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Abstract

Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many

reaction mappings to identify the alternative pathways that have similar functions through

different sets of reactions, which has important applications in reconstructing phylogeny and

understanding metabolic functions. The existing alignment methods exhaustively search

reaction sets, which may become infeasible for large pathways. To address this problem,

we present an effective alignment method for accurately extracting reaction mappings

between two metabolic pathways. We show that connected relation between reactions can

be formalized as binary relation of reactions in metabolic pathways, and the multiplications

of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By

utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently

obtain reaction sets in a small number of steps without exhaustive search, and accurately

uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of

topological similarity of nodes (reactions) by comparing the structural similarity of the k-

neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this simi-

larity metric to improve the accuracy of the alignments. The experimental results on the

KEGG database show that when compared with other state-of-the-art methods, in most

cases, our method obtains better performance in the node correctness and edge correct-

ness, and the number of the edges of the largest common connected subgraph for one-to-

one reaction mappings, and the number of correct one-to-many reaction mappings. Our

method is scalable in finding more reaction mappings with better biological relevance in

large metabolic pathways.

Introduction

In the last few decades, the quantity and quality of metabolic data in biological databases such

as KEGG (Kyoto Encyclopedia of Genes and Genomes) [1] and Metacyc [2] are greatly

increased. The comparative analysis of this vast quantity of metabolic data provides insights

into biology and life science applications [3]. An effective way of such analysis is to find the
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similarity between metabolic pathways by aligning them. The similarity between two pathways

is often modeled as a function of the similarity between the aligned nodes or matching edges

[4]. By comparing the similarity between metabolic pathways, we can reconstruct phylogeny

and infer unknown function or evolution of pathways [5], reveal similar connecting pattern of

metabolic pathways [6], and study the structural and functional relevance among species [7,

8]. The complexity of the pathway alignment problem stems from its close relationship with

graph and subgraph isomorphism problems, which are GI (Graph isomorphism)-Complete

and NP-Complete respectively [4]. Thus, it may become impractical to find an accurate solu-

tion for this problem as the size of the pathways grows. Due to both computational hardness of

pathway alignment and the increasing amount of available metabolic data, obtaining topologi-

cally and biologically accurate alignments is a challenging task [9].

In the metabolic pathway alignment problem, metabolic pathways are usually represented

as directed graphs, where a node denotes a molecule which can be specified as reaction,

enzyme, or compound and an edge represents the interactions between molecules. A one-to-

one mapping between nodes in two metabolic pathways maps a node from one pathway to a

node in the other. A one-to-many mapping between the nodes in two metabolic pathways

maps a node from one pathway to a connected subgraph of many nodes in the other [10]. The

size of a one-to-many mapping is determined by the number of nodes in this mapping. Per-

forming an alignment is often considered as finding one-to-one mappings or one-to-many

mappings between molecules in metabolic pathways [10].

Accordingly, we can categorize existing literature on metabolic pathway alignment into two

types. The first type finds one-to-one mappings between molecules of metabolic pathways to

identify similar parts in different pathways [3, 11–20]. This type of methods can be generally

classified into two categories: (1) graph-based isomorphism methods. (2) dynamic program-

ming methods.

The graph isomorphism problem asks to decide whether two given graphs are isomorphic,

and the subgraph isomorphism problem asks to decide whether one graph is isomorphic to a

subgraph of another [11]. A straightforward method for identifying the similarity between

metabolic pathways is to transform metabolic pathway alignment problem into graph-based

isomorphism problem. Considerable efforts were devoted to aligning metabolic pathways in

this way [3, 11–17]. For example, Pinter et al. [12] used enzyme graph to describe metabolic

pathway and proposed a tree-based pathway search method called MetaPathwayHunter to

align the enzyme graphs by using a graph theoretic approach. Although MetaPathwayHunter

obtains a high efficiency in the alignments, the pathways are restricted to trees. To alleviate

this restriction, Wernicke and Rasche [13] reduced the pathway alignment problem to sub-

graph homeomorphism problem and presented an alignment tool METAPAT. METAPAT

does not restrict the topology of the metabolic networks in the alignments. Given two meta-

bolic networks GP and GH where GP is represented as the pattern network and GH is repre-

sented as the host network, METAPAT determines whether GH contains a subgraph that is

isomorphic to GP [13]. Owing to the fact that subgraph homeomorphism problem is NP-com-

plete, METAPAT could be computationally hard with the increasing size of the networks.

Meanwhile, Yang and Sze [14] proposed two metabolic pathway matching methods Path-

Match and GraphMatch. PathMatch reduces the path matching problem to finding the longest

weighted path in a directed acyclic graph while GraphMatch reduces the graph matching

problem to finding the highest scoring subgraphs in a graph. Both PathMatch and Graph-

Match can effectively and accurately extract biologically meaningful pathways, but finding the

matching is time consuming owing to the exhaustive search of subgraphs. Although graph-

based isomorphism is the most straightforward idea for aligning pathways, the computational

complexity of the graph-based isomorphism problem prohibits its practical application
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because implementation requires tremendous computing resources as the size of the pathways

grows.

In addition, some other methods align metabolic pathways by employing dynamic pro-

gramming [18–20]. In such alignment methods, the similarity between two pathways is

defined by the sum of both node and edge matching scores in the similarity objective function.

Then, the alignment of pathways is solved by maximizing the similarity objective function

between two pathways over all feasible combinations. MNAligner [18] is one example of such

methods. MNAligner uses the integer quadratic programming to formulate the alignment of

two pathways and find conserved patterns between pathways. To align both two and multiple

pathways, Tohsato et al. [19] exploited the global alignment algorithm using dynamic pro-

gramming to find common pattern from pairwise alignment and then extend pairwise align-

ment to multiple alignment. Tohsato et al.’s methods were successfully applied to pathway

analyses of sugar, DNA and amino acid metabolisms. However, dynamic programming meth-

ods do not work well for the large pathway alignment problem since solving the large-scale

dynamic programming is time consuming.

Although the above-mentioned methods have achieved considerable progress, there still

remains a big challenge. Ay et al. [10] reported that the methods which only search for one-to-

one mappings between molecules could not identify biologically relevant mappings when dif-

ferent organisms perform the same or similar function through a varying number of steps. An

example is shown in Fig 1, where both paths transform LL-2,6-diaminopimelate into

2,3,4,5-tetrahydrodipicolinate. The upper path denotes the shortcut used by plants to synthe-

size L-lysine. Due to the lack of the gene encoding LL-DAP aminotransferase (2.6.1.83) cata-

lyzing reaction R07613, H. sapiens has to employ a three-step process, as shown with the lower

path in Fig 1, to accomplish this transformation. The upper and lower paths should be mapped

together in a meaningful alignment when the lysine biosynthesis pathways of human and a

plant are aligned. However, due to the different number of reactions in these two paths, tradi-

tional methods that are restricted to finding one-to-one mappings fail to uncover the mapping

in Fig 1. Motivated by this challenge, researchers develop the other type of alignment methods

that allows not only one-to-one mappings but also one-to-many mappings between reactions

of two metabolic pathways to tackle this problem. Ay et al. [10] proposed for the first time a

one-to-many alignment model and an alignment method called SubMAP which searches one-

to-many mappings between reactions of two metabolic pathways. SubMAP successfully identi-

fies biologically relevant mappings of alternative subnetworks, and is scalable for metabolic

pathways of arbitrary topology. To improve the quality of one-to-many alignments of metabolic

pathways, Abaka et al. [21] presented a constrained alignment method CAMPways where its

goal is to maximize the topological similarity while satisfying some constraints on homological

similarity. However, due to the cost in exhaustive search of reaction sets, these two methods do

not work well for finding reaction mappings in large-scale metabolic pathways.

Fig 1. A part of lysine biosynthesis pathway. The square rectangles represent reactions. The compounds are depicted by small circles. Reactions are

represented by their KEGG identifiers. Plants use the upper path with a reaction, whereas H. sapiens (human) accomplishes this transformation through the

lower path with three reactions.

doi:10.1371/journal.pone.0168044.g001
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In this work, we study the problem of aligning two metabolic pathways, which is briefly

described as follows. To align two given metabolic pathways, we want to find a set of one-to-

one, one-to-many or many-to-many mappings between reactions, and maximize the sum of

the similarity scores of these mappings. The similarity score of such mapping is evaluated as a

function of the similarity between the aligned reactions in the mapping (see Section ‘Third

Stage’ for details). Recall that one-to-many or many-to-many mappings between reactions are

used to identify the mappings of alternative pathways that have similar or the same functions

through different sets of reactions [10]. High similarity score indicates that the corresponding

alternative pathways perform similar or the same functions with high probability.

