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Summary

Research background
Land drilling rigs are complex machinery carrying out heavy operations, in an industry subject to high
standards and requirements, where costs can run high during equipment downtime. Smooth progress
during drilling operations is essential in this business, therefore rig operators try to maximise equipment
uptime during a project. One of the main challenges towards achieving this, is to implement efficient
maintenance on a drilling rig. Currently, poor decision-making methods and too generic maintenance
routines are still prominently contributing to ineffective maintenance on drilling rigs, consequently lead-
ing to more rig downtime.

Recent digitisation of the drilling industry seems to have opened the doors for advanced mainte-
nance on drilling rig. There is widespread believe that data can be used to achieve informed mainte-
nance decision-making on drilling rigs to maximise rig uptime. Modern research is focused on finding
advanced maintenance methods for individual drilling rig components, using artificial intelligence (AI)
and other modern technologies. However, installing multiple dedicated maintenance systems on var-
ious locations within a drilling rig can increase the complexity for operators. Despite this realisation,
there remains a lack of solutions that provide an integrated approach for drilling rig maintenance. There
is a perception that such an approach could enhance maintenance effectiveness in the industry.

Research scope
This research is aimed to develop a strategy that can be used to integrate advanced maintenance of
drilling rig components at a system level. The main deliverable is a method to develop a model that can
ultimately generate real-time advanced maintenance actions for the whole drilling rig. For this purpose,
it uses real-time available data on a land drilling rig combined with additional condition monitoring (CM)
methods. The main research question at stake is:

How to achieve integrated maintenance for a drilling rig in a model making advanced maintenance
decisions on system level, based on real-time data?

Objectives towards answering the main research question are: understanding the complete functioning
of a land drilling rig, determining the optimum maintenance strategy, establishing a framework for the
model, providing methods for the functions in the model based on available data and finally developing
the model so it can be used in a case study.

Research approach
Three phases can be distinguished in the approach of this research, namely the literature study, field
research and model development.

In the literature study, first the process of land drilling was explored. The state-of-the-art technology
comprising the key components within the five subsystems of a drilling rig is discussed. It can be con-
cluded that since they are involved in all operations, failure of one component will inevitably lead to rig
downtime. Conventional reactive and preventive maintenance policies are currently being adopted on
drilling rigs, where maintenance actions are grouped in a predetermined schedule. This brings various
risks that can eventually lead to excessive maintenance and decrease of drilling rig reliability. How-
ever, to increase the rig uptime, the availability of the system should be maximised. It is concluded that
a predictive maintenance (PdM) strategy is the best option, using CM to ensure components receive
maintenance based on their actual, individual degradation.

After surveying methods for system modelling, a multi-agent system framework is composed to
combine PdM of components with decision-making on system level. In this framework, three levels
of agents are proposed, were the top level is a centralised system agent making decisions based on
information from the subordinate agents. The architecture of the model is designed by first determining
the functions of the agents in the framework. Then, appropriate methods to complete these functions
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are identified and applied. For this matter, the available data on a land drilling rig is analysed.

The field research is conducted during an actual drilling project, involving drilling of two geothermal
wells by a containerised rig. Data acquired during this project is assumed to be the general standard
of available data for a land drilling rig operator. To gain CM data, sensors are setup on one of the five
mud pumps of the rig to measure vibrations in the fluid end. Combined with maintenance records from
the same project, this data will be used to develop a PdM module for the mud pump valves in order to
partially validate the developed model.

The model is developed starting from the lowest level in the model architecture, the data agents.
They are responsible for selection of relevant parameters and preprocessing. For real-time data ex-
traction from a rig SCADA system, API software is proposed. High-pass and Wiener filters are applied
to process raw mud pump vibration signals into clean data, ready for further analysis.

Component agents are responsible for assessing the operational status and predicting failure of the
dedicated components. A rule-based system is designed to analyse relevant SCADA parameters that
determinewhether the component is in drilling operation. To predict failure of the components, a survival
analysis is conducted, with maintenance records serving as statistical basis. For a dynamic prediction
of failure, the Weibull AFT model is introduced, with real-time component deterioration as a covariate.
To assess this deterioration, dimensionless signal features are selected from the acquired mud pump
vibration data and used in a FL classifier. The FL classifier is validated to rightfully identify degrading
components based on the maintenance records. For development of the Weibull AFT model, a dataset
is constructed by adding component health conditions to the entries in themaintenance records. Finally,
the system agent is developed to classify the drilling rig operational state and uses an expert reasoning
system for generation of maintenance actions, focusing on minimising disruption of operations.

To finalise the research, a case study is set up using historical data from the drilling project in
combination with artificially induced mud pump failures to partially validate the model and provide proof
of concept for the proposed methodology.

Research conclusion
The case study results showed the model gives adequate failure prediction for the mud pump valves
during actual operations. Sparsity of the maintenance records resulted in shortcoming when predicting
early-life valve failure, however this problem can be tackled fairly easily. Overall, it is argued that the
model has a threefold effect on the increase of drilling rig uptime. First, the risk of sudden downtime
is reduced since failure prediction based on real-time data can be achieved. Second, the provided
method resulted in 93% lifetime utilisation of the components, avoiding excessive maintenance. Third,
the resulting maintenance windows give sufficient opportunity for the system agent to plan forthcoming
maintenance actions together, limiting disturbance of drilling operations.

This thesis sets a promising step towards PdM of land drilling rigs, and gives options to further
expand the integrated approach to maintenance decision-making. Despite the scarcity and mediocre
quality of available real-world data applied in this thesis, the results present a positive outlook. A field
validation using continuous CM is suggested to give access to additional methods and to reach higher
accuracy of the proposed model. Further steps are integration of other component agents into the
developed model for eventual implementation in practice. A final recommendation is research towards
utilising the model in DT technology, to stimulate advanced use of data in the drilling industry.
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1
Introduction

1.1. Research background
To extract gas and liquids from reservoirs deep in the earth core, the fundamental task is straightforward:
dig a well into the ground until the reservoir is reached. From the 1850s, the drilling industry began
to emerge in order to produce oil and gas [1]. In that time some important technologies for the drilling
industry have been developed, in the so-called “Second Industrial Revolution”. These technologies
still form the essence of the current drilling industry and have created the base for modern drilling rigs.
Over the last years, modern rigs are now also being deployed to drill wells for geothermal energy, which
will play a crucial role in the upcoming energy transition.

1.1.1. Drilling rigs and the drilling process
The built structure and equipment necessary for the drilling of a well is referred to as a drilling rig. Drilling
rigs can be modular, mobile systems suited for transport, or fixed structures located either on land or on
sea. Oil platforms, for instance, are large fixed drilling rigs which can contain other facilities as well to
adapt to their remote location, like living quarters or process modules. Drilling rigs take many shapes
depending on the type of project and the environment of the project, however the common principle
of drilling is the same for all of the deep drilling rigs. The main components and systems on all types
of drilling rigs are comparable with those on other rigs. Refer to Figure 1.1 & 1.2 for two examples of
drilling rigs operating in different environments but still accommodating the same kind of components.

The fundamental technique that these drilling rigs utilise is called “rotary drilling”. By rotating a drillbit
while applying a downward force on the bit, a hole is drilled [2]. To achieve rotary drilling, a drillstring is
rotated at surface level by the drilling rig. A drillstring is a series of joined steel tubes, drillpipes, with a
durable drillbit at the down end [3]. Drilling rigs therefore also provide tools to connect and disconnect
the large, heavy drillpipes and to lift the drillstring out of the hole as well.

While the art of drilling can be described as if it is relatively simple, in practice it often is a very
difficult process. As the depth of the wellbore can reach up to 6000 metres, it may encounter different
rock formations, leading to increasingly harsh conditions. This results in an increase of factors such
as temperature, pressure and stress on the equipment in the hole. Drilling rigs are equipped with a
system to monitor and control the conditions down the hole. They circulate a drilling fluid, or simply
“mud”, to cool and lubricate the drillbit whilst also keeping adequate stability of the hole.

During drilling, trapped reservoirs of high-pressure fluids and gasses can possibly be encountered.
This presents the risk of a sudden pressure change in the hole that can cause the fluids and gasses to
shoot out of the hole at the surface. Well control equipment is hence essential on a drilling rig.

It becomes clear that a drilling rig accommodates multiple complex systems to execute heavy oper-
ations. If one of these subsystems fails, this brings drilling operations to an immediate halt, since a rig
can not operate without one of them. Operating a drilling rig involves expertise of hydraulic, mechanical
and electrical engineering as well as a deep understanding of geology and rheology. The drilling in-
dustry can be described as a melting pot of multiple disciplines continuously striving to improve drilling
operations.

1
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Figure 1.1: The “Transocean Spitsbergen”, a semi-
submersible drilling rig capable of drilling at a water depth of
3 kilometres. (Image from Equinor / Kenneth Engelsvold)

Figure 1.2: The Huisman LOC400 mobile land drilling rig. It
has a relatively small footprint and features automated drilling
systems. (Image from Huisman Equipment)

1.1.2. Maintenance in the drilling industry
One of the challenges in the drilling industry is implementing efficient maintenance on a drilling rig. Ob-
viously, maintenance is an essential aspect of the operations of drilling rigs. An adequate maintenance
program is necessary to achieve a high reliability of the rig and, most importantly, have an excellent
safety performance [4]. The drilling industry has been plagued with higher than average safety issues
[5]. In their literature review, Asad et al. [6] treat numerous accidents in the oil and gas industries from
2000 till 2018 with serious consequences for workers on the involved rigs, concluding that oil and gas
drilling operations are three times more hazardous than the construction industry. They add that there
is no difference in hazard during onshore and offshore drilling operations. Other reasons for the need
of an appropriate maintenance strategy are to sustain compliance to standards and requirements, in-
crease the life of the equipment and increase uptime of the rig [7]. It can be concluded that, based
on these reasons, keeping a high standard of maintenance will eventually also save costs in the long
run. These financial costs are mostly associated with downtime, commonly referred to as NPT (Non-
Productive Time), and can run high in short notice. For instance, NPT caused by equipment failure
down the borehole can cost between 100 thousand and 1 million dollars per day [8]. In offshore drilling,
NPT can cause rig owners to lose their operating rate income of 450 thousand dollars per day. Smooth
progress during drilling operations is essential in this business, therefore reliable rigs are required to
maximise uptime [9]. However, incorrect performance of maintenance is still a prominent problem in
the drilling industry [10–12].

1.2. Research problem
Despite the importance of reliable drilling rigs, in practice the reliability can still be considered quite
low. The majority of accidents and financial losses in the oil and gas drilling industry are caused by
equipment failure and human error [10, 11]. Tang et al. [11] mention that ineffective decision-making
methods partially contribute to poor maintenance on drilling rigs. This can be substantiated by the
findings of Shaipov [12], who observed that poor maintenance routines were an issue for offshore per-
sonnel performing maintenance on the valves on a drilling rig. Unclear and “too generic” maintenance
procedures contributed to a higher failure rate of these valves. In different drilling environments the
same problem is noticeable. A case study on the downtime during the drilling of nine geothermal wells
in Kenya identified that equipment failure due to poor maintenance had the highest occurrence [13].

1.2.1. Research gap
In the field of research, there is widespread belief that the recent digitisation of the drilling industry can
unlock the full potential of maintenance using data. In the current days, data can be used to achieve
informed decision making based on insight, knowledge and forecasting [14–19]. Through literature
research it can be found that on component level there are multiple recent examples of advanced
maintenance methods using Internet of Things (IoT), Artificial Intelligence (AI) or other modern tech-
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Condition
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Maintenance
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Maintenance
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making

Maintenance
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Drilling rig operations control

Condition
data
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data

Figure 1.3: Current situation: maintenance strategies are on
component level, system operations are not taken into ac-
count.

Component 1 Component 2 Component 3

Condition data,
Operational data

Drilling rig operations control & maintenance plan

Model

Figure 1.4: Desired situation: data is analysed in a single
model, maintenance decisions are integrated in the system
control

nologies to increase uptime. However, given the complexity of a drilling rig, it may be hard to effectively
apply advanced maintenance on the whole drilling rig. It would now require to separately apply proven
advancedmaintenance strategies on component level, which on itself can be a quite inefficient process.
If individual component maintenance strategies are applied, it could pose the problem of data fragmen-
tation: each strategy will probably store and analyse its data using different systems and methods.
Moreover, maintaining components with various different systems and methods will possibly increase
the complexity of operations on a drilling rig. An integrated maintenance strategy that provides a holis-
tic view of the rig’s health condition and operations to suggest maintenance actions is more desirable.
This challenge is also recognised in the broader field of maintenance optimisation research [20, 21]. It
is simultaneously acknowledged that system level strategies would require prognostics of all compo-
nents, but in practice, this is often not possible [21, 22]. However, these references do provide solutions
towards this problem. To the author’s knowledge, no efforts have been made to find a solution for a
drilling rig system yet. Therefore, there is a need to research how to shift the approach of drilling rig
maintenance from Figure 1.3 to Figure 1.4.

This is where the research gap can be exposed. Currently, there is a lack of integrated maintenance
methods for drilling rigs. Research on advanced drilling rig maintenance focuses on component level
and does not consider a holistic approach to rig maintenance. As described above, there is need for
a link between the maintenance strategy on component level and the overall drilling rig operations. A
complex structure consisting of critical components calls for a balanced and integrated maintenance
strategy.

1.2.2. Advanced maintenance
In the research gap statement, the term “advanced maintenance” is introduced. Recognising that this
term may not be immediately clear, a precise definition is provided here, since it is an important term
in the thesis’s goal.

When surveying the mention of “advanced maintenance” in literature, some other terms can be
found in the context as well, such as “data-driven”, “condition monitoring”, “analytics”, “Industry 4.0” and
“systems”. These terms all point to the definition of advanced maintenance. Advanced maintenance
steps away from conventional maintenance techniques that schedule maintenance based on average
failure rates or after a breakdown. Because in advanced maintenance, data is used to determine the
best moment for maintenance. This data may come from condition monitoring (CM) techniques or from
historical records. Data analytics in a maintenance system are used to determine the maintenance
moments, which may be updated based on new data. New technologies like IoT and AI, which are
becoming more available in so-called Industry 4.0, can be utilised in these systems.

So, advanced maintenance can be defined as using data techniques, possibly in a dedicated sys-
tem, to determine the best moment for maintenance.
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1.3. Research scope
This thesis aims to develop a strategy that can be used to integrate advanced maintenance of drilling
rig components at a system level. More specifically, the main result of this thesis will therefore be
a method for the integration of already available operational data with additional CM methods in a
single model that generates maintenance actions for a drilling rig. This will require the selection and
application of appropriate algorithms to achieve real-time maintenance decision-making. To validate
the methodology, this model will be partially implemented in a CM case study on the mud pump valve
system of a drilling rig.

1.3.1. Research objectives
In order to successfully develop an integrated maintenance strategy, various research objectives can
be defined. First, it is necessary to gain a thorough understanding of the vital components in the
operations of a drilling rig. Secondly, based on the failure properties of these components, the optimum
maintenance policy for a drilling rig has to be determined. Third, a method for integrating component-
level data into system-level decision-making needs to be identified before developing the model.

Subsequently, the main objective of this research can be achieved, which the development of a
model that can realise an advanced maintenance strategy for a drilling rig system based on data from
the components. The desired outline of the integrated decision-making process in the final model is
depicted in Figure 1.5. Eventually the model should take the shape of an automated virtual model of
a drilling rig, capable of recognising the rig’s operating state and assessing the health condition of the
components and generating maintenance actions based on this data.

The final objective of this research is to partially validate the model and assess the effect of imple-
mentation on the uptime of a drilling rig.

Operational data

Condition monitoring
data

What is the rig
operating state?

What is the condition
of the components?

What maintenance do
we need?

When do we conduct
maintenance?

Set of maintenance
actions

Figure 1.5: Objective of the thesis: decision-making process of the model

1.3.2. Research questions
The main research question of this thesis is:

How to achieve integrated maintenance for a drilling rig in a model making advanced maintenance
decisions on system level, based on real-time data?

Research questions in this research to find the answer to the main research question are:

RQ1. How are the core components of a drilling rig involved in the drilling process?
RQ2. What is the best strategy for maintenance on the components of a drilling rig?
RQ3. What is an applicable framework for the integration of component-level maintenance into a system-

level decision-making model?
RQ4. How can appropriate methods be applied in the model to utilise available drilling rig data for

condition assessment and generation of maintenance decisions?
RQ5. To what extent can implementation of this model in practice improve the uptime of a drilling rig?

1.3.3. Assumptions and boundaries
For the development of the system level model methodology, a land drilling rig will be analysed for
several reasons. First, a land drilling rig has the benefit of space and environment. Looking at this
type of rigs can make it easier to visualise the system hierarchy for drilling operations [23]. Second,
offshore rigs typically contain complex layouts and generally include product processing modules and



1.4. Research approach - 2024.MME.8912 5

safety equipment for the (deep)sea environment. This can make it more challenging to identify and
isolate the equipment necessary for drilling. Finally, the mud pumps that serve as a case study in this
research are part of a geothermal drilling rig, which is a land drilling rig. For drilling operations onshore
and offshore rigs fundamentally use the same equipment and procedures. Consequently, regarding
the outcome of this thesis, it will be relatively easy to adapt on offshore rigs.

The maintenance of parts of the Bottomhole Assembly (BHA), like the drillbit, Rotary Steerable
System (RSS) or other types of mud motors is not taken into account. The reason behind this choice
will be be elaborated in section 2.3. This section will state why they are not considered to have effect
on the reliability of a drilling rig system.

Data availability for this rig is assumed to be real-time operational data and real-time online CM data.
This means there should be an accessible CM method available for key components in the drilling rig
that is proven to work. Through previous literature research, this assumption can be substantiated,
since for the main components in the drilling rig various CM solutions have been validated [24].

It has to be acknowledged that due to limitations in time and resources, the methodology can only
be validated partly. The mud pump valves, located in the fluid end of the mud pump, will be modelled
according to the proposed methodology to serve as a case study. It is assumed that implementing the
methodology on other parts of the drilling rig will yield about the same results in terms of effectiveness
for maintenance. However, this also means it will not be possible to actually generate a complete
maintenance scheduling for the rig, but it will only be possible to reason how the maintenance will be
improved and how the uptime will increase.

1.4. Research approach
In order to find an answer to the research questions, the research consists out of multiple phases using
different methodologies. The first phase is the literature review. The objective of the literature review is
to gather a thorough understanding of drilling operations, maintenance theory and system modelling.
These three fields of knowledge are merged to establish a framework for the maintenance model. The
outcome of the literature review will provide the answers to RQ1-3 and can be used in a later stage to
assist in finding appropriate methods for the model.

The second phase is a field research, which is being conducted concurrently with the literature
review. In the context of this thesis, vibration signal data is gathered by placement of sensors on a
mud pump’s fluid end that is in operation during a drilling project. Combined with logged operational
data from the drilling rig SCADA (Supervisory Control And Data Acquisition) system and mud pump
maintenance records, data is acquired to use in the development of the model. However, the field
research also contributes to gaining knowledge about signal processing for use in a failure diagnosis
system. More importantly, this field research gives crucial insights into the actual operations during a
drilling project, enhancing understanding about the drilling rig as a system and exposing opportunities
for maintenance improvement. Finally, experiences from the field research can help in the discussion
of the results of this thesis.

In the third phase of the research, the proposed model is developed and (partially) validated. The
methods applied in the model are validated individually using the acquired data, where the methods
providing diagnostics and prognostics are validated for the mud pumps only. Then, the historical op-

I. Literature research

II. Field research

III. Case study

Drilling
operations

Maintenance
theory

System
modelling

Data acquisitionDrilling operations
Development Validation

Method
selection

Figure 1.6: Diagram illustrating the three phases of the research, with the main activities highlighted for each phase.
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erational data is merged with synthetic failure data sets to validate and test the effectiveness of the
complete model in various different cases of simulated mud pump failure. The accuracy of upcoming
failure prediction will serve as performance indicator to test the improvement of the drilling rig mainte-
nance and uptime. Finalising this phase will answer the last two remaining research questions, RQ4-5.

1.5. Thesis outline
This thesis is divided in three parts. Part I of this thesis will cover the literature review. First, an
equipment analysis in chapter 2 identifies the core components of a land drilling rig. These components
will form part of a system tree that represents the overall structure of a drilling rig. The involvement of
these components in the main drilling procedures is explored as well, answering RQ1. This chapter
will conclude by giving the common failure modes of the components in preparation for development of
an adequate maintenance approach. Secondly, the field of maintenance methods will be explored to
find the optimum maintenance policy for a drilling rig in chapter 3, addressing RQ2. For this purpose,
different maintenance concepts will be explained and classified in a maintenance overview. The third
and final chapter in this part is chapter 4, where methods for the modelling of complex systems will be
surveyed to find an applicable approach for integrated maintenance. In this chapter it will be explored
what the key characteristics of these methods are and they will be applied to form a framework of the
model, to conclude RQ3.

Part II of the research will focus on the design and development of the model, also including vali-
dation. In chapter 5 the desired functions in the model are identified. To find appropriate methods to
realise these functions, generally available data on a land drilling rig is analysed. Based on character-
istics of this data, the framework model will be used to select and design the methods. These methods
are applied and validated individually in chapter 6 to proof they are useful and appropriate for the de-
sired model. For validation, data acquired during the field research is utilised, therefore this chapter
also provides information about how the field research was conducted. By the end of this chapter,
the developed model is finished and RQ4 can be answered. Finally, in chapter 7 implementation of
the complete model is partially validated with a case study, using real historical data combined with
simulated component failure. The case study goal and design is elaborated and the simulation results
are provided in order to form a conclusion on RQ5.

The final part of this thesis is chapter 8, where the developed model and the overall research are
reviewed. The conclusion will provide answers to all research questions, highlighting the main con-
tributions of this research and suggesting directions for future research based on limitations of this
work.
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2
Equipment analysis

This chapter will elaborate on the equipment of interest in this research, a land drilling rig. A closer
look will be taken at the components of a land drilling rig to explore how they are involved in drilling
operations, in order to address RQ1.

Basically, the operations of a land drilling rig are quite simple. A drillbit at the end of a long series
of joined pipes, the drillstring [3], is rotated for the purpose of creating a well. During this rotation, a
downward force is applied to the drillbit as well in order to penetrate the rock [2]. To withstand the high
pressure and loads in the borehole, drill pipes in a drillstring are usually made out of steel or aluminium
alloys. The combined weight of these pipes can be several hundreds metric tonnes, which has to be
lifted by the drilling rig. The drillstring can be extended by joining a new pipe at the surface level and
threading them together with sufficient torque. When the drillstring is pulled out of the hole, this process
reverses and the drill pipes are disconnected at the surface. Drilling operations are 24/7 and can take
up to a couple of months. A drilling rig must be able to carry out these continuous, heavy operations in
a precise and safe manner.

2.1. Drilling rig subsystems
Arnaout et al. [25] divide the functionality of a drilling rig in threemain sub-systems: the rotary, circulation
and hoisting systems. Hilmawan and Basri [26] describe two more sub-systems: a blowout prevention
(BOP) system and a power supply system. An overview of the subsystems can be found in Figure 2.1.
These five systems are in continuous operations during the drilling process. A drilling rig will no longer
function properly if one of these systems happens to experience a failure. In random order, each
subsystem will now be analysed in detail to explore the involved components.

Rotary system

Circulation system

Hoisting system

Blowout prevention system

Power supply system

Figure 2.1: The five subsystems on a drilling rig system, the typical locations on the rig are highlighted (Image from Huisman
Equipment)
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1. Crownblock

2. Travelling block

3. Drawworks

4. Fast line

5. Dead line

6. Dead line anchor
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2
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7

Figure 2.2: Schematic overview of components in a hoisting system
(Image based on https://ngelmumigas.files.wordpress.com/2010/11/hoist.png)

2.2. Hoisting system
To facilitate the lifting and lowering of drill string and other necessary equipment in and out of the
wellbore, drilling rigs are equipped with a hoisting system (see Figure 2.2).

The most visible part of the hoisting system is the derrick, or mast, which holds most of the equip-
ment. The height of the derrick determines the length of new drill pipe that can be connected to the
drillstring. Therefore, taller derricks can be needed to save time while drilling deeper wells [23]. Der-
ricks are built to withstand external compressive loads and wind loads. The derrick is usually elevated
by a substructure to provide space for the BOP system under the rig floor [2]. A derrick is a static steel
structure and will therefore not be involved in the maintenance strategy. However, it is important to
note that they require a safe design according to standards.

The crown block is located in the top of the derrick. The travelling block is suspended from the
clown block by wireline and a series of pulleys, to provide a mechanical advantage. The top drive is
attached to this travelling block [2]. Additionally, the pipe elevators can be attached to the travelling
block but generally they are connected directly to the top drive system. The wireline is hoisted by the
drawworks. The fast line runs from the drawworks to the first pulley on the crown block. The dead
line runs from the last pulley of the crown block to the reserve drum. The reserve drum acts as a wire
storage, as the drawworks drum can not fit all the wireline in the system. The dead line anchor has a
load indicator, measuring the weight on bit (WOB), which is a critical parameter in drilling operations
[23].

2.2.1. Drawworks
The drawworks, depicted in Figure 2.3, can be considered as a heavy duty hoist winch and is the
key component in the hoisting system. Drawworks are powered by AC or DC drive systems and may
contain a gear system to adequately transfer power to the winch. Dual drum drawworks drive two
winches at each side of the drill lines. To illustrate this principle, referring to Figure 2.2, the reserve
drum is driven as well. This offers various advantages like redundancy of the winches, reduced wire
speed and improved efficiency. Some of these dual drum systems run the same line back and forth on
the winches. This allows for transferring of the wire: each part of the wireline will then get used during
drilling operations, strongly reducing overall fatigue stress on the wireline.

The brake system is an important component in the drawworks. It assists in safe control of the
travelling block’s movement. Drawworks typically use two different brakes for this purpose. The main
brake, or stationary brake, is used to stop the winch and hold the wireline. Where older rigs used
band brakes, hydraulic disc-brakes are currently more commonly used. The main brake should be
redundant as in case of failure there should always be a possibility for emergency braking. Auxiliary
brakes control the descent rate of the travelling block and can therefore be referred to as dynamic
brakes. These brakes are mostly integrated in the drive motor of the winch. Since modern drawworks
are based around the drive motors and these engage full torque at zero speed, they can also be used
to hold the wireline. Therefore in practice the main brake is rather used as a parking brake when the
travelling block needs to be held for a longer time (e.g. more than 20 minutes).

https://ngelmumigas.files.wordpress.com/2010/11/hoist.png
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Figure 2.3: This drawworks is driven by two motors and has
a rating of 1800 horsepower. (Image from NOV)

Figure 2.4: A horizontal to vertical pipe handling system.
(Image from Huisman Equipment)

2.2.2. Pipe handler
In the trend of automation, efforts have beenmade to reduce the amount of intensive manual operations
on a drilling rig and thus increasing the safety of drillers. The goal of these automated, supporting
systems is mainly to aim for hands-free pipe handling [27, 28]. Pipe handling and -racking machines
can provide the lifting and movement of drill pipe on the rig floor, from the pipe rack to the top drive for
connection. There are various types of pipe handling machines as described by Reid [27], depending
on the dimensions of the derrick and the drillfloor and if the pipes are oriented horizontally or vertically
(see Figure 2.4 for an example). It is consequently hard to describe the typical pipe handler, but it will
essentially consist out of hydraulic grippers to hold the pipe and a hydraulic extending arm structure to
move the pipe above the drillhole. If the pipes need to horizontally move over to the rig floor, a trolley
system might provide this travelling motion.

