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ABSTRACT: A new type of carbonized polymer dot was prepared by the one-step hydrothermal method of triethoxylsilane
(TEOS) and citric acid (CA). The sensor made from carbonized polymer dots (CPDs) showed superior gas sensing performance
toward ammonia at room temperature. The Si, O-codoped CPDs exhibited superior ammonia sensing performance at room
temperature, including a low practical limit of detection (pLOD) of 1 ppm (Ra/Rg: 1.10, 1 ppm), short response/recovery time (30/
36 s, 1 ppm), high humidity resistance (less than 5% undulation when changing relative humidity to 80 from 30%), high stability
(less than 5% initial response undulation after 120 days), reliable repeatability, and high selectivity against other interferential gases.
The gas sensing mechanism was investigated through control experiments and in situ FTIR, indicating that Si, O-codoping
essentially improves the electron transfer capability of CPDs and synergistically dominates the superior ammonia sensing properties
of the CPDs. This work presents a facile strategy for constructing novel high-performance, single-component carbonized polymer
dots for gas sensing.
KEYWORDS: carbonized polymer dots, gas sensor, ammonia, Si, O-codoping, triethoxylsilane

With the growing concern for the environment and human
health, there is a high demand for hazardous gas monitor-
ing.1−4 Among these hazardous gases, ammonia (NH3) gas
detection has attracted a great deal of attention in the field of
gas sensors.5 Inhalation of NH3 above safe levels can cause life-
threatening illnesses due to its extreme toxicity and corrosive
effects on the mucous membranes and respiratory system.
According to the guidelines set by the Occupational Safety and
Health Administration (OSHA), the acceptable exposure limits
are 25 ppm (ppm) for 8 h and 35 ppm for a duration of 10
min.6,7 Moreover, NH3 is also considered as a typical exhaled
biomarker for kidney diseases.8 Therefore, developing high-
performance NH3 sensing materials with low-cost and facile
operations is of urgent significance.
In general, optical instruments and absorption spectroscopy

are utilized to detect ammonia gas.9−13 These methods have
the advantages of high accuracy, excellent reliability, and low
limit of detection (LOD), but the equipment for optical
measurement is usually very expensive and large, which

restricts their practical application. In recent decades, a large
number of literatures have reported various chemiresistive
sensors toward ammonia based on metal oxide semiconductors
(MOS) and conductive polymer.14 Most gas sensors based on
MOS require relatively high operating temperatures (generally
above 150 °C) because oxygen required in the MOS sensing
process is only generated at high temperatures.15 Thus,
excessive energy consumption and safety issues could result.
As for gas sensors based on conductive polymers, the long
response time, weak moisture resistance, and low long-term
stability impede their application.16 Moreover, both metal
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oxides and conductive polymers are not green materials and
have a potential hazard to the environment.
Carbonized polymer dots (CPDs) are environmentally

friendly and easily prepared zero-dimensional nanomaterials
that have shown great potential for gas sensing applications in
recent years owing to their excellent optical/electrical proper-
ties, high chemical/thermal stability, and tunable surface
states.17−22 Zhang et al. fabricated a nitrogen dioxide (NO2)
chemiresistive sensor through combining CPDs with reduced
graphene oxide.23 Lu et al. decorated In2O3 nanoparticles with
CPDs and found that the In2O3/CPDs composite showed
enhanced NO2 response at the operating temperature of 50
°C.24 As CPDs increased the density of surface holes and
created more nanoheterojunctions to promote the charge
transfer in the material, the gas sensitivity of the composite was
significantly improved. Apparently, the composites prepared by
integrating CPDs and other kinds of materials have shown the
promising application prospects of CPDs in the field of gas
sensors. However, complex components and multistep reaction
would inevitably cause low chemical stability and moisture
resistance, which are crucial for gas sensing in various fields. To
solve the problem, introducing doping atoms with more
stability such as silicon and simplifying the preparation process
could be an effective measure.
In this work, we adopted triethoxylsilane and citric acid to

synthesize single-component Si, O-codoped CPDs (Si, O-
CPDs) through a one-step hydrothermal synthesis. The
prepared Si, O-CPDs exhibited superior ammonia sensing
properties at room temperature, especially including high
humidity resistance and 120 day stability. Four control
experiments were conducted to investigate the potential gas
sensing mechanism. It is speculated that Si- and O-codoping
essentially improves the electron transfer capability of the
obtained CPDs and synergistically dominates their superior
ammonia sensing properties.

