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Abstract

Superconducting quantum circuits came out as promising candidates for the ex-
ploration of topological phenomena that are currently inaccessible in condensed
matter systems. One such circuit is a Cooper pair transistor which has already
been widely studied in different regimes of operation due to its importance in
quantum computation. However, it has only recently been appreciated that
a Cooper pair transistor hosts a non-trivial Chern number and topologically
protected current switching behavior. We provide here a more detailed analysis
of Cooper pair transistor operation for different parameter regimes and explore
the quantized ac current.
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1 Introduction

Topological phases and their classification are integral parts of the modern un-
derstanding of condensed matter systems. The usual object in the research of
topological phases is the electronic matter that can exhibit a vast range of topo-
logical phenomena. However, the experimental realization of these materials is
an arduous effort and detection of topological effects is difficult. Fortunately,
materials are not the only platform for the exploration of topological phenomena
and many artificial systems can exhibit non-trivial topological behavior. Su-
perconducting quantum circuits with Josephson junctions are a well-developed
technology and provide great flexibility and tunability [17] which makes them
promising candidates for the exploration of topological phenomena. The topol-
ogy of such circuits has already been studied from different aspects [6, 7, 12, 14],
and thanks to their topological properties they have been proposed for novel
technological applications such as standards in metrology [14, 15].

One of the simplest superconducting circuits is a Cooper pair transistor
(CPT) which has been studied to a great extent due to its relevance to quan-
tum computing [2, 3, 18], but it has only recently been appreciated that it ex-
hibits a non-trivial Chern number and topologically protected current switching
behavior [9]. There are, however, several questions regarding the exactness of
the current quantization, the response to ac signals and the choice of circuit
parameters that have still not been considered. We will analyze the topologi-
cal properties of a CPT in more detail and answer these questions in different
regimes of operation of the device.

1.1 Circuit Quantum Electrodynamics
Circuit quantum electrodynamics (cQED) is a formalism used in the description
of the interaction between light and matter in superconducting quantum circuits
[4, 5]. The usual steps in the description include writing down the circuit La-
grangian followed by the construction of the corresponding circuit Hamiltonian
that can further be cast into its second quantized form depending on the regime
of interest. Here we will go straight to the definition of the CPT Hamiltonian,
but an interested reader can follow through the procedure presented in [4].

The circuit of a Copper pair transistor consists of two Josephson junctions
connected in series with energies EJL and EJR forming a charge island, which
is capacitively biased by a gate voltage Vg through a capacitor of capacitance
C, as shown in the Fig. 1.1. The circuit Hamiltonian is then given by

Ĥ(ng, ϕL, ϕR) = EC(n̂− ng)2 − EJL cos(ϕ̂− ϕL)− EJR cos(ϕ̂− ϕR), (1.1)



2 Chapter 1. Introduction

where n̂ is a Cooper pair number operator of the island and ϕ̂ is its canonically
conjugated phase operator such that canonical commutation relation [ϕ̂, n̂] =
i holds. Phases applied through voltages at the ends of the left and right
Josephson junction are given by ϕL and ϕR respectively. The charging energy
EC = (2e)2/2C represents the energy scale of adding Cooper pairs to the island,
and the offset charge is given by ng = −CVg/2e.

Vg

ϕL ϕR
ϕ̂, n̂

EJL EJR

C

Figure 1.1: Circuit of the Cooper pair transistor. Two Josephson junc-
tions are described by the energies EJL and EJR. The island is described
by its Cooper pair number and phase operators n̂, ϕ̂. Circuit is driven
by applying the voltage Vg on the capacitor C and a voltage across the

Josephson junctions such that ϕ̇L/R = 2eVL/R/h̄.

In general, there are always capacitances associated with every Josephson
junction that can be modeled as being connected in parallel with the corre-
sponding Josephson junction, but we omit them here in order to simplify our
analysis since they don’t affect our conclusions. We also note that there is a
dual way to represent the Cooper pair transistor using the Quantum phase slip
element [13] and an inductor where the roles of Cooper pair number and phase
operators are exchanged, i.e. there is a tunneling of flux quanta across the
element instead of Cooper pairs

Ĥ(ϕg, nL, nR) = EL(ϕ̂− ϕg)2 − EQL cos(2π(n̂− nL))− EQR cos(2π(n̂− nR)).
(1.2)

Due to different advances in Josephson junction and Quantum phase slip tech-
nologies, it might be worth considering this alternative implementation depend-
ing on the desired ratio of characteristic energies EJ/EC or EQ/EL.

