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Relaxed Binaural LCMV Beamforming
Andreas I. Koutrouvelis, Richard C. Hendriks, Richard Heusdens and Jesper Jensen

Abstract—In this paper we propose a new binaural beam-
forming technique which can be seen as a relaxation of the
linearly constrained minimum variance (LCMV) framework. The
proposed method can achieve simultaneous noise reduction and
exact binaural cue preservation of the target source, similar to the
binaural minimum variance distortionless response (BMVDR)
method. However, unlike BMVDR, the proposed method is also
able to preserve the binaural cues of multiple interferers to a
certain predefined accuracy. Specifically, it is able to control the
trade-off between noise reduction and binaural cue preservation
of the interferers by using a separate trade-off parameter per-
interferer. Moreover, we provide a robust way of selecting these
trade-off parameters in such a way that the preservation accuracy
for the binaural cues of the interferers is always better than
the corresponding ones of the BMVDR. The relaxation of the
constraints in the proposed method achieves approximate bin-
aural cue preservation of more interferers than other previously
presented LCMV-based binaural beamforming methods that use
strict equality constraints.

Index Terms—Beamforming, binaural cue preservation, hear-
ing aids, LCMV, multi-microphone noise reduction, MVDR.

I. INTRODUCTION

COMPARED to normal-hearing people, hearing-impaired
people generally have more difficulties in understanding

a target talker in complex acoustic environments with multiple
interfering sources. To reduce noise and improve speech
comfort, single-microphone (see e.g. [1] for an overview)
or multi-microphone noise reduction methods (see e.g., [2]
for an overview) can be used. While the former are mostly
effective in reducing listening effort, the latter are also ef-
fective in improving speech intelligibility [3]. Examples of
multi-microphone noise reduction methods include the multi-
channel Wiener filter (MWF) [4], [5], the minimum variance
distrortionless response (MVDR) beamformer [6], [7], or,
its generalization, the linearly constrained minimum variance
(LCMV) beamformer [7], [8].

Traditionally, hearing aids (HAs) have been fitted bilater-
ally, i.e., the user wears a HA on each ear, and the HAs are
operating essentially independently of each other. As such, the
noise reduction algorithm in each HA estimates the signal of
interest using only the recordings of the microphones from
that specific HA [9]. Such a setup with an independent multi-
microphone algorithm per ear may severely distort the binaural
cues since phase and magnitude relations of the sources
reaching the two ears are modified [10]. This is harmful for the
naturalness of the total sound field as received by the hearing-
aid user. Ideally, all sound sources (including the undesired
ones) that are present after processing should still sound as
if originating from the original direction. This does not only
lead to a more natural perception of the acoustic environment,
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but can also lead to an improved intelligibility of a target
talker in certain cases; more specifically, in spatial unmasking
experiments [11] it has been shown that a target talker in a
noisy background is significantly easier to understand when
the noise sources are separated in space from the talker, as
compared to the situation where talker and noise sources are
co-located.

Binaural HAs are able to wirelessly exchange microphone
signals between HAs. This facilitates the use of multi-
microphone noise reduction methods which combine all mi-
crophone recordings from both HAs, hence allowing the usage
of more microphone recordings than with the bilateral noise
reduction. As such, the increased number of microphone
recordings can potentially lead to better noise suppression
and, thus, to a higher speech intelligibility. Moreover, by
introducing proper constraints on the beamformer coefficients,
binaural cue preservation of the sources can be achieved.

The LCMV method [7], [8] minimizes the output noise
power under multiple linear equality constraints. One of these
equality constraints is typically used to guarantee that the
target source remains undistorted with respect to a certain
reference location or microphone. The remaining constraints
can be used for additional control on the final filter response.
For example, they can be used to steer nulls in the directions
of the interferers [7], [12], or to broaden the beam towards
the target source in order to avoid steering vector mismatch
problems [13], [14]. A special case of the LCMV method
is the minimum variance distortionless response (MVDR)
beamformer, which only uses the distortionless constraint of
the target source [6], [7].

An alternative multi-microphone noise reduction method is
the MWF [4], [5] which leads to the minimum mean square
error (MMSE) estimate of the target source if the estimator
is constrained to be linear, or, the target source and the
noise are assumed to be jointly Gaussian distributed [15].
However, in [16]–[18], it was demonstrated that speech signals
in time and frequency domains tend to be super-Gaussian
distributed rather than Gaussian distributed. Thus, the MWF
is generally not MMSE optimal. The MWF does not include
a distortionless constraint for the target source and, thus,
it generally introduces speech distortion in the output [4].
Several generalizations of the MWF have been proposed,
among which the speech distortion weighted MWF (SDW-
MWF) [5], which introduces a parameter in the minimization
procedure to control the trade-off between speech distortion
and noise reduction. A well-known property of the MWF is
the fact that it can be decomposed into an MVDR beamformer
and a single-channel Wiener filter as a post-processor [19].

There are several binaural multi-microphone noise reduction
methods known from the literature. These can be devided into
two main categories [20]: a) methods based on the linearly
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constrained minimum variance (LCMV) framework and b)
methods based on the multi-channel Wiener filter (MWF).

The binaural version of the SDW-MWF (BSDW-
MWF) [21], [22] preserves the binaural cues of the
target. However, it was theoretically proven that the binaural
cues of the interferers collapse on the binaural cues of the
target source [23] (i.e., after processing the binaural cues
of the interferers become identical to the binaural cues of
the target source). In [22], a variation of the BSDW-MWF
(called BSDW-MWF-N) was proposed which tries to partially
preserve the binaural cues of the interferers. This method
inserts a portion of the unprocessed noisy signal at the
reference microphones to the coresponding BSDW-MWF
enhanced signals. The larger the portion of the unprocessed
noisy signals, the lower the noise reduction, but the better
the preservation of binaural cues of the interferers and vice
versa. As such, this solution exhibits a trade-off between
the preservation of binaural cues and the amount of noise
reduction. In [24], a subjective evaluation of BSDW-MWF
and BSDW-MWF-N shows that for a moderate input SNR
indeed the subjects localized the processed interferer correctly
with BSDW-MWF-N and incorrectly with BSDW-MWF.
However, for a small input SNR the processed interferer was
also localized correctly for BSDW-MWF. This is mainly
due to the inaccurate estimates of the cross power spectral
density (CPSD) matrix of the target, and due to masking
effects when the processed target and processed interferer
are represented to the subjects simultaneously [24]. In [25],
two other variations of the BSDW-MWF were proposed. The
first one is capable of preserving the binaural cues of the
target and completely cancel one interferer. The second one
is capable of accurately preserving the binaural cues of only
one interferer, while distorting the binaural cues of the target.

Similarly to SDW-MWF, the BSDW-MWF can be decom-
posed into the binaural MVDR (BMVDR) beamformer and a
single-channel Wiener filter [25]. The BMVDR can preserve
the binaural cues of the target source, but the binaural cues of
the interferers collapse to the binaural cues of the target source.
In [26], [27], the binaural linearly constrained minimum vari-
ance (BLCMV) method was proposed, which achieves simul-
taneous noise reduction and binaural cue preservation of the
target source and multiple interferers. Unlike the BMVDR, the
BLCMV uses two additional linear constraints per interferer
to preserve its binaural cues. A fixed interference rejection
parameter is used in combination with these constraints to
control the amount of noise reduction. The BLCMV is thus
capable of controlling the amount of noise reduction using
two constraints per interferer. However, in hearing-aid systems
with a rather limited number of microphones, the degrees
of freedom (DOF) for noise reduction are exhausted quickly
when increasing the number of interferers. This makes the
BLCMV less suitable for this application.

In [28], a similar method to BLCMV, called optimal
BLCMV (OBLCMV), was proposed which is able to achieve
simultaneous noise reduction and binaural cue preservation of
the target source and only one interferer. Unlike the BLCMV,
the OBLCMV uses an optimal interference rejection parameter
with respect to the binaural output SNR. In [29], [30] two

independent works proposed the same LCMV-based method
(we call it joint BLCMV (JBLCMV)) as an alternative to the
BLCMV, which preserves the binaural cues of the target source
and more than twice the number of interferers compared to
the BLCMV [29]. Unlike the BLCMV, the JBLCMV requires
only one linear constraint per interferer and, as a result, it has
more DOF left for noise reduction. The linear constraints for
the preservation of the binaural cues of the interferers have
the same form as the linear constraint used in [25]. However,
unlike the method in [25], the JBLCMV can preserve the
binaural cues of a limited number of interferers and does not
distort the binaural cues of the target source.

