝐴𝑃 Capacity distribution tariff, e/MW.
𝑇𝐹𝐼𝑋 Fixed distribution tariff, e/year.
𝑇𝑉 𝑂𝐿 Volumetric distribution tariff, e/MWh.
𝑉 𝐶𝑘 Variable cost of generator 𝑘, e/MWh.
𝜂𝑟𝑠𝑐ℎ Charging efficiency of residential storage.
𝜂𝑔𝑠𝑐ℎ Charging efficiency of grid-scale storage.
𝜂𝑟𝑠𝑑𝑐 Discharging efficiency of residential storage.
𝜂𝑔𝑠𝑑𝑐 Discharging efficiency of grid-scale storage.
𝜂𝑟𝑠𝑖 Efficiency of residential storage inverter.
𝜂𝑔𝑠𝑖 Efficiency of grid-scale storage inverter.
𝑃𝐼𝐶𝑟𝑠

𝑗 Perceived, annualized investment cost of storage for
consumer 𝑗, e/MWh/year.

𝑃𝐼𝐶𝑟𝑠𝑖
𝑗 Perceived, annualized investment cost of storage

inverter for consumer 𝑗, e/MW/year.
𝐼𝐶𝑔𝑠 Annualized investment cost of grid-scale storage,

e/MWh/year.
𝐼𝐶𝑔𝑠𝑖 Annualized investment cost of grid-scale storage

inverter, e/MW/year.
𝑃𝐼𝐶𝑝𝑣

𝑗 Perceived, annualized investment cost of solar PV
panel for consumer 𝑗, e/MW/year.

𝑃𝐼𝐶𝑝𝑣𝑖
𝑗 Perceived, annualized investment cost of solar PV

inverter for consumer 𝑗, e/MW/year.
𝑐𝑎𝑝𝑝𝑣 Maximum capacity of solar PV, MW.
𝑐𝑎𝑝𝑠 Maximum capacity of residential storage, MWh.

Sets

 Set of representative days.
 Set of representative consumers.
 Set of transmission level generators.
 Set of months.
 Set of hours.

Variables

𝜆𝑖𝑛𝑗𝑑,𝑡 Retail electricity injection price on day 𝑑, hour 𝑡,
e/MWh.

𝜆𝑜𝑓𝑓𝑑,𝑡 Retail electricity offtake price on day 𝑑, hour 𝑡,
e/MWh.

𝜆𝑑,𝑡 Wholesale electricity price of day 𝑑, hour 𝑡, e/MWh.
𝑐𝑎𝑝𝑔𝑒𝑛𝑘 Capacity of generator 𝑘, MW.
𝑔𝑔𝑒𝑛𝑑,𝑡,𝑘 Generation of generator 𝑘 on day 𝑑, hour 𝑡, MWh.

of time in a preset way (e.g. peak/off-peak). Additionally, prices may
be determined months in advance, thus may not be wholly reflective of
market conditions. At the other end of the spectrum is real-time-pricing
2
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𝑝𝑒𝑎𝑘𝑚,𝑗 Peak offtake of consumer 𝑗 in month 𝑚, MW.
𝑤𝑖𝑛𝑗

𝑑,𝑡,𝑗 Electricity injection of consumer 𝑗 on day 𝑑, hour 𝑡,
MWh.

𝑤𝑜𝑓𝑓
𝑑,𝑡,𝑗 Electricity offtake of consumer 𝑗 on day 𝑑, hour 𝑡,

MWh.
𝑐𝑎𝑝𝑟𝑠𝑗 Capacity of storage of consumer 𝑗, MWh.
𝑐𝑎𝑝𝑟𝑠𝑖𝑗 Capacity of storage inverter of consumer 𝑗, MW.
𝑐𝑎𝑝𝑔𝑠 Capacity of grid-scale storage, MWh.
𝑐𝑎𝑝𝑔𝑠𝑖 Capacity of grid-scale storage inverter, MW.
𝑐𝑎𝑝𝑝𝑣𝑗 Capacity of solar PV panel of consumer 𝑗, MW.
𝑐𝑎𝑝𝑝𝑣𝑖𝑗 Capacity of solar PV inverter of consumer 𝑗, MW.
𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗 Energy charged to consumer 𝑗 storage on day 𝑑,

hour 𝑡, MWh.
𝑐ℎ𝑔𝑠𝑑,𝑡 Energy charged to grid-scale storage on day 𝑑, hour

𝑡, MWh.
𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗 Energy discharged from consumer 𝑗 storage on day

𝑑, hour 𝑡, MWh.
𝑑𝑐𝑔𝑠𝑑,𝑡 Energy discharged from grid-scale storage on day 𝑑,

hour 𝑡, MWh.
𝑒𝑟𝑠𝑑,𝑡,𝑗 Energy content of consumer 𝑗 storage on day 𝑑, hour

𝑡, MWh.
𝑒𝑔𝑠𝑑,𝑡 Energy content of grid-scale storage on day 𝑑, hour

𝑡, MWh.
𝑔𝑝𝑣𝑑,𝑡,𝑗 Solar PV generation of consumer 𝑗 on day 𝑑, hour 𝑡,

MWh.
𝐼𝑛𝑗𝑑,𝑡 Total injection of all consumers on day 𝑑, hour 𝑡,

MWh.
𝑂𝑓𝑓𝑑,𝑡 Total offtake of all consumers on day 𝑑, hour 𝑡,

MWh.

(RTP), wherein prices are set day-ahead or in real-time, following the
same temporal granularity as wholesale electricity prices.

Different pricing mechanisms entail distinct implications for com-
peting factors of interest, including price volatility, operational relia-
bility, and economic efficiency [12]. While RTP, in terms of economic
efficiency, outperforms second-best pricing schemes, such as TOU, its
inherent complexity may, in practice, pose challenges. Increasing price
volatility can, for example, reduce the market’s robustness by making
it more vulnerable to fluctuations or unpredictability in electricity
demand and generation, compromise system stability [12] and pose
difficulty for consumers to adapt their consumption patterns, exposing
them to greater financial risk [13]. RTP can trigger further controversy
as it may be viewed as an attempt to commercialize what is tradition-
ally seen as a public good, immune to market forces [9]. In light of these
considerations, it is relevant to evaluate the extent to which alternative
pricing resolutions, less susceptible to the aforementioned practical
disadvantages, can approximate the market outcomes achieved by RTP.

On top of the electricity component, residential electricity bills
also comprise regulated components such as distribution costs, taxes
and levies which can distort electricity price signals. Among these
components, distribution tariffs, used to recover the costs of distri-
bution system operators (DSO), may dominate, forming a significant
distortion [14]. Distribution tariffs determine how network costs are
allocated to end-consumers. Commonly used distribution tariffs include
and combine volumetric energy charges (e/kWh), fixed charges per
connection point (e/year) and capacity-based charges (e/kW) [4].

In an era of increasing DER uptake, distribution tariffs need to
anticipate new sets of actions available to consumers. Historically used
policies of volumetric distribution tariffs combined with net metering4

4 In net-metering consumers are billed solely for their annual net electricity
onsumption from the grid when charged distribution tariffs.
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now present inefficiencies including too few price signals to incentivize
optimal network utilization and the occurrence of cross-subsidies [2].
Non-solar households, potentially unable to afford solar panels, end
up subsidizing the portion of network costs not covered by solar PV
owners, a ‘reverse Robin Hood’ effect [15]. As such, there is grow-
ing consensus among regulators and academics in favor of replacing
volumetric distribution tariffs for capacity-based tariffs [7,16,17].

In this paper, tailored to EU market design, we seek to answer the
following research question: how does the temporal granularity of retail
electricity prices interact with different distribution tariffs, considering
the interplay between consumers’ decisions and the rest of the electric
power system? We analyze eight different temporal resolutions for
retail electricity pricing, each in combination with a volumetric (VOL),
capacity-based (CAP) or fixed (FIX) distribution tariff, yielding 24 cases
in total.

As we will discuss in more detail in Section 2, we contribute to
the literature in several key aspects. Firstly, we evaluate temporal
granularities of retail electricity prices that were largely overlooked in
existing literature. While recognizing the potential of RTP to achieve
optimal economic efficiency, our research endeavors to explore alter-
natives aiming to comprehend the extent of benefits achievable with
pricing schemes of lower temporal granularity that may mitigate some
of the disadvantages inherent to RTP. We broaden the conversation
beyond commonly studied lower granularity pricing schemes, such
as TOU, providing a spectrum of viable options for enhancing the
efficiency of electricity markets. Secondly, for all temporal granularities
of retail electricity prices we consider the interaction with distribution
tariffs, giving insight as to how these may distort the electricity price
signal and the extent to which these distortions impede market effi-
ciency. Finally, unlike the prevailing operational focus found in current
literature, our modeling approach diverges by embracing a holistic
perspective, wherein we envision a fully integrated system. In this
paradigm, retail electricity prices, responsive to consumer decisions,
reflect market conditions, while operational and investment choices
at both retail and wholesale levels influence one another, underscor-
ing the recognition that the power system adapts to the actions of
consumers. This multifaceted approach enhances our understanding of
electricity pricing mechanisms, offering insights that can inform more
nuanced and effective market mechanisms.

Throughout this paper, a main performance metric is the total sys-
tem cost, presented in Appendix B. In our context, maximizing welfare
and minimizing total system cost are equivalent because demand for
electricity is inelastic. Efficiency losses are then computed as deviations
from the optimal system cost, typically found under RTP.

The remainder of this paper is structured as follows. The next
section situates our work within the related literature. In Section 3, the
reader can find the tariffs evaluated by the study and model description.
Section 4 outlines the data and assumptions used in the case study.
Results and discussion of the case study can be found in Section 5.
Section 6 concludes.