■ EXPERIMENTAL SECTION
Materials. Triethoxysilane and citric acid were purchased from

Innochem (Beijing, China). The stainless steel autoclave was provided
by Hua Sin Science Co. (Guangzhou, China). The remaining
chemical reagents were of analytical purity and were used directly
without additional purification. The Millipore filter (nylon, pore size:
0.22 μm) was sourced from Titan Scientific Co. (Shanghai, China).
Additionally, dialysis bags with a molecular weight cutoff (MWCO) of
500 Da (RC type) were obtained from Beijing Yikang Shengshi
Biotechnology Co. (Beijing, China).
Synthesis of Si, O-CPDs. For the ammonia sensing performance

of Si, O-CPDs, reaction time, reaction temperature, and the molar
ratio of the precursor, as the three key factors of preparation, were

preferentially optimized. First of all, the reaction time was settled at 6,
8, and 10 h for the same temperature of 180 °C. Besides, a
temperature of 200 °C for a time of 8 h was also selected. Figure S1A
displays a marked effect of temperature and time on the resulting Si,
O-CPDs, which showed the different sensing performance response of
Si, O-CPDs prepared at different temperatures and times at the same
concentration of ammonia gas. The optimum reaction temperature
and time were 180 °C and 8 h, respectively. In addition, the molar
ratio of the reaction precursor was investigated because it is a key
factor that would affect the gas sensing performance. Figure S1B
shows the response performance of the prepared Si, O-CPDs to the
same ammonia gas under different molar ratios of reactants.
Obviously, with the increase of the mole ratio, the ammonia sensing
performance first increased and then decreased. It can be found that
when the molar ratio of triethoxylsilane to citric acid is 2:5, the
response to ammonia gas is the best. Thus, a heating temperature of
180 °C, a reaction time of 8 h, and a molar ratio of triethoxysilane to
citric acid of 2:5 were determined as the optimal preparation
conditions for the formation of Si, O-CPDs.
Si, O-CPDs were synthesized via a one-step hydrothermal reaction.

During the experimental procedure, 1.0507 g of citric acid (CA) and
350 μL of triethoxysilane (TEOS) were initially dissolved in 10 mL of
deionized water to form a homogeneous mixture. This mixture was
then poured into a 25 mL poly(tetrafluoroethylene) liner and
transferred to a stainless steel autoclave, which was subsequently
heated in an oven at 180 °C for 8 h. Upon completion of the reaction,
the autoclave was allowed to cool naturally to room temperature. The
resultant solution was filtered by using a 0.22 μm microporous
membrane and then purified in a dialysis bag for 4 days. Finally, the
pure Si, O-CPDs were obtained through lyophilization at a yield of
18.6%.
Characterization. The morphology of Si, O-CPDs was observed

by a transmission electron microscope (TEM). The Nanomeasure
software was employed to determine the particle sizes of Si, O-CPDs.
An X-ray powder diffractometer (XRD) was employed to identify the
crystal structure of the samples. Surface group characterization was
obtained by Fourier transform infrared spectrophotometer (FTIR). In
situ FTIR spectroscopy was performed with a Nicolet iS50. Element
composition was confirmed by an X-ray photoelectron spectroscopy
(XPS) measurement. Raman spectra were obtained via an inVia
Raman microscope. The detailed information on characterizations is
provided in the Supporting Information.
Sensor Fabrication. The gas sensing properties were measured

by using Ag−Pd interdigital electrodes (IDEs) on ceramic substrates.
First, IDEs were cleaned via ultrasonication in alcohol for 30 min
before use. A 10 μL aqueous solution of Si, O-CPDs was dropped
onto the electrodes and then dried at 60 °C for 15 min.
Gas-Sensing Measurement. A Keithley 2450 electrometer was

employed to monitor the resistance changes in the sensors under 1−
20 V DC as excitation voltage. Dry ammonia gas (10,000 ppm, Dalian
Special Gases Co. Ltd.) taking nitrogen as background was employed
as target gas. A complete sensing test involved three sequential steps,
as follows: First, the baseline was determined and calibrated in air.