In this paper, we present an iterative, relaxed binaural
LCMV beamforming method. Similar to the other binaural
LCMV-based approaches, the proposed method strictly pre-
serves the binaural cues of the target source. However, the pro-
posed method is flexible to control the accuracy of binaural cue
preservation of the interferers and, therefore, trade-off against
additional noise reduction. This is achieved by using inequality
constraints instead of the commonly used equality constraints.
The task of each inequality constraint is the (approximate)
preservation of the binaural cues of a single interferer in a
controlled way. The proposed method is flexible to select a
different value for the trade-off parameter of each interferer
according to importance. The BMVDR and the JBLCMV can
be seen as two extreme cases of the proposed method. On
one hand, the BMVDR can achieve the best possible overall
noise suppression compared to all the other aforementioned
binaural LCMV-based methods, but causes full collapse of the
binaural cues of the interferers towards the binaural cues of the
target source. On the other hand, the JBLCMV can achieve the
preservation of the maximum possible number of interferers
compared to the other aforementioned binaural LCMV-based
methods, but at the expense of less noise suppression. Unlike
the JBLCMV and the BMVDR, the proposed method, is flexi-
ble to control the amount of noise suppression and binaural cue
preservation according to the needs of the user. The relaxations
used in the proposed method allow the usage of a substantially
larger number of constraints for the approximate preservation
of more interferers compared to all the other binaural LCMV-
based methods including JBLCMV.

The remainder of this paper is organized as follows. In
Section II, the signal model and the notation are presented.
In Section III the key idea of the binaural beamforming is
explained and several existing binaural LCMV-based methods
are summarized. In Sections IV and V, a novel non-convex
binaural beamforming problem and its iterative convex ap-
proximation are presented, respectively. In Section VI, the
evaluation of the proposed method is provided. Finally, in
Section VII, we draw some conclusions.

II. SIGNAL MODEL AND NOTATION

Assume for convenience that each of the two HAs consists
of M/2 microphones, where M is an even number. Thus, the
microphone array consists of M microphones in total. The
multi-microphone noise reduction methods considered in this
paper operate in the frequency domain on a frame-by-frame
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basis. Let l denote the frame index and k the frequency-bin
index. Assume that there is only one target source and there are
r interferers. The k-th frequency coefficient of the l-th frame
of the j-th microphone noisy signal, yj(k, l), j = 1, · · · ,M ,
is given by

yj(k, l)=aj(k, l)s(k, l)︸ ︷︷ ︸
xj(k,l)

+

r∑
i=1

bij(k, l)ui(k, l)︸ ︷︷ ︸
nij(k,l)

+vj(k, l), (1)

where
• s(k, l) denotes the target signal at the source location.
• ui(k, l), is the i-th interfering signal at the source loca-

tion.
• aj(k, l) is the acoustic transfer function (ATF) of the

target signal with respect to the j-th microphone.
• bij(k, l) is the ATF of the i-th interfering signal with

respect to the j-th microphone.
• xj(k, l) is the received target signal at the j-th micro-

phone.
• nij(k, l) is the i-th received interfering signal at the j-th

microphone.
• vj(k, l) is additive noise at the j-th microphone.

Here we use in the signal model the ATFs for notational
convinience. However, note that the ATFs can be replaced
with relative acoustic transfer functions (RATF)s which can
often be identified easier than the ATFs [12], [20].

In the remainder of the paper, the frequency and frame
indices are neglected to simplify the notation. Using vector
notation, Eq. (1) can be written as

y = x +

r∑
i=1

ni + v, (2)

where y ∈ CM×1, x ∈ CM×1, ni ∈ CM×1 and v ∈
CM×1 are the stacked vectors of the yj , xj , nij , vj (for
j = 1, · · · ,M ) components, respectively. Moreover, x = as
and ni = biui, where a ∈ CM×1 and bi ∈ CM×1 are
the stacked vectors of the aj and bij (for j = 1, · · · ,M )
components, respectively.

Assuming that all sources and the additive noise are mutu-
ally uncorrelated, the CPSD matrix of y is given by

Py = E
[
yyH

]
= Px +

r∑
i=1

Pni + Pv︸ ︷︷ ︸
P

, (3)

where
• Px = E

[
xxH

]
= psaaH ∈ CM×M is the CPSD matrix

of x, with ps = E
[
|s|2
]

the power spectral density (PSD)
of s.

• Pni
= E

[
nin

H
i

]
= pui

bib
H
i ∈ CM×M is the CPSD

matrix of ni, with pui = E
[
|ui|2

]
the PSD of ui.

• Pv = E
[
vvH

]
∈ CM×M is the CPSD matrix of v.

• P is the total CPSD matrix of all disturbances.

III. BINAURAL BEAMFORMING

Binaural multi-microphone noise reduction methods aim at
the simultaneous noise reduction and binaural cue preservation

of the sources. In order to preserve the binaural cues, two
different spatial filters ŵL ∈ CM×1 and ŵR ∈ CM×1, are
applied to the left and right HA, respectively, where constraints
can be used to guarantee that certain phase and magnitude
relations between the left and right HA outputs are preserved.
Note that both spatial filters use all microphone recordings
from both HAs.

Without loss of generality, assume that the reference mi-
crophone for the left and right HA is indexed as j = 1 and
j = M , respectively. In the sequel, for ease of notation, the
reference terms of Eq. (1) use the subscripts L and R instead
of j = 1 and j = M , respectively. The two enhanced output
signals at the left and right HAs are then given by

x̂L = ŵH
L y and x̂R = ŵH

R y. (4)

In Section III-A, objective measures for the preservation
of binaural cues are presented. In Sections III-C—III-F, the
BMVDR, the BLCMV, the OBLCMV, and the JBLCMV
are reviewed, respectively. All reviewed methods are special
cases of the general binaural LCMV (GBLCMV) framework,
presented in Section III-B. Finally, the basic properties of all
reviewed methods are summarized in Section III-G.

A. Binaural Cues

The extent to which the binaural cues of a specific source
are preserved can be expressed using the input and output
interaural tranfer function (ITF) [31], [32]. Often the ITF
is decomposed into its magnitude, describing the interaural
level differences (ILDs) and its phase, describing the interaural
phase differences (IPDs). The input and output ITFs of the i-th
interferer are defined as [32]

ITFin
ni

=
niL
niR

=
biL
biR

, ITFout
ni

=
ŵH

L ni

ŵH
R ni

=
ŵH

L bi

ŵH
R bi

. (5)

The input and output ILDs are defined as [32]

ILDin
ni

= |ITFin
ni
|2, ILDout

ni
= |ITFout

ni
|2. (6)

The input and output IPDs are given by [32]

IPDin
ni

= ∠ITFin
ni
, IPDout

ni
= ∠ITFout

ni
. (7)

Note that frequently, the IPDs are converted and measured as
time delays [33], i.e., interaural time differences (ITDs). The
IPDs and ILDs are the dominant cues for binaural localization
for low and high frequencies, respectively [34]. Typically, the
IPDs become more important for frequencies below 1 kHz,
while ILDs become more important for frequencies above
3 kHz [34]. In [35] it was experimentally shown that for broad-
band signals, the IPDs are perceptually much more important
than the ILDs for localizing a source. More specifically, it was
shown that the low frequency IPDs play the most important
role perceptually for correct localization. Based on this ob-
servation several proposed multi-microphone noise reduction
techniques [33], [36] leave the low frequency content of the
noisy measurements unprocessed, and process only the higher
frequency content. Unfortunately, if a large portion of the
power of the noise is concentrated at low frequencies, the noise
reduction capabilities are reduced significantly. Therefore, in
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this paper we aim at the simultaneous preservation of binaural
cues of all sources and noise reduction at all frequencies.

A binaural spatial filter, ŵ = [ŵT
L ŵT

R]T , exactly pre-
serves the binaural cues of the i-th interferer if ITFin

ni
=

ITFout
ni

[32]. Exact preservation of ITFs also implies preser-
vation of ILDs and IPDs [32], i.e., ILDin

ni
= ILDout

ni
and

IPDin
ni

= IPDout
ni

. Non-exact preservation of binaural cues
implies that there is some positive ITF error given by

Eni = |ITFout
ni
− ITFin

ni
|. (8)

Moreover, non-exact presevation of binaural cues implies that
there is some ILD and/or IPD errors, given by

Lni
= |ILDout

ni
− ILDin

ni
|, Tni

=
|IPDout

ni
− IPDin

ni
|

π
, (9)

where 0 ≤ Tni ≤ 1 [32]. Eqs. (5), (6), (7), (8) and (9) apply
also for the target source x. As it will become obvious in the
sequel, for all methods that will be discussed in this paper,
the errors in Eqs. (8), (9) with respect to the target source are
always zero.

As explained before, the IPD error is perceptually more
important measure for binaural localization than the ILD error
for broadband signals (such as speech signals contaminated by
broadband noise signals), because the IPDs are perceptually
more important than the ILDs for this category of signals.
Moreover, the IPD error is perceptually more informative at
low frequencies, while the ILD error is perceptually more
informative at high frequencies.

