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Abstract

This thesis focuses on closed-loop product grasping from supermarket shelves. The case is studied
where the robot is in front of a shelf in an Albert Heijn supermarket and is tasked to pick a desired prod-
uct from that shelf. Enabling a robot to achieve the product-picking task, however, is challenging. While
many other robotic picking methods are centered around table-top environments, the complex geome-
try of supermarket shelves presents a challenge in itself. Additionally, the Albert Heijn supermarket is a
dynamic environment, where other agents can change the shelves, move products, and can introduce
lighting changes. Where the table-top environment allows other methods to pick objects with an open-
loop controller, approaching the supermarket environment with a closed-loop picking strategy can be
beneficial in overcoming the challenges introduced by the dynamic environment. Therefore, this thesis
proposes a product grasping pipeline, where the goal is to discover what combination and optimization
of the required robotic skills results in a system that enables the robot to consistently and robustly per-
form the product-picking task. To close the loop, in-hand position-based visual servoing is used that
enables the robot to account for detection mistakes as it picks a product. The three robotic skills that
are required for the product-picking pipeline are product detection, product grasp pose estimation, and
product tracking. Because of visual servoing, each of these robotic skills must run in real-time. The
product detection is achieved by pre-training a YOLOv6 object detector on the SKU-110K dataset and
fine-tuning it to the new Albert Heijn Supermarket dataset. The Albert Heijn Supermarket dataset is cre-
ated to detect 36 products in the supermarket, where the challenges of distinguishing similar products
and detecting relocated products are included. To enable detections during visual servoing, the dis-
tance, directions toward the shelf, and lighting are varied. The product grasp poses for the suction cup
can be estimated using a plane fit on the estimated pointcloud for each product. The pointcloud of the
product is estimated by randomly sampling the depth data from the product. Each product pose is then
tracked through time via Kalman Filtering, to enable temporal reasoning about the products. Because
of this, the grasp pose of the desired product can be refined as the manipulator moves toward the shelf.
The proposed system achieved success rates of 90%-100% during experiments on a real robot with a
suction cup gripper. While robust picking on a set of 36 products has been achieved, exploring a wider
variety of product shapes with other robotic grippers is a compelling research direction to overcome
the challenge of picking oddly shaped products. Furthermore, a separate few-shot-learning classifier
for the product classification might be used to overcome the challenge of adding new products to the
inventory or product re-branding. Next, considering other picking scenarios in the supermarket, like
picking from hooks or refrigerated shelves with doors, is important for deployment as well. Finally, in-
teracting with humans and reacting to human behavior during the picking process to ensure safety is
another crucial challenge that must be overcome to move toward the integration and deployment of
robotics in supermarkets.
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1
Introduction

In an era characterized by rapid technological advancements and evolving consumer demands, the
retail industry finds itself at the crossroads of innovation and efficiency. As supermarkets strive to
meet the growing expectations of customers for seamless and timely order fulfillment, the integration
of robotics has emerged as a compelling solution. This thesis delves into the implementation of a
robotic system in a supermarket environment to streamline the process of order picking.

Specifically, the supermarkets that are considered in this thesis are the Albert Heijn supermarkets from
the Ahold Delhaize company, with more than 895 different stores in the Netherlands [1]. The rapid
increase of online shopping and delivery at home, accelerated by the recent competition on ’Flitsbe-
zorging’1, has intensified the need for retailers like Albert Heijn to optimize their operations, especially
in the critical aspect of order fulfillment. Robotics technology offers a promising alternative to the way
supermarkets manage their inventory, retrieve products, and assemble orders.

This thesis will explicitly focus on the order-picking process. The case is studied where the robot is in
front of a shelf in an Albert Heijn supermarket and is tasked to pick a product that is located on this shelf.
The goal of this thesis is to describe and motivate the design decisions that were made to develop a
product-grasping pipeline that enables the robot to fulfill the product-picking task. To achieve the goal
of picking a desired product from a shelf, the robot must have multiple skills.

Firstly, the robot must be able to detect the products on the shelf with a camera. It must know what
products it is looking at, called classification, and where the products are relative to itself, called local-
ization. The process of locating and classifying products is called product detection.

Secondly, the robot must be able to grasp the products. To achieve a successful grasp the robot must
determine where to grasp a product, further referenced as product grasp pose estimation. The grasp
pose should consist of all 6 degrees of freedom for the robot to know how to approach the product for
a successful pick.

Thirdly, to smoothly control the arm when executing the grasping plan and account for mistakes, a
robotic controller must be implemented. To be able to react to changes in the environment and to ac-
count for mistakes in the product detection or the product grasp pose estimation, visual servoing is
applied. Visual servoing is a type of closed-loop control that makes use of visual information as feed-
back. Specifically, the type of visual servoing that is implemented is position-based visual servoing
(PBVS), which means that the estimated grasp poses of the products are used as feedback for the
controller. Image-based visual servoing (IBVS), in contrast to PBVS, uses the image features as feed-
back directly. Because visual servoing is done, reasoning about detections and product poses through
time becomes relevant to ensure that only correct detections are used, and to react to changes in the
environment. This is called product tracking.

1’Flitsbezorging’ is a Dutch word for delivering groceries within 10 minutes after placing your order

1
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It is important to note, however, that, while visual servoing makes the robot able to react to the envi-
ronment and its changes, it also produces a difficult requirement for all skills: the operations of each
skill must happen in real-time. Product detection, product grasp pose estimation, and product tracking
must all happen in real-time. Real-time means that all calculations must be fast enough to be reactive
to the surroundings.

Mastering each of these skills as a robot in the supermarket is vital to product-picking success. Section
1.1 describes what work is already done regarding the robotic skills and what can be learned to create a
product grasping pipeline. Thereafter, Section 1.2 states the research question of this thesis specifically
and sets out the challenges that must be overcome for each robotic skill. It also gives an overview of
the entire robot and the modules that apply the discussed skills. Section 1.3 describes the robot that
is used in the supermarket to grasp products from shelves.

1.1. Related Work
Through the years a lot of work has been done on both object detection and object grasp pose estima-
tion, both important for the product detection and product grasp pose estimation skills respectively.
Most work tries to implement a framework where both are done simultaneously with the use of deep
learning.

The grasp detection methods that perform object grasp detection can be split between object-oriented
grasp detectors and scene-oriented grasp detectors [42]. Scene-oriented grasp detectors are most in-
teresting for the product grasping pipeline since they can detect grasps on objects in a scene instead of
only on isolated objects, where only one object appears per image. Often, however, the scene-oriented
methods do not consider specific object grasp detection, meaning that the classes of the products are
not considered. In other words, the methods do not consider the goal of picking a specific desired
object, so if one of these methods were to be used in the product grasping pipeline, a separate object
detector must be implemented as well to determine the classes of the objects.

The methods that do consider the product classes perform grasp pose estimation in a table-top environ-
ment. This means that all products that must be picked are positioned on a flat platform. Supermarket
shelves differ quite from this scenario because they have a complex geometry that can interfere with
the grasp proposals for the objects.

Additionally, because the methods use deep learning, they require a dataset to be trained on. Such
a dataset must include the products of Albert Heijn, labeled with the product classes, and, for grasp
pose estimation, with 6 degrees of freedom (6DoF) grasp poses. A dataset of Albert Heijn products is
not available and must be made. Labeling a dataset with grasp poses, however, is a difficult process,
because the grasp poses depend on the used gripper, and the optimal grasp pose for a certain object
is often disputed.

Therefore, because of these difficulties, the decision is made that the product detection and product
grasp pose estimation are done separately. The dataset synthesis can therefore be strictly defined
by labeling bounding boxes, which must surround the object, contrary to grasp poses that have a less
strict definition. Additionally, the use of bounding box labels allows the use of object detectors that
might be more robust and faster in detecting products than the end-to-end scene-oriented object grasp
pose estimators.

Next, work on visual servoing for robotic manipulators has been done as well. Hutchinson et al. [17]
provides an overview of the methods in the field of visual servoing and tracking, where an example is
given where position-based visual servoing is used with a Kalman Filter [21] operating at 30 Hz. Wil-
son [47] proposed a similar method, where position-based visual servoing was used with an Extended
Kalman Filter, operating at 60 Hz. Finally, Vincze et al. [39] claimed that the operation rate should at
least be 50-100 Hz to achieve good dynamic responses from the system. Similarly, the visual servoing
system by Espiau et al. [10] operates at 50 Hz. Together, these methods give insight into what oper-
ation rates are necessary to achieve a visual servoing system, and thus the real-time requirement for
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visual servoing is likely between 30-100 Hz.

Finally, recent work on grasping products from supermarket shelves on a system level has been done
by Bajrackarya et al. [3]. They propose an entire system for a supermarket order-picking robot. Their
perception pipeline consists of five modules, yet their method does not implement visual servoing. Their
first module implements a YOLOv5 detector [49] trained on the SKU-110K dataset [16]. The second
module segments the product in the detected bounding box and overlays the segmentation with RGB-
D data from a learned stereo module to obtain the product pointcloud. The third module uses metric
learning to compare the detections with a database of products. The fourth module uses a PointNet
[34] based network and the product pointcloud to obtain the grasp pose for the product. The fifth and
final module uses a network that estimates how to extract the product (e.g. from a hook, shelf, or box).

1.2. Research Question
Taking all this into consideration, it is clear that for successful grasping in the supermarket, multiple
robotic skills are necessary. The performance of one skill, however, often depends on the performance
of another. Combining the skills and optimizing them together is therefore of great importance. This
translates to the main research question of this thesis:

What implementation of robotic skills and combined optimization results in a grasping
pipeline that is best in consistently and robustly grasping desired products from supermarket

shelves in Albert Heijn?

Additionally, challenges lie in how each robotic skill is achieved separately, which are listed below:

1. Product detection requires a dataset to train on, which must include the products from the Albert
Heijn supermarket. Such a dataset must contain enough data that represents the Albert Heijn
supermarket to make the product detector succeed at detecting products after training.

2. To achieve the product detection skill, a suitable object detector has to be chosen and trained
to detect the products in the Albert Heijn shelves at a rate of 30-100 Hz for visual servoing.

3. Product grasp pose estimation has to be done to enable the robot to pick the detected products
from the shelves. Like the product detector, the product grasp pose estimation should run at 30-
100Hz for visual servoing but also be accurate enough to make the product grasping pipeline
succeed.

4. Visual servoing and product tracking must be done to keep track of products through time to
account for product detection and product grasp pose estimation mistakes, and changes in the
environment. Again, the product tracker must track the products accurately through time, and at
a rate of 30-100 Hz for visual servoing.

Because of these different robotic skills and their challenge in design on their own, the product grasping
pipeline is separated into modules that each describe how one robotic skill is achieved. An overview
of the entire grasping pipeline is visualized in Figure 1.1. The modules that each implement a specific
robotic skill in the picking process are visualized with the green blocks. The modules, while being sep-
arate, are optimized together to increase the picking performance of the robot. The dataset synthesis
is also separately discussed due to its challenges. Details on what methods are used are in Sections
2, 3, 4, and 5. Finer details on the implementation of each module and their combination are stated in
Section 6. Thereafter, Section 7 tests the performance of each module and their combination. Finally,
Section 8 gives a conclusion on the thesis, while Section 9 describes what future work can be done
regarding product grasping from supermarket shelves.

1.3. Hardware
The robot that is used in this task consists of a base that makes the robot able to move around and a
Franka Emika Panda robot arm, equipped with a suction cup as an end-effector and a realsense D435i
camera mounted on top of the end-effector. Since the robot does not have an onboard GPU, a laptop
is used that is connected to the robot during operation and is equipped with an NVIDIA GeForce RTX
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Figure 1.1: shows a visualization of the grasping pipeline. The RGB-D data from the realsense camera is converted into a
grasping pose for the desired product. The ’Closed Loop Inference’ (green) parts perform the picking sequence, estimating the
desired product grasp pose with the use of visual servoing. The ’Training Only’ part is executed during product detector training.

Each green block represents a module that implements a specific robotic skill.

3080 GPU. During the picking process, the base of the robot is assumed not to move. The robot is
visualized in Figure 1.2.

Figure 1.2: shows an image of the supermarket robot ’Albert’, with the Franka Emika Panda robot arm, realsense D435i, and
suction cup gripper.



2
Dataset

Section 1 concluded that a new dataset must be created to train an object detector to detect products
from the shelves in the Albert Heijn supermarket. It is important to create a new dataset in such a man-
ner to prevent pitfalls like overfitting, biased results, or learning shortcuts. This is achieved by creating
a dataset that contains examples of the object in all scenarios that can occur during inference. So,
the goal of a dataset in the context of object detection is to make the object detector succeed in the
specified detection task.

So, to make an object detector succeed at the task of detecting products in the supermarket, a dataset
is required that resembles the Albert Heijn supermarket and its products. The two requirements that
must be met by the dataset are defined and explained in Section 2.1. The final proposed dataset, the
Albert Heijn Supermarket dataset used to train the product detector, is discussed in more detail in Sec-
tion 2.2, where it is shown what is done to meet the requirements. Also, since determining whether the
dataset contains enough data is difficult to measure directly, other datasets that resemble supermar-
kets are explored that could be used to pre-train an object detector to try to increase its performance
via transfer-learning. Why transfer learning could be of use is described in Section 2.3, as well as the
use of the SKU-110K dataset [16] as the source domain.

2.1. Requirements
Two requirements must be met by the new dataset so that it can make an object detector succeed at
the product detection task. They are stated below:

• The dataset must be complete, containing examples of all the products that the object detector
must be able to detect.

• The dataset must be diverse, containing enough examples of each product to make the object
detector detect each product in all occurring scenarios, like

– different places on the shelf, surrounded by different products
– different lighting falling on the product
– different distances from the shelf
– different directions towards the product

As the first requirement stated, the dataset must be complete, and so it must at least contain exam-
ples for each product that must be detected in the supermarket. Completeness, however, does not
guarantee detection success. Not only must the object detector detect products on the shelves of
the supermarket, it must preferably do so without making mistakes like classification errors, bounding
box misplacements, not detecting products that are present, called False Negatives (FNs) or detecting
products that are not present, called False Positives (FPs).