Our work is based on the observation that connected relation between reactions can be for-

malized as binary relation of reactions in the metabolic pathway. Motivated by this observa-

tion, we propose an alignment method called MPBR for aligning a pair of metabolic pathways

exploiting binary relation of reactions. We formalize connected relation between reactions as

binary relation of reactions in metabolic pathway. We exploit for the first time the multiplica-

tions of zero-one matrices of binary relation of reactions in finding reaction sets. We show

that the multiplications of zero-one matrices of binary relation of reactions can be completed

in finite steps. As a consequence, we efficiently obtain such reaction sets in a small number of

steps without the need of exhaustive search. Furthermore, distinguishing from measuring the

topological similarity of reactions based on the direct neighbors of the reactions [10] or the

conserved edges induced by the pairs of reaction mappings in the alignment [21], we measure

the topological similarity of nodes (reactions) by comparing the structural similarity of the k-

neighborhood subgraphs of the nodes, which helps to improve the accuracy of the alignments

due to the use of more topological information of the neighbors of the reactions. Our experi-

mental results on the KEGG database show that when compared with other state-of-the-art

methods, in most cases, MPBR obtains better topological and biological quality of the align-

ments than CAMPways and SubMAP, and accurately returns more biologically relevant reac-

tion mappings.

The rest of the paper is organized as follows. Section ‘Method’ presents our method MPBR.

Section ‘Results’ shows experimental results. Section ‘Conclusions’ concludes the paper.

Method

Preliminaries

To start with, we introduce some definitions and notations. A directed graph Gp = (Vp,Ep) is

used to denote metabolic pathway P. Vp = {r1,r2,. . .,ri,. . .,rk} is the node set of Gp and each

node ri represents a reaction in P, i = 1,2,. . .,k. Ep is the set of directed edges of Gp. There is a

directed edge (ri, rj)2Ep from ri to rj if and only if at least one output compound of ri is an

input compound of rj, i = 1,2,. . .,k and j = 1,2,. . .,k. If both ri and rj are reversible, there is also

a directed edge (rj, ri)2Ep from rj to ri. Similarly, a directed graph Gp0 = (Vp0,Ep0) is used to

denote metabolic pathway P0. Fig 2(A) shows a directed graph for the metabolic pathway of

lysine biosynthesis.

For Gp = (Vp,Ep), let reaction set RS = {r1,r2,. . .,rn} of size n be a subset of Vp such that the

induced subgraph of the reactions in RS is linearly connected in the underlying graph, n =

1,2,3,. . .. We represent the set of such reaction sets in Gp as RSn = {RS1, RS2,. . ., RSi,. . ., RSN},

where N is the number of the reaction sets, RSi is the ith reaction set in RSn and RSi has at most

n reactions, i = 1,2,. . .,N. Similarly, for Gp0 = (Vp0,Ep0), let reaction set RS0 = {r10,r20,. . .,rm0} of

size m be a subset of Vp0 such that the induced subgraph of the reactions in RS0 is linearly con-

nected in the underlying graph, m = 1,2,3,. . .. We represent the set of such reaction sets in Gp0

as RSm0 = {RS1
0, RS2

0,. . ., RSj0,. . .,RSM0}, where M is the number of the reaction sets, RSj0 is the
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jth reaction set in RSm0 and RSj0 has at most m reactions, j = 1,2,. . .,M. Parameters n and m are

determined by the user. Next, we state our problem formally.

Problem Statement: Given two pathways Gp and Gp0, we aim to find a set of mappings (RSi,
RSj0) between RSn and RSm0 in the alignment of Gp and Gp0 such that the sum of the similarity

scores of the mappings is maximized, i = 1,2,. . .,N and j = 1,2,. . .,M.

In the following, we introduce how to formalize connected relation between reactions as

binary relation of reactions in metabolic pathway. A relation between two related elements of

two sets is called binary relation [22]. Accordingly, we formalize the binary relation between

reactions A and B as the relation that A is connected with B in a metabolic pathway. For exam-

ple, in Fig 2(A), the reactions of the metabolic pathway of lysine biosynthesis are R04198,

R04365, R04475, R02734, R02735, and R00451 (reactions are represented by their KEGG iden-

tifiers). The relations between two connected reactions in this pathway are represented as

(R04198, R04365), (R04365, R04475), (R04475, R02734), (R02734, R02735), and (R02735,

R00451). They can be formalized as binary relation {(R04198, R04365), (R04365, R04475),

(R04475, R02734), (R02734, R02735), (R02735, R00451)}. As can be seen from Fig 2(B), binary

relation of reactions in this pathway can be represented by a directed graph. Also, we can see

from Fig 2(C) that this binary relation can be represented by a zero-one matrix Mp.

In this work, we represent binary relation of reactions in metabolic pathway by zero-one

matrix Mp. Mp[i,j] = 1 when reaction ri is connected to reaction rj, and Mp[i,j] = 0 when ri is

not connected to rj, i = 1,2,. . .,N and j = 1,2,. . .,M. Mp
n can be computed recursively by Mp

1 =

Mp and Mn
p ¼ Mn� 1

p �Mp, where Mn� 1
p �Mp is a Boolean matrix multiplication, positive integer

n�2. Fig 2(D) shows an example of zero-one matrix Mp
2.

In the following section, we present our method MPBR.

Fig 2. Binary relation of reactions in the metabolic pathway of lysine biosynthesis. The square rectangles

represent reactions. The compounds are depicted by small circles. Reactions are represented by their KEGG

identifiers. The directed edge from reactions ri to rj denotes that at least one output compound of ri is an input

compound of rj. Rp is the binary relation of reactions in the metabolic pathway of lysine biosynthesis. (a) The

metabolic pathway of lysine biosynthesis. (b) Directed graph for Rp. (c) Zero-one matrix Mp for Rp. (d) Zero-one

matrix Mp
2.

doi:10.1371/journal.pone.0168044.g002
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MPBR method

For a pair of metabolic pathways Gp = (Vp, Ep) and Gp0 = (Vp0, Ep0), the goal of MPBR is to find

the reaction mappings between Gp and Gp0. Without loss of generality, we assume that |Vp|�|

Vp0|, reaction sets RS�Vp and RS0�Vp0. MPBR consists of three main stages (as shown in Fig

3): (1) Find all reaction set RS of size n for Gp, and find all reaction sets RS0 of size m for Gp0 (as

detailed in Subsection ‘First Stage’); (2) Construct a similarity matrix BM by computing the

similarity between the reactions in Gp and Gp0 (as detailed in Subsection ‘Second Stage’); (3)

Find mapping (RS, RS0) such that the similarity score of mapping (RS, RS0) is maximized (as

detailed in Subsection ‘Third Stage’). A set RSmap of mappings (RS, RS0) is the result for align-

ing Gp and Gp0. Fig 3 shows an example illustrating the process of aligning a pair of sample

pathways.

First Stage: Finding the candidate reaction sets. In this subsection, we discuss how to

exploit the multiplications of zero-one matrices for binary relation of reactions to create the

set RSn = {RS1, RS2,. . ., RSN} in Gp, and the set RSm0 = {RS1
0, RS2

0,. . ., RSM0} in Gp0 respectively.

For metabolic pathway Gp, there is a path from r1 to rn if there is a sequence of reactions r1,

r2,. . .,rn with edges (r1, r2), (r2, r3),. . ., and (rn-1, rn) in Gp. Accordingly, we derive theorem 1.

Theorem 1: For reactions ri and rj, there is a path of length n from ri to rj in Gp if and only if

Mp
n[i,j] = 1, where n is a positive integer, i = 1,2,. . .,n and j = 1,2,. . .,n.

Proof: We will use mathematical induction. There is a path of length one from ri to rj in Gp
if and only if Mp[i,j] = 1, so the theorem is true when n = 1.

Assume that the theorem is true for a positive integer n. There is a path of length n+1 from

ri to rj if and only if there is a reaction rk in Gp such that there is a path of length one from ri to

rk in Gp, so Mp[i, k] = 1, and a path of length n from rk to rj in Gp, that is, Mp
n[k, j] = 1. Conse-

quently, by the induction hypothesis, there is a path of length n+1 from ri to rj in Gp if and only

if there is a reaction rk with Mp[i, k] = 1 and Mp
n[k, j] = 1. But there is such a reaction if and

only if Mp
n+1[i, j] = 1. Therefore, there is a path of length n+1 from ri to rj in Gp if and only if

Mp
n+1[i, j] = 1, i = 1,2,. . .,n and j = 1,2,. . .,n. γ
Following from theorem 1, we introduce how to find reaction set RS of size n for Gp.
First, we compute Mp

n-1. Then we create a reaction pair set NS and iteratively extend NS
with the reaction pair (ri, rj) where Mp

n-1[i, j] = 1. According to theorem 1, for reactions ri and

Fig 3. Overview of the MPBR method. MPBR searches 1-to-3 reaction mappings between Gp
0 and Gp. Mp and

Mp
0 are zero-one matrices for binary relation of reactions in Gp and Gp

0 respectively. The size of reaction set RSx
0 in

Gp
0 is m = 1, x = 1,2,3,4. The size of reaction set RSy in Gp is n = 3, y = 1,2,3,4,5. T(r1,r1