2. Literature

Our study connects two interrelated bodies, contributing to the
broader context of market design for distribution grids. It is part of
the discussion on the benefits of increased temporal granularity of
retail electricity prices, which we detail in Section 2.1, as well as the
debate, Section 2.2, on how distribution tariff design affects consumer
decisions. In combining these two bodies of literature we illustrate the
interplay between different distribution tariffs and time-varying retail
3

pricing as done in few other studies outlined in Section 2.3.
2.1. Time-varying retail electricity pricing

Several authors have explored common alternatives to RTP, seeking
to understand the magnitude of benefits attainable through pricing
strategies with lower temporal granularity. In studies including [18–
20], simulation models are commonly used to understand how much
of the welfare benefits of RTP can be captured by TOU pricing. Boren-
stein [18] studies the long-run effects of residential RTP and TOU
pricing, finding that the latter captures only 20% of the efficiency gains.
Studying the short-run welfare effects of TOU vs. RTP, Holland and
Mansur [19] and Spees and Lave [20], also conclude that TOU pricing is
a poor substitute for RTP. These studies model predominantly thermal
systems with little wind or solar generation. Schittekatte et al. [21]
using more recent US-based system operator data including greater
solar and wind generation, focus on a context with high volumes of
intraday shiftable loads such as electric vehicles and heat pumps. They
compute the correlations between wholesale prices and TOU prices,
confirming via simulations that TOU electricity prices can replicate up
to 70% of the load shifting potential provided under RTP. The common
caveat in the literature studying time-varying retail pricing is the use of
stylized models that assume prices, demand, and generation capacities.
The wholesale level is taken as fixed, disregarding developments based
on the retail level’s response to electricity prices.

2.2. Distribution tariffs

The academic literature on distribution tariffs has focused on tariff
design for seeking greater cost causality and avoiding the ‘reverse
Robin Hood’ effect occurring under commonly used volumetric charg-
ing. In [22], results confirm that volumetric distribution tariffs over-
incentivize the adoption of solar PV, however, depending on DER costs,
capacity-based charges may too severely distort investment decisions of
prosumers. Eid et al. [23] find that capacity-based charges incentivize
local storage and self-consumption. The authors add that fixed charges
are not recommended due to absence of cost reflectivity and storage in-
centives. Simshauser [24] warn that if capacity-based charges overstate
the value of peak load these may over-incentivize BESS investments.
Taking a closer look at the impacts on load, Passey et al. [25] find that
capacity tariffs, albeit reducing individual peaks, may not be effective
in reducing network peak. Using real-world data Ansarin et al. [26] also
find that a peak-coincident capacity charges do not provide efficient
signals for reducing grid peak but do mitigate the ‘reverse Robin Hood’
effect. By means of econometric analysis, Borenstein [27] argues that
there is no ideal policy but a combination of higher fixed charges and an
adder to time-varying volumetric charges would be the least bad option
in steering consumer decisions and recovering sunk network costs. With
the exception of [22] in which consumers are exposed the wholesale
price of electricity, the mentioned studies assume flat retail electricity
prices. None pause to reflect on how distribution tariffs in combination
with retail electricity price design choices may affect consumers. The
wholesale level is considered fixed in these studies.

2.3. Time-varying retail electricity pricing & distribution tariffs

Few studies combine distribution tariffs and time-varying retail
electricity pricing. Studies [14,28,29] investigate how different tariff
designs affect consumer decisions under RTP. Steen et al. [28] conclude
that, compared to a volumetric tariff, customers make greater savings
under capacity-based tariff and a reduction in peak demand occurs.
In [29], focus lies on how system-friendly the operation of consumer
PV-battery systems may be. Findings illustrate that when RTP is com-
bined with higher fixed charges, as opposed to volumetric charges,
so-called ‘market-alignment’ of PV-battery systems is improved as the
overall wholesale electricity price signal shape and incentives are not
offset. While these studies disregard network cost recovery, [14] does

not and finds, considering sunk network costs, that all tariff structures,
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bar the fixed tariff, incentivize prosumers to deviate from ‘energy-
optimal’ actions, i.e. ones minimizing total system energy costs, to
reduce their distribution costs.

The literature rarely explores varying temporal granularities for
electricity pricing in combination with distribution tariffs. In [30], the
authors evaluate the effects of constant, TOU, critical peak and RTP in
combination with distribution tariffs on energy bills and load profiles of
consumers within the context micro-grids. Results indicate that under
capacity-based distribution tariffs, time-varying electricity retail pricing
has little impact on energy bills as well as load and generation peaks.
In [31,32], consumer bill savings from solar PV are estimated under
flat, TOU and real-time pricing schemes combined with fully volumetric
distribution tariffs or ones including fixed charges. Findings illustrate
that greater temporal granularity of electricity prices increases bill
savings but moving from a fully volumetric distribution tariff to one
including a fixed charge, under net metering, erodes those savings.
Beyond the fact that these studies look at a narrow range of temporal
granularities for electricity pricing all also use operational models with
focus on retail level. No investment decisions are taken into account
and the use of exogenous wholesale prices means that the feed-backs
between prosumers’ decisions and market prices are disregarded.

2.4. Research gap & contribution

This review of the literature indicates that there exist a plethora
of studies separately considering the effects of time-varying retail elec-
tricity pricing and distribution tariffs, with few considering the whole-
system effects. The few that do, tend to focus on common pricing
schemes without addressing a more complete spectrum of temporal
granularities for electricity pricing. This gap is significant because by
focusing solely on known or common time-varying electricity pricing
schemes, we overlook the potential for implementing intermediate
temporal granularities. Alternatives that may mitigate some of the
practical disadvantages of RTP, such as system unpredictability and the
challenge of consumer adaptability to hourly price changes, while still
capturing a higher percentage of RTP’s economic benefits compared to
pricing schemes like TOU. Furthermore, none of the mentioned stud-
ies evaluate how time-varying retail electricity prices combined with
distribution tariffs shape investments in residential solar PV and BESS
assets and how these, in turn, impact wholesale prices and generation
capacity investments. We thus contribute to the literature by providing
such a study, which considers a wide range of temporal granularities
for retail electricity pricing, in combination with distribution tariffs,
accounting for the feedback in investments, operations and prices be-
tween wholesale and retail levels. Our aim is to provide a stylistic study
which unveils the general mechanisms that can occur in an electric
power system rather than predicting specific real-world outcomes.

3. Methods

The general model structure is introduced in Section 3.1, the utilized
temporal granularities for retail electricity pricing and distribution
tariffs are shown in Section 3.2 while Section 3.3 illustrates how retail
prices are calculated. The mathematical formulations of each agent’s
optimization problem is presented in Section 3.4, and an algorithmic
procedure for computing the solution is detailed in Section 3.5.

3.1. Model structure

We develop a model describing a non-cooperative Nash Game be-
tween different agents within wholesale as well as retail level. The
model is inspired by traditional electricity market equilibrium models
which simulate a long-run equilibrium in the wholesale electricity mar-
ket [33]. Each agent simultaneously optimizes individual investment
4
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and operational decisions for a whole year based on annualized invest-
ment cost values.5 The entire year is modeled, with hourly resolution,
by means of a set of representative days with associated weights. Agents
are coupled through market clearing constraints to ensure a balance
between electricity supply and demand. Overall, the model output can
be interpreted as a Nash equilibrium where no agent in the model can
improve its outcome by adapting its own strategy given the decisions
of other agents.

Fig. 1 provides a schematic overview of the model, in which we
make the following assumptions. All agents are rational price-takers in
a deterministic setting, implying perfect foresight. The power system
modeled in the game is an isolated system with no spatial granular-
ity and is assumed to be a greenfield model. Agents are limited to
technology-aggregated conventional generators, one renewable (wind)
generator,6 a grid-scale battery operator and a set of representative
residential consumers having inelastic demand but the ability to invest
in BESS as well as solar PV systems. Inelastic, non-residential load is
also included in the model as a parameter.

Residential consumers consider only energy, distribution, and in-
vestment costs, ignoring other expenses such as retail margins and
taxes. Retail electricity prices are perfectly predictable, with consumers
reacting optimally to price signals, potentially possible through au-
tomation. Consumers’ demand flexibility is approximated via the in-
clusion of storage as an investment option. Through storage, consumers
have the capability to adjust their consumption patterns making price-
based decisions related to the timing of energy use.7 Finally, all residen-
tial consumers are charged the same retail prices and are all subject to
the same type of network tariff.

3.2. Prices and tariffs under consideration

We examine eight options of temporal granularity for retail electric-
ity prices, as illustrated in Fig. 2, and combine each granularity with
one of three distribution tariff types.

We consider RTP (H1) as well as seven other options, that reflect the
average wholesale price over: 3 h (3H), 6 h (6H), 12 h (12H), one day
(24H), one month (1M), one quarter (3M) and one year (12M). In our
RTP option, namely H1, wholesale, and retail electricity prices, for both
offtake, and injection, are one and the same. Prices differ from hour to
hour and day to day. In the other options, retail prices for injection and
offtake are the average of wholesale prices over the designated hours
in the averaging window, weighted with total consumer injection and
offtake (see Fig. 2), as is common practice. Consumers are billed for
consumption and remunerated for injection according to offtake price
and injection price.

For network tariffs we consider, separately, the three most common
ones. The first option is the volumetric tariff (VOL), billing consumers
for each kWh of electricity they offtake. The second option is the capac-
ity tariff (CAP), billing consumers based on their individual monthly
peak offtake, inspired by the Flemish capacity-tariff [34]. The third
option is the fixed tariff (FIX), whereby every residential consumer pays
the same lump sum per year independent of their injection or offtake
pattern.

5 Agents thus implicitly assume that all forthcoming years within the
nvestment’s lifespan will resemble the year used for modeling.