1.2 Calculating Circuit Response
Measurements of topological properties of superconducting circuits can be done
through transconductance measurements [7, 16]. We are interested in the cur-
rent response of our circuit under the change of parameters ng, ϕL, and ϕR, and
Berry curvature is a required formalism for its description so we will explain it
in the following paragraphs.

In quantum mechanical systems the Berry curvature arises when a system
undergoes an adiabatic evolution [8]. Let’s consider a Hamiltonian Ĥ(R(t))
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that depends on some vector of parameters R, which in turn depend on time t,
together with the set of its instantaneous eigenstates |ψn(R(t))〉 and eigenvalues
En(R(t)). If the eigenvalue En(R(t)) remains non-degenerate everywhere along
the path in the parameter space and the variation with time of the parameters
is slow enough, then the adiabatic theorem states that a system initially in the
eigenstate |ψn(R(0))〉 will stay in the instantaneous eigenstate |ψn(R(t))〉 at
time t, up to a global phase, i.e. the state is given by

|Ψn(t)〉 = eiγn(t)e−
i
h̄

∫ t
0 dt′En(R(t′)) |ψn(R(t))〉 . (1.3)

The second exponential term is the dynamical phase while the first exponential
term is the geometric phase where γn is the Berry phase

γn(t) = i

∫ t

0

dt′ 〈ψn(R(t′))| d

dt′
|ψn(R(t′))〉 = i

∫ R(t)

R(0)

dR 〈ψn(R)| ∇R |ψn(R)〉 .
(1.4)

It is usually more insightful to consider the integrand in the previous expres-
sion which is known as the Berry connection An(R) = i 〈ψn(R)| ∇R |ψn(R)〉.
Then, one can define Berry curvature, which is an anti-symmetric second rank
tensor derived from Berry connection, as

Bµν
n (R) =

∂

∂Rµ

Aνn(R)− ∂

∂Rν

Aµn(R) = −2Im
〈
∂Rµψn

∣∣∂Rνψn〉 . (1.5)

Berry curvature can also be written as a summation over the eigenstates [19]

Bµν
n = i

∑
m 6=n

〈ψm| ∂Ĥ/∂Rµ |ψn〉 〈ψn| ∂Ĥ/∂Rν |ψm〉 − (ν ↔ µ)

(Em − En)2
, (1.6)

which is usually more useful for numerical calculations.
Finally, to measure the circuit response we have to define the current oper-

ators for both branches of the Cooper pair transistor

ÎL/R =
2e

h̄

∂Ĥ
∂ϕL/R

. (1.7)

Then the expectation value in the k-th band is given to the first order by

IL/R,k =
2e

h̄

∂Ek
∂ϕL/R

− 2eṅgB
ϕL/Rng
k − 2eϕ̇R/LB

ϕL/RϕR/L
k . (1.8)

If we ground the opposite Josephson junction then the third term in the previous
equation does not contribute. In our numerical experiments, we are using the
formula from Eq. 1.6 in order to numerically calculate Berry curvature, however,
we also note that in the case of CPT one can also do this using the properties
of Mathieu functions as described in the Appendix B.
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2 Quantized Current Response

Quantization of current response is a distinctive feature of the CPT and has been
previously discussed in [9] where a specific measurement protocol is proposed
for measuring quantized dc current. Ideal quantized dc current response, where
current flows through only one of the Josephson junctions, requires a linear
increase of the offset charge ng through the linear increase of the gate voltage
Vg. However, this is practically impossible since the capacitor would eventually
break. To go around this problem, the protocol proposed in [9] requires a
periodic linear increase and decrease of the voltage applied to the capacitor
accompanied by the change of the ratio of Josephson energies using the external
magnetic flux.

Since the previously mentioned protocol effectively applies an ac signal to
the capacitor, we are inspired to consider a sinusoidal signal on the capacitor,
albeit, without changing the ratio of Josephson energies. This results in the
quantization of the corresponding ac component on the output terminal and
in this chapter we will explore this quantization in different regimes and shed
more light on the amount of deviation from the perfect quantization.

Throughout this chapter we will set EJL ≡ EJ , EJR ≡ κEJ , and consider
only the regimes when 0 ≤ κ < 1 for convenience, unless stated otherwise. We
also assume that voltages and frequencies appearing throughout the chapter are
sufficiently low such that the adiabatic theorem applies and that the system is
always in the ground state. We will write Bαβ instead of Bαβ

0 for brevity and
will always assume that the right Josephson junction is grounded ϕR = 0 so
that the term proportional to BϕLϕR does not contribute to the output current.

