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Preface 

This thesis report marks the end of a nine year learning journey at TU Delft. It has been a long 

road for sure, a rocky road at times. But with the years came perseverance, and in this report, 

I see the crown to my work during the master Transport, Infrastructure and Logistics which I 

started in September 2018. 

Although railways were already the topic of my bachelor thesis, it was not until the TIL design 

project that I really started to develop an interest in this field. That is also where I met Nikola, 

one of the daily supervisors from TU Delft, who I would like to thank for his enthusiasm and 

constructive criticism. Naturally I would also like to thank my other daily supervisor Amir, in 

particular for helping me create a clear and consistent storyline, and my professor Rob, for 

overseeing the entire process. All of their feedback has helped me strive for the best possible 

result within the available time and research scope. What I appreciated most of all was the level 

of detail in the feedback which, as we have discussed, was a natural result of the effort I had 

put in myself. The fact that we were able to go into the details also indicates there were never 

any major roadblocks along the way, even though I deliberately did some things the hard way, 

for example by developing a dedicated graph search algorithm for three start vertices. Looking 

back, I believe the results were worth the effort. 

When I first contacted Nikola about this thesis opportunity in December 2020, it was not clear 

yet that I would do the thesis in ProRail. Luckily the draft proposal reached Jochen, who saw 

this as an interesting research opportunity and thus became my company supervisor. Working 

as an intern in ProRail has been a pleasant and valuable experience, even though I have spent 

most of the time in my dorm room due to COVID-19 restrictions. Still, the VGB team members 

made me feel welcome and part of the team, which is why I regret having to leave them so soon 

again. My gratitude goes out to all of them. In particular, I would like to thank Jochen for his 

support, enthusiasm and sincerity, and for trying to help me find a pace that can be sustained 

in the long term. Also, I would like to thank the colleagues of the PAB for helping me get up to 

speed with Sherlock and obtain the necessary data, and all of the other colleagues that I spoke 

to for their engagement. Hearing how they identified with the results was probably one of the 

biggest compliments I could wish for. 

It would feel as a great reward if the findings from this thesis will eventually help improve 

disruption management practices in the Netherlands. I believe ProRail is already heading in 

the right direction, however, they just need to take the next step. Even if this report ends up on 

a shelf or in a drawer, I will at least have drawn attention to the topic of resilience and shown 

that much more can be done with the currently available data. I enjoyed exploring Sherlock a 

lot, and although it already contains a wealth of information, I hope the issues that I raised 

over the course of the research will benefit future users. 

Last but not least, I would like to thank my parents for their unconditional support, even during 

the times in my bachelor when progress was slow. Now, it is time for me to make the leap into 

practice. Though I will abandon the topic of resilience for now, I will remain active in the rail 

industry. Hopefully you will find that my interest in this field is reflected in the quality of this 

report. Enjoy reading! 

 

Max Knoester 

Delft, October 2021 
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Summary 

Research problem 

The Dutch railway network is one of the busiest in Europe. Under normal conditions, trains 

run according to the timetable and minor variations in the train service may occur. However, 

as in any type of transportation system, it is inevitable that disruptions in the network will 

occur. Disruptions are unexpected changes that are caused by the failure of infrastructure or 

rolling stock, unscheduled maintenance, extreme weather or other external events. In case of 

a disruption, adjustments need to be made to the timetable, crew planning and rolling stock 

planning. The consequence is generally that trains are canceled or experience serious delays. 

Disruptions can easily propagate through the network, and their effects may even build up to 

a networkwide scale. In addition, the number of disruptions in the Dutch railway network per 

year and per train kilometer has been steadily increasing over the last decade. 

System performance during disruptions can be visualized in the resilience curve, which is also 

known as the bathtub model. Three phases are distinguished in the curve: the first and third 

are transition phases, whereas the second phase represents a disrupted yet stable system. In 

reality though, the curve has remained mostly theoretical in nature. Not much is known about 

the shape of the curve or about railway system performance during disruptions in general. This 

makes it hard to design appropriate measures for disruption management such as contingency 

plans. More and better quantitative knowledge about resilience would contribute to the effec-

tive allocation of resources to improve the design and application of measures, and create a 

more resilient railway network. Therefore, the following research question was formulated: 

How does the system performance of a railway network develop during disruptions? 

Methodology 

The research question was answered by applying a combination of methods. First, a literature 

review was performed which focused on the quantification of railway system performance. The 

four cornerstones of the review were the resilience definitions, performance indicators, resili-

ence evaluation approaches and resilience metrics. Second, interviews with practitioners were 

held to learn about the state of the practice regarding disruption management. Third, the main 

research method was a quantitative data analysis of historical railway traffic realization data. 

Realization data includes the plan time and realization time of a train activity, which can be an 

arrival, passing or departure at a certain location. These data were combined with disruption 

log data from ProRail’s data analysis application “Sherlock” to calculate the evolution of system 

performance during disruptions. Performance was defined herein as a weighted sum of traffic 

intensity and traffic punctuality, and it was calculated as a centered moving average over a time 

period of 30 minutes. This resulted in resilience curves such as the schematic example below. 

The resilience curves were not just determined for the disrupted line or timetable point, but 

for the entire area where disruption effects are expected to occur. According to the terminology 

used in ProRail, this area is referred to as the first and second impact area. 

Each resilience curve was described quantitatively in terms of seven resilience metrics: the 

degradation time (DT), response time (RST) and recovery time (RCT), which represent the 

time dimension; the maximum impact (MI), which represents the performance dimension; 

and the performance loss (PL), degradation profile (DP) and recovery profile (RP), which rep-

resent both dimensions at once. Since performance was calculated over the entire impact area, 

the spatial aspect of the disruption dynamics was incorporated in the performance dimension. 

Resilience curves were determined for the top five most common disruption causes where a 

contingency plan was applied, which are train defects, section/signal failures, collisions, switch 

failures and overhead line failures. Differences and similarities in the resilience metrics across 
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disruptions of different causes were evaluated and relationships between resilience metrics 

were identified in incrementally designed experiments as part of a case study. The case study 

focused on passenger traffic in the Dutch railway network in timetable year 2019, which was 

the last regular timetable year before the COVID-19 pandemic. Among others, the experiments 

involved evaluating an example case, identifying different types of resilience curves, drawing 

the mean and median resilience curve per disruption cause, evaluating differences between the 

observed and reported timepoints that mark the end of a phase, performing group comparisons 

of the resilience metrics and performing regression analysis. 

 

 

 

 

 

 

 

 

 

Results 

The results of the case study showed that the resilience curve does not necessarily resemble the 

theoretical shape of the bathtub. Instead, eight different types of resilience curves were identi-

fied. Despite the fact that some types of curves appear more characteristic of one disruption 

cause than of another, there is still significant heterogeneity in the shape of the curve, even 

among disruptions of the same cause. Regarding the time differences, it was found that disrup-

tions are reported late on average, and also, that disruptions last longer on average than 

reported. In fact, the third phase is nearly as long as the second phase on average, which makes 

it much longer than experienced in practice. Based on the mean and median resilience curves, 

it was postulated that train defects are the least impactful single disruptions overall, whereas 

collisions are the most impactful single disruptions overall. This assumption seemed intuitive 

and was confirmed in the group comparisons, which showed that significant differences exist 

among disruptions of different causes in terms of the first five resilience metrics. The largest 

differences in general were observed in the response time, maximum impact and performance 

loss. Compared to the other types of disruptions, collisions stand out negatively in terms of 

recovery time, maximum impact and performance loss. 

Furthermore, a significant positive relationship was identified between performance loss on 

the one hand and the maximum impact and total duration on the other hand, where the 

relationship with the maximum impact was the most obvious of the two. This means that the 

cumulative loss of performance depends more strongly on how much performance is reduced 

at the lowest point in the curve than on how long the disruption lasts. No relationships were 

found for the other resilience metrics and additional explanatory variables. The absence of 

other relationships means that reaching the next phase quickly does not necessarily tell much. 

More specifically, it indicates that rushing through the first phase does not necessarily result 

in better (or worse) performance during the remainder of the disruption, in contrast to what 

seems to be the general belief in ProRail. Instead, it would be better to take the time to devise 

a structurally feasible traffic plan that limits the chance of secondary delays. By complying with 

the plan, the predictability towards passengers and train operating companies will increase. 
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Conclusions 

The general conclusion is that the system performance of a railway network during disruptions 

may approximately follow the shape of the resilience curve as depicted in theory, but this does 

not always have to be the case. Some resilience curves are fairly well behaved: they degrade, 

remain steady for some time and recover again, while others may show atypical behavior and 

can even be quite unpredictable. The shape of the curve might be affected by an abundance of 

factors, which could be categorized as characteristics of the infrastructure, timetable, human 

action, information supply or external conditions. With regard to disruption management in 

the Netherlands, improvements could be achieved in each of the resilience phases, and also in 

the handling of collisions. Although ProRail is already heading in the right direction, the 

recommendations made in this report could help realize the transition towards even more 

predefined and proactive disruption management, which is needed to manage an increasingly 

busy railway network. 
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Samenvatting 

Onderzoeksprobleem 

Het Nederlandse spoornetwerk is één van de drukste netwerken in Europa. Onder normale 

omstandigheden rijden treinen volgens de dienstregeling en doen zich slechts kleine variaties 

in de treindienst voor. Zoals in elk vervoersysteem is het echter onvermijdelijk dat er verstorin-

gen optreden. Verstoringen zijn onverwachte veranderingen als gevolg van een defect aan de 

infrastructuur of het materieel, ongeplande werkzaamheden, extreme weersomstandigheden 

of andere externe oorzaken. In het geval van een verstoring, hierna “calamiteit” genoemd 

volgens de formele definitie binnen ProRail, zijn aanpassingen aan de dienstregeling, 

personeelsplanning en materieelplanning nodig. Het gevolg is doorgaans dat treinen worden 

opgeheven of vertraging oplopen. De effecten van een calamiteit kunnen zich makkelijk door 

het netwerk verspreiden, en kunnen in het ergste geval zelfs door het hele netwerk merkbaar 

zijn. Daarnaast is het aantal calamiteiten in het Nederlandse spoornetwerk per jaar en per 

gereden treinkilometer het afgelopen decennium gestaag toegenomen. 

