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Delft, The Netherlands
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Abstract.
The state of the art engineering dynamic inflow models of Pitt-Peters, Øye and ECN have

been used to correct Blade Element Momentum theory for unsteady load prediction of a wind
turbine for two decades. However, their accuracy is unknown. This paper is to benchmark
the performance of these engineering models by experimental and numerical methods. The
experimental load and flow measurements of an unsteady actuator disc were performed in
the Open Jet Facility at Delft University of Technology. The unsteady load was generated
by a ramp-type variation of porosity of the disc. A Reynolds Averaged Navier-Stokes (RANS)
model, a Free Wake Vortex Ring (FWVR) model and a Vortex Tube Model (VTM) simulate the
same transient load changes. The velocity field obtained from the experimental and numerical
methods are compared with the engineering dynamic inflow models. Velocity comparison aft
the disc between the experimental and numerical methods shows the numerical models of RANS
and FWVR model are capable to predict the velocity transient behaviour during transient disc
loading. Velocity comparison at the disc between the engineering models and the numerical
methods further shows that the engineering models predict much faster velocity decay, which
implies the need for more advanced or better tuned dynamic inflow models.

1. Introduction and Objective
A wind turbine operates in a highly dynamic state. The currently most popular design theory of
wind turbine — BEM, is based on the assumption of quasi-steady state. The steady assumption
made in BEM is at two levels, unsteady airfoil aerodynamics, and unsteady wake in the
momentum theory. The latter is the commonly called ’Dynamic Inflow’. The current approaches
to overcome the limitation of quasi-steady wake assumption made in BEM is to use engineering
dynamic inflow models. Different dynamic inflow models have been proposed [1]. These dynamic
inflow models have been compared with experiments for rotors with finite number of blades by
Snel and Schepers [1], Schepers and Snel [2] and the test of Unsteady Aerodynamic Experiments
in the NASA Ames tunnel [3]. A CFD model was developed for unsteady rotor aerodynamics
by Sørensen and Kock [4], the calculated blade flapping moment was in close agreement with
experimental results for step blade pitch of 2MW Tjæreborg wind turbine. Good agreement
with the latter experiment [3] for low loading case was achieved using BEM coupling with tuned
time constants, which were tuned by solving RANS equations [5].

These researches focused on the dynamic inflow on a wind turbine rotor with a finite number of
blades. Scarce published record exists on the experimental use of actuator discs under unsteady
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loading to investigate the phenomena. The use of an actuator disc to investigate the dynamic
inflow effects is of interest as it is the basis of BEM as well as engineering dynamic inflow models
of Pitt-Peters [6], Øye [7] ,[8], and ECN [9].

A free wake vortex ring model which accounts for the induced velocity field of any non-
uniform and unsteady loaded actuator disc was developed by Yu et al [10]. The steady classical
actuator disc model was also extended to arbitrary non-uniform and unsteady axi-symmetrical
disc loads in [11]. Discrepancy of engineering dynamic inflow models of Øye and Pitt-Peters
from these models in predicting the transient induction at the disc of a wind turbine rotor has
been shown [10, 11].

The objective of this paper is to validate and benchmark the state of the art dynamic inflow
models of Pitt-Peters [6], Øye [7, 8], and ECN [9] against experimental and numerical methods.

2. Method
2.1. Engineering dynamic inflow models
(i) The Pitt-Peters dynamic inflow model

The Pitt-Peters dynamic inflow model [6] was developed for an actuator disc with an
assumed inflow distribution across the disc. Based on the assumption that the equation of
Pitt-Peters can be applied to a blade element or actuator annulus level, the dynamic inflow
equation for each annular ring becomes

1

ρAjV 2
0 /2

[
8

3π
ρAjrj

dvj
dt

+ 2ρAjvj(V0 + vj)

]
= Ctj (1)

where j indicates the jth annular ring, Aj and Ctj are the area and thrust coefficient of the
jth annulus and vj is its azimuthal averaged induced velocity.

(ii) The Øye dynamic inflow model
In the Øye dynamic inflow model [7, 8], the induced velocity is estimated by filtering the
quasi-steady values through two first-order differential equations

vint + τ1
dvint
dt

= vqs + bτ1
dvqs
dt

(2)

vz + τ2
dvz
dt

= vint (3)

where vqs is the quasi-steady value from BEM, vint is an intermediate value and the final
filtered value vz is treated as the induced velocity. After calibration using a vortex ring
model [8], the two time constants are recommended as follows [1]

τ1 =
1.1

(1 − 1.3a)

R

V0
(4)

τ2 = (0.39 − 0.26(
rj
R

)2)τ1 (5)

where a is the axial induction factor, R is the rotor radius, rj is the radius of jth annulus,
and b is a constant value of 0.6.