2.3. Rotary system
The system that provides torque for the rotation of the drillstring and drillbit is called the rotary system.
Simpson [23] states that for vertical wells the rotation of a drillstring at surface level is sufficient for a
reliable and reproducible result. However, when the target is not vertically directly under the drilling rig,
rotation from the surface is getting more difficult. In those cases rotation of the drillbit is additionally
achieved down the wellbore. Mud motors or RSS are examples of downhole rotary equipment. This
section will elaborate on these downhole tools and clarify why they will be left out of scope. The surface
level rotary system on a drilling rig mainly consists of a top drive and most drilling rigs are also still
fitted with a rotary table too. Additionally, a iron roughneck provides torque on the rig floor for the
(dis)connection of drill pipes.

2.3.1. Top drive
A top drive is the primary component in the rotary system and is attached on the travelling block, moving
vertically up and down the derrick. Drill pipe is attached directly to the top drive, which then provides
torque with an electrical or hydraulic motor. A top drive system also includes components to provide
torque for the connection, lift drill pipe up the derrick and provide passage for the drilling fluid. Although
it is a complex and quite expensive setup, a top drive can offer great efficiency because it allows to
consistently connect large stands of drill pipe. When using a top drive the length of new drill pipe is
only limited by the vertical clearance between the rig floor and the bottom of the top drive, which can
be raised to the top of the derrick [29]. As Simpson [23] explains, it can result in up to 4 times less
connecting actions necessary during drilling compared to the old kelly and rotary table system. Top
drives were introduced in 1982, and are considered as essential equipment since the mid 90s [30].

In a top drive, three subsystems can be identified (see Figure 2.5). The primary subsystem is the
drivetrain or power swivel, mainly consisting out of multiple motors. The torque and speed of these
motors is translated to the rotating head of the top drive by a gearbox. This gearbox can regulate the
torque and speed necessary for the drilling phase. The pipe handling subsystem consists out of multiple
components. The pipe elevator is suspended under the top drive by the elevator links. The elevator
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Figure 2.5: Overview of key components in a top drive system.
(Image from lakepetro.com, based on [31] and https://sc04.alicdn.com/kf/HTB1dnx6b7xz61VjSZFrq6xeLFXaO.jpg)

consists out of a clamp that holds the top of a drill pipe. The drill pipe can then be lifted vertically in the
derrick, above the rotary table. Hydraulic tilt cylinders can control the position of the elevator, either to
reach or move away from the drill pipe. Finally, the top drive has a gooseneck assembly, which can be
connected to the drilling fluid circulation system. The wash pipe connects the static gooseneck with the
rotating pipe and seals the high-pressure fluid. These components allow for the circulation of drilling
fluid through the drillpipe (see section 2.4).

2.3.2. Rotary table
For many decades all drilling was done by rotary table rigs [23]. A kelly bushing would function as a
mechanical adapter between the rotary table and the kelly, a square or hexagonal cross-section pipe,
to enable rotation of the drillstring. Now that land drilling rigs are equipped with top drive systems,
rotary tables are no longer needed to provide torque. However, most rigs will still have a rotary table
fitted with a master bushing and slips system [23]. Slips are necessary to support the weight of the
drillstring in the well when the latter is disconnected from the top drive. Traditional slips are wedge-
shaped devices that are placed in the opening of the master bushing by floor workers. In this opening,
they have inserts to provide enough grip to hold the drillpipe in place. After making or breaking the
connection, the slips have to be removed from the rotary table. Gradually, they are being replaced by
power slips, a modern automated version integrated in a rotary table (see Figure 2.6 for an example).
Power slips use hydraulic power to close the opening around the drill pipe and to hold it in place.

2.3.3. Iron roughneck
Iron roughnecks are machines that can automatically connect and disconnect drill pipe, a process
that used to be done by rig workers with the use of chains, tong wrenches and brute force. These
systems therefore not only make the connection process smoother, they also eliminate the danger of
fast swinging tools on the rig floor, drastically improving safety [27]. Only the name reminds of the heavy
human operation they now take over: rig workers that manually connect and disconnect the drill pipe
are called roughnecks. As can be seen in Figure 2.7, an iron roughneck is a combination of automated
spinning wrenches and clamping jaws. The lower jaw provides enough torque to hold the drillstring
while the spinning wrenches screw the new drillpipe on the string. Then, the upper jaw clamps the
pipe and slightly rotates to tighten the threaded connection with sufficient torque. Iron roughnecks are
generally powered by hydraulics.

2.3.4. Bottomhole assembly
The drillbit is located at the very end of the drillstring and is usually connected with stabiliser pipes.
There are various drillbits suited for the various conditions in the hole, this means the drillbit is changed a
couple of times during the drilling project. The drillbit, stabilisers, tracking devices and other equipment
used down the hole is all part of the BHA. In the last few years, the BHA is playing a critical role in
directional drilling.

https://sc04.alicdn.com/kf/HTB1dnx6b7xz61VjSZFrq6xeLFXaO.jpg
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Figure 2.6: Offshore rotary table with power slips.
(Image from Huisman Equipment)

Figure 2.7: Offshore iron roughneck handling drill
pipe. The drillstring is supported by manual slips.
(Image from Huisman Equipment)

Directional drilling may sometimes be necessary to reach a target that is not vertically directly acces-
sible, due to topographical or legal barriers. Additionally, directional drilling allows for having multiple
wells originating at the same surface location, which can reduce drilling costs [32]. Directional drilling
is made possible by using a specialised BHA, the RSS, depicted in Figure 2.8. For directional drilling,
separate rotation of the drillbit is needed as well as an offset of the drillbit with respect to the drillpipe.
Separate rotation of the drillbit is mostly achieved by a mud motor or a drilling turbine, which both use
drilling fluid to rotate a rotor, driving the drillbit through a transmission. The bit can be tilted by either
push-the-bit tools, which apply a side force to the formation with actuator pads, or point-the-bit tools,
which offset the drillbit axis internally. Both methods require the feedback of sensors to then electroni-
cally control the system [33]. This technology results in excellent drilling direction control in challenging
earth formations [23]. Additionally, the electronics in a RSS share real-time sensor measurements to
provide continuous directional information, used for MeasurementWhile Drilling (MWD) [34, Chapter 3].

Is the BHA part of a drilling rig?
While the BHA is essential for drilling operations, it is generally not considered an integral part of a
drilling rig system. Every project, the function of a drilling rig is to handle and rotate the BHA and
provide mud circulation. The BHA however, has a specialised function that is different per project, or
even per section of the drilled well. Since selecting and controlling a BHA requires a different expertise
than operating a drilling rig, most drilling project owners will outsource the BHA to an external party.
Therefore, downtime due to the BHA will not be accounted to drilling rig downtime. BHA operators,
commonly known as directional drilling companies, will preventively change the BHA after a certain
amount of operating hours to prevent downhole failure. Maintenance on the BHA is then performed at
a separate location, usually after the drilling project is over.

It is complex to include the BHA in a maintenance strategy for the drilling rig system, because of
various reasons. First of all, logistically, to performmaintenance on the BHA, it needs to be pulled out of
the hole. This operation alonemight take several hours. Due to the BHA’s inaccessibility when it is down
the well, it can not be serviced at the same rate as the drilling rig system at the surface. Furthermore,
transferring qualitative data from the BHA to the surface during drilling operations is restricted by the
downhole conditions. Communication from the downhole to the surface is now done through drilling
fluid pulsation or radio signals, but is limited to simple commands. The technology is not there yet to
transfer condition monitoring signals to the surface.

To summarise: in the industry BHA are not considered part of the drilling rig operators’ responsibility.
Additionally, technological challenges would first have to be overcome in order to conduct advanced
maintenance on the BHA during drilling operations. Therefore it is decided that the BHA is not an
integral part of a drilling rig system.



14 2. Equipment analysis - 2024.MME.8912

Figure 2.8: The Bottomhole Assembly of a Rotary Steerable System. (Image from NOV)
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Figure 2.9: Schematic overview of a typical circulation system in a drilling rig. The mud flow is indicated with arrows and colours
to indicate the state of the mud. (Image based on [35])

2.4. Circulation system
The complete circuitous path of components that the drilling fluid, or mud, travels through, is called the
circulation system. The mud pumps are therefore described as the heart of the circulation system, as
they make sure the mud is moving through this system with sufficient flow and pressure, just like the
heart does for the blood in a vertebrate. Mud is essential during the drilling process, as it (i) removes
cuttings from the wellbore, (ii) lubricates and cools the drillbit and (iii) controls reservoir pressure to
prevent other fluids and gasses from entering the well [23]. See Figure 2.9 for an overview of the
components of a typical circulation system and the flow of the mud. From this image, the circulation
path can be described [34]. The mud, which is a mixture of either water or oil with solid additives, is
mixed in the mud mixing tank before going to the fresh mud tank. From this tank, it is pumped to the
standpipe, a vertical pipe running up the derrick. The pressure of the mud is usually measured in the
standpipe. The standpipe is connected to the gooseneck of the top drive with a flexible rotary hose.
The mud then flows through the inside of the drill pipe to the BHA by mud pumps. From nozzles in
the drillbit, the mud with cuttings passes through the annulus back up the surface, where it leaves the
borehole via the mud line. It then flows through contaminant-removal equipment before returning back
in the mud tanks.
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2.4.1. Mud pumps
Guo and Liu [36] describe the mud pumps as the heart of the circulation system. Piston pumps with
reciprocating positive-displacement mechanisms have become the prevailing choice in contemporary
drilling. The advantages of this type of pump are (i) the ability to move high-solids-content fluids laden
with abrasives, (ii) the ability to pump large particles, (iii) reliable and easy in operations and mainte-
nance and (iv) the ability to operate in a wide range of pressures and flow rates. There aremultiple types
of reciprocating mud pumps, depending on the number of pistons and the piston action. Duplex pumps
pumps have two cylinder double-action strokes and triplex pumps have single-action strokes in three
cylinders. Triplex pumps are more generally used in practice, because they are cheaper and lighter in
weight. Moreover, their output is characterised by relatively smaller pressure pulsations compared to
duplex pumps, which is beneficial in practice [2, 35].

In a triplex mud pump two main sections can be distinguished: the power end and the fluid end. The
power end is driven by a powerful electric or diesel motor, either mounted directly on the drive shaft or
via a belt drive. The torque and rotation is translated to a huge crankshaft, which drives three pistons.
Liners are the interchangeable inner surface of the cylinder in which the piston moves. They can be
made of metal or ceramics and are designed to withstand the high pressure, coarse environment of
the fluid end and the friction forces of the piston. If the liner size decreases, the flow rates decreases
as well but the working pressure of the pump will increase [2, 36]. Valves in the fluid end open or close
depending on the movement of the piston to move the drilling fluid through the pump.

Drilling rigs can equip multiple mud pumps in series or may use a single high-power mud pump,
depending on the project and drilling fluid used.

2.4.2. Mud cleaning equipment
Contaminant-removal equipment includes multiple components where the mud will flow through before
returning to the mud tank. It will first pass through shale shakers. Shale shakers are composed of
one or more vibrating screens, removing approximately 85% of the cuttings [36]. The mud is then
degassed, which is important to keep control of the downhole formation pressure [34, Chapter 2]. A
degasser can be of a vacuum pump type or a conventional gas-liquid seperator [36]. After that, the
mud will go through a desander, desilter and a decanting centrifuge . The combination of a desander
and a desilter is called a mud cleaner. These are all types of hydrocyclones, characterised by their
conical-shaped portion. In this cone centrifugal forces are created, resulting in a vortex, separating the
last solids from the liquid [34, 36]. In the mud tank, the level of drilling fluid is measured to calculate if
their is a loss or gain of mud. An increase in mud loss or gain indicates a potential problem with the
stability of the well.

2.5. Blowout prevention system
As described in section 2.4, mud is used to control the expected pressure in a reservoir, but this pressure
can suddenly turn out to be higher [23]. This will result in a liquid or gas “kick” in the well. A kick is a
slug flow of formation liquid and/or gas that flows from the reservoir to the surface, rather rapidly. If this
kick can not be controlled properly and will reach the atmosphere at the surface, this is called a blowout
[37]. The consequences of a blowout can be disastrous. A BOP is a critical piece of component that
must not fail in case of a blowout.

2.5.1. Surface BOP
A surface BOP is designed to contain the high pressure from the well and stop flow to the surface, while
well control techniques can be applied to regain control of the well pressure. As a BOP can contain
multiple types of prevention equipment stacked onto each other, it is sometimes also called the BOP
stack. Stacks are designed for redundancy purposes. There are mainly two types of preventers: a
ram-type BOP and an annular-type BOP [37].

Annular preventers use a circular rubber packing unit with a high tensile strength that effectively
seals the annular around the drillstring. It is usually the first preventer used when a well needs to be
closed [34, Chapter 2].

Ram-type preventers, or BOP rams, have two packing elements on opposite sides that close the
well by moving toward each other. They can be categorised in blind rams and pipe rams. Pipe rams
have an opening in the packing elements, so that they match the diameter of the drill pipe and can
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Figure 2.10: Typical surface BOP stack. (Illustration from API Standard 53, 2016, pp 45)

seal the annular surrounding the drill pipe. Because drill pipes come in different diameter sizes, it is
important to use a matching pipe ram. Onemight notice this working principle is the same as an annular
preventer. The choice for just sealing of the annular of the well, is to allow for drilling mud to still be
circulated down the inside of the drillstring to safely direct the kick to the surface [37]. It might however
be necessary to also seal inside the drillstring. A blind ram is designed to completely shut the well if
there is no drillstring in the well. However, if this is unintentionally not the case, a blind ram will probably
flatten the drill pipe but not completely close it. Blind shear rams, or just shear rams, are designed to
shear the drillstring when closed. The drill pipe is deformed in such a way, or rather cut, so that the
complete flow from the well can be stopped. As this results in irreversible damage of equipment, shear
rams are used only when all the other preventers have failed to close the well.

As mentioned before, a combination of these preventers and other equipment is assembled in a
BOP stack. A typical BOP layout is explained in detail by Islam and Hossain [34, Chapter 2]. Basically,
a BOP stack contains a blind ram preventer, pipe ram preventer and an annual preventer. A casing
head connects the BOP stack with the outer casing of the well at the bottom. Between ram preventers,
a drilling spool is located, allowing choke and kill lines to be attached to the BOP stack. A casing
spool is attached above the casing head, its outlets should only be used in case of an emergency. As
explained by Bourgoyne et al. [2], the kill and choke lines are used to pump fluid into the annulus and
release fluid from the annulus respectively. Fixed on top of the BOP stack is equipment that can divert
the flow of drilling fluid away from the rig floor, commonly diverters or rotating head [37]. A typical BOP
stack assembly is depicted in Figure 2.10.

BOPs are operated hydraulically. Accumulators are used to provide the hydraulic power necessary.
The accumulator system is controlled by a BOP control panel on the rig floor and can close the BOPs in
less than five seconds. It is commonly located on the surface next to the drilling rig, just like the choke
manifold. This is a manifold consisting out an arrangement of lines, valves and chokes, designed to
control the flow from the well annulus. It can for instance be used to control the pressure and divert
kick slugs to burning pits [34, Chapter 2].
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Figure 2.11: The critical components of a land drilling rig.

2.5.2. Internal BOP
Internal or inside BOPs, commonly IBOP, are check valves placed inside the drillstring. They allow for
pumped drilling fluid to pass down the drillstring but prevent formation fluids from rising up inside the
pipe [34, Chapter 2]. They are usually integrated in the top drive system [38].

2.6. Power system
The power for the rig is provided by electrical power generators in parallel configuration. Sudden loss
of power is very undesirable for rig safety, so commonly there are multiple redundant generators [23].
These generators can either be diesel- or gas-fuelled generators. Drilling rigs operating on land may
have the opportunity of being connected to the electric power grid. Not only is this an emission free and
environmentally friendly option, it can also be more cost-efficient than using fuel-powered generators
[39]. The electrical source is connected the power distribution system. This system contains silicon
controlled rectifiers (SCR) or variable frequency drives (VFD) to give a direct current or alternating
current power output respectively. These drives are housed in an electrical power unit (EPU) that
adequately distributes the power from the source to the components of the drilling rig using switchgear.

To store and provide a stable supply of hydraulic fluid to various equipment, a drilling rig also equips
a hydraulic power unit (HPU). A HPU contains components to pump, store, filter, cool and heat hydraulic
fluid. The HPU also has various valves and gauges to control and monitor the hydraulics in the drilling
rig.

2.7. Key components of a drilling rig
From the analysis of the components in the subsystems of a drilling rig, the critical components can
be identified (see Figure 2.11). These components are involved in the main drilling rig operations and
account for the vast majority of maintenance on the rig. They will therefore be the focus of the integrated
maintenance method in this thesis. As indicated, the BHA is left out of scope from now on.
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2.8. Standard operating states
To visualise how the key components in a land rig cooperate, the standard operating states in drilling
operations are elaborated in this section. The focus will only be on the operations requiring the drilling
rig, so the wellsite preparation and the detailed process of well completion are out of scope. Arnaout
et al. [25] define the sequence of operations on a drilling rig through the following basic operations:
(i) drilling, (ii) making connection, (iii) running in hole, (iv) pulling out of hole, (v) breaking connection
and (vi) cleaning hole. A drilling rig also assists during the casing and cementing of the well [40].
The sequence of these operations is repeated until the target depth is reached, after which the well is
completed and ready for production.

Drilling
During drilling, the top drive provides the rotation of the drillstring. The drawworks play an important
part in drilling, because they control the WOB. The circulation system is in continuous operation during
drilling to bring the cuttings to the surface and control the downhole conditions. The speed of drilling is
dependent on the rate-of-penetration, which indicates the speed at which the drillbit is capable of break-
ing through the rock formation, and the length of drillpipe stands. The length of a stand is dependent
on the height of the derrick mast. Therefore, taller drilling rigs require less connections.

Making or breaking connection
When a new stand of drillpipe can be added to the drillstring, drilling is seized and circulation is stopped.
The slips are being placed in the rotary table to support the weight of the drillstring. Then, the top drive
disconnects from the drillstring and is subsequently hoisted to the top of the mast by the drawworks.
A new drillpipe is then brought into position above the rig floor by the pipehandler. The bottom of the
new drillpipe stand is then connected to the drillstring by the iron roughneck, after that the top drive is
connected to the top of the stand as well. Finally, after the slips are removed, circulation starts again
and drilling can continue.

This routine is called making a connection. Breaking a connection is the opposite and follows
the same routine as above, but reversed. Prior to making/breaking connection, a driller may move the
drillstring up and down the mast whilst circulating mud. This is called washing up and is done to remove
any potential cuttings around the BHA before circulation is turned off [41].

Tripping: running in or pulling out of hole
Occasionally, the drillstring is being pulled out or ran into the hole, for instance to change the BHA.
This is called making a trip, or just: tripping. During pulling out, stands are pulled out and disconnected
one by one. So, the process of breaking connection is repeated many times. In this process the top
drive is not directly connected to the drillstring, but the elevators of the top drive are used to hoist the
load. Continuous circulation is unnecessary while pulling out of hole, however it may be started when
it appears the drillstring might become stuck in the hole. In this rare case, the top drive obviously will
be connected to the drillstring.

Running drillpipe in the hole is the reverse process of pulling out of the hole, which means connec-
tions are made until the BHA is at the desired depth. Again, it is not necessary to connect the top drive
since the elevators can hoist the drillstring, unless circulation is needed.

Casing and cementing
A well consists of multiple sections, each with a decreasing wellbore diameter as the well extends
deeper. The well is designed in multiple sections to ensure sufficient flow rates during production.

After a section of a certain wellbore diameter is completed, the drillstring is removed and the casing
is ran into the hole for that section. Casing are pipes that are placed in the hole to prevent it from
collapsing, but also to prevent formation fluids or gasses from entering the well via the sides [25, 40].
The casing is secured by cement, which is pumped in the annulus of the casing and the hole. To handle
the casing, a casing tool is used to handle the casing pipes with the travelling block or top drive. After
cementing a section, the drillbit will then first drill through the bottom cement layer in order to drill the
next section.
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2.9. Common failure modes of critical components
Through the criticality analysis in the equipment documentation and communication with rig operators,
some of the frequent failure modes of the critical components in a land drilling rig during drilling opera-
tions have been found. This means these failure modes will significantly impact the uptime on a drilling
rig. The failure modes are listed in Table 2.1. The failing parts in these critical components are given,
as well as the cause and nature of the failure mode.

From this table, some interpretations can be made that are useful for later determination of main-
tenance strategy. First, it can be seen that for the BOP system no common failure modes have been
found. The surface BOP is a critical safety system but is therefore not in a continuous operation dur-
ing drilling operations. However, it is important that the accumulator can provide sufficient pressure to
activate the BOP, which can only be controlled through testing. Second, a larger majority of the failure
modes involve the loss of a certain parameter important for good operations. This means it would be
beneficial to use monitoring of operational parameters to assist in scheduling of maintenance. Third,
the causes of the failure modes can be divided in four natures, which can be used to select appropriate
CM methods. This will be discussed in chapter 5.

2.10. Conclusion
This chapter has described the process of land drilling and the state-of-the-art technology that is used
for drilling. The rotary drilling process requires sufficient torque and rotation of the drillstring, as well
as equipment to handle the drillpipes that make up the drillstring. To control well conditions, drilling
fluid needs to be circulated and safety equipment must be present on surface level. To complete these
various complex functions, the land drilling rig can be divided into five subsystems.

To answer RQ1, in these subsystems core components can be identified that are in simultaneous
operation during the standard operating states and procedures in a drilling project. The core compo-
nents are depicted in Figure 2.11 per subsystem of the drilling rig. Since these components each play
a role in all drilling operation procedures, it can be concluded that their failure will inevitably cause loss
of performance or even downtime. Common failure modes of these components are identified. The
natures of these failure modes can be categorised in wear, electrical, hydraulic and mechanical failure.
In the next chapter, it will be discovered how these components are currently being maintained and
how maintenance can be improved.
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Table 2.1: Common failure modes of drilling rig components, sorted per drilling rig subsystem.

Components Failure mode Parts Possible causes Nature
Rotary system

Top drive Loss of mud pressure Wash pipe, gooseneck Faulty seal or connection Wear
Loss of rotation / torque Gearbox Bearing failure, overheating, bad lubrication Mechanical
Loss of rotation / torque E-motor Encoder failure, overloading, overheating Electrical
Faulty pipe elevators Tilt cylinder, elevator Hydraulic failure, control problem Hydraulic

Rotary table Loss of rotation H-motor Hydraulic failure, bearing failure Hydraulic
Excessive friction Axial-radial bearing Structural damage, bad lubrication Mechanical
Loss of slips power Power slips Hydraulic failure Hydraulic

Iron roughneck Incorrect torque Jaw cylinders Hydraulic failure Hydraulic
Loss of spinner rotation H-motors Hydraulic failure, bearing failure Hydraulic
Loss of grip Jaws, spinners Worn inserts, worn spinner rollers Wear

Circulation system

Mud pumps Loss of mud pressure Valves, liners Worn-out valves, worn-out liners Wear
Loss of mud pressure Pulsation dampener Worn-out bladder Wear
Loss of mud pump torque Gearbox Bearing failure, gear failure Mechanical
Loss of mud pump torque E-motor Encoder failure, overloading, overheating Electrical

Mud cleaners Faulty shaker motion Shale shaker Worn bearings, loose mounts, structural damage Mechanical
Loss of shaker motion E-motor Encoder failure, overloading, overheating Electrical
Loss of hydrocyclone pressure Centrifugal pump Bearing failure, structural damage, overheating Mechanical

Hoisting system

Drawworks Loss of rotation / torque E-motor Encoder failure, overloading, overheating Electrical
Loss of rotation / torque Gearbox Bearing failure, bad lubrication Mechanical
Brake failure Main brake Brake worn, structural damage, contamination Mechanical

Pipe handler Loss of grip Gripper pads Worn gripper pads Wear
Loss of grip force Squeeze cylinder Hydraulic failure Hydraulic
Faulty pipe handler arms Tilt cylinder Hydraulic failure Hydraulic

BOP system

– – – – –

Power system

EPU Drive failure VFD, SCR Overheating, contamination, overloading, disconnection Electrical
Switchgear failure Switchgear Overheating, contamination, disconnection Electrical

HPU Pump failure Hydraulic pump Bearing failure, structural damage, overheating Mechanical



3
Maintenance concepts

To explore how maintenance on land drilling rigs is conducted and how it can be improved, first the
theory behind maintenance and important related definitions will be introduced. Then a reflection is
made on the drilling industry to reason why current adapted maintenance strategies might be ineffective
to improve drilling rig availability. This chapter will then provide the different concepts of maintenance
in practice, including advanced maintenance concepts. When all these concepts are explained, the
optimum maintenance policy for a drilling rig can be identified, providing the answer to RQ2.

3.1. Introduction to maintenance theory
Deighton [42] states that the aim of maintenance management is twofold. Firstly, to maximise equip-
ment and systems availability. Secondly, to ensure that maintenance resources are optimised. In other
words, a successful maintenance strategy should improve equipment reliability while reducing the cost
of ownership. In his book Birolini [43] describes reliability as the probability that equipment will perform
its required function under given operating conditions for a stated time interval. Qualitatively, one can
simplify this to the ability of equipment to remain functional. When the equipment stops performing its
required function, this is defined as a failure. This might sound like a simple concept, but like Birolini
[43] and Tinga [44, Chapter 1] both indicate, the term is not unambiguous and it can become difficult
to identify failure on complex equipment or systems.

The availability of a system can be quantified using themean time to failure (MTTF) andmean time to
repair (MTTR). With a constant failure rate, and assuming equipment is repairable and as-good-as-new
after each repair, Birolini [43] states the MTTF now becomes the mean operating time between failures,
the MTBF. This is similar to Tinga’s [44, Chapter 5] definition of mean time between maintenance. Both
give the MTTR (in Tinga’s work: MDT) as the time to repair the equipment. From both references, the
following formula can then be deduced to assess the point availability of equipment:

A = MTBF
MTBF+MTTR (3.1)

Equation 3.1 shows how the availability is dependent of the reliability of a component and mainte-
nance effectiveness. Reliable equipment will have a low failure rate, thus increasing the MTBF. Effec-
tive reparation will restore the equipment to the state of availability while keeping the MTTR as low as
possible. However, more factors will affect availability, like the maintainability and accessibility of the
equipment. From this it is clear that maintenance plays a decisive role in assuring a high availability
level. Therefore it is necessary to design a dedicated, effective and efficient way to conduct mainte-
nance on equipment. This is called a maintenance strategy [44, Chapter 5]. Selecting a maintenance
strategy strongly depends on the object of interest. So, there is no perfect maintenance strategy to suit
all equipment and all circumstances. More often than not, different maintenance concepts are blended
to meet the specific needs of a facility [42].

21
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Figure 3.1: Pattern curves of failure probability over time. Patterns A,B and C show a probability of failure related to equipment
age. The failure probability patterns D, E and F are mostly constant, therefore they do not relate to age. (based on[19, 45])

3.2. Conventional maintenance policies in the drilling industry
Various sources from different backgrounds state that the current maintenance conducted on drilling
rigs is not effective enough [11–13]. The reason for poor maintenance on drilling rigs, can be attributed
to mainly conventional approaches to maintenance policies that are currently being adopted. These
are mostly corrective policies or maintenance based on inspection intervals and replacement cycles,
so conventional variants of preventive maintenance (PM) [11, 16]. Devold, Graven, and Halvorsrød
[16] explain that this type of maintenance is often applied to equipment classes instead of a dedicated
method for each equipment part. This has undesirable effects on the drilling rig because (i) equip-
ment with different failure rates often unjustly receive equal maintenance, (ii) to avoid failures as much
as possible short inspection intervals are used, leading to high maintenance costs and (iii) excessive
maintenance leads to more chance of human error, which can result in even more equipment failure.
So, scheduled maintenance can sometimes actually reduce the reliability of a system and this may well
be the cause in the drilling industry. This statement can also be substantiated by the failure patterns
of United Airlines aircraft components described by Nowlan and Heap [45] in their report (Figure 3.1).
These patterns can be divided into two groups: age-related failure (A,B,C) and non-age related fail-
ures (D,E,F). 89% of the components analysed fell in the latter group. This exposes the weakness of
scheduled maintenance: it assumes the equipment’s condition will degrade with age. But why would
one perform maintenance if the equipment is still in good condition, knowing that the larger majority of
failure is not even related to age [16, 19]? Additionally, ineffective decision-making methods partially
contribute to poor maintenance [11]. Nowadays, data can be used to achieve informed decision making
based on insight, knowledge and forecasting [14, 19]. However, most systems lack to convert the data
into useful information that can be used for decision making [16]. Also, inadequate data management
systems can fail to retain important records that could be required for future decision making [7].