De systeemprestatie tijdens calamiteiten kan worden gevisualiseerd in de veerkrachtcurve, die 

ook wel bekend staat als het badkuipmodel. De curve bestaat uit drie fases: de eerste en derde 

fase zijn overgangsfases, terwijl de tweede fase een verstoord doch stabiel systeem beschrijft. 

In werkelijkheid heeft de curve vooral een theoretisch karakter. Er is weinig bekend over de 

exacte vorm van de curve of over de systeemprestatie van het spoornetwerk tijdens calamitei-

ten in het algemeen. Dit maakt het lastig om passende maatregelen zoals versperringsmaat-

regelen te ontwerpen. Meer en betere kwantitatieve kennis op het gebied van veerkracht zou 

bijdragen aan de effectieve toekenning van middelen om het ontwerp en de toepassing van 

maatregelen te verbeteren, en zo een veerkrachtiger spoornetwerk te creëren. Daarom is de 

volgende onderzoeksvraag geformuleerd: 

Hoe verloopt de systeemprestatie van een spoornetwerk tijdens calamiteiten? 

Methodiek 

De onderzoeksvraag is beantwoord door toepassing van een combinatie van onderzoeksmetho-

des. Ten eerste is een literatuuronderzoek uitgevoerd waarbij de focus lag op het kwantificeren 

van de systeemprestatie. De vier hoekstenen van het onderzoek waren de veerkrachtdefinities, 

prestatie-indicatoren, evaluatiemethodes en kengetallen. Ten tweede zijn interviews gevoerd 

met mensen uit de praktijk om meer te weten te komen over de stand van de praktijk met 

betrekking tot calamiteitsmanagement. Ten derde is als voornaamste onderzoeksmethode een 

kwantitatieve data-analyse uitgevoerd van historische realisatiedata. Realisatiedata betreft 

onder meer de plantijd en realisatietijd van een treinactiviteit. Een activiteit is gedefinieerd als 

een aankomst, doorkomst of vertrek op een dienstregelpunt. Deze data zijn gecombineerd met 

de gelogde data uit ProRails data-analyseapplicatie “Sherlock” om het verloop van de systeem-

prestatie tijdens calamiteiten te berekenen. Prestatie werd hierin gedefinieerd als een gewogen 

som van verkeersintensiteit en verkeerspunctualiteit en werd berekend als een gecentreerd 

voortschrijdend gemiddelde over een periode van 30 minuten. Dit heeft geleid tot veerkracht-

curves zoals in het onderstaande, schematische voorbeeld. De curves zijn niet bepaald voor 

alleen het getroffen baanvak of dienstregelpunt, maar voor het gehele gebied waarin de 

gevolgen van een calamiteit merkbaar kunnen zijn. Volgens de terminologie binnen ProRail 

wordt hiernaar verwezen als het eerste en tweede impactgebied. 

Elke veerkrachtcurve is kwantitatief beschreven aan de hand van zeven veerkrachtkengetallen: 

de degradatietijd (DT), handelingstijd (RST) en hersteltijd (RCT), die de tijdsdimensie verte-

genwoordigen; de maximale impact (MI), die de prestatiedimensie vertegenwoordigt; en het 

prestatieverlies (PL), degradatieprofiel (DP) en herstelprofiel (RP), die beide dimensies tege-
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lijk vertegenwoordigen. Aangezien de prestatie is berekend over het hele impactgebied, zit het 

ruimtelijke aspect van de storingsdynamiek opgesloten in de prestatiedimensie. De veerkracht-

curves zijn bepaald voor de vijf meest voorkomende oorzaken waarvoor een versperringsmaat-

regel is toegedeeld, namelijk defect materieel, sectie-/seinstoringen, aanrijdingen, wissel-

storingen en defecte bovenleiding. Verschillen en overeenkomsten in de kengetallen tussen 

calamiteiten met verschillende oorzaken zijn geëvalueerd, en relaties tussen de kengetallen zijn 

vastgesteld in incrementeel ontworpen experimenten als onderdeel van een casestudie. De 

casestudie was gericht op reizigersverkeer in het hele Nederlandse spoornetwerk in dienstre-

geljaar 2019, het laatste reguliere dienstregeljaar voor de coronapandemie. De experimenten 

bestonden onder meer uit het uitgebreid evalueren van een enkele calamiteit, het identificeren 

van verschillende soorten curves, het bepalen van de gemiddelde curve en mediaancurve per 

storingsoorzaak, het evalueren van de tijdsverschillen tussen de waargenomen en gerappor-

teerde begin- en eindtijden van de badkuipfases, het uitvoeren van groepsvergelijkingen op 

basis van de kengetallen en het uitvoeren van regressieanalyses. 

 

 

 

 

 

 

 

 

 

Resultaten 

De resultaten uit de casestudie lieten zien dat de veerkrachtcurve niet noodzakelijk lijkt op de 

theoretische vorm van de badkuip. Integendeel, er werden acht verschillende soorten curves 

herkend. Ondanks het feit dat bepaalde soorten meer typerend lijken voor één storingsoorzaak 

dan voor een andere oorzaak is er een significante heterogeniteit in de vorm van de curve, zelfs 

onder calamiteiten met dezelfde oorzaak. Met betrekking tot de tijdsverschillen werd gevonden 

dat calamiteiten gemiddeld beschouwd te laat worden gemeld, en ook dat calamiteiten gemid-

deld beschouwd langer duren dan gerapporteerd. De derde fase duurt gemiddeld beschouwd 

bijna even lang als de tweede fase, en duurt daarmee aanzienlijk langer dan in de praktijk wordt 

ervaren. Op basis van de gemiddelde curves en mediaancurves werd verondersteld dat defect 

materieel de minst impactvolle opzichzelfstaande calamiteiten zijn, terwijl aanrijdingen de 

meest impactvolle opzichzelfstaande calamiteiten zijn. Deze aanname leek intuïtief en werd 

bevestigd in de groepsvergelijkingen, waaruit bleek dat er significante verschillen bestaan in 

de eerste vijf kengetallen tussen calamiteiten met verschillende oorzaken. De grootste verschil-

len werden gemeten in de handelingstijd, maximale impact en prestatieverlies. Vergeleken met 

de anders storingsoorzaken sprongen aanrijdingen er in negatieve zin uit als het gaan om de 

hersteltijd, maximale impact en prestatieverlies. 

Verder werd in de regressieanalyse een positief verband gevonden tussen het prestatieverlies 

enerzijds en de maximale impact en totale duur van een calamiteit anderzijds, waarbij het 

verband met de maximale impact het meest duidelijk was. Dit verband laat zien dat het cumu-

latieve verlies in prestatie sterker afhankelijk is van de mate waarin de prestatie is afgenomen 

op het laagste punt in de curve dan van de totale duur van een calamiteit. Er werden verder 
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geen verbanden gevonden voor de overige kengetallen en andere verklarende variabelen. De 

afwezigheid van andere verbanden betekent onder meer dat het snel bereiken van de volgende 

fase niet per se veel invloed heeft op de prestaties. Meer specifiek betekent dit dat het snel 

doorlopen van de eerste fase niet per definitie leidt tot een betere (of slechtere) prestatie in het 

verdere verloop van de calamiteit, in tegenstelling tot wat de heersende gedachte lijkt te zijn 

binnen ProRail. In plaats daarvan zou het dan ook de voorkeur verdienen om de tijd te nemen 

voor een structureel maakbaar verkeersplan, zowel voor de tweede als derde fase, waarbij de 

kans op nieuwe vertragingen zo veel mogelijk wordt beperkt. Door dit plan vervolgens ook na 

te leven, wordt bovendien de voorspelbaarheid richting de reizigers en de vervoerders vergroot. 

Conclusies 

De algemene conclusie is dat de systeemprestatie van een spoornetwerk tijdens calamiteiten 

ongeveer de vorm van de veerkrachtcurve kan volgen zoals deze in de theorie wordt afgebeeld, 

maar dit hoeft in de praktijk niet altijd het geval te zijn. Sommige curves vertonen redelijk goed 

gedrag: ze nemen af, blijven een tijd stabiel en herstellen weer, terwijl andere curves atypisch 

gedrag vertonen en zelfs vrij onvoorspelbaar kunnen zijn. De vorm van de curve zou beïnvloed 

kunnen worden door een verscheidenheid aan factoren, die gecategoriseerd kunnen worden 

als eigenschappen van de infrastructuur, dienstregeling, menselijk handelen, informatievoor-

ziening of externe omstandigheden. Met betrekking tot de bijsturingspraktijken in Nederland 

zijn er in elke badkuipfase, en ook in de afhandeling van aanrijdingen in het algemeen, verbete-

ringen te behalen. ProRail zit al op de goede weg, maar de aanbevelingen in dit rapport zouden 

kunnen helpen bij de transitie naar een nog meer vooraf gedefinieerd en proactief calamiteits-

management, wat nodig is om het alsmaar drukker wordende spoornetwerk op gang te houden. 

De Nederlandstalige aanbevelingen zijn te vinden in Appendix B. 
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1. Introduction 

This thesis report explores the dynamics in railway system performance during disruptions. In 

this first chapter, an outline of the research problem is given. Section 1.1 presents the problem 

and company context and introduces some basic definitions of disruptions and delays. Section 

1.2 presents the problem statement, and Section 1.3 presents the research objectives and 

approach. Section 1.4 presents the main research question and related subquestions. Section 

1.5 describes the research methods, and Section 1.6 delineates the scope of the research. 

Section 1.7 presents the scientific and societal significance of the research. Finally, Section 1.8 

presents a reading guide and a flowchart of the report structure. 