(iii) The ECN’s dynamic inflow model
The dynamic inflow model developed by ECN [9], was derived from an integral relation of
the stream tube model (see more details of the streamtube model in [12]). For the condition
of constant wind speed, the equation is

R

Vw
fa
da

dt
+ a(1 − a) = Ctj/4 (6)
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where Ctj is the axial force coefficient on the rotor annulus j. The term fa is a function of
the radial position, defined as

fa = 2π/

∫ 2π

0

[1 − (r/R)cosΦr]

[1 + (r/R)2 − 2(r/R)cosΦr]3/2
dΦr (7)

2.2. Validation Methods
The performance of engineering models of Pitt-Peters, Øye and ECN will be benchmarked
against the results from

• experiments of an unsteady actuator disc model

• a linear Vortex Tube Model

• a Free Wake Vortex Ring model

• a RANS simulation

The experiments were carried out in the low speed closed-circuit Open Jet Facility (OJF)
located at the Delft University of Technology. The OJF wind tunnel has an octagonal cross-
section of 2.85 × 2.85 m2 and a contraction ratio of 3:1. It is free to expand in an area of 13.7 ×
6.6 × 8.2 m3. The free stream velocity ranges from 3 m/s to 34 m/s with a flow uniformity of
0.5% and a turbulence level of 0.24%, powered by a 500 kW electric motor. The temperature in
the test section is maintained at a constant temperature of 20◦C by a 350 kW heat exchanger
throughout the experiments. The tested wind speed for this experiment is 6 m/s. The set-up is
given in Figure 1(a). A hot-wire probe is mounted on a transverse system, which can transport
the probe axially and radially to the desired measurement points.

In this experiment, the loading on the disc was changed by adjusting the relative open area
(porosity) formed by two identical parallel porous discs. The two identical discs are made
from 2.0 mm thick aluminium plate with punctured 10×10 mm2 square holes. Each disc has a
diameter of 600 mm, hole-to-hole spacing of 2.0 mm, and porosity of 69.4%. The porous disc is
shown in figure 1(b).

The porosity of the disc is changing in a ramp type profile (see Figure 2), with δt representing
the ramp time. The reduced ramp time s is used here. s is defined by

s =
1

D

∫ δt

0
V0dt (8)

which represents the relative distance travelled by the flow in terms of the diameter of the
actuator disc during the time interval δt. Different reduced ramp time cases were tested.

The thrust was measured using a load cell mounted between the tower and the disc model.
The flow downstream of the disc was measured at various positions using hot-wire anemometry.
The two vortex models [10, 11] are used for the benchmark study. A RANS model also
simulates the tested unsteady load cases. The description of these three numerical models
will be introduced in the Appendix.

Notably, the engineering dynamic inflow models of Pitt-Peters, Øye and ECN can only predict
the induction at the actuator plane. Even if it was practically possible to measure the velocity
at the disc in this set-up, the accuracy of the measured velocity is still doubtful due to the
effect of the small scale turbulent structures generated by the porous discs. For this reason, the
comparison is done in two steps:

(i) The velocity from the experiments and the three numerical models of VTM, FWVR and
RANS during transient disc load are compared at various locations aft the disc.

(ii) The velocity at the actuator disc from the three numerical models are then compared with
that from the three engineering dynamic inflow models of Pitt-Peters, Øye and ECN for
the same transient load change.
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(a) The set-up (b) The porous disc

Figure 1. The overview of experimental set-up in the wind tunnel and the tested porous disc
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Figure 2. Unsteady load profile

3. Results and Discussion
Results of the case of reduced ramp time of 0.2 will be present here (more results are reffered
to [13]). The diameter based Reynolds number is 270680. Knight [14] has shown that the
aerodynamic thrust of an actuator disc is insensitive to Reynolds number when it is larger
than 150000 using tunnel test of three different types of discs. Hoerner [15] summarized that
above diameter-based Reynolds number of 1000, the drag coefficient of discs ( and other plates) is
practically constant up to the highest Reynolds numbers ever tested (approaching 107). Figure 3
gives the ensemble averaged thrust coefficient measured by the load cell. The dot line represents

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 022024 doi:10.1088/1742-6596/753/2/022024

4



0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

τ [-]

C
t
[-
]

unfiltered
filtered
prescribed

Figure 3. Thrust coefficient. dot and dash line: the ensemble averaged unfiltered and filtered
Ct measured by the load cell, solid line: the prescribed Ct

the original acquired data. For the dash line, the system vibration frequency is filtered out
from the raw data. The real transient time is affected by the dynamic response of the entire
mechanical system. Thus, the same reduced ramp time as the porosity change of s = 0.2 is
prescribed for the load change (plotted as solid lines), which serves as input for all the numerical
models.

The velocity values are non-dimensionalised in the similar way as used in [1]. It is defined by
the following equation

∆̃Vx =
Vx − Vx,s1
Vx,s2 − Vx,s1

(9)

The subscripts s1 and s2 represent the initial (before load change) and the final steady state
(sufficient time after load change). Hereinafter, the self-normalized transient response from all
the methods are compared. The time given in this section is normalized by the characteristic
time of dynamic inflow D/V0.