2.1 Chern Number
The spectrum of the CPT has a non-zero Berry curvature BϕL/Rng

k which is a
consequence of Weyl points in the 3D space spanned by the parameters (ng, ϕL−
ϕR, EJL − EJR). For fixed EJL − EJR, Berry curvature is periodic in ng and
ϕL − ϕR so we can consider (ng, ϕL − ϕR) ∈ [0, 1] × [0, 2π] as quasi-momenta
spanning the Brillouin zone and we can define a corresponding Chern number.
As demonstrated in [9], depending on which of the Josephson energies is larger,
the Chern number

C
ngϕL/R
k =

1

2π

∫ 2π

0

dϕL/R

∫ 1

0

dngB
ngϕL/R
k , (2.1)

is either 0 or 1 for all bands k.
Chern number is a central concept in the description of the quantized cur-

rent response and, in an ideal setting, currents through the device would be
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related as IL/R,k = C
ngϕL/R
k Ig. Here, Ig = 2eṅg is a displacement current en-

tering through the capacitor and IL/R,k is a current that is leaving through the
corresponding Josephson junction. Since CngϕL/R

k is either 0 or 1 depending
on the sign of EJL − EJR, current entering through the capacitor exits only
through the junction with larger Josephson energy. In the following sections,
we will only explore the current response through the larger Josephson junction,
however, the entire analysis can easily be extended to the other Josephson junc-
tion. Also, the nonlinearity of Josephson junctions is critical for the existence
of a non-trivial Chern number in a CPT and similar behavior is unobtainable if
the Josephson junctions are replaced by inductors, even though the formalism
of Berry curvature is required for a proper quantum mechanical description (see
Appendix A).
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Figure 2.1: Berry curvature of the CPT for EJ/EC = 1 and κ = 0.5.
From left to right, the Chern numbers are CngϕL = 1, CngϕR = 0, and

CϕLϕR = 0.

2.2 Adiabatic Current
Adiabatic current represents the first term in the Eq. 1.8 and it does not
contribute to the quantized response. This current is proportional to the energy
derivative which is given by

∂Em
∂ϕL/R

=
κEJ sin

(
ϕL/R − ϕR/L

)
2
√

1 + κ2 + 2κ cos(ϕL − ϕR)
× (2.2)

a′2[ng+k(m,ng)]

(
−2EJ
EC

√
1 + κ2 + 2κ cos(ϕL − ϕR)

)
,

where aν(q) denotes Mathieu’s characteristic value, a′ν(q) its derivative with
respect to q, and k(m,ng) is a function appropriately sorting the eigenvalues
(see Appendix B). From the previous formula it follows that ∂ϕL/REm(ng, ϕL −
ϕR) = −∂ϕL/REm(ng, π−ϕL+ϕR). Due to this symmetry, the energy derivative
integrates to zero over the Brillouin zone.

In all of the regimes that we are considering, the leading order of the adia-
batic current response is proportional to this integral hence it vanishes. Because
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of this, we will not analyze this contribution in detail. However, it might be-
come relevant in the regimes when the condition Ig � 2eEJ/h̄ is not satisfied
or for different sweeps of the Brillouin zone which we leave for future work.

2.3 DC-biased Josephson Junctions
We will first consider a somewhat simpler case where we apply a dc voltage
V0 across the Josephson junctions, such that the phase difference is given by
ϕL − ϕR = 2eV0t/h̄ ≡ ω0t, and an ac signal on the capacitor of the form
ng = rg cos(ωgt). If the ratio ωg/ω0 is irrational, the current quantization is
given by (see Appendix C)

IL(ωg)

Ig(ωg)
= 1 +

+∞∑
n=1

1

nπrg
anJ1(2nπrg), (2.3)

where J1 is a Bessel function and an are Fourier cosine series coefficients of the
Berry curvature given by

an(κ,EJ/EC) =
1

π

∫ 2π

0

dφ

∫ 1

0

dx cos(2πnx)BngϕL(ng = x, ϕL−ϕR = φ). (2.4)

2 4 6 8 10

rg

0.94

0.96

0.98

1.00

1.02

1.04

1.06

I L
(ω

g
)/
I g

(ω
g
)

κ = 0.5

EJ/EC = 0.5

EJ/EC = 1

EJ/EC = 2

(a)
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1.00
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I L
(ω

g
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I g

(ω
g
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κ = 0.25

(b)

Figure 2.2: Current quantization in the case of dc-biased Josephson
junctions when ωg/ω0 is irrational. (A) Quantization for different values
of EJ/EC ratio over the range of the sweep amplitudes rg and κ = 0.5 dis-
playing exponentially suppressed oscillations. (B) Quantization for differ-
ent values of κ over the range of the sweep amplitudes rg and EJ/EC = 1.