B. General Binaural LCMV Framework

All binaural LCMV-based methods discussed in this section
are based on a general binaural LCMV (GBLCMV)1 frame-
work which is the binaural version of the classical LCMV
framework [7], [8]. The GBLCMV minimizes the sum of
the left and right output noise powers under multiple linear
equality constraints. That is,

ŵGBLCMV = arg min
w∈C2M×1

wHP̃w s.t. wHΛ = fH , (10)

where ŵGBLCMV = [ŵT
GBLCMV,L ŵT

GBLCMV,R]T ∈ C2M×1,
Λ ∈ C2M×d is assumed to be a full column rank matrix (i.e.,
rank(Λ) = d), f ∈ Cd×1, d is the number of linear equality
constraints, and

P̃ =

[
P 0
0 P

]
∈ C2M×2M . (11)

Similarly to the classical LCMV framework [7], [8], if d ≤
2M , and Λ is full column rank, the GBLCMV has a closed-
form solution given by

ŵGBLCMV =

P̃−1Λ
(
ΛHP̃−1Λ

)−1

f if d < 2M

(ΛH)−1f if d = 2M.
(12)

In GBLCMV, the total number of DOF devoted to noise
reduction is DOFGBLCMV = 2M − d. Note that in the special

1We used the word general in order to distinguish it from the BLCMV
method [26], [27].

case where d=2M , there are no DOF left for controlled noise
reduction, i.e., ŵGBLCMV cannot reduce the objective function
of the GBLCMV problem in a controlled way. Finally, if d >
2M , the feasible set is {w :wHΛ= fH}=∅ and the GBLCMV
problem has no solution. In conclusion, the matrix Λ has to
be “tall” (i.e., d < 2M ), to be able to simultaneously achieve
controlled noise reduction and satisfy the constraints of the
GBLCMV problem. The maximum number of constraints
that the GBLCMV framework can handle, while achieving
controlled noise reduction, is dmax = 2M − 1, i.e., there
should be always left at least one DOF for noise reduction.
Generally, the more DOF (i.e., the larger DOFGBLCMV), the
more controlled noise reduction can be achieved.

The set of linear constraints of the GBLCMV framework in
Eq. (10) can be devided into two parts,

wH
[
Λ1 Λ2

]
=
[
fH1 fH2

]
. (13)

The first part consists of two distortionless constraints wH
L a =

aL and wH
R a = aR which preserve the target source at the

two reference microphones. This can be written compactly as

wHΛ1 = fH1 , (14)

where

Λ1 =

[
a 0
0 a

]
∈ C2M×2, f1 =

[
a∗L
a∗R

]
∈ C2×1.

All binaural methods discussed in this section are special cases
of the GBLCMV framework and they share the constraints in
Eq. (14), while the constraints wHΛ2 = fH2 are different.

In the sequel of the paper we use the term m (mmax) to
indicate the number (maximum number) of interferers that
a special case of the GBLCMV framework can preserve,
while at the same time achieving controlled noise reduction.
Recall that controlled noise reduction means that there is at
least one DOF left for noise reduction. Moreover, mmax ≤ r
which means that some methods may be unable to preserve
all simultaneously present interferers of the acoustic scene,
because there are not enough available DOF.

C. BMVDR

The BMVDR beamformer [30] can be formulated using the
combination of the following two beamformers

ŵBMVDR,L = arg min
wL∈CM×1

wH
L PwL s.t. wH

L a = aL, (15)

ŵBMVDR,R = arg min
wR∈CM×1

wH
R PwR s.t. wH

R a = aR, (16)

with closed-form solutions

ŵBMVDR,L =
P−1aa∗L
aHP−1a

, ŵBMVDR,R =
P−1aa∗R
aHP−1a

. (17)

The BMVDR is the simplest special case of the GBLCMV
framework in the sense that it has the minimum number
of constraints (d = 2) given by Eq. (14). Specifically, the
two optimization problems in Eqs. (15) and (16) can be re-
formulated as the following joint optimization problem,

ŵBMVDR = arg min
w∈C2M×1

wHP̃w s.t. wHΛ1 = fH1 , (18)
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where ŵBMVDR =[ŵT
BMVDR,L ŵT

BMVDR,R]T ∈ C2M×1. Since,
the BMVDR has the minimum possible number of constraints,
the total number of DOF which can be devoted to noise
reduction is DOFBMVDR = 2M − 2.

The BMVDR preserves the binaural cues of the target
source, but distorts the binaural cues of all the interferers [30],
i.e., mmax = 0. More specifically, after processing, the binaural
cues of the interferers collapse on the binaural cues of the
target source. It can be shown [30] that the binaural cues
of the target source are preserved due to the satisfaction of
the two distortionless constraints of the problems in Eqs. (15)
and (16). That is,

ITFin
x = ITFout

x =
aL
aR

. (19)

Therefore, the ITF error is Ex,BMVDR = 0. Furthermore, it can
be shown that the binaural cues of the interferers collapse to
the binaural cues of the target source [30]. More specifically,
the ITFin

ni
is given by

ITFin
ni

=
biL
biR

, (20)

while ITFout
ni

is given by

ITFout
ni

=
ŵH

BMVDR,Lbi

ŵH
BMVDR,Rbi

=
aHP−1biaL

aHP−1a
aHP−1biaR

aHP−1a

=
aL
aR

= ITFin
x . (21)

Thus, after processing, the interferers will have the same ITF
as the target source and their ITF error is given by

Eni,BMVDR =
∣∣ITFout

ni
− ITFin

ni

∣∣ =

∣∣∣∣aLaR − biL
biR

∣∣∣∣ . (22)

D. BLCMV

Another special case of the GBLCMV framework is the
binaural linearly constrained minimum variance (BLCMV)
beamformer [26], [27] which, unlike the BMVDR, uses addi-
tional constraints for the preservation of the binaural cues of
m interferers. The left and right spatial filters of the BLCMV
are given by [26], [27]

ŵBLCMV,L = arg min
wL∈CM×1

wH
L PwL

s.t. wH
L a = aL

wH
L b1 = ηLb1L, . . . , wH

L bm = ηLbmL, (23)

and

ŵBLCMV,R = arg min
wR∈CM×1

wH
R PwR

s.t. wH
R a = aR

wH
R b1 = ηRb1R, . . . , wH

R bm = ηRbmR, (24)

where the constraints wH
L a = aL and wH

R a = aR are the
two common distortionless constraints used in all special
cases in the GBLCMV framework, while the constraints
wH

L bi = ηLbiL and wH
R bi = ηRbiR, for i = 1, . . . ,m, aim

at a) preserving the binaural cues and b) supressing the m
interferers. The amount of supression is controlled via the
interference rejection parameters ηL and ηR which are pre-
defined (0 ≤ ηL, ηR < 1) real-valued scalars. Binaural cue

preservation is achieved only if η = ηL = ηR [26], [28].
The two problems in Eqs. (23) and (24) can be compactly
formulated as a joint optimization problem. That is,

ŵBLCMV = arg min
w∈C2M×1

wHP̃w s.t. wHΛ = fH , (25)

where

Λ =
[
Λ1 Λ2

]
=

[
a 0 b1 0 · · · bm 0
0 a 0 b1 · · · 0 bm

]
︸ ︷︷ ︸

C2M×(d=2+2m)

,

and

fT =
[
fT1 fT2

]
=
[
a∗L a∗R ηLb

∗
1L ηRb

∗
1R · · · ηLb

∗
mL ηRb

∗
mR

]︸ ︷︷ ︸
C1×(d=2+2m)

.

The available DOF for noise reduction are DOFBLCMV =
2M − d = 2M − 2m − 2. Since dmax = 2M − 1 (see
Section III-B), BLCMV can simultaneously achieve controlled
noise suppression and binaural cue preservation of at most
mmax = M − 2 interferers.

The ITF errors of the target source and of the m interferers
that are included in the constraints are zero, i.e., Ex,BLCMV = 0
and Eni,BLCMV = 0, for i = 1, · · · ,m ≤ r. However, if some
interferers are not included in the constraints, their ITF error
will be non-zero, i.e., Eni,BLCMV > 0, for i = m+ 1, · · · , r.

E. OBLCMV

The OBLCMV [28] can be seen as a special case of
the BLCMV (and, hence, the GBLCMV) since it solves the
same optimization problem. However, it preserves the binaural
cues of only one interferer (e.g., the k-th interferer) using
an optimal complex-valued interference rejection parameter
η̂ = η̂L = η̂R with respect to the binaural output SNR. More
specifically, OBLCMV solves the problem in Eq. (25) where
Λ and fT , are given by [28]

Λ =
[
Λ1 Λ2

]
=

[
a 0 bk 0
0 a 0 bk

]
∈ C2M×4,

fT =
[
fT1 fT2

]
=
[
a∗L a∗R η̂b∗kL η̂b∗kR

]
∈ C1×4 (26)

where 1 ≤ k ≤ r. The available DOF for noise reduction are
DOFOBLCMV = 2M − 4. The ITF errors of the target source
and of the k-th interferer that are included in the constraints
are zero, i.e., Ex,OBLCMV = 0 and Enk,OBLCMV = 0. However,
the binaural cues of all the other r − 1 interferers will be
distorted, i.e., Eni,BLCMV > 0, for i ∈ {1, · · · , r} − {k}.