6 The renewable generator will be operated following market signals.
s such, we ignore implications from distorting measures such as subsidy
echanisms or priority dispatch.
7 We opt not to model demand flexibility through demand shifting since

onsumers can invest in batteries for similar effects. While demand response
easures may reduce battery investments, the underlying consumption pat-

erns and subsequent conclusions drawn from our study remain unaffected by

his decision.
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o

Fig. 1. Schematic overview of the non-cooperative game. Residential consumers will get retail offtake/injection prices while other agents receive wholesale market prices. The
fftake/injection prices remain constant per averaging period.
Fig. 2. Illustration of the temporal granularities for retail electricity prices considered in the study, from hourly (H1) pricing to yearly (M12). To better illustrate the price
granularity in question, the 𝑥-axis either represents a day (H1–H12, top row) or one full year (H24 to M12, bottom row). Note that in H1 cases, wholesale, injection and offtake
prices overlap.
3.3. Retail price calculation

The retail price signal received by households can be seen as the
weighted average wholesale price. This pricing scheme is commonly
used in various regions, such as Flanders in Belgium, where the retail
offtake and injection electricity price for households are determined
based on the Real Load Profiles (RLPs) or Synthetic Production Pro-
files (SPPs) of all households in one DSO zone [35]. For one specific
averaging period 𝑏, the offtake and injection price can be calculated
by averaging the hourly wholesale market price 𝜆𝑡, weighted by the
total hourly offtake (𝑂𝑓𝑓𝑡) and injection (𝐼𝑛𝑗𝑡) from all residential
prosumers in this period. Injection prices are typically lower than
offtake prices. This is because wholesale prices during instances of
injection are lower compared to offtake instances. In cases where the
total injection or offtake during one averaging period is zero, a simple
average will be taken. Different granularity cases result in varying
lengths of the averaging period 𝑏, which in turn leads to different retail
prices. The offtake and injection price during a specific pricing period
5

a

(𝑏) can be calculated by Eqs. (1) and (2) respectively,8 in which 𝛱𝑑 is
the representative weight of day 𝑑.

𝜆𝑜𝑓𝑓𝑏 =
∑

𝑡∈𝑏 𝛱𝑑 ⋅ 𝜆𝑡 ⋅ 𝑂𝑓𝑓𝑡
∑

𝑡∈𝑏 𝛱𝑑 ⋅ 𝑂𝑓𝑓𝑡
(1)

𝜆𝑖𝑛𝑗𝑏 =
∑

𝑡∈𝑏 𝛱𝑑 ⋅ 𝜆𝑡 ⋅ 𝐼𝑛𝑗𝑡
∑

𝑡∈𝑏 𝛱𝑑 ⋅ 𝐼𝑛𝑗𝑡
(2)

The injection price is always set to be less than or equal to the
offtake price in the corresponding period to ensure that consumers
cannot exploit the price difference by purchasing energy at a lower
price and selling it back to the grid at a higher price. It is important
to note that all prices are endogenous to the mixed complementarity
problem, but treated as parameters in agents’ independent decision
problems, which we describe in the following section.

8 These conditions would correspond to the KKT-conditions of a supplier in
perfectly competitive retail market if explicitly modeled.
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3.4. Mathematical formulation

In this section, the optimization problems of all individual agents
are discussed in detail. While all agents see an annualized investment
cost (IC), heterogeneity in consumer decision-making processes leads
us to introduce the term perceived annualized investment cost (PIC).
This variation is attributed to diverse risk preferences, perceptions of
market conditions, future uncertainties, and other factors that influence
individual discount rates and, consequently, the perceived cost of DER
investments.

3.4.1. Residential consumers
The objective of each residential consumer is to minimize their

yearly electricity bill (3). This bill has energy, investment and dis-
tribution components. The energy component is governed by offtake
(𝜆𝑜𝑓𝑓𝑑,𝑡 ) and injection prices (𝜆𝑖𝑛𝑗𝑑,𝑡 ). A consumer decides how much to
fftake and inject according to variables 𝑤𝑜𝑓𝑓

𝑑,𝑡,𝑗 and 𝑤𝑖𝑛𝑗
𝑑,𝑡,𝑗 . In terms of

nvestment components, the consumer decides the capacity they wish
o invest in for solar PV (𝑐𝑎𝑝𝑝𝑣𝑗 ), BESS (𝑐𝑎𝑝𝑟𝑠𝑗 ) and respective inverters
𝑐𝑎𝑝𝑝𝑣𝑖𝑗 and 𝑐𝑎𝑝𝑟𝑠𝑖𝑗 ) according to their perceived investment costs for
ach technology: 𝑃𝐼𝐶𝑝𝑣

𝑗 , 𝑃𝐼𝐶𝑝𝑣𝑖
𝑗 , 𝑃𝐼𝐶𝑟𝑠

𝑗 and 𝑃𝐼𝐶𝑟𝑠𝑖
𝑗 . Within the distri-

ution component, 𝑇𝐹𝐼𝑋 , 𝑇𝑉 𝑂𝐿 and 𝑇𝐶𝐴𝑃 are parameters governing
he distribution tariff value.9 Further operational decision variables of
he consumer are, on an hourly basis: how much they generate from
olar PV (𝑔𝑝𝑣𝑑,𝑡,𝑗) and how much energy they charge/discharge to/from
heir battery (𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗 , 𝑑𝑐

𝑟𝑠
𝑑,𝑡,𝑗), which in turn, defines the energy content

f their battery (𝑒𝑟𝑠𝑑,𝑡,𝑗). A consumer solves the following optimization
problem:

min
𝑥𝑗∈

∶
∑

𝑑∈,𝑡∈
𝛱𝑑 ⋅ (𝜆𝑜𝑓𝑓𝑑,𝑡 ⋅𝑤𝑜𝑓𝑓

𝑑,𝑡,𝑗 − 𝜆𝑖𝑛𝑗𝑑,𝑡 ⋅𝑤
𝑖𝑛𝑗
𝑑,𝑡,𝑗 ) + 𝑃𝐼𝐶𝑝𝑣

𝑗 ⋅ 𝑐𝑎𝑝𝑝𝑣𝑗

+ 𝑃𝐼𝐶𝑝𝑣𝑖
𝑗 ⋅ 𝑐𝑎𝑝𝑝𝑣𝑖𝑗 + 𝑃𝐼𝐶𝑟𝑠

𝑗 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑗 + 𝑃𝐼𝐶𝑟𝑠𝑖
𝑗 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑖𝑗

+ (𝑇𝐹𝐼𝑋 + 𝑇𝑉 𝑂𝐿 ⋅
∑

𝑑∈,𝑡∈
𝑤𝑜𝑓𝑓

𝑑,𝑡,𝑗 ⋅𝛱𝑑 + 𝑇𝐶𝐴𝑃 ⋅
∑

𝑚∈
𝑝𝑒𝑎𝑘𝑚,𝑗 )

𝑥𝑗 ∈ {𝑤𝑜𝑓𝑓
𝑑,𝑡,𝑗 , 𝑤

𝑖𝑛𝑗
𝑑,𝑡,𝑗 , 𝑐𝑎𝑝

𝑝𝑣
𝑗 , 𝑐𝑎𝑝𝑝𝑣𝑖𝑗 , 𝑐𝑎𝑝𝑟𝑠𝑗 , 𝑐𝑎𝑝

𝑟𝑠𝑖
𝑗 , 𝑔𝑝𝑣𝑑,𝑡,𝑗 , 𝑐ℎ

𝑟𝑠
𝑑,𝑡,𝑗 ,

𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗 , 𝑝𝑒𝑎𝑘𝑚,𝑗 , 𝑒
𝑟𝑠
𝑑,𝑡,𝑗} (3)

𝑠.𝑡. 𝑤𝑜𝑓𝑓
𝑑,𝑡,𝑗 −𝑤𝑖𝑛𝑗

𝑑,𝑡,𝑗 = 𝐷𝑑,𝑡,𝑗 − 𝑔𝑝𝑣𝑑,𝑡,𝑗 + 𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗 − 𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (4)

0 ≤ 𝑔𝑝𝑣𝑑,𝑡,𝑗 ≤ 𝐴𝐹 𝑝𝑣
𝑑,𝑡,𝑗 ⋅ 𝑐𝑎𝑝

𝑝𝑣
𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (5)

𝑔𝑝𝑣𝑑,𝑡,𝑗 ≤ 𝑐𝑎𝑝𝑝𝑣𝑖𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (6)

𝑒𝑟𝑠𝑑,𝑡,𝑗 = 𝛿 ⋅ 𝑒𝑟𝑠𝑑,𝑡−1,𝑗 + 𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗 ⋅ 𝜂
𝑟𝑠
𝑐ℎ ⋅ 𝜂

𝑟𝑠𝑖 − 𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗∕(𝜂
𝑟𝑠
𝑑𝑐 ⋅ 𝜂

𝑟𝑠𝑖),

∀𝑑 ∈ , 𝑡 ∈  ∕{1} (7)

𝑒𝑟𝑠𝑑,1,𝑗 = 𝛿 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑗 ∕2 + 𝑐ℎ𝑟𝑠𝑑,1,𝑗 ⋅ 𝜂
𝑟𝑠
𝑐ℎ ⋅ 𝜂

𝑟𝑠𝑖 − 𝑑𝑐𝑟𝑠𝑑,1,𝑗∕(𝜂
𝑟𝑠
𝑑𝑐 ⋅ 𝜂

𝑟𝑠𝑖), ∀𝑑 ∈  (8)

𝑒𝑟𝑠𝑑,𝑇 ,𝑗 = 𝑐𝑎𝑝𝑟𝑠𝑗 ∕2, ∀𝑑 ∈  (9)

0 ≤ 𝑒𝑟𝑠𝑑,𝑡,𝑗 ≤ 𝑐𝑎𝑝𝑟𝑠𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (10)