The response quantization can be well approximated by (Fig. 2.2)

IL(ωg)

Ig(ωg)
≈ 1 + f(κ,EJ/EC)

1

r
3/2
g

sin(2πrg + α), (2.5)

where α is a phase that depends on the circuit parameters. For large enough
EJ/EC , function f(κ,EJ/EC) contributes to the exponential decay of the cor-
rection as e−β

√
EJ/EC such that in the transmon regime, when EJ � EC , the
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quantization becomes practically perfect. We also note that the quantization is
perfect for particular values of rg due to the term sin(2πrg + α).

In the case of a rational ωg/ω0 = p/q the quantization is not always perfect
in the limit rg → ∞ (Fig. 2.3). However, one can arbitrarily approach perfect
quantization for sufficiently large p and q.
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ωg/ω0 = 4
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g
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I g

(ω
g
)

EJ/EC = 1, κ = 0.5

ωg/ω0 = 1/2

ωg/ω0 = 1/3

ωg/ω0 = 3/2
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Figure 2.3: Current quantization in the case of dc-biased Josephson
junctions when ωg/ω0 is rational over the range of the sweep amplitudes
rg and EJ/EC = 1, κ = 0.5. The quantization does not approach the per-
fect value as rg →∞ but can be improved arbitrarily by the appropriate

choice of p and q.

2.4 AC-biased Josephson Junctions
Another regime that we consider is when an ac voltage is applied across the
Josephson junctions ϕL − ϕR = 2πrϕ cos(ω0t) together with an ac signal on
the capacitor ng = rg cos(ωgt). Again, if the ratio ωg/ω0 is irrational, the
quantization is given by (see Appendix C)

IL(ωg)

Ig(ωg)
= 1+

+∞∑
m=1

a0mJ0(2mπrϕ)+
+∞∑

n=1,m=0

1

nπrg
anmJ1(2nπrg)J0(2mπrϕ), (2.6)

where anm are Fourier cosine series coefficients of the Berry curvature. However,
the most general analysis of this expression is not straightforward so we will
focus on some specific parameter regimes in order to characterize the device’s
behavior. We also consider the case ωg/ω0 = 1 where the quantization is also
expected to be perfect under certain conditions.

2.4.1 Extreme Asymmetry Limit, κ� 1

In this regime the Berry curvature effectively stops depending on the phase
difference across Josephson junctions ϕL − ϕR and only depends on the offset
charge ng. In the limit κ→ 0, Cooper pair transistor reduces to a Cooper pair
box (CPB), i.e. a circuit with only one Josephson junction and a capacitor.
CPB can be considered as the smallest circuit with topological effects due to
nonvanishing Berry curvature.
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Since there is no dependence on ϕL−ϕR, the Fourier series coefficients of the
Berry curvature from the Eq. 2.6 are of the form anm = anδm0, so the current
quantization is given by

IL(ωg)

Ig(ωg)
= 1 +

+∞∑
n=1

1

nπrg
anJ1(2πnrg), (2.7)

for any ωg/ω0. This formula for the current quantization is the same as the
one in the case of dc-biased Josephson junctions when κ = 0. Similarly to the
asymptotic analysis given by Eq. 2.5, we have that the asymptotic behavior is
well described by (Fig. 2.4)

IL(ωg)

Ig(ωg)
≈ 1 + f(EJ/EC)

1

r
3/2
g

sin(2πrg + α). (2.8)
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Figure 2.4: Current quantization in the extreme asymmetry limit for
the ac-biased Josephson junctions. (A) Berry curvature of the CPB which
is a good approximation of the CPT when κ� 1. In this regime only the
dependence on the offset charge ng remains. (B) Current quantization for
different values of EJ/EC ratio over the range of the sweep amplitudes
rg and κ = 0. The amplitude of the oscillations decreases with the power

law r
−3/2
g and exponentially in

√
EJ/EC .

2.4.2 Transmon Regime, EJ � EC

In the transmon regime, when EJ � EC , Josephson junctions become nearly
classical. In the ground state, the phase across the Josephson junction with
larger characteristic energy is approximately zero since the corresponding term
in the Hamiltonian makes a dominant contribution to the minimum of potential
energy. This in turn qualitatively describes the tendency of the current to only
flow through the larger Josephson junction.