5
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The dataset must enable the object detector to maximize correct predictions, known as True Posi-
tives (TPs), and minimize bounding box over- or underestimation and classification errors, that result
in False Positives (FPs) and False Negatives (FNs). A perfect object detector places the detected
bounding boxes exactly around each object of interest that appears in the image and always classi-
fies the bounding box as the object that is inside of it. So, as stated by the second requirement, the
new dataset must be diverse to enable the object detector to maximize TPs andminimize FPs and FNs.

Capturing all possible scenarios that can occur during inference is therefore important. In the context of
the Albert Heijn supermarket, the dataset must contain images from different distances and directions,
and with different backgrounds and surroundings. Furthermore, the Albert Heijn supermarket is a dy-
namic environment, where customers walk around and pick and place products on the go. This results
in misplaced products and different lighting scenarios during run-time, which should all be included in
the dataset, must the object detector succeed at detecting products robustly.

While the first requirement can easily be verified, the second requirement regarding diversity is not
possible to verify directly. Verifying whether the dataset has enough examples and enough different
scenarios cannot be done by looking at dataset numbers, but it can be measured indirectly by mea-
suring the performance of the object detector in the grasping pipeline, and the influence of transfer
learning on the performance of the object detector. The success of the object detector and the dataset
are therefore coupled. If the dataset is diverse enough, transfer learning should not have an impact
on the object detector’s performance, because all required features for successful product detection
can be learned using the proposed dataset. If an increase in performance is observed when transfer
learning is applied, the proposed dataset can be improved by incorporating more data from different
scenarios, because the object detector was able to learn features from the other dataset used as the
source domain that it did not successfully learn when trained on just the proposed dataset. The ob-
ject detector’s performance with and without transfer learning, and thus whether the dataset is diverse
enough to train the best-performing object detector, is tested in Section 7.1.2. The success of the object
detector in the product grasping pipeline is tested in Section 7.3.1, where it is verified whether training
with or without transfer learning is able to produce the best-performing product grasping pipeline.

2.2. Proposed Dataset
The proposed dataset, the Albert Heijn Supermarket dataset, is used to train the object detector that
has to detect the products in the supermarket. The dataset is labeled by hand, where it is required to
include all pixels related to the product within the bounding box, and the goal is to minimize the amount
of environmental pixels (pixels unrelated to the product) in the bounding box. Two requirements are
established that must be met by this dataset.

The first requirement states that the dataset must be complete, so all products that the object detector
must be able to detect must be included in the dataset. According to [2], the Albert Heijn supermarket
chain sells over 46000 products in total. Incorporating all products in one dataset is beyond the scope
of this thesis, and therefore a selection of products is made. The selection of products in the Albert
Heijn Supermarket dataset counts 36 different products. The products that are included vary in shape
and size but are all rigid and non-porous so that they can be lifted by a suction cup gripper.

Detecting products in a supermarket, however, is challenging, because products often look almost
identical. Each product type has a multitude of brands that each sell that type of product, resulting in
similar products that are the same intrinsically but differ in brand. For example, the product detector
should be able to tell the difference between a type of product from ’brand A’ and that same type of
product from ’brand B’. Furthermore, different products that are of the same brand often look alike as
well, due to the similar labeling a brand uses to represent itself. Here the product detector should also
be able to tell the difference between the products. The problem of similarity between classes is intrin-
sic to all Albert Heijn supermarkets, and therefore it is important to prove that the object detector can
distinguish between similar products. So the similarity between products in the supermarket is taken
into account by picking products that look similar because of their type or because of their brand. The
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object detector must be able to tell these similar products apart from each other to succeed in picking
the right products from the shelves in a supermarket. Some products that are similar to each other in
the dataset are visualized in Figure 2.1.

Figure 2.1: shows examples of products that look similar. Telling the difference between similar products due to equal brand or
equal type is important because it is intrinsic to the Albert Heijn supermarkets. The left two images show products that are of
different types but of the same brand; The right two images show products that are of the same type but of different brands.

The second requirement of the dataset states that the dataset must be diverse, and thus must con-
tain different examples of each product to make the object detector succeed in all occurring scenarios.
Whether the dataset does contain enough examples is tested in Section 7.1.2 and 7.3.1. In total, the
Albert Heijn supermarket dataset contains 1166 images of shelves with products, in which there are
a total of 15848 examples of products. The number of specific product examples ranges from 146 to
1132, with an average of 440 examples per product. Equally important is how the number of examples
per product (class) is balanced, referred to as the class balance. If a class does not occur often enough,
an object detector can ignore that low-occurring class during training and still obtain a high score on
the object detection performance metrics. For a perfect class balance in a dataset, each class should
occur as often as all others. The class balance of the proposed dataset is shown in Figure 2.6. Here
it can be seen that not all products occur as often as the others. Whether the class imbalance causes
certain low-occurring products not to be detected is tested in Section 7.3.1.

Furthermore, the second requirement regarding dataset diversity stated that examples of different sce-
narios should occur in the dataset. The dataset contains images taken from different distances to the
shelf, ranging from 20 cm to 100 cm. Furthermore, different directions toward the shelves are taken
into account, with images taken at angles of at most 45°compared to the shelf, from above/below as
well as from left/right. Dark and light lighting scenarios are incorporated, and products are shuffled to
make sure that they occur in other locations on the shelf and are surrounded by other types of products.
Examples of images in different scenarios are visualized in Figures 2.2, 2.3, 2.4, and 2.5.

To ensure that the object detector performs as well as possible, transfer learning can be used which
might increase the performance of the object detector if the dataset does not contain enough examples
of products or occurring scenarios. Section 2.3 explains the basic principles of transfer learning and
argues why the SKU-110K dataset [16] can be used. The effect of transfer learning is tested in Section
7.1.2.

2.3. Transfer Learning
Transfer learning is known as the use of other datasets to pre-train an object detector so that it can learn
features that are similar between the datasets. The goal of transfer learning is to transfer features from
a source domain (pre-training dataset) to a target domain (Albert Heijn Supermarket dataset). This is
a proven method to help increase the performance of machine learning methods [32] when the target
domain does not have enough data to allow the object detector to learn to detect the objects in all
occurring scenarios.
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Figure 2.2: shows dataset examples of images at multiple distances from the shelf. Detecting images at various distances is
important because the arm moves closer to the shelf during visual servoing. The left image is at a distance of 20 cm from the
shelf; The middle image is at a distance of 60 cm from the shelf; The right image is at a distance of 100 cm from the shelf.

Figure 2.3: shows dataset examples of images from multiple directions toward the shelf. Important because the robot can be
in any orientation compared to the shelf and should therefore detect the products in any orientation. The upper left image is an
image from below at an angle of 15°; The upper right image is an image from above at an angle of 45°; The lower left image is

an image from right at an angle of 45°; The lower right image is an image from left at an angle of 45°.

Figure 2.4: shows dataset examples of images with various lighting conditions. Important because lighting can vary due to the
environment, locations of people walking by, or the position of the robot compared to the lights in the store. The left image is

dark and the right image is light.

Figure 2.5: shows dataset examples of images where products are relocated. Important because in different stores the
products can be ordered differently, and other agents can misplace products. The upper images show a shuffling example and

the lower images show another shuffling example.
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In the case of product detection in the Albert Heijn, pre-training an object detector on an already existing
supermarket dataset (source domain) might improve the detection performance in the Albert Heijn su-
permarket (target domain). Because verifying whether the proposed Albert Heijn Supermarket dataset
contains enough examples of products in different scenarios is difficult, transfer learning could be used
to either increase the performance of the object detector or verify that the proposed dataset has enough
examples and thus the performance cannot be increased by transfer learning.

Dataset Type Environment # Images # Categories
SKU-110k Dataset [16] bbox Shelf 11762 1

RP2K [33] cls Shelf 500000 2388
Freiburg Groceries Dataset [20] cls Shelf 5021 25

GroZi-120 [30] cls Shelf 11870 120
GroZi-3.2k [14] cls Shelf 80 9030

Grocery Store Dataset [23] cls Shelf 5125 81
Cigarette Dataset [43] bbox + cls Shelf 354 10

RPC [46] bbox + cls Checkout 83739 200
D2S [12] inst. seg. Checkout 21000 60

Table 2.1: shows existing supermarket datasets that might be used as source domains for transfer learning; Due to the similar
environment, used labels, and dataset size the SKU-110K dataset is the most viable dataset as a source domain for training an

object detector.

Therefore, to successfully perform transfer learning, a viable source domain (dataset) must be found.
Currently, there are already datasets available that contain supermarket products or resemble a retail
store, which is summarized in Table 2.1. These datasets consider two different environments, namely
products stacked on shelves [16, 33, 20, 30, 30, 14, 23, 43] and products at the checkout counter [46,
12]. Since the products must only be detected on supermarket shelves, the checkout counter datasets
will not be of use for transfer learning because their environment is too different, making it unlikely that
an object detector can learn any features that are of use for detecting products on the shelves in the
Albert Heijn supermarket.

Furthermore, the labels for each of the datasets that consider products stacked on shelves differ. Some
consider bounding boxes only [16, 43], with or without considering the classes of the products. Most
datasets [33, 20, 30, 14, 23], however, only consider the class of the product and assume that only one
class product is present per image. These datasets are also not of use, because they cannot be used
to train an object detector.

So the SKU-110K and the Cigarette Dataset are the only datasets that are viable as source domains for
transfer learning. The Cigarette Dataset contains 3954 images with 10 different classes, while the SKU-
110K dataset contains 11.738 images with only one class. The SKU-110K dataset, however, contains
a wider variety of products than the Cigarette Dataset, which only contains cigarettes. Also, the SKU-
110K dataset is substantially larger than the Cigarette Dataset, containing more examples of different
products and shelves. This could help an object detector to learn the features of a supermarket better,
which might result in better generalization toward other supermarkets like the Albert Heijn supermarket.
For that reason, the SKU-110K dataset is used as the transfer learning source domain. The effect of
pre-training an object detector is studied in Sections 7.1.1, 7.1.2, and 7.3.1.



3
Product Detection

In recent years the research on data-driven object detection has grown massively, both due to the ad-
vancements in computer capabilities and due to the vast amounts of available data [51]. Deep learning-
based methods are popular nowadays due to their accurate predictions and available resources. Be-
cause of this, using a deep-learning-based object detector can be an effective way to build a product
detector as described in Section 1.

There exist numerous object detectors that all have their properties and implement other methods to
achieve the goal of accurately detecting objects in their field of operation. To make the product grasping
pipeline as successful as possible, the used object detector must be able to predict bounding boxes for
each product in the supermarket environment and classify each bounding box correctly, as stated in
Section 2. The goal of an object detector in the grasping pipeline is to do this as accurately as possible,
with as few mistakes as possible.

Moreover, due to the use of visual servoing as stated in Section 1, the object detector should be able to
detect the products on the shelf in real-time. Real-time means that the detections must occur at such a
rate that the robot can be reactive in the supermarket environment. Other visual servoing methods [17,
47, 39, 10] operate at 30-100 Hz. The definition of real-time, however, heavily depends on the situation
and might be different in the supermarket. Section 7.3.4 explores what operation rate is necessary for
successful product grasping. The real-time detections should be achieved on a laptop with hardware
that is described in Section 1.3.

Taking the real-time constraint of 30-100 Hz and the desired high performance in the supermarket into
account, Section 3.1 sets out the available data-driven object detectors and argues why the YOLO
models are considered the best option for the supermarket product detector. Section 3.2 describes the
mean Average Precision (mAP) metric and explains why it is a relevant performance metric for product
detection in the supermarket. Section 3.3 compares the available YOLO models and reasons why the
YOLOv6 V3.0 models are used as product detectors.

3.1. Object Detectors
Through the years, more accurate and faster object detectors have been proposed. Newmethods were
developed that dealt with learning better features, mitigating the drawbacks of training on unbalanced
datasets, and relating pixels and image sections to each other.

The first methods that managed to achieve object detection at reasonable operation rates were Fast
R-CNN [15] and Faster R-CNN [38]. These are two-stage detectors, where one stage proposes bound-
ing boxes and the other stage tries to classify them. In Faster R-CNN, the use of the bounding box
proposal networks, known as Region Proposal Networks (RPN), made them faster than the previously
used sliding window approaches. Thereafter, to decrease the inference time of these first methods, the

11
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Single Shot Multibox Detector (SSD) [29] and You Only Look Once (YOLO) [37] were proposed. These
methods combined the two stages into one and managed to increase the operation rate significantly.
After this, RetinaNet [27] and EfficientDet [41] worked on increasing the accuracy of object detectors,
by introducing Focal Loss and Bi-directional Feature Pyramid Networks (BiFPN) respectively. Focal
Loss enabled the networks to be less reliant on perfectly balanced datasets, while Feature Pyramid
Networks enabled the networks to become scale-invariant. Next, after the success of transformers in
the field of Natural Language Processing (NLP), DETR [7] and ViT [9] were proposed. These large
models were able to relate pixels and sections of the image to each other even better, which resulted in
a better understanding of the entire scene. Vision transformers therefore brought the object detection
field forward in terms of model accuracy and precision.

Currently, object detectors that use transformers like DETR [7] and ViT [9] are becoming increasingly
popular due to their high performance in scene understanding. They, however, require very large
datasets1 to train on, which are not available for the Albert Heijn supermarket. Additionally, trans-
former models are often large and therefore require GPUs with large amounts of memory that are not
always available on robots and laptops. The size of the transformer models and the fact that they are
required to train on very large datasets makes them ineligible as product detectors with the current
constraints in terms of hardware and available data.

The latest YOLO models, however, are gaining popularity as well. This is, contrary to the transformer-
based models, due to their high-speed detections. Visual servoing requires real-time detections at
30-100 Hz, as stated in Section 1, to ensure reactivity. According to Li et al. [25], the YOLO models
operate at 17-779 Hz on an NVIDIA Tesla T4 GPU, making most models viable for visual servoing.

For that reason, the YOLO models are explored as potential product detectors in the supermarket.
These models seem most promising in ensuring that visual servoing can be achieved, and, due to the
latest iterations, seem to be able to do so with considerable accuracy as well. Section 3.3 describes the
YOLO models in more detail and explains the final choice of using YOLOv6 v3.0 based on the metrics
described in Section 3.2.