0), T(r2,r2
0), T(r3,r3

0) and T(r4,

r4
0) are the topological similarities between the reactions in Gp and Gp

0 respectively, the values of BM are the

similarities between the reactions in Gp and Gp
0.

doi:10.1371/journal.pone.0168044.g003
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rj with Mp
n-1[i, j] = 1, there is a path of length n-1 from ri to rj in Gp if and only if Mp

n-1[i, j] =

1. That is, there are n reactions in this path. Thus, we can construct reaction set RS of size n
containing these n reactions. Finally, we search every path of length n between two reactions

in each reaction pair of NS in Gp, and create each reaction set RS of size n containing the reac-

tions in each path to construct the set RSn = {RS1, RS2,. . ., RSN} in Gp. Similarly, we can find

each reaction set RS0 of size m and construct the set RSm0 = {RS1
0, RS2

0,. . ., RSM0} in Gp0.
Fig 3(B) shows an example of reaction sets of size 3. In this example, we first obtain the

reaction pairs (ri, rj) with Mp
2[i, j] = 1, i = 1,2,3 and j = 1,2,3,4,5. These reaction pairs are (r1,

r3), (r2,r1), (r3,r2), (r2,r4) and (r3,r5). Next we create a reaction pair set NS = {(r1,r3), (r2,r1), (r3,

r2), (r2,r4), (r3,r5)} by these reaction pairs. Then, we search the paths of length 2 between two

reactions in each reaction pair of NS. These paths are Path 1(r1!r2!r3), Path 2 (r2!r3!r1),

Path 3 (r3!r1!r2), Path 4 (r2!r3!r4) and Path 5 (r3!r4!r5) respectively. Finally we create

reaction sets RS1 = {r1,r2,r3}, RS2 = {r2,r3,r1}, RS3 = {r3, r1, r2}, RS4 = {r2, r3, r4} and RS5 = {r3, r4,

r5} with the reactions in Path 1, Path 2, Path 3, Path 4, and Path 5 respectively.

Based on theorem 1 and the above searching procedure of reaction sets in Gp, we drive the

following property.

Property 1: Reaction set RS of size n+1 in Gp can be found through performing Mp
n.

Property 1 illustrates the relationship between the search of reaction sets and the multiplica-

tions of zero-one matrices for binary relation of reactions in Gp.
For Mp

n, we have the following theorem.

Theorem 2: If there exist positive integers t and s with t>s such that Mp
t = Mp

s, then for any

positive integer n, it holds that Mp
n2S = {Mp, Mp

2, . . ., Mp
t-1}.

Proof:

For any n, when n�t-1, we have Mp
n2S. We want to prove Mp

n2S when n>t-1. When

n>t-1, it holds n>s. For n, s and t, there exist positive integers q and r such that n-s = (t-s)q+r
(0<r�t-s-1,n>s). Therefore, n = s+(t-s)q+r and Mp

n = Mp
s+(t-s)q+r. Since 0<r�t-s-1, so s+r�t-1

and Mp
s+r2S. Since Mp

n = Mp
s+(t-s)q+r, if we can prove Mp

s+(t-s)q+r = Mp
s+r, then it follows Mp

n =

Mp
s+r2S. In the following, we will use mathematical induction to prove Mp

s+(t-s)q+r = Mp
s+r.

When q = 1, it yields Mp
s+(t-s)q+r = Mp

s+(t-s)+r = Mp
t+r = Mp

s+r. Assume that for any q�k,

Mp
s+(t-s)q+r = Mp

s+r holds. When q = k+1, we have Mp
s+(t-s)(k+1)+r = Mp

s+(t-s)k+r+(t-s) = Mp
s+(t-s)k+r

Mp
(t-s) = Mp

s+rMp
t-s = Mp

s+r+t-s = Mp
t+r = Mp

s+r. Hence, Mp
s+(t-s)q+r = Mp

s+r also holds for q =

k+1. By induction, we have proven that Mp
s+(t-s)q+r = Mp

s+r for all q>0. Consequently, since

Mp
n = Mp

s+(t-s)q+r,Mp
s+(t-s)q+r = Mp

s+r and Mp
s+r2S, hence Mp

n = Mp
s+r2S.U

The discussion regarding the search of reaction sets in Gp and theorem 2 leads to the follow-

ing corollary.

Corollary 1: If there exist positive integers s and t with s<t such that Mp
s = Mp

t, then the

reaction set RS of size n�t in Gp can be found through performing at most Mp
t-1.

Proof:

Let S = {Mp, Mp
2,. . .,Mp

t-1}. When there exist positive integers s and t with s<t such that

Mp
s = Mp

t, according to theorem 2, for any positive integer n, it holds that Mp
n2S = {Mp,

Mp
2,. . .,Mp

t-1}. In other words, when n-1�t-1, there is a positive integer v�t-1 such that Mp
v =

Mp
n-12S. According to property 1, we need to perform Mp

n-1 to find reaction set RS of size n in

Gp. Because Mp
v = Mp

n-1 when n-1�t-1, so we only need to perform Mp
v to find the reaction

set RS of size n in Gp instead of performing Mp
n-1, where v�t-1. U

Property 1 implies that we can find reaction set RS of size n through performing Mp
n-1. Fur-

thermore, corollary 1 implies that, in order to find reaction set RS of size n, when n�t, we only

need to try at most Mp
t-1. Therefore, we can find reaction set RS of size greater than t in meta-

bolic pathway through performing at most Mp
t-1.
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In the first stage, MPBR first computes Mp
n-1. Secondly, MPBR creates a reaction pair set

NS and iteratively extends NSwith the reaction pair (ri, rj) where Mp
n-1[i,j] = 1. Finally,

through finding the paths of length n-1 between two reactions in each reaction pair of NS in

Gp, MPBR obtains the set RSn = {RS1, RS2,. . ., RSN} in Gp and the set RSm0 = {RS1
0, RS2

0,. . .,

RSM0} in Gp0. Thus, in this way, we avoid the exhaustive search of reaction sets, and produce

candidate reaction sets in finite steps.

Second Stage: Calculating the similarity of reactions. The second stage aims to compute

the similarity values between any two reactions in Gp and Gp0, which combines topological and

homological similarities of reactions, and construct a |Vp|×|Vp0| similarity matrix BM, where

BM [u,v] is the similarity value between nodes (reactions) u and v, u2Vp, v2Vp0.
We first introduce how to compute topological similarity of nodes (reactions) in metabolic

pathways. Our computation of topological similarity of nodes is based on the following obser-

vation. If node u is mapped to node v, then their neighbors in the corresponding graphs should

also be similar. From this observation, we measure topological similarity of nodes by compar-

ing the structural similarity of the k-neighborhood subgraphs of nodes. Next, we discuss how

to compare the k-neighborhood subgraphs of nodes to compute topological similarity of

nodes. Nk(u) is defined as the k-neighborhood node set of u in Gp and Nk(u) is a subset of Vp,
u=2Nk(u), where k is an integer and k�0. The shortest distance between u and x2Nk(u) is

defined as the number of edges of the shortest path between u and x, which is not exceeding k.

Similarly, Nk(v) is defined as the k-neighborhood node set of v in Gp0.
For u2Vp and v2Vp0, the k-neighborhood subgraph of u in Gp is denoted by Gk

u. Ek(u) is

defined as the edge set of Gk
u. G

k
u is the induced subgraph over Nk(u)[{u} in Gp. The k-neigh-

borhood subgraph of v in Gp0 is denoted by Gk
v. G

k
v is the induced subgraph over Nk(v)[{v} in

Gp0. Let d(u) be the degree of u in Gp and d(v) be the degree of v in Gp0. Suppose that the degree

sequence of the nodes in Nk(u) is d(x1), d(x2),. . .,d(xi),. . .,and dðxjNkðuÞjÞ sorted in a non-

increasing order, and the degree sequence of the nodes in Nk(v) is d(y1), d(y2),. . .,d(yj),. . .,and

dðxjNkðvÞjÞ sorted in non-increasing order. We compare the k-neighborhood subgraph of u with

the k-neighborhood subgraph of v to compute the topological similarity T(u,v) between u and

v:

Tðu; vÞ ¼
minfjVðGk

uÞj; jVðG
k
vÞjg þ

1

2

XKm

k¼0
minf

X

1�i�jNkðuÞj^xi2NkðuÞ
dðxiÞ;

X

1�i�jNkðvÞj^yi2NkðvÞ
dðyiÞg

maxfjVðGk
uÞj; jVðGk

vÞjg þmaxfjEðGk
uÞj; jEðGk

vÞjg
ð1Þ

where Km is the maximal value of k and is determined by the user,
X

1�i�jNkðuÞj^xi2NkðuÞ
dðxiÞ and

X

1�i�jNkðvÞj^yi2NkðvÞ
dðyiÞ are the sum of degrees of nodes in Nk(u) and Nk(v) respectively. The

impact of edges on the topological similarity T(u,v) is evaluated by
X

1�i�jNkðuÞj^xi2NkðuÞ
dðxiÞ

and
X

1�i�jNkðvÞj^yi2NkðvÞ
dðyiÞ. When k = 0, Nk(u) = u and Nk(v) = v.