Scheme 1. Synthesis Route of the Si, O-CPDs
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Second, target gas at a specific concentration was introduced into the
chamber and diluted by a built-in fan. Finally, the sensor was
recovered by aeration of air after opening the cover of the chamber.
The sensor response (S) was calculated by the formula S = Ra/Rg,
where Ra and Rg, respectively, represent the resistance of the sensors
in the atmosphere of air and the target gas. The response/recovery
times were defined as the time in which the reading of the gas sensor
reaches 90% of the response after exposure to or removal from the
gas. The LOD here was defined as the lowest concentration of the
target gas distinguishable from the common atmosphere. All the
sensing measurements were conducted at 25 °C under a relative
humidity (RH) of 25−30% unless otherwise stated.

■ RESULTS AND DISCUSSION
In this work, as shown in Scheme 1, Si, O-CPDs were
produced by the simple hydrothermal method using
triethoxysilane and citric acid as the precursors.
As shown in Figure 1A, the obtained granular Si, O-CPDs

displayed excellent dispersion with a high density. Figure 1B

illustrates that the mean diameter of Si, O-CPD particles was
around 3.5 nm with a remarkably narrow distribution, as
evidenced by TEM measurement. Distinctly, as shown in
Figure 1C, the broad diffraction peak located at 20° illustrated
a highly amorphous carbon phase with very few lattices in the
obtained Si, O-CPDs.25 Moreover, Figure 1D shows no
distinct D or G band in the Raman spectrum due to the low
carbon-lattice-structure content of the Si, O-CPDs,26 which is
the same as the results observed by TEM.
The functional groups present on the surface of the Si, O-

CPDs were further characterized by FTIR. As Figure 2A
shows, several main absorption peaks can be identified as the
O−H stretching vibrations at 3442.7 cm−1,27 the characteristic
Si−O stretching vibrations at 794.6 cm−1, the characteristic
absorption peak of Si−H at 968.2 cm−1,28 and the C�O
stretching vibrations at 1635.5 cm−1.27 The typical Si−O−Si
asymmetric stretching peak was observed at 1105.1
cm−1.18,29,30 Additionally, XPS measurement was also utilized
to analyze the elemental composition and the type of
functional groups of the surface of Si, O-CPDs. As illustrated
in Figure S2, the atomic composition of the Si, O-CPDs is
10.2% carbon, 58.7% oxygen, and 31.1% silicon. Four peaks

centered at 283.2, 284.8, 286.3, and 288.6 eV were displayed in
the high-resolution XPS spectra of C 1s (Figure 2B), which
could be assigned to carbon−silicon bonds, carbon−carbon
bonds, and carbon−oxygen single and double bonds,
respectively.31−33 The O 1s spectra (Figure 2C) displayed
three peaks at 531.2 eV (Si−O), 532.7 eV (C−O), and 534.1
eV (C�O),34,35 and two peaks at 102.3 eV (Si−C) and 104.2
eV (Si−O−Si) were shown in the Si 2p spectra (Figure
2D).36,37

The gas sensing properties were explored by utilizing the
prepared samples as sensing materials to prepare sensors on
the IDEs. Gas sensing experiments were conducted for
ammonia with air as the background gas at an operating
temperature of 25 °C.
Figure 3A displays the response−recovery curves of the Si,