3.2. Performance Metrics
The goal of an object detector is to propose bounding boxes perfectly around the objects of interest and
always classify them as the object inside. To measure how well an object detector performs, metrics
are used that describe how well a bounding box is placed and whether it was classified correctly. The
correct placement of a bounding box in combination with the bounding box being classified correctly is
called a True Positive (TP). The misplacement of bounding boxes and wrong classifications are unde-
sired. Such wrong detections are referred to as False Positives (FPs). Not detecting objects that are
present in the image is also undesired and referred to as False Negatives (FNs). The best-performing
object detectors maximize TPs and minimize FPs and FNs.

To obtain metrics like TPs, FPs, and FNs, the (correct) placement of bounding boxes must bemeasured.
A metric used to measure bounding box placement is the Intersection over Union (IoU). The IoU is a
ratio that describes how much overlap there is between the predicted bounding box and the ground
truth bounding box. Equation 3.1 describes the IoU.

IoU =
area_of_overlap
area_of_union

(3.1)

The IoU is a ratio, and therefore a threshold between 0 and 1 must be set that determines whether a
bounding box is predicted correctly or not to obtain metrics like TPs, FPs, and FNs. This threshold is
further referenced as the IoU threshold. An IoU threshold = 0.5 means that for a bounding box to be
considered as correctly placed, the total overlap between the predicted and ground-truth bounding box
must be at least 50% of the total area of the union of the predicted and ground-truth bounding box.

1ViT is trained on ImageNet (>1M images), ImageNet21k (>14M images), and JFT (>303M images)
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Additionally, the classification of each detection has a score associated with it, ranging from 0 to 1. This
score is a measure of how confident the object detector is about its predicted class. For example, the
object detector is more certain about the detection with a score of 0.75 than about a detection with a
score of 0.25. Similar to the IoU threshold, a confidence threshold is used to filter the detections based
on the quality of the detected classes. Hence, the confidence threshold influences the TPs, FPs, and
FNs as well. A higher threshold filters away more FPs, but also filters away TPs and thus increases the
FNs. A lower confidence threshold leads to a decrease in FNs but increases the FPs. Two metrics are
used to gain insight into this trade-off: precision and recall. Precision measures the ratio of predicted
positives, as described in Equation 3.2.

precision =
TPs

TPs+ FPs
(3.2)

The closer the precision metric is to 1, the fewer FPs occur, especially relevant when FPs are undesired,
and thus the cost of wrongly predicting an object is high. The recall metric measures the ratio of correctly
detected objects, as described in Equation 3.3.

recall =
TPs

TPs+ FNs
(3.3)

The closer the recall metric is to 1, the fewer FNs occur, which is especially relevant when FNs are
undesired, and thus the cost of missing an object is high. Both precision and recall depend on the
confidence threshold, and as the confidence threshold is changed one is increased and the other is
decreased. Precision and recall can therefore be combined in one curve, which depends on the con-
fidence threshold. Integrating this curve can give insight into how well the object detector performs
overall, reducing the dependence on the confidence threshold. This measure is known as the Average
Precision (AP), shown in equation 3.4.

AP =

∫
PR(th) dth (3.4)

where PR(th) is the precision-recall curve that depends on th, the confidence threshold. The AP
captures the performance of the object detector in detecting one single class because TPs, FPs, and
FNs are calculated per class. So to gain insight into the performance of the object detector on all
classes, the precision-recall curves for each class must be determined and integrated. Combining all
these APs leads to a final metric that captures the performance of an object detector, called mean
Average Precision (mAP), obtained by taking the average of all APs. The mAP metric is stated in
equation 3.5.

mAP =
1

N

N∑
n=0

APn (3.5)

where N is the total number of classes. A higher mAP means that the detector is on average better
at detecting all the objects in the scene. The mAP metric is used to compare the performance of the
YOLO models in Section 3.3 and to compare the performance of the trained models in Section 7.1.

3.3. YOLO models
The goal of the YOLO models has been to achieve high accuracy on benchmark datasets like COCO
[28] while maintaining the lowest inference time in the field of object detection. A summary of the most
well-known YOLO models is visualized in Table 3.1. The (mean) Average Precision of YOLO models
on the COCO dataset [27] has increased through the iterations, which is shown in Figure 3.1 from [25].

The most recent YOLO iterations, YOLOv7, YOLOv6, YOLOv8, and YOLOv6 V3.0, are also the best
performing YOLO models. YOLOv6 V3.0 is an improvement of YOLOv6 by the same authors, and
will from now on be referenced as YOLOv6. All these YOLO models come in various sizes (nano
(N), small, (S), medium (M), large (L)), which allows a more precise trade-off between speed and ac-
curacy. In Figure 3.1 it can be seen that the YOLOv6 models (N,S,M,L) perform slightly faster than
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the YOLOv8 (N,S,M,L) models while maintaining the same (mean) Average Precision ((m)AP)2 on the
COCO dataset [28].

The YOLOv6 models, however, also have two larger models, namely the medium (M6) and large (L6)
expanded YOLOv6models. These are more accurate but also slower than the other YOLOv6 (N,M,S,L)
models. In terms of (m)AP and speed, the L6 model outperforms the previously state-of-the-art per-
formance by the largest YOLOv7-E6Emodel, which was the largest and slowest available YOLOmodel.

The YOLOv6-L6 [25] and YOLOv7-E6E [44] models, however, have 140.4M and 151.7M parameters re-
spectively and therefore require a larger GPU than the smaller models like the YOLOv6-N and YOLOv6-
L models, which have 4.7M and 59.6M parameters respectively. The smaller models can run on a
smaller GPU, often present in a laptop.

Given the high speed and hardware constraint, the nano (N), small (S), medium (M), and large (L)
models of YOLOv6 seem to be the most promising models to train a product detector. These models
are most likely to make sure that visual servoing can be achieved.

Method Year Author
YOLO [37] 2016 Redmon et al.
YOLOv2 [35] 2016 Redmon and Farhadi
YOLOv3 [36] 2018 Redmon and Farhadi
YOLOv4 [6] 2020 Bochkovskiy et al.
YOLOv5 [49] 2020 Jocher et al.
YOLOX [13] 2021 Ge et al.

PPYOLOE [48] 2022 Xu et al.
YOLOv7 [44] 2022 Wang et al.
YOLOv6 [26] 2022 Li et al.
YOLOv8 [18] 2023 Jocher et al.

YOLOv6 V3.0 [25] 2023 Li et al

Table 3.1: shows the history of the YOLO models, each model tried to improve the accuracy of the previous model while
maintaining a comparable inference time.

Figure 3.1: shows a comparison of best-performing YOLO models from [25]. The left image shows the (mean) Average
Precision (AP) on the COCO dataset [28] vs. the achieved Frames Per Second (FPS) on a Tesla T4 GPU and a batch size
(BS) of 32 (so 32 images are evaluated in parallel). The right image shows the same (m)AP, only then versus the inference
time in milliseconds (ms) with a batch size (BS) of 1 (so 1 image per evaluation). Note that YOLOv6 means YOLOv6 V3.0

2The COCO authors refer to mean Average Precision (mAP) as Average Precision (AP)



4
Product Grasp Pose Estimation

While detecting products in an image in real-time is a first step towards robotic product grasping in the
supermarket, a bounding box is not enough for a robot to pick a product from a shelf. Each product
requires to be placed in the world relative to the robot to make it able to pick them up, effectively es-
timating a grasp pose for each product on the shelf. It is especially relevant that to estimate a grasp
pose it is required that all 6 Degrees of Freedom (6DoF) of the robot arm are estimated to pick the
product. Therefore, the goal of the pose estimation in the grasping pipeline is to convert the bounding
boxes for each product given by the object detector to 6DoF grasp poses.

Additionally, the ideal grasp pose heavily depends on the gripper used to pick the product. Since a
suction cup gripper is used, the best grasping location can often be found at the center of the front of
the product, normal to its surface. Using this assumption, the grasp pose of each product is directly
linked to the pose of each product, and so the grasp pose estimation and product pose estimation can
be done together. To obtain the product poses, the bounding boxes of the product detector in combi-
nation with the depth data from the realsense camera are used. These product poses consist of two
parts, namely a position (x, y, z) and an orientation (θ, ϕ, ψ). Both are estimated separately. The entire
grasp pose estimation module is visualized in Figure 4.1.

Figure 4.1: visualization of the grasp pose estimation. The detection from the RGB image is used to obtain the depth data of
the product, which is then used for the position and orientation estimation. The orientation estimation is done by calculating the

pointcloud of the product, which is done by randomly sampling from the depth data to speed up the calculation.

4.1. Position Estimation
To obtain the position of each product, the distance relative to the camera is estimated by using the
median value of the depth bounding box. The camera pinhole model is then used to estimate the
Cartesian coordinate of a pixel in the image. The equation that shows how a Cartesian coordinate is
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converted into pixel coordinates is shown in Equation 4.3:

s ∗ us ∗ v
s

 = K

xy
z

 (4.1)

where u and v are the pixel coordinates, s is a scaling factor, K is the camera intrinsic matrix and x, y,
and z are the position of the pixels in the 3D world. The camera intrinsic matrix is shown in Equation 4.2.

K =

fx 0 ox
a fy oy
0 0 1

 (4.2)

where fx and fy are the focal lengths and ox and oy are the optimal center offsets. The position of the
product is estimated by using the center pixels of the bounding box. In combination withK, all variables
are known except s, which can be estimated since z is assumed to be equal to the median distance
of the bounding box. Converting pixels and depth estimations to Cartesian coordinates is shown in
Equation 4.3.

s

xy
z

 = K−1

uv
1

 (4.3)

4.2. Orientation Estimation
The orientation of each product is estimated by calculating the pointcloud that is associated with each
product using the depth bounding boxes and the camera pinhole model, which uses the same equation
as for the position estimation for every pixel in the bounding box, namely Equation 4.3. Because calcu-
lating a pointcloud can be an expensive operation, randomly sampling pixels from the depth bounding
box is done, of which the loss of accuracy and speed increase are quantified in Section 7.2. After
calculating the pointcloud, it is filtered with a band-pass filter on outliers based on the prior knowledge
of product sizes. Since only the front of the products is available and most products have a flat surface,
the θ and ϕ angles can be estimated by fitting a plane on the pointcloud. The third angle, ψ, is of no use
to estimate because a round suction cup gripper is used, and is therefore not estimated. The resulting
orientation estimation is thus [θ, ϕ, 0].



5
Product Tracking

While detecting products and their poses relative to the robot in real-time is a first step towards robust
robotic product grasping in the supermarket, without using the information of already seen detections
during the picking sequence, the closed-loop strategy is not fully exploited. Due to the use of visual
servoing, the robot must be able to relate objects to each other through time. Such temporal reasoning
is essential in enabling the robot to make choices based on all available information of the past and
present. Temporal reasoning is achieved by using a product tracker that keeps track of all detected
products. The goal of the tracker is to keep track of the seen products over time and improve the
accuracy of their positions, orientations, and estimated classes. By refining the product poses and
classifications, the grasp location is also refined through time, increasing the chances of a successful
pick. Moreover, using product tracking can help the robot become less affected by detection errors.
Tracking is therefore important because temporal reasoning enables the robot to spot these errors and
ignore them. When classification errors and positioning errors have a lower impact on the entire sys-
tem, the robot can plan its picking strategy according to more reliable information.

To track all products through time, three major challenges must be overcome. The first challenge lies
in how a single product is tracked through time, which is discussed in Section 5.1. Then, Section 5.2
discusses how the single object tracker can be used for each product in the scene so that all products
can be tracked through time in a multi-object tracker. Finally, Section 5.3 explains how two methods
can be used to overcome the challenge of choosing a product to pick from a set of available desired
products.

5.1. Single-object tracker
The goal of the single-object tracker is to keep track of the classification, score, and pose of the prod-
uct. The considered method for pose tracking is the Kalman Filter [21]. The Kalman Filter uses a linear
state space model to estimate the future positions of the tracked objects. This means that the motions
of the objects are assumed to be linear. After the prediction step, the predicted states of these objects
are updated using the measurements to make the tracking more precise and account for prediction
mistakes. Gaussian distributed noise is used to account for both the mistakes by the linear model and
the measurements. This leads to another assumption of the method, namely that the mistakes by the
linear model and measurements follow a Gaussian distribution.

It is important to note that, as stated in Section 1, the base of the robot does not move, and that, without
intervention by other agents during the picking sequence, the products on the shelf do no not move as
well. Combining these, if the product’s poses are tracked relative to the non-moving base of the robot,
the products do not move even if the arm moves around during the picking sequence. This allows the
use of a simple linear prediction model, and therefore also the use of the Kalman Filter as a tracker,
assuming that the measurement and model mistakes follow a Gaussian distribution. The linear state
space model used to predict the poses of the products is stated in Equations 5.1, 5.2, 5.3, 5.4, and 5.5.
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x = [x, y, z, θ, ϕ, ψ] (5.1)

x[i+ 1] = Ax[i] +Bu[i] (5.2)

where

A =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.3)

B =
[
0 0 0 0 0 0

]
due to u = 0 (5.4)

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.5)

The predict and update functions of the Kalman filter estimate the future poses of the products and up-
date these predictions based on the new detections, respectively. The prediction functions are stated
in Equations 5.6 and 5.7, while the update functions are stated in 5.9, and 5.10. Equation 5.8 states
how the Kalman gain is derived.

x̂ = Ax (5.6)

Σ̂ = AΣA⊺ +Q (5.7)

K = Σ̂H⊺(HΣ̂H⊺ +R)−1 (5.8)

x = x̂+K(z − (Hx̂)) (5.9)

Σ = (I −KH)Σ̂ (5.10)

with z = detection, R = measurement variance and Q = process variance

To track the classification and the score of the product, the single-object tracker counts the number of
times a measurement contains a certain class and computes the mean score of each of the classes
that have been measured. The classification that has been measured most often is considered to be
the classification of the tracked product. The score of the product is the mean score that is associated
with the most occurring class. Section 6.5.3 provides details on the implementation of the classification
and score tracking.
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5.2. Multi-object tracker
Tracking one object through time is done with the use of a Kalman Filter. Tracking multiple objects
through time therefore requires the use of multiple Kalman Filters, one for each object. Each time step,
all detected poses must be assigned to a Kalman Filter that tracks them through time. The assignment
must be correct because the assigned pose is used in the Kalman Filter as a measurement for the
update function.