In the following, we discuss how to compute homological similarity between reactions.

Since reactions consist of the input and output compounds and enzymes, we measure the

homological similarity between reactions by the similarities of these components. Thus the

homological similarity Bsim(u,v) between u and v is computed by the following equation:

Bsimðu; vÞ ¼ a� Esimðue; veÞ þ b� Csimðui; viÞ þ g� Csimðuo; voÞ ð2Þ

where ue is the enzyme catalyzing reaction u, ve is the enzyme catalyzing reaction v, Esim(ue,ve)
is the similarity score between enzyme ue and enzyme ve. We employ the enzyme similarity

score defined in [16] to calculate Esim(ue,ve). More specifically, the EC identifier of an enzyme

consists of four digits that categorize the type of the catalyzed chemical reaction. Esim(ue,ve) is
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1 if all the four digits of the EC identifier of two enzymes are identical, Esim(ue,ve) is 0.75 if the

first three digits are identical, Esim(ue,ve) is 0.5 if the first two digits are identical, Esim(ue,ve) is

0.25 if the first digit is identical, and Esim(ue,ve) is 0 if the first digit is different [16]. For exam-

ple, for enzymes 2.3.1.117 and 2.6.1.17, Esim(2.6.1.18, 2.6.1.12) = 0.75. The input compounds

of u and v are ui and vi respectively, and the output compounds of u and v are uo and vo respec-

tively. Csim(ui,vi) is the average similarity score of compounds ui and vi, and Csim(uo,vo) is the

average similarity score of compounds uo and vo. For example, if C1 and C2 are the input com-

pounds of u, and C3 and C4 are the input compounds of v, then Csim(ui,vi) = {sim(C1,C3)+sim
(C1, C4)+sim(C2, C3)+sim(C2, C4)}/4, where sim(A, B) is the similarity score of compounds A
and B. Similarly, we can compute Csim(uo,vo). The similarity scores of compounds are calcu-

lated by the SIMCOMP package [23]. For example, the similarity score of compounds acetoa-

cetyl-CoA and (S)-3-Hydroxy-3-methylglutaryl-CoA is 0.723077. Parameters α, β and γ
control the balance between the weights of Esim(ue,ve), Csim(ui,vi) and Csim(uo,vo) with the

constraint α+β+γ = 1. For the choice of weight parameters α, β and γ, we use α = 0.4, β = 0.3

and γ = 0.3.

Both homological and topological similarities of reactions provide significant information

for the alignment of metabolic pathways. We are now ready to define our similarity S(u,v)

between u and v, which is computed by the following equation:

Sðu; vÞ ¼ s� Tðu; vÞ þ ð1� sÞ � Bsimðu; vÞ ð3Þ

where σ is a balancing parameter between the weight of T(u,v) and the weight of Bsim(u,v),

0�σ�1.

In the second stage, we use Eq (3) to calculate the similarity values between any two reac-

tions in two pathways, and construct a similarity matrix BM for the reactions using these simi-

larity values. For example, when k = 2, σ = 0.5, for simplicity, we assume that the homological

similarities between any two reactions in sample pathways Gp and Gp0 are 0.5, a similarity

matrix BM for the reactions in Gp and Gp0 is shown in Fig 3(C).

Third Stage: Extracting reaction mappings. Once we obtain the set RSn = {RS1, RS2,. . .,

RSi,. . ., RSN} in Gp, the set RSm0 = {RS1
0, RS2

0,. . ., RSj0,. . .,RSM0} in Gp0, and the similarity matrix

BM for the reactions, we try to extract mappings (RSi, RSj0) that constitute our alignment. In

the third stage, for each reaction set in RSn and RSm0, we first perform greedy search to find a

mapping (RSi, RSj0) such that the similarity score of mapping (RSi, RSj0) is maximized, and

then add mapping (RSi,RSj0) to the set RSmap of mappings. To compute the similarity score of

mapping (RSi, RSj0), we obtain the similarity value S1 between the start reactions in RSi and

RSj0, and the similarity value S2 between the end reactions in RSi and RSj0 from similarity

matrix BM obtained in the second stage. The average value of S1 and S2 is the similarity score of

mapping (RSi, RSj0). For example, as can be seen from Fig 3(C), in the similarity matrix BM, the

similarity value between the start reactions in RS2 and RS1
0 is 0.625, and the similarity value

between the end reactions in RS2 and RS1
0 is 0.75. Then the similarity score of mapping (RS2,

RS1
0) is 0.6875.

The greedy search for mappings (RSi, RSj0) is repeated until all reaction sets in RSn are

aligned with the reaction sets in RSm0. At this time, the set RSmap of mappings (RSi, RSj0) is the

result of aligning Gp and Gp0. Fig 3(D) shows an example of the mapping results found in the

alignment of a pair of sample pathways.

In summary, we first utilize the multiplications of zero-one matrices for binary relation of

reactions to find reaction set RS of size n for Gp and reaction set RS0 of size m for Gp0. Second,

in order to improve the topological and biological accuracy of the alignments for metabolic

pathways, we propose a measure of topological similarity of nodes (reactions), which compares
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the structural similarity of the k-neighborhood subgraphs of the nodes. Then, we measure the

similarity between reactions by combining topological and homological similarities of reac-

tions and build a similarity matrix BM between all reactions in two pathways. Finally, we

employ a greedy search to find a set of reaction mappings (RS, RS0) where the sum of the simi-

larity scores of each mapping is maximized.

Results

MPBR is implemented in Java, the data and program are available at http://210.36.16.

170:8080/MPBR/MPBR.zip. Currently, CAMPways and SubMAP are the two available align-

ment softwares that allow one-to-many reaction mappings in the alignment of metabolic path-

ways. We downloaded CAMPways and SubMAP from http://code.google.com/p/campways/

and http://bioinformatics.cise.ufl.edu/SubMAP.html respectively. In this section, we experi-

mentally compared the performance of MPBR with that of CAMPways and SubMAP, and dis-

cussed three sample alignments.

The KEGG database [1] provides 11 metabolism categories: 1.1 carbohydrate metabolism,

1.2 energy metabolism, 1.3 lipid metabolism, 1.4 nucleotide metabolism, 1.5 amino acid

metabolism, 1.6 metabolism of other amino acids, 1.7 glycan biosynthesis and metabolism, 1.8

metabolism of cofactors and vitamins, 1.9 metabolism of terpenoids and polyketides, 1.10 bio-

synthesis of other secondary metabolites, and 1.11 xenobiotics biodegradation and

metabolism.

From the metabolic pathways of the KEGG database retrieved and reformatted by Ay et al.
[10], Abaka et al.[21] provided a dataset of 11 metabolic pathways to evaluate alignment qual-

ity. Each pathway in this dataset corresponds to one of the above metabolisms. Following the

state-of-the-art method CAMPways [21], we also evaluate alignment quality using this dataset.

The experimental evaluations are divided into the pathway alignments between species within

the same domain and the pathway alignments between species from different domains. Similar

to CAMPways, Homo sapiens (hsa) and Mus musculus (mmu) are selected as two representa-

tive species from the eukaryota domain, while Escherichia coli (eco) and Agrobacterium tumefa-
ciens (atc) are selected as two representative species from the bacteria domain.

By using the method proposed by Abaka et al. [21], we merge all pathways of the above

metabolisms into a large pathway for each of these four species. Thus, we totally obtain four

large merged pathways, namely hsa-1.12 with 1520 nodes, mmu-1.12 with 1466 nodes, eco-
1.12 with 1104 nodes and atc-1.12 with 1127 nodes. We also use these four large merged path-

ways to evaluate the performance of the alignment methods. Moreover, we use eight real meta-

bolic pathways eco00230, eco00240, hsa00230, hsa00240, atc00230, atc00240, mmu00230 and

mmu00240 from these four species as test pathways. These eight metabolic pathways are

obtained from the literature [10] and they are represented by eco-1.13, eco-1.14, hsa-1.13, hsa-
1.14, atc-1.13, atc-1.14, mmu-1.13 and mmu-1.14 respectively in this paper. S1 Table presents

the number of nodes and the number of edges of the pathways used in the experiments.

The experimental comparisons are conducted based on six criteria. Next, we introduce

these criteria in detail [10, 21, 24–26].