O-CPDs sensors upon exposure to different concentrations of
NH3 at room temperature, which showed the dynamic
response of Si, O-CPDs. There was a discernible response
toward a low concentration of NH3 (1 ppm), which increased
with the addition of NH3. The illustration shows the linear
fitting diagram of different NH3 concentrations, which shows
the linear relationship between sensor response and NH3
concentration. The fitting equation of the sensor based on
Si, O-CPDs is Y= 0.07X + 1.04 (Y, sensor response; X, gas
concentration) in the range of 1−5 ppm. The correlation
coefficient (R2) was 0.97, indicating a positive correlation. The
response and recovery times were respectively defined as the
time taken to respond to 90% of the full magnitude change in
the response/recovery process. For Si, O-CPDs sensors toward
5 ppm ammonia, these two times are 30 and 36 s, respectively.
Reversibility, repeatability, and response rate are critical

criteria for gas sensors. Figure 3C shows the response−
recovery curve of Si, O-CPDs toward 5 ppm ammonia for five
consecutive cycles. The average response value is 1.40,
indicating the high reliability and good reversibility of Si, O-
CPDs sensing. To date, most room temperature gas sensors
still have problems with long response and recovery times. The
response and recovery times of Si, O-CPDs toward 5 ppm of
NH3 are relatively shorter (30 and 36 s, respectively).
Moreover, the Si, O-CPDs sensor showed excellent selectivity

Figure 1. TEM image (A) and size distribution diagram (B) of Si, O-
CPDs. XRD pattern (C) and Raman spectrum (D) of Si, O-CPDs.

Figure 2. (A) FTIR spectrum of Si, O-CPDs. High-resolution XPS
spectra of C 1s (B), Si 2p (C), and O 1s (D) of Si, O-CPDs.
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among various indoor gases such as NO2, SO2, and CO2 and
volatile organic compounds at a concentration of 100 ppm
(Figure 3F). Note that Si, O-CPDs based gas sensors show the
highest response to 5 ppm ammonia compared to other gases
(1.42) (the responses for methanol, ethanol, acetone, and
toluene were 1.18, 1.13, 1.08, and 1.07 at 100 ppm,
respectively). Meanwhile, the gas-sensitive stability of the
prepared Si, O-CPDs material was studied in detail. As
demonstrated in Figure 3D, the average response of Si, O-
CPDs to 5 ppm ammonia at RT after 120 days of exposure to
environmental conditions was 1.40, indicating that Si, O-CPDs
have better long-term stability (less than 5% initial response
undulation after 120 days). As we know, to realize the practical
application of gas sensors, the influence of RH on sensor
performance should be considered. The RH range from 20 to

80% was chosen to investigate the impact of different RH on
the gas sensing performance of Si, O-CPDs. As shown in
Figure 3E, the response of the sensor remains almost the same
when the RH increases from 20 to 80%, with only less than 5%
undulation. To the best of our knowledge, both the humidity
resistance and stability of the Si, O-CPDs based sensing
material in this work are the best among the chemiresistive
room temperature ammonia sensing materials reported so far.
Combined with the reported literature,48−50 it could be
speculated that the high humidity resistance of Si, O-CPDs is
attributed to the short amount of time to reach a constant and
stable degree of water adsorption on the surface of Si, O-CPDs
even at 20% RH.
Table 1 summarizes previous works in terms of metal oxide

and non-metal oxide based room temperature NH3 sensors.
The gas sensing performance based on Si, O-CPDs is
comparable to those of the listed ammonia gas sensors. In
addition, Si, O-CPDs based sensors have relatively shorter
response/recovery times and exhibit outstanding humidity
resistance and quite high long-term stability. Therefore, the
high ammonia sensing performance of Si, O-CPDs makes it a
promising material for fabricating room temperature NH3
sensors.
To further explore the sensing mechanism of the Si, O-

CPDs, control experiments were conducted. As listed in Table
2, all the control groups showed no sensing performance
toward NH3 gas compared to Si, O-CPDs, whereas the product
in control IV demonstrated a slight response. One possible
reason is that oxygen doping would result in a donor level
within CPDs so that Si, O-CPDs possessed N-type semi-
conductor properties.51 On this basis, according to the
semiconductor energy band theory,52,53 the electron trap
centers of silicon atom would easily generate on the surface of
CPDs due to the larger atomic radius of silicon atom. As
shown in Figure 4, these electron trap centers could constitute
electron transmission channels for capturing, storing, and
transferring the electrons between the absorbed ammonia on
both the surface and inside core of the Si, O-codoped CPDs.
Therefore, Si, O-codoping essentially improves the electron
transfer capability of CPDs and synergistically dominates the
superior ammonia sensing properties of the Si, O-CPDs.