0 ≤ 𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗 ≤ 𝐶𝑅 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑖𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (11)

0 ≤ 𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗 ≤ 𝐶𝑅 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑖𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (12)

0 ≤ 𝑤𝑖𝑛𝑗
𝑑,𝑡,𝑗 ≤ 𝑤𝑖𝑛𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (13)

0 ≤ 𝑤𝑜𝑓𝑓
𝑑,𝑡,𝑗 ≤ 𝑤𝑜𝑓𝑓 , ∀𝑑 ∈ , 𝑡 ∈  (14)

0 ≤ 𝑐𝑎𝑝𝑝𝑣𝑗 ≤ 𝑐𝑎𝑝𝑝𝑣 (15)

≤ 𝑐𝑎𝑝𝑟𝑠𝑗 ≤ 𝑐𝑎𝑝𝑠 (16)

𝑒𝑎𝑘
⌈𝑑∕3⌉,𝑗 ≥ 𝑤𝑜𝑓𝑓

𝑑,𝑡,𝑗 , ∀𝑑 ∈ , 𝑡 ∈  (17)

The behind-the-meter energy balance of each consumer is deter-
ined by Constraint (4), which links their hourly net offtake to their

9 When studying a specific tariff design, two of these values are set to zero.
6

demand (𝐷𝑑,𝑡,𝑗), the energy charged (𝑐ℎ𝑟𝑠𝑑,𝑡,𝑗) or discharged (𝑑𝑐𝑟𝑠𝑑,𝑡,𝑗) from
their storage system, and the energy produced by their PV system
(𝑔𝑃𝑉𝑑,𝑡,𝑗). Constraint (5) limits PV generation to the installed capacity
adjusted for solar power availability factor (𝐴𝐹 𝑝𝑣

𝑑,𝑡,𝑗). Constraint (6)
limits PV production to the capacity of the PV inverter.

Constraints (7)–(12) limit the operation of the battery system. Con-
straints (7) tracks state-of-charge based on charging and discharging
decisions, taking into account self-discharge rate 𝛿 and efficiencies 𝜂𝑟𝑠𝑐ℎ,
𝜂𝑟𝑠𝑑𝑐 and 𝜂𝑟𝑠𝑖. Cyclic boundary conditions are imposed on the batteries
n Constraints (8) and (9). Constraint (10) imposes a limit on the
tate of charge, which cannot exceed the battery capacity. Constraints
11)–(12) limit the charging and discharging decisions, by the installed
apacity multiplied by the charge rate (𝐶𝑅).

Finally, Constraints (13)–(14) emulate connection capacity bounds,
mposing physical restrictions on injection and offtake. Constraints
15)–(16) limit consumers’ investment in PV and battery respectively.
onstraint (17) determines consumers’ monthly peak offtakes which are
sed to calculate distribution costs in capacity tariff cases.

.4.2. Conventional & renewable generators
The objective of each grid-scale generator (18) is to maximize

nnual profits, equivalent to operational revenue minus capital expen-
iture. Generator 𝑘 decides how much capacity to invest in (𝑐𝑎𝑝𝑔𝑒𝑛𝑘 )
ccording to annualized investment cost (𝐼𝐶𝑔𝑒𝑛

𝑘 ). Generators also de-
ide, on an hourly basis, how much to generate (𝑔𝑔𝑒𝑛𝑑,𝑡,𝑘). We assume
hat renewable generators have a variable operating cost (𝑉 𝐶𝑘) of
ero. A generators’ decision problem is characterized as the following
ptimization problem:

max
𝑘∈

∶
∑

𝑑∈,𝑡∈
𝛱𝑑 ⋅ (𝜆𝑑,𝑡 − 𝑉 𝐶𝑘) ⋅ 𝑔

𝑔𝑒𝑛
𝑑,𝑡,𝑘 − 𝐼𝐶𝑔𝑒𝑛

𝑘 ⋅ 𝑐𝑎𝑝𝑔𝑒𝑛𝑘

𝑘 ∈ {𝑔𝑔𝑒𝑛𝑑,𝑡,𝑘, 𝑐𝑎𝑝
𝑔𝑒𝑛
𝑘 } (18)

.𝑡. 0 ≤ 𝑔𝑔𝑒𝑛𝑑,𝑡,𝑘 ≤ 𝐴𝐹 𝑔𝑒𝑛
𝑑,𝑡,𝑘 ⋅ 𝑐𝑎𝑝

𝑔𝑒𝑛
𝑘 , ∀𝑑 ∈ , 𝑡 ∈  (19)

Constraint (19) restricts the generator’s hourly production to its
nstalled capacity multiplied by the availability factor (𝐴𝐹 𝑔𝑒𝑛

𝑑,𝑡,𝑘). Conven-
ional power plants are assumed to be constantly available at nominal
apacity (i.e. have an availability factor always equal to one).

.4.3. Grid-scale battery operator
The objective of the grid-scale battery operator is to maximize

rofits (20), equivalent to revenues from discharging minus cost of
harging and capital expenditure. The grid-scale battery operator de-
ides how much battery and inverter (𝑐𝑎𝑝𝑔𝑠and 𝑐𝑎𝑝𝑔𝑠𝑖) capacity to
nstall according to the annualized investment costs 𝐼𝐶𝑔𝑠and 𝐼𝐶𝑔𝑠𝑖.
ecision variables also include the energy stored in the battery (𝑒𝑔𝑠𝑑,𝑡), as
ell as the amount the operator decides to charge (𝑐ℎ𝑔𝑠𝑑,𝑡) and discharge
𝑑𝑐𝑔𝑠𝑑,𝑡) on an hourly basis. Constraints governing the operation of the
rid-scale battery are the same as those of residential BESS. However,
e highlight that the grid-scale battery operates within the whole-

ale market and is subject to wholesale prices. The grid-scale battery
perator solves the following optimization problem:

ax
𝑥𝑔𝑠

∶
∑

𝑑∈,𝑡∈
𝛱𝑑 ⋅ 𝜆𝑑,𝑡 ⋅ (𝑑𝑐

𝑔𝑠
𝑑,𝑡 − 𝑐ℎ𝑔𝑠𝑑,𝑡) − 𝐼𝐶𝑔𝑠 ⋅ 𝑐𝑎𝑝𝑔𝑠 − 𝐼𝐶𝑔𝑠𝑖 ⋅ 𝑐𝑎𝑝𝑔𝑠𝑖

𝑔𝑠 ∈ {𝑑𝑐𝑔𝑠𝑑,𝑡, 𝑐ℎ
𝑔𝑠
𝑑,𝑡, 𝑒

𝑔𝑠
𝑑,𝑡, 𝑐𝑎𝑝

𝑔𝑠, 𝑐𝑎𝑝𝑔𝑠𝑖} (20)

.𝑡. 𝑒𝑔𝑠𝑑,𝑡 = 𝛿 ⋅ 𝑒𝑔𝑠𝑑,𝑡−1 + 𝑐ℎ𝑔𝑠𝑑,𝑡 ⋅ (𝜂
𝑔𝑠
𝑐ℎ ⋅ 𝜂

𝑔𝑠𝑖) − 𝑑𝑐𝑔𝑠𝑑,𝑡∕(𝜂
𝑔𝑠
𝑑𝑐 ⋅ 𝜂

𝑔𝑠𝑖),

𝑑 ∈ , 𝑡 ∈  ∕{1} (21)
𝑔𝑠
𝑑,1 = 𝛿 ⋅ 𝑐𝑎𝑝𝑔𝑠∕2 + 𝑐ℎ𝑔𝑠𝑑,1 ⋅ (𝜂

𝑔𝑠
𝑐ℎ ⋅ 𝜂

𝑔𝑠𝑖) − 𝑑𝑐𝑔𝑠𝑑,1∕(𝜂
𝑔𝑠
𝑑𝑐 ⋅ 𝜂

𝑔𝑠𝑖), ∀𝑑 ∈  (22)
𝑔𝑠
𝑑,𝑇 = 𝑐𝑎𝑝𝑔𝑠∕2, ∀𝑑 ∈  (23)

≤ 𝑒𝑔𝑠𝑑,𝑡 ≤ 𝑐𝑎𝑝𝑔𝑠, ∀𝑑 ∈ 𝐷, 𝑡 ∈  (24)

≤ 𝑐ℎ𝑔𝑠𝑑,𝑡 ≤ 𝐶𝑅 ⋅ 𝑐𝑎𝑝𝑔𝑠𝑖, ∀𝑑 ∈ , 𝑡 ∈  (25)

≤ 𝑑𝑐𝑔𝑠 ≤ 𝐶𝑅 ⋅ 𝑐𝑎𝑝𝑔𝑠𝑖, ∀𝑑 ∈ , 𝑡 ∈  (26)
𝑑,𝑡
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3.4.4. Market operator
The optimization problems of all agents are coupled through the

market clearing constraint, Eq. (27), responsibility of the market oper-
ator, which ensures an equilibrium between electricity supply and the
sum of residential and non-residential net offtake (𝐷𝑛𝑟𝑒𝑠

𝑑,𝑡 ) in the whole
energy system at each time step. The market operator thus sets the
wholesale electricity price (𝜆𝑑,𝑡) to match demand with supply:
∑

𝑘∈𝐾
𝑔𝑔𝑒𝑛𝑑,𝑡,𝑘 + 𝑔𝑤𝑑,𝑡 + (𝑑𝑐𝑔𝑠𝑑,𝑡 − 𝑐ℎ𝑔𝑠𝑑,𝑡) = 𝐷𝑛𝑟𝑒𝑠

𝑑,𝑡 −
∑

𝑗∈𝐽
(𝑤𝑜𝑓𝑓

𝑑,𝑡,𝑗 −𝑤𝑖𝑛𝑗
𝑑,𝑡,𝑗 ) (27)

3.5. Solution algorithm

The Nash equilibrium of the non-cooperative game is solved by
the Alternating Direction Method of Multipliers (ADMM) algorithm,
inspired by the implementation of [33,36]. ADMM is a dual decomposi-
tion method that was originally developed to solve convex optimization
problems by separating them into smaller optimization problems [37].
A brief introduction of how ADMM algorithm works in our model
can be found in Appendix A. The model is implemented in Julia [38]
using JuMP [39] and solved with Gurobi [40]. All the data utilized
in the algorithm is introduced in Section 4. For additional information
regarding the code and data used for the case study, we refer interested
readers to GitLab repository [41].