F. JBLCMV

Recall from Section III-A that preserving binaural cues of
the i-th interferer implies that the following constraint has to
be satisfied

ITFin
ni

= ITFout
ni

=⇒ wH
L bi

wH
R bi

=
biL
biR

, (27)

which can be reformulated as:

wH
L bibiR −wH

R bibiL = 0. (28)
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Compared to (O)BLCMV this unified constraint reduces the
number of constraints, used for binaural cue preservation, by
a factor 2. As a result, for a given number of interferers, more
DOF can be devoted to noise reduction. The JBLCMV [29],
[30] uses this type of equality constraints for the preservation
of the binaural cues of m interferers. More specifically, the
JBLCMV problem is given by

ŵJBLCMV = arg min
w∈C2M×1

wHP̃w s.t. wHΛ = fH , (29)

where

Λ=
[
Λ1 Λ2

]
=

[
a 0 b1b1R · · · bmbmR

0 a −b1b1L · · · −bmbmL

]
∈ C2M×(2+m),(30)

and wJBLCMV = [wT
JBLCMV,L wT

JBLCMV,R]T . Moreover,

fT =
[
fT1 fT2

]
=
[
a∗L a∗R 0 0 · · · 0

]
∈ C1×(2+m). (31)

Similarly to all other special cases of the GBLCMV frame-
work, wHΛ1 = fH1 is used for the exact binaural cue
preservation of the target source, while wHΛ2 = fH2 is used
for the preservation of the binaural cues of m interferers.

The JBLCMV can simultaneously achieve controlled noise
reduction and binaural cue preservation of up to mmax =
2M − 3 interferers [29]. Moreover, the DOF devoted to noise
reduction is DOFJBLCMV = 2M −m− 2.

G. Summary of GBLCMV methods

We summarize some of the properties of the methods
discussed in Section III. Table I gives an overview of two
important factors: a) the maximum number of interferers’
binaural cues that can be preserved while achieving controlled
noise reduction mmax, and b) the degrees of freedom (DOF)
available for noise reduction. The following conclusions can
be drawn from this table:
• The BMVDR has the maximum DOF, which means

that it can achieve the best possible noise reduction. It
preserves the binaural cues of the target source, but not
the binaural cues of the interferers.

• Unlike (O)BLCMV which uses two constraints per inter-
ferer, JBLCMV uses only one constraint per interferer.
Therefore, the JBLCMV can preserve the binaural cues of
more interferers, or equivalently, given the same number
of interferers it has more available DOF devoted to noise
reduction.

In this paper, if the number of simultaneously present inter-
ferers is r > mmax, the extra interferers r − mmax are not
included in the constraints in the GBLCMV methods, in order
to always have one DOF left for controlled noise reduction.

IV. PROPOSED NON-CONVEX PROBLEM

In this section, we present a general optimization problem
of which BMVDR and JBLCMV are special cases. More
specifically, we relax the constraints on the binaural cues of
the interferers, while keeping the strict equality constraints on

TABLE I
SUMMARY OF A) MAXIMUM NUMBER OF INTERFERERS’ BINAURAL CUES

THAT CAN BE PRESERVED WHILE ACHIEVING CONTROLLED NOISE
REDUCTION (mMAX ), AND B) NUMBER OF AVAILABLE DEGREES OF

FREEDOM FOR NOISE REDUCTION (DOF). ALL METHODS ARE SPECIAL
CASES OF THE GBLCMV FRAMEWORK. M IS THE TOTAL NUMBER OF

MICROPHONES, AND m IS THE NUMBER OF THE CONSTRAINED
INTERFERERS.

Method mmax DOF

BMVDR [30] 0 2M − 2

BLCMV [27] M − 2 2M − 2m− 2

OBLCMV [28] 1 2M − 4

JBLCMV [29], [30] 2M − 3 2M −m− 2

the target source (i.e., wHΛ1 = fH1 ). The relaxation allows
to trade-off the amount of noise reduction and binaural cue
preservation per interferer in a controlled way. The proposed
optimization problem is defined as

ŵ = arg min
w∈C2M×1

wHP̃w s.t. wHΛ1 = fH1 ,∣∣∣∣wH
L bi

wH
R bi

− biL
biR

∣∣∣∣︸ ︷︷ ︸
Eni

≤ ei, i = 1, · · · ,m. (32)

The inequality constraints bound the ITF error (see Eq. (8)),
for the interferers i = 1, · · · ,m to be less than a positive trade-
off parameter ei, i = 1, · · · ,m. These inequality constraints
will be transformed, in the sequel of this section (see Eqs. (34),
(35)), in such a way that they can be viewed as relaxations of
the strict equality constraints in Eq. (28) used in the JBLCMV
method. Note that the proposed method is flexible to choose
a different ei for every interferer according to its importance.
For instance, maybe certain locations are more important to
be preserved than others and, therefore, a smaller ei must be
used. The trade-off parameter, ei, is selected as

ei(ci) = ciEni,BMVDR, (33)

where 0 ≤ ci ≤ 1 controls the amount of binaural cue
collapse towards the target source, and the amount of noise
reduction of the i-th interferer. If ci = 1,∀i is used in
the optimization problem in Eq. (32), then ŵ = ŵBMVDR
which is seen as a worst case, with respect to binaural cue
preservation, because there is total collapse of binaural cues of
the interferers towards the binaural cues of the target source.
If ci = 0,∀i we have perfect preservation of binaural cues
of the m interferers, and ŵ = ŵJBLCMV. Without any loss
of generality, for notational convenience, we assume that the
binaural cues of all interferers are of equal importance and,
therefore, ci = c,∀i. Moreover, we keep c fixed over all
frequency bins. It is worth noting that other strategies for
choosing c may exist, which might lead to a better trade-
off between maximum possible noise reduction and perceptual
binaural cue preservation. As explained in Section III-A, low
frequency content is perceptually more important for binaural
cue preservation than high frequency content. Thus, smaller
c values for low frequencies and larger c values for higher
frequencies may give a better perceptual trade-off.
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The problem in Eq. (32) is not a convex problem and it
is hard to solve. In Section V we propose a method that
approximately solves the non-convex problem in an iterative
way by solving at each iteration a convex problem.

V. PROPOSED ITERATIVE CONVEX PROBLEM

By doing some simple algebraic manipulations, the opti-
mization problem in Eq. (32) can equivalently be written as

ŵ = arg min
w∈C2M×1

wHP̃w s.t. wHΛ1 = fH1 ,

|wH
L bibiR −wH

R bibiL|
|wH

R bibiR|
≤ ei(c), for i = 1, · · · ,m. (34)

Furthermore, the problem in Eq. (34) can be re-written as

ŵ = arg min
w∈C2M×1

wHP̃w s.t. wHΛ1 = fH1 ,

|wHΛ2,i| ≤ |ei(c)wH
R bibiR|︸ ︷︷ ︸

f2,i

, for i = 1, · · · ,m, (35)

where Λ2,i is the i-th column of Λ2 in Eq. (30).
We approximately solve the non-convex problem in Eq. (35)

in an iterative way using wH
R of the previous iteration in

f2,i, i = 1, · · · ,m. The new iterative problem is convex at
each iteration and is given by

ŵ(k) = arg min
w∈C2M×1

wHP̃w s.t. wHΛ1 = fH1 ,

|wHΛ2,i| ≤ |ei(c)ŵH
R,(k−1)bibiR|︸ ︷︷ ︸
f2,i,(k)

, for i = 1, · · · ,m, (36)

where ŵ(k) = [ŵT
L,(k) ŵT

R,(k)]
T is the estimated binaural

spatial filter of the k-th iteration, which is initialized as
ŵ(0) =ŵBMVDR. Similarly to other existing minimum variance
beamformers with inequality constraints [37], [38], the convex
optimization problem in Eq. (36) can be equivalently written
as a second order cone programming (SOCP) problem with
equality and inequality constraints (see Appendix) and it can
be solved efficiently with interior point methods [39].