1. Edge Correctness (EC) is the percentage of the edges of the first pathway that are aligned

to the edges of the second pathway. The more similar topology of the two pathways, the

higher value of the EC [24]. EC is calculated by the following equation [24–26]:

EC ¼
jfðu; vÞ 2 E1 : ðgðuÞ; gðvÞÞ 2 E2gj

jEj

where u and v are the nodes in the first pathway, (u,v) is an edge in the first pathway, E is
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the edge set of the first pathway, E1 is the matched edge set of the first and second path-

ways, g(u) and g(v) are the mapping nodes of u and v in the second pathway respectively,

and E2 is the edge set of the second pathway.

2. Node Correctness (NC) is the percentage of nodes of the first pathway that are aligned to

the correct nodes of the second pathway. NC is calculated by the following equation [24]:

NC ¼
jfu 2 V1 : f ðuÞ ¼ gðuÞgj

jV1j

where u is a node in the first pathway, V1 is the node set of the first pathway, f is the cor-

rect node mapping, and g is the alignment mapping. For the correct node mapping f, we

use measurement FGC (functional group conversion category), which was previously

used to define the correct mapping between pathways in [21], to judge whether the node

mapping is correct. Specifically, FGC category is a part of the RCLASS database [27] of

KEGG. The reactions in the KEGG database are classified into hierarchically organized

functional group categories [21]. There are eight FGC categorizations of the KEGG hier-

archy, and each FGC categorization is divided into five levels. Abaka et al. pointed out

that an inter-species alignment of a pair of pathways is considered biologically validated

if the alignment maps reaction subsets classified under the same FGC category [21].

The biological relevance of reaction mappings is closely related to the FGC hierarchy of

reactions in the mappings. More specifically, a reaction mapping is biologically more sig-

nificant if it includes more reactions with higher FGC hierarchy under the same FGC cat-

egory. In the experimental results of the main text, for a fixed level 5 of the hierarchy, a

node mapping is called correct if there exists at least one category at the 5th level of the

FGC hierarchy that includes all the reactions in the mapping [21].

3. The Number of Edges of Largest Common Connected Subgraph (ELCCS) is the number of

the edges of the largest connected subgraph of the first pathway that is isomorphic to a

subgraph of the second pathway [24]. ELCCS is used to evaluate the topological accuracy

and biological relevance of the alignments. The larger and denser connected subgraphs

are biologically more valuable [24].

4. C-1tomany is the number of correct one-to-many reaction mappings between the first

pathway and the second one. To describe this measurement, we introduce some notations

first. Let X, X0 denote two species and GX, GX0 represent their metabolic pathways corre-

sponding to some metabolism 1.m, listed earlier in the text. Let (RS, RS0) be a mapping

from an alignment of GX and GX0 where RS = {r1}, RS0 = {r10, r20,. . .,rx0}, and P1,. . .,Pi,. . .,

Px be the pathways that include reaction r1 and are associated with metabolism 1.m in the

species X [21].

Following the literatures [10] and [21], we measure the correctness of the one-to-many

reaction mappings based on two aspects. On the one hand, as Ay et al. [10] reported that if

both alternative pathways can complete the transformations between two given compounds

through different reaction sets, then these two pathways are considered to be functionally simi-

lar. A correct one-to-many reaction mapping between different pathways should be able to

identify the mapping of such alternative pathways [10]. On the other hand, Abaka et al. [21]

pointed out that an alignment mapping reactions that belong back to the same original KEGG

pathway is considered to be of high quality. Combining these two aspects, a one-to-many reac-

tion mapping (RS, RS0) is called correct if it satisfies the following two conditions: (1) The start

reactions in RS and RS0 share at least one input compound and the end reactions in RS and RS0

share at least one output compound. (2) Every reaction in RS0 is included in at least one of the

Aligning Metabolic Pathways Exploiting Binary Relation of Reactions

PLOS ONE | DOI:10.1371/journal.pone.0168044 December 9, 2016 11 / 25



pathways P1
0,. . .,Pi0,. . ., Px0 where each Pi0 is a pathway in metabolism 1.m of species X0 and

corresponds to Pi of X [21].

5. CR-1tomany is the ratio of the number of correct one-to-many reaction mappings to the

total number of mappings produced by the alignment [21]. CR-1tomany can be used to

investigate the percentage of the correct one-to-many reaction mappings in the align-

ment. Higher values for CR-1tomany indicate that the alignments for one-to-many reac-

tion mapping are of high quality [21].

6. C-manytomany is the number of correct many-to-many reaction mappings between the

first pathway and the second one. By reference to C-1tomany, let (RS, RS0) be a many-

to-many mapping from an alignment of GX and GX0 where RS = {r1, r2,. . .,rx}, RS0 = {r10,
r20,. . .,ry0}, and P1,. . .,Pi,. . .,Px be the pathways that include a reaction in RS and are asso-

ciated with metabolism 1.m in the species X. Similar to C-1tomany, a many-to-many reac-

tion mapping (RS, RS0) is called correct if it satisfies the following two conditions: (1) The

start reactions in RS and RS0 share at least one input compound and the end reactions in

RS and RS0 share at least one output compound. (2) Every reaction in RS0 is included in at

least one of the pathways P1
0,. . .,Pi0,. . .,Px0 where each Pi0 is a pathway in metabolism 1.m

of species X0 and corresponds to Pi of X.

MPBR, CAMPways and SubMAP provide the options of one-to-one alignment and one-to-

many alignment. We can perform one-to-one alignment of two pathways to find one-to-one

reaction mappings between these two pathways. Similarly, we can perform one-to-many align-

ment of two pathways to find one-to-many reaction mappings between these two pathways. In

the experiments, the one-to-many reaction mappings include 1-to-2 and 1-to-3 reaction

mappings.

In this paper, we use EC,NC and ELCCS to measure the quality of one-to-one alignment,

and use C-1tomany and CR-1tomany to measure the quality of one-to-many alignment. In

addition, we use C-manytomany to evaluate the capability of MPBR for searching many-to-

many reaction mappings.

In the experiments, MPBR was run using k = 3 and σ = 0.6, and CAMPways and SubMAP

were run using their default parameter settings. MPBR, CAMPways and SubMAP were run on

the Sugon 5000A computer system of cluster architecture at Guangxi University, using a single

computing node with a quad-core Intel(R) Xeon(R) CPU E5620 @ 2.40GHz and 40GB RAM.

The operating system is Linux.

The following five subsections will provide our experimental evaluations on the qualities of

the alignment results computed by MPBR, CAMPways and SubMAP respectively. Subsections

‘Same-domain One-to-one Alignments’ and ‘Same-domain One-to-many Alignments’ focus

on one-to-one alignment and one-to-many alignment between the species within the same

domain respectively. Subsections ‘Across-domains One-to-one Alignments’ and ‘Across-

domains One-to-many Alignments’ focus on one-to-one alignment and one-to-many align-

ment between the species from different domains respectively. Subsection ‘Running time and

memory requirements’ discusses the performance of each method in terms of the running

time and memory requirements. Subsection ‘Many-to-many Alignments’ discusses the experi-

mental results of many-to-many alignments of the pathways. Subsection ‘Case study’ intro-

duces three sample alignments to show how MPBR, CAMPways and SubMAP can be used to

analyze metabolic pathways.

The values of NC of the alignment results of MPBR, CAMPways and SubMAP for the fifth

level of the FGC hierarchy are shown in Tables 1–15, whereas the values of NC for the first

four levels of the FGC hierarchy are shown in S2–S5 Tables.
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Same-domain One-to-one Alignments

In this subsection, we discuss the quality of the same-domain one-to-one alignments produced

by MPBR and other comparative methods. Tables 1–3 summarize the one-to-one alignment

results for the same domain species with respect to distinct performance indices.

As shown in Tables 1–3, over all 28 instances, MPBR has the highest values of EC,NC and

ELCCS for 19, 18 and 18 instances respectively, whereas all three methods obtain equal values

of EC,NC and ELCCS for 5, 6 and 7 instances respectively. Additionally, MPBR and CAMP-

ways obtain equal values of EC,NC and ELCCS for 4, 4 and 3 instances respectively. These

experimental results emphasize that, for the same-domain one-to-one alignment, in most

Table 1. EC and NC of one-to-one alignment results for eco-atc.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0.53 0.26 0.26 0.53 0.53 0.53

1.2 0.67 0.67 0.00 0.69 0.69 0.00

1.3 0.81 0.58 0.00 0.71 0.64 0.00

1.4 0.75 0.51 0.00 0.79 0.77 0.00

1.5 0.96 0.91 0.91 0.77 0.76 0.76

1.6 0.83 0.67 0.00 0.80 0.76 0.00

1.7 0.77 0.64 0.65 0.71 0.69 0.69

1.8 0.59 0.58 0.00 0.66 0.61 0.00

1.9 0.80 0.70 0.00 0.80 0.66 0.00

1.1 0.88 0.87 0.00 0.84 0.80 0.00

1.11 0.67 0.67 0.67 0.59 0.59 0.59

1.12 0.85 0.67 0.65 0.78 0.73 0.74

1.13 0.93 0.76 0.76 0.87 0.84 0.84

1.14 0.66 0.47 0.37 0.71 0.65 0.58

The best performer for the relative item is marked in bold.