It becomes clear that drilling rig operators ideally should step away from maintenance based on
intervals, but how can they improve? To determine the best maintenance strategy for components of
drilling rigs, in the following sections a complete survey on maintenance policies will be conducted.
This survey will gather insights into maintenance concepts, both advanced and conventional. The
conclusion will reflect on the requirements of drilling rig maintenance and identify the desired strategy
from the discussed policies.
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Figure 3.2: Overview and classification of different maintenance policies, based on Tinga [44, Chapter 5]. The advanced main-
tenance policies are highlighted in blue.

3.3. Classification of maintenance policies
Maintenance strategies use various different maintenance policies and concepts. There is however not
a clear, single classification of maintenance concepts out there. The classification given in this chapter
is mostly based on the overview given by Tinga [44], but puts predictive maintenance (PdM) on the
same level as PM policies, like Deighton [42] does in his overview. This is done deliberately to highlight
the significant difference in approach of these concepts. One could indeed argue that all PdM strategies
aim to perform maintenance before failure, and are therefore “preventive”, but the key principle of these
concepts is just not comparable, as will become clear later on. Therefore, in this chapter, maintenance
concepts are first classified as reactive, proactive or aggressive. This classification is not uncommon
and for instance also used by Swanson [46] in her paper on the relationship between maintenance and
performance. In these three classes, there are multiple maintenance policies, all varying in complexity,
applicability and costs. A schematic overview of the classification of maintenance policies is given in
Figure 3.2. In this figure, the advanced maintenance policies are highlighted in blue. Each policy will
be explained and the methods to achieve successful implementation of this policy will be given as well.

3.4. Reactive maintenance
Reactive maintenance strategies, aim to perform reparation during or after failure. They do not pursuit
failure prevention but focus on minimising the disruption that equipment failure can cause. Therefore
they are considered as the most conventional concepts of maintenance.

3.4.1. Corrective maintenance
If equipment is repaired after it has failed, this is called corrective maintenance. Failure of a component
mostly becomes clear because the system will break down and stop operations. Corrective mainte-
nance tasks include inspection of the failed system to identify the failure mode and perform reparation
to make the equipment available again [42]. Rather than preventing the failure, Corrective maintenance
focuses on bringing equipment back to operation in the shortest time possible, reducing the impact of
equipment failure. Some practical techniques to achieve this are trained service crews, improving the
maintainability of equipment and having redundant equipment [47].

To perform efficient corrective maintenance, a good fault diagnosis is necessary. Wang et al. [48]
propose a corrective scheme for systems with complicated failure mechanisms. They use numerous
methods to identify the failure modes and the propagation of these failures in the system, and do not
only consider failure probability but also the detectability and severity of a failure to determine the order
of corrective maintenance on the system.
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Run-To-Fail
The deliberate choice of not performing maintenance on a system until complete failure, so without
performing maintenance, is called Run-To-Fail. The advantage of this concept is a fully utilised lifetime
of the component, only performing maintenance or replacing the component when necessary. The dis-
advantage is the unexpected failure of a system and associated downtime, costs and most importantly
sudden exposure to safety hazards. While Deighton [42] argues that this strategy is sometimes used
for economic advantage, Motaghare, Pillai, and Ramachandran [49] state that this concept will actually
give the highest costs for maintenance.

3.4.2. Detective maintenance
Detective maintenance applies when a functional test points out failure of a component. When a failure
is detected during this test, the failure may already have occurred before the moment of testing. It
differs from corrective maintenance, as the equipment in this case is not always operating, thus not
immediately revealing the failure [44, Chapter 5]. This concept therefore mostly applies on protective
equipment, that needs to be available at emergencies but is rarely in active use [50].

3.5. Aggressive maintenance
Aggressive maintenance policies aim to improve equipment operations to reduce the number of fail-
ures, rather than conducting excessive corrective maintenance. This concept is therefore also called
improvement maintenance.

3.5.1. Design-out maintenance
Design-out maintenance is a strategy that goes straight to the core of the reliability issue and redesigns
the component to eliminate shortcomings, thus reducing future failures [51]. When equipment falls
in repeating failure patterns and it has become obvious that the equipment is no longer capable of
confirming to the expected reliability standards, one might chose to use design-out maintenance [52].
Successful application of this policy uses thorough failure investigation before a systematic selection
of the optimal solution to eliminate the reliability issue. Like Mughanyi, Mbohwa, and Madanhire [52]
show, the results of design-out maintenance are equipment design modifications that in some cases
even become registered as patents.

3.5.2. Total Productive Maintenance
Total Productive Maintenance (TPM) is more of a maintenance management philosophy than a policy.
It was developed and first successfully applied in Japanese automotive factories and can also be clas-
sified as a lean tool like Kaizen and 5S, which were all developed in the same environment to support
just-in-time manufacturing [46]. Most of the tools used in TPM are similar to those in Total Quality
Management (TQM), but TQM focuses on improvement of the product quality where TPM focuses on
improvement of equipment operations and production. It makes maintenance a vitally important part
of a business. Simultaneously TPM aims to improve employee morale and job satisfaction [53].

TPM enables employee cooperation and partnership for maintenance improvement. Production
workers and office employees are involved in teams, where they aim to improve the equipment perfor-
mance by communicating current and potential equipment issues.. Maintainability improvement teams
work to improve the way maintenance is performed, for instance aiming for more proactive strategies
and training production workers for small maintenance tasks, so that specialised maintenance work-
ers can be used on more important issues [46, 53]. Maintenance prevention teams work together to
improve the equipment design, which will result in equipment that is better to maintain and operate [46].

While implementing TPM requires some initial investments and a total commitment from all em-
ployee functions, it can result in positive results for a facility [53]. TPM primarily focuses on manu-
facturing processes, but some parts or principles from the TPM philosophy can be applied in other
industries as well.

3.6. Proactive maintenance
Preventive, opportunistic and predictive maintenance can all be classified as proactive maintenance
strategies. They aim to perform maintenance before the failure of components. The key of proac-
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tive maintenance is therefore scheduling the ideal moment to perform the maintenance. The benefit
proactive maintenance can offer is less breakdowns during operations, ideally preventing NPT. A pit-
fall however is performing excessive or incorrect PM, which can rapidly increase the costs. There are
many different policies in proactive maintenance, that all contribute to finding the optimal solution for
an efficient maintenance strategy.

3.6.1. Opportunistic maintenance
Opportunistic maintenance (OM) policies use the dependency of components in a system to carry out
maintenance on multiple components as the opportunity arises [54]. Maintenance is conducted on a
component that is not immediately required, yet undertaken in order to provide advantages in terms
of time, transport costs etc. OM is mainly triggered when another component in the same system is
actually in need of maintenance [44, Chapter 5].

OM is implemented by creating a preplanned set of proposed maintenance activities and then act
based on this plan when the opportunity arises. The choice to conduct this policy can be justified by
technical and economical benefits. In terms of other maintenance policies, Ab-Samat and Kamaruddin
[54] explain that OM is basically conducting corrective maintenance on one component and conducting
PM on the other dependent components. They argue that applying OM can be especially effective in
preventing breakdown in continuous systems, but the principle is still open for improvement.

3.6.2. Preventive maintenance
PM aims to replace or repair components before failure occurs. PM emerged as an alternative concept
to corrective maintenance in the 1950s and has been adopted for the emerging technologies since
then, as these kept increasing in complexity. The basic principle of PM is to conduct predetermined
maintenance tasks that are derived from experiences and analysis of component functionalities and
lifetimes. The maintenance on components is conducted before they are expected to fail and is sched-
uled during dedicated time, to minimise NPT in equipment operations. PM therefore requires proper
planning [55]. As Tinga [56] states, the key issue of PM is to correctly determine the maintenance inter-
vals. A short interval might be more effective, but can lead to excessive maintenance. A larger interval
might be more efficient, but failure might occur. Two approaches to this problem can be distinguished:
(i) scheduled and (ii) dynamic PM.

Scheduled intervals, time-based
Fixed intervals are used to schedule the maintenance of equipment. These intervals can be based on
calendar time (e.g. monthly or yearly), or on operating hours (usage). The first concept is called time-
based maintenance and is also known as periodic-based maintenance. In time-based maintenance,
there are various ways to determine the maintenance time interval.

The simplest way is to follow the interval recommendation of the equipment manufacturer. Fol-
lowing this recommendation is not very useful for a effective and efficient maintenance strategy [57].
Labib [58] names three reasons why manufacturer recommendation is usually not applicable: (i) each
machine works in a different environment, (ii) manufacturers do not have the same experience of ma-
chine failures as those who operate and maintain them and (iii) manufacturers might recommend very
frequent replacements to keep spare part sales up high.

The second reason Labib [58] gives, indicates a better strategy: using the experience of mainte-
nance workers. The knowledge from technicians and engineers that have worked a longer time with
the machine can be used to determine time intervals. They have a sense for the equipment and have
learned from previous failures the equipment might have had. Ahmad and Kamaruddin [57] state that
this is a conventional practice of time-based maintenance. One drawback however, is that when skilled
personnel quits their job, the experience might go out the door as well.

Therefore, most time-based methods aim to determine the optimal interval through a statistical ap-
proach, using failure time analysis [57]. Tinga [56] refers to this approach as model-based scheduled
maintenance. Figure 3.3 shows the process of a model-based scheduling. This requires user-based
data containing equipment time-to-failure records. A reliability model is then created, which takes into
account a failure probability distribution like normal, exponential or the Weibull distribution [57]. The
Weibull distribution is widely used in reliability engineering because it can be applied on various ag-
ing classes with varying failure rates [55, 57]. This statistical or reliability model will return equipment
characteristics like MTTF and failure rates, that can be used in a decision-making process to determine
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Figure 3.3: The general process of a statistical approach to time-based maintenance scheduling. (Image based on [57])

the optimal maintenance plan. In this process, the costs of failure, maintenance and part replacement
are also taken into account to determine an optimal maintenance interval [57]. Basri et al. [55] line
out some examples of applied methods in their literature review on PM planning, like Markov Chains,
SIMAN simulation or linear programming. The type of decision-making method used depends on the
state and configuration of the system and its components. Some time-based scheduling problem so-
lutions integrate the reliability modelling directly in the decision-making process [55].

The result of a time-based maintenance plan, regardless of the approach, is a fixed interval of time
between maintenance. As Tinga [56] states, for equipment that is running continuously at constant
speeds in a constant environment or at least with minimal variation in usage and degradation over time,
calendar time-based maintenance is very suitable. However, for equipment that is not used constantly
in operations, it is better to apply usage-based scheduled maintenance, taking into account the actual
usage of the system. This concept is also called usage based maintenance. It prevents the planning
of very conservative calendar time intervals by taking a usage indicator like operating hours or, in case
of a vehicle, kilometres travelled. While usage-based maintenance can give a more efficient interval,
it still has the assumption of constant environment and little variation in usage loads [56]. In most
operations, this is not the case. Therefore, the main shortcoming of fixed interval PM is that it uses
quite some assumptions and will therefore sometimes lead to an approach of the equipment condition
that deviates from reality. That will inevitably lead to failure, resulting in extra costs.

Dynamic intervals
As an upgrade of fixed interval PM, Tinga [56] proposes more sophisticated approaches to time-based
and usage-based maintenance. These approaches also consider the severity of usage and the internal
loads of equipment. These methods aim to take away the uncertainty of usage variation and degrada-
tion that time-based maintenance has and can be used to update the required maintenance intervals
[44, Chapter 5]. To achieve this, different characteristics of the equipment over time are monitored, like
rotational speed, power setting etc. In load-based maintenance, the internal loads in the component
over time are also measured, like strain and temperature. Both can give more insight in both relations
between usage-to-load and load-to-life [56]. This information can then also be considered in the reliabil-
ity modelling (see Figure 3.3), providing more accurate MTTF and failure rate results for various usage
modes. This can finally be used for determining maintenance intervals depending on the distribution
of usage modes.

In a more recent research, Assis and Marques [59] give a concept that can be used on a periodic
maintenance calendar for critical equipment. The base of this concept is assuming aWeibull distribution
for the reliability of the component and initially determining a set of maintenance intervals that make
sure the reliability between these intervals is kept below a pre-set threshold, while keeping inspection,
repair and potential failure costs to a minimum. This gives a time interval that gradually decreases over
time. When during maintenance test results return to be negative, the resulting maintenance calendar
is adjusted dynamically over time, according to the new information. Assis and Marques [59] conclude
that applying this method can yield a self-adjusting maintenance strategy.

PM that used dynamic intervals can come close to the ideal maintenance interval in which there
is a perfect trade-off between efficiency and effectiveness. Although they do not approach reality as
close as PdM can do, they can help reduce the uncertainty of PM, while still being relatively cheap to
implement [44, Chapter 6].
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3.7. Predictive maintenance
PdM can be classified as an advanced proactive maintenance strategy. It involves determining the
optimal moment for maintenance through model or data analysis.

3.7.1. Remaining useful life
The goal of PdM is maximisation of the time interval between maintenance tasks without the occur-
rence of equipment failure. Using the actual operating condition of the equipment, PdM can predict
the future state of equipment, also depending on historical operation or degradation behaviour data
[49]. One could say PdM basically involves three tasks: CM, diagnostics and prognostics. Diagnostics
is conducted to detect, isolate en identify potential faults and failure modes [60]. Generally, diagnos-
tic methods aim to use pattern recognition in order to detect and classify a failure or fault. But just
monitoring a condition parameter until it exceeds a critical value that requires immediate action, will
not improve reliability of the system. Therefore a prognostic method is required to determine the best
future moment of maintenance [44, Chapter 6]. Where prognostics might seem superior to diagnostics,
as it can prevent failure, it should not replace diagnostics. Diagnostics is still needed to give accurate
maintenance decision support when an unpredicted fault is occurring [61]. Prognostics relies on fault
indicators and degradation rates, which are in the outputs of diagnostics [60]. The aim of a prognostic
method can be shown with a P-F curve as illustrated in Figure 3.4. This curve shows the degradation of
a component over time. Most equipment will start to degrade once it has been taken into operation. In
the early stages this is not noticeable and the performance of the system will not be affected. However,
from a certain point in time, a CM system will be able to detect an anomaly that points to an upcom-
ing failure. This point is called P and the point of actual functional failure is called F. The available
time for maintenance on the system is the P-F interval, or also called the delay time. The delay time
of equipment is very essential for the success of a PdM policy, as small delay times require flexible
maintenance strategies while large delay times allow for large opportunity windows for the clustering
of maintenance [44, Chapter 6]. Prognostics are needed to estimate the remaining useful life (RUL),
which is the time to failure F, measured from any point on the P-F curve [60, 62]. In Figure 3.4 the RUL
at observation time O is depicted. Note that the RUL is not the same as the delay time. To conclude,
a PdM strategy revolves around achieving the most precise forecast of the RUL of a component or
system.

3.7.2. Approaches to predictive maintenance
In PdM, there aremany approaches to predict the RUL, as visualised in Figure 3.5. A first distinction can
be made between data-driven or model-based approaches [63–66]. Model-based approaches employ
mathematical modelling to describe the system or component in a numerical manner. This can be based
on analytical, statistical or physical information or properties of the asset [63]. Reliability statistics of
historical fault data can be used for fault prediction by using a series of probability density functions.
Some of the methods using reliability statistics include Weibull distribution, Bayesian belief network
and fuzzy logic (FL) [64]. FL and other rule-based models can also be described as knowledge-based
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Figure 3.5: Approaches to RUL prediction in PdM

approaches, since these methods reduce the complexity of the system and consider the system as a
whole based on known information [65]. Physical model-based approaches will reflect the performance
degradation of the system using virtual physical failure and fatigue life models. They do not require
extensive collection of data, however designing a physical model that closely resembles reality may
need the assistance of an expert [64]. Recent advances in computing techniques have enhanced
the feasibility of model-based approaches, given that these models require substantial computational
resources for computation [63].

Data driven methods use big amounts of data obtained from equipment in operation by adequate
sensor deployment [63, 64]. This data is then processed and analysed using pattern recognition, ma-
chine learning or other AI solutions [65]. One of the common used data-driven methodologies for PdM
is condition-based maintenance (CBM), which will be elaborated in the following section. If the data is
not gathered by already existing process sensors, which are already part of the equipment [67], a CM
technique as described in subsection 3.7.4 can be implemented.

3.7.3. Condition-based maintenance
CBM plays a significant role in maintenance, management and sustainable operations of various sec-
tors. Its increase in utilisation is related to the technological advancements in CM devices in terms of
electronics and communication. It has become more important with the progress in the field of automa-
tion engineering [62]. For CBM, one needs a CM system that monitors the value and variance in a
critical parameter of a piece of equipment.

A typical CBM process is shown in Figure 3.6. In general, it follows three main steps [61]:

1. Data acquisition: obtaining data relevant to the system health
2. Data processing: handling and analysing the data for a good understanding and interpretation
3. Decision-making: recommending an efficient maintenance strategy

During data acquisition, data is gathered form targeted equipment. This data can be categorised
into two types: (i) CM data and (ii) event data. The first are the measurements related to the health
and condition state of the equipment. The latter includes information on events that happened to the
equipment, like failures and causes or maintenance activities, and is usually gathered manually [61].
CM data is usually acquired by strategical placement of sensors. There are various types of sensors
that can serve for diverse monitoring purposes [61, 62]. Although there are now wireless technologies
to reduce the cost of installation of hardwired sensors, a sensor system is still a significant upfront
investment to be made. Furthermore, the sensor system will also require maintenance [42]. The
data from the sensors is commonly stored in computerised maintenance management systems [44,
Chapter 8, 61].

The first step of data processing is data cleaning to ensure the data is error-free [61]. There are
various methods for data cleaning which can for instance be aimed at reducing signal noise [68] or
sensor fault detection and isolation [69]. The next step involves analysing the data with the use of
various AI models, algorithms and tools. The data gathered in CBM can be of one of the following
types [61]:

1. Value type: single values data collected at a specific time, e.g. temperature or pressure



3.7. Predictive maintenance - 2024.MME.8912 29

Sensor
data

Failure
condition

CBM plan

Data cleaning Data
processing

Diagnostics

Prognostics
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2. Waveform type: time series data collected over a time interval, e.g. vibration or acoustic
3. Multidimensional type: multidimensional information, e.g. infrared thermographs, visual images

Depending on the type of data, numerous techniques are available to process the data. Some examples
are wavelet transformations, neural networks, feature recognition, signal processing and AI [62].

The last step in CBM is maintenance decision-making, this is where the tasks of diagnostics and
prognostics are involved. In decision-making, there are numerous methods and approaches. The out-
put of a CBM process is then a maintenance decision based on either the prognostics RUL estimation
or, in case of failure, the diagnostics failure analysis.

3.7.4. Condition monitoring techniques
There are various CM techniques that are widely used in PdM and CBM, that all focus on monitoring a
critical condition parameter. Common techniques are vibration analysis, acoustic analysis, lubrication
oil analysis, particle analysis, corrosive analysis, thermal analysis and performance analysis [67].

Vibration analysis is used for rotating equipment and is one of the most popular CBM techniques
[57]. Vibration sensors can detect offsets in vibration rates, that can indicate failures such as imbal-
ance, misalignment and bearing or gear damage. The types of sensors used for vibration analysis
are accelerometers or sensors to measure displacement or velocity [44, Chapter 6]. The output of a
vibration analysis is waveform data that can be compared with reference data of “healthy” equipment
to detect anomalies.

Related to vibration analysis, acoustic analysis can detect anomalies in acoustic waveform data
that indicate failure. The fundamental difference however, is that acoustic sensors do not have to be
mounted on the equipment and are therefore less intrusive [57]. Acoustic analysis can also be used to
detect high frequency noise that can be caused by the leaks of valves, pipes or vessels [44, 67]. The
acoustic monitoring technique for frequencies higher than 30kHz is also called ultrasonics monitoring.

Oil or lubricant monitoring analyses the degradation and contamination of oil, hydraulic fluids and
lubricants. This technique can give a proactive indication of upcoming equipment failure because wear-
ing equipment will contaminate the oil [42, 67]. It is even possible to analyse the contamination particles
in the oil to identify the part of the equipment that is wearing and the dominant wear mechanism [44,
Chapter 6]. Oil analysis can therefore safeguard both the oil quality and the components using the
oil [57]. Methods and tools used in oil analysis are imaging systems that use pattern recognition, or
magnetic plugs that can detect the amount of particles in lubricant flow [44, Chapter 6].

Corrosion monitoring is mostly applied to static equipment in drilling industries and maritime indus-
tries, which is situated in corrosive environments. This monitoring used to be achieved by periodic
inspections, but in the recent years there are corrosion sensors that can be used for continuous moni-
toring. Equipment that can be subject to corrosion is coated, therefore monitoring the condition of the
coating is important too [44, Chapter 6]. There are numerous methods and tools used in corrosion
monitoring. For instance, electrical and electrochemical techniques aim to monitor variance in current
or resistance that can be caused by corrosion. Other techniques can indicate cracks or loss in wall
thickness, like acoustic analysis or radiography [71].

The last notable CM technique is thermal analysis, which can be achieved in a few different ways
[42]. Thermography uses infrared thermometers or even infrared cameras to measure the heat ra-
diation of a system. It can be hard to interpret the results of thermography, because of interfering
radiation of other systems in the proximity or the reflection or radiation on walls or other equipment.
However, comparative analysis with thermography can still give good insight into the condition of a
system [44, Chapter 6]. Applications of thermography are electrical systems or rotating equipment,
such as bearings and motors. Thermal point measurement measures the temperature with a sensor
at an equipment surface. These sensors are mostly thermocouples and are fixed to critical points such
as pumps or bearings. They directly monitor the temperature in a single value data type [42].
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3.7.5. Prescriptive maintenance
Going one step further than CBM and other PdM techniques, prescriptive maintenance aims to control
the occurrence of equipment failure [65]. Where diagnostics answers the question “Why did it happen?”
and prognostics answers “What will happen when?”, this policy aims to answer “How can we make it
happen?” [72]. Matyas et al. [73] describe that thanks to the digitisation of the industry (the Fourth
Industrial Revolution or Industry 4.0), prescriptive maintenance will be the new era of maintenance.

A prescriptive method should be able to predict required maintenance measures and prescribe a
course of actions based on analysis of historical data and real time data. One of the challenges in
prescriptive maintenance is therefore the collection and management of complex data sets [73]. In
their paper, Nemeth et al. [72] give various machine learning methods to overcome this challenge, like
data sampling and defining datasets for training, test and validation. This data is then used to predict
failure, much like prognostics giving RUL estimation during PdM. But, in addition to PdM, prescriptive
maintenance also involves a prediction of the effect of different potential maintenance actions on the
future state of the equipment. It uses smart technologies like AI and machine learning mainly in model-
based approaches to solve this prediction problem andmakes a decision to provide actionable solutions
[72–74].

Prescriptive maintenance is a quite new concept and therefore there is still a lot of work to be done
in this field. Although there is potential for this concept, Nemeth et al. [72] mention that it is hardly
implemented in practice. In the field of research, Choubey, Benton, and Johnsten [74] state there is a
lack of consensus on the mode of prescriptive maintenance and the scope of solutions.

3.8. Conclusion
In order to find an answer to RQ2, the optimum maintenance policy can now be selected from the
survey in this chapter. To help improve the reliability of a drilling rig, drilling rig operators should adopt
a maintenance strategy that:

• takes into account the actual degradation of the components
• does not group components with different failure rates
• adapts to the different harsh environments in which drilling rigs operate
• maximises uptime
• actively assists in maintenance decision-making.

In the broad sense, drilling rigs require proactive maintenance, since reactive strategies will not
minimise rig downtime and aggressive strategies do not fit the diverse operations of a drilling rig. Con-
sidering proactive strategies, preventive methods are conventionally being applied on drilling rigs. But
as already explained in section 3.2, this eventually can have a negative effect on the equipment and
is believed to be contributing to the low reliability of drilling rigs. By implementing a PdM strategy, the
components in a drilling rig can receive maintenance based on their actual degradation, which may
vary based on their operations and environment of operation. PdM is the best policy for a strategy that
fits the requirements mentioned above.

However, the pitfall of a PdM strategy for a drilling rig is that it can represent an disintegrated
collection of component-specific methods that fail to consider the overall operation of the system. The
following chapters in this thesis will therefore focus on developing a holistic approach to PdM on a
drilling rig by integrating components into system-level decision-making.



4
System modelling

The goal for the remainder of this thesis is to find a holistic approach to the application of PdM on a
drilling rig. For this purpose, it is necessary to first identify an applicable framework for the modelling of
the drilling rig system to support in the decision-making for the PdM strategy. In this chapter, approaches
that are used to model equipment systems are discussed to find the answer to RQ3. For clarification,
in this chapter a system model is defined as a digital model that can:

• comprehend the operations of individual components as well as the whole system
• estimate the health condition of components and predict the RUL
• decide what maintenance is necessary and what is the best moment to conduct maintenance

For these tasks, it uses real-time available data as well as historical data. Various common used
paradigms of system models are discussed. Examples of applications of these models in PdM strate-
gies are given as well. Finally, this chapter selects a framework that can be used to model a drilling rig
in a holistic PdM strategy.

4.1. Mathematical model
Mathematical modelling is a broad term that aims to simulate a physical system with mathematical
computations. The goal is to predict the behaviour of this physical system within its environment [75].
Ran et al. [76] state that in PdM, mathematical models can calculate the outcome of physical processes
that have impact on the health condition of a component or system. Using a mathematical model will
reduce the physical system to (a set of) key equations or theories that can approximate the current
and future states. Their accuracy depends on the assumptions in the area of failure mechanisms and
reliability statistics, and on the selection of critical components in the system. The general process
of mathematical modelling is depicted in Figure 4.1. Since this is a broad subject, there are various
approaches to mathematically modelling a physical system. This section will elaborate on statistical
models and physical failure models.
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Figure 4.1: Overview of the mathematical modelling process (Image based on [75]).
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4.1.1. Statistical modelling
To predict the failure of components, statistical models characterise the degradation of components by a
time-dependent stochastic process. Some examples of these stochastic processes are Markov chains
and Gaussian, Wiener and Gamma processes. The uncertainty and randomness of failure can be
approximated with a stochastic process. The parameters that determine the degradation processes,
for instance the MTTF (refer to section 3.1) can be deducted from historical data [22, 77]. These
parameters can be updated if new data provides evidence for this matter.

Statistical models aim to give an estimation of the system reliability, which is a function of the com-
ponents’ reliability. However, as mentioned by Lee and Pan [78], in practice multi-component systems
have complex forms with uncertainties in the system reliability structure, rather than having a deter-
ministic relationship. Moreover, these dependencies in the system can be of different nature, e.g. eco-
nomic, stochastic or structural dependence [79]. Taking into account these dependencies, the model
can result in a decision process that groups maintenance actions on components in the system [20,
79]. In other words, these models will also incorporate OM actions into a PdM strategy if this results in
better cost or reliability performance of the system.