1.1. Problem context 
The Dutch railway network is known as the busiest in Europe (ACM, 2019), with approximately 

1.3 million passenger trips and 148 million ton kilometers of freight transport every day. Under 

normal conditions, trains arrive and depart according to the timetable and only minor varia-

tions in the train service are observed. These variations, which result from differences in driv-

ing behavior and from the fact that processes such as coupling and converting may take longer 

than specified, are referred to as disturbances (Cacchiani et al., 2014). Larger variations, which 

involve an unexpected change caused by the failure of infrastructure, breakdown of vehicles, 

unscheduled maintenance, extreme weather or other external events, are referred to as disrup-

tions (Bešinović, 2020). A disruption in the railway network generally means that certain trains 

experience serious delays or are not capable of running at all (Simons, 2019). Where disturb-

ances are handled by adjusting only the timetable, disruptions require additional adjustments 

to the rolling stock and crew planning (Mattsson & Jenelius, 2015; Zilko et al., 2016). Recovery 

models and algorithms have been designed for this purpose, see for example Veelenturf (2014). 

Given the complex and dynamic nature of railway networks, it is acknowledged that disrup-

tions will inevitably occur (Zilko et al., 2016). When they do, the emphasis should be on mini-

mizing the consequences and recovering from the impact (Schipper & Gerrits, 2018). Because 

of the network’s intrinsic characteristics, disruptions easily propagate through the network in 

time and space (Cats & Jenelius, 2014; Malandri et al., 2018). This is partly due to the relative 

scarcity of infrastructure (Büchel et al., 2020) that makes railways and other public transport 

networks more sensitive to disruptions compared to road networks (Mattsson & Jenelius, 

2015). Delay propagation may even build up to a system-wide scale, leading to new constraints 

elsewhere in the network (Dekker & Panja, 2021). When this is the case, primary delays will 

have caused extensive secondary delays, which are defined as delays due to a path conflict 

between trains (Goverde & Hansen, 2013). A system-based perspective is therefore essential 

to evaluate and understand the performance of the network during disruptions. 

Considering the growing transport demand, a corresponding increase in maintenance works 

(Van Aken et al., 2017) and the effects of climate change, the number of railway disruptions is 

expected to increase in the future (Bešinović, 2020). This trend can already be seen building 

up over the past decade. Since the introduction of a new measurement system by the Dutch 

Railways (Nederlandse Spoorwegen, NS) in 2017, an average of 14 disruptions have been re-

ported daily (Rijden de Treinen, n.d.). Through the years, the numbers have been ever increas-

ing except for 2020, when a 49% decrease in public transport use was observed compared to 

the year before (Metselaar, 2021). This could be explained by the disrupting effects of the 

COVID-19 pandemic, which makes data for 2020 and 2021 confounding. Regardless, the over-

all trend seems to be increasing, as the number of disruptions in 2020 was higher than in 2017. 

This holds for the absolute number of disruptions as well as for the number of disruptions per 

train kilometer. Figure 1.1 shows this development over time. The upward trend is problematic 

as it increases the risk of nonperformance in the medium to long term. In the short term, the 
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upcoming frequency increase on the RoSA corridor, which will offer one intercity train every 

ten minutes between Rotterdam and Arnhem via Schiphol, already raises concerns among 

traffic controllers about potential out-of-control situations in case of future disruptions*. 

 
Figure 1.1. Disruptions in the Dutch railway network over time; data from Rijden de Treinen (n.d.). 

Company context 

Railway disruption management means dealing with the impact of a disruption “to ensure the 

best possible service for passengers” (Jespersen-Groth et al., 2009) by adjusting the timetable, 

rolling stock and crew planning. The way in which this is organized is different in each country 

(Schipper & Gerrits, 2018). In the Netherlands, state-owned infrastructure manager ProRail 

holds a central position in the disruption management process. ProRail came into existence 

from the reorganization of the NS in 1995 due to European legislation which forced the exploi-

tation and management of railway infrastructure to be separated. The three subsidiaries that 

resulted from this reorganization started collaborating in 2003 under the trademark ProRail 

as part of Railinfratrust BV, the legal owner of most of the Dutch railway network. In 2005, the 

subsidiaries merged into ProRail BV. 

As the infrastructure manager, ProRail has many responsibilities. It is in charge of construction 

and maintenance of railway tracks; maintenance of train stations; monitoring and coordina-

tion of railway traffic; information supply towards train operating companies; and the alloca-

tion of network capacity. Disruptions are managed in cooperation with the actors involved and 

are coordinated nationally from the Operational Control Center Rail (OCCR) in Utrecht. Dis-

ruption management is an important part of railway traffic control, which aims to mitigate the 

consequences of a disruption and keep the traffic outside the disrupted area run smoothly. 

However, disruption management has to continue evolving if railway system performance is 

to be kept at the current level. That is where this thesis aims to contribute. 

1.2. Problem statement 
The research problem addressed in this thesis can be traced back to the limited quantitative 

knowledge in scientific literature about disruptions in railway networks. In general, not much 

is known about system behavior during disruptions (Dekker & Panja, 2021), which is typically 

illustrated with the bathtub model in Figure 1.2 (Ghaemi et al., 2017). The model is more com-

monly referred to as the resilience curve, because it shows how the system eventually recovers 

from a disruption. Three phases are distinguished in the curve: the first and third phase are 
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transition phases, whereas the second phase represents disrupted but stable system behavior. 

Until now, the resilience curve has remained mostly theoretical in nature, which is why this 

interpretation has not resulted in major findings (Madni et al., 2020). The exact shape of the 

curve and the extent to which it applies in practice are not well understood. Because of this 

limited quantitative knowledge, designing appropriate measures for disruption management 

is challenging (Bešinović, 2020). The complex interaction between delay propagation and 

management actions is most likely to blame for the relatively limited amount of past research 

(Büchel et al., 2020). However, there is currently a growing demand for the quantification of 

system performance during disruptions (Bešinović, 2020), as resilience has become a critical 

design requirement for increasingly complex and interconnected systems (Uday & Marais, 

2015; Madni et al., 2020). Better knowledge would contribute to the effective allocation of 

resources to prevent, mitigate and recover from disruptions (Malandri et al., 2018). 

 

Figure 1.2. The bathtub model (Ghaemi et al., 2017). 

The consequences of the current problem are experienced in the first place by railway traffic 

controllers. They are provided with predefined solutions known as contingency plans in order 

to manage traffic during a disruption. The goal of a contingency plan is to reach steady state 

behavior by following an adjusted timetable until the regular service can be restarted. Although 

this allows quick implementation, the static plans do not account for the dynamic operational 

environment. For example, the train composition or available infrastructure may be different 

than anticipated, or a train may have already passed the location where it was meant to short-

turn. Consequently, small deviations can render the plans infeasible (Schipper & Gerrits, 2018) 

and a suitable plan may not always be available or applicable (Ghaemi et al., 2017). Further-

more, the plans do not offer support during the transition phases (Ghaemi et al., 2018). The 

effects of this problem are felt by train passengers in the form of cancellations and delays. In 

addition, disruptions in transport systems may lead to economic losses (Tsuchiya et al., 2007). 

Disruptions in the Dutch railway network can affect logistics processes in the ports of Antwerp 

and Rotterdam, which has consequences for the hinterland. They can also disrupt international 

passenger traffic or cause temporary production stops in factories with just-in-time assembly 

lines*. The presence of these indirect effects adds to the magnitude of the problem. 

1.3. Objectives and approach 
The main objective of this research is to gain a better understanding of the evolution of railway 

system performance during disruptions, particularly regarding the dynamics between impact 

and recovery for the different resilience phases. From a scientific point of view, the objectives 

are to develop a resilience evaluation approach for analyzing these dynamics and to explicitly 

describe the differences and similarities between disruptions by empirical testing of the 

approach, thereby enhancing the quantitative knowledge of resilience. From a societal point of 

view, the objective is to improve current disruption management practices by contributing to 

the design and application of recovery measures, with the idea that better quantitative 

knowledge will lead to more clear design requirements. 
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The approach to achieve these objectives is to develop a data-driven evaluation approach to 

make an ex post assessment of the resilience of railway networks using historical traffic realiza-

tion data and disruption data. In the resilience evaluation, the resilience curve is reconstructed 

for a large and heterogeneous set of disruptions. Therefore, it is first necessary to determine 

which performance indicators are most suited to measure railway system performance and 

which metrics can be used to quantify the shape of the resilience curve. The values of the resili-

ence metrics are evaluated for all disruptions simultaneously in statistical analyses to identify 

differences and similarities among disruptions of different causes. In comparison with other 

types of approaches (e.g. topological, optimization-based, simulation-based), the benefits of 

this data-driven approach are that it removes the need to model the traffic conditions in the 

network explicitly, and also, that it allows a direct comparison between what practitioners 

believe to be true and what happens in reality. The downside of a data-driven approach how-

ever is that much depends on the availability of sufficient, complete and good-quality data. 

1.4. Research questions 
Based on the objectives, the main research question is as follows. 

Main research question: How does the system performance of a railway network develop 
during disruptions? 

 

The main question has been divided into five subquestions which represent the theoretical and 

practical aspects of the research design. Each of Chapters 2 to 6 concludes with the answer to 

one of the subquestions, which are the following: 

1. What can be learned from previous quantitative, data-driven approaches for resilience 

evaluation of railway networks? 

2. What is the current state of the practice and quantitative knowledge regarding different 

types of railway disruptions in the Netherlands? 

3. How can the spatiotemporal effects of disruptions and recovery measures on railway 

system performance be quantified for the different resilience phases? 

4. Which approach should be taken to evaluate railway network resilience for a large and 

heterogeneous set of disruptions based on traffic realization data? 

5. Which insights do quantitative differences and relationships between the resilience 

metrics bring that may help practitioners evaluate and improve the quality of railway 

disruption management? 

1.5. Research methods 
The research questions are answered by applying a combination of methods including a liter-

ature review, interviews and quantitative data analysis. The methods are discussed one by one. 

Literature review 

The first method is a literature review on the quantification of resilience in railway networks. 