The ITF error of the i-th interferer at the k-th iteration is
given by

Eni,(k) =

∣∣∣∣∣ ŵ
H
L,(k)bi

ŵH
R,(k)bi

− biL
biR

∣∣∣∣∣ . (37)

This iterative method is stopped when all the constraints of
the original problem in Eq. (32) are satisfied. Therefore, the
stopping criterion that we use is given by

Eni,(k) ≤ ei(c), for i = 1, · · · ,m, (38)

where ei(c) is given in Eq. (33). Recall that f2 = 0 (i.e., f2,i =
0,∀i) is used in JBLCMV. Unlike JBLCMV, the proposed
method uses f2,i,(k) ≥ 0,∀i and, therefore, the constraints ded-
icated for the preservation of binaural cues of the interferers
are seen as relaxations of the strict equality constraints of the
JBLCMV method. These relaxations enlarge the feasible set of
the problem, allowing more constraints to be used compared
to JBLCMV. The JBLCMV can be seen as a special case of
the proposed method for c = 0, f2,i,(1) = 0, i = 1, · · ·m.
In this case, the relaxed constraints in the proposed method

become identical to the strict constraints of the JBLCMV.
Hence, the JBLCMV needs to run only one iteration of the
problem in Eq. (36). If c = 0, the proposed method follows the
same strategy for handling r > mmax simultaneously present
interferers as in Section III-G. However, if c > 0, then there
is a typically large, difficult to predict mmax

2, due to the
inequality constraints and, therefore, the proposed method uses
m = r, ∀r constraints for the preservation of the binaural cues
of all simultaneously present interferers. Finally, if c = 1,
the proposed method does not iterate and stops immediately
giving as output the initialization ŵ(0) = ŵBMVDR.

The termination of the proposed iterative method may need
a large amount of iterations because of the fixed c in Eq. (36).
The reason for this is explained in detail in Section V-A. To
control the speed of termination we replace in Section V-B the
fixed c in Eq. (36) with a decreasing parameter τ(k) (initialized
with τ(0) = c) which controls the speed of termination. In
Section V-C we show under which conditions the proposed
method: a) guarantees that it will find a feasible solution
satisfying the stopping criterion in Eq. (38) in a finite number
of iterations, and b) guarantees a bounded amount of binaural
cue preservation and a bounded amount of noise reduction.
An overview of the proposed method using the adaptive τ(k)

is given in Algorithm 1.

A. Speed of Termination

The proposed iterative method may have slow termination
due to the fixed choice of c. In this section we explain the
reason and in Section V-B we explain how to control the speed
of termination.

Let Φ(k) denote the convex feasible set in the k-th iteration
of the iterative optimization problem in Eq. (36) given by

Φ(k) =

m⋂
i=1

{
w(k) :ΛH

1 w(k) = f1, |wH
(k)Λ2,i|≤f2,i,(k)

}
, (39)

and Ψ(c) the non-convex feasible set of the original non-
convex problem of Eqs. (32), (33) given by

Ψ(c)=

m⋂
i=1

{
w :ΛH

1 w= f1,

∣∣∣∣wH
L bi

wH
R bi

− biL
biR

∣∣∣∣≤ei(c)} , (40)

where ŵJBLCMV ∈ Ψ(0), and Ψ(0) ⊆ Ψ(c), 0 ≤ c ≤ 1 and,
therefore, ŵJBLCMV ∈ Ψ(c), 0 ≤ c ≤ 1. In words, ŵJBLCMV is
an element of the set Ψ(0), which gives the minimum output
noise power compare to the other elements of Ψ(0). Note
that the Φ(k) changes for every next iteration, while Ψ(c)
is constant over time. We can think of Φ(k) as a convex
approximation set of Ψ(c) at iteration k (see a simplistic
example of the two sets in Fig. 1(a)).

Note that the proposed iterative method will typically try
to find a solution on the boundary of Φ(k). Some parts of the
boundary of Φ(k) will be inside or on the boundary of Ψ(c),
while other parts can be outside the set Ψ(c). Therefore, it is
possible that the estimated ŵ(k) will be outside of Ψ(c) (see

2The feasible set of the proposed method typically reduces by adding
more inequality constraints. However it is difficult to predict after how many
constraints, m, it becomes empty, i.e., what is the value of mmax.
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Algorithm 1 Proposed Iterative Method
Input: c, kmax,a,bi, i = 1, · · · ,m
Output: ŵ(k)

Initialisation : ŵ(0) ← ŵBMVDR, k ← 1, τ(0) ← c
General comments :
{SC stands for stopping criterion in Eq. (38)}.
{SP stands for solving problem in Eq. (36)}.

1: if SC(ŵ(0), c) = true then
2: go to 17
3: end if

start iterations
4: while k ≤ kmax do
5: if k = kmax then
6: ŵ(k) ← SP

(
ŵ(k−1), τ(k),a,bi, i = 1, · · · , 2M − 3

)
7: go to 17
8: else
9: ŵ(k) ← SP

(
ŵ(k−1), τ(k),a,bi, i = 1, · · · ,m

)
10: end if
11: if SC(ŵ(k), c) = true then
12: go to 17
13: end if
14: k ← k + 1
15: τ(k) = τ(k−1) − c/kmax
16: end while
17: return ŵ(k)

Fig. 1(a) for instance). In this case, obviously, the stopping
criterion is not satisfied and, therefore, the problem goes to
the next iteration. In the next iteration, Φ(k+1) changes and
a new ŵ(k+1) is estimated which can be again outside of
Ψ(c) (see Fig. 1(a) for instance). This repetition can happen
many times leading to a very slow termination because the
new estimate ŵ(k+1) is not selected according to a binaural-
cue error descent direction. To avoid this undesirable situation,
we propose in Section V-B to replace the fixed c in Eq. (36)
with an adaptive reduction parameter τ(k), in order to make
sure that solutions that are on the boundary of Φ(k) and that
are outside Ψ(c) will progressively provide a reduced binaural-
cue error, i.e., to move towards the direction of the interior of
Ψ(c) (see Fig. 1(b) for instance).

B. Avoiding Slow Termination

The termination of the proposed iterative method may need
a large amount of iterations because of the fixed c in Eq. (36),
as explained in Section V-A. Therefore, the replacement of c
with an adaptive reduction parameter τ(k) only in Eq. (36) is
useful for guaranteed termination within a pre-selected finite
maximum number of iterations, kmax. More specifically, the
new adaptive reduction parameter that we use in Eq. (36)
instead of c is given by

τ(k) = τ(k−1) − α(kmax), (41)

where τ(0) = c is selected according to the initial desired
amount of collapse of binaural cues in the original non-convex
problem in Eqs. (32), (33). The step α(kmax) controls the speed

(a)

Ψ(c)

Φ(k)

Φ(k + 1)

ŵ(k)

ŵ(k+1)

(b)

Ψ(c)

Φ(k)

Φ(k + 1)

ŵ(k)

ŵ(k+1)

Fig. 1. Simplistic visualization of two successive iterations (k and k+ 1) of
the proposed method with (a) a fixed c, (b) a reducing τ(k). In k+1 iteration
the stopping criterion is satisfied in (b). On the contrary, in (a) the stopping
criterion is not satisfied, because ŵ(k+1) /∈ Ψ(c).

of termination, and is a function of the maximum allowed
number of iterations for termination given from the user, i.e.,

α(kmax) =
c

kmax
. (42)

Note that we replace c with τ(k) only in Eq. (36) and not in the
stopping criterion in Eq. (38). This is because, the stopping
criterion is based on the fixed feasible set Ψ(c) of the non-
convex problem in Eq. (32) which should remain constant over
iterations (see an example of two consecutive iterations in
Fig. 1). Moreover, the τ(k) is always non-negative, because
τ(kmax) = 0. Small kmax, speeds up the reduction of τ(k) and,
thus, it also speeds up the termination of the proposed method.
Of course a very small kmax can lead to a feasible solution,
ŵ(k), for which

∑
i Eni,(k) �

∑
i ei(c), i.e., to be far away

from the boundary of Ψ(c). This means that ŵ(k) provides
better binaural cue preservation than the desired amount of
binaural cue preservation, ei(c). As a result, there will be less
noise suppression. Ideally, we would like to arrive as close
as possible to the controlled trade-off between noise reduction
and binaural cue preservation given by our initial specifications
(i.e., amount of collapse). Therefore, a careful choice of kmax
is needed in order to find a feasible solution ŵ(k) that:
• achieves a total ITF error

∑
i Eni,(k) ≈

∑
i ei(c), i.e., to

be as close as possible to the boundary of Ψ(c)3.
• to terminate as fast as possible.

Of course there is a trade-off between the two goals.

C. Guarantees

In this section, we prove that the proposed iterative method
using the adaptive reduction parameter in Eq. (41) guarantees
termination, a bounded binaural cue preservation accuracy,

3Note that there may not be any element on the boundary (or in the interior)
of Ψ(c), which provides a total ITF error of

∑
i ei(c). The max possible

total ITF error of Ψ(c) may be less than
∑

i ei(c). This depends mainly on
the number of constraints. Nevertheless, in general, the smaller the difference∑

i Eni,(k)
−
∑

i ei(c) is, the closer to the boundary of Ψ(c) is the solution.
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and a bounded amount of noise reduction, in at most kmax
iterations, for a limited number of interferers m ≤ 2M − 3.
Nevertheless, our simulation experiments (see Section VI-C)
show that our algorithm a) is capable of simultaneously achiev-
ing the same bounds for binaural cue preservation accuracy
and for noise reduction of more interferers than 2M − 3 for
c > 0, and b) finds a feasible solution in much fewer iterations,
on average, than kmax, for kmax = 10, 50.