Bayesian networks
A powerful tool in statistical modelling is a Bayesian network. It can represent the inference of a set of
random variables and is therefore suited to model the probabilistic dependencies of components in a
system [60, 80]. A Bayesian network can be explained as a number of nodes, connected by arcs that
represent a direct causal influence between nodes in an acyclic pattern, so that following the directions
from a node can never result in a closed loop. The nodes represent random variables that can take
on distinct states or levels. The causal influence is quantified using conditional probabilities. Therefore
each node has a conditional probability distribution, presented by a table that defines probabilities for
each state of the node, given the states of its parent nodes. If a node has no parents, its state is
dependent of unconditional probability, a.k.a. marginal probability [60]. To create a Bayesian network,
the system is broken down into manageable, smaller subsystems and critical components of these
subsystems can be identified [80]. In Bayesian networks, “the probability inference of an event is
conditional on the observed evidence” [81]. So if, in time, new evidence occurs, that is data containing
new variables, the network can be improved and the probabilities are updated. This process is called
Bayesian updating, and will result in a posterior probability distribution [60, 80].

A Bayesian network can be used to integrate failure probability models in a system reliability as-
sessment model. The work by Lee and Pan [78] is an example of this approach. To achieve PdM
for a complex system, they employ Markov chains for the degradation of components, integrated in a
Bayesian network to predict the system reliability.

4.1.2. Physical failure
If the physical failure mechanisms in a system are understood, they can be modelled to predict the fail-
ure based on the loads that govern this mechanism and how these loads are related to the operational
use of the system [21]. Typical failure models are fracture, fatigue, creep, and they can be related to
loads like stress, strain, temperature, electrical current, for example. Important relations in a physical
failure model are usage-to-load and load-to-life relations, which can model the life consumption of a
load at a certain operation rate. These models therefore require monitoring of the usage and the loads
on the system to give an accurate prediction of the RUL of components [21]. The overall system will
contain multiple components with different failure mechanisms. To determine what failure mechanisms
are dominant in the system and what components are critical to the life of the system, a failure mode, ef-
fect and criticality analysis (FMECA) must be performed [56]. The criticality of a component determines
the threshold for the failure probabilities in a system and will trigger a maintenance action.

FMECA
FMECA is a bottom-up method that starts at the component level of a system. It is a variation of an
FMEA, which stands for Failure Mode and Effects Analysis. An FMEA aims to find the failure modes of
each component and what would be the effects of these failures on other interacting components [82,
83]. It was originally developed by the US military as one of the first methodical techniques for failure
analysis in the 1940s, and is now commonly used in a wide number of industries [42]. A structural
FMEA is performed with a team consisting of diverse expertise (e.g. design, operations, maintenance,



4.2. Multi-agent system - 2024.MME.8912 33

software, electrical etc.) as this will increase the number of identified possible failures. As mentioned
by Peeters, Basten, and Tinga [83], standards can provide guidelines for performing an FMEA. The
results of an FMEA are recorded in a spreadsheet, named the FMEA worksheet. The format of these
worksheets varies depending on the output requirements of the FMEA [42, 83]. An FMECA extends
the analysis by also including a criticality analysis. The failure modes are then prioritised for corrective
action, based on the failure probability and severity of failure. This is done by rating the failure mode
from 1 to 10 on (i) a severity indicator, (ii) an occurrence indicator and (iii) a detectability indicator.
These three ratings make up the risk priority number [82, 83]. This number can then be recorded in the
FMECA worksheet to later identify the critical failure modes. Langlo [9] for instance used a threshold
value of 50, identifying all failure modes with a higher risk priority number as unacceptable risks. The
main steps in performing an FMECA are [9, 42]:

1. Defining objectives and expectations of the analysis
2. Ensuring that the scope of equipment to be analysed is clear
3. Defining the equipment systems, subsystems and components and their relationships
4. Identifying the failure modes with causes and effects for each equipment system, subsystem and

component
5. Performing a criticality analysis for each failure mode

4.2. Multi-agent system
In multi-agent systems (MAS), a decision-making system is constructed from multiple “agents”. Agents
are entities in the system that can independently make decisions and can use a “collective mind” to
achieve their own goal. To achieve their goals, agents may cooperate by exchanging information or
resources [84]. While there are various ways to design the architecture of a MAS, it is common to
broadly classify these designs into four types of architectures, also depicted in Figure 4.2 [85]:

• Centralised: there is a social platform, or control centre, that has full control over the system
decision-making. The agents communicate with this centre by sending data and receiving main-
tenance recommendations. The control centre can be considered as the “main agent” as it is the
only one that actually analyses the data and does the decision-making.

• Hierarchical: in this architecture lower-level agents perform simple tasks and provide information
to intermediate agents, who account for most of the decision-making in the system. The control
centre is the highest level and has full control of the communications in the system, assigning
groups and tasks to the intermediate agents.

• Heterarchical: in addition to a hierarchical architecture, heterarchical structure allows for hori-
zontal communication between agents. The control centre decides which agents can communi-
cate with each other by mean of a clustering algorithm.

• Distributed: all intermediate agents are in the same level of hierarchy, and take independent
decisions without supervision of a higher-level control centre. The agents therefore have peer-
to-peer connections and are stimulated to establish collaborations.

In a PdM strategy, Palau, Dhada, and Parlikad [85] state that the lowest-level agents can standardise
incoming data and pass it on to higher levels. Depending on the MAS architecture, the intermediate
agents perform analytic tasks and give a prognostic task of the equipment they are associated to. The
control centre agent will mainly form clusters of agents and make maintenance decisions.

MAS can be very agile and adaptive to the situation of the physical equipment. To prove this, Rocha,
Peres, and Barata [86] designed a MAS containing three types of agent. A component monitoring
agent, which collects data from the physical component, is the lowest level entity in the system. Then,
a higher-level component monitoring agent retrieves the pre-processed data from a set of lower-level
component monitoring agents, as well as from a computational device related to the system. On the
highest level, a cloud of output coordinator agents collects all the data from the other agents. From
here, the data is sent to external entities capable of performing higher level analysis. The authors state
this architecture is capable of reducing the workload of a monitoring system on the work floor and it is
possible to plug and unplug components without the need to reconfigure the software.

Reinforcement learning is a field of AI that is applicable on MAS. In reinforcement learning, an agent
is given one or multiple objectives and is aware of the environment he is operating in. Through trial
and error, either rewarded or punished for its actions, the agent learns the optimum way to achieve
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Figure 4.2: Different architectures of multi-agent systems (based on [85])

its objective(s). Ruiz Rodríguez et al. [87] use this concept in a PdM model that focuses on the task
scheduling in the PdM decision-making process. Each agent is assigned to a piece of equipment in a
larger facility and learns to keep machines in the working state as long as possible. However, it has to
move out of breakdown and maintenance states as soon as possible, so it learns to identify the best
technician to perform the maintenance in the shortest amount of time.

4.3. Cyber physical systems
In the Industry 4.0, Cyber-Physical Systems (CPS) are considered as one of the main enablers. CPS
is a multidisciplinary approach, integrating technologies such as IoT, control systems, big data and
real-time applications [88]. The main goal of CPS is to create a bi-directional interaction between the
physical world and the cyber space [89]. Where abstract models like mentioned in section 4.1 and sec-
tion 4.2 can operate independent from the physical equipment and only require periodically updating,
CPS need to be connected real-time [88]. Three main components of CPS can be distinguished [89]:

• Communication: rather than relying on traditional single-network data collection methods, CPS
communication channels must comply with high standards, ensuring lossless transfer, no delay,
low energy consumption, shared access, and sufficient bandwidth capacity. The key elements
of CPS are sensors and actuators that are interacting with the physical world for data exchange.
These devices must guarantee that any changes in the physical world induce changes in the
cyber world, and vice versa.

• Control: CPS use intelligent controllers to monitor and process physical process variables in real-
time. Control commands are generated based on predetermined rules through data processing
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and analysis. The actuators in the physical world execute the control directives.
• Computation: in CPS, two types of computational techniques are commonly applied: model-
based and metamodel-based methods. Model-based methods can take various forms, for in-
stance physical, mathematical or simulation models. They are enhanced by incorporating various
algorithms to handle computational challenges in the CPS control system. These methods can
however be very complex and increase computational cost. Therefore metamodels are utilised
to serve as an less computationally expensive method for these computational challenges.

For an automated CBM approach, Al-Najjar, Algabroun, and Jonsson [90] developed a CPS that
can automatically fulfil four tasks: (i) gather the data required to monitor the health of the machine,
(ii) recommend actions or send work orders, (iii) conduct specific maintenance actions and (iv) report
about remaining maintenance actions that are to be done manually. To achieve this, they state the CPS
has to consist out of the following units: a measuring system that gathers data and accounts for the
signal processing, a “brain with intelligence” that also stores the data in a database, and an interface
with actuators and controllers. In this system, bidirectional communication is necessary to report the
successful or unsuccessful completion of tasks.

To establish collaborative proactive maintenance, Papa, Zurutuza, and Uribeetxeberria [91] de-
scribe a CPS approach that use distributed processing chains, which transform raw data into knowledge
while minimising the need for bandwidth. At different levels in the system, local sensing and decision-
making functions are performed. Data flows automated through the different levels in the system until
the desired information is extracted and delivered to the right people or machines for maintenance.
This way, each component in the CPS is engaged in the achievement of the common goal of mainte-
nance optimisation. Moreover, this collaborative ecosystem can be deployed on every scale, for asset
maintenance or service-based maintenance for clients. It can result in a hyper-platform that allows to
connect smaller ecosystems on different platforms into a larger one [91].

4.4. Digital twin
Digital Twin (DT) is a popular paradigm in Industry 4.0 that combines a physical modelling approach
with real-time data analysis. A DT is defined as a virtual and simulated model of a physical entity,
process or system involving automated communication between the physical object and virtual model
[92–94]. DT technology generally consists out of three parts: the virtual model in the virtual space, the
physical system in the physical world and the data interface between the physical world and the virtual
space. Although, when referring to a DT, usually just the virtual model is meant. Regarding CPS (see
section 4.3), it can be said that this is characterised by a physical asset and its DT. In other terms, a
DT represents the prerequisite for the development of a CPS [95].

Some of the key technologies to enable a DT are 3D modelling technology, status monitoring and
display technology, VR technology, data storage and high-performance computing technology, data
acquisition and transmission technology, lifecycle data management and model driven technology [92].
The essential constituents of DT technology are [96]:

• Sensors: distributed throughout the system, sensors create signals that enable the twin to cap-
ture operational and environmental data related to the physical system in the real world.

• Data: the data from the sensors is aggregated and combined with other data, like design speci-
fications, enterprise systems or external data feeds.

• Integration: sensors communicate the data to the digital world through integration technology
(e.g. edge, communication interfaces and security) between the physical and digital world, and
vice versa.

• Analytics: the data is analysed by algorithmic simulations and visualisation routines to produce
insights.

• Digital twin: the DT itself is the application that combines the elements above into an almost
real-time digital model of the physical world and system. The objective of the DT is to identify
unacceptable deviations from optimal conditions. Such a deviation can either indicate a simulation
error (which is undesirable of course) or an opportunity for an action on the physical system.

• Actuators: if there is necessity for an action in the real world, the DT can produce the action
with actuators to trigger the physical process. This would be required for a CPS. In most cases,
human intervention is needed to conduct the actions on the physical system.
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Figure 4.3: Classification of DT based on level of data integration: (a) digital model, (b) digital shadow, (c) DT and (d) DT with
human integrated in the decision loop. (Image based on [63, 99, 101, 102])

As mentioned, the virtual model is the digital representation of the physical system, therefore the
actual DT itself [97]. Virtual models can be a three-dimensional geometric model that describes the
physical system in terms of shape, size, tolerance and structural relationships [93]. With physical prop-
erties (e.g. speed, wear, force), the model can reflect physical effects on the system (e.g. deformation,
fracture, corrosion). Behaviour models and rule models can describe the behaviour and response of
the physical system, and can give logical abilities to provide reasoning, evaluation and decision-making
[93]. A communication platform, or data interface, is used to ensure the flow of data and control signals
between the physical system and virtual model [97].

4.4.1. What defines a digital twin?
DT technology has been around for some time and has garnered significant attention from both the
industry and academia [98]. However, during this time, some misconceptions about the true definition
of a DT have also emerged, which can partially be declared by the complexity of the concept [63].
Some people generally describe a DT as a digital version of a physical object, while this does not cover
the true concept of DT [99]. Since there is no single way to deploy or design a DT, broad approach to
application exist which may strongly differ in level of integration [100]. This results in some businesses
developing digital models of their assets and inappropriately naming it a DT [94]. In their literature
review Kritzinger et al. [99] acknowledge this misconception and propose three subcategories in digital
modelling to make a classification based on level of data integration (refer to Figure 4.3a-c).

(a) Digital Model: this is a digital representation of a physical object without any form of automated
data exchange between the physical and digital object. Note that the physical object may not
have been fully realised yet. Therefore digital models may be utilised for simulations of planned
factories, mathematical models of new products or other applications that do not require any form
of automatic data integration. If the physical object experiences a change in state this will not have
a direct effect on the digital object and vice versa.

(b) Digital Shadow: the digital object is automatically updated if the state of the physical object
changes. This can for instance be achieved by a sensor system. Data coming from the digital
object still needs to be manually processed for change of the physical object [63].

(c) Digital Twin: a bidirectional and automatic data interaction between the physical and digital object
exists. This allows the digital object to take on the role of controller for the physical object. A
change in state of the digital object will directly alter the condition of the physical object and vice
versa.

Therefore, it can be concluded that a DT stands out from a digital model through an active, two-way
interaction between the physical entity and its digital representation [94]. In addition to the classification
in Figure 4.3a-c, Moyaux et al. [102] argue that a human can be integrated in the decision loop of
a DT as well (Figure 4.3d). They present various arguments for human integration, concluding an
unsupervised automated connection between a model and the physical system is rarely desirable in
practice. In their point of view, a DT should give suggestions based on the state of the physical system,
and these suggestions may be updated if the DT detects they are not followed in the physical world.
This definition corresponds better to the desired role of a DT in a maintenance strategy, since it is not
yet possible to let all maintenance be conducted by robots.

Finally, in their article devoted to finding the boundaries between models and DT, Wright and David-
son [103] give three criteria that should be met in a DT in order to add value in the desired field of
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application:

• Themodel should be sufficiently physics-based that updating parameters based onmeasurement
data is a meaningful thing to do.

• The model should be sufficiently accurate that the updated parameter values will be useful for the
desired application.

• The model should run sufficiently quick, in order to make decisions about the application within
the required timescale.

If these three criteria can be met, the developed model can be used in a DT solution.

4.4.2. Modelling levels
In the modelling phase of a DT, different levels of modelling can be used for the components or sub-
systems, depending on the available data and knowledge about the physical objects [101, 104–106].

• White box: the exact functionality and working mechanisms of the physical object are known.
The model structure is therefore identical to reality. A white box model can provide insight into
the relationships between different variables in the system through a transparent, well-defined
set of equations. The level of accuracy can be determined by using complex high-level numerical
methods or reducing those to simplified analytic models to accelerate the simulation time.

• Grey box: parts of the model are exactly known, but theoretical data is needed to complete the
model. This data can either be learned, derived or measured. The structure still resembles reality
to some extent. Since these models use the physical laws derived from white box models and
the statistical learning abilities of black box models, they can also be described as hybrid models.
The ratio between physical information needed for the white box-part and statistical information
for the black box-part determines the accuracy of the grey box model.

• Black box: there is no knowledge of the internal workings. Therefore the entiremodel needs to be
learned based upon observations. The behaviour of the twin is similar to the physical counterpart
while the internal structure is of entirely different nature. This internal structure for instance con-
sists of (multi-)regression methods, artificial neural networks, Bayesian belief networks or other
comparable AI solutions. Black box models can therefore be updated when new data becomes
available.

4.4.3. Digital twin for predictive maintenance
In PdM strategies, the use of a DT can play a critical role in predicting and avoiding equipment fail-
ure [63, 94]. Theoretically speaking, DT can combine both a physical model-based and data-driven
approach for a reliable hybrid PdM strategy. The equipment can dynamically be modelled with high
accuracy based on physical laws. Meanwhile the DT acquires real-time data and stores historical run-
ning data that can be used for improvement of the virtual model. The real-time data, acquired through
sensors, is also used for real-time prediction algorithms [64]. The virtual model can also be used for
what-if analyses to study unexpected scenarios without using the physical asset itself [93]. A set sim-
ulation can be performed on the DT to reveal aspects that cannot be identified by using only collected
information from the real machine. Future operations of the machine can be simulated to create failure
profiles or to plan maintenance activities based on the DT simulation results [107].

The RUL can be predicted with a DT using a combination of physical failure models, modelling
gear crack, fatigue, wear and other deformation models, and ML methods mostly for classification and
regression tasks . Classification is used to indicate categorical targets such as state of the equipment.
Regression is used for continuous targets such as the RUL prediction [66]. Prediction of the RUL and
the state of the equipment after maintenance, can be improved by including more characteristics of
the operation in the DT. It is therefore necessary to have historical running data for the calibration and
validation of predictive models. This historical data can be acquired through real world measurements,
but it can also be generated in a synthetic manner [63].

4.5. Modelling a drilling rig system
The aim of this chapter is to find a model framework that can be used to make decisions on the PdM
of components on a system level. First requirements are defined to assist in the selection of an appro-
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priate framework. Then this section will reflect on the mentioned methods to see whether they can be
beneficial in the modelling of a drilling rig system. Finally, an applicable framework will be proposed.

4.5.1. Requirements of the system model
• Integration of component-level maintenance solutions to system-level decision-making.
The main contribution of this thesis is to find a holistic approach to drilling rig maintenance, there-
fore this requirement should be met in the proposed framework.

• Functional based on available data. A few times this chapter has already mentioned to identify
an applicable framework, meaning it should be functional based on the available data on drilling
rigs. It is assumed that this data consists of SCADA data, which are operational parameters
gathered by the rig operational control system used to operate the rig, CM data and maintenance
records of the commonly maintained components on the rig.

• Easily modifiable model structure. It is not uncommon that components are changed or added
between drilling rig operations. Other reasons to modify the model are to change or add a CM
method or to alter approach in component PdM. Therefore, it is desirable that an improvement
does not require a complete revision of the system model, but rather allows to alter the relevant
parts of the model.

4.5.2. Reflection on discussed modelling methods
Statistical modelling of a drilling rig will result in an abstract model of the system that determines the
system reliability as a function of the components’ reliability. This means that the dependencies in the
system have to be known, or at least be estimated as close to reality as possible. For successful appli-
cation, the historical operations and maintenance data need to be analysed to determine an approach
to the uncertainties in the system reliability structure. It will require the application of expert knowledge
to successfully model the drilling rig and formulate the goals for the model to achieve. Due to the com-
plexity of a drilling rig, it may be hard to find a statistical modelling approach that can generate accurate
decisions, regardless of the operation environment.

For a drilling rig, physical failure modelling requires knowledge of all the loads in the system and the
dominant failure mechanisms of the components. Analysis is then needed to determine the criticality
of components and their condition impact on system level. Loads and other environmental conditions
that have influence on these mechanisms need to be monitored for the components. Then, based
on predefined calculations this data can determine the health condition of the drilling rig equipment.
Rather than estimating an RUL, exceeding thresholds will trigger maintenance actions on the rig. Like
statistical modelling, physical modelling requires expert knowledge and it may be hard to capture all
the factors of influence in the complex system of a drilling rig.

While mathematical modelling can form the base for a drilling rig model, it might not be an appro-
priate method to model the drilling rig system. The uncertainties and complexity of the system is hard
to capture in a solely mathematical model. Furthermore, it is not a method that offers specific benefits
for the modelling of a system compared to other approaches.

A MAS is a method that proposes some distinct advantages for system modelling. The components
of a drilling rig can be modelled as agents interacting with their environment, in a MAS. A centralised
agent can gather information from these agents to determine the optimal actions that can benefit the
system performance. The architecture of the MAS can be chosen and customised to fit the properties
of the drilling rig. This strongly resonates with the requirement of integrating component-level mainte-
nance solutions into a system-level decision-making system. Development of a MAS can reduce the
complex drilling rig to a structured model that can be expanded by adding behaviour rules, AI methods
and new component agents if necessary.

With the recent advancement in sensor technology and IoT, DT has become a popular concept in
the drilling industry. Especially offshore drilling rigs, which operate in remote locations, are a popular
subject for the application of DT to enable real-time control on a centralised location using a digital
shadow. The decision-making of these DTs should be predominantly with the rig operator, but a DT
can greatly assist in real-time decision-making by rendering the data more user-friendly for the operator.
Moreover, employing a DT can generate useful operating data to gain insights into the running history
of the rig. However, it appears that DT can not yet be applied in practice, particularly in terms of the
automated connection to drilling rigs, which remains in a premature stage. There are limited examples
of DTs using actuators in a CPS solution, in other words fully autonomous drilling rigs. Instead, digital
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Figure 4.4: The hierarchical multi-agent system framework proposed in this thesis.

shadows are slightly being applied for continuous equipment monitoring and maintenance decision-
making. Therefore there seems to be potential value to first develop DTs of drilling rigs with human
operators integrated in the feedback loop.

4.5.3. The proposed system model framework
This thesis will propose a hierarchical MAS as depicted in Figure 4.4. More specifically, the model
will schedule maintenance actions, based on SCADA and CM data that is representing the physical
environment. The lowest level contains data agents that process the raw data from the environment.
This data is fed to the data agents in real-time. Processingmay include filtering of CM data and selection
of relevant parameters from the SCADA system. The cleaned data is passed on to the component
agents. These component agents give an assessment of the operation status and RUL of the physical
component and communicate their conclusion to the system-level agent, the controller. The goal of
the controller is to give a real-time classification of the rig operating state and predict the locations
for upcoming maintenance actions in the system. Options for maintenance actions can be provided
in a knowledge base for the controller agent to choose from. Based on the inputs, the controller will
provide and update maintenance windows that can be adhered to by the operator to optimise drilling rig
uptime. Since the digital model is updated automatically when new data is fed into the model, it can be
classified as a digital shadow (refer to subsection 4.4.1). The operator is the link back to the physical
system: they can decide to follow up a real-time suggestions and alter the system, by conducting
maintenance. The component agents in the digital model will detect possible changes, consequently
updating the information to the controller agent. Therefore maintenance on the drilling rig will complete
the information feedback loop.

4.6. Conclusion
From RQ3, requirements for the model framework can be deduced. In addition to the main func-
tion of integrating component-level maintenance solutions to system-level decision-making, the model
framework must be effective based on available data and have an easily modifiable structure to be
“applicable”. After surveying various frameworks, the MAS framework in Figure 4.4 is proposed as
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an applicable framework. It is able to combine component-level prognostics solutions with a single,
centralised maintenance decision-making model. Since the framework processes and analyses data
from the equipment in real-time it can be classified as a digital shadow. Operators can cooperate in the
model-equipment interaction by acting on maintenance suggestions from the model. The proposed
framework is applicable on land drilling rigs since it is functional with available operational and CM
data and does not require exact knowledge about dependencies between components in the system.
As a bonus, this model will be able to determine operational status based on real-time data of the
components, which allows for better insights in the operational performance of the drilling rig.

Selection of this framework answers RQ3 and concludes the literature research of this thesis. Part
II of this thesis will focus on finding the correct methods to implement in this framework, in order to
achieve successful fault recognition, RUL prediction and maintenance decision-making.



II
Design & Development
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5
Selection of methods

This chapter will identify appropriate methods for the functions of the agents in the proposed model
framework (subsection 4.5.3). By selecting these methods, a component of RQ4 can be answered.
First, the tasks, functions and actions of the agents in the model will be discussed in detail. Then the
available data will be analysed. This data includes operational parameters from the drilling rig SCADA
system and CM data. To find appropriate methods, the functions of the model are reintroduced starting
from the lowest level in the model. For each of these functions, an adequate method will be elaborated
that will be used in the design. Each discussed method can be classified as one of the PdM approaches
surveyed in subsection 3.7.2 & 3.7.3. Finally, this chapter will expand the visual framework in Figure 4.4
by assigning functions and methods to the agents and indicating the information flow in the model.

5.1. Scope and functions of the agents
To identify the functions of the model, this section will discuss the agents from bottom to top-level.

5.1.1. Data agents
The model receives raw data from either one of the two sources in the environment. The first data
source is the SCADA system, which collects operational data from the equipment that is necessary for
the control of the rig. The other source of data is the CM system, which may differ per component, but
will mostly consists out of sensors connected to a digital-to-analog converter and additionally a local
storage device. The input of the data agent is therefore raw, digital data either in value type or waveform
type. The main task of the data agent is send data to the component agents after it is cleaned based
on the agents’ requirements. Since an agent can either receive data from the SCADA system or the
CM system, the input of two data agents are required per component agent. The tasks of these two
types of data agents is however similar.

Data preprocessing
The main purpose of data preprocessing is to provide accurate, clean and complete data that can be
used for analysis. Successful data preprocessing will result in data that can directly be fed into an
analysis system to obtain reliable results. In the context of this research, operational data will have to
be selected and integrated into a dedicated dataset for each component agent. Raw time-series data,
e.g. vibration data from accelerometers on a mud pump, will have to be filtered to remove noise and
possible offsets.

5.1.2. Component agents
In this framework, each component agent represents a component group that needs to be scheduled
for maintenance by the system agent. E.g., in a land drilling rig, the top drive system may have a
component agent for the gearbox but also one for the e-motor and the tilt cylinder. The component
agent receives cleaned data from the data agents. This data is used for the two main tasks of the
agent:

• Classifying the current operational state of the component

43
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• Predicting the RUL of the component
The RUL is dependent on the current operation, the running time but also the health condition of the
component. Therefore, in order to accurately predict the RUL, the component agent is required to
assess the health condition too:

• Health condition assessment
After completion of these functions, the component agent creates a dataset containing the operational
status and the RUL that can be send to the system agent to be used in the centralised decision-making
process.

Operational state classification
Based on the operational dataset, the component agent estimates the operation in which it is involved,
in other words the current operational state. While for some components this may be a binary state
(on/off), for some components it may be useful to classify a state out of multiple possibilities. A com-
ponent agent communicates its state to the system agent. Based on that communication, the system
agent can evaluate the current operation of the whole drilling rig. This is important for the scheduling of
maintenance actions. However, assessment of operation is also necessary to keep track of the running
hours of the component, which is important for the later prediction of the RUL.

Health condition assessment
Also known as diagnostics, estimating the health condition of a component revolves about quantifying
the physical state. The health condition should be assessed on ameasurable scale. For example, when
assessing the health condition assessment of a bearing, vibration monitoring may be deployed. The
data agent will send cleaned time-series signals to the component agent. From these vibration signals,
the component agent can extract signal characteristics such as peak frequencies and signal energy.
Typically, the values associated with a “healthy” component are known for these characteristics. The
degree to which the measured characteristics deviate from the “healthy” standard can determine the
health condition of the component. Therefore, successful diagnostics revolves around identifying and
extracting relevant, measurable features from the data that can accurately estimate the component’s
condition.

RUL prediction
This function is also known as prognostics. The purpose of RUL prediction is already explained in
subsection 3.7.1, recapitulating: a PdM strategy revolves around forecasting the actual RUL in the
most precise way possible. Methods for prognostics are also briefly discussed in subsection 3.7.2. In
the proposed model, the component agent will estimate the RUL based on at least three parameters:

• The amount of running hours since the last maintenance
• The operating state, quantified to a degree of usage severity
• The health condition as assessed by the agent

These three factors will always have an influence on the RUL. Based on the component, other factors
may be known to have an influence on the RUL. The component agent will use an appropriate model
that incorporates all the relevant factors to obtain an accurate RUL prediction, which is then to be
communicated to the system agent.

5.1.3. System agent
On the top level of the proposed model, the system agent can be found. The system agent receives a
dataset containing the operating state and an RUL prediction from each component. Based on these
datasets, the system agent must complete two functions:

• Autonomously comprehend the current operation of the whole land drilling rig.
• Schedule maintenance actions in a decision-making process

The system agent is also responsible for the output of the model to the user. Therefore its output will be
in the shape of a dataset that can be integrated in the drilling rig user interface and provide information
that is comprehensible for the operator.