4. Case study: data and assumptions

In this section, we introduce the data and assumptions inspired by
a potential Belgian system in 2030. In total, we consider ten represen-
tative residential consumer types, each having a unique load profile,
solar PV load factor and perceived, annualized investment costs.

4.1. DER parameters

All residential consumers are able to invest in solar PV and BESS,
with investment limits (𝑐𝑎𝑝𝑝𝑣 and 𝑐𝑎𝑝𝑠) set to 10 kW and 14 kWh.

hese are in line with the maximal size of roof-mounted PV systems
or single-family homes in Belgium [42] and a Tesla PowerWall [43]
espectively. Solar PV and BESS installations each require an associ-
ted inverter. All techno-economic parameters of DER installations are
hown in Table 1. The investment costs for solar PV and respective
nverter are derived from 2019 solar PV system costs, found in [44]
nd extrapolated to 2030 using learning rates from [45]. To obtain
odel inputs 𝑃𝐼𝐶𝑝𝑣

𝑗 , 𝑃𝐼𝐶𝑝𝑣𝑖
𝑗 , 𝑃𝐼𝐶𝑟𝑠

𝑗 and 𝑃𝐼𝐶𝑟𝑠𝑖
𝑗 , investment costs are

annualized according to the technology’s lifetime and discount rate.
The discount rate is randomly assigned to each consumer within a
range of 3%–12% to simulate varying degrees of risk aversion. Physical
limits on injection and off take are as per Belgian residential connection
capacity agreements [46].

4.2. Grid-scale technology parameters

We consider: three types of conventional generators, generalized
as base, mid and peak-load technology, a wind farm and a grid-scale
battery. The investment cost and variable cost of each technology is
listed in Table 2 and are taken from [36]. Additionally, we introduce a
relatively low price cap of 500 €/MWh to mimic flexibility that may not
e captured in an isolated electricity market, such as industrial demand
esponse and interconnections.

For grid-scale batteries, we utilize the same techno-economic pa-
ameters as for residential batteries. The investment cost of grid-scale
atteries and their inverters is annualized using a discount rate of
%. However, we account for economies of scale by assigning a lower
nverter investment cost of 46 €/kW and a higher efficiency of 98%
ompared to residential BESS inverters [47].
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Table 1
Techno-economic parameters for residential solar PV and BESS. The data source is
shown as either a reference or own model assumption (MA). Listed investment costs
are not annualized.

Parameter Symbol Unit Value Source

Solar PV

Investment cost €/kW 540 [44,45]
Lifetime years 25 [44]

PV Inverter

Investment cost €/kW 115 [44,45]
Lifetime years 15 [44]

BESS

Investment cost €/kWh 153 [47]
Lifetime years 18 [47]
Charge rate 𝐶𝑅 1 MA
Charging efficiency 𝜂𝑟𝑠𝑐ℎ % 97 [47]
Discharging efficiency 𝜂𝑟𝑠𝑑𝑐 % 97 [47]
Self-discharge 𝛿 %/hour 99.99 MA

BESS Inverter

Investment cost €/kW 56 [47]
Lifetime years 20 [47]
Efficiency 𝜂𝑟𝑠𝑖 % 95 [47]

Common

Discount rate % 3–12 MA

Table 2
Annualized investment cost (IC) and variable cost (VC) of centralized generation
technologies.

Technology IC [€/MWy] VC [€/MWh]

Base 138 000 36
Mid 82 000 53
Peak 59 000 76
Wind 76 500 0
Grid-scale BESS 13 114 NA
Grid-scale BESS inverter 3723 NA

4.3. Time series

Hourly availability factors for residential solar PV are taken from
[48], in which current as well as potential solar electricity generation is
mapped for Belgium. Taking into account the variations in geographic
location, we assign unique solar availability factors of 10 provinces
in Belgium to the 10 categories of residential consumers to reflect
the heterogeneity of solar PV generation potential. To delineate the
production potential of wind we use the hourly, wind availability factor
also found in [48].

Each consumer has an individual, hourly, electricity load 𝐷𝑑,𝑡,𝑗 .
We generate 300 load profiles using the open source tool StROBe
(Stochastic Residential Occupancy Behavior) [49]. The StROBe tool
models residential occupant behavior based on Belgian statistics for a
typical weather year, with each profile comprising electricity demand
for lighting, large and small appliances as well as electronics. From
this pool of profiles, we sample a set of ten representative consumers
whose average annual household demand matches the Belgian average
(3500 kWh) [50]. We then scale these ten types up to 4.8 million,
approximating the total number of Belgian households.

In our model, we also incorporate non-residential load, 𝐷𝑛𝑟𝑒𝑠
𝑑,𝑡 , which

is obtained by subtracting the total scaled residential demand of ten
representative consumer types from the 2017 Elia Total Load data [51].

4.4. Representative days

We model an entire year with an hourly temporal resolution by rep-
resentative days in order to maintain computational tractability. Three

days are used to represent each month. Thus, a total of 36 weighted
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representative time series of 24 h are used in this study. The represen-
tative days are found according to the optimization problem outlined
in [52]. We leverage the Julia package RepresentativePeriodsFinder.jl to
select representative periods from time series data [53].

4.5. Tariff calibration

We consider three distribution tariff options, namely a volumetric
distribution tariff (VOL), a capacity distribution tariff (CAP), and a fixed
distribution tariff (FIX), as introduced in Section 3.2. In order to obtain
meaningful results when comparing these three options, calibrations
are required. Firstly, we select the volumetric distribution tariff as the
baseline case, and fix its value to 60.7 €/MWh, i.e. the distribution cost
(in the unit of €/MWh) in Flanders in 2022 [54]. This value is then kept
constant across all temporal granularities under the VOL tariff. Next, we
calculate the total distribution cost (sum of volumetric tariffs paid by
all households) in the real-time pricing (H1) case. This cost serves as a
benchmark to calibrate the values of both the capacity tariff and fixed
tariff in the RTP case, ensuring that the same total distribution cost
can be recovered for all three tariff options in the RTP case. Once the
tariff values are calibrated, they are fixed and applied to all temporal
granularities of retail electricity pricing. It is important to note that the
total income of distribution system operators (DSOs) can differ across
the varying temporal granularities of retail electricity prices. However,
among all the cases examined in our paper, the total DSO income differs
by less than 3% in all but one cases. The M12 VOL case stands out with
an approximately 9% difference in total DSO income compared to the
other cases.

5. Results and discussion

In this section, we describe the results of our case study. Generation
capacity investments are covered first in Section 5.1, average retail
prices follow in Section 5.2. In Section 5.3 we delve into the market
value of residential BESS. In Section 5.4 we look at offtake and injection
peaks and in Section 5.5, we provide an explanation for the trends in to-
tal system cost. We provide a detailed breakdown of cost components of
individual residential consumer bills in Appendix C. In the case study,
we utilize stylized electricity prices limited to three levels, primarily
due to the assumption of three stylized aggregated conventional power
plants. We deem this as the most constraining assumption concerning
the parameter values as stylized wholesale prices will potentially also
yield stylized retail prices, which may affect the conclusions. To assess
the robustness of these results, we additionally explore the integration
of more centralized transmission-level technologies. The set-up and
results of the analysis are not presented in the main body, but in
Appendix E. Generally, our conclusions are robust against the inclusion
of multiple generating technologies on the wholesale level.

5.1. Generation capacity investments

We begin our analysis by examining how the temporal granularity
of retail electricity prices, in combination with the FIX, CAP or VOL
tariff shapes investments in generation capacity. Fig. 3 illustrates the
invested capacity of each generation technology across decreasing tem-
poral granularity of retail electricity prices, for the three investigated
tariffs.

Total installed capacity is the lowest for the FIX tariff, which is
caused by two mechanisms. Firstly, on the residential level, the FIX
tariff does not incentivize DER investments while VOL and CAP tariffs
do. The VOL tariff incentivizes greater investments in solar PV, while
the CAP tariff promotes greater investments in residential BESS. Under
the VOL tariff, consumers can mitigate volume-based network costs by
installing solar PV for self-consumption. On the other hand, the CAP
tariff encourages investments in residential BESS, which help reduce
8

individual peak consumption and consequently alleviate capacity-based
network costs. In contrast, the FIX tariff imposes a yearly lump cost,
unavoidable by means of DER investments. Secondly, on the wholesale
level, energy systems under CAP and VOL tariffs, albeit larger presence
of DER, need a similar amount of conventional generation capacity
as under the FIX tariff. This is triggered by instances of high demand
during which solar and wind availability factors are low. These periods
are too vast for storage to make a significant contribution to demand.

Notably, variation in installed generation capacities is greater be-
tween the different distribution tariffs than across decreasing tem-
poral granularity of retail prices. No systematic change in total or
technology-specific installed generation capacity under a given tariff
occurs.

We point, however, to changes in individual consumers’ solar PV
investments. This can be seen in Fig. 4, which shows individual in-
vestments in solar PV capacity.10 These changes are the result of how
offtake and injection prices evolve with decreasing temporal granular-
ity of retail electricity prices. We will elaborate on retail price patterns
in Section 5.2, for now, it suffices to understand that injection prices
generally decrease and offtake prices generally increase for longer
averaging resolutions (Fig. 5).