doi:10.1371/journal.pone.0168044.t001

Table 2. EC and NC of one-to-one alignment results for hsa-mmu.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 1.00 1.00 1.00 0.93 0.93 0.93

1.2 1.00 1.00 0.00 0.94 0.94 0.00

1.3 0.99 0.97 0.97 0.99 0.97 0.98

1.4 1.00 1.00 1.00 1.00 1.00 1.00

1.5 0.94 0.92 0.92 0.95 0.91 0.93

1.6 0.96 0.96 0.51 0.99 0.99 0.61

1.7 0.93 0.92 0.92 0.95 0.93 0.93

1.8 0.92 0.91 0.91 0.93 0.93 0.93

1.9 1.00 1.00 1.00 1.00 0.68 0.89

1.1 0.99 0.97 0.97 0.98 0.97 0.98

1.11 1.00 1.00 1.00 0.82 0.82 0.82

1.12 0.97 0.94 0.94 0.96 0.92 0.94

1.13 0.99 0.99 0.00 0.99 0.99 0.00

1.14 1.00 0.91 0.88 1.00 0.99 0.97

The best performer for the relative item is marked in bold.

doi:10.1371/journal.pone.0168044.t002
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cases, our MPBR method outperforms other comparative methods not only in topological

accuracy but also in biological relevance of the results. Thanks to the use of structural similar-

ity among the neighbors of reactions, MPBR is able to improve the topological and biological

accuracy of the alignments.

Same-domain One-to-many Alignments

In this subsection, we compare the quality of the same-domain one-to-many alignments pro-

duced by MPBR and other comparative methods. The values of C-1tomany and CR-1tomany

Table 3. ELCCS of one-to-one alignment results for eco-atc and hsa-mmu.

Pathways eco-atc hsa-mmu

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 9 5 4 14 14 14

1.2 3 3 0 5 5 0

1.3 986 751 0 763 750 750

1.4 99 73 0 23 23 23

1.5 191 191 191 459 289 289

1.6 534 364 0 526 508 508

1.7 196 143 141 374 175 176

1.8 48 37 0 57 50 54

1.9 12 12 0 3 3 3

1.10 155 149 0 215 215 215

1.11 4 4 4 5 5 5

1.12 3039 2941 2944 2878 2752 2753

1.13 316 247 256 294 292 0

1.14 191 92 95 224 204 199

The best performer for the relative item is marked in bold.

doi:10.1371/journal.pone.0168044.t003

Table 4. C-1tomany and CR-1tomany of one-to-many alignment results for eco-atc.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0 0 0 0.00 0.00 0.00

1.2 0 0 0 0.00 0.00 0.00

1.3 6274 34 * 0.34 0.45 *

1.4 117 1 0 0.83 0.07 0.00

1.5 447 30 5 0.44 0.68 0.50

1.6 2671 21 * 0.89 0.66 *

1.7 20 24 14 0.07 0.48 0.42

1.8 37 4 1 0.86 0.33 0.20

1.9 0 3 3 0.00 0.25 0.75

1.10 2364 17 2 0.66 0.28 0.11

1.11 2 1 0 1.00 0.17 0.00

1.12 12959 112 * 0.23 0.40 *

1.13 2213 16 6 1.00 0.62 0.35

1.14 442 9 6 1.00 0.82 0.50

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t004
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of the one-to-many alignment results for the same domain species are shown in Tables 4

and 5.

From Tables 4 and 5, we can see that, MPBR performs the best with the highest values of C-
1tomany and CR-1tomany in 22 and 15 out of all 28 instances respectively. For 4 instances, all

three methods obtained the same values of C-1tomany and CR-1tomany, while the value of C-
1tomany of MPBR is lower than CAMPways for 2 instances and is lower than SubMAP for 1

Table 5. C-1tomany and CR-1tomany of one-to-many alignment results for hsa-mmu.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 4 0 1 1.00 0.00 0.13

1.2 0 0 0 0.00 0.00 0.00

1.3 6117 43 * 0.57 0.60 *

1.4 16 2 1 0.31 0.29 0.50

1.5 2195 33 * 0.55 0.35 *

1.6 421 19 * 0.13 0.66 *

1.7 1103 24 6 0.88 0.35 0.29

1.8 85 4 1 0.77 0.24 0.20

1.9 0 0 0 0.00 0.00 0.00

1.10 5234 17 * 0.72 0.33 *

1.11 5 0 0 1.00 0.00 0.00

1.12 18877 117 * 0.46 0.34 *

1.13 151 11 * 0.16 0.61 *

1.14 2846 9 3 1.00 0.75 0.38

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t005

Table 6. EC and NC of one-to-one alignment results for hsa-eco.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0.30 0.16 * 0.45 0.46 *

1.2 0.14 0.29 0.00 0.35 0.18 0.29

1.3 0.76 0.48 * 0.57 0.54 *

1.4 0.55 0.26 * 0.39 0.34 *

1.5 0.47 0.31 * 0.28 0.26 *

1.6 0.89 0.72 0.00 0.81 0.78 0.00

1.7 0.42 0.27 0.25 0.40 0.35 0.37

1.8 0.65 0.53 * 0.57 0.58 *

1.9 0.00 0.00 0.00 0.08 0.06 0.08

1.1 0.56 0.53 0.00 0.56 0.55 0.00

1.11 0.42 0.33 0.00 0.36 0.36 0.00

1.12 0.63 0.48 0.48 0.48 0.45 0.45

1.13 0.90 0.64 0.00 0.78 0.74 0.00

1.14 0.95 0.68 0.72 0.82 0.81 0.82

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t006
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instance. The value of CR-1tomany of MPBR is lower than SubMAP for 4 instances, and some

values of CR-1tomany of MPBR are lower than CAMPways for 7 instances. This means that, in

most cases, MPBR is able to return more correct one-to-many reaction mappings than CAMP-

ways and SubMAP in the same-domain one-to-many alignment. On the other hand, when the

size of the pathway becomes large, SubMAP is unable to generate a result for 9 instances under

the current computing environment while MPBR and CAMPways are not restricted to the size

of the pathway in the same-domain one-to-many alignment.

Table 7. EC and NC of one-to-one alignment results for hsa-atc.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0.14 0.24 * 0.44 0.45 *

1.2 0.14 0.00 0.00 0.12 0.06 0.06

1.3 0.81 0.61 * 0.65 0.61 *

1.4 0.48 0.33 * 0.37 0.35 *

1.5 0.44 0.33 * 0.32 0.30 *

1.6 0.74 0.54 0.44 0.72 0.68 0.63

1.7 0.54 0.38 0.39 0.53 0.47 0.48

1.8 0.63 0.55 * 0.51 0.46 *

1.9 0.00 0.00 0.00 0.07 0.05 0.07

1.1 0.53 0.51 0.00 0.59 0.56 0.00

1.11 0.33 0.25 0.00 0.38 0.38 0.00

1.12 0.63 0.46 0.47 0.49 0.45 0.45

1.13 0.88 0.69 0.67 0.82 0.76 0.75

1.14 0.74 0.32 0.21 0.61 0.57 0.47

The best performer for the relative item is marked in bold.The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t007

Table 8. EC and NC of one-to-one alignment results for mmu-atc.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0.17 0.17 * 0.38 0.38 *

1.2 0.14 0.29 0.00 0.11 0.00 0.06

1.3 0.80 0.61 * 0.63 0.59 *

1.4 0.48 0.33 * 0.37 0.35 *

1.5 0.46 0.34 * 0.34 0.30 *

1.6 0.76 0.55 0.46 0.71 0.68 0.63

1.7 0.51 0.34 0.35 0.50 0.44 0.45

1.8 0.65 0.59 * 0.52 0.49 *

1.9 0.00 0.00 0.00 0.07 0.05 0.07

1.1 0.55 0.54 0.00 0.59 0.55 0.00

1.11 0.33 0.25 0.00 0.38 0.38 0.00

1.12 0.64 0.47 0.47 0.49 0.45 0.45

1.13 0.87 0.67 0.66 0.81 0.75 0.74

1.14 0.65 0.34 0.22 0.61 0.58 0.49

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t008
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Across-domains One-to-one Alignments

This subsection discusses the quality of the across-domains one-to-one alignments produced

by MPBR and other comparative methods. Tables 6–11 present the one-to-one alignment

results for different domain species with respect to distinct performance indices.

As can be seen from Tables 6–11, over all 56 instances, MPBR performs better than the

other two methods with the highest values of EC,NC and ELCCS for 47, 42 and 51 instances

Table 9. EC and NC of one-to-one alignment results for mmu-eco.