Figure 4 presents the ensemble averaged velocity during the transient disc load at the inner
wake y/D=0.33 for planes x/D=0.5,1.0,1.5,2.0,2.5,3.0. The ensemble averaged velocity during
the unsteady load outside the wake at y/D=0.83 for the same six planes are shown in figure 5.
The velocity from the experiments, RANS, FWVR model and VTM are compared. Due to the
focus of this paper is the transient profile of velocity decay instead of the velocity overshoot and
undershoot, which are observed in figure 4 and 5, it will be not discussed in detail. From figure
4 and 5, the VTM predicts rapid decay to the new steady state, which is faster than the velocity
profiles from the other three methods. The velocity from the FWVR model matches that from
the RANS model well, implying that the effect of the viscosity is not significant. Apart from
some magnitude difference of the velocity overshoot and undershoot, the RANS and FWVR
model can capture generally well the velocity transient change profiles from the experiment of
an actuator disc undergoing unsteady load.

It is notable that the onset of responding time to the load variation from the FWVR and
RANS model matches with the experimental results for all these measured planes. However, the
further downstream the plane is, the earlier the VTM tends to start respond to the unsteady
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load change. This is likely caused by the overestimation of the convection velocity of vortex
element by the VTM.

The good agreement of velocity profiles at different downstream locations between the RANS,
the FWVR model and the experiments shows that these numerical models are capable of
predicting the transient velocity profiles of an actuator disc with unsteady loading.

Figure 6 compares the normalized averaged axial velocity at the actuator disc. The result
from the Momentum Theory (MT) is also plotted for comparison. As seen, the engineering
model of Pitt-Peters predicts fastest decay among all the methods. The velocity decay profiles
predicted by the model of Øye, ECN and the VTM are very close. This is because all the three
methods are developed based on the stream tube model. The velocity decay profiles predicted
by all these three models are slower than that of Pitt-Peters model, but are still much faster than
those from the other two more physically-representative numerical models, RANS and FWVR.
The latter two models show good agreement with experiments in the velocity field aft the disc
as shown above.
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Figure 4. Ensemble averaged axial velocity in the inner wake at y/D=0.33 during transient
load for planes x/D=0.5,1.0, 1.5, 2.0,2.5, 3.0. y : radial direction; x : axial direction
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Figure 5. Ensemble averaged velocity outside the wake at y/D=0.83 during transient load for
planes x/D=0.5, 1.0,1.5, 2.0, 2.5, 3.0. y : radial direction; x : axial direction
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Figure 6. Normalized axial velocity at the actuator disc during transient load predicted by the
MT, engineering models of Pitt-Peters, Øye and ECN, and the model of VTM, FWVR, RANS

4. Conclusion
The state of the art dynamic inflow models of Pitt-Peters, Øye and ECN are validated against
experimental and numerical methods. The results show that the induction at the actuator disc
predicted by the three engineering dynamic inflow models decays much faster than that from
RANS, FWVR during transient load. Based on the good agreement in the induced velocity
at different locations in the field predicted by the RANS, FWVR model and the experimental
results, it can be inferred that the induction from the engineering models is also much faster
than that from experiments. This shows the need for more advanced engineering dynamic inflow
models, or better tuned of the existing ones which could be more universal for better prediction
of flow response during dynamic loading.
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Appendix
4.1. The VTM model
The VTM [11] extends the classical steady cylindrical vortex tube model to unsteady flow. In
this unsteady and radially uniform load case study, the vortex system is consisting of an infinite
vortex tube and a number of finite vortex tubes, which are shed at different time steps when
there is a load change on the actuator disc. The entire vortex system is convected downstream
by the incoming flow and local induced velocity.

4.2. The FWVR model
In the free wake vortex ring model [10], the near wake is modelled by dynamic surfaces, consisting
of free vortex rings shed from the edge of the actuator disc; the far wake is represented by a
semi-infinite cylindrical vortex tube with constant strength and radius. The vortex rings are
considered thin, axisymmetric and uniform. In this axisymmetric loaded actuator disc study,
vortex rings may expand or contract, their central axis always coinciding with the axis of the
actuator disc. A time step of ∆τ = 0.02 and a cut-off of δ = 1e − 5 were chosen for the
simulations after a convergence study.

4.3. The RANS model
The RANS equations are also solved. The turbulence model of k − w Shear Stress Transport
(k − w SST) is used. The momentum sink represented by the actuator disc is introduced as a
body force or source term in RANS. In this uniformly and axially loaded actuator disc study,
source term is only added to the axial-direction momentum equation.

A mesh dependency study and a mesh density dependency study were carried out to determine
the computation mesh size and cell size. The computation upstream, downstream and inlet sizes
were chosen to be 10D, 30D and 30D respectively, each part is indicated in figure 7. The cell size
of 0.5D and 0.083D were used for the Outside Wake and Wake regions respectively, as indicated
in figure 7. For unsteady simulations, a 2nd order implicit temporal discretisation was used.

Figure 7. Planar side view of the Mesh of the computation domain
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