Operational state classification
Like the component agents do for the component, the system agent must determine the operational
state the whole system takes part in, based on the states of the components. This is the first step in the



5.2. Available data - 2024.MME.8912 45

centralised decision-making process of the model. Determining the current operation is necessary to
know when maintenance actions on the drilling rig can optimally be performed. Additionally, automati-
cally keeping record of the drilling rig operational state can be beneficial for the operator to analyse the
progress on a drilling project.

Maintenance decision-making
For each component agent, the system agent has to schedule maintenance actions. The scheduling
of maintenance actions should comply with a PdM strategy, so the parts will be replaced based on
their RUL. Therefore the agent refers to the RUL supplied by each component agent and can consult
a user-defined database containing failure mode scenarios and associated maintenance actions. The
controller agent is expected to continuously maintain overview of all components and their operations,
and to intervene when a component is expecting to fail soon. Moreover, the controller agent can also
decide to group maintenance actions, suggesting OM (refer to subsection 3.6.1) actions to minimise
the number of maintenance moments. It becomes clear that the desired decision-making process can
be divided into several sub-tasks:

• understanding the RUL of each component
• identifying components that are expected to fail soon
• consulting a database to find the appropriate maintenance action
• schedule the priority maintenance action together with potential OM actions

This process requires data comparison, reasoning, matching and scheduling. The output of the decision-
making process should be a suggestion for a maintenance action, in the form of a time window or a
prompt to immediately conduct maintenance.

5.2. Available data
As mentioned before, raw real-time data enters the proposed model. This section will describe this
available data and will also state how it can be utilised after preprocessing.

5.2.1. Operational state data
From the SCADA system, an enormous amount of data is available that are used in the control system
of the drilling rig. Some of these parameters are shown on the drilling rig user interface to give the
driller overview about the operations of the components. Based on a combination of those parameters,
an experienced driller can independently assess the current performance of the drilling rig and compre-
hend the operating mode. With some operational parameters, discrepancies can already be detected
that may indicate an upcoming failure, however recognising this from the data requires knowledge and
expertise. The data agent will have to extract this relevant data from the SCADA system.

A general SCADA system lots of data is collected to completely control the operations of the rig.
In addition to measurements derived from machines like torque, speed and load cells, drilling rigs are
fitted with switch sensors that indicate activation or completion of local movements. These switches
can also be used to send alarms to the operator.

5.2.2. Condition monitoring data
CM data can be collected according to one of the techniques mentioned in subsection 3.7.4. For
operational purposes, drilling rigs may already be fitted with temperature sensors and oil contamination
sensors. Note that while these sensors can theoretically be used in a CM strategy, they are in practice
used to trigger operational alarms. Other CM techniques need to be deduced based on the failure
modes of the components in a drilling rig. This research assumes that for each component agent, a
dedicated CM technique can be applied that has proven to be sufficient for later RUL prediction analysis.
Examples of various CM techniques are given in subsection 3.7.4. Analysing the nature of frequent
failure modes of a drilling rig in section 2.9, some CM techniques can be deduced. These are listed in
Table 5.1.

The raw CM data gathered will be subject to noise from the harsh environment of drilling rig oper-
ations. First, this noise has to be removed to obtain a “clean” signal. From this clean signal, features
can be extracted for diagnostics and prognostics according to the CM technique.
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Table 5.1: CM methods per nature of common failure modes in a drilling rig.

Failure mode nature CM method

Wear Vibration analysis, acoustic analysis
Mechanical Vibration analysis, corrosion monitoring
Electrical Thermal analysis, voltage/current signature analysis
Hydraulic Oil or lubricant analysis

5.2.3. Maintenance records
Please note that this type of data is not real-time data for the data agents, but it is only used during
development of the proposed model. In particular for development of most reliable RUL prediction
methods, maintenance records are necessary to determine and quantise the parameters that affect the
RUL. In practice, for equipment that needs regular maintenance, the running hours of replacement parts
are recorded. From this data, it can also be determined if a part was replaced due to an unacceptable
condition or because this was a preventive replacement.

In a basic data analysis, the component running hours can offer some quick insights to improve the
maintenance strategy. Based on these hours, one can easily determine the mean time before failure
of parts. This value can help to determine the point availability of the component with the formula
provided in section 3.1. However, it must be noted that in most cases the running hours before failure
are subject to a high variability, emphasising that the running hours should not be the single indicator
for maintenance. This is another argument for the use advanced maintenance concepts to improve
equipment operations.

5.3. Data preprocessing
The following sections will discuss the methods chosen for the functions of the agents in the proposed
model, starting with the data agents. Their task is to preprocess raw data, introduced in the previous
section, and form a dataset to the demand of the connected component agent.

5.3.1. API request
To be able to use operational data in the model, it first needs to be extracted from the SCADA server.
In a drilling rig, field devices and sensors collect data that is necessary for the control of process
and operations (see Figure 5.1). Via a modbus connection, these devices transport the data to the
Programmable Logic Controllers (PLC) or Remote Terminal Units, which locally acquire the data and
trigger actions on the physical system based on programmable logic. The data is collected from the
PLC by edge gateways, which can for instance be local computers, that first process the data before
transferring it to the SCADA server. From this SCADA server, the system is controlled, data is logged
in a database and updates are provided to the user interface [108].

An Application Programming Interface (API) can be used to extract the data from the SCADA server.
Simply described, an API can be considered as the translator between the SCADA server and an
application outside the system. They retrieve the requested data in the desired particular format. There
are contextualised APIs available that support the specific SCADA application, so that the model does
not have to deal with database terms but with immediate operational terms. Finally, APIs can allow
to push back information to SCADA, which means it can be possible to run control software without
having to program a PLC [109].

Sensors RTU, PLC Gateway
computer

SCADA
server API

input
for

analysis

User
interface

Figure 5.1: Schematic overview of the components in a SCADA system from sensor to API software.
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Each data agent will use an API to request the demanded parameters from the SCADA system in
the desired format. If there is no new data value available from a requested parameter, the data agent
can forward fill the last known value to provide a complete updated dataset.

5.3.2. Noise filtering
Since raw sensor data will most likely contain some noise, it is desirable to remove this noise before
the data is used for feature extraction. Noise filtering is necessary for this purpose.

In a time signal, it may occur that a certain frequency is dominant in the time signal, while these
frequencies may not be relevant for the features to be extracted. This band of frequencies may be
interfering with the desired time signal. For instance, for a vibration signal, lower frequencies may
be dominant in the signal, while the higher frequencies are of greater interest for analysis. Also, a
DC component may be interfering with the clean signal. In these cases, a linear filter can be used to
decrease or remove a predetermined range of frequencies from the signal. Example of these filters
are high-pass, low-pass, band-pass and band-stop filters [110]. For this purpose, Butterworth filters
are usually employed. An important reason for the use of Butterworth filters is their “maximally flat”
property, meaning they do not locally peak the signal level around the cutoff frequency. A fourth-order
Butterworth filter will have clean and steep cutoff characteristics [111].

For environmental noise in the signal that is not clearly bound to specific frequencies but rather a
random process, statistical filters can be deployed. The Wiener filter was originally developed as a
method to reduce the noise in an image but can be a good method to reduce random noise in a one-
dimensional time-series signal [112]. It assumes that the observed, discrete-time noisy signal 𝑥(𝑛)
consists of a clean signal 𝑠(𝑛) polluted with a stationary noise signal 𝑒(𝑛):

𝑥(𝑛) = 𝑠(𝑛) + 𝑒(𝑛) (5.1)

The goal is to obtain a signal 𝑦(𝑛) using the filter ℎ(𝑛):

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) (5.2)

Since 𝑦(𝑛) should resemble 𝑠(𝑛) as much as possible, the goal is to minimise the mean-squared error

MSE =
∞

∑
𝑛=−∞

(𝑠(𝑛) − 𝑦(𝑛))2 (5.3)

The Wiener filter in the frequency domain 𝜔 is:

𝐻(𝜔) = 𝐸[𝑆𝑋∗(𝜔)]
𝐸[𝑋𝑋∗(𝜔)] =

𝐸[𝑅𝑆𝑋(𝜔)]
𝐸[𝑅𝑋𝑋(𝜔)]

(5.4)

For a time series signal, the adaptive linear Wiener filter can be used for pointwise calculation of the
output signal for sample 𝑛:

𝑦(𝑛) = 𝜇𝑥 + (𝑥(𝑛) − 𝜇𝑥)
𝜎2𝑥

𝜎2𝑥 + 𝜎2𝑛
(5.5)

Here 𝜇𝑥 is the local mean of the input signal. 𝜎2𝑥 and 𝜎2𝑛 are the local variance of the input signal
and the noise, respectively. In practice a window size of 𝑛 samples is determined before starting the
algorithm, to form a neighbourhood per sample where the local mean and variances can be calculated
[112]. Doing this for each sample 𝑛 in a time series signal, the adaptive linear Wiener filter algorithm
is able to smooth out the signal. Therefore the Wiener filter is a good choice to remove environmental
noise from sensor measurements.

5.4. Rule-based operational state classification
As discussed in the data analysis section, there are some clear correlations between the different op-
erational parameters, which can quite easily be interpreted by an expert. Rule-based systems (RBS)
can convert the expert’s knowledge in a set of predefined decision rules that can classify the data,
without the need of data feature extraction. The result is an accurate translation of human data inter-
pretation into a model, which makes it a form of white box modelling. However, the model will only
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perform as good as it is programmed, this means the rules need to cover all instances and do not
exclude any situations. Developing a RBS requires the formulation of a set of “if x then y” statements
to deduce the class of the data point. Switch sensors in the operating system, which emit a binary
signal, or equipment parameters that only need to be interpreted as “on” or “off” can be modelled with
conditional rule-based modelling. This method is applicable for the operational state classification in
the middle-level component agents and the top-level system agent.

Hayes-Roth [113] gives five key properties of an RBS:

1. An RBS incorporates practical human knowledge in conditional if-then rules.
2. The skill of an RBS increases proportional to the extension of their knowledge base.
3. A wide range of complex problems can be addressed by selecting and applying appropriate rules.
4. From the set of rules, an RBS can adaptively determine the best sequence to execute.
5. The conclusions of an RBS can be explained by retracing the logic of each rule used in natural

language.

An RBS consists out of an inference engine, and a knowledge base. The inference engine selects
relevant rules, evaluates the rules and returns output based on input facts. These rules can be collected
from the knowledge base in an RBS. Rules consist of a condition and a consequence, typically following
the if-then structure:

𝐴 ⟹ 𝑋 (5.6)

In this equation, fact 𝐴 represents the initial assertion considering the system’s state. If presence of
multiple facts lead to one single consequence, this can be taken into account with one rule:

𝐴 ∧ 𝐵 ∧ 𝐶 ⟹ 𝑌 (5.7)

For the analysis of operational parameters, RBS can also evaluate if a parameters falls in a certain
interval in order to classify the operating state. For instance:

0.1 < 𝐴 ≤ 1 ⟹ 𝑍 (5.8)

5.5. Fuzzy logic-based diagnostics
As discussed in subsection 3.7.3, after preprocessing, the CM data is ready for diagnostics. Extracted
features that determine the health condition can be selected and analysed. As mentioned before, the
method for feature extraction relies on the chosen CM technique, depending on the component. It
differs per agent and is therefore not a generic method. The method used for the case study on the
mud pumps will be described in the next chapter. However, to determine the health condition based on
these features, all agents can use the same method.

Health condition assessment introduces the concept of uncertainty to the model. From measured
features, a conclusion about the health condition can only be drawn up to a certain probability, in other
words, the evaluation will lack precision. To deal with this uncertainty, FL is introduced as a method
for the equipment health condition assessment. If there is a certain degree of uncertainty about some
values, fuzzy rules can be applied [60]. Developed by Lotfi Zadeh in 1965, FL introduces a degree
in the verification of a condition, allowing for a condition to be something other than the “crisp” states
true or false. In other words, the extent to which a condition variable is true can have a value between
0 and 1. This is called the membership degree and fuzzy subsets are characterised by membership
functions, which can have a shape based on statistical studies (e.g. sigmoid, hyperbolic, exponential
etc.). Using FL provides flexibility in reasoning as inaccuracies, uncertainties and subjectivities can
also be taken into account [114]. The translation of uncertain values into fuzzy values is referred to
as fuzzification. Using fuzzy values gives the advantage of eliminating the need to describe events or
states numerically [115]. An example of fuzzification using membership functions is given in Figure 5.2.
From these membership functions, an RBS can then be established using the fuzzy variables (so in
this example for a car’s rpm: low, medium and high). The output of the evaluation is again a fuzzy
value, which has to be defuzzified to obtain a numerical output value.

FL is a popular method to deal with uncertainty. Apart from application in an RBS, fuzzy values can
also be used in various AI methods, like neural networks. When developing a fuzzy RBS, establish-
ing the membership functions for fuzzification requires extra knowledge and work, on top of the work
required for the design of the inference rules.
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Figure 5.2: Example of the fuzzy membership functions of a car’s engine rpm. The numerical input value is 5000 rpm. When
fuzzified, the input is: high = 0.33, medium = 0.67.

5.6. RUL prediction
The degradation of components in a drilling rig system is dynamic, uncertain and mostly unknown, so
a method to model this degradation will have to be found. The degradation will be dependent of the
age, operating state and the estimated health condition, however the correlation between these factors
and the RUL is unknown.

5.6.1. Survival analysis
From maintenance records, a survival analysis can be conducted. Survival analysis is a statistics
topic that is used in reliability engineering but also in medical and biological studies [116]. The goal of
survival analysis is to find the survival function 𝑆(𝑡) that represents the probability of survival at time
𝑡. The definition of survival in this context is that the event of failure has not occurred up to that point
in time. The survival function can be fitted to available maintenance records data, containing lifetimes
of equipment before failure (see Figure 5.3). This survival function is derived from the hazard function
ℎ(𝑡) that represents the probability of failure in the next time period 𝑡 + 1. From the hazard function,
we can derive the cumulative hazard function:

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑢)𝑑𝑢 (5.9)

Then, derive the survival function:
𝑆(𝑡) = exp(−𝐻(𝑡)) (5.10)

The inverse of the survival function is the cumulative distribution function, which presents the probability
of failure occurring on or before time 𝑡:

𝐹(𝑡) = 1 − 𝑆(𝑡) (5.11)

Both 𝑆(𝑡) and 𝐹(𝑡) can form the base for prediction of RUL in a reliability-based prognostics [117].

5.6.2. Weibull distribution
The survival function can be found by fitting a known probability distribution to the maintenance data
[117]. The Weibull distribution, originally applied to model particle size distribution, is a popular con-
tinuous probability distribution that is commonly used in survival analysis because it only uses two
parameters but is flexible and accurate enough to model time-to-event data in real-world applications
[116]. The Weibull distribution function is:

𝑓(𝑥; 𝜆, 𝜌) = 𝜌
𝜆 (
𝑥
𝜆 )
𝜌−1 exp(−(𝑥/𝜆)𝜌) (5.12)

The Weibull survival function can then be derived as:

𝑆(𝑡) = exp(−(𝑡/𝜆)𝜌) (5.13)

In this function, 𝜌 determines the shape of the function. If 𝜌 = 1, the failure rate is constant over time.
If 𝜌 < 1 or 𝜌 > 1, the failure rate decreases or increases respectively. 𝜆 determines the scale of the
function. The value of 𝜆 indicates the time 𝑡 at which 63.2% of the parts has failed.

An example of the development of a Weibull survival model fit can be seen in Figure 5.4. A Weibull
survival function is fitted based on the data in Figure 5.3.
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Figure 5.3: Example of the hours before failure of parts, plotted
in a histogram.
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Figure 5.4: The Weibull survival function of the failure data pre-
sented in Figure 5.3.

The data for the fit of the Weibull model can be expanded by adding analysis of failure observations.
For instance, if the maintenance data represents the running hours of parts, there might also be data
available for parts that have not yet failed. These data points contain running hours of a part that has
survived up to that point, but might fail in the future. But at what point in time the part will fail is unknown.
In other words, the event of failure is not yet observed. This is called right-censored data. These data
points can make a better fit for the Weibull model. The running hours data is then presented as in
Table 5.2, here the most-right column represents the observed events. The effect of incorporating right
censored data in the Weibull fit is shown in Figure 5.5. Both 𝜆 and 𝜌 increase, which can result in a
difference of around 60 hours at the same survival probability.

Table 5.2: Example of right-censored data of the maintenance records of a mud pump

Running hours Covariate 1 Event observed

45 1.751 0
85 1.062 1
110 1.839 1
114 0.738 0
… … …

0 50 100 150 200 250 300 350 400
Running hours

0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

Censored data 
=197.31, =1.74

No censored data 
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Figure 5.5: Example of the effect of right censored data on the Weibull survival function.

5.6.3. Accelerated failure time model
While the Weibull model can provide a good fit based on runtime, it is mostly a static model dependent
on time. In practice the actual survival probability can be dependent on other variables in addition to
running hours: covariates. To model the effect of covariates on the survival function, the principle of
Accelerated Failure Time (AFT) modelling can be used. Weibull AFT models are dynamic models used
in reliability engineering to predict the lifespan of machinery but can also be applied to other prediction
problems, like food shelf-life or in medical context [118]. In case of aWeibull AFTmodel, the parameters
𝜆 and 𝜌 will be dependent on covariates. The model is parameterised:

𝜆(𝑥) = exp(𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛) (5.14)
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𝜌(𝑦) = exp(𝛼0 + 𝛼1𝑦1 +⋯+ 𝛼𝑚𝑥𝑚) (5.15)
The Weibull AFT survival function will have the form:

𝑆(𝑡; 𝑥, 𝑦) = exp(−( 𝑡
𝜆(𝑥))

𝜌(𝑦)) (5.16)

The RUL can be calculated by first estimating the time 𝑡𝜏 where the threshold survival probability 𝜏 is
first reached, representing the minimum acceptable survival probability. 𝑡𝜏 can be found in terms of 𝑥, 𝑦
by calculating 𝑆(𝑡𝜏) = 𝜏. Since the RUL at current time 𝑡 is of interest, the general Weibull AFT survival
function can be used to formulate the RUL as a function of 𝑡, 𝑥, 𝑦:

𝑅𝑈𝐿(𝑡; 𝑥, 𝑦) = 𝜆(𝑥) ∗ (− ln(𝜏))(
1

𝜌(𝑦) ) − 𝑡 (5.17)

5.7. Expert system for maintenance decision-making
For the centralised decision-making process, a method has to be found that can perform data compari-
son, reasoning, matching and scheduling. The method should also have been proven to be compatible
with using a knowledge base. These tasks can be executed in a wide-used variant of an RBS, namely
the expert system. These systems are also known as knowledge systems, since the knowledge base
in this type of RBS plays an important role. Kusiak and Chen [119] state that developers of expert
systems have to consider three issues: the knowledge representation, the inference engine and the
knowledge acquisition. Knowledge representation concerns the structure of the knowledge base. Tra-
ditional if-then rules as discussed in section 5.4 are one of the options. For facts that need to be
consulted in a scheduling problem, a frame structure can be used. A frame contains slots correspond-
ing to attributes related to the objects it represents. E.g., in case of a drilling rig maintenance activity,
the frame topdrivegearboxfailure could have attributes work location and duration. The
third representation Kusiak and Chen [119] mention is a semantic network. A semantic network con-
nects objects with semantic relationships, such as is located, has and is subject to among
others.

The inference engine in an expert system includes the deployment of rules, operators and patterns
matching methods to establish the control strategy of the system. Three types of control strategy can
be found in expert planning and scheduling systems [119]:
1. Meta-rules to control the reasoning process. In simpler terms, they can be considered as rules

about the rules in the knowledge base.
2. Search operators to search the state space. They can for instance reduce the number of states

to be searched in a knowledge frame by using constraints.
3. Pattern matchers to activate algorithms or modules when a pattern is detected, in other words

when two or more conditions are met that trigger new rules.
Finally, knowledge acquisition revolves about the method to include (new) knowledge into the sys-

tem. Depending on the type of knowledge base, there are many ways to gather and implement new
knowledge. A common tool is to conduct an expert questionnaire.

5.8. Design summary
The design in Figure 5.6 can be considered as the general model architecture this thesis proposes. Ap-
plication of this model should be feasible for every drilling rig and it should be able to provide a holistic
approach to advanced maintenance. The data agents in the model gather raw data from the SCADA
system and CM system. API requests can be used to extract data from the SCADA servers. Sen-
sor data can be cleaned, using high-pass, band-pass or low-pass filters to remove specific frequency
ranges and Wiener filters to remove random environmental noise. The data agent feeds cleaned data
to the dedicated component agent. The component agent must determine the operational state and
the RUL of the component. The operational state is derived from the SCADA parameters with a RBS.
To determine the RUL, the health state must be classified to. Relevant features from sensor data are
extracted and used in a FL classifier, to deal with the uncertainties of the feature values. Then, the
operational state and health state are used in a survival model to determine the RUL. Each component
agent communicates the operational state and RUL to the centralised system agent. Here, the current
drilling rig system operation is determined and used in an expert decision-making system in combina-
tion with the components’ RUL. For these decisions, the system agent can consult a knowledge base
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Figure 5.6: Overview of the proposed model, including the demanded functions per agent. The methods to perform these
functions are given as well. Information flow is indicated with arrows.

containing all relevant information for maintenance on the drilling rig. The output of the model is a
potential maintenance suggestion that is updated in real-time.

5.9. Conclusion
Based on the available data in the drilling rig, appropriate methods have been proposed to ultimately
generate real-time maintenance decisions. This also required the assignment of functions to the agents
in the proposed MAS framework.

In the model, CM data is cleaned from environmental noise before being analysed by the compo-
nent agents. Diagnostics is performed by the component agents using FL to handle uncertainty in the
condition assessment process. To generate maintenance decisions, the components’ RUL is the criti-
cal variable. The RUL is determined through survival model prognostics, using maintenance records as
a statistical base and covariates in the Weibull AFT model for a dynamic failure prediction. The system
agent can use an expert system to generate maintenance suggestions based on the operational state,
RUL and predetermined knowledge.

This chapter has proposed a general architecture for themodel, presenting the theory of the selected
methods and stating the reason behind selection. By selecting these appropriate methods based on
the available data, a part of RQ4 has been addressed. It has yet to be validated how the methods can
contribute to achieve integrated advanced maintenance. Moreover, this chapter has not answered how
these methods can be applied to implement the model in practice. Therefore, the proposed methods
will be applied using data collected during the field research in the next chapter.



6
Application of selected methods

Now that the methods to be applied in the development of the model are selected, this chapter will
elaborate how to actually develop the model. The model is to be partially validated by using actual CM
data of the mud pumps in the drilling rig. Therefore, only the component agents of the mud pumps
will perform diagnostics and prognostics and provide real-time RUL. Other component agents will be
developed just for the purpose of classifying overall system operating state. This chapter will first select
an adequate CM technique for the mud pumps and elaborate the data acquisition process in the field
research. The data preprocessing, feature extraction and diagnostics will be developed based on the
selected CM method. Then, the RUL prediction method will be applied and validated. Finally, the
system agent is realised to finish the development of the model.

Through the application of all previously chosen methods by the conclusion of this chapter, RQ4
will be answered. A complete summary of the created model is given in the last part of this chapter.
This model is later used in the case study.

6.1. Mud pump vibration monitoring
A dominant failure mode in the mud pumps, is excessive wear of the valve-seat combination in the fluid
end (Figure 6.2). When this combination is worn, the whole valve-seat assembly has to be replaced.
This happens regularly during the drilling process, since a worn out valve assembly will reduce the
efficiency of the pump and in a later stage it can cause a worn out fluid module. Since valves wear
quicker than the seats, and valve wear also triggers seat replacement, the valves are the main focus
of the field research.

Figure 6.1: A driller is using a metal rod to listen to the fluid end
of a mud pump. (Image from Bloomberg / Daniel Acker)

Figure 6.2: Worn mud pump valve and seat. On the seat (top-
right), starting corrosion is visible. The plastic valve insert is
torn. (Image taken during field research)

53
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(a) Schematic depiction of setup
(b) Attachment of vibration sensors on the mud
pump.

Figure 6.3: Overview of method for mud pump vibration data acquisition during the field research.

6.1.1. Background
The valves are subject to different types of wear, namely mechanical or sliding wear [120], erosion
and corrosion [121]. The result of this wear is that the valves close less smoothly, which may be
accompanied by increased vibrations, eventually causing a distinctive sound. Currently, in the absence
of CM systems, this sound in the valve assembly is now detected by ear. By holding a random metal
tool within reach against the fluid end of the mud pump and the other end to the ear, like a kind of simple
stethoscope, a driller can listen to the vibrations in the fluid end (see Figure 6.1).

The replacement of wearing valves has great potential for the application of CM. Over the last few
decades, there have been various efforts made to detect the wear of the valves in an early stage
using real-time monitoring. Early attempts focus on pressure monitoring, as slight loss of pressure
can indicate the start of leakage [122]. This method requires intrusive sensors with a high accuracy,
since larger pressure fluctuations mean that the leakages are severe [123]. Accelerometers are used
to measure high frequency vibrations that indicate leakage of the valves [123, 124]. The majority of the
research in CM of the fluid end focuses on acoustic emission (AE) signals. These are elastic waves
that propagate through the equipment and can be detected using piezoelectric AE sensors. So far,
there is one example of a field validated tool that uses AE for the prediction of valve leakage [125].

6.1.2. Data acquisition
For the mud pump, accelerometers are chosen as sensors in an online vibration monitoring system.
They measure the true acceleration in m/s2. Six accelerometers are placed on the side of the fluid
end, each in the proximity of a discharge or suction valve (Figure 6.3b). They are secured in place by
strong magnets. The sensors are connected via a coaxial cable to a data acquisition unit that is located
at the side of the mud pump. This unit is then connected to a power supply and a laptop, fitted with
software and a database to store the acquired vibration signals (Figure 6.3a). For the data acquisition
phase of this research, this was a temporary setup, however, this kind of setup could also easily be
integrated into the drilling rig for constant CM. The sensors can be fixed to drilled holes in the structure
via a threaded end. The data acquisition unit could be connected to the SCADA system via a modbus
protocol.

The data acquisition unit sequentially triggers the sensors to measure each 30 minutes. At each
trigger, multiple measurement tasks can be performed per sensor. The tasks performed in this field
research were (i) capturing a 10kHz acceleration spectrum and (ii) recording a 3200ms acceleration
time signal. This means that for further application of the methods no continuous real-world CM data
is available.

6.2. Development of the data agents
The data agents gather raw data and process it, in order to adequately send the data in the right format
to the corresponding agents. For the majority of the data agents this mainly means to select the right
parameters and forward fill to continuously supply operational data. The developed data agent for the
mud pump also gathers the CM data and filters the signal so a clean signal can be used for analysis
and feature extraction.
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Figure 6.4: Parameters in operational data that are necessary for determining the rigs overall operational state, plotted per
source component

6.2.1. SCADA parameter selection
Since the case study only focuses on the maintenance of the mud pumps, additional to the mud pumps
three other component agents are necessary to determine the operational state of the drilling rig. These
are the drawworks and the top drive. From the SCADA system, each data agent will pass on the fol-
lowing parameters:

Top drive:
• Torque: the top drive provides torque to turn the drill string. The torque increases when a section
is being drilled. The top drive generates a high peak of torque when making or breaking a drillpipe
connection.

• Speed: indicates the rotational speed of the drillstring, derived from the speed of the top drive
e-motor and the gearbox ratio.

Mud pumps:
• Standpipe pressure (SPP): the pressure of the mud is measured before passing through the
rotary hose to the drillpipe. During drilling, it is essential to have a sufficient SPP.

• Strokes per minute (SPM): the strokes of the mud pump give an indication of the operational
performance of the pump.