Pathways EC NC

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0.30 0.16 * 0.41 0.41 *

1.2 0.14 0.29 0.00 0.33 0.17 0.28

1.3 0.75 0.47 * 0.57 0.53 *

1.4 0.55 0.26 * 0.39 0.34 *

1.5 0.48 0.32 * 0.29 0.28 *

1.6 0.89 0.68 0.00 0.82 0.78 0.00

1.7 0.40 0.24 0.21 0.37 0.33 0.34

1.8 0.70 0.58 * 0.57 0.55 *

1.9 0.00 0.00 0.00 0.08 0.06 0.08

1.1 0.58 0.52 0.00 0.57 0.55 0.00

1.11 0.42 0.33 0.00 0.36 0.36 0.00

1.12 0.65 0.49 0.48 0.48 0.45 0.45

1.13 0.90 0.67 0.00 0.78 0.75 0.00

1.14 0.94 0.73 0.69 0.82 0.80 0.79

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t009

Table 10. ELCCS of one-to-one alignment results for hsa-eco and hsa-atc.

Pathways hsa-eco hsa-atc

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 14 6 * 9 9 *

1.2 5 4 2 5 1 2

1.3 986 735 * 763 728 *

1.4 99 33 * 54 20 *

1.5 459 57 * 459 174 *

1.6 534 515 0 526 378 392

1.7 374 210 175 374 264 282

1.8 57 57 * 57 45 *

1.9 3 2 0 3 1 0

1.10 155 134 0 144 129 0

1.11 5 5 0 4 3 0

1.12 2878 2435 2499 2878 2304 2342

1.13 316 301 0 292 263 275

1.14 224 195 215 224 103 107

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t010
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respectively. Some values of EC and NC of MPBR are a bit lower than those of CAMPways for

4 and 3 instances respectively. This demonstrates that, in most cases, MPBR is also capable of

achieving better topological accuracy and biological relevance of the alignment results than

other two comparative methods in across-domains one-to-one alignment.

In addition, from Tables 1–3 and Tables 6–11 we can find that the values of EC,NC and

ELCCS of the same-domain alignments are obviously higher than those values of across-

domains alignments. This is also consistent with the analysis that the biological relevance of

Table 11. ELCCS of one-to-one alignment results for mmu-atc and mmu-eco.

Pathways mmu-atc mmu-eco

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 9 4 * 14 7 *

1.2 5 1 2 5 2 2

1.3 746 725 * 986 711 *

1.4 54 20 * 99 33 *

1.5 289 174 * 289 162 *

1.6 508 376 390 534 497 0

1.7 183 155 131 183 148 150

1.8 53 41 * 53 53 *

1.9 3 1 0 3 2 0

1.10 144 143 0 155 134 0

1.11 4 3 0 5 5 0

1.12 2754 2324 2330 2754 2436 2453

1.13 294 258 276 316 301 0

1.14 204 100 103 204 198 198

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t011

Table 12. C-1tomany and CR-1tomany of one-to-many alignment results for hsa-eco.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0 0 * 0.00 0.00 *

1.2 0 0 0 0.00 0.00 0.00

1.3 40 31 * 0.01 0.48 *

1.4 10 2 * 0.22 0.22 *

1.5 1922 20 * 0.53 0.44 *

1.6 505 21 * 0.16 0.53 *

1.7 575 13 8 0.85 0.30 0.19

1.8 55 2 * 0.75 0.14 *

1.9 0 0 0 0.00 0.00 0.00

1.10 276 11 * 0.15 0.23 *

1.11 2 1 0 1.00 0.50 0.00

1.12 15735 * * 0.39 * *

1.13 119 11 * 0.13 0.44 *

1.14 2781 7 2 1.00 0.54 0.22

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t012
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the species within the same domain is much stronger [10]. Thus, we can employ the align-

ments of metabolic pathways to analyze the evolution of species.

Across-domains One-to-many Alignments

In this subsection, we compare the quality of the across-domains one-to-many alignments pro-

duced by MPBR and other comparative methods. The values of C-1tomany and CR-1tomany of

the one-to-many alignment results for different domain species are shown in Tables 12–15.

Table 13. C-1tomany and CR-1tomany of one-to-many alignment results for hsa-atc.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0 0 * 0.00 0.00 *

1.2 0 0 0 0.00 0.00 0.00

1.3 4956 30 * 0.50 0.46 *

1.4 10 1 * 0.32 0.17 *

1.5 1968 23 * 0.53 0.51 *

1.6 2376 22 * 0.93 0.73 *

1.7 683 22 8 0.87 0.37 0.21

1.8 55 2 * 0.75 0.13 *

1.9 0 0 0 0.00 0.00 0.00

1.10 276 14 * 0.15 0.27 *

.11 2 1 1 1.00 0.50 0.14

1.12 13420 * * 0.38 * *

1.13 1679 13 7 1.00 0.59 0.44

1.14 689 5 5 1.00 0.45 0.36

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t013

Table 14. C-1tomany and CR-1tomany of one-to-many alignment results for mmu-atc.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0 0 * 0.00 0.00 *

1.2 0 0 0 0.00 0.00 0.00

1.3 4910 30 * 0.50 0.45 *

1.4 10 1 * 0.32 0.17 *

1.5 1956 24 * 0.53 0.52 *

1.6 2244 20 * 0.93 0.67 *

1.7 655 16 5 0.86 0.28 0.12

1.8 58 2 * 0.77 0.14 *

1.9 0 0 0 0.00 0.00 0.00

1.10 276 11 * 0.15 0.24 *

1.11 2 1 1 1.00 0.50 0.14

1.12 13175 * * 0.38 * *

1.13 1679 14 7 1.00 0.64 0.44

1.14 557 7 4 1.00 0.64 0.29

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t014
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From Tables 12–15, we can see that, MPBR achieves the best values of C-1tomany and CR-
1tomany compared to other comparative methods in 44 and 32 out of 56 instances respectively.

For only 10 out of 56 instances MPBR fails to be the best. On the other hand, combining Tables

12–15 and S1 Table, we can find that, for the across-domains one-to-many alignment, when the

size of the pathway is large enough with thousands of reactions, possibly due to the exhaustive

search of reaction sets, CAMPways and SubMAP are unable to generate a result for 34 and 4

instances respectively under the current computing environment. In contrast, for these instances,

the values of C-1tomany and CR-1tomany of MPBR are still high enough without being affected

by the size of pathway. While the comparative methods suffer from the size of large-scale path-

way, MPBR overcomes this problem and returns more correct one-to-many reaction mappings.

The above analysis of C-1tomany and CR-1tomany shows that, in most instances, MPBR

also performs better than the other two methods in across-domains one-to-many alignment.

In conclusion, the results from subsection ‘Same-domain One-to-many Alignments’ and sub-

section ‘Across-domains One-to-many Alignments’ demonstrate that MPBR is an effective

method in retrieving one-to-many reaction mappings in the alignment of metabolic pathways.

Running time and memory requirements

In the experiments of one-to-one and one-to-many alignments, we have tested a total of 168

instances. In some cases, SubMAP and CAMPWays consumed an unusually long time until

running out of memory, Table 16 summaries the percentage of the instances that can be solved

by MPBR, CAMPWays and SubMAP respectively, and the average running time for the solved

instances. In Table 16, PSI represents the percentage of the solved instances of each method, in

one-to-one alignment, ART1 denotes the average running time for the 64 instances solved by

all three methods and ART2 represents the average running time for the 84 instances solved by

MPBR and CAMPWays, and in one-to-many alignment, ART3 denotes the average running

time for the 41 instances solved by all three methods, and ART4 represents the average running

time for the 80 instances solved by MPBR and CAMPWays.

Table 15. C-1tomany and CR-1tomany of one-to-many alignment results for mmu-eco.

Pathways C-1tomany CR-1tomany

MPBR CAMPways SubMAP MPBR CAMPways SubMAP

1.1 0 0 * 0.00 0.00 *

1.2 0 0 0 0.00 0.00 0.00

1.3 47 33 * 0.01 0.45 *

1.4 10 2 * 0.22 0.22 *

1.5 1910 19 * 0.53 0.45 *

1.6 405 22 * 0.14 0.54 *

1.7 562 9 7 0.85 0.20 0.16

1.8 64 1 * 0.79 0.07 *

1.9 0 0 0 0.00 0.00 0.00

1.10 276 10 * 0.15 0.20 *

1.11 2 1 0 1.00 0.50 0.00

1.12 15004 * * 0.38 * *

1.13 119 13 0 0.13 0.54 0.00

1.14 2146 8 1 1.00 0.57 0.13

The best performer for the relative item is marked in bold. The asterisk “*” denotes that the program is unable to generate a result under our current

computing environment.

doi:10.1371/journal.pone.0168044.t015
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As can be seen from Table 16, for the one-to-one alignment, although the average running

time for the 64 solved instances of SubMAP is shorter than CAMPWays and MPBR, SubMAP

failed to solve 20 out of 84 instances since it took an unusually long time until running out of

memory in these unsolved instances, whereas both CAMPWays and MPBR solved all the

instances. Meanwhile we can see that, for the one-to-one alignment, MPBR consumed less

time than CAMPWays for the 84 instances solved by MPBR and CAMPWays.