A broader perspective was taken by also considering air, subway, waterway, freight and general 

(public) transport systems. Supply chain resilience was included as an alternative domain. The 

motivation behind this choice is given at the start of Chapter 2. The review discusses resilience 

definitions, performance indicators, evaluation approaches and resilience metrics. It also high-

lights the research gaps that are addressed in this thesis. Scopus was used as the main source 

for finding articles based on a keyword search within the article title, abstract and keywords. 

Scientific papers as well as conference papers were collected. After completing the keyword 

search, backward snowballing (Jalali & Wohlin, 2012) was applied to find additional articles, 

with an emphasis on the references included in previous literature reviews on resilience. 
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Interviews 

The second method is a series of open, semi-structured interviews with practitioners. This 

helps give direction to the research in the beginning, discover what existing knowledge there 

is to build on and understand the story “behind the data”. Interviews were conducted through-

out the course of the research. The scope and purpose of the interviews changed as the research 

progressed. Table 1.1 presents the scope prior to and during data collection, during the 

experiments and during data evaluation. An overview of the respondents is included in 

Appendix C. Relevant findings from the interviews have been incorporated throughout the 

report. In-text references are marked with an asterisk (*), keeping the references anonymous. 

Table 1.1. Scope of the interviews per research phase. 

Data collection Experiments Data evaluation 

General working practices Interpretation of the data Recognizability of the results 

Design and application of 

contingency plans 

Limitations of the used 

methodology 

Suggestions improvements for 

disruption management 

Insights from earlier projects Relation between theory and 

practice 

Effect of future developments 

on the disruption dynamics 

Performance measurement  Contributions in the short term 

Data structure and availability   

Peculiarities in the data   

Potential hypotheses   

 

Data analysis 

Building on the theoretical and practical insights from the literature review and interviews, the 

third and final method is a quantitative data analysis. The analyzed data concerns historical 

railway traffic realization data and disruption log data. Realization data was used to calculate 

system performance during disruptions based on the time and location obtained from the dis-

ruption log data. Disruptions were categorized into groups and their resilience metrics were 

compared in group comparisons. Several options are available for group comparisons, which 

include one-way analysis of variance (ANOVA), the Kruskal-Wallis test and Welch’s ANOVA. 

Additional relationships between the metrics were explored in regression analysis. The data 

analysis is organized according to the general procedure shown in Figure 1.3. 

 

Figure 1.3. General data analysis steps. 

Data collection: Data was collected from ProRail’s data analysis application “Sherlock”, which 

brings together data from multiple sources in four categories: train movements, infrastructure, 

plan mutations and disruptions. As the application was not designed to export large amounts 

of data, the realization data was requested directly from the involved department. Appendix D 

contains a data collection summary that specifies which data was collected, when, by whom, 

and in which version of Sherlock. 

Data preparation: Data preparation involves the structuring, cleaning and processing of the 

collected data prior to analysis. More specifically, this concerns handling invalid, inconsistent 

and missing data entries; correctly interpreting the part of the data in Sherlock that have been 

preprocessed or approximated; and aggregating the realization data in time and space. Data 

preparation is discussed in more detail in Chapters 4 and 5. 
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Experiments: The experiments broadly consist of studying an example case, identifying repre-

sentative resilience curves and performing statistical analyses. Prior to analysis, it is necessary 

to check if the assumptions of the chosen statistical test are satisfied. If assumptions are vio-

lated, a test cannot be used to draw valid conclusions. The results of a test are referred to as 

the test statistics, which indicate whether or not the result is significant. Group comparisons 

such as ANOVA do not reveal exactly where the differences are; they only indicate whether at 

least one of the group means or medians is significantly different from the others (Mertens et 

al., 2017). To gain insight into the actual differences, post hoc tests are required. For ANOVA 

and Kruskal-Wallis, a range of post hoc tests is available. Statistical methods are discussed in 

more detail in Chapter 4. 

Data evaluation: Data evaluation involves the verification of the results and the identification 

of factors that may have contributed to the results, which is necessary before drawing any con-

clusions. Data evaluation has been integrated in the storyline of the experiments in this report 

and is discussed in Chapter 5. 

All experiments were coded in Python using Jupyter notebooks. Relevant libraries and modules 

include Pandas (McKinney, 2007), Matplotlib (Hunter, 2007), Seaborn (Waskom, 2021), Scipy, 

Researchpy, Pingouin (Vallat, 2018) and Statsmodels (Seabold & Perktold, 2010). 

1.6. Research scope 
This thesis research was carried out at ProRail with the support of the departments VGB, PAB 

and A&E (see List of abbreviations). The scope of the research concerns the evolution of system 

performance during disruptions in the Dutch railway network in 2019. As this comes down to 

determining the exact shape of the bathtub, only disruptions with an observable impact on the 

train service were included. In Sherlock, these are events for which a logistical record exists, in 

which case a capacity reallocation and usually also a contingency plan have been applied. The 

logistical record contains the logging of an event. In the remainder of this report, those events 

are simply referred to as disruptions. Why or at what interval a certain disruption occurred is 

irrelevant for this research. The fact that a disruption occurred is taken for granted; the focus 

is on what happened as a result. In certain cases, multiple disruptions may occur around the 

same time and in the same geographical area. Those disruptions were ultimately considered 

out of scope. Also, it should be stressed that the resilience of the railway network is described 

in terms of railway traffic, and not in terms of the physical infrastructure or individual infra-

structure elements. Lastly, the spatial propagation and potential cascading of disruption effects 

(in the form of cancellations and delays) were incorporated in the resilience curve by the way 

in which performance was aggregated. An alternative approach would have been to perform 

what is referred to in ProRail as an “oil stain analysis”. This involves analyzing which trains 

experienced secondary delays due to a disturbance or disruption elsewhere. Although this 

could be done in Sherlock, it would require a different setup of the research design that focuses 

more on the individual train level. 

In short, this research does not cover the following: 

• Events where no measures were applied 

• Causal factors leading to a disruption 

• Interdependency of disruptions over time 

• Disruptions with an overlapping area or time period 

• Resilience of the railway infrastructure or individual infrastructure elements 

• “Oil stain analysis” of secondary delays 
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1.7. Scientific and societal significance 
This research, which started from a scientific perspective, has both scientific and societal rele-

vance. The main scientific contribution consists of the new data-driven approach, which is 

structured in a resilience evaluation framework, to ex post assess the resilience of railway net-

works. The approach is generic and could be applied to railway networks in other countries, or 

potentially, other types of (transport) systems as well. Additional contributions include a com-

posite performance indicator capable of representing delays and cancellations simultaneously, 

two new resilience metrics to quantify performance in the transition phases, and a method for 

identifying the resilience phases from the curve itself. A last scientific contribution consists of 

empirical testing of the proposed evaluation approach on a case study, thereby improving the 

quantitative understanding of resilience which at present is still immature. 

The main societal contribution consists of recommendations for improving data processing 

and disruption management practices in ProRail. According to the Koers van VL, disruption 

management should become more standardized and predefined than it is now, which means 

that predefined solutions should be made for the transition phases as well, and measures need 

to become more network-oriented. The recommendations made in this report could support 

that transition. The acquired knowledge about disruption dynamics in the Dutch railway 

network is a second contribution, which could ultimately increase the predictability towards 

passengers during disruptions. A third contribution is the potential this research has demon-

strated for future evaluation studies involving traffic realization data, by showing that the 

necessary data are available and that relevant conclusions can be drawn from the analysis of 

large numbers of disruptions. 

1.8. Reading guide 
The remainder of this report is structured as follows. Chapter 2 presents the literature review 

on resilience definitions, performance indicators, evaluation approaches and resilience met-

rics. It also identifies the existing research gaps. Chapter 3 discusses disruption management 

working practices, first generally and then specifically for the Dutch case. Chapter 4 explains 

the methodology according to the resilience evaluation framework. Chapter 5 introduces the 

case study and presents the results of the experiments. Chapter 6 discusses the results in depth 

and reflects on the scientific and practical implications. Chapter 7 presents the conclusions, 

recommendations, limitations and future research directions. The structure of the report is 

summarized in a flowchart in Figure 1.4. 
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Figure 1.4. Flowchart of the report structure. 
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2. Literature review 

This chapter provides a literature review of the different theories and research avenues related 

to the research problem that is addressed in this thesis. The review is structured according to 

Van Wee and Banister (2016). Thus, Section 2.1 introduces the scope and purpose, addresses 

previous reviews and gives a general overview of resilience. Sections 2.2 to 2.5 form the main 

body of the review. Section 2.2 explores various resilience definitions and presents a revisited 

definition to be used throughout this report. Section 2.3 explores performance indicators that 

can be used to describe railway system performance. Section 2.4 discusses previous data-

driven resilience evaluation approaches. Section 2.5 gives an overview of resilience metrics that 

can be used to describe the profile of the resilience curve. Section 2.6 identifies the existing 

research gaps in railway resilience literature. Finally, Section 2.7 summarizes the chapter and 

provides the answer to subquestion one. 

2.1. Scope and purpose 
Resilience is not just a relevant topic in railway transport, but in other research domains as 

well. Because resilience research exhibits domain-independent characteristics (Madni et al., 

2020), the scope of this review is not limited to railway related studies. While the emphasis is 

on resilience in railway transport, the review also covers air, subway, waterway, freight and 

general (public) transport systems. Where applicable, references are included to articles that 

adopt a general systems view. Additionally, supply chain resilience is covered as an alternative 

perspective, since a comparable problem of limited quantitative knowledge exists in the supply 

chain domain (Ivanov et al., 2014) and references to supply chain resilience appear occasion-

ally in earlier transport related work, such as Gonçalves and Ribeiro (2020). Also, there is 

currently a growing interest in this topic due to the disrupting effects of COVID-19 (Van Hoek, 

2020). Combining these research domains could lead to new insights into the quantification of 

resilience. Moreover, it is acknowledged that resilience is a fundamentally different construct 

than robustness (Brandon-Jones et al., 2014) and vulnerability (Mattsson & Jenelius, 2015), 

which are therefore not addressed. The difference between resilience and robustness is briefly 

discussed in Section 2.2. The purpose of this review is to assist in answering subquestions one 

and three. This requires formulating a definition of resilience to build on; identifying ways to 

define railway system performance; studying what can be learned from previous data-driven 

approaches; and identifying which resilience metrics are available to choose from. 