First note that, perhaps not surprisingly, consumers with lower
discount rates tend to invest heavily in PV generation. Crucially, this
phenomenon is more pronounced for highly granular pricing resolu-
tions because of the comparatively higher injection prices. Indeed, large
installations rely heavily on injection prices to remain competitive,
given that their production is often too substantial for immediate
consumption. Consequently, as injection prices decrease with lower
pricing resolutions, these large installations correspondingly become
less profitable and decrease in size up until the increased reliance on
self-consumption offsets this loss. Put differently, a relatively larger
part of their generation is being valued at offtake prices, which tend to
be higher in lower pricing resolutions. Likewise, higher offtake prices
provide an incentive for smaller installations to appear or expand in
size, as long as a sufficiently large part of their production is being
valued at offtake prices, i.e. through self-consumption. Thus, lower
pricing resolutions, characterized by lower injection but higher offtake
prices, incentivize PV installations to be comparatively smaller and
more widely distributed.

5.2. Retail electricity prices

In Fig. 5, we illustrate yearly average offtake and injection prices
under each tariff across decreasing temporal granularity of retail elec-
tricity prices. The values presented are weighted with respect to offtake
and injection, to better represent the average price that consumers face:

𝜆𝑜𝑓𝑓 =

∑

𝑑∈,𝑡∈ 𝛱𝑑 ⋅ 𝜆𝑜𝑓𝑓𝑑,𝑡 ⋅ 𝑂𝑓𝑓𝑑,𝑡
∑

𝑑∈,𝑡∈ 𝛱𝑑 ⋅ 𝑂𝑓𝑓𝑑,𝑡
(28)

𝜆𝑖𝑛𝑗 =

∑

𝑑∈,𝑡∈ 𝛱𝑑 ⋅ 𝜆𝑖𝑛𝑗𝑑,𝑡 ⋅ 𝐼𝑛𝑗𝑑,𝑡
∑

𝑑∈,𝑡∈ 𝛱𝑑 ⋅ 𝐼𝑛𝑗𝑑,𝑡
(29)

As the temporal granularity of retail electricity prices decreases, av-
erage offtake prices generally increase while average injection prices
decrease. To illustrate why, we first note that Eqs. (28)–(29) can
be rewritten in function of the wholesale price using Eqs. (1)–(2).11

Changes to average offtake or injection prices can hence occur because
of changes to (i) wholesale market prices and to (ii) offtake or injection
patterns, with the latter effect being more dominant. In particular,

10 We exhibit individual investments in residential BESS capacity in
Appendix D.

11 E.g. the average offtake price reads:
∑

𝑑∈,𝑡∈ 𝛱𝑑 ⋅𝜆𝑑,𝑡 ⋅𝑂𝑓𝑓𝑑,𝑡
∑ .
𝑑∈,𝑡∈ 𝛱𝑑 ⋅𝑂𝑓𝑓𝑑,𝑡
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Fig. 3. Generation capacity investments for all considered technologies, under each tariff, across decreasing temporal granularity of retail electricity prices. The depicted solar PV
and BESS capacities are the scaled, total capacities installed by all consumers. FIX: fixed tariff, VOL: volumetric tariff, CAP: capacity tariff, H: hourly temporal granularity, M:
monthly temporal granularity.
Fig. 4. Installed, individual, consumer solar PV capacities, under each tariff, across decreasing temporal granularity of retail electricity prices. Color scale indicates the perceived
annualized investment cost (PIC) and each small block represents investment of each representative consumer. FIX: fixed tariff, VOL: volumetric tariff, CAP: capacity tariff, H:
hourly temporal granularity, M: monthly temporal granularity.
there are two12 main factors altering offtake and injection patterns over
our cases: the total amount of solar PV capacity and the operation of
residential batteries. In what follows, we cover these in turn.

As discussed in Section 5.1, total installed PV capacity is predom-
inantly driven by the type of distribution tariff. By comparing Figs. 4
and 5, one can note that additional PV capacity indeed depresses the
average injection price and increases the average offtake price. PV
generation tends to be concentrated during lower wholesale electric-
ity prices and additional PV capacity hence proportionally increases
injection during these periods. Low-price periods are then more heavily
weighted in the calculation of the average injection price, which in
turn decreases. Likewise, additional PV capacity proportionally de-
creases offtake during low wholesale price periods and increases the
average offtake price. Intuitively and thus also when considering the
price-averaging effect, additional PV capacity decreases its value for
residential consumers.

Fig. 5 additionally illustrates that the average injection (offtake)
price decreases (increases) for lower temporal granularities. A first fac-
tor to consider here is the operation of battery installations. If operated

12 A third but smaller factor concerns the distribution of PV installations
as covered in Section 5.1. Generally speaking, longer pricing resolutions tend
to promote more distributed PV installations, which in turn tend to increase
the average offtake price whilst having an ambiguous effect on the average
injection price.
9

Fig. 5. Average offtake & injection prices under each tariff, across decreasing temporal
granularity of retail electricity prices. FIX: fixed tariff, VOL: volumetric tariff, CAP:
capacity tariff, H: hourly temporal granularity, M: monthly temporal granularity.

based on wholesale market signals, batteries tend to charge at low
prices and discharge at high prices. They should hence increase offtake
during low-price periods and decrease offtake during high-price periods
(and vice versa for injection). Such operations correspondingly increase
injection prices and decrease offtake prices, i.e. batteries smooth out
price differentials.
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In practice, prosumers adapt their battery operations based on the
pricing resolution and the distribution tariff. Lower pricing resolutions
(i.e. longer averaging periods) yield a price differential between off-
take and injection prices and prosumers will use their batteries to
increase the self-consumption from their PV installations. They charge
their batteries during periods of ample PV production and consume
their stored energy to avoid offtaking from the grid. Crucially, these
charging and discharging moments do not necessarily coincide with the
lowest or highest wholesale market prices, respectively. This leads to
proportionally less offtake (injection) during low-priced (high-priced)
hours and hence increases the average offtake price and decreases the
average injection price. The more the pricing resolution decreases, the
more pronounced this effect becomes as (i) wholesale signals are more
concealed and (ii) injection and offtake price differentials increase.

In addition, battery operations may be influenced by the desire
to reduce grid tariff expenses. In the volumetric tariff cases, residen-
tial consumers pay an extra fee proportional to their grid-supplied
electricity consumption. This presents an additional incentive for self-
consumption and reinforces the phenomenon mentioned above. For the
capacity-based tariff, prosumers also employ their batteries for peak-
shaving, i.e. to avoid large offtake peaks. Batteries are operated to
charge during off-peak hours and discharge during peak hours, again
without any guarantee that these hours coincide with respectively low
or high wholesale market prices (even though there is a correlation).
Generally, these additional incentives cause battery operations to devi-
ate from the ideal wholesale market perspective. Any such deviations
result in increased offtake prices and decreased injection prices. With
longer averaging resolutions, prosumers become increasingly detached
from wholesale market signals, magnifying this effect.

In summary, the impact on average retail prices can be explained
through changes in injection and offtake patterns, influenced primarily
by two key factors. First, a higher total PV capacity tends to increase
offtake prices and decrease injection prices. Second, longer pricing
resolutions and volumetric or capacity-based distribution tariffs alter
storage operations which in general also increases offtake prices and
decreases injection prices.

5.3. Market value of residential BESS

Under hourly pricing (H1), households are exposed to wholesale
price signals and hence set their battery operations to match the
system’s needs. Lower retail pricing granularities, however, disconnect
residential consumers from these signals and their batteries may there-
fore no longer be operated efficiently. In what follows, we introduce
and analyze a metric which quantifies this loss in market value. We
remind the reader that under the FIX tariff, for temporal granularities
H3 to M12, no residential batteries are installed, thus no metric is
shown.

We define the marginal market value of BESS (MV𝐵𝐸𝑆𝑆 ) as the
eduction in annual electricity generation costs when adding one ad-
itional unit of battery energy capacity. Mathematically, this can be
epresented by Eq. (30), with 𝜆𝑑,𝑡 the wholesale price and 𝑐ℎ𝑑,𝑡,𝑗 and
𝑐𝑑,𝑡,𝑗 the charging and discharging operations, respectively. The metric
s normalized by accounting for the total installed residential BESS
apacity (∑𝑗∈ 𝑐𝑎𝑝𝑠𝑗).

V𝐵𝐸𝑆𝑆 =
∑

𝑑∈,𝑡∈ ,𝑗∈

(

𝛱𝑑 ⋅ (𝑑𝑐𝑑,𝑡,𝑗 − 𝑐ℎ𝑑,𝑡,𝑗 ) ⋅ 𝜆𝑑,𝑡
)

∕
∑

𝑗∈𝐽
(𝑐𝑎𝑝𝑠𝑗 ) (30)

This metric captures operational inefficiencies of battery operations,
but also structural value differences across cases. Indeed, the marginal
market value could for instance be lower in cases with excessive
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BESS capacity because of diminishing returns, and could be higher
in cases that exhibit high PV penetration because of additional arbi-
trage opportunities. We disentangle these effects by additionally eval-
uating Eq. (30) with optimal charging and discharging operations.13

As such, we have a benchmark metric that captures the maximally
attainable marginal value of battery energy capacity, evaluated at op-
timal (dis)charging operations; and a metric that captures the realized
marginal value, evaluated at (dis)charging operations determined by
the residential consumers.

Fig. 6 depicts the benchmark market value of residential BESS
operations with gray bars, and the realized value with black horizontal
lines. Under hourly pricing with FIX tariff, the realized market value
aligns closely with the optimum value, indicating system-optimal BESS
operations. However, under the VOL and CAP tariffs, the market values
drop to respectively 50% and 30% of the benchmark. This demonstrates
that distribution tariffs alter the operational signal embedded in the
retail electricity price, precluding BESS operations from aligning with
the wholesale market.