The Hungarian algorithm [24] is used to assign the detected poses to Kalman filters. The costs in
the Hungarian algorithm determine how the detections are assigned to the Kalman Filters. The dis-
tance between the positions of the detections and the predicted state of the Kalman Filters is used as
the cost for assignment. If a detection is not assigned to a Kalman Filter, a new filter is created to keep
track of that detection and the following detections. If a Kalman Filter does not receive an assigned
detection, the update function is not called. If a Kalman Filter does not get assigned a new detection
for multiple consecutive time steps, it gets removed from the multi-object tracker and therefore this
object is no longer kept track of. Further details on the implementation of the multi-object tracker are
in Section 6.5.

5.3. Product Choosing
Product choosing is required to grasp a desired product from a supermarket shelf where it is likely that
multiple desired products reside. Choosing what product to pick is done in two ways, which are tested
in Section 7.3.3. The first method selects the single-object track, described in Section 5.1, that has the
most measurements that classify this track as the desired product class. The second method selects
the single-object track that is classified as the desired product class and has the highest mean score.
The implementations of both methods are discussed in Section 6.5.4



6
Implementation

6.1. Pipeline
To integrate all modules in the robot’s system, three ROS nodes are made that implement the modules
discussed in the previous sections. These three nodes work together with two other already imple-
mented nodes, namely the realsense camera node and the Optimization Fabrics [40] node that is used
to generate a collision-free trajectory to the desired grasping pose. The integration in ROS is visualized
in Figure 6.1.

Figure 6.1: shows the ROS pipeline, visualizing the ROS nodes and the topics they use to communicate with each other. The
blue ROS nodes are proposed by this thesis, the orange ROS nodes are existing nodes. The grey boxes represent ROS topics
that are used to communicate between nodes. Red and green arrows indicate outgoing and incoming messages, respectively.

6.2. Dataset
The proposed Albert Heijn Supermarket dataset is split into three separate sets: a train, a validation,
and a test set containing 816, 230, and 120 images, respectively. The splitting is done randomly and
the splits are checked manually on whether the product classes are evenly distributed. These splits
are important for the successful training of an object detector. The train and validation splits are used
to train the model and to validate how well it works on unseen data. The validation set can be used

20
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to detect overfitting during training and to tune the object detection model’s hyperparameters to try to
increase its performance. The test set is used after training as a final test, to test the models on how
well each of their tunings works on unseen data.

The SKU-110K dataset that is used to train the object detector is augmented because the dataset con-
tains images at a fixed distance from the shelf and the object detector must be able to detect images at
various distances from the shelf. To simulate the camera being at different distances from the shelves,
cropping and resizing on the images were done. The resulting dataset is referred to as the SKU-110K-
VS dataset. Examples from both the SKU-110K and SKU-110K-VS dataset are shown in Figure 6.2.

Figure 6.2: shows examples from the SKU-110K dataset and the SKU-110K-VS dataset. The top images are from the original
SKU-110K dataset, while the bottom images are the same images, but then from the SKU-110K-VS dataset, augmented to

have images from various distances to the shelf.

6.3. Detection
The YOLOv6 models [25], chosen as the most viable object detectors for the product detection task,
must be trained on the Albert Heijn Supermarket dataset to detect products. The details regarding the
training and pre-training on the SKU-110K and SKU-110K-VS datasets are discussed in Section 6.3.1.

Moreover, during inference, optimization steps are undertaken and fine-tuning is done to optimize the
detection performance during the picking sequence. The details regarding these steps are stated in
Section 6.3.2.

6.3.1. Training Details
Many hyperparameters must be tuned when training object detectors. Each model is trained for 200
epochs with a patience of 10 epochs, which means that training is stopped early if no improvement
has been observed on the validation set for 10 epochs or more. Mosaic data augmentation is used, to
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make detections less dependent on context [6]. Other data augmentation includes color adjustment by
adjusting HSV values, left-right image flipping, and translating images. Adam [22] is used as the opti-
mizer. Training is done on a computer with an NVIDIA GeForce RTX 2080Ti GPU with a batch size of 8.

Also, to transfer the models from the source (SKU-110K or SKU-110K-VS) domain to the target (Albert
Heijn Supermarket) domain, fine-tuning is done after training on the SKU-110K(-VS) dataset. Fine-
tuning is done either by training with frozen layers or without frozen layers. To determine the best
transfer method, the number of frozen layers during training is varied between 3, 5, 7, and 9 frozen
layers. The results are shown in Section 7.1.2.

6.3.2. Inference Details
To ensure minimum reliability of the detection results, non-maximum Suppression (NMS) is used after
inference to consider only the highest-scoring detections and suppress the other proposed products by
looking at how much overlap there is between proposals. Class-agnostic NMS and intra-class NMS are
both implemented and tested in Section 7.1.3. Class-agnostic NMS suppresses the bounding boxes
only based on their overlap, independent of the associated class with the bounding box. Intra-class
NMS only suppresses bounding boxes that have the same class and more overlap than the threshold.
Section 7.1.3 shows the effect of both non-maximum suppression methods on mAP on the Albert Heijn
Supermarket test set, while Section 7.3 shows the effect of both methods on the grasp success. A
visualization of the use of NMS is shown in Figure 6.3.

Figure 6.3: shows the effect of Non-Maximum Suppression on product detection during Inference. The left image shows an
IoU threshold = 0.1, the middle image shows an IoU threshold = 0.7, and the right image shows an IoU threshold = 0.99. From

right to left it can be seen that fewer proposed bounding boxes remain.

Furthermore, to maintain a high detection performance while moving to the shelf, rotation compensa-
tion of the robot arm is applied to the images of the camera. With this, the orientation of the products
in the image stays aligned with the bounding boxes proposed by the object detector. Tests are done
in Section 7.3 to verify the use of rotation compensation in the product grasping pipeline. Figure 6.4
shows the effect of rotation compensation during inference.

The workings of the ROS node that implements the product detection node are shown in Algorithm
1. The node implements the YOLOv6 detector with non-maximum suppression, along with rotation
compensation for the Franka Emika Panda arm on the images.

Algorithm 1 Detection ROS node
1: if realsense camera image available then
2: Rotate image according to transform of robot arm to robot base
3: Predict bounding boxes for rotated image with NMS
4: Rotate bounding boxes according to inverted transform of robot arm to robot base
5: Publish resulting bounding boxes, classification, and score
6: end if
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Figure 6.4: shows the effect of rotation compensation on product detection during Inference. The left images are not
compensated, and the right images are. The upper images show a rotation of approximately 30°, while the lower images show
a rotation of approximately 45°. Between left and right it can be seen that some products do not get detected at all on the left
and that those that get detected have overestimated bounding boxes due to the rotation. Rotation compensation mitigates both

problems.

6.4. Pose estimation
The inner workings of the ROS node that implements the pose estimation for each detection are shown
in Algorithm 2. This node also performs the pose transformation from the camera frame to the robot
base frame necessary for the tracker, as mentioned in Section 5.1.

Algorithm 2 Pose Estimation ROS node
1: if detection data available then
2: for all detection in detections do
3: Estimate distance detection with median of depth bounding box
4: Estimate position with camera pinhole model, bounding box center, and median of depth data
5: Randomly sample depth data for pointcloud calculation
6: Calculate pointcloud of detected product from sampled points
7: Filter pointcloud on outliers via band-pass
8: Estimate orientation product with pointcloud by using plane fit
9: Transform the estimated pose from camera frame to base frame
10: Publish resulting transformed poses, classifications, and scores
11: end for
12: end if

6.5. Multi-Product Tracker
The detected products are assigned to a track using the Hungarian Algorithm [24] that uses the dis-
tances between poses of the tracks and the detections as costs. Details on how the assignment is done
are stated in Section 6.5.1. Then for each track, a Kalman Filter [21], as described in Section 5, is used
to track the pose of the product through time. The Kalman Filter, however, requires the variances that
describe the Gaussian noise of the model and measurements. How these are determined is explained
in Section 6.5.2. Next, Section 6.5.3 describes how the classifications and scores of each track are
tracked. Finally, a tracked product must be chosen from the set of tracked products that are of the
desired product class. Section 6.5.4 explains the details of the product-choosing implementation. The
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ROS node that implements the product tracker is shown in Algorithm 3.

Algorithm 3 Tracker ROS node
1: if product pose data available then
2: Update Multi-object tracker with all detected products
3: Choose a product to pick
4: if Chosen Product != None then
5: Publish grasp location
6: end if
7: end if

6.5.1. Detection assignment
To assign the detection to the tracks, the Hungarian algorithm [24] is used. The algorithm is used
to solve assignment problems by minimizing cost. In the case of assigning the detections to existing
tracks that means that the distance between the pose of the detections and the pose of the current
tracks has to be minimized. The implementation of the assignment algorithm is shown in Algorithm 4,
where each detection represents a detected product with pose, classification, and score.

Most noteworthy is that the algorithmmakes use of two hyperparameters, namely themax_skipped_frames
and distance_threshold parameters. The max_skipped_frames parameter determines how long each
product is tracked. If it is set to 60, for example, and the tracker operates at 30 Hz then each object will
be tracked for 2 sec if the track gets no new detections assigned. The distance_threshold parameter
determines whether the detection and its assigned track are close enough to be considered the same
product. If the distance is too large, the detection will not be assigned to the track and will get a separate
new track since it is assumed that it is a newly detected product. The track will have no measurement
in this frame and will therefore have its skipped_frames incremented with 1.

6.5.2. Kalman Filter tuning
The Kalman Filter has two variances that must be tuned for it to make accurate estimations: the mea-
surement variance R and the process variance Q, stated in Equations 5.8 and 5.7. These variances
are associated with how accurate the detections and state space model are respectively.

First, the measurement variance is estimated by measuring the variance of the pose estimation at a 50
cm distance. This is a simplification of the real measurement variance since the pose variance depends
on the distance of the product to the camera, which is shown in Section 7.2.

Estimating the process variance, however, is more difficult. The process variance is associated with
how well the state space model represents the actual behavior of the positions of the products. Since
measuring it includes the measurement noise as well, the process variance is hand-tuned until a de-
sirable tracking performance is reached. Desirable tracking performance means that the Kalman Filter
can track the product poses through time even when False Positives or localization errors occur. Un-
desired tracking performance is especially visible when the initial state of the product is wrong due to a
wrong detection. Then the state of the Kalman Filter is updated slowly to the correct state. The process
variance is tuned to where the Kalman Filter updates well enough to account for initial state mistakes
but also can ignore measurement errors after initializing the Kalman Filter.

6.5.3. Class and Score tracking
Each track as described in Algorithm 4 consists not only of a pose but also a classification, occurrence,
and score. For each track, the number of times the track has been classified as a specific class is
tracked in the occurrence parameter, and the mean score of that specific class is tracked in the score
parameter. The most occurring class is stored in the classification parameter. Algorithm 5 describes
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Algorithm 4 Update Multi-product Tracker
1: if length of tracks = 0 then
2: for all detection in detections do
3: Create a new track with detection
4: Append new track to tracks
5: end for
6: end if
7: if length of detections > 0 then
8: Create an empty array dists
9: for all track in tracks do
10: Calculate the Euclidean distance between detections and track
11: Append the calculated distance array to diss
12: end for
13: Apply the Hungarian algorithm to find the optimal assignments of detections to tracks using dists
14: Create an empty list true_assignments
15: for all assignment pair in assignments do
16: if distance assignment pair < distance threshold then
17: Append assignment pair to the true_assignments list
18: end if
19: end for
20: for all track, detection in true_assignments do
21: Update the track’s Kalman Filter with detection
22: Set track.skipped_frames to 0
23: end for
24: for all detection in detections do
25: if detection is not in assigned then
26: Create a new track
27: end if
28: end for
29: for all track in tracks do
30: Increment track.skipped_frames by 1
31: end for
32: end if
33: for all track in tracks do
34: if track.skipped_frames < max_skipped_frames then
35: Predict the next position using Kalman Filter
36: else
37: Delete track
38: end if
39: end for
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how the new detection is added to the track in terms of classification and score. To update the score
for the track, the new mean score is calculated with the current mean score and the new score of the
assigned detection. The score update function is shown in Equation 6.1.

track_scorei = (track_scorei−1 + detected_score)/(track_occurrencei−1 + 1) (6.1)

Algorithm 5 Classification and Score tracking
1: for all tracked_classification in tracked_classifications do
2: if classification == tracked_classification then
3: Increment classification.occurrence by 1
4: Update mean score
5: Tracked = True
6: end if
7: end for
8: if Tracked != True then
9: Append classification to tracked_classifications
10: classification.occurrence = 1
11: classification.score = score
12: end if

6.5.4. Product Choosing
Selecting the right product to pick is an important aspect of the picking process. The shelves in su-
permarkets are always stacked with multiple items of the same category next to each other, of which
only one must be picked. Two methods of picking products are proposed: based on the number of de-
tections (’occurrence’ parameter) and based on the mean score of the detections (’score’ parameter).
Algorithm 6 shows how the product is chosen for picking.

Algorithm 6 Choose product
1: if Product already chosen then
2: if Chosen product is tracked then
3: return track of chosen product
4: end if
5: end if
6: Create an empty Occurrence list
7: Create empty Scores list
8: for all Track in Tracks do
9: if Track.classification == desired product then
10: Append track.occurrence to Occurrences list
11: Append track.score to Scores list
12: end if
13: end for
14: if Occurrences list is not empty then
15: if Occurrence based product choosing then
16: return track with maximum occurrence
17: else
18: return track with maximum score
19: end if
20: else
21: return None (no product tracked with the desired classification)
22: end if



7
Experiments

This section covers the experiments done to verify the methods described in Sections 2, 3, 4, and 5
and the implementation of the methods described in Section 6. Section 7.1 explains what experiments
are done regarding the product detection in isolation, and shows their results. Section 7.2 discusses
the experiments and results of the product grasp pose estimation in isolation. Finally, Section 7.3
performs an ablation study of all described modules by performing real-world experiments with the en-
tire proposed product grasping pipeline in the robot described in Section 1.3.