Several review papers have been published in the past addressing the resilience of general sys-

tems (Hosseini et al., 2016), transport systems (Mattsson & Jenelius, 2015; Zhou et al., 2019; 

Gonçalves & Ribeiro, 2020), railways (Bešinović, 2020) and supply chains (Tukamuhabwa et 

al., 2015; Pettit et al., 2019). Also, Cacchiani et al. (2014) reviewed rescheduling models and 

algorithms for railway disruption management. Of particular interest for the review in this 

chapter are the resilience definitions provided in the various reviews; the discussion of metrics 

by Hosseini et al. (2016) and Zhou et al. (2019); and the classification of resilience evaluation 

approaches for railway systems by Bešinović (2020). Models and algorithms for disruption 

management are not addressed in this chapter because they do not help with the quantification 

of system performance. Besides, reviewing such models could easily fill an entire new chapter. 

The previous review papers help create a general overview of resilience. It appears that a range 

of resilience definitions have been proposed across research domains. Both qualitative and 

quantitative resilience metrics have been proposed (Hosseini et al., 2016) which are used to 

describe system performance during disruptions (Gonçalves & Ribeiro, 2020). Disruptions can 

have either internal or external causes (Mattsson & Jenelius, 2015). The choice of indicators 

and metrics depends on the evaluation approach (Zhou et al., 2019). For example, topological 

indicators usually account for the topological structure of the network, whereas performance-
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based indicators may put more focus on the traffic flow. Quantitative evaluation approaches in 

railway transport include topological approaches (e.g. Dorbritz, 2011), which assess network 

resilience based on the topological structure; optimization approaches (e.g. Azad et al., 2016; 

Van Aken et al., 2017), which apply mathematical models for improving resilience; simulation 

approaches (e.g. D’Lima & Medda, 2015; Adjetey-Bahun et al., 2016), which model the impact 

and response in hypothetical scenarios; and data-driven approaches (e.g. Chan & Schofer, 

2016; Janić, 2018), which evaluate system performance by studying historical data. As this 

thesis adopts a data-driven approach, mainly articles in the last category were reviewed. 

2.2. Definitions of resilience 
It is acknowledged that there is no unique way of defining resilience in literature (Hosseini et 

al., 2016). Several theoretical definitions are therefore compared in this section. The system 

states that occur before and during a disruption are explained as well. To conclude, a revisited 

definition of the resilience of transport systems is provided. 

Theoretical definitions 

To gain a proper understanding of resilience, definitions from multiple research domains are 

studied in this review. Reviews of resilience definitions have been performed in the past, for 

example by Zhou et al. (2019) and Gonçalves and Ribeiro (2020) in transport and by 

Tukamuhabwa et al. (2015) in supply chains. Some definitions are more narrowed down to a 

single research domain than others, but all can be generalized to describe the resilience of an 

arbitrary system. As not all definitions are equally comprehensive, it helps to classify them 

based on the aspects that they did or did not incorporate. 

Two recent articles (Madni et al., 2020; Bešinović, 2020) made such a classification. Madni et 

al. (2020) found that the resilience of general systems can be defined along one of four dimen-

sions: the capacity to rebound, resist, adapt, or adapt continuously. Following their line of 

argument, a definition of resilience for systems modeling is only useful if it offers some insight 

into the implementation while accounting for finite resources and the presence of performance 

boundaries. This requires viewing resilience as an adaptive capacity. Bešinović (2020) gave a 

review of resilience definitions in railway resilience literature and found that most articles 

relate to the “ability to recover quickly from a disruption”. 

The latter definition may be extended in a number of ways, as shown in Table 2.1. The return 

to an original or acceptable system state may be assumed implicitly for all definitions, though 

some articles mention this explicitly. Most articles also specify the limited availability of time, 

and potentially, other resources. Furthermore, according to a few articles, the system must be 

able to maintain acceptable performance once the disruption impact has been absorbed. This 

notion differs from the ability to withstand disruptions, which should instead be referred to as 

robustness (Madni et al., 2020). 

Table 2.1 presents a classification of resilience definitions. Some of the definitions referred to 

in the table make the mistake of creating an equivalence between resilience and robustness. 

This difference is often not properly understood (Brandon-Jones et al., 2014), which is espe-

cially confusing in the railway context, where robustness refers to the ability to withstand varia-

tions in daily operation (Bešinović, 2020). Notice the similarity with the definition from Madni 

et al. (2020). Still, arguing that resilience should only describe the events that take place in the 

aftermath of a disruption would be flawed, as it cannot be denied that there is a proactive side 

to resilience which helps prevent disruptions (Bešinović, 2020) and reduce their impacts. For 

this reason, Melnyk et al. (2014) divided resilience into two capacities: resistance and recovery. 

This again emphasizes the importance of a consistent terminology. For resilience, a revisited 

definition is given at the end of this section. For robustness, the definition commonly used in 

railway transport is maintained. 
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Table 2.1. Theoretical definitions of resilience in previous studies. 

Reference 

Ability to recover 

from and/or with-

stand disruptions 

…returning to 

the original state 

…within a reasonable 

amount of time 

…while maintaining 

acceptable performance 

Bešinović (2020) x  x  

Brandon-Jones et 

al. (2014) 
x x x  

Bruneau et al. 

(2003) 
x  x  

Carvalho & Cruz-

Machado (2011) 
x    

Cats & Jenelius 

(2014) 
x  x  

Chan & Schofer 

(2016) 
x x x  

Chen & Miller-

Hooks (2012) 
x    

D'Lima & Medda 

(2015) 
x x x  

Gonçalves & 

Ribeiro (2020) 
x x x x 

Janić (2015) x    

Jin et al. (2014) x   x 

Ponomarov & 

Holcomb (2009) 
x   x 

Ren et al. (2020) x x x  

Rodrigue (2020) x x x  

 

System states 

As a general construct, resilience is thought to comprise a number of consecutive system states 

in which the system performs differently. These states represent phases in the resilience curve 

as shown in Figure 2.1. The curve is also known as the bathtub model (Ghaemi et al., 2017) 

because of its shape. The bathtub model may be used as a conceptual characterization of the 

disruption management process. To be consistent with the nomenclature of the phases in the 

bathtub model, the first phase of the resilience curve is named “phase 0” so the remaining ones 

can be named 1 to 3. The word “phase” is used here to emphasize the time dependency, and 

the word “state” is used to describe the condition of the system during a certain phase. Table 

2.2 shows how researchers have interpreted the system states and which definitions are used 

in this thesis. The findings were united in the following terminology: 

• Phase 0: Preparedness. Indicates the normal operation of the system with the know-
ledge that a disruption may occur at some point in time. Characterizing this phase as 

“avoidance” or “prevention” is therefore futile. 

• Phase 1: Degradation. Indicates the decrease in system performance due to the dis-

ruption. This phase involves survival of the initial impact and, if possible, application 

of emergency measures to reduce the impact until the system has been stabilized. 

• Phase 2: Response. Indicates the new, disrupted steady state of the system. This phase 

involves assessment of the initial damage caused by the disruption and application of 

temporary measures, such as contingency plans in railways, to prepare for recovery. 

• Phase 3: Recovery. Indicates the return to an acceptable performance level, resolving 
the effects of the disruption. Recovery may be full or only partial. In railway transport, 

recovery means reinserting the canceled services and returning to the original time-

table (Ghaemi et al., 2017). 
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Table 2.2. Definitions of system states in previous studies. 

Reference Phase 0 Phase 1 Phase 2 Phase 3 

Altay & Green (2006) Preparedness Response - Recovery 

Baroud et al. (2014) Reliability Survivability - Recoverability 

Bešinović (2020) Robustness  Survivability Response Recovery 

Bevilacqua et al. (2017) Prevention Mitigation - Recovery 

Gonçalves & Ribeiro (2020) Resistance Absorption Transformation Recovery 

Melnyk et al. (2014) Avoidance Containment Stabilization Return 

Ouyang et al. (2012) Prevention Propagation Assessment Recovery 

This thesis Preparedness Degradation Response Recovery 

 

In Figure 2.1, the linearized performance is shown during the four phases of a disruption. Each 

timepoint 𝑇𝑖 marks the end of a phase. The impact is defined as the difference between original 

and disrupted performance. This depiction assumes that performance degrades and recovers 

gradually. Depending on the type of disruption, this may not be the case and not all resilience 

phases may be equally observable. In case of a sudden shock, such as an earthquake or power 

outage, the decrease in performance is abrupt (e.g. Bruneau et al., 2003) and there would be 

no degradation phase. Likewise, there may or may not be a steady response phase prior to 

recovery. For the general case however, the profile shown in Figure 2.1should be assumed. 

 

 

 

 

 

 

 

 

 
Figure 2.1. Schematic illustration of the resilience curve. 

Revisited definition 

Based on the prior considerations, an inclusive definition of resilience should represent the 

different system states. Also, from a customer’s (here: passenger’s) perspective, it is important 

that recovery takes place within a reasonable amount of time and without causing too much 

inconvenience. Maintaining an acceptable level of service in the disrupted state is therefore 

desirable. This leads to the following revisited definition of resilience, which is mainly a synthe-

sis of Gonçalves and Ribeiro (2020) and Bešinović (2020). 

Resilience is the ability of a system to prepare for a disruption, as well as to reduce, absorb 
and accommodate the impact of a disruption while maintaining an acceptable level of ser-
vice, and to recover to a desired state of operation within a reasonable amount of time. 
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2.3. Performance indicators 
The performance of a system must be specified first in order to quantify its resilience. For this 

purpose, a time-dependent performance indicator or figure-of-merit has to be selected (Henry 

& Ramirez-Marquez, 2012). In a two-dimensional representation such as Figure 2.1, with time 

on the horizontal axis, this means that the spatial aspect of the loss of performance must some-

how be included on the vertical axis. Thus, considering the spatial propagation of disruption 

effects comes down to selecting the proper performance indicator and aggregating the perfor-

mance measurement in space. Alternatively, space could be included on the horizontal axis 

instead of time, or on a third axis in a three-dimensional representation. With that in mind, 

this section reviews indicators of transport system performance that are suitable for measuring 

railway system performance. 