The adaptive decreasing of τ(k) (see Eq. (41)) results in an
adaptive shrinking of Φ(k). Therefore, in the case where the
estimated ŵ(k) will be outside of Ψ(c), the stopping criterion
is not satisfied and, therefore, the algorithm continues with
the next iteration. In the next iteration, Φ(k) typically shrinks
due to the decreased value of τ(k) according to Eq. (41). The
algorithm continues until there is a solution ŵ(k) ∈ Ψ(c).
Note that this does not necessarily mean that the algorithm
will stop if and only if Φ(k) ⊆ Ψ(c) (see e.g., Fig. 1(b) where
the algorithm stops before Φ(k) ⊆ Ψ(c)). Only in the worst
case scenario a solution is found when Φ(k) ⊆ Ψ(c).

We show below that, for m ≤ 2M−3, the proposed method
guarantees termination within a pre-defined finite maximum
number of iterations, kmax, while achieving a bounded binaural
cue preservation accuracy and a bounded amount of noise
reduction. This is written more formally in Theorem 1.

Theorem 1. If m ≤ 2M − 3, the proposed method a) will
always find a solution in a finite number of iterations k ≤ kmax

satisfying the stopping criterion of Eq. (38), and b) will always
have a bounded ITF error, i.e.,

0 ≤ Eni,(k) ≤ ei(c), for i = 1, · · · ,m, (43)

and a bounded noise output power

ŵH
BMVDRP̃ŵBMVDR≤ŵH

(k)P̃ŵ(k)≤ŵH
JBLCMVP̃ŵJBLCMV. (44)

Proof. Note that for m ≤ 2M−3, after kmax iterations τ(kmax) =
0 (see Eqs. (41) and (42)) and, therefore, ŵ(kmax) = ŵJBLCMV
because the relaxations of the proposed method in Eq. (36)
become ŵH

(kmax)
Λ2 = 0, which is the same as in JBLCMV

as explained in Section V. Note also that ŵJBLCMV always
satisfies the stopping criterion, i.e., ŵJBLCMV ∈Ψ(c), for 0≤
c ≤ 1 (see Section V-A). Therefore, for m ≤ 2M − 3, the
algorithm, in the worst case scenario, will terminate after kmax
iterations. Consequently, the first part of the theorem has been
proved. Thus, in the worst case scenario, the algorithm gives
the solution ŵJBLCMV which results in Eni,(k) = 0 for i =
1, · · · ,m. Since the algorithm always terminates (i.e., satisfies
the stopping criterion), the ITF error will always be Eni,(k)≤
ei(c), for i = 1, · · · ,m. Thus, Eq. (43) has been proved.
Moreover, the algorithm in the worst case scenario (after kmax)
will have the noise output power ŵH

JBLCMVP̃ŵJBLCMV. Finally,
the noise output power cannot be less than ŵH

BMVDRP̃ŵBMVDR
(because ŵBMVDR achieves the best noise reduction over all
the aforementioned methods, because it has the largest feasible
set). Thus, Eq. (44) has been proved.

Note that, for k = kmax and m > 2M − 2, Φ(kmax) = ∅4.
However, for k < kmax and m > 2M − 2, Φ(k) may not be

4Recall that for m = 2M − 2 (i.e., d = 2M ), there is a feasible solution
which does not provide controlled noise reduction (see Section III-B).

0
x-axis
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15o
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Fig. 2. Experimental setup: � HAs, ’o’ target source, ’x’ speech shaped
interferers. Each source has the same distance, h, from the center of the
head.

empty. As we will show in our experiments, indeed, usually it
is not empty and, thus, we may achieve simultaneous bounded
approximate binaural cue preservation and bounded noise
reduction of m > 2M − 2 interferers. This can be observed
experimentally in Sections VI-C2 and VI-C3.

VI. EXPERIMENTAL RESULTS

In this section, the proposed method, summarized in Al-
gorithm 1, is experimentally evaluated. In Section VI-A, the
setup of our experiments is demonstrated. In Section VI-B,
the performance measures are presented. In Section VI-C, the
proposed method is compared to other LCMV-based methods
with regard to binaural cue preservation and noise reduction.
Moreover, we provide results with regard to the speed of the
proposed method in terms of number of iterations.

A. Experiment Setup

Fig. 2 shows the experimental setup that we used. Two
behind-the-ear (BTE) HAs, with two microphones each, are
simulated and, therefore, the total number of microphones is
M = 4. The publicly available database with the BTE impulse
responses (IRs) in [40] is used to simulate the head IRs (we
used the front and middle microphone for each HA). The front
microphones are selected as reference microphones.

We placed all sources on a h = 80 cm radius circle centered
at the origin (0, 0) (center of head) with an elevation of 0o

degrees. The index of each interferer (denoted by ’x’ marker)
is indicated in Fig. 2. The interferers 1, 2, 3, 4, 5, 6 and 7 are
speech shaped noise realizations with the same power and are
placed at 15o, 45o, 75o, 105o, 165o, 240o and 300o degrees,
respectively. The target source (denoted by ’o’ marker) is a
speech signal in the look direction, i.e., 90o degrees.

The duration of all sources is 60 sec. The microphone
self noise at each microphone is simulated as white Gaussian
noise (WGN) with PV = σ2I, where σ = 3.8 ∗ 10−5 which
corresponds to an SNR of 50 dB with respect to the target
signal at the left reference microphone. The noise CPSD
matrices, P, are calculated (as in Eq. (3)) using the ATFs
of the truncated true BTE IRs, from the database, and the
estimated PSDs of the sources using all available data without
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voice activity detection (VAD) errors. Also, the constraints of
all the aforementioned methods use the ATFs of the truncated
true BTE IRs. The truncated BTE IRs length is 50 ms.
The sampling frequency is fs = 16 kHz. We use a simple
overlap-and-add analysis/synthesis method [41] with frame
length 10 ms, overlap 50% and an FFT size of 1024. The
analysis/synthesis window is a square-root-Hann window. The
ATFs are also computed with an FFT size of 1024. The
microphone signals are computed by convolving the truncated
BTE IRs with the source signals at the original locations.

B. Performance Evaluation

In this section we define the performance evaluation mea-
sures that we use to evaluate the results.

1) ITFs, IPDs & ILDs: Here we define four average
performance measures for binaural cue preservation: the total
ILD error, the total IPD error, the total ITF error, and the
average ITF error ratio. As explained in Section III-A, the IPD
errors are perceptually more important for frequencies below
1 kHz, and the ILD errors are perceptually more important
for frequencies above 3 kHz. Thus, the evaluation of IPDs
and ILDs will be done only for these frequency regions. We
evaluate the total ILD and IPD errors as follows. Let Lni

(k, l)
and Tni

(k, l) denote the ILD and IPD errors (for the k-th
frequency bin and l-th frame), respectively, defined in Eq. (9).
Then the total ILD and IPD errors are defined as

TotERILD =

r∑
i=1

(
1

N − kILD

N∑
k=kILD

(
1

T

T∑
l=1

Lni
(k, l)

))
, (45)

and

TotERIPD =

r∑
i=1

(
1

kIPD

kIPD∑
k=1

(
1

T

T∑
l=1

Tni
(k, l)

))
, (46)

where N and T are the number of frequency bins and
the number of frames, respectively, kILD and kIPD are the
first and last frequency-bin indices in the frequency regions
3 − 8 kHz and 0 − 1 kHz, respectively. Note that since the
maximum possible value of Tni(k, l) is 1, the maximum value
of TotERIPD is r. Moreover, we evaluate the total ITF error
given by

TotERITF =

r∑
i=1

(
1

N

N∑
k=1

(
1

T

T∑
l=1

Eni
(k, l)

))
, (47)

where Eni
is the ITF error defined in Eq. (8). Finally, we

evaluate the average ITF error ratio given by

AvERITF(c)=
1

r

r∑
i=1

1

N

N∑
k=1

1

T

T∑
l=1

Eni
(k, l)

Eni,BMVDR(k, l)
, (48)

which measures the average amount of binaural cue collapse
by comparing the ITF error of the proposed method with the
ITF error of the BMVDR. Since the proposed method will
always satisfy the condition Eni

(k, l) ≤ cEni,BMVDR(k, l) for
r ≤ 2M − 3 (see Theorem 1), obviously AvERITF(c) ≤ c
for r ≤ 2M − 3. Note that ideally the proposed method will
provide a solution as close as possible to the boundary of

Ψ(c), i.e., AvERITF(c)− c to be as small as possible (see Sec-
tion V-B). Moreover, for the proposed method AvERITF(0) = 0
and AvERITF(1) = 1 because for c = 0, Eni(k, l) = 0 (for
r ≤ 2M − 3), and for c = 1, Eni

(k, l) = Eni,BMVDR(k, l).
It is worth mentioning that there are other more perceptually

relevant methods (see e.g., [42], [43]) determining the ability
of a user to correctly localize (before and after applying the
binaural spatial filter) concurrent multiple sound sources in re-
verberant environments than the simple objective performance
measures given in Eqs. (45)-(48). In this paper, we focus on
the aforementioned simplified instrumental measures.