7.1. Dataset and Product Detection
This section evaluates the performance of the trained YOLOv6models on the test set of the Albert Heijn
Supermarket dataset. All models are trained according to the training details described in Section 6.3.1,
and their performance is measured in terms of mean Average Precision (mAP), as described in Section
3.2.

As stated in Section 2, it cannot be directly measured whether the Albert Heijn Supermarket dataset
contains enough data. The effect of pre-training on the performance of the models, however, can give
insight into whether the proposed dataset contains enough data. Therefore the YOLOv6 [25] models
are pre-trained on either the SKU-110K [16] dataset or the augmented SKU-110K-VS dataset, as stated
in Section 6.2. Section 7.1.1 and Section 7.1.2 indicate that training solely on the Albert Heijn Super-
market train set does not yield the highest mean Average Precision (mAP) for both localizing products
and localizing and classifying products.

Additionally, YOLOv6 models with different fine-tuning methods after pre-training are tested, and differ-
ent non-maximum suppression (NMS) tunings are explored. Section 7.1.2 concluded that pre-training
on the SKU-110K dataset and fine-tuning with 0 frozen layers results in the highest mAP for all model
sizes (nano, small, medium, and large). Section 7.1.3 showed that there is no clear difference in the
use of class-agnostic or intra-class NMS and that IoU thresholds ranging from 0.3 to 0.7 result in equal
performance in terms of mAP. An IoU threshold of 0.1, however, suppresses too many bounding boxes
and therefore results in a lower mAP.

7.1.1. Localization Results
The goal of the localization test is to quantify how well the trained models can localize products on the
shelves of the Albert Heijn Supermarket without fine-tuning. The classes of the products are therefore
not considered during this test. This gives insight into how well pre-training on either the SKU-110K or
SKU-110-VS might impact the localization performance of the detector. Also, it indicates whether the
Albert Heijn Supermarket, the SKU-110K, and SKU-110K datasets are alike. Three models are trained
according to the details in Section 6.3.1. One set of models is trained on the SKU-110K dataset, one
on the SKU-110K-VS dataset, and one on the Albert Heijn Supermarket dataset. The tests are done

27
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on the test sets of the SKU-110K, SKU-110K-VS, and Albert Heijn Supermarket datasets. The classes
of the products in the Albert Heijn Supermarket test set are not considered.

Unsurprisingly, the models that are trained on the SKU-110K dataset perform best on the test set
of the SKU-110K dataset, as shown in the upper plots in Figure 7.1. Similarly, the models trained
on the SKU-110K-VS dataset perform best on the test set of the SKU-110K-VS dataset, visualized
in the middle plots of Figure 7.1. The localization test on the Albert Heijn Supermarket dataset test
set (bottom plots), however, shows that the models trained on the SKU-110K and the SKU-110K-VS
datasets outperform the models trained on the Albert Heijn Supermarket dataset in localizing products
on the shelf, showing that there is a possible performance gain to be made by pre-training on the SKU-
110K and SKU-110K-VS datasets. The models trained SKU-110K-VS dataset perform best on the
Albert Heijn Supermarket dataset test set, showing that the visual servoing data augmentation seems
to help the object localization performance. Because of this performance gain it can also be concluded
that the Albert Heijn Supermarket dataset does not contain enough data to perform best in localizing
products in the Albert Heijn supermarket.

Figure 7.1: shows the product localization results. The left image shows the mean Average Precision (mAP) with an IoU
threshold=0.5, while the right image shows the average mAP for IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05.
The line color represents a YOLOv6 model trained on a specific dataset. The letters (n, s, m, and l) represent the different

model sizes. The upper plots show test results on the SKU-110K test set, where it can be seen that the models trained on the
SKU-110K dataset perform best. The middle plots show test results on the SKU-110K-VS test set, where it can be seen that

the models trained on the SKU-110K-VS dataset perform best. The bottom plots show test results on the Albert Heijn
Supermarket dataset, where it can be seen that models trained on the SKU-110K and SKU-110K-VS datasets outperform the
models trained on the Albert Heijn Supermarket dataset. The models trained on the SKU-110K-VS dataset perform best,

indicating that visual servoing data augmentation positively impacts localization performance.

7.1.2. Fine-tuning Results
The goal of this test is to discover what training method can reach the highest mAP on the Albert Heijn
Supermarket test set. Five fine-tuning strategies are studied, fine-tuning without freezing any layers
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and fine-tuning with 3, 5, 7, and 9 frozen layers. Pre-training is done on either the SKU-110K dataset
or the SKU-110K-VS dataset, and fine-tuning is done on the Albert Heijn Supermarket dataset.

The results for pre-training the YOLOv6models on the SKU-110K or SKU-110K-VS and then fine-tuning
with or without frozen layers on the Albert Heijn Supermarket dataset are shown in Figure 7.2. Interest-
ingly, training the model on the SKU-110K dataset and then fine-tuning the model on the Albert Heijn
Supermarket dataset seems to be the best option. Pre-training on the SKU-110K-VS dataset does not
yield the best performance, but does seem to increase mAP50 for the nano and the large model, and
mAP50_95 for the large model as well. As can be seen in both sub-figures, the mediummodel performs
best on both mAP50 and mAP5_95, which might be due to the size of the Albert Heijn Supermarket
dataset. If the supermarket dataset were larger, the large model might have been able to learn more.

Therefore the conclusion can be drawn that the Albert Heijn Supermarket dataset does not contain
enough data to successfully train larger models. Furthermore, because transfer learning increased
the performance of all model sizes on the test set of the Albert Heijn Supermarket dataset, it can be
concluded that the proposed Albert Heijn Supermarket dataset is not diverse enough to achieve the
best-performing model. This answers the question stated at the end in Section 6.2 regarding dataset
diversity and model performance.

Additionally, the results show that training with more than 3 frozen layers quickly leads to a decrease in
performance. Only the small model pre-trained on the SKU-110K-VS dataset managed to outperform
the fine-tuning method where no layers were frozen by training with 3 frozen layers. Despite this, the
best method to train seems to be with pre-training on the SKU-110K dataset and then fine-tuning on
the Albert Heijn Supermarket dataset without frozen layers.

Figure 7.3 summarizes the best models of each size, where it can be seen that the medium-sized model
performs best. This model is therefore used as product detector in the product grasping pipeline.
While the mean Average Precision (mAP) metric is useful in determining the model performance, it
still averages over all classes in a dataset, and might not capture how well the model will perform on
the final task, namely enabling the product grasping pipeline to grasp all desired products successfully.
Therefore the product detector is further evaluated in Section 7.3.1, where it is tested whether the best
model enables the product grasping pipeline to pick all desired products.

7.1.3. Non-maxiumum Suppression Tuning
The goal of this test is to find what non-maximum suppression (NMS) tuning makes the product detec-
tor detect the products on the shelves of the Albert Heijn the best. Tests are again done on the Albert
Heijn Supermarket test set, and the performance is measured using mean Average Precision (mAP).
Class-agnostic NMS and intra-class NMS are tested, as well as different IoU thresholds for the NMS.
The YOLOv6 models used for evaluation are pre-trained on the SKU-110K dataset and then fine-tuned
without frozen layers on the Albert Heijn Supermarket dataset, which reached the highest mAP in the
tests conducted in Section 7.1.2.

The results of the test that compares class-agnostic NMS with intra-class NMS are shown in Figure
7.4. The mAP is not influenced by either, so based on that both methods can be used equally well in
the product grasping pipeline. Also, the effect of the IoU threshold on the mAP is shown in Figure 7.5,
where a threshold of 0.7, 0.5, 0.3, and 0.1 are tested. If the threshold becomes too low (0.1), the NMS
suppresses too many boxes, resulting in a performance drop. The difference between an IoU threshold
of 0.7, 0.5, and 0.3 is not significant, and therefore either can be used.

7.2. Grasp Pose Estimation
This section tests the accuracy and speed of the grasp pose estimation. The goal is to discover the ac-
curacy and speed of the pose estimation. Random sampling introduces a trade-off between the two for
the orientation estimation, and therefore the best sampling method must be determined. Section 7.2.2
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Figure 7.2: shows test results of the fine-tuned models on the Albert Heijn Supermarket test set. It can be seen that for each
model size, pre-training with the SKU-110K dataset and then fine-tuning with 0 frozen layers is best. The left plot shows the
mean Average Precision (mAP) with an IoU threshold=0.5. The right plot shows the average mAP for IoU thresholds ranging
from 0.5 to 0.95 in increments of 0.05. From top to bottom, the plots show results of the different model sizes, ranging from

’nano’ to ’large’. In each plot, the bars are sorted on their mAP from left to right. The bar color indicates what dataset is used to
pre-train the model. The numbers in the bars, if pre-training is applied, represent the amount of frozen layers during training.

Figure 7.3: shows for each model size the model with the highest mAP on the Albert Heijn Supermarket test set. The medium
model performs best based on mAP50 and mAP50_95 and is therefore used as the product detector in the product grasping
pipeline. The left plot shows the mean Average Precision (mAP) with an IoU threshold=0.5. The right shows the average mAP
for IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05. In each plot, the bars are sorted on their mAP from left to right.
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Figure 7.4: shows the effect of using class-agnostic NMS or intra-class NMS on the YOLOv6 models pre-trained on the
SKU-110K dataset and fine-tuned on the Albert Heijn Supermarket dataset. The line colors indicate what NMS method is used.
The left plot shows the mean Average Precision (mAP) with an IoU threshold=0.5. The right plot shows the average mAP for
IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05. The letters (n, s, m, and l) represent the different model sizes.

Figure 7.5: shows the results of predicting with different IoU thresholds for the NMS. The tests are done with the YOLOv6
models pre-trained on the SKU-110K dataset and fine-tuned to the Albert Heijn Supermarket dataset with class-agnostic NMS.

The line colors indicate different IoU thresholds. The left plot shows the mean Average Precision (mAP) with an IoU
threshold=0.5. The right plot shows the average mAP for IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05. The

letters (n, s, m, and l) represent the different model sizes.
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concludes that randomly sampling 125 points per bounding box is enough to obtain an orientation that
is accurate enough to pick products. Section 7.2.1 shows that the use of the median for the distance
estimation is most stable and that an underestimation of the bounding box improves the position esti-
mation. The same conclusion follows from Section 7.2.2 for the orientation estimation. Therefore, each
bounding box is reduced in size by 50% during inference, to ensure that overestimation is unlikely to
occur, and to make underestimation more likely to occur. Lastly, both Section 7.2.1 and 7.2.2 conclude
that the pose estimation improves as the camera comes closer to the product. This finding therefore
supports the use of visual servoing to refine product poses during the picking sequence. All these tests
are done on objects with a flat surface. Appendix A shows the results for these tests on objects with a
round surface.

All tests are done by taking 100 measurements and calculating the mean and standard deviation of
the predictions. A schematic of the test setup is shown in Figure 7.6.

Figure 7.6: shows a schematic top view (left) and a side view schematic (right) of the test setup for the grasp pose estimation.
The red object denotes the test at 30 cm from the camera, orange object denotes the test at 100 cm from the camera. Both
round and flat objects are tested, as well as the impact of different angles with respect to the camera denoted as θ and ϕ.

7.2.1. Distance estimation results
The goal of this experiment is to discover how accurate the distance estimation of the products is, and
what can be done to improve the accuracy of the estimation. Since the product detector, as described
in Section 3, does not always produce perfect bounding boxes, the effect of over- and underestimation
of the bounding boxes on the distance estimation is studied. The distance estimation is done via the
median of the depth bounding box. A comparison with the mean of the depth bounding box is shown
in Figure 7.7, from which it can be concluded that the use of the median is more stable to variations of
the bounding box size.

Figure 7.7: shows the results of the distance estimation with the mean and or the median of the depth bounding box 30 cm
(left) and 100 cm (right). It can be seen that the mean becomes unstable when the bounding box is overestimated, and

therefore the median is used for the distance estimation. The x-axis shows the bounding box over- or underestimation factor;
The y-axis shows the mean with 95% confidence interval (±1.96σ) in mm. ϕ = 0°during this test.

The accuracy of the median distance estimation is tested by looking at how accurate the measured
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distance of a flat object is with regard to the known distance at both 30 cm and 100 cm from the cam-
era. The orientation of the object with regard to the camera is also changed to see its impact on the
distance estimation. θ is changed from 0°to 45°in steps of 15°. Figure 7.8 shows the results of the
distance estimation. The mean prediction of the 100 measurements along with a confidence interval
of 95% is shown.

First, the test at 30cm (the left plot in Figure 7.8) shows that overestimation of the bounding box has
the largest impact on both the offset and the confidence interval of the results, making the distance
estimation less accurate. Underestimation, however, seems to have a slight positive impact on the
distance estimation under various θ angles. This is likely because underestimation, when for example
θ = 45°, leads to the pointcloud only containing points of the product, and not of the surroundings. The
constant offset of roughly 4 mm that is visible in the test at 30 cm is likely due to a measurement error
in the test setup, and not because of the used distance estimation.

Next, the test at 100 cm (the right plot in Figure 7.8) shows that the distance estimation becomes less
accurate as the distance is increased. The effect of θ on the distance estimation is greater, as it can be
seen that the offset increases as θ is increased. This is likely because the bounding box is a lot smaller
at 100 cm than at 30 cm, thus having a larger impact on the median value. After all, there are fewer
pixels to take the median from. The constant offset of 10 mm at θ = 0 is likely due to measurement
errors in the test setup.

In conclusion, Figure 7.7 showed that the median is more stable to variations of the bounding box
size, and is therefore used to estimate the distance. Additionally, Figure 7.8 showed that the distance
estimation has a smaller confidence interval when the bounding box is underestimated because fewer
environmental pixels are considered in the estimation. The position estimation is therefore done by
resizing the bounding box to half its size. This makes overestimation unlikely to occur during inference
and can help increase the accuracy of the distance estimation during inference.