As the temporal granularity of retail prices decreases, the realized
market value of BESS operations decreases under all tariff schemes.
Specifically, under the VOL tariff, the realized market value decreases
systematically, even reaching negative values. This indicates that res-
idential BESS operations are misaligned with the price signal in the
wholesale electricity market.

The realized market value of residential BESS operations exhibit
a more nuanced pattern under the CAP tariff. Across all temporal
granularities of retail electricity prices, the realized market values are
consistently positive but below 30%. A capacity tariff, which bills
households based on their monthly peak offtake, indirectly encourages
them to operate their BESS in a system-friendly manner, particularly
when their individual peak consumption coincides with the system
peak. As a result, the offtake and offtake prices are reduced during these
peak hours. However, it is important to note that offtake price peaks
at lower temporal granularities of retail prices may not necessarily
align with the system peak hours. Consequently, the incentives for
households to reduce their individual peak offtake may not consistently
result in efficient BESS operations from a market value perspective.

5.4. Grid load

In Fig. 7, we illustrate the maximum yearly injection and offtake
under each investigated tariff, across decreasing temporal granularity
of retail electricity prices.

Evidently, the CAP tariff, compared to the others, can significantly
reduce peak offtake. This reduction can be attributed to the billing
of network costs based on households’ monthly peak offtake and the
resulting larger presence of residential BESS. Despite substantial solar
PV capacity triggered by the VOL tariff, the reduction in peak offtake
is, on average, 27% less than that achieved under the CAP tariff. This is
because most peak offtake occurs during periods of low PV generation.
Moreover, significant incentives for solar PV investment under the VOL
tariff lead to greater injection, further exacerbating the distribution
grid burden. In comparison, the reduced grid interaction resulting from
BESS investments and usage under the CAP tariff may provide grid
benefits that other tariffs cannot.

There are no systematic trends observed in the grid interaction
across decreasing temporal granularity of retail electricity prices. The
fluctuations in peak offtake and injection observed across decreas-
ing temporal granularity of retail electricity prices are influenced by
various factors such as volatile electricity prices, the demand profile
of prosumers, and the non-residential load. In some instances, the
operations of residential batteries align with the system’s needs and

13 We obtain these by running an ex-post optimization in which residential
battery operations are optimized based on wholesale prices.
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Fig. 6. Market value of residential BESS operations across decreasing temporal granularity of retail electricity prices and tariff types. Benchmark market values depicted by gray
bars and the realized market values depicted by horizontal black lines are both calculated by Eq. (30). FIX: fixed tariff, VOL: volumetric tariff, CAP: capacity tariff, H: hourly
temporal granularity, M: monthly temporal granularity.
Fig. 7. Annual peak offtake and injection under each tariff, across decreasing temporal
granularity for retail electricity prices. FIX: fixed tariff, VOL: volumetric tariff, CAP:
capacity tariff, H: hourly temporal granularity, M: monthly temporal granularity.

result in a beneficial reduction in peak offtake. This occurs when bat-
tery charging and discharging patterns adjust to the factors mentioned
above, mitigating the peak offtake without requiring specific control
interventions. However, it is worth mentioning that the peak offtake in
the CAP tariff M12 case is the lowest among all cases, indicating that a
capacity tariff based on individual peak offtake can effectively reduce
the system peak.

5.5. Total system cost

Leveraging prior results, we now turn to the total system cost. In
Fig. 8 we illustrate, in the left panel, the normalized total system cost,
as well as its constituents, in the right panels: CAPEX in DER, CAPEX
in grid-scale technologies and OPEX. Note that the 𝑦-axis of the figure
starts from 100 as we have normalized the total system cost using
the total system cost resulting from the H1 FIX case, i.e. the most
optimal outcome in our setting. For further details on total system cost
components we refer interested readers to Appendix B.

We first note that the difference in total system cost is greater
between distribution tariffs than when moving across decreasing tem-
poral granularity of retail prices. The FIX tariff exhibits the lowest total
system cost,14 which links back to our discussion on generation capacity

14 This result is limited by our assumption that all network costs are residual
r sunk. A valid assumption in networks experiencing low load growth, with
inor changes in network capacity needs, having most of the dimensioning

osts occurred in the past. Note, however, that literature suggests capacity-
ased charges can lead to the lowest system cost if network investments are
11

ot sunk [2].
Fig. 8. Total system cost and constituents: CAPEX in DER, CAPEX in grid-scale
technologies and OPEX. Costs are normalized using the lowest occurring total system
cost: H1 FIX tariff total system cost. FIX: fixed tariff, VOL: volumetric tariff, CAP:
capacity tariff, H: hourly temporal granularity, M: monthly temporal granularity.

investments. The FIX tariff, compared to the CAP and VOL tariffs,
promotes significantly lower investments in DER, the main driver for
the cost difference as can be seen in Fig. 8. The difference in total
system cost between the VOL and CAP tariffs can be attributed to a
reduced OPEX under a volume-based tariff. The VOL tariff, promotes
greater solar PV investment, resulting in higher levels of distributed
generation, therefore requiring overall less generation of conventional
technologies throughout the year.

The second finding is that the total system cost increases with a
decreasing temporal retail pricing granularity. This is caused by a less
cost-efficient generation mix, exacerbated by less efficient residential
BESS operations, as explained in Section 5.3. Since the CAP and VOL
tariffs include both more solar PV and residential BESS than the FIX
tariff, decreasing temporal granularity of retail electricity prices has
a more influential effect on total system cost, as can be seen by the
steeper slopes in Fig. 8. This makes the problems worse when dealing
with cases with low temporal granularities. For instance, the transition
from H1 to M12 in FIX tariff cases shows hardly any difference, while
the shift from H1 to M12 in VOL tariff cases results in a 2-percentage
point difference, highlighting the impact of distribution tariffs.

Fig. 9 illustrates in more detail how expenditures in each technol-
ogy changes, relative to hourly pricing. We have already highlighted
the redistribution of solar PV installations for lower pricing gran-
ularities (see Section 5.2), which entails more expensive solar PV



Applied Energy 373 (2024) 123857Y. Lu et al.

H
g

c
t
l
P
s
c
m
e
t
i
H
i
c
c
w

p
a
b
e
a
a
g
b
f
I
s
l
t
c
t
e
s
a

6

b
R
e
a
i
d
p
l

Fig. 9. Normalized change in expenditure of each technology relative to H1 granularity under each tariff, across decreasing temporal granularity of retail electricity prices.
orizontal bars in black illustrate the total increase in cost. FIX: fixed tariff, VOL: volumetric tariff, CAP: capacity tariff, H: hourly temporal granularity, M: monthly temporal
ranularity.
apacity. By linking wholesale and retail levels, we are able to describe
he repercussions of residential investment decisions on transmission-
evel technologies. With increasingly self-consumption-oriented solar
V installations, expenditure in conventional generation technologies
lightly decreases but not to the point of offsetting the additional
ost. Additional investments in wind and BESS capacity are, moreover,
ade at the transmission level. Overall, such adjustments entail a less

fficient generation mix, leading to a higher total system cost as the
emporal granularity of retail electricity prices decreases. However, it
s important to note that transitioning to temporal granularity of H3 (or
6 in the FIX tariff case) can be a valuable alternative to RTP. H3 (H6)

s more practical for system operator to implement and for residential
onsumers to follow compared to RTP. At the same time, it aligns
onsumer decisions with the system requirements and approximates the
elfare benefits of RTP.

We find that the difference in total system cost between a flat retail
rice (M12) and RTP (H1) is, as put by Borenstein [55] ‘‘significant
nd sobering’’. Our analysis suggests that the sobering difference can
e attributed to the limited reduction in the cost of conventional gen-
ration capacity at the transmission level with more granular pricing,
ligning with [56]. This may be due to extended periods of low renew-
ble generation and the relatively low cost of maintaining substantial
eneration capacity, even when it is rarely used [55]. Previous research
y Holland and Mansur [19] found that shifting from annual to monthly
lat rates could capture about 30% of efficiency gains in the short term.
n our results too, it is evident that in simply moving from M12 to M1 a
ignificant portion of the benefits may be captured. Furthermore, Hol-
and and Mansur [19], found that TOU rates can capture 15%–30% of
he efficiency gains of RTP, while Borenstein [18] estimated that TOU
an capture approximately one-fifth of the efficiency gains of RTP in
he long run. If we relate our H6–H12 temporal granularities for retail
lectricity pricing to TOU rates, we note that the captured benefits are
ignificantly smaller. This is because we allow the wholesale system to
dapt to retail-level changes, yielding a more realistic outcome.

. Conclusion

Increasing the temporal granularity of retail electricity prices can
etter align consumer decisions with the power system’s requirements.
egulated bill components such as distribution tariffs, however, affect
lectricity price signals. This study offers a quantitative comparison of
wide spectrum of temporal granularities for retail electricity prices

n a fully integrated system, whilst considering the interplay with
istribution tariffs. Our research stands out by examining alternative
ricing schemes that have been overlooked in prior studies. We high-
12

ight the significance of evaluating temporal granularity options that
could improve upon the approximation of economic efficiency of RTP
compared to commonly used schemes, while mitigating some practical
disadvantages of RTP, such as difficulty of implementation, unpre-
dictability and the challenge of consumer adaptability to hourly price
signals. We model investment as well as operational decisions of an
energy system comprising both wholesale and retail levels. Our analysis
demonstrates how the temporal granularity of retail electricity prices
and distribution tariff design impact DER investment, BESS operation
and the power system at large.