Four categories of indicators were identified in this review: travel time, travel demand, traffic 

flow and use of resources. Within these categories, the discussion focuses on indicators that 

are real-time ready, which means they are able to measure performance at any moment in time. 

This is key as the resilience curve is usually drawn as a function of time. Indicators that can 

only be used to measure performance in retrospect over a period of time, such as passenger 

welfare (Cats & Jenelius, 2014), revenue vehicle miles (Chan & Schofer, 2016) and overall 

travel time (De-Los-Santos et al., 2012) do not meet this criterion and were therefore not 

considered. The different real-time performance indicators per category are discussed below. 

Travel time 

Indicators that represent travel time are punctuality, journey time, average delay, secondary 

delay and cumulative delay (e.g. Goverde & Hansen, 2013; Nicholson et al., 2015). Punctuality 

is expressed in percentages, where the other indicators are expressed in seconds or minutes. 

When a disruption occurs, punctuality is expected to decrease, but this reveals little infor-

mation about the size of the impact. It only tells that some trains are delayed, but not by how 

much. Therefore the average, secondary or cumulative delay may be considered. Alternatively, 

the average journey time could be used, but the journey time depends on the types of services 

and the network structure in the disrupted area. Delay indicators are more practical in applica-

tion than the average journey time since target performance is, obviously, zero. 

Travel demand 

Indicators that represent travel demand are satisfied demand (e.g. Jin et al., 2014), passenger 

volume (e.g. D’Lima & Medda, 2015) and network saturation (Malandri et al., 2018). Satisfied 

demand is expressed in percentages and denotes which part of the demand can still be satisfied 

during or after a disruption. In contrast, the passenger volume denotes the number of people 

traveling in the network. Of the two indicators, satisfied demand should be preferred because 

it allows a direct comparison with a reference value. Network saturation is expressed in per-

centages and accounts for the redistribution of passengers in the network. A high saturation 

indicates potential overcrowding on certain routes when people are taking alternative routes, 

though in reality, this may not always be possible. A downside of the travel demand indicators 

is that they require passenger counts, or at least accurate estimates of passenger numbers. 

Traffic flow 

Indicators that represent traffic flow are traffic throughput (Ghaemi et al., 2017; Jafino et al., 

2020) and speed reduction (Gonçalves & Ribeiro, 2020). Traffic throughput indicates the local 

number of train passings on a certain route or along the cross-section of an area, which will 

typically be lower than planned in case of a disruption. Speed reduction naturally contributes 

to trains being delayed, but normal operating speed varies with the train type, type of service 

and track segment, which makes it hard to bring this indicator into practice. 
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Use of resources 

Indicators that represent the use or availability of resources (e.g. rolling stock, infrastructure) 

are track occupation, rolling stock usage, canceled services and transport capacity (e.g. 

Nicholson et al., 2015; Janić, 2018). Track occupation and rolling stock usage are expressed in 

percentages and are assessed by comparing the actual situation to the original plan. As opposed 

to rolling stock usage, canceled services may denote either the percentage of trains that are not 

running or the percentage of canceled train activities (e.g. departures, arrivals). Canceled ser-

vices thus offer a valuable addition to the travel time indicators. Transport capacity denotes 

the available seats or seat-kilometers, which is more difficult to determine as it depends on the 

type and composition of the trains that are deployed. In addition, a common problem for these 

indicators is that (with the exception of canceled services) one cannot say with certainty that 

the effects of a disruption have dissipated once the indicator values return to normal. 

Overview of indicators 

Table 2.3 provides an overview of the discussed performance indicators. When the direction of 

the indicator is positive, such as for punctuality, a higher value suggests better performance. 

This is consistent with how the resilience curve has been depicted so far. When the direction is 

negative, such as for delays, a higher value suggests worse performance. This is referred to as 

a decreasing system service function (Baroud et al., 2014). Between the available indicators, 

there are differences with regard to ease of measurement and the extent in which they reflect 

the interests of passengers, train operating companies (TOC) and the infrastructure manager 

(IM). The passenger’s perspective is covered by the travel time and demand indicators, while 

traffic flow or resource indicators may be equally or even more telling for the IM and TOCs. 

Table 2.3. Performance indicators used in previous studies. 

Category Indicator Direction References 

Travel time Punctuality Positive Evans (2011), Goverde & Hansen (2013), Woodburn 

(2019) 

 Journey time Negative Nicholson et al. (2015) 

 Average delay Negative Adjetey-Bahun et al. (2016), Büchel et al. (2020), 

Goverde & Hansen (2013) 

 Secondary delay Negative Goverde & Hansen (2013) 

 Cumulative delay Negative Evans (2011), Janić (2018), Nicholson et al. (2015) 

Travel demand Satisfied demand Positive Chen & Miller-Hooks (2012), Jin et al. (2014) 

 Passenger volume Positive Adjetey-Bahun et al. (2016), D'Lima & Medda (2015) 

 Network saturation Negative Malandri et al. (2018) 

Traffic flow Traffic throughput Positive Ghaemi et al. (2017), Jafino et al. (2020) 

 Speed reduction Negative Gonçalves & Ribeiro (2020) 

Use of resources Track occupation Positive Goverde & Hansen (2013), Nicholson et al. (2015) 

 Rolling stock usage Positive Nicholson et al. (2015), Woodburn (2019) 

 Transport capacity Positive Janić (2018), Nicholson et al. (2015) 

 Canceled services Negative Evans (2011) 

 

2.4. Evaluation approaches 
As mentioned in Section 2.1, the data-driven approach is one of four possible types of resilience 

evaluation approaches. Data-driven approaches are promising for the ex post evaluation of 

disruptions considering the growing demand for the quantification of system performance 

during disruptions, and thus, resilience (Bešinović, 2020). As this thesis follows such a data-

driven approach, a look into previous data-driven evaluation approaches is considered valua-

ble. Data-driven approaches in railway transport, other public transport (subway and taxi) and 

air transport are discussed. Because no comparable approaches were found in the supply chain 

domain, simulation approaches are discussed for supply chain resilience evaluation instead. 
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Resilience evaluation in railways 

Several approaches for the resilience evaluation of railway networks are discussed. Firstly, 

Chan and Schofer (2016) studied the resilience of a railway network subject to extreme weather 

events. The recovery of the New York City heavy rail transit was examined after the blizzard of 

2010 and hurricanes Irene and Sandy based on lost revenue vehicle miles, restoration time and 

lost service days. Janić (2018) fitted an analytical model to historical data from the Japanese 

high-speed rail network after the 2011 earthquake. He linearized the resilience curve similar 

to Figure 2.1 and calculated resilience for each phase as the ratio of actual to planned perfor-

mance. Aggregate values of network resilience were obtained by summing over the lines, routes 

and indicators. Three indicators were specified for each of eight types of performance. In short, 

one could say that multiple resilience curves were combined into one curve and an aggregate 

metric was derived, instead of deriving multiple metrics from a single curve. 

Woodburn (2019) studied the consequences of a lengthy, unplanned closure of a major railway 

freight route in Britain. Open access data collected at the individual train level was used to 

demonstrate a gradual improvement in traffic and service levels in the long term, although the 

discussion of the results leaves room for interpretation. Büchel et al. (2020) studied delay prop-

agation in the Swiss railway network after a large-scale disruption in Germany by comparing 

arrival delays for a disrupted and undisrupted scenario. They found that during the disruption, 

significantly smaller delays were experienced due to the lower variability in operations. The 

scenario was replicated in a simulation, which is out of scope for this review. 

Resilience evaluation in other public transport modes 

Looking at other public transport modes, Zhu et al. (2016) studied hurricanes Irene and Sandy 

using taxi and subway ridership data. The recovery curves, expressed in terms of the recovery 

rate for each evacuation zone, reveal a different recovery behavior for the two events and 

between zones. Spatial dependence of the resilience per zone was further investigated by Zhu 

et al. (2017) by presenting the recovery rate, recovery time and loss of resilience in geospatial 

displays such as in Evans (2011). Similar displays are also found in Malandri et al. (2018) and 

Büchel et al. (2020). Ren et al. (2020) constructed a Bayesian network by evaluating data for 

approximately 50,000 disruptive events in the Beijing subway between 2013 and 2018. They 

demonstrated the causal relationships between what they referred to as the fault case, failure 

mode and influence mode. Although this study did not involve performance measurement, it 

stands out due to the large amount of collected data. 

Resilience evaluation in air transport 

Another mode of transport subject to resilience research is air transport. The resilience and 

friability (i.e. the decrease of resilience due to the removal of network components) of the air 

transport network around New York LaGuardia was studied by Janić (2015) for a large-scale 

disruption. An aggregate resilience measure was proposed which considers the duration of the 

impact, but not the recovery phase. Wong et al. (2020) followed a hybrid data-driven network 

analysis approach to search for abnormalities in arrival delays by using a specific statistical 

measure called the Mahalanobis distance. Instead of observing the larger network, four US 

airlines were assessed individually, which means that limited insight can be obtained from this 

study when it comes to network resilience. 

Resilience evaluation in supply chains 

For supply chains, the lack of quantitative knowledge about resilience is ascribed to the diffi-

culty of collecting data, since supply chain disruptions are generally less observable and more 

easily confounded by human factors (Macdonald et al., 2018) than those occurring in transport 

systems. This means that simulation approaches offer a viable alternative. Furthermore, rather 

than a system property, resilience in supply chain management can be regarded as a paradigm 
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for organizing supply chain activities (Carvalho & Cruz-Machado, 2011). Most of the effort 

goes out to finding strategies that improve resilience (Tukamuhabwa et al., 2015), while resili-

ence is rarely analyzed in an operational context. Only a few relevant examples of resilience 

evaluation approaches in supply chains were found. 