Drawworks:
• Speed: the speed of the travelling block serves as an indicator of the motion of the top drive in
the mast, providing information on both the rate and direction of its movement.

• Load: a load cell measures the hook load. The hook load is a combination of the weight of the
top drive and the attached drillstring.

In Figure 6.4, these six basic parameters are plotted per source component for a duration of 90 minutes.
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6.2.2. Vibration signal filtering
The acquired vibration signals from the mud pumps are subject to noise. Because the mud pumps in
the field research were mounted in container-sized frames and interconnected on the ends of these
frames, there is inference of structure-borne vibrations transferred from other mud pumps as well. Two
signal filters are applied and designed to obtain a clean signal.

From the acceleration spectrum of the signal (Figure 6.5), it can be deduced that there is a dominant
band in the lower frequencies, with some peaks around 50 - 250Hz. However, for vibration analysis, the
higher frequencies are actually of interest. This rumble peak is apparent in all spectrummeasurements,
meaning it is also polluting the measured time series signals. Therefore, first a high-pass filter is applied
to the signal to enhance the distinction of the peaks in the time series signal. A fourth order Butterworth
filter is chosen for this purpose because of its steep cutoff characteristics with a flat bandpass frequency
response. Based on the acceleration spectra and through trial-and-error tweaking during the feature
extraction process the final cutoff frequency is 240Hz.

The high-pass filter removes most of the signal rumble, but there is still some random noise pollution
visible in the time series signal. To help reduce the random noise, an adaptive linear Wiener filter is
applied, with a window size of 3ms. The algorithm as explained in subsection 5.3.2 is applied in the
model to reduce the noise according to the Wiener filter.

The result of the time-series filtering can be seen in Figure 6.6. The signal is significantly cleaned
and the vibration peaks corresponding to the valve impacts can be distinguished more easily. However,
the high-pass filter has reduced the signal level of the peaks, which should be taken into account during
signal analysis and feature extraction.

6.3. Development of the component agent
The component agent classifies the operational state and predicts the RUL of the component. Sub-
sequently the operational state and RUL are communicated to the system agent. In the developed
model, the drawworks and top drive agent only classify the operational state. Since the case study will
focus on the maintenance of the mud pumps, the mud pump agents will be fully developed and include
feature extraction, diagnostics and prognostics.

6.3.1. Rule-based operational state classifier
The operational state is determined with conditional rules. This method is validated in subsection 6.4.1,
where the rule-based classification from the component agents and system agent is combined. For the
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development of a rule-based system, knowledge about the operations of the components is necessary.

Mud pumps operational state
The operational state of a mud pump can be deduced from the SPP and the SPM. The SPP is measured
in the standpipe located at the derrick and is the general indicator if there is sufficient circulation. The
SPM is measured per mud pump and indicates if the pump is running or not. Since the mud pumps
are working in line, not all mud pumps have to be working in order to have circulation. Therefore, three
states are possible for the mud pump:
0. No circulation
1. Online - mud pump is running
2. Offline - there is circulation but the pump is not running

From Figure 6.4, it can be seen that SPM and SPP do not increase steadily but rather sudden. With
threshold values derived from this historical data, the following classification algorithm is applied:
if SPP < 50 then
𝑠 ← 0

else
if SPM ≥ 20 then
𝑠 ← 1

else
𝑠 ← 2

end if
end if

Drawworks operational state
From the drawworks data, multiple operations can be distinguished, just from reading the load cell and
line speed. The operation is first dependent on the load on the load cell, which is either the weight
or the top drive or the weight of the top drive and drillstring combined. Then the line speed can help
determine the other states. The possible states are:
0. Not involved in drilling: slightly adjusting the top drive position, reaming up, moving just the top

drive up or down the derrick, holding the top drive in a stationary position.
1. Drilling
2. Tripping: either pulling string out of hole or running the drillstring in the hole.

From analysis, it is determined that the minimal load of a top drive and drillstring combined is 20 tons.
The line speed when drilling is between 0.1 and 1 meter per minute. The direction of the line speed
also determines the direction of the top drive. The classification algorithm for the drawworks is:
if −0.1 < speed < 0.1 then
𝑠 ← 0 (holding top drive stationary)

else
if speed ≤ −0.1 then
if speed < −1 then
if load ≥ 20 then
𝑠 ← 2 (Pulling out of hole)

else
𝑠 ← 0 (Moving top drive up the mast)

end if
else
𝑠 ← 0 (Reaming up or adjusting the top drive position)

end if
else
if speed > 1 then
if load ≥ 20 then
𝑠 ← 2 (Running in hole)

else
𝑠 ← 0 (Moving top drive down the mast)

end if
else
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if load ≥ 20 then
𝑠 ← 1

else
𝑠 ← 0 (Adjusting the top drive position)

end if
end if

end if
end if

Top drive operational state
The speed and torque of the top drive can determine how the top drive is involved in drilling operations.
Positive speed and torque imply a clockwise movement of the drillstring. By analysing historical data,
thresholds are selected that if exceeded simultaneously indicate the top drive is drilling. This requires
use of the logical operator and. No other states can be derived from the top drive, leaving just two
options:
0. Not involved in drilling
1. Drilling

The applied algorithm:
if torque ≥ 1000 and speed ≥ 12 then
𝑠 ← 1

else
𝑠 ← 0

end if

6.3.2. Feature extraction
From the cleaned mud pump vibration signal, various features were extracted to identify features that
can be used for estimation of the health condition, or moreover the appearance of condition degra-
dation in the vibration signal. To select relevant features, vibration signals recorded 24 hours before
replacement of a valve in a fluid module and 24 hours after replacement are used. In total, 130 “old”
vibration signal samples and 109 “new” samples were analysed. For each sample, various features
were extracted. These features are:

• Peaks above threshold: the number of peaks above a threshold that is 50% of the maximum peak
value in that sample is counted.

• The root mean square (RMS): gives an approximation of the overall energy of a signal. It is

calculated by taking the square root of themean value of the signal squared: 𝑥𝑅𝑀𝑆 = √
1
𝑛 ∑

𝑛
𝑖=1(𝑥2𝑖 ).

• The absolute mean of the signal: gives an approximation of the average signal amplitude. Cal-
culated as: 𝑥𝑀𝐴𝑉 =

1
𝑛 ∑

𝑛
𝑖=1 |𝑥𝑖|.

• The peak value: the maximum absolute value present in the sample.
• Shape factor: this is a dimensionless characteristic of the signal shape. It is calculated by dividing
the RMS by the absolute mean of the signal: 𝑆𝐹 = 𝑥𝑅𝑀𝑆

𝑥𝑀𝐴𝑉
.

• Impulse factor: gives an approximation of the “peakiness” of the signal, the impulsiveness. It is
dependent on the absolute mean value and the peak value: 𝐼𝐹 = 𝑥𝑚𝑎𝑥

𝑥𝑀𝐴𝑉
.

• Crest factor: also gives an approximation of the development of peaks in the signal, but is de-
pendent on the RMS: 𝐶𝐹 = 𝑥𝑚𝑎𝑥

𝑥𝑅𝑀𝑆
.

• Kurtosis: calculates how outlier prone the signal is. 𝑥𝑘𝑢𝑟𝑡 =
1
𝑛 ∑

𝑛
𝑖=1(𝑥𝑖−�̄�)4

( 1𝑛 ∑
𝑛
𝑖=1(𝑥𝑖−�̄�)2)2

.

The features are plotted in a box plot to identify a difference between the old and new samples. From
Figure 6.7, various observations can be drawn. Firstly, features like RMS, peak value or the absolute
mean do not highly differ between new and old samples. However, researches like Yoon et al. [124],
Kyllingstad and Nessjøen [123] use RMS amongst other features to identify condition degradation of
the valves. Multiple reasons can explain why in this CM analysis they do not assist in identifying
worn valves. The data was captured during actual drilling operations and not during experiments with
artificially damaged valves. Thismeans the amount of degradation during the recording was not actually
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Figure 6.7: Various features extracted and box plotted from vibration signals of old and new mud pump valves.

known, since the data is labelled afterwards. A plausible cause might therefore be that the damage
was not significant enough to obtain consistently higher RMS and peak values. However, a more likely
reason for the insensitivity of peaks and RMS to valve condition might be the fact that the mud pump
was operating at different speeds duringmeasurement. From the sample database, it can be concluded
that there is a correlation between mud pump operating speed and vibration level, RMS and peaks.
Moreover, like mentioned earlier, the filtering on the signal may also give a distorted view on the RMS
and peaks. To conclude, features that are in the dimension of acceleration are too dependent on the
mud pump operating range.

This is substantiated by the second observation from the features box plots: dimensionless features
like shape, impulse and crest factor, but also the kurtosis, all show an increase in value for the samples
of old valves. Since they are dimensionless, they focus on the characteristics of the vibration signal
instead of the value. Therefore, they are less dependent of the mud pump operating speed.

6.3.3. Fuzzy logic health condition classifier
The FL classifier utilises the numerical values of the vibration signal shape factor, impulse factor, crest
factor and kurtosis to estimate a numerical value for the degradation of the valve. For each feature,
membership functions are defined for low, average and high damage. The values of these membership
functions are derived from the values of the sample groups in Figure 6.7. Damage is considered to
be “Low” until the bottom end of the “New” sample group box is reached, from there the membership
“Low” decreases to 0 at the median value of the “New” box plot. Vice versa, damage is considered to
be “High” starting at 0 from the median of the “Old” box plot and is fully 1 at the top end of the box. The
membership function for “Average” is in an equilateral triangular shape, where it is 0 at the bottom end
of the “New” box plot and the top end of the “Old” box plot. The visual representation of the membership
functions can be found in Figure 6.8. For the exact values, please refer to Appendix B.

The membership functions of the output state, the health condition, are three triangular shaped
functions with values ranging from 0 - 100. This means the numerical output value will have the same
range, describing the estimated level of degradation based on the extracted features. The membership
functions are overlapping, so the output value is always member of two fuzzy values, which helps
increasing robustness of determining the final numerical value. The output membership functions are
visually represented in Figure 6.9 and exact values are given in Appendix B.

The fuzzy inference rules are formulated so that each possible combination of fuzzy values is cov-
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Figure 6.9: Fuzzy membership functions of the output state, corresponding to the estimated health condition of the valve.

ered and given a desired classification. In total, 21 rules were established which can be found in
Appendix B.

To validate the method, the vibration features extracted in subsection 6.3.2 are classified per sample
group and box plotted in Figure 6.10. From this figure, a distinction is visible between the FL classifier
output value for the old and new samples. It can be concluded that the fuzzy health condition estimation
module manages to successfully classify most old samples, however, there are some outliers.

6.3.4. Weibull AFT survival analysis
AWeibull AFT model is fitted to a dataset containing the running hours of mud pump valves before they
were replaced. The dataset contains right-censored lifetime data and one covariate, where the latter
was estimated per data point. The value of the covariate may change over time and can be considered
as an accelerator for the time to failure. For the mud pumps it is assumed that the lifetime can be
influenced by the currently measured condition. The health condition covariate 𝑥𝐻𝐶 is the direct output
of the FL classifier, this means in practice it can take on a value between 0 - 100 where 𝑥𝐻𝐶 = 100
means the component is completely damaged. However, in the constructed dataset for the model
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Figure 6.10: Results of the fuzzy classifier, box plotted for the old and new valve vibration samples.
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fit, the exact value of 𝑥𝐻𝐶 was unknown. Therefore, the data entries for the damage covariates were
generated synthetically. For this purpose, it is assumed that parts that were replaced due to failure
have a random value between 37 ≤ 𝑥𝐻𝐶 ≤ 72, and for parts that had not yet failed this range is
18 ≤ 𝑥𝐻𝐶 ≤ 55, based on Figure 6.10. The dataset is quite diffused, with running times ranging from
20 - 450 hours. To increase the effect of a bad health condition on the RUL, and obtain a better model
fit, parts that failed within 100 hours are assigned a random value between 60 ≤ 𝑥𝐻𝐶 ≤ 100.

Weibull AFT fit
The Weibull AFT survival function with the health condition as covariate 𝑥𝐻𝐶 is formulated as:

𝑆(𝑡; 𝑥𝐻𝐶) = exp(−( 𝑡
exp(𝛽0 + 𝛽𝐻𝐶𝑥𝐻𝐶)

)exp(𝜌)) (6.1)

After fitting this function to the dataset, the values of [𝛽0, 𝛽𝐻𝐶 , 𝜌] are estimated to be [6.839,−0.0246, 0.650].
The partial effects on the survival functions of the health condition are plotted in Figure 6.11.

To validate the model, the goodness of fit on the used dataset is analysed using a Q-Q plot (Fig-
ure 6.11, right-hand side). The Q-Q plot plots the residuals of the model vs the quantiles of the normal
distribution. It can show if the residuals are normally distributed, which is the case when they are on
the red diagonal line 𝑦 = 𝑥. Most residual points do not significantly deviate from the red line, except
from outlier points where the absolute error is more than 200. Overall it can be concluded that the
developed model meets the assumption that the dataset is normally distributed and is therefore ap-
propriately selected. However, the value of the residuals is diffused. The root mean squared error is
96.948.

RUL prediction
For prediction of the RUL, it is decided that the unacceptable survival probability threshold 𝜏 = 0.125,
indicated with a red marked zone in Figure 6.11. This value is chosen as optimal balance between
maximum parts usage and the risk of premature failure. Since the parameters of the survival function
are known, the formula to determine the RUL based on the current time 𝑡 and health condition 𝑥𝐻𝐶 can
be constructed from Equation 5.17:

𝑅𝑈𝐿(𝑡; 𝑥𝐻𝐶) = exp(𝛽0 + 𝛽𝐻𝐶𝑥𝐻𝐶) ∗ (− ln(𝜏))(
1

exp𝜌 ) − 𝑡 (6.2)

Where:
𝛽0 6.839
𝛽𝐻𝐶 −0.0246
exp(𝜌) 1.916
𝜏 0.125

The complete code for the developed mud pump agent is available in Appendix C.1.

6.4. Development of the system agent
From the RUL and operational states of the components, the system agent has to determine the current
operational state and make maintenance decisions. The goal is to make maintenance decisions that
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Figure 6.11: Result of the Weibull AFT fit. On the left, the partial effect of the health condition on the survival probability is plotted
for various values of 𝑥𝐻𝐶. The RUL threshold zone is marked in red. On the right is a Q-Q plot of the model residuals.
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maximise uptime. The developed model will make maintenance decisions for the mud pump valves
based on their RUL and the operational states of the mud pump, top drive and drawworks.

6.4.1. Rule-based state classification
Similar to the component agents, rule-based classification is used to determine the system operating
state. The system agent first checks if there is circulation by analysing the states of the mud pumps. For
drilling, the drawworks and top drive must be in drilling state while there is circulation. If the drawworks
is in tripping state, the system is doing a tripping operation. Finally, all other states are determined as
“not drilling”.
if any 𝑠 = 1 for 𝑠 in [mudpumpstates] then
circulation ← 1

else
circulation ← 0

end if
if all 𝑠 = 1 for 𝑠 in [topdrivestate, drawworksstate, circulation] then
𝑠𝑠 ← 1

else
if drawworksstate = 2 then
𝑠𝑠 ← 2

else
𝑠𝑠 ← 0

end if
end if
To validate the rule-based state classification in the component and system agents, a 3-hour sample

of operational parameters is used. The system classification is plotted, as well as the drillbit vertical
distance from the surface in Figure 6.12. This allows to visually validate the state classification. In the
green zones, which should indicate drilling operation, the drillbit moves away from the surface slowly,
confirming the correct state is indeed drilling. In the red zones, it can be seen the drillbit is raised and
subsequently lowered to the previous location at a faster rate, which confirms the drilling rig is tripping
the drillstring. Concluding, the rule-based state classification system works appropriately and can be
used for maintenance decision-making.

6.4.2. Expert reasoning system
The selected structure of the system agent’s reasoning system is depicted in Figure 6.13. In the rea-
soning sytem, the inference engine deploys rules that analyse real-time updated input information and
information from the knowledge base. In this context, real-time information includes the RUL of the
components and the operational states of the components and the drilling rig system. Each entry in
the knowledge base represents a component agent in the model with informative and updated status
attributes. Component location, required maintenance actions and pre-set RUL and OM thresholds
to trigger maintenance actions can all be considered as constant attributes. Status attributes are the

Figure 6.12: The result of the system operational state classifier. Green indicates drilling, red indicates tripping. The input for
this classification are the parameter values in Figure 6.4. The drillbit location is plotted as well to validate the classification.
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Figure 6.13: Schematic architecture of the reasoning system of the designed model.

RUL, if the component is in need of maintenance, or if it would be beneficial to conduct maintenance
on the component when the opportunity arises.

The inference engine will first update the status attributes based on the new real-time RUL infor-
mation. Components whose RUL drops below the set threshold for maintenance will trigger a main-
tenance suggestion. For example, in the knowledge base sample given in Table 6.1, the RUL of
mudpump2valve almost fall below the set threshold of 8 hours, meaning it will become eligible for
maintenance in a short notice. A maintenance suggestion will consist of the appropriate maintenance
action linked to a maintenance window, which is the time until the component will fail: the RUL. If
the drilling rig is not in drilling or tripping operation, the system agent will prompt to conduct mainte-
nance immediately, since the system is already down. Only when there is a suggestion for immediate
maintenance, OM will be suggested for adjacent components as well.

Components whose RUL is below the set threshold of OM, will become eligible for a maintenance
action when a component on the same location fails as well, but will not trigger a system maintenance
suggestion. In the example in Table 6.1, mudpump3valve, which is assigned to the same location
as the other mud pumps, is eligible to receive OM. In a short notice, mudpump2valve will trigger a
maintenance suggestion, and the system agent will then also suggest OM action to mudpump3valve.
It is chosen to include OM suggestions in the system, since maintenance on the drilling rig will in most
cases mean downtime of the rig. Since the aim is to maximise uptime, it might be useful to conduct
maintenance on adjacent components anyway, since the system is down. This would be preferable over
conducting maintenance on the same location on two separate successive occasions. The developed
model of the system agent is available in Appendix C.2.

It is important to note that this expert system is easily modifiable and can be expanded with other
options to improve drilling rig uptime. For instance, it would be possible to incorporate redundancy
of components. Meaning, in case a failure is predicted to occur in a predetermined time window,
the system can be programmed to suggest to switch to healthy machinery that is expected to not
experience failure for a long time. It becomes clear that the expert system developed in this chapter is
not the definite solution to provide advanced maintenance suggestions, however it is hard to determine
what is the ideal decision-making solution since only the mud pump component agents could be fully
developed. Furthermore, requirements and desired information for a decision-making process can
vary based on the type of drilling rig and drilling project. By all means, the expert system method can
be fit to achieve various decision-making objectives, even prescriptive maintenance actions could be
suggested.

6.5. Finalised model overview
The model is developed in python, because of the availability of additional software packages that
can be used for the various methods in the model, and because of the flexibility of dealing with data

Table 6.1: Example of the knowledge base used by the system agent. The last three columns are updated before the system
agent checks thresholds and extracts relevant maintenance actions.

location comp action RULth OMth Mstatus Ostatus RUL
mudpumps mudpump1valve Change fluid end component 8 24 FALSE FALSE 132.32
mudpumps mudpump2valve Change fluid end component 8 24 FALSE TRUE 8.21
mudpumps mudpump3valve Change fluid end component 8 24 FALSE TRUE 23.78
mudpumps mudpump4valve Change fluid end component 8 24 FALSE FALSE 178.54
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Figure 6.14: Structure of the realised software. Input parameters are depicted on the left and can be extracted from a dataset
constructed from operational parameters extracted from SCADA and cleaned mud pump vibration signals.

frames. The developedmodel structure is depicted in Figure 6.14. Six medium-level component agents
have been developed, one for the drawworks, one for the top drive and four for the mud pump valves.
The drawworks and top drive agents have been included to assess the operational state of the system.
Required operational parameters and a default value for the RUL can be used as input for these agents.
The developed code for these agents is equal to the algorithms provided for the top drive and drawworks
rule-based classification in subsection 6.3.1. Their RUL is a stationary default value because it is not
of interest for the case study.

For the mud pumps, the required operational parameters are used as input as well. The complete
code of the developed mud pump agent is given in Appendix C.1. It will run based on input of a cleaned
vibration signal and operational parameters. Since the drilling rig in the field research could run four mud
pumps simultaneously, four versions of the developed agent are used in the composed model. In this
composed model, the system agent as given in Appendix C.2 is connected to the top drive, drawworks,
four mud pump agents and a knowledge base. Based on their input, the system agent can schedule
a maintenance decision based on system operations and component RUL. The actual implementation
of this model for the case study will be discussed in chapter 7, which forms the beginning of the last
part of this thesis.

6.6. Conclusion
The methods proposed in chapter 5 have been applied in a conceptual design. For application of
the methods, data is used that was gathered during the field research. From collected vibration data,
features could be extracted to establish a FL diagnostics model. By constructing a dataset from main-
tenance records and synthetic damage values, failure of valves can be predicted in a dynamic way.
The developed expert reasoning system provides maintenance windows based on RUL and suggests
opportunities for maintenance on adjacent locations to maximise uptime.

Although the used data has limitations both in terms of quality and quantity, these have been ad-
dressed in the model design. The applied methods have been validated individually, proving the cho-
sen methods are indeed appropriate for their purpose. After application, the outline of the developed
model did match the proposed framework in Figure 4.4 and the architecture in Figure 5.6. Concluding,
this chapter has answered RQ4 by explaining how appropriate methods can be applied to develop a
functioning drilling rig maintenance model using basic available data. The next chapter will use the de-
veloped model in a case study to research the model’s behaviour in conditions partly similar to actual
drilling operations.



7
Case study & Results

The case study uses the developed model as described in chapter 6. This model is able to simulate
how the proposed architecture performs to analysee the RUL of component agents during operations.
This chapter will first give the goal of the case study to elaborate what this case study will contribute
to the overall research. Then, the simulated scenarios are given as well as their results. These results
are discussed to finally answer how implementation can improve the operations of a drilling rig with
respect to the uptime, which directly addresses RQ5.

7.1. Objective & scope of the case study
To answer the final research question, it has to be assessed how implementation of the proposed
model can improve the reliability of a drilling rig, which can increase the availability and overall improve
drilling rig operations. In this assessment, the model must be able to timely predict failure of parts,
so that the system agent can schedule maintenance actions that will ultimately benefit the up-time of
the drilling rig. Therefore, mainly the method of prediction of the components RUL will be validated.
As described earlier in this thesis, the model can only be validated partially since condition monitoring
data is acquired for the mud pumps. The case study will therefore assess the prediction of the mud
pump valve RUL based on simulated valve failures and historical operational data. If the model is
able to predict the failure time before the theoretical actual failure of the part, it can be validated that
implementation in practice can improve operations. To test the performance, different scenarios are
constructed to simulate some of the real-world situations that can occur during a drilling project.

7.1.1. Focus on RUL prediction
The choice to not incorporate the output of the system decision-agent in this case study has multiple
reasons. First, the timing of suggestions by the system agent is fully dependent on its input, namely
the operating state and predicted RUL of the components. If these functions are not accomplished
accurately by the component agents, the system agent will not be able to give accurate suggestions
either. Therefore one may argue it is not necessary to include the actions of the system agent in the
case study simulations. Second, a more practical reason to exclude system agent suggestions from
the case study is to increase simulation speed. Parsing and editing the knowledge base for each data
point will significantly slow down the simulation iteration speed. Including the reasoning system can be
considered if the outcome is worth a long simulation time. Third and final, it is important to realise that
the output and actions of the system agent can be reasoned after simulation. Like already mentioned
the RUL is the driving factor for accuracy of the reasoning system in the agent. By analysing the RUL
prediction, we can argue at what point in time a maintenance action would be triggered by the agent
and if that action is appropriate to the actual situation.

7.1.2. Model used for simulations
The model used in the case study simulations is developed in the previous chapter, however it is
streamlined to optimise simulation time. Thismeans that unnecessarymodules in the developed agents
will be removed. The drawworks and top drive component agents classify the operating state based

65
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Figure 7.1: Schematic overview of the model and data used in the case study.

on historical parameters. Besides that, their RUL prediction module is left out of scope, they will not be
altered.

However, the mud pump component agents will not incorporate a health condition assessment
module. The input of the simulation will include the overall health condition in stead of vibration signal
features. First, it is chosen to not use a vibration signal as input for the agent and then let it perform
feature extraction, since there is not enough vibration data available, and moreover the available data
points are measured with 30 minutes apart, which is not sufficient for the model. It was infeasible to
simulate the model using vibration signals in the given time. Subsequently, it is chosen to not estimate
the health condition based on artificial signal features, since the FL classifier requires a lot of processing
time. For real-time classification this forms no problem, however it would drastically increase simulation
time since the simulation will covermore than 140 operating hours. Performing FL classification for each
data point would bring the total simulation time to little less than one day.

Finally, since the system agents decision-making output is not of interest for this case study, it will
also not be included in the model. This will save some simulation time as well, since reading and
editing the knowledge base for each data point can now be skipped. To summarise, the required input
dataset will therefore consist out of operational parameters for the drawworks, top drive and four mud
pumps, as well as synthetic health condition that can be changed over time to simulate an upcoming
valve failure. Each row in the datasets corresponds to a second in historical operations and gives new
values that all agents use in their functions. The model will then classify the mud pump operational
state and predict the RUL per data point, as can be seen in Figure 7.1. An overview of the reduced
code for the simulations can be found in C.3.

7.2. Case study scenarios
In the scenarios different variables are changed to mimic real-world situations. First, a failure is induced
by artificially increasing the health condition 𝑥𝐻𝐶 that would ideally be classified by the FL model de-
scribed in subsection 6.3.3. In these synthetic data sets, two different rates of deterioration are used.
The second factor that is altered throughout the scenarios is the age of the component at the start of the
simulation. This directly affects the outcome of the statistical RUL prediction. E.g., although a “new”
component has a small chance to fail within a few days after installation, it might actually happen, and
the model should then still be able to foresee the failure. Last, two different operating conditions of
the land drilling rig system are used for the simulations, These operating conditions are derived from
historical operational data collected during a drilling project.

7.2.1. Artificial failure
Two synthetic data sets are constructed to artificially mimic component failure in the simulations. As
mentioned, in these data sets the health condition increases.

It is assumed that once failure has started, deterioration of the valves increases exponentially, since
damage accumulates over time but severity of damage will influence the deterioration rate as well. 𝑥𝐻𝐶
starts at 21, which increases to 76 in either 50 or 100 hours. These values are chosen based on the
results of the fuzzy classifier (refer to subsection 6.3.3). 𝑥𝐻𝐶 = 21 represents a healthy valve, and
𝑥𝐻𝐶 = 76 represents a valve that is already subject to significant wear. From that point, it increases at
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Figure 7.2: Plot of the artificially induced damage signal for the valves of a mud pump. At HC = 100 the valve has failed
completely.

Table 7.1: Size of the two different operating condition data sets used in the case study. The minimum and maximum well depth
reached during drilling operations in these datasets is given as well as the peak standpipe pressure, to indicate slight difference
in conditions.

Dataset Duration (hrs) Data points Min. well depth (m) Max. well depth (m) Max. SPP (bar)

A 164 590,400 818 1948 279
B 148 532,800 837 2269 265

the same exponential rate up to 100. The mathematical function used to construct the artificial failure:

𝑥𝐻𝐶(𝑡) = 21(1 + exp(log(7621)
𝑡

3600𝑝)) (7.1)

where 𝑡 represents the time in seconds, 𝑝 is the variable to determine the deterioration rate in hours
and 𝑥𝐻𝐶(𝑡) ≤ 100 for all values of 𝑡.

Since the fuzzy classifier can maximally output 100, it is assumed that it will not increase from
there. The point of failure can be described as the first point in time where 𝑥𝐻𝐶 = 100. The model
should trigger a maintenance action before that point in time is reached. To mimic the variance in CM
signal, random noise is added to the health condition dataset to see how this noise propagates in the
output.