Findings illustrate that a decreasing temporal granularity of retail
electricity prices leads to an increase in offtake prices and a decrease in
injection prices. This is accompanied by a shift from rather centralized
to more distributed PV installations. To the authors’ knowledge, this is
the first time that such an effect has been demonstrated. Distribution
tariffs affect the magnitude of retail prices because of the level and type
of DER investments they trigger. As reflected in the literature, volumet-
ric tariffs incentivize solar PV investments and capacity-based tariffs
trigger investments in BESS [22]. Correspondingly, a volumetric dis-
tribution tariff yields the highest offtake prices while a capacity-based
distribution tariff yields the lowest.

Similar to [29], we note that volumetric and capacity-based distri-
bution tariffs erode electricity price signals and prevent full wholesale
market integration. Fixed distribution tariffs hence lead to the lowest
system cost in our case study. Note, however, that these results hinge
on our assumptions about ample distribution grid capacity and sunk
distribution network cost. In practice, distribution network cost may
rise due to substantial injection peaks resulting from incentivized abun-
dant solar PV investment, particularly volumetric tariffs. Total system
cost increases with decreasing temporal granularity of retail electricity
prices. This is because of a less cost-effective generation mix triggered
by rearranged PV installations, and because residential batteries are
being operated sub-optimally. While addressing the challenges of RTP,
it is worth considering that using a three-hourly or even six-hourly price
granularity can be a valuable alternative if one is willing to accept
minor economic efficiency losses. Moreover, since we consider the
power system at large and allow for interactions between the wholesale
and retail levels, we find that gains from RTP are not as significant
as those found in the literature. Indeed, part of the inefficiencies of
averaged retail prices could be mitigated by adjusting investments and
operations on the wholesale level.

We study operational and investment decisions under the assump-
tion of predictable conditions, particularly concerning demand and re-
newable generation. Future work could, rather than modeling demand
and availability factors as fixed time-series, adopt a stochastic frame-
work. With the inclusion of uncertainty, modelers will need to make
assumptions on how and when prices are formed and to what extent
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they internalize this uncertainty. Our paper focuses on a deterministic
setting to maintain generality. Future work can extend this paper by
considering uncertainty along with specific pricing mechanisms to cope
with it.
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Appendix A. ADMM

Here is a brief introduction of the ADMM algorithm in long term
energy market equilibrium problems. An overview of the algorithm
structure is presented in Algorithm 1, and the detailed implementations
can be found in GitLab repository [41].

In the algorithm, we begin by defining penalty rates for the whole-
sale and retail levels (𝜌𝑤, 𝜌𝑟), tolerances for the primal and dual
residuals (𝜖𝑚𝑐 , 𝜖𝑑𝑢𝑎𝑙), and the maximum number of iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥).
We initialize the convergence situation and the price variables 𝜆𝑑,𝑡,
which represent the wholesale market prices associated with the cou-
pling constraints. These prices are iteratively updated to guide the
agents towards an equilibrium. In each iteration, the updated prices
are provided to all agents, who optimize their objective functions ac-
cordingly, as described in Section 3.4. Once all agents have solved their
optimization problems, we verify the system equilibrium by checking
the primal residuals, which capture the imbalances on the coupling
constraints. The primal residuals are calculated using the market clear-
ing constraints in Eq. (27), by subtracting the total net offtake from
the total production. Additionally, we calculate the dual residuals by
comparing the differences between the current production or offtake
values and those from the previous iteration. If the coupling constraints
are not satisfied, the prices are updated based on the primal residuals.
The algorithm continues iterating until it converges, meaning that the
solution simultaneously satisfies both the coupling constraints (‖𝑟𝑚𝑐‖ ≤
𝜖𝑚𝑐) and the optimization problems of each agent (‖𝑟𝑑𝑢𝑎𝑙‖ ≤ 𝜖𝑑𝑢𝑎𝑙).

The convergence of the algorithm represents a Nash equilibrium of
the game described by Eqs. (3)–(26), which can be further validated
by checking the Karush–Kuhn–Tucker (KKT) conditions of all agents’
problems.
13
Algorithm 1: ADMM algorithm for computing a Nash equilib-
rium of the non-cooperative game

Data: All parameters belonging to all agents’ optimization
problems.

Result: Nash equilibrium solution to the game.
Define 𝜌𝑤, 𝜌𝑟 , 𝜖𝑚𝑐 , 𝜖𝑑𝑢𝑎𝑙, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥; Initialize wholesale market
price 𝜆𝑑,𝑡, and 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 0
while 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝐹𝑎𝑙𝑠𝑒 and 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do

Solve problems of each transmission level technology;
Solve 10 representative consumers’ problems.
Calculate primal residuals 𝑟𝑚𝑐 and dual residuals 𝑟𝑑𝑢𝑎𝑙.
Update wholesale prices: 𝜆 = 𝜆 − 𝜌𝑤 ⋅ 𝑟𝑚𝑐 , and then update
offtake and injection prices using Eqs. (1) - (2).

Update convergence:
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = (‖𝑟𝑚𝑐‖ ≤ 𝜖𝑚𝑐 ) ⋅ (‖𝑟𝑑𝑢𝑎𝑙‖ ≤ 𝜖𝑑𝑢𝑎𝑙).

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1.
end

Appendix B. Total system cost components

As shown in Eq. (B.1), total system cost can be broken down into
three constituents.

1. CAPEX in DERs: all household investments in solar PV, BESS,
and associated inverters (B.2).

2. CAPEX in grid-scale technologies: all investments in capacity of
large-scale generators (renewable and conventional) as well as
grid-scale BESS plus associated inverter (B.3).

3. OPEX: the variable cost of running (conventional) technologies
(B.4).

Total system cost = CAPEX DER
+ CAPEX grid-scale technologies
+ OPEX

(B.1)

CAPEX DER =
∑

𝑗∈

(

𝑃𝐼𝐶𝑝𝑣
𝑗 ⋅ 𝑐𝑎𝑝𝑝𝑣𝑗 + 𝑃𝐼𝐶𝑝𝑣𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑝𝑣𝑖𝑗

+ 𝑃𝐼𝐶𝑟𝑠
𝑗 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑗 + 𝑃𝐼𝐶𝑟𝑠𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑟𝑠𝑖𝑗

)

(B.2)

CAPEX grid-scale tech =
∑

𝑘∈

(

𝐼𝐶𝑔𝑒𝑛
𝑘 ⋅ 𝑐𝑎𝑝𝑔𝑒𝑛𝑘

)

+ 𝐼𝐶𝑔𝑠 ⋅ 𝑐𝑎𝑝𝑔𝑠 + 𝐼𝐶𝑔𝑠𝑖 ⋅ 𝑐𝑎𝑝𝑔𝑠𝑖
(B.3)

PEX =
∑

𝑘∈

∑

𝑑∈

∑

𝑡∈

(

𝛱𝑑 ⋅ 𝑉 𝐶𝑘 ⋅ 𝑔
𝑔𝑒𝑛
𝑑,𝑡,𝑘

)

(B.4)

ppendix C. Residential consumer expenses

The expenses of the 10 representative consumers, arranged in as-
ending order based on their discount rates, are shown in Fig. C.1.
he figure reveals several important observations, some of which have
lready been discussed earlier in Section 5.

1. Prosumers with a low discount rate tend to make significant
investments to reduce electricity bills. They can also make a
profit from the injection of solar power generation.

2. Investments made by prosumers with a high discount rate are
primarily driven by the offtake price and tariffs. As granularity
decreases, the increase in the electricity costs encourages their
investments.

3. Low temporal granularity of retail electricity prices can indeed
incentivize inefficient investments. As granularity decreases,
consumers may face higher offtake prices during specific peri-

ods. In response, some consumers, even those with high discount
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Fig. C.1. Electricity bill of three selected consumers (columns), having low, medium and high solar PV investment costs under each tariff type (rows) across decreasing price
granularity. Bill components are color-coordinated. Total bill is illustrated using dashed bars with amount, in €/MWh, written above.

Fig. D.2. Installed consumer BESS capacities, under each tariff, across decreasing temporal granularity of retail electricity prices. Color scale indicates the perceived annualized
investment cost (PIC). FIX: fixed tariff, VOL: volumetric tariff, CAP: capacity tariff, H: hourly temporal granularity, M: monthly temporal granularity.
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rates, may be motivated to invest in DER to reduce their elec-
tricity consumption and lower their bills, as seen in Fig. C.1.
However, this behavior may not always result in economically
efficient outcomes for the overall energy system.

4. The impact of decreasing injection prices on prosumer invest-
ments can be observed from prosumers with low PV investment
costs in the FIX tariff cases. As injection prices decrease with
decreasing temporal granularity, prosumers who can benefit
from high injection prices are discouraged from making large
solar PV investments.

Appendix D. Residential BESS installations

In Fig. D.2, it is possible to see the capacities of residential BESS
installations under each tariff, for each temporal granularity of retail
electricity pricing.

Appendix E. Sensitivity analysis

We conduct one sensitivity analysis by incorporating additional
generation technologies at the transmission level. The investment cost
and variable cost of all technologies used in the sensitivity analysis
are listed in Table E.1. In summary, the total system cost decreases
by approximately 2%–3% with the inclusion of more centralized tech-
nologies. However, the overall findings and conclusions in Section 5
remain consistent and can still be observed in the figures below (see
Figs. E.3–E.7).
Table E.1
Annualized investment cost (IC) and variable cost (VC) of centralized generation
technologies.

Technology IC [€/MWy] VC [€/MWh]

Base1 138 000 36
Base2 100 000 45
Mid1 82 000 53
Mid2 65 000 65
Peak1 59 000 76
Peak2 53 000 100
Wind 76 500 0

Fig. E.3. Sensitivity analysis results: generation capacity investments for all considered
technologies.

Fig. E.4. Sensitivity analysis results: installed individual consumer solar PV capacities.
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