Spiegler et al (2012) investigated the relation between resilience and lead time by simulating 

different inventory and production control strategies, which revealed a tradeoff between resili-

ence and robustness. Munoz and Dunbar (2015) studied the transient response across supply 

chain tiers in a simulation model. They proposed five resilience metrics to be combined into 

an aggregate measure of resilience by means of structural equation modeling. Statistical testing 

showed the importance of two metrics representing nonlinearity, thereby challenging a linear 

recovery profile. Macdonald et al. (2018) also adopted a simulation approach for the purpose 

of theory building and investigated through structured experiments how different levels of 

buffer stock, connectivity and shock interarrival time affect system performance. Performance 

was defined in terms of four dependent variables. Regression analysis was performed to evalu-

ate the effects, which proved to be significant in most cases. 

Overview of approaches 

An overview of the discussed approaches is presented in Table 2.4. It is observed that most 

transport related studies examined a single, large-scale disruptive event. Ren et al. (2020) and 

Wong et al. (2020) studied a large number of disruptions, but they did not do so to assess the 

evolution of system performance. Regarding the methods, statistical analyses were frequently 

used to assess the significance and/or dependence of resilience measures. 

Table 2.4. Resilience evaluation approaches followed in previous studies. 

Reference Domain Approach Research topic 

Chan & Schofer (2016) Railway Data-driven Resilience of a metropolitan railway network in 

extreme weather 

Janić (2018) Railway Data-driven Resilience of a high-speed railway network 

affected by an earthquake 

Woodburn (2019) Railway Data-driven Impacts from the unplanned closure of a railway 

freight route 

Büchel et al. (2020) Railway Data-driven, 

simulation 

Delay propagation after a large-scale railway 

disruption 

Zhu et al. (2016) Subway, taxi Data-driven Post-hurricane recovery of taxi and subway trips 

Zhu et al. (2017) Subway, taxi Data-driven Spatial modeling of post-hurricane recovery 

Ren et al. (2020) Subway Data-driven Causal relationships in subway disruptions 

Janić (2015) Air transport Data-driven Resilience of an air transport network during a 

hurricane 

Wong et al. (2020) Air transport Data-driven Ability of airlines to prevent abnormally large 

delays 

Spiegler et al. (2012) Supply chain Simulation Relationship between resilience and lead time 

Munoz & Dunbar (2015) Supply chain Simulation Transient response across supply chain tiers 

Macdonald et al. (2018) Supply chain Simulation Impacts from supply shocks on system 

performance  

 

2.5. Resilience metrics 
Resilience metrics describe the profile of the resilience curve. Due to the heterogeneous charac-

teristics of disruptions and recovery measures that may be taken, resilience is considered to be 

a multidimensional construct, and therefore, it is incapable of being captured in a single metric 

(Munoz & Dunbar, 2015). If only one metric were to be used, then entirely different loss and 

recovery behaviors could result in the same resilience value (Zobel, 2011). Regarding the type 

of metrics, Hosseini et al. (2016) distinguished between deterministic and probabilistic system 
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resilience metrics. As it is assumed that metrics can be derived analytically from the resilience 

curve, this review considers deterministic metrics only. This section first covers the range of 

metrics found in railway resilience literature, followed by additional metrics found in supply 

chain resilience literature. 

Metrics in railway literature 

Several articles (e.g. Nicholson et al., 2015; Chan & Schofer, 2016) describe general resilience 

metrics in a railway context. Such general metrics can be defined regardless of the underlying 

system structure and are therefore comparable across research domains (Hosseini et al., 

2016). This explains why all metrics described in this subsection also appear in general systems 

literature as can be seen in Table 2.5. Metrics that are defined along the time axis are recovery 

time, recovery rate and deterioration rate (e.g. Chan & Schofer, 2016; Janić, 2018). Recovery 

time is in fact the most common resilience metric in transport literature (Zhou et al., 2019). 

Metrics that are defined along the performance axis are initial impact, maximum impact and 

minimum performance (e.g. Dorbritz, 2011; Nicholson et al., 2015). Minimum performance 

is also referred to as residual functionality (Cimellaro et al., 2010) because it amounts to the 

original performance minus the maximum impact. 

 

 

 

 

 

 

 

 

 
Figure 2.2. Simplified resilience curve and the resilience triangle. 

The last metric found in railway literature was originally proposed by Bruneau et al. (2003) for 

general systems as the loss of resilience. Equation (1) shows the loss of resilience 𝑅 with perfor-

mance 𝑄 at time 𝑡 expressed in percentages. The integral corresponds to the area of the shaded 

resilience triangle shown in Figure 2.2, assuming a sudden drop in performance and a linear 

recovery profile. The figure can be obtained from Figure 2.1 by omitting the degradation and 

response phases. The loss of resilience may also be referred to as deviation area (Nicholson et 

al., 2015) or service loss (Chan & Schofer, 2016). However, in this thesis it is referred to as 

performance loss in accordance with Munoz and Dunbar (2015), for that is what it represents: 

the cumulative loss of performance over time. 

                                                                      𝑅 = ∫ (100 − 𝑄(𝑡))
𝑇3

𝑇0

d𝑡                                                               (1) 

Additional metrics 

Additional metrics are found in supply chain literature, which could be used for the resilience 

evaluation of railways or other transport systems as well. Based on Equation (1), Spiegler et al. 

(2012) adopted the integral of time absolute error (ITAE) as applied in control engineering, 

which penalizes a slower return to the steady state. Munoz and Dunbar (2015) adopted two 

additional metrics that describe the nonlinearity of recovery. The profile length equals the 
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length of the recovery profile, and the weighted sum equals the time-dependent deviation from 

a linear recovery profile. Analytical expressions for all metrics are included in Table 2.6. 

Overview of metrics 

To summarize, ten resilience metrics are identified which can be allocated to the dimension of 

time, performance or both. An overview is given in Table 2.5. Metrics that appear differently 

in the reviewed articles but measure the same value, such as the loss of resilience and perfor-

mance loss, are included under the same heading. Recovery time is the most commonly used 

metric. In most of the articles, it describes the time between the moment performance drops 

below a certain threshold and the moment performance is restored. The second-most common 

metric is performance loss, which equals the area enclosed by the resilience curve and target 

performance. The third-most common metric is the maximum impact. 

Table 2.5. Resilience metrics used in previous studies. 

Dimension Resilience metric Domain References 

Time Recovery time General systems, 

railways, supply 

chain 

Chan & Schofer (2016), Dorbritz (2011), Janić (2018), 

Munoz & Dunbar (2015), Nicholson et al. (2015), 

Ouyang et al. (2012), Zhou et al. (2019), Zobel (2011) 

 Recovery rate General systems, 

railways 

Cimellaro et al. (2010), Janić (2018) 

 Deterioration rate Railways Janić (2018) 

Performance Initial impact General systems, 

railways 

Dorbritz (2011), Ouyang et al. (2012), Zobel (2011) 

 Maximum impact General systems, 

railways, supply 

chain 

Janić (2018), Munoz & Dunbar (2015), Nicholson et 

al. (2015), Ouyang et al. (2012) 

 Residual 

functionality 

General systems, 

railways 

Cimellaro et al. (2010), Dorbritz (2011) 

Time  and 

performance 

Performance loss General systems, 

railways, supply 

chain 

Bruneau et al. (2003), Chan & Schofer (2016), Munoz 

& Dunbar (2015), Nicholson et al. (2015), Zhu et al. 

(2016) 

 ITAE Supply chain Spiegler et al. (2012) 

 Profile length Supply chain Munoz & Dunbar (2015) 

 Weighted sum Supply chain Munoz & Dunbar (2015) 

 

Table 2.6 presents the analytical expressions for the identified resilience metrics. Traditionally, 

𝑄(𝑡) is used to denote the performance function. Here, 𝑔(𝑡) represents the linearized recovery 

profile. The other symbols are explained as follows: 

• 𝑇𝑖 is the moment when phase 𝑖 ends, in accordance with Figure 2.1 

• 𝑄0 represents target performance 

• 𝑄𝑚𝑖𝑛 represents minimum performance 

• 𝑎𝑘 is the time in the recovery phase at interval 𝑘 

The one-dimensional metrics, included in the left half of Table 2.6, are easily determined from 

the resilience curve. The two-dimensional metrics however, included in the right half of the 

table, are defined by slightly more complex analytical expressions. This may require the use of 

numerical integration methods such as Simpson’s rule, even when the performance function 

is known (Munoz & Dunbar, 2015). Furthermore, there is an overlap between metrics such as 

recovery time and recovery rate, or maximum impact and residual functionality. Including 

both such metrics would introduce multicollinearity, which means that the value of one metric 

could be derived directly from the other metric with relative certainty. Multicollinearity should 

be avoided in data analysis (Mertens et al., 2017). 
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Table 2.6. Analytical expressions for the identified resilience metrics. 

Resilience metric Analytical expression Resilience metric Analytical expression 

Recovery time 𝑇3 − 𝑇0 
Performance loss ∫ (𝑄0 − 𝑄(𝑡))

𝑇3

𝑇0

d𝑡 Recovery rate d𝑄(𝑡)

d𝑡
 | 𝑇2 ≤ 𝑡 ≤ 𝑇3 

Deterioration rate d𝑄(𝑡)

d𝑡
 | 𝑇0 ≤ 𝑡 ≤ 𝑇1 

ITAE ∫ 𝑡 ∙ |𝑄0 − 𝑄(𝑡)|
𝑇3

𝑇0

d𝑡 
Initial impact 𝑄0 − 𝑄𝑚𝑖𝑛 | 𝑇0 ≤ 𝑡 ≤ 𝑇1 

Maximum impact 𝑄0 − 𝑄𝑚𝑖𝑛 | 𝑇0 ≤ 𝑡 ≤ 𝑇3 
Profile length ∫ √1 + (

d𝑄(𝑡)

d𝑡
)

2𝑇3

𝑇2

d𝑡 
Residual functionality 𝑄𝑚𝑖𝑛 | 𝑇0 ≤ 𝑡 ≤ 𝑇3 

Weighted sum ∑ 𝑎𝑘(𝑔(𝑎𝑘) − 𝑄(𝑎𝑘))𝑛
𝑘=1   

 

2.6. Research gaps 
The discussion of resilience definitions, evaluation approaches and quantitative measures in 

the previous sections led to the identification of the following research gaps with regard to the 

resilience of railway networks. 