7.2.2. Operating conditions
The developed model classifies the system operational state based on operational parameters from
the top drive, drawworks and mud pumps. Available data collected during an actual drilling project
is available for these components. The land drilling rig in this project completed the project with five
800hp mud pumps, where a maximum of four could run simultaneously and one was used as a backup.
To simulate if the model can successfully comprehend system operations in real-time, this data is used
in the case study. Two datasets are constructed, covering more than 100 hours each. The time period
for extraction is selected to capture the drilling rig’s operations mostly during continuous drilling. The
information of the two data sets is given in Table 7.1.

7.2.3. Scenarios
Four scenarios are constructed to validate the RUL prediction of the model in different circumstances.
The two different operating condition datasets are used, and for each operating condition dataset two
different valve failures are simulated. Each scenario is run for component ages 𝑡0 = 0, 𝑡0 = 100, 𝑡0 =
200. An overview of the scenarios is given in Table 7.2.

7.3. Results
The results are presented in a RUL vs time plot per scenario (Figure 7.3). In these plot, the actual RUL
is represented by a straight red dashed line, starting from the point where the failure sets in and ending
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Table 7.2: The scenarios that are simulated in the case study. Each scenario is simulated for each component age given in the
last column.

Scenario Op. conditions 𝑝 Mud pump 𝑡0
1 A 100 hrs MP2 0, 100, 200 hrs

2 A 50 hrs MP4 0, 100, 200 hrs

3 B 100 hrs MP4 0, 100, 200 hrs

4 B 50 hrs MP3 0, 100, 200 hrs
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Figure 7.3: First results of case study simulations, plotted per scenario. The red lines represent the actual RUL curve.
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Table 7.3: Actual and predicted time of failure for the case study simulations.

Time of failure 𝑡0 (hrs) 𝑇𝐿 (hrs) Predicted time of failure Δ𝑡 (hrs) UF

Scenario 1 27-10 16:47
0 115.96 27-10 19:15 -2.47 1.02
100 215.96 26-10 20:42 20.08 0.91
200 415.96 26-10 03:15 37.53 0.91

Scenario 2 27-10 05:30
0 104.89 28-10 04:35 -23.08 1.22
100 204.89 26-10 20:08 9.37 0.95
200 404.89 26-10 10:51 18.65 0.95

Scenario 3 30-07 14:12
0 87.32 n.a. n.a. n.a.
100 187.32 29-07 21:24 16.80 0.91
200 287.32 29-07 04:30 33.70 0.88

Scenario 4 29-07 03:32
0 57.92 n.a. n.a. n.a.
100 157.92 28-07 22:48 4.74 0.97
200 257.92 28-07 13:17 14.25 0.94

at the point where the 𝑥𝐻𝐶 = 100. At this point, the failure will occur. Important information that can
be deduced from these plots is presented in Table 7.3. In this table, the actual and predicted time of
failure per simulation is given, as well as the actual lifetime 𝑇𝐿. Here, the predicted time of failure is the
point in time where the RUL = 0. By calculating the difference between these timestamps, the residual
Δ𝑡 can be estimated. Δ𝑡 > 0 means the failure is predicted in advance.

7.3.1. Lifetime utilisation factor
For components with 𝑡0 = 100, 𝑡0 = 200, the model was able to timely predict failure. However, if
this failure is predicted too early, it might lead to excessive maintenance, while this should actually be
avoided. By calculating an utilisation factor, representing the percentage of time the equipment was in
use while it could theoretically be used, it can be analyseed if the RUL prediction is not too early. The
utilisation factor can be calculated using 𝑇𝐿 , Δ𝑡:

UF = 1 − Δ𝑡𝑇𝐿
(7.2)

The UF is given in the rightmost column of Table 7.3. From these results, it can be concluded that
components are predicted to fail when they are at around 90% of their theoretical lifetime, which is
satisfactory and will not lead to excessive maintenance.

7.3.2. Early-life failure prediction
An obvious result is a negative failure prediction of new-installed components. In all four scenarios,
failure of the component with 𝑡0 = 0 is not predicted early enough. In scenarios 3 and 4, where the
pumps experienced less running hours, it was not even possible to calculate Δ𝑡 because due to the
nature of the simulation the predicted RUL never reached 0. Based on the characteristics of the RUL
prediction method (refer to subsection 6.3.4), it can be deduced that the survival model will struggle
with predicting failure of items with a lifetime around 100 hours. This makes sense, because extreme
conditions occur infrequently and can therefore not be represented correctly by amodel with a statistical
base. Calculating the RUL (Equation 6.2) with 𝑥𝐻𝐶 = 100, 𝑡 = 0 yields 116.87, which is the lowest RUL
the model can predict when 𝜏 = 0.125. Therefore, components with 𝑇𝐿 ≤ 116.87 will not be handled
well by the model.

However, since the RUL prediction module is dynamic, a simple improvement is to model the RUL
threshold 𝜏 based on operating hours. Instead of a constant threshold value, modelling 𝜏 so it increases
when 𝑡 ≤ 100 could improve prediction of early-life failure.

7.3.3. Resulting maintenance windows
The aim of the component’s RUL prediction is to assist in maintenance decision-making, which is
done by the system agent. To assess if the maintenance window suggested by the system agent is
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Figure 7.4: Maintenance windows suggested by the system agent when the RUL trigger for maintenance is 8 hours. Blue areas
mark the maintenance window per component age. The red dashed line represents the theoretical moment of failure.

satisfactory, the moment this window will be triggered is plotted for the case study results in Figure 7.4.
A maintenance window can be considered satisfactory if the maintenance window leaves enough time
to schedule a maintenance action without disrupting operations. Since the simulation results for the
components with a short lifetime were unsatisfactory, these are left out of the plots. Marked in blue,
the maintenance windows are triggered when the predicted RUL first falls below 8 hours, since this is
the set threshold in the system agent. The moment of failure is represented with a red, dashed vertical
line.

In line with the lifetime utilisation factor calculated in the previous subsection, the suggested main-
tenance windows in the case study are sufficient to replace the component before failure, but will not
result in excessive maintenance. In case of relatively quick evolving failures, the maintenance window
should leave enough time to schedule a maintenance action. From Figure 7.4b & 7.4d, where the valve
failure evolves in little more than 2 days, the provided maintenance window still leaves enough room
to facilitate an optimal maintenance schedule.

7.3.4. Options for system decision-making
Towards implementation in practice, the system agent needs to be further developed to complete the
generation of advanced maintenance actions. In section 6.4 it was already mentioned that the system
agent may vary based on the type of drilling rig and drilling project. The design in this thesis consisted
out of a expert reasoning system providing PdM and OM actions in order to maximise uptime. How-
ever, looking at the results in Figure 7.4, more options may be available. Over a long time period, a
linear trend is visible in RUL predictions. The system agent may be expanded with trend analysis for
scheduling maintenance up to 2 days in advance. Operational state trends can also be analyseed to
determine future operations. Combining knowledge about future operations, upcoming maintenance
and the service time for maintenance actions, the system agent can quantitatively calculate the best
moment for maintenance with minimal loss of uptime. A system agent like this can be trained using rein-
forcement learning, to facilitate automated model improvement. One step further lies the option to find
correlations between operational and RUL trends, which can lead towards a prescriptive maintenance
solution.
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7.4. Conclusion
This chapter has concluded the work in this thesis and now the answer to the final research question,
RQ5, can be found. After selection of methods based on available data and realisation of the model, it
was used in a case study to examine how themodel can improve the drilling rig’s uptime in practice. The
approach of integrated maintenance was validated by assessing if the RUL prediction of the complete
model is sufficient to improve the maintenance strategy and keep a high availability of components.
From analysis of the case study results, it can be concluded that uptime of a drilling rig will be improved
in three ways.
1. Unplanned downtime is minimised since unexpected failure can be predicted.
2. Excessive maintenance is avoided, because components are used up to 93% of their theoretical

lifetime before replacement.
3. The resulting maintenance windows offer enough time for integrated scheduling of maintenance

actions on the components, to find optimum moments for maintenance without significant disrup-
tion of operations.

To conclude, uptime of the drilling rig is improved by overall maximising the time between maintenance
actions. The first results of implementing the proposed methodology look promising. After adopting a
basic improvement the model will also be capable to predict early-life failure, resulting in a satisfactory
model performance.





8
Conclusion & future work

This conclusion will first reflect on the research questions before providing the answer to the main
research question. The limitations of this work will be discussed, followed by recommendations for
future work, intended for both academics and industry professionals.

8.1. Conclusion
The objective of this research is to develop a maintenance method that can improve uptime of a land
drilling rig. In contrast to previous research on drilling rig maintenance, the developed method should
be an integrated approach, focusing on the operations of the whole drilling rig system.

RQ1: How are the core components of a drilling rig involved in the drilling process?
The operations of a land drilling rig are carried out by five subsystems that each complete an important
function necessary for the land drilling process. In these subsystems, key components were specified
that are in simultaneous operation during the standard operating states and procedures in a drilling
project. The common failure modes of these components were determined, revealing hydraulic, elec-
trical, or mechanical issues as the root causes of failure. When the key components are subject to
failure, the drilling rig system will inevitably be subject to downtime since they are involved in all oper-
ations.

RQ2: What is the best strategy for maintenance on the components of a drilling rig?
From analysis of current application of maintenance on drilling rigs, it was concluded that these compo-
nents receive maintenance in a mostly conventional way, meaning mostly corrective and PM policies.
PM is undesirable for rig components, since it is based on generalised calculations and estimations,
which means the actual component degradation is not taken into account. This will result in com-
ponents unexpectedly breaking down before performance of maintenance, causing downtime and an
urgent need for unscheduled maintenance. A drilling rig should receive maintenance that takes into
account the actual degradation of key components to be able to adapt to the different harsh environ-
ments in which drilling rigs operate. Moreover, the best maintenance strategy for drilling rigs should
actively assist in decision-making for the whole system. After surveying maintenance policies, a PdM
strategy was selected as the best option for drilling rigs, using the available data on a drilling rig to
enable dynamic and proactive maintenance scheduling.

RQ3: What is an applicable framework for the integration of component-level maintenance into
a system-level decision-making model?
To apply PdM to a drilling rig in an integrated approach, a model framework was composed that would
make maintenance decisions for the rig components based on the overall operational and conditional
state of the drilling rig. The proposed framework is a hierarchical MAS, functional with real-time op-
erational data from a rig’s SCADA system and additional CM data. Since it only requires these data
sources to function, it is applicable on land drilling rigs. It combines component-level diagnostics and
prognostics with a single, centralisedmaintenance decision-makingmodel. Because of the agent struc-
ture, the MAS framework allows to easily add components or CM methods to the model without the
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need to reconfigure the complete software. Since there is automated data flow from the equipment to
the model, the MAS can serve as the digital shadow of a drilling rig. Human users are integrated in
the feedback loop to the physical equipment by acting on maintenance suggestions from the model.
The framework is a first move to automated data insights and can be expanded with physical models
to achieve an automated, accurate digital representation of the rig, taking a step towards DT for drilling
rigs.

RQ4: How can appropriate methods be applied in the model to utilise available drilling rig data
for condition assessment and generation of maintenance decisions?
The framework was further developed into a functioning model, by first defining the scope and functions
of the agents. Bottom-level data agents form the connection for raw real-world data with the model.
The data agents extract the relevant signals and clean this data to meet the requirements of higher-
level agents. Component agents are responsible for classifying the operation and predicting RUL of
their dedicated component, in real-time. This also requires assessment of component condition, which
accompanies selection of an appropriate CM technique. Finally, the system agent is the module that
centralises component operations and RUL, which are used to generate maintenance actions. For this
matter, a knowledge base can be formulated by the user, which can be consulted by the system agent.

For the functions mentioned above, this research has identified and applied appropriate methods.
The mud pump was the focus of the model development, more specifically the maintenance of the
valves in the fluid end. Since vibration monitoring was chosen as CM technique, acceleration signals
were acquired during an actual drilling project. After data preprocessing and feature extraction, an
important result was the selection of dimensionless features for reliable diagnostics. A FL classifier was
designed that was capable of detecting degradation of valves based on four extracted features. The
Weibull AFTmodel was applied to design a RUL predictor with right-censoredmaintenance records and
a synthetic result of the FL classifier. For accurate and dynamic prognostics, the rule-based classified
component operational state and health condition were implemented in this predictor. The developed
expert reasoning system in the system agent offers maintenance windows derived from components’
RUL, along with recommendations for coordinating maintenance activities in nearby areas to maximise
uptime.

RQ5: To what extent can implementation of this model in practice improve the uptime of a
drilling rig?
To assess the result of implementation of the developed model in practice, it was partially validated, us-
ing mud pump valve failure as a case study. By analysis of the results, it was concluded that uptime of
a drilling rig will be improved in three ways when the proposed model is implemented in practice. First,
the case study proves the model is able to predict failure of components during operations, reducing the
risk of sudden downtime. Second, excessive maintenance is avoided, since the model triggers main-
tenance actions when components have, on average, just 7% of their theoretical lifetime left. Third,
partly due to the margin of the predictions, resulting maintenance windows offer enough time for the
scheduling of maintenance actions on the components.

Using the findings to the research questions, the main research question can be answered:

How to achieve integrated maintenance for a drilling rig in a model making advanced mainte-
nance decisions on system level, based on real-time data?
The novel methodology of a MAS model with a centralised decision-making process facilitates to take
into account the status of the whole system, achieving an integrated perspective to drilling rig main-
tenance. The architecture of this model is constructed based on analysis of the core components in
the drilling rig operations. This research has then demonstrated that PdM for drilling rigs can be en-
abled through analysis of readily available basic data and the selection of appropriate CM techniques.
While the quality and availability of this data was limited, this research implements modelling methods
that can still be able to give satisfactory results. Partial validation of the developed MAS model in the
case study indicated that uptime of the drilling rig can be improved by maximising the time between
maintenance actions, while preventing unexpected equipment breakdown.



8.2. Limitations of research - 2024.MME.8912 75

8.2. Limitations of research
This research has successfully proposed a new integrated approach to drilling rig PdM, which was val-
idated partially with a study on mud pump valve maintenance. After implementation of the proposed
framework on this practical case, the first results looked promising. However, several limitations be-
came apparent in this phase of the research. Application of real-world data played a key role in the
development of the model. As mentioned throughout this work, the availability of this data was limited,
and there was insufficient time and resources to address this issue. Consequently, the quality of the
acquired data and the selection of methods were impacted. This section will briefly elaborate on this
statement before recommendations for further work are given in the final section.

Availability of data
This thesis has emphasised the problem of the inefficient use and storage of data in the drilling indus-
try, ironically this problem was encountered during the field research. While the drilling rig used for
field measurements logged a wide range of operational parameters, there were few online CM sensors
installed other than temperature switches and contamination switches in the HPU. Therefore it was
necessary to temporarily install an online CM unit for the mud pumps. The installed CM unit had very
limited measuring capacity, resulting in snippets of vibration signal, while continuous vibration monitor-
ing would be preferable. Therefore the options of data analysis were quite constrained, since the data
was unlabelled and the measurements could not be calibrated to find deviations to “normal” conditions.
The method of dividing data into groups of “new” and “degraded” samples was therefore the only so-
lution, but has resulted into a restricted insight on the actual degradation rate of the valves. Moreover,
the acquired vibration data could not directly be used in the case study simulations. Continuous vi-
bration measurements would allow for improved regression methods and more accurate deterioration
assessment of the mud pump valves.

Quality of available data
Considering the Weibull fit of the maintenance records, some remarks can be made regarding the
quality of these records. Firstly, it is important to note that during the drilling project downhole mud
losses were experienced, prompting the decision to increase the coarse mud characteristics. This had
noticeable effect on the wear of the valves, resulting in an increase of failures. Consequently, mud
pump fluid end inspections increased and various valves were changed prematurely as a preventive
measure. As a result, the maintenance records used in this thesis do not represent average valve
conditions and will inevitably include many outliers. Furthermore, through comparison of the mud pump
running hours in the maintenance records with operational hours from SCADA, it was concluded that
in some instances a human error was made. Summarising, there are opportunities for improvement in
the Weibull model, as the developed model might have some deviations from reality due to the issues
mentioned.

8.3. Recommendations for future work
For future research towards achievement of PdM on land drilling rigs in practice, there are multiple
opportunities and unexplored research gaps this thesis has introduced. From these options, recom-
mendations for future work are offered, aimed at academic researchers and industry professionals.

8.3.1. Scientific recommendations
Field validation of proposed methodology
Since this thesis has mainly performed a proof of concept study, there is still a significant journey
ahead until field validation of the proposed model. The model can be completed by implementing
CM techniques and RUL prediction methods for the remaining core components in the system in the
proposed architecture. After completion of the model, the applied methods need to be validated with
continuous condition monitoring data during a drilling project. The results of this field validation can
offer better insights in the effect of the integrated maintenance model on the uptime and operational
performance of the drilling rig.

Enhancing functionality of the system agent
This research has not been able to develop and validate a autonomously functioning system agent,
mainly because only the mud pump agents could provide real-time RUL prediction. However, the
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system agent plays an important role in eventual success of this method, and therefore deserves a
dedicated research. Extensive modelling of the complex drilling process can assist in enhancing the
performance of the system agent’s decision-making. For instance, reinforcement learning could be
introduced to let the system agent “learn” the optimal moment of maintenance. Another option is to
investigate how the system agent and its expert reasoning system can be utilised for prescriptive main-
tenance.

Progressing towards DT technology
As a final scientific recommendation, further expansion of the model towards a DT may be a valuable
successive research. The proposed framework is a first step towards automated data analysis and
offers room to implement physical models to gain highly detailed operational state insights. DT is a
promising research topic, especially in the drilling industry were automation and smart use of data is still
uncommon. The model now focuses on advanced maintenance, but also for operational performance
and remote control developing the DT aspect of the model will be beneficial. In concrete terms, future
research should focus on selecting the right methods that further enhance the model’s hybrid approach
in terms of accuracy. Academics should hereby lay emphasis on finding approaches that can deal with
the constrained quality of data in the drilling industry.

8.3.2. Industry recommendations
Effective implementation of the proposed framework, as well as advanced maintenance practices in
general, may still appear distant from current drilling operations. However, as emphasised before in
this research, there is a great potential towards successful achievement of advanced maintenance for
drilling rigs. It would require a joined effort from professionals in the industry to advance on the following
recommendations.

Improving data acquisition
The most apparent problem encountered in the drilling industry is the lack of data quality. To start,
land drilling rigs should be equipped with SCADA systems for basic operational data acquisition and
rig control. The SCADA system can form the base to implement relevant CM systems for the core
components. For selection of CM techniques, academic literature can be consulted to identify relevant
parameters for monitoring. It is important to note that effective CM can also mean to monitor process
parameters, e.g. the mud pressure throughout the circulation system. Simultaneously, drilling opera-
tors need to dedicate more effort to offline data collection. This involves improvement in the logging of
detail of maintenance records, as well as their level of detail. This data is very valuable to establish a
reliable statistical base for prognostics.

Applying integrated PdM in practice
When drilling rig operators are able to collect relevant, qualitative CM and maintenance data, an ef-
fective PdM model can be developed. This thesis forms the framework for development, however it is
important to incorporate real-time, continuous condition monitoring, something that was not possible in
this work. Extensive field validation is necessary to identify opportunities of improvement. Eventually a
model could be realised that enables PdM for land drilling rigs, with potential to be adopted by offshore
drilling systems.

The initial goal for the drilling industry should be to realise software and additional sensor hardware
that can be seamlessly integrated in the SCADA system of a drilling rig for an integrated maintenance
approach. Integrated maintenance can then be taken to a superior level by expanding the framework
with physics-based models and automated digital-physical connection. This will open the doors to
implementation of DT technology in the drilling industry. The drilling industry will still have a long journey
towards reaching full digitisation, but DT might be the technology that can bridge the current gap.
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An Integrated Approach for Advanced Maintenance on a Land Drilling
Rig: a Mud Pump Case Study

J.J. Oldenhuis, Y. Pang, D.L. Schott and L.R.R. Holwerda

Abstract— The drilling industry faces the challenge to move
away from conventional maintenance strategies in order to
maximise uptime. This paper introduces a holistic approach
to land drilling rig Predictive Maintenance (PdM), integrating
component maintenance into system-level decision-making. A
hierarchical Multi-Agent System (MAS) framework is given,
employing two layers of agents for the core components and
one centralised system agent. Middle-level agents perform
component diagnostics, prognostics and operational state clas-
sification, while the system agent uses expert reasoning for
integrated maintenance scheduling. As a proof of concept, the
model is partially validated. Vibration measurements from a
mud pump during a drilling project are used to extract dimen-
sionless features for a Fuzzy Logic (FL) classifier combined
with Weibull Accelerated Failure Time (WAFT) for Remaining
Useful Life (RUL) prediction. Case study inducing synthetic
valve failure in historical operational data demonstrated the
model is able to predict these failures on time. Maintenance
actions were suggested when components reached 90% of
their theoretical lifetime, preventing excessive maintenance and
minimising disruption to drilling operations through integrated
scheduling.

I. INTRODUCTION

A. Research background

Land drilling rigs are complex machinery carrying out
heavy operations, in an industry subject to high standards
and requirements, where costs can run high during equipment
downtime. Smooth progress during drilling operations is
essential in this business, therefore reliable rigs are required
[1]. One of the main challenges in the drilling industry
is to implement efficient rig maintenance. Poor decision-
making and too generic maintenance routines are currently
contributing to ineffective repairs on drilling rigs, occasion-
ally causing more equipment failure [2]–[5].

B. Problem statement

Experts have widespread belief that the recent digitisation
of the drilling industry can lead to informed maintenance
decision making based on insight, knowledge and forecasting
[6]–[11]. By applying data techniques in a dedicated sys-
tem to determine the best maintenance options, advanced
maintenance is achieved. However, most research focuses
on individual components. It is preferable to provide an
integrated solution for a drilling rig, gaining a holistic view of
the rig’s health condition and maintenance needs. This is also
recognised in the broad field of maintenance optimisation
research [12], [13]. It is simultaneously acknowledged that
system level strategies would require prognostics of all com-
ponents, but in practice, this is often not possible [13], [14].
While these academic sources do provide general solutions

towards the general problem, to the author’s knowledge, there
have been no efforts to find a solution for a drilling rig
system yet. A lack of integrated maintenance methods for
drilling rigs is identified. A complex structure consisting of
critical components calls for a holistic maintenance strategy
and raises the need for integration between component level
maintenance strategies and the overall drilling rig operations.

C. Research scope

This paper proposes a strategy to integrate advanced
maintenance of drilling rig components at a system level.
The main result will be a method for the integration of
already available operational data with additional condition
monitoring (CM) methods in a single model. This model gen-
erates maintenance actions that are beneficial to the drilling
rig’s uptime. Development requires selection and application
of appropriate methods to achieve real-time maintenance
decision-making. To partially validate the method, the model
will be realised and used in a case study on the mud pump
valve system of a drilling rig. The main research question of
this paper is formulated as:

How to achieve advanced maintenance of mud pump
valves in a model making integrated maintenance decisions
on drilling rig system level, based on real-time data?

The research work consists of three phases. In the first
phase, through literature review a thorough understanding
of mud pump operations, maintenance theory and system
modelling is gained. These three fields of knowledge are
merged to establish a framework for the maintenance model.
The second phase is a field research, conducted concurrently
with the literature review. Vibration signal data is gathered
by placement of sensors on a mud pump’s fluid end that is
operational during a drilling project. Combined with logged
operational data from the drilling rig SCADA system and
mud pump maintenance records, data is acquired to use
in the model development. The field research also offers
insights into the actual operations during a drilling project,
enhancing understanding about the drilling rig as a system
and exposing opportunities for maintenance improvement. In
the third and final phase of the research the proposed model
is developed and (partially) validated. Historical operational
data is merged with synthetic failure data sets to validate
and test the effectiveness of the complete model in various
different cases of simulated mud pump failure. The accuracy
of upcoming failure prediction will serve as performance
indicator to test the improvement of the drilling rig main-
tenance and reliability.
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Fig. 1. Overview and classification of different maintenance policies, based on [15]–[17]. The advanced maintenance policies are highlighted in blue.

II. LITERATURE REVIEW

A. Mud pump operations analysis

Drilling rig functionality is divided in five sub-systems:
the (i) rotary, (ii) circulation, (iii) hoisting, (iv) blowout
prevention and (v) power supply system [18], [19]. These
systems are in continuous operations during drilling projects.
In the circulation system, mud pumps are required to en-
sure minimal pressure of drilling fluid (mud). They are
considered as the heart of the drilling rig. [20]. Mud is
essential during the drilling process, as it (i) removes cuttings
from the wellbore, (ii) lubricates and cools the drillbit and
(iii) controls downhole pressure to prevent other fluids and
gasses from entering the wellbore [21]. Triplex piston pumps
with reciprocating positive-displacement mechanisms have
become the prevailing choice in contemporary drilling. More
than often drilling rigs use multiple mud pumps in series.

In a triplex mud pump two main sections are distinguished:
the power end and the fluid end. The power end is driven
by a powerful motor, either mounted directly on the drive
shaft or via a belt drive. Torque and rotation is translated to a
huge crankshaft driving three pistons. Valves in the fluid end
open and close, moving mud from the inlet to the pressure
chamber and from there to the outlet. One can deduce triplex
mud pumps have six valves: one suction and one discharge
valve per piston.

B. Failure mode of the valves

Mud pump valves are subject to different types of wear,
particularly mechanical or sliding wear, erosion and corro-
sion [22], [23]. Despite various attempts to improve relia-
bility of the valves, their lifetime at a pressure between 16-
18MPa still does not exceed 100 hours [24]. For the drilling
of deeper wells, mud pump pressure can be increased up to
32MPa, reducing the lifetime of hydraulic parts in twofold
[22]. It is evident that valves are replaced regularly during
drilling due to these conditions. Timely changing a damaged
valve is important since a washout will quickly damage the
fluid module inside due to the coarse characteristics and high
pressure of the mud. A leaking valve is detected by placing
a random metal tool against the fluid end and the other
end to the human ear, like a kind of simple stethoscope,

to detect an odd noise that indicates leakage. These checks
are conducted frequently, but they often give little time to
prepare for replacement of the valve.

C. Maintenance theory

Maintenance management aims to (i) maximise equipment
availability and (ii) ensures maintenance resources are op-
timised [17]. A successful maintenance strategy should im-
prove equipment reliability while reducing cost of ownership.
Reliability is the probability that equipment will perform
its required function under given operating conditions for a
stated time interval [25]. When equipment stops performing
its required function, this is defined as a failure. The point
availability of equipment can be assessed using the following
formula:

A =
MTBF

MTBF + MTTR
(1)

where MTBF is the mean operating time between failures
and MTTR is the time to repair the equipment [15], [25].
From Equation 1, it can be concluded that maintenance plays
a decisive role in assuring a high availability level. Therefore
a dedicated, effective and efficient way to conduct mainte-
nance on equipment must be decided: a maintenance strategy
[15]. Selecting a maintenance strategy strongly depends
on the object of interest. There is no perfect maintenance
strategy to suit all equipment in all circumstances. A broad
overview of maintenance policies is given in Figure 1.