Note that we use the true ATFs in the constraints of the
optimization problems of all competing methods. Therefore,
we do not measure the corresponding error measures for the
binaural cues of target source since they are always zero,
because in all compared methods the distortionless constraints
perfectly preserve the binaural cues of the target source.

2) SNR measures: We define the binaural global segmental
signal-to-noise-ratio (gsSNR) gain as

gsSNRgain = gsSNRout − gsSNRin dB, (49)

where the gsSNR input and output are defined as

gsSNRin =
1

T

T∑
l=1

min
(
max

(
SNRin(l),−20

)
, 50
)

dB, (50)

gsSNRout =
1

T

T∑
l=1

min
(
max

(
SNRout(l),−20

)
, 50
)

dB, (51)

respectively, where for the l-th frame, the binaural input signal-
to-noise-ratio (SNR) is defined as

SNRin(l) = 10log10

(∑N
k=1 eT P̃x(k, l)e∑N
k=1 eT P̃(k, l)e

)
dB, (52)

where eT = [eT
L eT

R], eT
L = [1, 0, · · · , 0] and eT

R =
[0, · · · , 0, 1], P̃ is defined in Eq. (11) and P̃x is similarly
defined but it uses as diagonal block matrices the Px matrix.
The binaural output SNR for the l-th frame, is defined as

SNRout(l) = 10log10

(∑N
k=1 wH(k, l)P̃x(k, l)w(k, l)∑N
k=1 wH(k, l)P̃(k, l)w(k, l)

)
dB,

(53)
where w = [wT

L(k, l) wT
R(k, l)]T . Note that gsSNRout and

gsSNRin can be seen as average measures of the binaural SNR
measures defined in [30]. We also use the frequency-weighted
segmental SNR (fwsSNR) [44], [45] to measure the amount
of noise suppression at the left and right HA. The fwsSNR
gain at the left reference microphone is given by

fwsSNRgain
L = fwsSNRout

L − fwsSNRin
L dB, (54)

where the input and output fwsSNR at the left reference
microphone are given by [45]

fwsSNRin
L =

1

T

T∑
l=1

min

max

Nfb∑
j=1

gjSNRin
j,L,−20

 ,50

 dB,

(55)
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Fig. 3. Anechoic environment: Performance of the competing methods in terms of (a,b,c) noise reduction, (d) ITF error, (e) IPD error, (f) ILD error.

fwsSNRout
L =

1

T

T∑
l=1

min

max

Nfb∑
j=1

gjSNRout
j,L,−20

 ,50

 dB,

(56)
where SNRin

j,L and SNRout
j,L are the input and output SNRs,

respectively, of the j-th frequency band at the left reference
microphone. The SNR values of the Nfb frequency bands are
weighted differently with weights gj . The ranges and central
frequencies of the frequency bands, and the values of gj , i =
1, · · · , Nfb are selected as described in [46]. The input and
output fwsSNR for the right reference microphone are defined
similarly to Eqs. (55) and (56), respectively. Note that the
noise-only frames are excluded from the evaluation.

C. Results

In the following experiments we evaluate the performance
of the proposed and reference methods (i.e., BLCMV [27]
with two different values of η, OBLCMV [28], BMVDR [30]
and JBLCMV [29], [30]) as a function of the number of
simultaneously present interferers, 1 ≤ r ≤ 7. For instance,
for r = 1, only the interferer with index 1 is enabled while
all the others are silent. For r = 2, only the interferers with
indices 1, 2 are enabled, while the others are silent, and so
on. Recall that each method has a different mmax, except for
the proposed method for c > 0 where mmax is difficult to
be estimated, as explained in Section V, and, therefore, m is
always set to m=r. For each of the reference methods and the
proposed method in the case of c=0 and if r>mmax, we will
use in the constraints only the first mmax interferers and the

TABLE II
ANECHOIC ENVIRONMENT: INPUT NOISE LEVELS FOR r=1, 2, 3, 4, 5, 6, 7.

aaaaaaa
Measure

r 1 2 3 4 5 6 7

gsSNRin 0.67 −1.26−2.11−2.76−3.58−4.00−4.36

fwsSNRin
L 6.88 4.34 0.47 −2.76−4.84−5.68−5.84

fwsSNRin
R −1.50−3.93−4.87−5.14−5.26−5.43−5.98

last r −mmax will not be preserved. For simplicity, we used
the same c = cj , for j = 1, · · · ,m, for all interferers in the
proposed method. In other words, we assumed that the binaural
cues of all interferers are equally important. Moreover, we
selected for the adaptive change of τ(k) the step parameter
α(kmax) with kmax ∈ {10, 50}. In Sections VI-C1, VI-C2 the
simulations are carried out without taking into account room
acoustics. In Section VI-C3 the simulations are carried out by
taking into account room acoustics.

1) SNR & Binaural Cue Preservation: In this section and
in Section VI-C2 the evaluation is undertaken in an anechoic
environment. The binaural gsSNRin, fwsSNRin

L and fwsSNRin
R

values for r=1, 2, 3, 4, 5, 6 and 7 are given in Table II.
Figs. 3 and 4 show the comparison of the proposed method

(denoted by Pr.−c= value, kmax = value) with the aforemen-
tioned reference methods in terms of binaural cue preservation
and noise reduction. Note that BMVDR and the JBLCMV are
the two extreme special cases of our method which can be
denoted as Pr.−c= 1 and Pr.−c= 0, respectively. However,
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r starts at the top left part of each curve.

in these figures we used the original names for clarity. The
performance curves are for different number of simultaneously
present interferers r. As expected, the performance curves in
Fig 3(a,d) of the proposed method always lie between the
BMVDR and the JBLCMV for m ≤ 2M − 3 (see Theorem
1). Interestingly, this is also the case for m > 2M − 3. As
expected, the proposed method for kmax = 50 achieves slightly
better noise reduction and worse binaural cue preservation
than for kmax = 10. This is because for a larger kmax, the
proposed algorithm will provide a feasible solution closer to
the boundary of Ψ(c), as explained in Section V-B. Fig. 4
is the combination of the curves of Figs. 3(a,d) into a single
figure. Notice that the number of interferers r in this combined
figure increase from r= 1 up to r= 7 along the curves from
top-left, to bottom-right.

From Figs. 3(a,d), and Fig. 4 it is clear that, indeed the
proposed method achieves a bounded noise reduction and
a bounded binaural cue preservation accuracy. It is worth
mentioning that a bounded performance in terms of the ITF
error does not necessarily mean bounded performance in
terms of ILD and IPD errors. For instance, in Fig. 3(e) the
proposed method for r = 1, 2 with parameters c = 0.6 and
kmax = 10, 50 has a larger total IPD error than the 0.6 times the
total IPD error of the BMVDR. This is because, the proposed
method does not bound the IPD and ILD errors separately, but
their combination (i.e., the ITF error).

The BMVDR achieves the best noise reduction perfor-
mance, but it does not preserve the binaural cues of the
interferers. The JBLCMV accurately preserves the largest
number of simultaneously present interferers and it has worse
noise reduction performance than all parametrizations of the
proposed method. Note that mmax = 5 for JBLCMV and, thus,
the last two interferers cannot be included in the constraints
and that is why the binaural cue preservation is not perfect.
The OBLCMV comes second in terms of SNR performance,
but it preserves the binaural cues of only one interferer.

Fig. 5 serves to visualize better the trade-off between
fast termination and closeness to the boundary of Ψ(c) (see
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Fig. 5. Anechoic environment: Average ITF error ratio as a function of c for
1 ≤ r ≤ 7 for (a) kmax = 10 and (b) kmax = 50. The solid line is the c
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Section V-B for details). More specifically, Fig. 5 shows
the average ITF error ratio of the proposed method, for
kmax = 10, 50, as a function of c for different number of
simultaneously present interferers r. As expected (see Sec-
tion VI-B1), AvERITF(c) ≤ c for 1 ≤ r ≤ 5. This is also
the case for the curves for r = 6, 7 except for c = 0, as
expected, because the proposed method becomes identical to
the JBLCMV which can preserve the binaural cues of up to
mmax = 2M − 3 = 5 interferers while achieving controlled
noise reduction. As expected, for kmax = 50 all performance
curves are closer to the boundary. In general, the larger the
m = r, the less close the AvERITF(c) of the proposed method
is to c (see why in Section V-B). Note that for the two extreme
values c = 0 and c = 1, the proposed method becomes
identical to the JBLCMV and the BMVDR, respectively. As
was expected, for c = 0 and r ≤ 5, AvERITF(0) = 0. The
JBLCMV has mmax = 2M − 3 = 5 and, therefore, for c = 0
and r = 6, 7, AvERITF(0) > 0. Finally, for c = 1, for all
values of r, AvERITF(1) = 1 as expected.