The ground state is localized at the bottom of the potential well and closely
resembles the ground state of a harmonic oscillator. Berry curvature can then
be obtained by a simplified calculation and to the lowest order it is given by
(see Appendix B.1)
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BngϕL =
1 + κ cos(ϕL − ϕR)

1 + κ2 + 2κ cos(ϕL − ϕR)
. (2.9)

We see that the Berry curvature does not depend on the offset charge ng which
simplifies our analysis.

We can expand the Berry curvature into a series in terms of κ as (see Ap-
pendix B.1)

BngϕL =
∞∑
m=0

(−1)mκm cos(m(ϕL − ϕR)), (2.10)

and read out the Fourier coefficients anm = (−1)mκmδn0. Plugging this into the
Eq. 2.6, we obtain the formula for the current quantization for any ωg that is
not an integer multiple of ω0

IL(ωg)

Ig(ωg)
= 1 +

+∞∑
n=1

(−1)nκnJ0(2nπrϕ). (2.11)

This time, current quantization is well approximated by (Fig. 2.5)

IL(ωg)

Ig(ωg)
≈ 1 + f(κ)

1
√
rϕ

sin(2πrϕ + α), (2.12)

for sufficiently low values of κ.
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Figure 2.5: (A) Berry curvature in the transmon regime for different
values of κ depending only on the phase difference across the Josephson
junctions. (B) Current quantization for different values of κ. The ampli-
tude of oscillations around the perfect quantization decreases as r−1/2ϕ .

In the case when ωg = pω0 for an integer p, the current quantization has an
additional contribution

IL(ωg)

Ig(ωg)
= 1 +

+∞∑
n=1

(−1)nκn (J0(2nπrϕ)− (−1)pJ2p(2nπrϕ)) , (2.13)
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which influences the decay of the oscillations (Fig. 2.6), and in this case it is
well approximated by

IL(ωg)

Ig(ωg)
≈ 1 + f(κ)

1

r
3/2
ϕ

sin(2πrϕ + α). (2.14)
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Figure 2.6: Current quantization in the transmon regime when ωg =

pω0. In this case the oscillations decay as r−3/2ϕ . (A) Quantization for
p = 1 and different values of κ over the range of the sweep amplitudes

rϕ. (B) Quantization for κ = 0.5 and different values of p.

2.4.3 Intermediate Regime, EC ∼ EJ

In the intermediate regime, when EC ∼ EJ , the dependence of the Berry curva-
ture on the phase difference ϕL−ϕR and the offset charge ng is nontrivial, hence
all of the terms in Eq. 2.6 are contributing in the expression for the current
quantization.

Current quantization given by Eq. 2.6 cannot be simplified in this case but
can be well approximated by (Fig. 2.7)

IL(ωg)

Ig(ωg)
≈ 1 + f(EJ/EC , κ)

1

r
3/2
g r

1/2
ϕ

sin(2πrg + α) sin(2πrϕ + β), (2.15)

when ωg/ω0 is irrational.
In the case when ωg/ω0 = 1 the dependence of quantization on the signal

amplitudes becomes more complicated. For rational ratios of amplitudes rg/rϕ
the path in parameter space wraps back onto itself and the Brillouin zone does
not get sampled sufficiently for the proper integration of the Berry curvature
and the quantization is not perfect. This results in the peaks in Fig. 2.8b which
persist in spite of the increase in the signal amplitudes. Nevertheless, in the
case of the irrational ratio rg/rϕ, the quantization approaches the ideal value as
the amplitude increases because this time the path through the Brillouin zone
never repeats and the sampling of points is sufficient for the integration of the
Berry curvature.
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Other ratios of frequencies ωg/ω0 = p/q do not necessarily result in a quan-
tized response since the paths through the Brillouin zone become more compli-
cated and much larger amplitudes might be required. However, for large enough
p and q the quantization increasingly resembles the case of irrational ratio of
frequencies.
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Figure 2.7: Current quantization in the intermediate regime for irra-
tional ωg/ω0 and EJ/EC = 1, κ = 0.5. (A) Quantization across rg and
rϕ. We observe that oscillations decay as r−3/2g r

−1/2
ϕ .(B) Quantization for

different values of the sweep amplitude r =
√
r2g + r2ϕ and sweep angle

arctan(rg/rϕ) where we can also observe the decay of the deviation from
perfect quantization.
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Figure 2.8: Current quantization in the intermediate regime for
ωg/ω0 = 1, EJ/EC = 1, and κ = 0.5. (A) Quantization across rg
and rϕ. (B) Current quantization for different values of sweep amplitude
r =