Figure 7.8: shows the distance estimation results for a flat object at a distance of 30 cm (left) and 100 cm (right). The x-axis
shows the bounding box over- or underestimation factor; The y-axis shows the mean with 95% confidence interval (±1.96σ) in
mm. Each line represents θ in degrees with respect to the camera. ϕ = 0°during this test. Left and right it can be seen that
underestimation improves the confidence interval and on the left, it also lowers the offset in the distance estimation. The

constant offset of 4 mm is likely due to a measurement error in the test setup. The constant offset on the right of 10 mm is likely
due to a measurement error in the test setup.

7.2.2. Orientation estimation results
The goal of this section is to measure how accurate the orientation estimation (θ and ϕ) is, and what can
be done to improve the accuracy of the estimation. Furthermore, the effect of random sampling points
on the accuracy and run-time of the orientation estimation is studied. Similar to the distance estimation,
the effect of over- and underestimation of the bounding boxes on the orientation estimation is studied.
The ground truth θ and ϕ are measured by hand and then compared to the estimated angles. Tests
are done for flat objects at 30 cm and 100 cm where ϕ = 0° and the θ angle is varied similarly to the
distance test. The same test is done at approximately 30 cm with ϕ = 45°. The results of the θ and ϕ
estimations where all points are used are shown in Figure 7.9 and Figure 7.10 respectively. Thereafter,
a comparison is done between estimating the orientation with all points against randomly sampling
1000, 500, 250, or 125 points. Figure 7.11 and Figure 7.12 show the effect of random sampling on the
accuracy of θ and ϕ respectively. Figure 7.13 shows the effect of random sampling on the estimation
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time. Again, each test shows the mean of 100 measurements along with a confidence interval of 95%.

Figure 7.9: shows the theta estimation results for a flat object at a distance of 30 cm with ϕ = 0° (left), 100 cm with ϕ = 0°
(middle), and 30 cm with ϕ = 45° (right) where the theta angles are different due to the displacement of the camera.

Overestimation increases the confidence interval as well as the offsets of the estimation. The larger distance also negatively
impacts the confidence interval and the offset. The x-axis shows the bounding box over- or underestimation factor; The y-axis
shows the mean with 95% confidence interval (±1.96σ) in degrees. Each line represents theta in degrees with respect to the

camera.

Figure 7.10: shows the phi estimation results for a flat object at a distance of 30 cm with ϕ = 0° (left), 100 cm with ϕ =
0°(middle), and 30 cm with ϕ = 45°(right). At 30 cm, overestimation increases the confidence intervals of the estimation. At
100 cm, the offsets are increased. When ϕ = 45°, it can be seen that overestimation increases the offset. Also, the theta

angles are different due to the displacement of the camera. The x-axis shows the bounding box over- or underestimation factor;
The y-axis shows the mean with 95% confidence interval (±1.96σ) in degrees. Each line represents theta in degrees with

respect to the camera.

At all distances and tested angles for θ and ϕ, it can be seen that bounding box overestimation leads
to a performance decrease in terms of offset and confidence interval. Underestimation of the bounding
box seems to improve the theta estimation, especially visible in the test with ϕ = 45°. Also interesting
is that the confidence intervals and offsets are a lot smaller in the θ tests at 30 cm than in the tests at
100 cm. The offset for the ϕ estimation seems to grow as θ is increased. This effect is smaller in the
test at 100 cm, yet both the offset and confidence interval in that test are larger. In the test at 30 cm,
where phi = 0°, it can be seen that overestimation has an impact on the offset of the estimation of ϕ.
Again, underestimation seems to improve the confidence interval, especially when θ is increased. In
the test at 30 cm where phi = 45°, it can be seen that underestimation lowers the offset significantly in
comparison to overestimation.

From this it can be concluded that the θ and ϕ estimations perform better as the product is closer to the
camera. Additionally, bounding box underestimation seems to improve both estimations. Therefore the
orientation estimation is done by resizing the bounding box to half its size. This makes overestimation
unlikely to occur during inference and can help increase the accuracy of the distance estimation during
inference.

Figures 7.11 and 7.12 show that the confidence interval increases when less randomly sampled points
are used to estimate the product orientation. The confidence interval when sampling 125 points with
underestimation at 30 cm for θ is 4.5 times asmuch and for ϕ 3.3 times asmuch. While this is significant,
the error that may occur is then still bounded to ±1° for θ and ±0.5° for ϕ, which will not influence the
grasp success, as will be demonstrated in Section 7.3.2. At 100 cm, the difference between sampling
points and using all points for orientation estimation is not significant. Therefore, it can be concluded
that random sampling points for the orientation estimation maintain a tolerable accuracy of the orienta-
tion estimation.



7.2. Grasp Pose Estimation 35

Figure 7.11: shows the theta estimation results for a flat object at a distance of 30 cm with θ = 0° (left), 30 cm with θ = 45°
(middle), and 100 cm with θ = 0°(right). ϕ = 0 in every plot. The x-axis shows the bounding box over- or underestimation factor;
The y-axis shows the mean with 95% confidence interval (±1.96σ) in degrees. Each line represents the number of sampled

points in the pointcloud, except the ’all points’ line, where no sampling is used. Overestimation increases offset and confidence
interval for all sampling methods, but the confidence interval increases faster for the sampling methods that use fewer points.
Also for underestimation, the confidence interval increases slightly as fewer points are used in the orientation estimation.

Figure 7.12: shows the phi estimation results for a flat object at a distance of 30 cm with ϕ = 0° (left), 30 cm with ϕ = 45°
(middle), and 100 cm with ϕ = 0° (right). θ = 0 in every plot. The x-axis shows the bounding box over- or underestimation
factor; The y-axis shows the mean with 95% confidence interval (±1.96σ) in degrees. Each line represents the number of

sampled points in the pointcloud, except the ’all points’ line, where no sampling is used. Overestimation increases offset and
confidence interval for all sampling methods, but the confidence interval increases faster for the sampling methods that use
fewer points. Also for underestimation, the confidence interval increases slightly as fewer points are used in the orientation

estimation.

Figure 7.13: shows the orientation estimation times when 5 bounding boxes (left), 15 bounding boxes (middle), or 30 bounding
boxes (right) are present in the frame. Random sampling has a large impact on the pointcloud calculation time as using fewer
points leads to a faster calculation time. The achieved speed increase, however, decreases as points are halved, suggesting

that the calculation time converges to a minimum.
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Randomly sampling the pointcloud increases the run-time of the orientation significantly, 3.7-7.3 times
faster when evaluating 30 bounding boxes in one frame and 2.8-4.5 times faster when evaluating 5
bounding boxes in one frame, as shown in Figure 7.13. Using random sampling with 125 points the
orientation estimation takes 13-26 ms, enabling an operation rate of 38 Hz. In combination with the
fact that the accuracy remains similar when underestimating the bounding box, random sampling of
125 points is used in the product grasping pipeline and further tested in Section 7.3.2.

7.3. Ablation Study
An ablation study for the proposed modules and their tuning is done. The goal of the ablation study
is to discover what impact the implementations and the tunings of each module have on the success
of the product grasping pipeline. Each of the tests that are done consists of 10 grasp attempts by the
robot in a supermarket. The 10 grasp attempts are done on 5 different products, of which each covers
a different type of grasping scenario. The success rate SR is used for comparison, which is described
in equation 7.1.

SR = nsuccess/ntotal (7.1)

where nsuccess = the number of successful grasping attempts and ntotal = the number of grasping
attempts. The testing setup of the shelf is shown in Figure 7.15. The five products that the robot must
attempt to grasp are shown in Figure 7.14. Appendix B shows examples of successful grasps for each
of the products.

Figure 7.14: visualizes the 5 products grasped in the pipeline tests. From left to right the products are: ’Brownie’, ’Nasi
Speciaal’, ’Volle Yoghurt’, ’Mais’, and ’Sweet Sour Sauce’.

The ’Brownie’ product is the easiest case. This product occurs once on the shelf, making decision-
making for the robot easy. Furthermore, it is one of the larger products with a flat surface. The ’Nasi
Speciaal’ product is more difficult. Although it only occurs once on the shelf, is quite large, and has
a flat surface, it looks very similar to the product that is located next to it. The ’Volle Yoghurt’ product
is similar to the first two, only a bit narrower, and it occurs twice on the shelf, positioned next to each
other. This setup can test the decision-making of the robot. The decision-making is further challenged
by the ’Mais’ product, which occurs three times on the shelf, is round, relatively small, and two of them
are stacked on top of each other. Finally, the ’Sweet Sour Sauce’ product is small and round, forcing
the detection to be precise about where to pick.

The tuning remains the same in all tests unless stated otherwise. The detector, pose estimation, and
tracking all operate at a rate of 30 Hz and the tracker keeps track of each product for two seconds
without new detections (max_skipped_frames=60). The distance_threshold is set to 0.1, meaning that
measurements are not assigned to a specific track if they are further away than 10 cm, even when
they are assigned to the track by the Hungarian algorithm. The applied non-maximum suppression on
the product detector is class-agnostic with an IoU threshold=0.7, but as stated in Section 7.1.3, IoU
thresholds of 0.3 and 0.5 and intra-class NMS can also be used. The model used as the product de-
tector is the YOLOv6m model pre-trained on the SKU-110K dataset and then fine-tuned to the Albert
Heijn Supermarket dataset. This model yielded the highest mAP on the test set of the Albert Heijn
Supermarket dataset, as stated in Section 7.1.2. The occurrence-based product-choosing method is
used during the tests to choose the correct desired product.
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Figure 7.15: shows the setup of the shelf during all the pipeline tests. Some products have counter-parts in the setup that look
similar to the desired products. Other products have multiple instances of them available to pick, forcing the robot to decide.

Products differ in size and shape to test their influence on the grasp success rate.

If the chosen product is lost (so no detections > 2 sec), the robot tries to choose another product that
is available based on the product-choosing method and the available tracks. This behavior is further
referenced as ’switching’. Additionally, if no other track is available, then the fallback behavior is that the
robot moves toward the last known location of the product it chose and tries to pick blindly. Due to this
fallback behavior, certain grasps can still succeed even if the detection pipeline fails to track any desired
product until the product is picked. In this case, the grasp will still count towards the success rate, but
its observation will be stated. The product detection module is tested in Section 7.3.1. The product
grasp pose estimation module is tested in Section 7.3.2. Section 7.3.3 tests the implementation of
the product tracker. Finally, the use of position-based visual servoing (PBVS) is tested in Section
7.3.4.

7.3.1. Detection
Three product detection tests are performed to discover the influence of non-maximum suppression,
rotation compensation, and model performance on the success of the product grasping pipeline.

For the first test, the effect of non-maximum suppression (NMS) on the grasp success is measured.
The goal is to determine whether using class-agnostic or intra-class non-maximum suppression has
an impact on the success rate of the product grasping pipeline. Non-maximum suppression is used
after inference to consider only the highest-scoring detections and suppress the other proposed prod-
ucts by looking at how much overlap there is between proposals. Class-agnostic NMS suppresses the
bounding boxes only based on their overlap, independent of the associated class with the bounding
box. Intra-class NMS only suppresses bounding boxes that have the same class and more overlap
than the threshold. The results of the tests are shown in Table 7.1.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

Class-agnostic 1 1 0.5 1 1 0.9
Intra-class 1 1 1 1 1 1

Table 7.1: shows the ablation results of using class-agnostic vs intra-class non-maximum-suppression. For both methods, the
intersection over union (IoU) threshold is set to 0.7 (70% overlap). Intra-class NMS increases the success rate slightly.

In the class-agnostic and intra-class non-maximum suppression test, the intra-class tuning showed the
highest success rate. During the test, both methods kept track of a set of desired products at all times
and no fallback behavior was observed. The grasps in which ’Volle Yoghurt’ was the desired product,
however, showed some switching behavior for both the class-agnostic and intra-class settings. The
switching occurred twice in the intra-class setting and once in the class-agnostic setting, in which the
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latter resulted in a failed pick because the switching occurred just before grasping the product. Intra-
class NMS shows slightly better performance in providing detections for the tracker.

The second detection test studies the effect of rotation of the robot arm on the grasp success rate. The
goal is to see the effect of rotation compensation on the grasping success rate. The realsense camera
is mounted on the manipulator, so the camera moves and rotates as the arm moves toward the shelf.
Rotation compensation is used to enable the product detector to detect products under the same ori-
entation, regardless of the position of the manipulator. The test measures the grasp success of the
robot with and without the camera rotation compensation. The results of the test are shown in Table 7.2.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

With Rotation 1 1 0.5 1 1 0.9
Compensation
Without Rotation 1 0 1 0.5 0 0.5
Compensation

Table 7.2: shows the ablation results of using rotation compensation for the orientation of the camera during the picking
sequence. Rotation compensation has a large impact on grasping success. Without rotation compensation, the detector

cannot accurately detect the product, resulting in both localization and classification errors.

The rotation compensation results show a clear pattern. Compensating for the rotation of the arm
makes the grasping pipeline far more reliable. Without the rotation compensation, the picking success
rate drops from 0.9 to 0.5. Not all picking failures, however, are due to the detector not detecting the
products. Observing the output of the detector showed that, apart from a lower detection performance,
the assumption that the grasp location for the products should be in the center of their bounding box
does not hold. The product detector predicts bounding boxes that are upright, and if the products are
rotated, the bounding box center does not align with the product’s center anymore, leading to grasp
failure. This behavior is visible in its failure for the ’Sweet Sour’ product, which is small and therefore
requires a precise grasp pose. Also, the classification between similar products seems to fail when no
rotation compensation is used because the ’Nasi Speciaal’ product got misclassified for both picks.