D. Conventional drilling rig maintenance

Land drilling rig operators adopt conventional approaches
to maintenance. These are mostly reactive (RM) or preven-
tive maintenance (PM) policies based on inspection intervals
and replacement cycles, often applied to equipment classes
[3], [8]. Undesirable effects of these policies are that (i)
equipment with different failure rates unjustly receive equal
maintenance, (ii) to avoid failures as much as possible short
inspection intervals are used, leading to high maintenance
costs and (iii) excessive maintenance leads to more chance of
human error, resulting in even more equipment failure. RM
and PM could actually decrease the reliability of a system.
This can be substantiated by looking at the failure patterns
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Fig. 2. Pattern curves of failure probability over time. Patterns A,B
and C show a probability of failure related to equipment age. The failure
probability patterns D, E and F are mostly constant, therefore they do not
relate to age. (based on [11], [26])

of aircraft parts [26], depicted in Figure 2. These failures
were divided into age-related failures (A,B,C) and non-age
related failures (D,E,F). 89% of the components analysed fell
in the latter group. This exposes a weakness of scheduled
maintenance: it assumes equipment condition will degrade
with age, posing the risk of performing maintenance on
equipment that is still in good condition [8], [11]. Nowadays,
data could be used to achieve informed decision making
based experience and forecasting [6], [11]. However, most
rig operators lack to convert data into useful information that
can be used for decision making or fail to retain important
data that could be of future use [8], [27].

E. Predictive Maintenance (PdM)

PdM is an advanced proactive maintenance strategy that
determines the optimal moment for maintenance through
model or data analysis. The goal of PdM is maximisation
of the time interval between maintenance tasks without the
occurrence of equipment failure. Using the actual operating
condition of the equipment, PdM can predict the future
state of equipment, also depending on historical operation
or degradation behaviour data [28]. PdM basically involves
three tasks: CM, diagnostics and prognostics.

1) Condition Monitoring (CM): CM techniques focus on
monitoring a critical condition parameter through deploy-
ment of sensors on the equipment. Common techniques
are vibration, acoustic, lubrication oil, particle, corrosive,
thermal and performance analysis [29]. Based on the CM
technique, three types of data can be gathered: (i) single
Value type data collected at a specific time, (ii) Waveform
type time series data collected over an interval of time and
(iii) Multidimensional type data, e.g. thermographs [30].

2) Diagnostics: Diagnostics is conducted to detect, iso-
late and identify potential faults and failure modes [31].
Diagnostic methods can use pattern recognition or modelling
techniques to detect and classify a failure or fault. But
just monitoring a condition parameter until it exceeds a

critical value that requires immediate action, will not improve
reliability of the system. Therefore a prognostic method is
required to determine the best future moment of maintenance
[15]. While prognostics might seem superior to diagnostics,
as it can prevent failure, it cannot replace diagnostics. Diag-
nostics is still needed to give accurate maintenance decision
support when a sudden fault is occurring [30].
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O

Fig. 3. A general P-F curve: relation between observance of a potential
failure (P) and the actual failure (F). The RUL from a certain observation
(O) is highlighted as well. (Image based on [15])

3) Prognostics: Prognostics rely on fault indicators and
degradation rates, which are in the outputs of diagnostics
[31]. The aim of a prognostic method can be shown with
a P-F curve as illustrated in Figure 3. Degradation starts
from the moment of installation and is noticeable in an early
stage, where it will not affect the performance of the system.
However, from a certain point in time P, a CM system will be
able to detect an anomaly that points to an upcoming failure,
F. The P-F interval, also called delay time of equipment, is
very essential for the success of a PdM strategy, since small
delay times require flexible maintenance strategies while
large delay times allow for broad opportunity windows for
the clustering of maintenance [15]. Prognostics are needed
to estimate the RUL, which is the time to failure F, measured
from any point on the P-F curve [31], [32], depicted in
Figure 3 at observation time O. A PdM strategy revolves
around achieving the most precise forecast of equipment
RUL.

III. SYSTEM MODEL FRAMEWORK

A. Requirements for the model

The goal of the research is to find a holistic approach to
the application of PdM on a drilling rig. For this purpose, it
is necessary to first identify an applicable framework for the
system model. The requirements for the system model are
defined as:

• Integration of component-level maintenance solutions to
system-level decision-making.

• Functional based on available data. It is assumed that
this data consists of operational parameters gathered by
the rig operational control system, CM data and mainte-
nance records of the commonly maintained components
on the rig.
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• Easily modifiable model structure. Reasons to modify
the model are to change, add or remove a component
or CM method.

B. Multi-Agent Systems (MAS)

In MAS, a decision-making system is constructed from
multiple ”agents”. Agents are entities in the system that can
independently make decisions to achieve their own goal.
Agents may cooperate with each other or a ”collective
mind” to exchange information or resources [34]. MAS
architectures for PdM are commonly classified in four types
[33] (see Figure 4):

• Centralised: a control centre has full control over sys-
tem decision-making. Agents communicate with this
centre by sending data and receiving maintenance rec-
ommendations. The control centre can be considered
as the ”main agent” as it is the only one that actually
analyses the data and does the decision-making.

• Hierarchical: lower-level agents perform simple tasks
and provide information to intermediate agents, who
account for most of the decision-making in the system.
The control centre has full control of the communica-
tions in the system, assigning groups and tasks to the
intermediate agents.

• Heterarchical: in addition to a hierarchical architecture,
it allows for horizontal communication between agents.
The control centre lets agents communicate with each
other by a clustering algorithm.

• Distributed: all intermediate agents are in the same level
of hierarchy, and take independent decisions without
supervision of a higher-level control centre. The agents
therefore have peer-to-peer connections and are stimu-
lated to establish collaborations.

Physical
object

Digital
object

Physical
object

Digital
object

Physical
object

Digital
object

Manual data flow Automatic data flow

Physical
object

Digital
object

Human

(a) (b) (c) (d)

Fig. 5. Classification of DT based on level of data integration: (a) Digital
model, (b) Digital shadow, (c) DT and (d) DT with human integrated in the
decision loop. (Image based on [36]–[39])

MAS can be very agile and adaptive to the situation
of the physical equipment. An advantage of MAS, is that
the work of processing and analysing parts of the data
can be distributed among various levels of agents, reducing
the workload on top-level parts of system. Additionally,
MAS allow to (de)attach components without the need to
reconfigure the whole software [35].

C. Digital Twin (DT)

DT is a popular concept in recent technology, merging
physical modelling with real-time data analysis [40]–[42].
DT technology consists of a virtual model, a physical system,
and a data interface facilitating an automated interaction
between the physical world and the virtual space. This
automated connection is what distinguishes a DT from a
digital model, which is often overlooked in the industry [37].
To help understand the concept of DT, models are classified
based on data integration in Figure 5, here DT involves
a bidirectional and automatic data interaction [36]. Other
criteria that define a DT are that it should be sufficiently
(i) physics-based, (ii) accurate, and (iii) quick in decision-
making [43]. For maintenance strategies, human integration
in DT decision loops is proposed since in practice automated
actions can be undesirable and are mostly still unfeasible
[39]. When a DT gives real-time updated suggestions to
the user, the user can decide to follow up the suggestions
and ’close the loop’. In PdM, DT plays a crucial role by
combining physical models with data-driven approaches for
RUL prediction, as a hybrid approach [37], [42]. DT can be
used for real-time data acquisition, historical data analysis,
and what-if analyses to optimise PdM strategies [41], [44],
[45].

D. Proposed model framework

To meet the requirements in subsection III-A, this research
proposes a hierarchical MAS depicted in Figure 6. This
model will schedule maintenance actions, based on SCADA
and CM data representing the physical environment. The
lowest level contains data agents that pre-process the raw
data from the environment, by means of data selection
and filtering. Utilising the cleaned data, component agents
give an assessment of the operation status and RUL of the
physical component and communicate their conclusion to
the system-level agent, the controller. The controller will
give a real-time classification of the rig operating state and
consults a knowledge base to suggest upcoming maintenance
actions in the system. Since the MAS gives an automated
interpretation of the physical equipment, it represents a
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Fig. 6. The centralised MAS-DT framework proposed in this work.

digital shadow (Figure 5c). The operator is the link to the
physical system: they can decide to follow up the suggestions
and alter the system, by conducting maintenance.

IV. MUD PUMP PDM DESIGN

A. CM technique selection for field research

In literature, various efforts have been made for the CM
of mud pump valve wear. Early attempts focus on pressure
monitoring, as slight loss of pressure can indicate the start
of leakage, however this would require intrusive sensors
with a very high accuracy [46], [47]. Accelerometers are a
better alternative, measuring high frequency vibrations that
indicate leakage of the valves [47], [48]. So far, there is one
example of a field validated tool that uses acoustic sensors in
combination with accelerometers for the prediction of valve
leakage [49].

In the field research, accelerometers are chosen as sensors
in an online vibration monitoring system. Six accelerometers
are placed on the side of the fluid end, each in the proximity
of a discharge or suction valve. The sensors are connected
to a data acquisition (DAQ) unit that is located at the side of
the mud pump. This unit is then connected to a power supply
and a laptop, fitted with software and a database to store the
acquired vibration signals (Figure 7). This is a temporary
setup for the research, however, this kind of setup could also
easily be integrated into the drilling rig for constant CM, by
connection the DAQ unit to the SCADA system via modbus
protocol.

B. Data preprocessing

The vibration data acquired during field research was
analysed. The mud pumps were mounted in container-sized

Fig. 7. Schematic depiction of sensor setup

frames, connected in a line, so there was clear inference of
structure-borne vibrations from other mud pumps. Two signal
filters were applied to pre-process the acceleration data.

From Figure 8, one can notice a dominant band in the
lower frequencies, around 50Hz to 250Hz. Therefore, first
a fourth order Butterworth high-pass filter with a cutoff
frequency off 240Hz is applied to obtain a time series signal
containing the higher frequencies, which are of interest.
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Fig. 8. Example of acceleration FFT spectrum acquired from mud pump
vibrations

To remove the random noise still present in the signal, a
Wiener filter is designed and applied because of its good
characteristics for removing random noise. The algorithm
used is the adaptive linear Wiener filter, that point-wise
calculates the filtered output signal for sample n:

y(n) = µx + (x(n)− µx)
σ2
x

σ2
x + σ2

n

(2)

Here µx is the local mean of the input signal, x(n) is the
noisy input, σ2

x and σ2
n are the local variance of the input

signal and the noise, respectively [50]. A window size n =
3 is used to form local neighbourhoods for the mean and
variances. The results of the filters are depicted in Figure 9.
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Fig. 9. Results after application of high-pass and Wiener filtering

C. Classification of operational state

The component agents and system agent are charged with
classification of the operational state, which plays a critical
role in maintenance decision-making. From operational pa-
rameters, the component agents classify the component state,
and based on these states the system agent will determine
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the operation of the whole drilling rig. Looking at various
equipment parameters, an experienced driller will effortlessly
recognise the rig’s operation. A rule-based system (RBS)
is used to translate human data interpretation into a model
that can accurately classify component state based on certain
SCADA parameters. Various conditional ‘if x then y’ rules
are used to cover all possible operating modes of the com-
ponents. The same method is applied for the system agent
to classify if the rig is in drilling operation or not.

D. Fuzzy logic (FL) diagnostics

In diagnostics, various features are extracted and selected
to be used in a FL degradation classifier. The exact dependen-
cies of equipment health based on these features is unknown,
so to deal with this uncertainty fuzzy rules can be applied.
FL provides flexibility in reasoning since inaccuracies, uncer-
tainties and subjectivities can be taken into account [51] For
the design of the FL classifier, various features were extracted
from samples recorded 24 hours before and after replacement
of a valve, to identify deviation between the vibration of
new and degraded valves. The precise level of degradation of
these samples was unknown. In the end, four dimensionless
features describing the shape of the signal were selected: (i)
shape factor, (ii) impulse factor, (iii) crest factor and (iv)
kurtosis of the signal. Other features like RMS, number of
peaks, absolute mean showed no difference between the two
test groups, presumably because the pump speed was of too
great influence.

Membership functions were established for the features
and fuzzy terms for each feature are used in a fuzzy inference
engine, were rules are deployed to obtain the output state.
The numerical value of the output state is the degree of
degradation between 0 and 100, were 100 represents a
completely failed part.

The FL classifier in Figure 10 was validated using the
analysed signal samples. Results indicated that on average it
was able to successfully classify the estimated degradation
(Figure 11).

E. RUL prediction using WAFT

From available maintenance records, a survival analysis
can be conducted to find the survival function S(t) that
represents the probability of survival at time t. To achieve
this, a probability distribution has to be found that fits
the maintenance data. The right-censored maintenance data
consists of running hours of parts and a binary variable
representing if the parts has failed at that point or not.
However, using this data would make a solely statistical
model based on just on variable (t). Therefore, a WAFT

model was designed, using the FL classified degradation
rate as the covariate xHC . The dataset was expanded with a
column containing values of xHC , were it was assumed parts
replaced due to failure had 37 ≤ xHC ≤ 72 and preventively
replaced parts had 18 ≤ xHC ≤ 55. Due to the sparsity of
running hours in the maintenance dataset, parts that failed
within 100hrs were assigned 60 ≤ xHC ≤ 100 to increase
the effect of the health covariate on the RUL. The Weibull
distribution was used to fit the data and find the survival
function

S(t;x, y) = exp(−(
t

λ(x)
)ρ(y)) (3)

Where λ(x) = exp(β0 + βHCxHC) determines the scale
of the function and ρ(y) = exp(α0) indicates the shape
of the function, meaning the failure rate. Therefore the set
of parameters that are determined by fitting the dataset are
[β0, β1, α0]. Finally, by establishing τ as a threshold value
for S, the RUL can be determined by calculating tτ−t where
tτ represents the first time were S = τ . Since we can use the
WAFT survival function to calculate this time, the equation
for the RUL is:

RUL(t;xHC) = exp(β0 + βHCxHC) ∗ (− ln(τ))(
1

expα0
) − t

(4)
The resulting functions of the WAFT fit for some values of
xHC can be seen in Figure 12.

V. RESULTS

A. Case study setup

To validate the methods in section IV and the overall
model framework in Figure 6, the model is developed
and used in a case study of historical operational records
combined with synthetic failure data. The case study will
assess the prediction of the mud pump valve RUL, since
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Fig. 11. Validation results of FL classifier
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the component RUL is the decisive factor for the main-
tenance decision-making of the system agent. A dataset
is constructed combining historical mud pump operational
parameters (SPM, SPP) and an artificially induced valve
failure. The model used in the case study simulation is a
simplified version of the developed component agent, where
the FL classifier is excluded to save time. As depicted in
Figure 13, the model will classify the operational state of
the mud pump to calculate t, and predict the RUL based on
t and xHC , the theoretical output of the FL classifier. To
mimic the failure, xHC increases exponentially from 21 to
76:

xHC(t) = 21(1 + exp(log(
76

21
)

t

3600p
)) (5)

Here p is the desired pace of deterioration and the valve
has completely failed when xHC = 100. Four scenarios are
constructed, combining two different operational conditions
and two different failure evolutions (p = 50, p = 100).
Each scenario is simulated for component ages t0 = 0, t0 =
100, t0 = 200.

B. Results

The results of the case study simulations are presented in
Table I. Here, TL is the actual lifetime of the component,
∆t is the time between failure prediction and actual failure
and UF is the lifetime utilisation factor, to represent the
proportion of time the equipment was in use compared to
the time it could theoretically be used:

UF = 1− ∆t

TL
(6)

VI. DISCUSSION

From Table I, it can be concluded that the model timely
predicts failure of used components (t0 ≥ 100). The UF
for these predictions has satisfactory values: with an average
utilisation of 0.93, implementation of the model in practice

TABLE I
RESULTS OF CASE STUDY SIMULATIONS.

Op. Cond. p(hrs) t0(hrs) TL(hrs) ∆t(hrs) UF

A 100
0 115.96 -2.47 1.02
100 215.96 20.08 0.91
200 415.96 37.53 0.91

A 50
0 104.89 -23.08 1.22
100 204.89 9.37 0.95
200 404.89 18.65 0.95

B 100
0 87.32 n.a. n.a.
100 187.32 16.80 0.91
200 287.32 33.70 0.88

B 50
0 57.92 n.a. n.a.
100 157.92 4.74 0.97
200 257.92 14.25 0.94

will not cause excessive maintenance. A shortcoming of
the model is identified, since the model fails to timely
predict early-life failures. This is in line with expectations
since the statistical range of the WAFT will struggle with
outliers. To tackle this problem, the RUL threshold τ can be
dynamically modelled so it increases for components with
t ≤ 100hrs in order to accurately handle TL ≤ 100. To see
how maintenance windows will be suggested by the system
agent, the results are plotted in Figure 14.
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Fig. 14. Plot of the RUL predictions and maintenance windows suggested
by the system agent.

VII. CONCLUSION & FUTURE WORK

A MAS for the integration of component diagnostics and
prognostics to system-level maintenance decision-making
was developed for a land drilling rig. While limited real-
world data for this purpose was available, the method is
partially validated by developing the proposed framework
into a functioning model for PdM of mud pump valves.
Dimensionless features extracted from mud pump vibration
were used in a FL classifier to assess the health condition
of the valves. This parameter was used in a WAFT model
to dynamically predict the RUL. From case study results, it
can be concluded that the methodology can improve drilling
rig uptime in three ways: (i) unforeseen equipment failure is
mitigated, (ii) components are maintained at 93% of their
lifetime, avoiding excessive maintenance and (iii) holistic
perspective on the resulting maintenance windows can be
used to find the optimum moment of maintenance without
disruption of rig operations. Further research is needed to
field validate the model using continuous monitoring data.
Remaining component agents can be designed and imple-
mented, combined with further advancements for the system
agent in order to develop a complete drilling rig PdM model.
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B
Fuzzy logic classifier design

Features membership functions

Kurtosis Shape factor Crest factor Impulse factor

𝜇[’low’] =
1 if 𝑥 < 12 1 if 𝑥 < 1.7 1 if 𝑥 < 6.8 1 if 𝑥 < 12
14−𝑥
2 if 12 ≤ 𝑥 ≤ 14 1.775−𝑥

0.075 if 1.7 ≤ 𝑥 ≤ 1.775 7.2−𝑥
0.4 if 6.8 ≤ 𝑥 ≤ 7.2 12.6−𝑥

0.6 if 12 ≤ 𝑥 ≤ 12.6
0 if 𝑥 > 14 0 if 𝑥 > 1.775 0 if 𝑥 > 7.2 0 if 𝑥 > 12.6

𝜇[’avg’] =
𝑥−12
4 if 12 ≤ 𝑥 ≤ 16 𝑥−1.7

0.15 if 1.7 ≤ 𝑥 ≤ 1.85 𝑥 − 6.8 if 6.8 ≤ 𝑥 ≤ 7.8 𝑥−12
2.5 if 12 ≤ 𝑥 ≤ 14.5

20−𝑥
4 if 12 < 𝑥 ≤ 20 2−𝑥

0.15 if 1.85 < 𝑥 ≤ 2 8.8 − 𝑥 if 7.8 < 𝑥 ≤ 8.8 17−𝑥
2.5 if 14.5 < 𝑥 ≤ 17

0 if 12 < 𝑥 > 20 0 if 1.7 < 𝑥 > 2 0 if 6.8 < 𝑥 > 8.8 0 if 14.5 < 𝑥 > 17

𝜇[’high’] =
0 if 𝑥 < 16 0 if 𝑥 < 1.875 0 if 𝑥 < 7.9 0 if 𝑥 < 15
𝑥−16
4 if 16 ≤ 𝑥 ≤ 20 𝑥−1.875

0.125 if 1.875 ≤ 𝑥 ≤ 2 𝑥−7.9
0.9 if 7.9 ≤ 𝑥 ≤ 8.8 𝑥−15

2 if 15 ≤ 𝑥 ≤ 17
1 if 𝑥 > 20 1 if 𝑥 > 2 1 if 𝑥 > 8.8 1 if 𝑥 > 17

Output state membership functions

Output state

𝜇[’good’] =
1 if 𝑥 < 0
50−𝑥
50 if 0 ≤ 𝑥 ≤ 50
0 if 𝑥 > 50

𝜇[’used’] =
𝑥
50 if 0 ≤ 𝑥 ≤ 50100−𝑥
50 if 50 < 𝑥 ≤ 100

0 if 0 < 𝑥 > 100

𝜇[’poor’] =
0 if 𝑥 < 50
𝑥−50
50 if 50 ≤ 𝑥 ≤ 100
1 if 𝑥 > 100
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Fuzzy rules
Kurtosis Crest factor Shape factor Impulse factor Output state
high high high high poor
high avg avg high poor
high avg avg avg used
high high avg avg poor
high avg high avg used
avg avg avg avg used
avg high high high poor
avg high high avg poor
avg high avg avg used
avg avg high avg used
avg low avg low used
low low low low good
low avg avg low used
low low avg avg used
low low avg low good
low avg low low good
low low low avg good
low avg low avg good
high avg high high used
avg high avg high used
avg low high avg used



C
Pseudo code

C.1. Mud pump component agent code
Listing C.1: Pseudo code of the python script developed for mud pump agent.
# Developed mud pump component agent
# INPUT:
# - Operational parameters
# - strokes per minute (spm)
# - standpipe pressure (spp)
# - Filtered vibration time series signal (x)

# ----- Operational state -----
Define MP_classifier(spm, spp) function:
if spp < 50:
return 0

else:
if spm > 20:
return 1

else:
return 2

mp_state = MP_classifier(spm,spp)

# ----- Health condition assessment -----
Define feature_extractor(x) function:

rms = sqrt(mean(x^2))
absmean = mean(abs(x))
krs = mean((x - mean(x))^4) / mean((x - mean(x))^2)^2 # Kurtosis
shf = rms / absmean # Shape factor
crf = max(abs(x)) / rms # Crest factor
imf = max(abs(x)) / absmean # Impulse factor
return krs, shf, crf, imf

(krs, shf, crf, imf) = feature_extractor(x)

Define FL_classify(krs,shf,crf,imf) function:
# Fuzzification
Define krs membership functions...
Define shf membership functions...
Define crf membership functions...
Define imf membership functions...

Define HC membership functions...

# Fuzzy rules
rules = [rule1...rule21]

# Start fuzzy classification process
fuzzify_input = membership_values[krs,shf,crf, imf]
Evaluate rules...
Compute numerical output...
HC = num_output
return HC

HC = FL_classify(krs,shf,crf,imf)
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# ----- RUL prediction -----
Define RT_counter(mp_state) function:

if mp_state == 1:
rt := rt + (1/3600) # Take old running hours value and add 1 time unit, then store as new value

return rt

rt := RT_counter(mp_state) # Set start value of current running hours

Define RUL_predictor(rt, HC) function:
lifetime = exp(6.839 - 0.0246 * HC) * (log(0.125)) ^ (1/exp(0.65))
RUL = lifetime - rt
return RUL

# OUTPUT:
# - Operational state (mp_state)
# - Health condition (HC)
# - current running hours (rt)
# - RUL (RUL)

C.2. System agent code
Listing C.2: Pseudo code of the python script developed for system agent.
# Developed system agent
# INPUT:
# - Component operating states
# - top drive (td_state)
# - drawworks (dwk_state)
# - mud pumps (mpx_state)
# - Component RUL
# - top drive (td_RUL)
# - drawworks (dwk_RUL)
# - mud pumps (mpx_RUL)
# - knowledge base

# ----- Operational state -----
Define SYSTEM_classifier(td_state, dwk_state, mp1_state, mp2_state, mp3_state, mp4_state) function:

# Check circulation
if any state == 1 for state in [mp1_state, mp2_state, mp3_state, mp4_state]:

circ = 1
else

circ = 0

# Check drilling
if all state == 1 for state in [td_state, dwk_state, circ]:
return 1 # Drilling

else:
if dwk_state == 2:
return 2 # Tripping

else:
return 0 # Not drilling or tripping

system_state = SYSTEM_classifier(td_state, dwk_state, mp1_state, mp2_state, mp3_state, mp4_state)

# ----- Maintenance decision-making -----

# First read and edit the knowledge base
knowledge_base = read(knowledgebase.xlsx)
system_RUL = (td_RUL, dwk_RUL, mp1_RUL, mp2_RUL, mp3_RUL, mp4_RUL)

Define kb_updater(row, RUL) function:
row[RUL] = RUL # Update the RUL with new RUL
if row[RUL] < row[OMth]:

row[OMstatus] = true # Trigger for OM
if row[RUL] < row[RULth]:

row[Mstatus] = true # Trigger for PdM
return row

# Use temporary knowledge base
temp_knowledgebase := kb_updater(row, system_RUL) for row in knowledge_base

# Create empty set for components requiring maintenance
maintenance_set = set()

# Go through maintenance sequence
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Define maintenance_sequence(row, maintenance_set, system_state) function:
if row[Mstatus] == true:
if system_state == 0:

# Trigger immediate maintenance actions
# Create a suggestion message for immediate maintenance
suggestion = ’Conduct maintenance on {row[location]}:’
# Query the knowledge base for immediate maintenance actions on the same location
immediate_maint = query temp_knowledgebase

where location == row[location]
and OMstatus == true
and component != in maintenance_set

if immediate_maint is not empty:
for each other_row in immediate_maint:

# Add OM components and actions to the suggestion message
suggestion := suggestion + other_row[component] + other_row[action]
add other_row[component] to maintenance_set

else:
# Trigger maintenance window
# Create a suggestion message for maintenance window
suggestion = ’Maintenance required on {row[component]}: {row[action]} in {row[RUL]} hours.’

else:
suggestion = ’No maintenance required.’

return suggestion

for row in temp_knowledgebase:
maintenance_sequence(row, maintenance_set, system_state)

# Generate output of model
print(suggestion)
save temp_knowledgebase as knowledge_base

# OUTPUT:
# - maintenance suggestion to user
# - updated knowledge base

C.3. Case study simulation code
Listing C.3: Pseudo code of the python script used for the case study simulations.
# Model developed for case study simulations
# INPUT:
# - dataframe containing:
# - component operational parameters
# - artificial health condition of mud pump (mpx_HC)

# ----- Top drive component agent -----
Define TD_classifier(tdtorque, tdspeed) function:
if tdtorque > 1000 and tspeed > 12:
return 1

else:
return 0

# ----- Drawworks component agent -----
Define DWK_classifier(dwkload, dwkspeed) function:
if -0.1 < dwkspeed < 0.1:
return 0 # Holding

else:
if dwkspeed <= -0.1:
if dwkspeed < -1:
if dwkload >= 20:

return 2 # POOH
else:

return 0 # TD up mast
else:
return 0 # Reaming up, adjusting TD position

else:
if dwkspeed > 1:
if dwkload >= 20:

return 2 # RIH
else:

return 0 # TD down mast
else:
if dwkload >= 20:

return 1 # Drilling
else:

return 0 # adjusting TD position

# ----- Mud pump component agent -----
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Define MP_classifier(spm, spp) function:
if spp < 50:
return 0

else:
if spm > 20:
return 1

else:
return 2

Define RUL_predictor(rt, mpx_HC) function:
lifetime = exp(6.839 - 0.0246 * mpx_HC) * (log(0.125)) ^ (1/exp(0.65))
RUL = lifetime - rt
return RUL

# ----- System agent -----
Define SYSTEM_classifier(td_state, dwk_state, mp1_state, mp2_state, mp3_state, mp4_state) function:

# Check circulation
if any state == 1 for state in [mp1_state, mp2_state, mp3_state, mp4_state]:

circ = 1
else

circ = 0

# Check drilling
if all state == 1 for state in [td_state, dwk_state, circ]:
return 1 # Drilling

else:
if dwk_state == 2:
return 2 # Tripping

else:
return 0 # Not drilling or tripping

# ----- Simulation code -----

# Load simulation dataset and make results database
dataset = read(dataset.csv)
results = []

# Set start component age
rt = 0

# Simulation cycle, iterate through rows in dataset
for row in dataset:

# First classify component operating states
td_state = TD_classifier output
dwk_state = DWK_classifier output
[mp_states] = MP_classifier output for each mud pump

# For mud pump of interest (mpx), calculate RUL
# First update running hours with one second if the pump is running
if mpx_state == 1:

rt := rt + (1/3600)

mpx_RUL = RUL_predictor output

# Finally determine system state
system_state = SYSTEM_classifier output

# Store the iteration results
row(results) = [t, system_state, mpx_RUL, mpx_HC, rt]

OUTPUT:
- results: dataframe containing all simulation results
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