√
r2g + r2ϕ and sweep angle arctan(rg/rϕ). We see that peaks persist

for rational values of rg/rϕ since only the specific parts of the Brillouin
zone are being sampled in that case. However, the overall trend indicates

the decrease in the deviation from perfect quantization as r →∞.
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2.4.4 Deep Charging Regime, EC � EJ

In the deep charging regime, when EC � EJ , we can reduce our analysis to
the two lowest charge states |0〉 and |1〉 by considering the offset charge in the
range ng ∈ [0, 1]. The Hamiltonian is then given by

Ĥ(ng, ϕL, ϕR) = −EJ
2

(
λ(1− 2ng) eiϕL + κeiϕR

e−iϕL + κe−iϕR −λ(1− 2ng)

)
, (2.16)

where we set λ ≡ EC/EJ . This time, we can calculate the Berry curvature
exactly

BngϕL =
λ(1 + κ cos(ϕL − ϕR))

(λ2(1− 2ng)2 + 1 + κ2 + 2κ cos(ϕL − ϕR))3/2
+ o(λ−2). (2.17)

Using this formula for the Berry curvature, we can estimate the full width
at half maximum (FWHM) along the ng as FWHMng ∼ (1−κ)/λ and along the
ϕL−ϕR as FWHMϕ ∼ (1−κ)2/

√
κ for sufficiently large κ. Then the area of the

Berry curvature hotspot scales as A ∼ FWHMng × FWHMϕ ∼ (1 − κ)3/λ
√
κ.

Knowing this, we can estimate the rate of convergence of the quantization with
the radius of the sweep r in the case when ωg/ω0 = 1 since it depends on the
faithful sampling of the Brillouin zone. In order to sample the Brillouin zone
sufficiently, it is required that rg/rϕ is irrational and that the spacing between
sweep lines is much smaller than the linear dimension of the Berry curvature
hotspot 1/r �

√
A, or, written differently r � 1/

√
A. For example, if λ = 10

and κ = 0.9, then the area of the hotspot is of the order A ∼ 10−4, hence, the
condition on the sweep amplitude is r � 100, i.e. we need to sweep hundreds
of Brillouin zones to achieve low enough deviation from perfect quantization.

In the case when ωg/ω0 is irrational, error scaling from Section 2.4.3 still
holds to a high accuracy, i.e. the amplitude of oscillations around the perfect
quantization still decays as r−3/2g r

−1/2
ϕ but increases with λ.
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3 Conclusion

We explored the topological behavior of one of the simplest superconducting
circuits, the Cooper pair transistor. We demonstrated a rich set of phenomena
related to the exactness of the current quantization and the response of the cir-
cuit to the ac drive that have not been previously discussed. We hope that this
analysis will help the experimental efforts in the search for suitable parameters
like the signal amplitudes and characteristic energy scales to demonstrate the
nontrivial topology of the CPT.

Possible future directions of research are further exploration of the current
quantization with respect to the sweep angle and of more complicated forms
of the input signal. Additional analysis of the constraints on frequencies and
voltages with respect to adiabaticity is also required. It would also be interesting
to explore whether one can define corresponding edge states by turning ng and
ϕL − ϕR into dynamical variables [9].
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A Current Divider

We present here the calculation of the current response in the case when Joseph-
son junctions are replaced by inductors to showcase the importance of nonlin-
earity for the quantization of the response.

Let’s start with the circuit Hamiltonian

Ĥ(ng, ϕ1, ϕ2) = EC(n̂− ng)2 + EL1(ϕ̂− ϕ1)
2 + EL2(ϕ̂− ϕ2)

2 (A.1)
≡ EC(n̂− ng)2 + (EL1 + EL2)(ϕ̂− ϕ0)

2,

where ϕ0 = (EL1ϕ1 + EL2ϕ2)/(EL1 + EL2).
The ground state in the phase basis is given by

ψ0(ϕ) = Aeing(ϕ−ϕ0)e−β(ϕ−ϕ0)2 , (A.2)

where A and β are appropriate constants such that the wave function is properly
normalized. In order to calculate the Berry curvature we have to calculate the
necessary ground state derivatives

∂ψ0

∂ng
= i(ϕ− ϕ0)ψ0, (A.3)

∂ψ0

∂ϕi
=
∂ϕ0

∂ϕi

∂ψ0

∂ϕ0

=
ELi

EL1 + EL2
(−ing + 2β(ϕ− ϕ0))ψ0. (A.4)