The third experiment tests the effect of the model performance on the grasp success of the prod-
uct grasping pipeline. The best-performing model in terms of mAP, as concluded from the experi-
ments in Section 7.1.2, is compared to the best-performing model trained without pre-training (YOLOv6
medium model), to capture the influence of pre-training on the grasp success. Furthermore, the worst-
performing model in terms of mAP is tested as well, to confirm that the use of the best model is crucial.
The experiments are summarized in Table 7.3.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

Best 1 1 0.5 1 1 0.9
No pre-training 1 1 1 1 0 0.8

Worst 0 0 0 0 0 0

Table 7.3: shows the ablation results of using other models than the best-performing YOLOv6 model. The worst model is not
capable of detecting products well enough for successful product grasping. The model without pre-training managed to detect

all products except the small ’Sweet Sour’ product, resulting in failed grasps for that specific product.

The worst performing model cannot classify the products accurately enough to obtain any successful
grasps. Either the product was not found, or a product of a different class was picked. The model
without pre-training, however, performed well on most products. However, it was not able to detect
the ’Sweet Sour’ product and therefore failed to pick this product twice. It can therefore be concluded
that mean Average Precision (mAP) can be used as an estimate for how well the product detector can
predict products, and that pre-training actually improves grasp success, and not just the mAP metric.
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Furthermore, the model without pre-training was not able to enable the product grasping pipeline to pick
all desired products. From this, it can also be concluded that the Albert Heijn Supermarket dataset is
not diverse enough to create the best-performing product grasping pipeline. This answers the question
stated at the end of Section 2.1 regarding dataset diversity and product grasping pipeline success.

Next, the impact of the class imbalance, mentioned in Section 2.2, on detection failures is low, because
the lowest occurring object, namely the ’Brownie’ product, has been picked successfully during all tests.
Therefore it can be concluded that the class imbalance of the dataset did not negatively impact the prod-
uct detector enough to lead to grasp failures.

Lastly, Section 2.2 discussed why the challenge of distinguishing similar products from each other
must be included. The ’Nasi Speciaal’ and ’Volle Yoghurt’ products were often picked successfully,
and the occurring failures were not due to mixing up similar products, except when grasping without
rotation compensation. Therefore it can be concluded that the challenge of similarity between products
has been overcome, at least for the set of 36 products in the Albert Heijn Supermarket dataset.

7.3.2. Product Grasp Pose Estimation
The orientation estimation is tested in this section to uncover its effect on the grasp success. Random
sampling 125 points for each pointcloud as described in Section 7.2 is used here. The test setup is
changed slightly, to test the effect of different orientations per product in the shelf. The changes to the
test setup are shown in Figure 7.16.

Figure 7.16: shows the changes to the test setup during this specific experiment. The ”Brownie” object is rotated to
approximately θ = 35°. The ”Nasi Speciaal” and ”Volle Yoghurt” objects are rotated to approximately ϕ = 30°.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

no orientation 1 1 0.5 1 1 0.9
orientation 1 1 1 1 1 1

Table 7.4: shows the ablation results of using orientation estimation and not using orientation estimation. Orientation
estimation increases the success rate slightly.

Using orientation estimation increases the grasp success rate slightly, as can be seen in Table 7.4.
Therefore, as stated in Section 7.2, it can be concluded that the confidence interval of ±1° for θ and
±0.5° for ϕ when using 125 points per pointcloud does not influence the grasp success, because even
when no orientation estimation is used and the angle between gripper and product is off by 35°the grasp
can succeed. The effect of the orientation estimation, however, is evident in Figure 7.17, which shows
the grasps with and without orientation estimation. It can be seen that most grasps are successful
without orientation estimation thanks to the flexibility of the suction cup. If a less flexible gripper is used,
the success rate for the picking without orientation estimation is not guaranteed, and therefore the use
of the orientation estimation is recommended.
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Furthermore, the test where the orientation estimation is used also grasps all round objects success-
fully. Therefore it can be concluded that the orientation estimation also works well enough to enable
successful grasps for products with a round surface.

Figure 7.17: shows grasp examples without orientation estimation (top) and with orientation estimation (bottom). Although
both grasps are successful, the grasp with orientation estimation managed to not deform the product and relied less on the

flexibility of the suction cup.

7.3.3. Tracking and Product Choosing
The product tracking and product choosing, as described in Section 5 and Section 6.5 are evaluated
in this section. The goal is to find the effect of using a product tracker at all, using occurrence- or
score-based product choosing and tracking for 2 or 10 seconds without new detections on the prod-
uct grasping success. No tracking means that while in each frame there still are detections to make
decisions on, the previous detections are not taken into account in that decision. Also, because the
products are not tracked, the robot is forced to choose what product to pick in each frame that products
are detected. Therefore, the occurrence-based product choosing cannot be used, since without track-
ing the occurrences that a product has been detected as a certain class are not counted. The results
of the tests are shown in Tables 7.5 and 7.6.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

Tracking Occurrence based 1 1 0.5 1 1 0.9
Tracking Score based 1 1 0.5 1 1 0.9

No Tracking Score based 1 1 0 1 1 0.8

Table 7.5: shows the ablation results of using a product tracker with score-based and occurrence-based product choosing.
Using no tracking at all has been tested as well. Both product-choosing methods perform equally well. Tracking products with a

Kalman Filter improves the grasp success slightly.

The tracking and product choosing test show that choosing a product based on its occurrences or its
score does not have a significant impact on the overall success of the pipeline. However, the success
rate is decreased without tracking, namely from 0.9 to 0.8. During the experiment without a tracker,
switching and fallback behavior was observed several times. Switching too often can cause grasp fail-
ures, and fallback behavior is undesirable since the robot does not reason about the desired product
anymore. Therefore, it can be concluded that the use of the tracker helps the grasping pipeline succeed
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by allowing the pipeline to make decisions without picking blindly.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

Tracking 2 sec 1 1 0.5 1 1 0.9
Tracking 10 sec 1 1 1 1 1 1

Table 7.6: shows the ablation results of using a product tracker with different max_skipped_frames parameters, allowing
products to be tracked for 2 and 10 seconds without detections, respectively. Tracking for 10 seconds improves the grasping

success slightly.

Tracking for 10 seconds seems to improve the grasp success rate. This is because no switching oc-
curs when tracking for such a long period. Tracking for a longer period without measurements means
that the grasping pipeline becomes more dependent on the choice it makes at the beginning of the
picking sequence. While this improves the success rate of this test, it might not be best to track without
measurements for a longer period. After all, the failure in the case of 2-second tracking is due to a
switch at the end of the picking sequence. The switch occurs because the detector is not able to detect
the product anymore because the gripper is in the way of the camera. A better way to mitigate this
problem would be to lock the product choosing when within a certain range to the desired product, to
ensure that failure because of switching does not occur. Switching is a desired feature that enables
the product grasping pipeline to correct mistakes.

7.3.4. Visual Servoing
This section compares visual servoing, and thus closed-loop control, to choosing a product once at the
beginning and picking blindly after that, known as open-loop control. The goal is to uncover the effect
of visual servoing on the product’s grasping success. Furthermore, the influence of the operation rate
on the grasping success rate during visual servoing is also studied, of which the results are shown in
Table 7.8. The results of the closed-loop vs. open-loop tests are shown in Table 7.7.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

Closed-Loop 1 1 0.5 1 1 0.9
Open-Loop 1 0 1 0.5 0 0.5

Table 7.7: shows the ablation results of using visual servoing (closed-loop) and not using visual servoing (open-loop). Visual
servoing has a large impact on the success of the product grasping pipeline, making it crucial for product picking success.

The difference between open-loop and closed-loop grasping is significant. Open-loop control drops the
success rate from 0.9 to 0.5. The major reason for the failure of the grasping pipeline during open-loop
is due to the distance the detection is performed. Since for open-loop grasping the product detector is
furthest away from the shelf, the classification and localization are more difficult to perform accurately,
leading to grasp failures. When the ’Nasi Speciaal’ product test was performed, another similar prod-
uct to ’Nasi Speciaal’ product was misclassified and the wrong product was picked. The ’Sweet Sour’
product was classified correctly, but slightly misplaced in the world, which must be precise for a small
product like this, which resulted in a grasp failure.

Method Brownie Nasi Speciaal Volle Yoghurt Mais Sweet Sour Total
SR SR SR SR SR SR

30 Hz 1 1 0.5 1 1 0.9
10 Hz 1 1 0.5 0.5 1 0.8

Table 7.8: shows the ablation results of changing the operation rate of the product grasping pipeline. Lowering the operation
rate from 30 Hz to 10 Hz has a negative impact on the grasping success rate, from which it can be concluded that operating at

30 Hz is better.
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The detection operation rate at 30 Hz and 10 Hz shows that the success rate drops slightly as the de-
tection operation rate is lowered. Nevertheless, the grasping pipeline still succeeded 80% of the time.
Switching, however, was observed far more often at 10 Hz than at 30 Hz. Since switching too often
can lead to failures, an operation rate of 30 Hz is more desirable than an operation rate of 10 Hz.

7.3.5. Discussion
The fallback behavior used as a last resort to pick products resulted in pick successes while they would
otherwise have failed. Such behavior, however, can only be used when a human operator is super-
vising the robot and can stop the robot when collision with the environment is inevitable. Therefore,
conclusions based on the fallback behavior success must be taken with caution. Other fallback behav-
ior could be more desirable, like forcing the robot to move back and look again for the product instead
of blindly moving forward. Such behavior makes the robot able to operate more autonomously.

Furthermore, the shelf setup remained the same during all tests. Therefore, the success or failure
cases were often similar and most tests resulted in the same detections, and thus the same movement
of the robot arm, which in turn led to similar decisions. More tests with various locations of the products
could help understand the robustness of the product grasping pipeline even more.

Next, in the current product choosing implementation there is no reasoning about stacked products.
Therefore, the robot might pick the lower products of two stacked products, which is undesirable. Dur-
ing these tests picking lower products counted toward success, but taking stacked products into account
in the decision-making is a necessity for supermarket deployment.

Lastly, the switching and fallback behavior that occurred during the tests is due to the product grasping
pipeline losing track of the product it chose. Most of the time, this happens just before the pick, when
the suction cup of the robot arm is in front of the product. The robot moves slowly at the end of the pick
to ensure precision, yet this also leads to losing track of the desired product if max_skipped_frames is
too low. Simply increasing this parameter might be undesirable, because it can lead to tracks being
tracked for too long. Other solutions might be to increase the speed of the robot arm at the end of the
pick or to lock the product by choosing not to refine the pose anymore and pick blindly after being below
a certain distance threshold to the product, as suggested in Section 7.3.3.
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Conclusion

This section concludes this thesis by summarizing the findings from each section and answers the main
research question from Section 1:

What implementation of robotic skills and combined optimization results in a grasping
pipeline that is best in consistently and robustly grasping desired products from supermarket

shelves in Albert Heijn?

Section 1 stated that three robotic skills, product detection, product grasp pose estimation and
product tracking, must be achieved to realize a product grasping pipeline, and that a new dataset is
necessary to train the product detector. Furthermore, Section 1 stated that each robotic skill and the
dataset had challenges that had to be overcome. These challenges are repeated below:

1. Product detection requires a dataset to train on, which must include the products from the Albert
Heijn supermarket. Such a dataset must contain enough data that represents the Albert Heijn
supermarket to make the product detector succeed at detecting products after training.

2. To achieve the product detection skill, a suitable object detector has to be chosen and trained
to detect the products in the Albert Heijn shelves at a rate of 30-100 Hz for visual servoing.

3. Product grasp pose estimation has to be done to enable the robot to pick the detected products
from the shelves. Like the product detector, the product grasp pose estimation should run at 30-
100Hz for visual servoing but also be accurate enough to make the product grasping pipeline
succeed.

4. Visual servoing and product tracking must be done to keep track of products through time to
account for product detection and product grasp pose estimation mistakes, and changes in the
environment. Again, the product tracker must track the products accurately through time, and at
a rate of 30-100 Hz for visual servoing.

To overcome the first challenge, The proposed Albert Heijn Supermarket dataset is used to train
the product detector in the product grasping pipeline, as discussed in Section 2 and Section 6.2. The
dataset is annotated by hand and consists of 1166 images of a shelf with products labeled with bound-
ing boxes. A total of 36 different products are considered in the Albert Heijn Supermarket dataset.
The product selection consists of sets of products that look similar due to their brand or their type to
incorporate the challenge of distinguishing similar products in the supermarket. Additionally, lighting is
taken into account by having dark and light images, the distance is taken into account by taking images
at distances varying from 20 cm to 100 cm, directions are taken into account by taking pictures with
directions varying from -45°to 45°with respect to the shelf, and product misplacement is taken into ac-
count by shuffling the products on the shelves. Directly verifying whether the dataset contained enough
data was not possible, and is measured indirectly by measuring the performance of YOLOv6 models
trained only on the proposed dataset and comparing them to the same models that are fine-tuned to
the proposed dataset while first being pre-trained on either the SKU-110K dataset or the augmented
SKU-110K-VS dataset.
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Pre-training on the SKU-110K dataset achieved the highest mAP on the Albert Heijn Supermarket test
set, demonstrated in Section 7.1.2. Therefore, it can be concluded that the train set of the Albert Heijn
Supermarket dataset does not contain enough data to achieve the highest mAP on the test set of the
Albert Heijn Supermarket dataset, because pre-training allowed the models to learn other features lead-
ing to a higher mAP compared to the models trained on solely the Albert Heijn Supermarket dataset.
The results of the experiment in Section 7.3.1 show that training solely on the Albert Heijn Supermar-
ket dataset does not yield the highest success rate in the product grasping pipeline. The experiment
compared the YOLOv6 medium model pre-trained on the SKU-110K dataset with the YOLOv6 medium
model without pre-training, where classification errors resulted in a lower success rate for the latter.
From this experiment it can therefore also be concluded that the Albert Heijn Supermarket dataset
alone does not contain enough data to achieve the highest performance. Pre-training on the SKU-
110K dataset and fine-tuning on the Albert Heijn Supermarket dataset, however, proved effective, and
enabled the proposed product grasping pipeline to reach a success rate of 100% in some experiments
from Section 7.3. Consequently, it can be concluded that the Albert Heijn environment and the envi-
ronment in the SKU-110K dataset are similar. To sum up, the Albert Heijn Supermarket dataset does
not contain enough data alone, but when combined with the SKU-110K dataset it enables the YOLOv6
models to detect the products in the Albert Heijn supermarket, which in turn enables the robot to pick
products successfully.