For the one-to-many alignment, we can observe from Table 16 that, MPBR spent less time

for the 41 instances solved by all three methods in comparison to CAMPWays and SubMAP;

in addition, compared with CAMPWays, MPBR took less time for the 80 solved instances of

MPBR and CAMPWays, and MPBR solved all the 84 instances while both CAMPWays and

SubMAP did not.

Many-to-many Alignments

In addition to one-to-many alignments, we can also reveal alternative pathways that have simi-

lar functions by finding many-to-many reaction mappings between different pathways. This

subsection discusses whether MPBR can accurately find such mappings in the alignment of

metabolic pathways. The many-to-many reaction mappings include 2-to-2, 2-to-3 and 3-to-3

reaction mappings. Both CAMPways and SubMAP do not implement the functionality of

many-to-many alignment. Table 17 shows the C-manytomany of many-to-many alignment

results of MPBR.

Table 16. The percentage of the solved instances and the average running time for the solved instances (in seconds).

Methods One-to-one alignment One-to-many alignment

PSI ART1 ART2 PSI ART3 ART4

MPBR 100%(84/84) 693.03 526.21 100%(84/84) 199.65 232.45

CAMPways 100%(84/84) 1595.59 1171.42 95%(80/84) 499.98 518.56

SubMAP 76%(64/84) 15.12 - 49%(41/84) 299.1 -

“-” means that this item is not applicable for SubMAP.

doi:10.1371/journal.pone.0168044.t016

Table 17. C-manytomany of many-to-many alignment results of MPBR.

Pathways Same domain Across domains

eco-atc hsa-mmu hsa-eco hsa-atc mmu-atc mmu-eco

1.1 0 2 0 0 0 0

1.2 0 0 0 0 0 0

1.3 23367 18420 19252 16145 16076 19085

1.4 62 59 82 16 16 82

1.5 5320 6271 5247 5323 5302 5221

1.6 5088 6434 8224 4277 4222 7522

1.7 764 1952 589 800 740 542

1.8 10 59 13 19 18 12

1.9 2 0 0 0 0 0

1.10 6063 14523 9628 9628 9628 9628

1.11 0 5 2 0 2 0

1.12 53398 60859 52767 41791 41395 50243

1.13 4115 4348 4177 3335 3335 4177

1.14 358 3733 3573 539 484 1322

doi:10.1371/journal.pone.0168044.t017
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Both Escherichia coli (eco) and Agrobacterium tumefaciens (atc) are single-cell microorgan-

isms, Homo sapiens (hsa) and Mus musculus (mmu) are complex organisms with cell mem-

branes. Table 17 demonstrates that there are a number of many-to-many reaction mappings

between the species among the same domain and among different domains. These results sug-

gest that many-to-many reaction mappings frequently appear in nature. MPBR has the capa-

bility in finding many-to-many reaction mappings between different pathways to obtain

biologically meaningful alignments.

Case study

In this subsection, we present three cases (as shown in Fig 4) to discuss how to comparatively

analyze metabolic pathways using MPBR, CAMPways and SubMAP. We represent the reac-

tions by their KEGG identifiers. First, we used MPBR, CAMPways and SubMAP to perform

one-to-one alignment for the metabolic pathways of lysine biosynthesis in atc and eco. The

result is shown in Fig 4(A). Lysine biosynthesis pathway consists of 6 enzymes arranged in a

linear topology, transforming the substrate (2S,4S)-4-Hydroxy- 2,3,4,5-tetrahydrodipicolinate

into L-lysine. We observed that the pathways of lysine biosynthesis are identical between atc
and eco. This implies a common ancestral pathway, which is consistent with the theory that

pathways for synthesis of proteinogenic amino acids were established before ancient organ-

isms diverged into archaea, bacteria, and eucarya [28].

On the other hand, one-to-many or many-to-many reaction mappings in the alignment of

pathways may uncover additional interesting evolutionary phenomena, or alternative path-

ways performing the same or similar function. An example is a one-to-many reaction mapping

in Fig 4(B). MPBR obtains this mapping by performing one-to-many alignment for the meta-

bolic pathways of Glyoxylate and dicarboxylate metabolism in atc and eco. Both CAMPways

and SubMAP fail to find this mapping in this alignment. In Fig 4(B), the eco reaction R01394

[Hydroxypyruvate < = > 2-Hydroxy-3-oxopropanoate] was mapped to the atc reactions

R01392 [D-Glycerate + NADP+ < => Hydroxypyruvate + NADPH + H+] and R01747

[D-Glycerate + NADP+ < => 2-Hydroxy-3-oxopropanoate + NADPH + H+]. Since both

R01394 and R01392 share one input compound Hydroxypyruvate and both R01394 and

R01747 share one output compound 2-Hydroxy-3-oxopropanoate, the reaction R01394 in eco,

catalyzed by 5.3.1.22, is functionally similar to the succession of the two reactions R01392 and

Fig 4. Sample alignments. The upper reactions are a part of the pathways of atc, whereas the lower reactions are a part of the pathways of eco. Reactions

are represented by their KEGG identifiers. Enzymes are shown in EC numbers. The compounds are depicted by small circles. (a) One-to-one reaction

mappings extracted from the alignment of the metabolic pathways of lysine biosynthesis in atc and eco. (b) A one-to-many reaction mapping extracted from

the alignment of the metabolic pathways of Glyoxylate and dicarboxylate metabolism in atc and eco. (c) A many-to-many reaction mapping extracted from

the alignment of the metabolic pathways of Glycolysis in atc and eco.

doi:10.1371/journal.pone.0168044.g004
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R01747 in atc, catalyzed by 1.1.1.79 and 1.1.1.60. Biologically, this indicates that the functional-

ity of 5.3.1.22 in eco is analogous to the combined functionality of the two enzymes 1.1.1.79

and 1.1.1.60 in atc. This may imply an intriguing case of either gene fusion in eco or gene

duplication in atc. This needs to be further investigated to reveal the biological scene that leads

to this event; nevertheless, it provides an elicitation in this direction.

Another example is a many-to-many reaction mapping in Fig 4(C). MPBR obtains this

mapping by performing many-to-many alignment for the metabolic pathways of Glycolysis in

atc and eco. Both CAMPways and SubMAP do not implement the functionality of many-to-

many alignment. In Fig 4(C), MPBR mapped the atc reactions R01602 [alpha-D-Glucose < =

> beta-D-Glucose] and R01600 [ATP + beta-D-Glucose < => ADP + beta-D-Glucose

6-phosphate] to the eco reactions R01786 [ATP + alpha-D-Glucose < => ADP + alpha-

D-Glucose 6-phosphate] and R02739 [alpha-D-Glucose 6-phosphate < => beta-D-Glucose

6-phosphate]. As can be seen from Fig 4(C), alpha-D-Glucose can be transformed into beta-

D-Glucose 6-phosphate through reactions R01602 and R01600 in atc, while this transforma-

tion can be done through reactions R01786 and R02739 in eco. That is, by allowing many-to-

many reaction mappings in the alignments, MPBR has successfully found different alternative

pathways that have similar function through different sets of reactions.

Conclusions

In this paper, we have proposed an alignment method MPBR for finding reaction mappings

between two metabolic pathways. We have formalized the connected relation between reac-

tions as binary relation of reactions, and have shown how to employ the multiplications of

zero-one matrices for binary relation of reactions to search reaction sets in a small number of

steps to uncover one-to-many and many-to-many reaction mappings between two metabolic

pathways. This provides the first step in the process of exploiting the relation between reac-

tions in the alignment of metabolic pathways. The success of MPBR is primarily due to the use

of the multiplications of zero-one matrices for binary relation of reactions in finding reaction

sets, which avoids the exhaustive search for reaction sets and increases the accuracy of the

alignments of the alternative pathways. Furthermore, we introduce a measure of topological

similarity of reactions, which compares the structural similarity of the k-neighborhood sub-

graphs of the reactions, and employ this similarity metric to improve the accuracy of the

alignments.

In most cases, MPBR obtains alignment results with higher values of EC,NC, ELCCS,C-
1tomany and CR-1tomany than CAMPways and SubMAP, and accurately returns more bio-

logically relevant mappings. Moreover, our method also provides a user-defined parameter for

finding many-to-many reaction mappings in the alignments, while both CAMPways and Sub-

MAP do not support many-to-many alignment. Thus, MPBR enriches the means of one-to-

many and/or many-to-many alignments of metabolic pathways.

In order to further improve biological relevance of resulting mappings, one feasible solution

is to use context-specific information content, such as semantic similarity of the gene ontology

(GO) terms or sequence information, to compute homological similarity of reactions. Another

interesting issue is to exploit binary relation of reactions to identify functional motifs in meta-

bolic pathways.
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