Berry curvature is then given by

Bngϕi = −2Im
〈
∂ngψ0

∣∣∂ϕiψ0

〉
(A.5)

=
ELi

EL1 + EL2
× 4β

∫ +∞

−∞
dϕ(ϕ− ϕ0)

2|ψ0|2

=
ELi

EL1 + EL2
× 4β

∫ +∞

−∞
dxA2x2e−2βx

2

=
ELi

EL1 + EL2
,

Bϕ1ϕ2 = 0, (A.6)

where i = 1, 2.
Finally, the current response is given by

Ii =
2e

h̄

∂E0

∂ϕi
− 2eṅgB

ϕing = 2eṅgB
ngϕi = Ig

ELi
EL2 + EL2

= Ig
L3−i

L1 + L2

, (A.7)

where i = 1, 2, which is a well known formula for the current divider.
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B Berry Curvature Properties

We can rewrite the CPT Hamiltonian in the following way

Ĥ(ng, ϕL, ϕR) = EC(n̂− ng)2 − EJ cos(ϕ̂− ϕL)− κEJ cos(ϕ̂− ϕR) (B.1)

= EC(n̂− ng)2 − EJ
√

1 + κ2 + 2κ cos(ϕL − ϕR) cos(ϕ̂− ϕ0)

≡ EC(n̂− ng)2 − EJ(κ, ϕL, ϕR) cos(ϕ̂− ϕ0(κ, ϕL, ϕR)),

where
ϕ0 = arctan

sinϕL + κ sinϕR
cosϕL + κ cosϕR

. (B.2)

We see that the Hamiltonian is effectively reduced to the one of a circuit with
a capacitor and a single Josephson junction, i.e. a Cooper pair box (CPB)

Ĥ(ng, ϕ0, EJ) = EC(n̂− ng)2 − EJ cos(ϕ̂− ϕ0). (B.3)

We also note that this procedure can be performed for an arbitrary number of
Josephson junctions connected to a single charge island.

It turns out that for a CPB Hamiltonian the only non-zero Berry curvature
components are Bngϕ0(ng, EJ) and Bϕ0EJ (ng, EJ) which do not depend on the
parameter ϕ0. Berry curvature components of the original Hamiltonian are then
given by

BngϕL =
∂EJ
∂ϕL

BngEJ +
∂ϕ0

∂ϕL
Bngϕ0 (B.4)

=
1 + κ cos(ϕL − ϕR)

1 + κ2 + 2κ cos(ϕL − ϕR)
Bngϕ0(ng, EJ(κ, ϕL, ϕR)),

BngϕR =
∂EJ
∂ϕR

BngEJ +
∂ϕ0

∂ϕR
Bngϕ0 (B.5)

=
κ2 + κ cos(ϕL − ϕR)

1 + κ2 + 2κ cos(ϕL − ϕR)
Bngϕ0(ng, EJ(κ, ϕL, ϕR)),

BϕLϕR =
∂EJ
∂ϕL

∂ϕ0

∂ϕR
BEJϕ0 +

∂EJ
∂ϕR

∂ϕ0

∂ϕL
Bϕ0EJ (B.6)

=
κEJ sin(ϕL − ϕR)√

1 + κ2 + 2κ cos(ϕL − ϕR)
Bϕ0EJ (ng, EJ(κ, ϕL, ϕR)).
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The eigenstates of a CPB can be expressed analytically using Mathieu func-
tions meν(q, x) [11]

ψm(ϕ) =
1√
2
eing(ϕ−ϕ0)me−2[ng−k(m,ng)]

(
−2EJ
EC

,
ϕ− ϕ0

2

)
, (B.7)

where k(m,ng) is an integer function that is used to properly sort the eigenvalues
and eigenstates as described in [11]. One can also use this formula to calculate
the Berry curvature of a CPB and in turn the Berry curvature of a CPT.
Corresponding eigenvalues are given by

Em =
EC
4
a2[ng+k(m,ng)]

(
−2EJ
EC

√
1 + κ2 + 2κ cos(ϕL − ϕR)

)
, (B.8)

where aν(q) denotes Mathieu’s characteristic value.