The second challenge is addressed in Section 3 and Section 6.3, that describe how product detection
is achieved. Section 3 and Section 6.3 discuss what object detector is used for the product detector
and how the product detector is implemented, respectively. The experiments in Section 7.1.1 showed
that training a model on the SKU-110K-VS dataset achieved the highest mAP on the Albert Heijn Super-
market test set without taking classification into account. From this, the conclusion can be drawn that
training a model on solely the SKU-110K-VS dataset is best for product localization in the Albert Heijn
supermarket and that augmenting the SKU-110K dataset to simulate visual servoing helps in increasing
model localization performance. However, when the classification task was introduced, Section 7.1.2
showed that pre-training on the SKU-110K dataset achieved the highest mAP on the Albert Heijn Super-
market test set (with product classification). Fine-tuning without freezing any layers yielded the highest
mAP on the Albert Heijn Supermarket test set, compared to training with 3, 5, 7, or 9 frozen layers.
Finally, Section 7.3.1 showed that mean Average Precision (mAP) can indicate the grasp performance
by confirming that the pre-trained YOLOv6 medium model enabled the product grasping pipeline to
achieve a higher success rate than the YOLOv6 medium model that is trained solely on the Albert
Heijn Supermarket dataset.

Furthermore, rotation compensation and non-maximum suppression (NMS) are used to increase the
performance of the product detector. Rotation compensation is used to make the detection perfor-
mance of the product detector independent of the orientation of the manipulator. The experiments
in Section 7.3.1 concluded that the impact of rotation compensation on the success of the grasping
pipeline is large, increasing the success rate from 0.5 to 0.9. Non-maximum suppression (NMS) is
used to suppress predictions with low importance. Experiments in Section 7.1.3 showed that both
class-agnostic and intra-class NMS result in the same mAP on the Albert Heijn Supermarket test set,
while Section 7.3.1 suggests that intra-class NMS compared to class-agnostic NMS improves the suc-
cess of the product grasping pipeline slightly. Therefore intra-class NMS is best to use in the product
grasping pipeline.

The method and implementation used to overcome the third challenge, regarding product grasp pose
estimation, are addressed in Section 4 and Section 6.4, respectively. The product grasp poses are
estimated by assuming that the optimal suction cup grasp location for supermarket products is in their
center, normal to their surface. Position estimation is done by using the depth estimation of the re-
alsense camera and by using the pinhole camera model. The orientation estimation for each product is
done by fitting a plane over the pointcloud of the product. Both the position and orientation estimation
performed better when the products were closer to the camera, which verifies that visual servoing can
refine the product poses during the picking sequence. Furthermore, bounding box underestimation im-
proved both the position and orientation estimation as well, because it ensures that no environmental
pixels are considered in the pose estimation. Therefore, the bounding boxes used for the pose estima-
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tion are 50% smaller to make overestimation unlikely, and underestimation more likely.

Section 7.2.2 showed that calculating the entire pointcloud for each product leads to high inference
times per frame, ranging from 28.5 ms (one bounding box per frame) to 213 ms (30 bounding boxes
per frame), meaning that the operation rate of the grasping pipeline is at best 35 Hz, but can drop to 5
Hz, leading to a lower success rate as demonstrated by the test in Section 3. Therefore, random sam-
pling of the depth data is proposed to efficiently calculate the pointcloud, making the number of pixels
evaluated independent of the size of the bounding box. Sampling 125 pixels per bounding box was
shown to maintain a tolerable (±1° at 30 cm with 95% confidence) orientation accuracy, while increas-
ing calculation speed significantly, from 28.5 ms to 10.9 ms for a frame with a single bounding box and
from 213 ms to 28.7 ms for a frame with 30 bounding boxes. The random sampling approach enabled
the product grasping pipeline to operate at least 30 Hz at all times. As demonstrated by Section 7.3.4,
operating at 30 Hz increases the success rate of the grasping pipeline from 0.8 to 0.9.

Lastly, visual servoing and product tracking are used to perform temporal reasoning, and thus to
overcome the fourth challenge stated in Section 1. A Kalman Filter [21] is used to track each product
separately, and the detected poses in each frame are assigned to the Kalman Filter of a product us-
ing the Hungarian Algorithm [24]. The classifications and scores are also counted and kept track of
separately. The product choosing is done in combination with the tracker, for which two methods are
proposed, of which both performed equally well during the ablation study. Experiments in Section 7.3.4
showed that visual servoing is vital to the success of the product grasping pipeline, increasing the suc-
cess rate from 0.5 to 0.9. The experiments in Section 7.3.3 showed that the use of the product tracker
improved grasp success as well, increasing the success rate from 0.8 to 0.9. Additionally, Section
7.3.3 showed that choosing products based on score or occurrence does not change the success rate
of the pipeline. Finally, while most work on visual servoing [17, 10, 47, 39] suggests an operation rate
of 30-100 Hz, an operation rate of 10 Hz already enabled the product grasping pipeline to successfully
grasp products, with a slight decrease in success rate compared to an operation rate of 30 Hz.

While one supermarket shelf grasping method exists [3], comparison with the method in terms
of picking success is not possible. The proposed grasping pipeline managed to enable the robot to
robustly and consistently pick the correct products from the shelf with the proposed product grasping
pipeline, answering the main research question stated at the beginning of this Section.
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Future Works

This section dives into the future work that can be done regarding the development of a robotic product
grasping pipeline in the supermarket.

The proposed Albert Heijn Supermarket dataset consisted of images containing stacked shelves that
are annotated with bounding boxes. Because transfer learning succeeded in improving the perfor-
mance of the YOLOv6 models, it can be concluded that the current dataset does not contain enough
data to optimally train the YOLOv6 models. Also, in the current dataset, not all products that occur on
the shelves are annotated due to their low occurrence. Making sure that all products are annotated can
enable an object detector can learn what products are, and does not punish one if it correctly detects
unlabeled products. However, if the product localization and classification are split, the product locator
could be trained on just the SKU-110K-VS dataset, as demonstrated in Section 7.1.1. Then, the need
to annotate every object on the shelf dissipates, because only the products themselves are necessary
to train a product classifier. Alternatively, the labels of the dataset could also be defined differently,
representing optimal grasps or multiple possible grasps per product. Using such a dataset enables the
use of end-to-end grasp estimation models given they perform the classification task.

The object detector that is used to detect the products on the shelves is a YOLOv6 V3.0 model [25],
pre-trained on the SKU-110K dataset and then transferred to the Albert Heijn Supermarket dataset
via fine-tuning. While fine-tuning with 3, 5, 7, or 9 frozen layers proved ineffective, training with 1 or
2 frozen layers is not explored in this thesis and might lead to better performance. Additionally, the
current implementation of rotation compensation leads to information loss due to the image transfor-
mation. It would be optimal if the image transformation would also ensure that the entire original image
remains visible. Moreover, the confidence threshold, as mentioned in Section 3.2, is not tuned in this
work. Tuning it to another value might improve the product grasping pipeline as well.

Other object detection models, however, could also be implemented. Section 7.3.4 showed that op-
eration at 10 Hz only impacted the grasping pipeline slightly, which might become negligible if the
performance of the product detector is increased. Vision Transformers managed to outperform many
previously state-of-the-art object detectors, but are larger and slower models. To make transformers
smaller and run faster, network pruning [5] can be used. Network pruning is a method where only the
most important parameters of a neural network are saved, effectively making the models small and run
more efficiently. Pruning is already used to make transformers for Natural Language Processing [4]
and Vision Transformers [50] faster. Pruned transformers could be of use in the grasping pipeline and
are therefore an interesting research direction.

Additionally, since there exist thousands of products in a real supermarket scenario, other classifiers
could also be of interest. In such a system the product locator and classifier are separated. Then,
the YOLOv6 medium model trained on the SKU-110K-VS dataset can be used as a product locator,
as described in Section 7.1.1. The classifier can be implemented differently. A compelling alternative
could be a classifier that uses few-shot learning [45] to overcome the barrier of adding products to the
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supermarket collection and re-branding products. Another interesting method of classifying products
could be similar to the method proposed by Bajracharya et al. [3], where metric learning is used to
compare the detections with a database of products. Using a separate product classifier is likely the
most promising method in extending the graspable product selection from 36 products to thousands of
products.

To improve the current product grasp pose estimation, the outlier detection via a hand-crafted band-
pass filter might be improved by using RANSAC [11] and simultaneously increase the plane fit calcula-
tion time. This might improve the current implementation of the orientation estimation. Other methods
of estimating the orientations of pointclouds can also be explored. More valuable would be, however,
if the object pose could directly be estimated from the depth information, to remove the need for the
expensive pointcloud calculation.

Additionally, while the product grasp pose estimation works for the objects in the Albert Heijn Super-
market dataset that are often flat and rectangular, it is more difficult to generalize to other, more oddly
shaped objects. Section 7.3.2 demonstrates that round, cylindrical objects can be picked as well, de-
spite the lower accuracy of the orientation estimation for round objects discussed in Appendix A. Other
oddly shaped products are not tested, but the pose estimation must likely be adapted to incorporate
these.

The first reason is because of the optimal grasp pose for the suction cup assumption. If the product is
nonsymmetrical or has an uneven surface, the grasp location may be somewhere else where the object
allows a better grip for the gripper. Secondly, the assumption only works for the suction cup gripper,
and not for parallel grippers or other grippers. Therefore, the method should be adapted to the other
gripper if another one were to be used. Thirdly, the plane fit that is used to estimate the orientation
works best for objects with a flat front and might perform worse on other objects that do not have a flat
front, as demonstrated for round, cylindrical objects.

To ensure that all types of products can be grasped in the supermarket, oddly shaped products and
products that are non-rigid and/or porous must be included as well. Data-driven grasp pose estimators
can be used to include oddly shaped products and to generalize to other grippers so that products do
not necessarily have to be rigid or non-porous. Methods that do object grasp pose estimation [42] for
isolated objects either directly from depth data or RGB-D data are most interesting to incorporate in
the current pipeline, because they can remove the need for the pointcloud calculation. After all, such a
method can easily replace the grasp pose estimation module without the need for complex adjustments
in the other modules. Replacing the module like this also allows the use of grasp pose estimators that
do not perform classification.

For product tracking, a Kalman Filter [21] is used with a state-space model that assumes no velocity.
While being effective, as demonstrated in Section 7.3.3, without allowing velocity, the tracker is not
able to track the products if they are moved by other agents in the supermarket during the picking se-
quence. To allow the involvement of other agents during the picking sequence, at least another state
space model must be used that allows the product velocities to be tracked as well. If the detection rate
is high enough the robot might be able to track moving products with a Kalman Filter as well. However,
because these motions are likely non-linear, exploring the use of an Extended Kalman Filter [19] can
be of interest. If the motion model is unknown and/or the noise is non-Gaussian, however, a method
like Particle Filters [8] might be an interesting research direction.

The product-choosing methods proved to be reliable most of the time during the ablation study. The
proposed methods, however, do not consider the case where objects are stacked and the top product
should be chosen instead of the bottom product. Additionally, the switching behavior at the end of the
picking sequence as observed during the ablation study might be overcome if the distance towards
the chosen product is taken into account as well. This allows the max_skipped_frames parameter to
remain low, to ensure that the early detections during the picking sequence do not gain more influence
in the product choosing than the final detections. A method that weighs the distance and the score is
proposed by Morisson et al. [31] that implemented a grasp proposal network that also performed visual
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servoing for objects on a flat surface.

The use of Optimization Fabrics to generate collision-free trajectories proved to work well in the grasp-
ing pipeline. Exploring other methods, however, might be of interest as well concerning improving the
grasping pipeline.

Furthermore, the picking scenario for each product is currently constrained to shelves only. Most super-
markets, however, contain hooks, vegetable boxes, and refrigerated shelves with doors as well. These
scenarios must be included to ensure that all products can be grasped by the robot in the supermarket.
This means that the picking scenario must be detected as well. Bajracharya et al. [3] implemented a
module that can detect picking scenarios and can adapt the picking strategy accordingly.

Finally, interacting with humans and reacting to human behavior during the picking process to ensure
safety is the final crucial challenge that must be overcome to move toward the integration and deploy-
ment of robotics in supermarkets. Making the manipulator compliant when in contact with a human
and ensuring that the robot’s movements and decision-making are intuitive for humans are examples
of challenges that must be overcome regarding human-robot interaction.
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A
Round pose estimation

The goal if this section is to estimate whether the pose estimation is accurate enough to estimate the
poses for round objects as well. Similarly to the tests with a flat object, the pose estimation is more
accurate at a distance of 30 cm than at a distance of 100 cm. Especially the orientation estimation (ϕ
and θ) are worse, with a larger offset and confidence interval than for flat objects. This is because the
plane fit does not work well on a round surface, leading to a higher confidence interval and offset. So,
compared to the flat object, estimating the orientation with a plane fit proves more difficult. For round
objects, however the θ estimation might not as relevant as for flat objects, because a round object does
not have a specific θ orientation. Section 7.3.2 will conclude that round, cylindrical objects can also be
picked with plane fit orientation estimation.

Figure A.1: shows the pose estimation results for a round object at a distance of 30 cm (upper) and 100 cm (lower). The same
offsets of 4 mm and 10 mm are visible in the distance estimation at 30 cm and 100cm due to the test setup. in The x-axis

shows the bounding box over- or underestimation factor; The y-axis shows the mean with 95% confidence interval (±1.96σ) in
degrees. The left plot shows the distance estimation, the middle plot shows the θ estimation, and the right plot shows the ϕ

estimation. In all tests ϕ = 0°
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B
Successful Grasp Examples

Examples of grasps for each of the products used in the ablation study are shown here in Figures B.1,
B.2, B.3, B.4, and B.5.

Figure B.1: shows an example of picking the ’Brownie’ product.

Figure B.2: shows an example of picking the ’Nasi Speciaal’ product.

Figure B.3: shows an example of picking the ’Volle Yoghurt’ product.
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Figure B.4: shows an example of picking the ’Mais’ product.

Figure B.5: shows an example of picking the ’Sweet Sour’ product. This product is too light to grasp with the current suction
gripper due to the low vacuum power.
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