2) Speed of Termination: Fig. 6 shows the average number
of iterations (required for the proposed method to satisfy the
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stopping criterion) as a function of the simultaneously present
interferers, r, of the four configurations of the proposed
method that are tested in Figs. 3 and 4. It is clear that the
proposed method terminates after 3-4 iterations on average,
even for r = 6, 7 > 2M − 3. Note that for both tested values
of kmax, for all frames and frequency bins the proposed method
terminated before reaching kmax.

Fig. 7 shows a 3D histogram which depicts the statistical
termination behaviour of the proposed method. Specifically,
the proposed method is evaluated with different c values from
0.1 to 0.9 with a step-size 0.1. For each c value it is evaluated
for all numbers of simultaneously present interferers, i.e., for
r = 1, · · · , 7 as in Fig 6. Hence, this histogram represents
all gathered pair-values (c, k) of all frequency bins for all
r = 1, · · · , 7. The pairs (c, k) express the number of iterations
(per frequency bin), k, that the proposed method need in order
to terminate for a certain initial c. The z-axis, which is depicted
with different colors, is the number of frequency bins that are
associated with a certain pair (c, k) in the x-y axes. Again
we see that, on average, after 3-4 iterations the algorithm
terminates for c = 0.1 : 0.1 : 0.9.

3) Reverberation: Figs. 8, 9, 10 and 11 show the same
experiments as in Figs. 3, 4, 5, and 6, respectively, but this time
in a reverberant office environment. The same signals for the
interferers and the target are used here. The reverberant BTE
IRs are also taken from the database in [40]. Note that, the
aforementioned database does not have the reverberant (for the
office environment) BTE IRs corresponding to 240o and 300o

degrees [40]. Therefore, we used the avalaible angles, 125o,
145o for the 6-th and 7-th interferer, respectively. Moreover,
the sources are now placed on a h = 100 cm radius circle
centered at the origin (0, 0) (center of head) with an elavation
of 0o degrees (because only this distance is available for
the office environment in [40]). Similarly to the anechoic
experiment, the microphone self noise at each microphone is
simulated as WGN with PV = σ2I, where σ = 6.1 ∗ 10−5

which corresponds to an SNR of 50 dB with respect to the
target signal at the left reference microphone. The binaural
gsSNRin, fwsSNRin

L and fwsSNRin
R values for r=1, 2, 3, 4, 5, 6

and 7 are given in Table III.
As it is shown in Figs. 8(a,d) and 9, again the performance

of the proposed method is bounded (see Theorem 1) even for
m > 2M−3. In Fig. 10 it is clear that the proposed method has

TABLE III
REVERBERANT ENVIRONMENT (OFFICE): INPUT NOISE LEVELS FOR

r=1, 2, 3, 4, 5, 6, 7.

aaaaaaa
Measure

r 1 2 3 4 5 6 7

gsSNRin 0.36 −1.68−2.61−3.38−4.07−4.63−5.03

fwsSNRin
L 5.99 3.54 0.20 −3.10−4.98−5.95−6.66

fwsSNRin
R −2.25−4.59−5.69−5.96−6.12−6.26−6.33

very similar behavior as in Fig. 5, i.e., by increasing kmax, the
proposed method approaches closer to the boundary. Finally,
in Fig. 11 it is shown that the speed of termination is not
effected significantly due to reverberation.

VII. CONCLUSION

In this paper we proposed a new multi-microphone iterative
binaural noise reduction method. The proposed method is
capable of controlling the amount of noise reduction and the
accuracy of binaural cue preservation per interferer using a
robust methodology. Specifically, the inequality constraints
introduced for the binaural cue preservation of the interferers,
are selected in such a way that a) the total ITF error is always
less or equal than a fraction of the corresponding total ITF
error of the BMVDR method, and b) the achieved amount
of noise reduction is larger or equal to the one achieved
via JBLCMV. Therefore, the proposed method provides the
flexibility to the users to parametrize the proposed method
according to their needs. Moreover, the proposed method
always preserves strictly the binaural cues of the target source.
Although the proposed method guarantees a bounded binaural
cue preservation accuracy and a bounded amount of noise
reduction only for m ≤ 2M−3 interferers, it is experimentally
demonstrated that is also capable of doing the same for more
interferers and terminate in just a few iterations.

APPENDIX

In this section, we show how the optimization problem
in Eq. (36) can be equivalently written as a second order
cone programming (SOCP) problem. For convenience, we
reformulate the optimization problem in Eq. (36) using RATFs
instead of ATFs. The left and right RATFs of the i-th interferer
are b̄i,L = (1/biL)bi and b̄i,R = (1/biR)bi, respectively,
while the left and right RATFs of the target are āL = (1/aL)a
and āR = (1/aR)a, respectively. It is easy to show that the
constraints of the optimization problem in Eq. (36) can be
equivalently written as[

āH
L 0H

0H āH
R

]
︸ ︷︷ ︸

ΦH
1

w=

[
1
1

]
︸︷︷︸
q1

, (57)

∣∣ΦH
2,iw

∣∣ ≤ ∣∣τ(k)ζb̄
H
i,RŵR,(k−1)

∣∣︸ ︷︷ ︸
q2,i

, i = 1, · · · ,m, (58)
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Fig. 8. Reverberant environment (office): Performance of the competing methods in terms of (a,b,c) noise reduction, (d) ITF error, (e) IPD error, (f) ILD
error.

0 5 10 15 20 25 30 35

TotER
ITF

0

5

10

15

20

25

30

35

g
sS

N
R

g
ai

n
 (

d
B

)

JBLCMV

Pr.-c = 0.3, kmax = 10

Pr.-c = 0.3, kmax = 50

Pr.-c = 0.6, kmax = 10

Pr.-c = 0.6, kmax = 50

BMVDR

BLCMV-η = 0.1

BLCMV-η = 0.001

OBLCMV

Fig. 9. Reverberant environment (office): Combination of performance curves
from Fig. 8 for the competing methods in terms of (a) noise reduction, (b)
ITF error for different number of simultaneously present interferers r. The
counting of r starts at the top left part of each curve.

where ζ = |ā∗R,1b̄
∗
i,L,M −1| (with ā∗R,1 the first element of āH

R

and b̄∗i,L,M is the last element of b̄i,L) and Φ2,i is the i-th
column of the matrix Φ2 given by

Φ2 =

[
b̄1L, · · · , b̄mL

−b̄1R, · · · ,−b̄mR

]
. (59)

Similar to [37], [38], we convert the complex vectors and
matrices to real-valued ones, i.e.,

w̆ =

[
w̆L

w̆R

]
, w̆L =

[
Re{wL}
Im{wL}

]
, w̆R =

[
Re{wR}
Im{wR}

]
, (60)
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Fig. 10. Reverberant environment (office): Average ITF error ratio as a
function of c for 1 ≤ r ≤ 7 for (a) kmax = 10 and (b) kmax = 50. The solid
line is the c values.

ăL =

[
Re{āL}
Im{āL}

]
, ăR =

[
Re{āR}
Im{āR}

]
(61)

ǎL =

[
−Im{āL}
Re{āL}

]
, ǎR =

[
−Im{āR}
Re{āR}

]
(62)
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b̆iL =

[
Re{b̄iL}
Im{b̄iL}

]
, b̆iR =

[
Re{b̄iR}
Im{b̄iR}

]
, (63)

b̌iL =

[
−Im{b̄iL}
Re{b̄iL}

]
, b̌iR =

[
−Im{b̄iR}
Re{b̄iR}

]
, (64)

P̆ =

[
Re{P} −Im{P}
Im{P} Re{P}

]
,

˜̆
P =

[
P̆ 0

0 P̆

]
, (65)

Φ̆1 =

[
ăL 0 ǎL 0
0 ăR 0 ǎR

]
, (66)

Φ̆2 =

[
b̆1L,· · · ,b̆mL

−b̆1R,· · · ,−b̆mR

]
, Φ̌2 =

[
b̌1L,· · · ,b̌mL

−b̌1R,· · · ,−b̌mR

]
. (67)

Note that wT ˜̆
Pw = || ˜̆P1/2w||22, where ˜̆

P1/2 is the principal
square root of ˜̆

P. The convex optimization problem in Eq. (36)
can be equivalently written as

ˆ̆w(k) =arg min
t,w̆

t s.t. w̆T Φ̆1 = q̆T
1 ,

|| ˜̆P1/2w̆||2 ≤ t,∥∥∥∥[Φ̆T
2,i

Φ̌T
2,i

]
w̆

∥∥∥∥
2

≤ q2,i,(k), for i = 1, · · · ,m, (68)

where q̆T
1 =

[
1 1 0 0

]
, Φ̆2,i is the i-th column of Φ̆2,

and Φ̌2,i is the i-th column of Φ̌2. Note that the problem in
Eq. (68) is a standard-form SOCP problem [39].
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