B.1 Berry Curvature in the Transmon Regime
When EJ � EC the ground state of a CPB Hamiltonian B.3 can be well
approximated by the ground state of a harmonic oscillator which is given by

ψ0(ϕ) =

(
EJ

2π2EC

)1/8

eing(ϕ−ϕ0)e−
√
EJ/8EC(ϕ−ϕ0)2 (B.9)

∂ψ0

∂ng
= i(ϕ− ϕ0)ψ0 (B.10)

∂ψ0

∂ϕ0

=

(
−ing +

√
EJ

2EC
(ϕ− ϕ0)

)
ψ0 (B.11)

∂ψ0

∂EJ
=

(
1

8EJ
− 1√

32EJEC
(ϕ− ϕ0)

2

)
ψ0 (B.12)

Using this we can calculate that in the lowest order the Berry curvature of a
CPB in the transmon regime is given by Bngϕ0 = 1, BngEJ = 0 and BEJϕ0 = 0.
Then, using the formulas B.4, B.5, and B.6, we can calculate the Berry curvature
of a CPT in the transmon regime to the lowest order

BngϕL =
1 + κ cos(ϕL − ϕR)

1 + κ2 + 2κ cos(ϕL − ϕR)
, (B.13)

BngϕR =
κ2 + κ cos(ϕL − ϕR)

1 + κ2 + 2κ cos(ϕL − ϕR)
, (B.14)

BϕLϕR = 0. (B.15)

We also note that these formulas are a good approximation over multiple bands
since the corrections are exponentially suppressed in

√
EJ/EC .



B.1. Berry Curvature in the Transmon Regime 21

It is is useful to expand the formula B.13 into a series in terms of κ, which is
possible since we assume that 0 ≤ κ < 1. Formula B.13 is actually a generating
function of the Chebyshev polynomials, so we can write

BngϕL =
∞∑
n=0

Tn(− cos(ϕL − ϕR))κn =
∞∑
n=0

(−1)nκn cos(n(ϕL − ϕR)), (B.16)

where Tn is the n-th Chebyshev polynomial of the first kind [10]. This is also
the Fourier series of the Berry curvature.
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C Response Quantization

We can expand the Berry curvature in the Fourier cosine series as

BngϕL =
+∞∑
n,m=0

anm cos(2nπng) cos(m(ϕL − ϕR)). (C.1)

Depending on the form of the applied drives, we can calculate the contribution
to the corresponding Fourier term that will determine the quantization of the
circuit response.

Let us first consider the drives ng = rg cos(ωgt), ϕL − ϕR = 2πrϕ cos(ω0t).
We will make use of the following identity [1]

cos(x cos θ) = J0(x) + 2
+∞∑
n=1

(−1)nJ2n(x) cos(2nθ), (C.2)

where Jn are Bessel functions, to write the Berry curvature as

BngϕL =
+∞∑
n,m=0

anm cos(2nπrg cos(ωgt)) cos(2mπrϕ cos(ω0t)) (C.3)

=
+∞∑
n,m=0

anm

[
J0(2πnrg) + 2

+∞∑
p=1

(−1)pJ2p(2nπrg) cos(2pωgt)

]

×
[
J0(2mπrϕ) + 2

+∞∑
q=1

(−1)qJ2q(2mπrϕ) cos(2qω0t)

]
.

Berry current is then given by IgBngϕL = Ig0 sin(ωgt)B
ngϕL and we are interested

in extracting the amplitude of the term sin(ωgt) from the Fourier expansion. If
the ratio ωg/ω0 is irrational, this amplitude is given by

+∞∑
n,m=0

anm(J0(2nπrg) + J2(2nπrg))J0(2mπrϕ) (C.4)

= 1 +
+∞∑
m=1

a0mJ0(2mπrϕ) +
+∞∑

n=1,m=0

1

nπrg
anmJ1(2nπrg)J0(2mπrϕ),

where we made use of the identity Jα−1(x) + Jα+1(x) = 2αJα(x)/x [1]. In a
similar manner we can find that the amplitude in the case of the drive ng =
rg cos(ωgt), ϕL − ϕR = ω0t is given by
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+∞∑
n=0

an0(J0(2nπrg) + J2(2nπrg)) = 1 +
+∞∑
n=1

1

nπrg
an0J1(2nπrg). (C.5)

For a large x, we can approximate the Bessel function as [1]

Jα(x) ≈
√

2

πx
cos(x− απ/2− π/4). (C.6)

Applying this to our expressions for the response quantization C.4, C.5 we get
that, for sufficiently large sweep amplitudes, the oscillations around perfect unit
quantization drop off as r−1/2ϕ and r−3/2g .

In the case of a rational ratio of frequencies ωg/ω0 = p/q, we numerically
calculate the Fourier coefficient at ωg over the period T = pTg = qT0.
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