Figure 3. (A) The successive response curve of Si, O-CPDs sensors
toward NH3 in different concentration ranges of 1 to 5 ppm. Inset:
corresponding linear fit of the responses of the NH3 concentration
(R2 = 0.97). (B) Response and recovery time of Si and O-CPDs
toward 5 ppm of NH3. The response time was defined as the time to
reach 90% of the maximum response, whereas the recovery time is the
time required for the equilibrated resistance to decrease to 10% of the
original value after releasing the test gas. (C) The response−recovery
curve of Si, O-CPDs sensors toward 5 ppm of NH3. (D) The 120 day
aging test of Si, O-CPDs sensors toward 5 ppm of NH3. (E) Response
of Si, O-CPDs upon exposure to 5 ppm of NH3 under 20−80% RH.
Error bars for the data points lie within the symbols themselves. (F)
Sensing selectivity of the Si, O-CPDs sensors toward 5 ppm of NH3
and 100 ppm of common indoor harmful gases.

Table 1. Performances of the Comparable Metal Oxide Based and Non-metal Oxide Based Room Temperature NH3 Gas
Sensorsa

materials NH3 (ppm) response (Ra/Rg) response/recovery time (s) humidity resistance (%) time stability (days)

metal oxides ZnO/CuO14 1 2.56 2.3/2.1 11−85 (+466%) 150
MoS2-Co3O4

38 5 1.65 98/100
Pd NPs/TiO2

39 5 ∼1.13 184/81 40−80 (+10%) 26
SnO2-SnS2

16 10 1.20 11/>200
Ti3C2Tx/ In2O3

40 5 ∼1.12 42/209 15−85 (−40%) 30
rGO/MoO3

41 5 15.11 33/84 0−70 (−20%) 40
ZnO/graphene42 600 11.60 280/300
ZnO film8 5 3.5 20/25 0−70 (−225%) 12

non-metal oxides GP-PANI/PVDF43 1 1.60 46/198 15−85 (+25%) 17
PET/PANI44 50 1.17 47/-
PANi-SnO2

45 10 1.07 240/2220 40
PPy/TfmpoPcCo46 5 1.10 22/120 10−95 (−5%) 60
Ppy/Pd47 50 1.13 14/148

this work Si, O-CPDs 5 1.40 30/36 30−80 (<5%) 120

aStability refers to the long-term stability. ±: the increase or decrease of the gas response in the range of the humidity change.
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In addition, an in situ FTIR measurement was carried out to
verify the sensing mechanism from a chemical perspective. The
FTIR spectra were collected under a nitrogen atmosphere, as
shown in Figure S3A (black line). After the introduction of
NH3 gas into the cell, the intensity of the peak at 1105 cm−1

decreased. These results indicated that the Si−O−Si bonds
were broken by NH3 during the sensing process, which is a
commonly used chemical reaction in the fields of silane
coupling.54,55 Thus, the change of the chemical structure of Si,
O-CPDs would further influence their electrical properties
such as resistance. Subsequently, nitrogen purging was carried
out to remove NH3 gas, which led to a degree of reversion of
their FTIR spectra (Figure S3B), mainly because the
conversion from Si−O−Si to Si−O−H is reversible.
Combining the above two experiments, it could be

concluded that Si, O-codoping plays a key role in the sensing
process.

■ CONCLUSIONS
In summary, the Si, O-CPDs were synthesized by a one-step
hydrothermal method. The Si, O-CPDs sensors showed
superior sensing performance toward NH3 at room temper-
ature, with high response, relatively short response/recovery
time, reliable repeatability, remarkable selectivity, and sensing
linearity. More significantly, the sensor showed a high humidity
resistance and long-term stability. Moreover, the mechanism
study illustrates that it is Si, O-codoping that essentially
improves the electron transfer capability of CPDs and
synergistically dominates the superior ammonia sensing
properties of the CPDs. This work provides a facile strategy
for establish high-performance NH3 sensing systems. It is
expected to develop an avenue for the application of single-
component carbonized polymer dots in the gas sensing
direction.
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