Research gap 1: The evolution of railway system performance during the consecutive resili-
ence phases is not well understood for disruptions of varying scale and origin. 

 

Under normal conditions, a railway network functions around a steady performance level, with 

only minor variations due to disturbances in the train service. When a disruption occurs, sys-

tem performance can drop significantly. Performance during this period is represented by the 

resilience curve, also known as the bathtub model. Several articles were discussed in this chap-

ter which quantified this behavior. All of those articles described a single or at most a few large-

scale disruptions lasting for several days (e.g. Chan & Schofer, 2016) or months (e.g. Büchel et 

al., 2020), or disruptions that created an out-of-control situation (e.g. Janić, 2018). In reality 

though, disruptions of a smaller scale such as switch failures or signal failures occur frequently, 

while these have not been subject to resilience research. How system performance develops 

during these disruptions is therefore not well understood. 

Research gap 2: Realization data have not been used to assess the resilience of a railway 
network for a large and heterogeneous set of disruptions. 

 

Besides the lack of quantitative knowledge about railway system performance during disrup-

tions, the simultaneous study and comparison of multiple disruptions constitutes a research 

gap from a methodological perspective. While modern technologies and data analytics create 

opportunities for the use of large amounts of empirical data in railways (Parkinson & Bamford, 

2017), only Ren et al. (2020) collected data for a large and heterogeneous set of disruptions in 

the subway system. Wong et al. (2020) did so too for disruptions in air transport. Such exten-

sive use of data to evaluate the performance during disruptions in railway networks has not 

been attempted before to the best of the author’s knowledge, which is why it poses challenges 

with regard to data collection, preparation and analysis. 

Research gap 3: The spatial attributes of a railway network have not been addressed explic-
itly when studying resilience as a function of time. 

 

The spatial impact of disruptions has been addressed where appropriate in the storyline of this 

chapter. As the resilience curve is commonly defined as a function of time, the proposition was 

made to account for the spatial attributes of a system on the vertical axis of the graph, or alter-
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natively, on a third axis. The articles that were reviewed have given insufficient insights into 

how the spatial attributes may actually be represented, because of a focus on the evolution of 

system performance in time rather than in time and space. Hence, the representation of the 

spatial attributes of a railway network forms a second methodological research gap. 

2.7. Chapter summary 
This chapter started with a general overview of railway resilience. The different system states 

and resilience phases were discussed and a revisited definition of resilience was given. Indica-

tors for railway system performance were discussed and previous data-driven resilience evalu-

ation approaches were explored for several transport modes. Also, metrics that describe the 

profile of the resilience curve were discussed. A theoretical research gap and two methodologi-

cal research gaps were identified from the reviewed articles. The research gaps are addressed 

in the remainder of this report. 

Answer to subquestion 1 

With the knowledge obtained in this chapter, the first subquestion is answered. 

Subquestion 1: What can be learned from previous quantitative, data-driven approaches 
for resilience evaluation of railway networks? 

 

Resilience research exhibits domain-independent characteristics, and therefore, resilience 

definitions and metrics are formulated in broad terms and could apply to general systems. This 

explains why the resilience metrics found in railway related articles also appear in general 

systems literature. Some additional metrics describing the nonlinearity of the resilience curve 

in the recovery phase are found in supply chain literature. These could be adopted for the 

resilience evaluation in railways as well. Performance indicators on the other hand are more 

domain-specific. With regard to performance measurement, it appears customary to compare 

the actual performance with planned performance, and also to aggregate the data, for example 

by day or geographical area. When the spatial propagation of disruption effects is studied, the 

spatial impact is commonly visualized in geospatial displays rather than in the resilience curve 

itself. In case resilience metrics or other quantitative measures are the main output of a study, 

statistical analyses are commonly performed to assess their significance or dependence, similar 

to the approach that is followed in this thesis. Regarding the data-driven resilience evaluation 

approaches in the reviewed articles, theoretical and methodological gaps exist by failing to 

study common types of disruptions, not realizing the potential of big data to assess network 

resilience and not explicitly addressing the spatial attributes of a system. 
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3. Practical background 

The previous chapter described from a scientific viewpoint how disruption impacts and recov-

ery may be evaluated. This chapter provides a more practical background on railway disruption 

management from the perspective of the infrastructure manager. This starts with a general 

overview. As the chapter progresses, more references are made to disruption management in 

the Netherlands. First, Section 3.1 describes in broad terms how disruption management is 

commonly organized in western Europe. Section 3.2 addresses the different types of disrup-

tions that may occur and how they may be classified. Section 3.3 goes more in depth on how 

disruptions are managed in the Dutch railway network. Section 3.4 summarizes the chapter 

and provides the answer to subquestion two. 

3.1. Disruption management in general 
Railway traffic control is a complex task which is normally carried out by the infrastructure 

manager (IM). The workload of traffic controllers and dispatchers and the tasks they perform 

greatly depend on whether trains are running according to schedule or not. Traffic control in 

normal conditions (besturing) involves executing the traffic plan and process plan with the 

available planning, signaling and control systems. The traffic plan specifies the train paths, and 

the process plan specifies the operational utilization of infrastructure. However, as stated in 

Chapter 1, a disruption in the network requires additional input in the form of adjustments to 

the timetable, rolling stock and crew planning. Rolling stock and crew are rescheduled by the 

train operating company (TOC). Adjusting the timetable on the other hand is the responsibility 

of the IM. Traffic control during disruptions is therefore known as rescheduling (bijsturing). 

Disruption management is used as an umbrella term for the joint actions taken by the IM, 

TOCs and maintenance contractors during the rescheduling process. 

Roles and task descriptions 

Regardless of the country-specific organization of railway traffic control, a number of key roles 

are identified that are essential in the disruption management process. Commonly a distinction  

is made between regional and national control and between operations and traffic control by 

the TOCs and IM, respectively. The definition of “regional” control depends on the network 

structure and varies between countries or even within countries. Table 3.1 presents an over-

view of the key roles in traffic control based on Schipper and Gerrits (2018). Each row explains 

the role, the actor responsible for this role and the corresponding task description. 

Table 3.1. Key roles and task descriptions in railway traffic control. 

Actor Role Task description 

IM Train dispatcher 
Allocate infrastructure capacity and monitor the safe 

movement of trains at a local level. 

IM Regional traffic controller 

Monitor and optimize traffic flow at a regional level, 

assess decisions made by dispatchers and advise the 

national traffic controller. 

IM National traffic controller 

Monitor and optimize traffic flow at a national level, 

support the regional traffic controller and advise the 

duty officer. 

TOC Regional operations controller 
Monitor traffic flow, rolling stock and crew planning at 

a regional level. 

TOC National operations controller 
Monitor traffic flow, rolling stock and crew planning at 

a national level. 

TOC, IM 
Team leader, shift leader, duty 

officer 

Monitor the workload of controllers and maintain 

communication with other control centers. 
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Management actions 

In the first phase of a disruption, emergency measures need to be taken and the affected area 

needs to be cleared in order to prevent an escalation of the situation. This is arranged by the 

traffic controller in cooperation with the dispatcher in charge of the affected area. A choice of 

measures, referred to as management actions, are available to controllers and dispatchers. 

Three main actions are identified: drive, reroute and cancel. Supplementary actions can also 

be taken. The available management actions are presented in Table 3.2. Each row specifies the 

action, its translation in Dutch and the description of this action. The actions that can be per-

formed on a particular train depend on the train characteristics, the type of service (e.g. 

regional, intercity, freight) and the layout and location of a station in the network. 

Table 3.2. Railway disruption management actions. 

Action  Description 

Drive Rijden The train is allowed to continue driving along its planned route. 

Reroute Omleiden 
The train is diverted to arrive at its destination along a different route. 

Uncommon for regional and intercity services. 

Cancel Opheffen The train is canceled and cannot start or continue on its route. 

Short-turn Keren 
The train is rescheduled to head back in the opposite direction under a 

new train number. This usually does not require shunting. 

Change track 
Spoor 

wijzigen 

The arrival track of a train is changed because it would otherwise 

result in a path conflict between two trains. 

Retime Verleggen 
The departure time of a train is changed because it would otherwise 

result in a path conflict between two trains. 

Reorder 
Volgorde 

wisselen 
The departure sequence of two trains is changed. 

Add stop 
Stop 

toevoegen 
The train is rescheduled to make an extra stop. 

Skip stop 
Stop 

overslaan 
The train is rescheduled to skip a planned stop. 

Insert Inleggen 
The train is reinserted in the timetable when it has previously been 

canceled. 

 

Tradeoffs 

The described actions need to be coordinated between the IM and TOCs and across different 

levels of the organization, such as from planning to operation. How this is organized is defined 

by the underlying coordination structure. Schipper and Gerrits (2018) described a tradeoff 

between centralized and decentralized coordination. Centralized coordination involves 

operational decision making at a single location, whereas decentralized coordination involves 

decision making at dispersed locations. A decentralized structure makes the best use of local 

knowledge of the network and creates flexibility through direct communication and control 

over resources. However, a local optimal solution is not necessarily optimal for the larger 

network. A centralized structure would be preferred to keep a better overview of system perfor-

mance, but it requires substantial information sharing. Given this tradeoff, a balance between 

centralized and decentralized coordination should be found. 

A second tradeoff described by Schipper and Gerrits (2018) is the tradeoff between anticipa-

tion and resilience. With “resilience”, Schipper and Gerrits referred to the reactive capacity of 

controllers and dispatchers, not to be confused with resilience as defined in this report. Relying 

solely on the controllers’ expertise and reactive capacity may result in an ineffective response 

due to the dynamic and demanding situations controllers are faced with. For example, consider 

a disruption at a major station requiring all incoming traffic to be rescheduled. Alternatively, 
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the design of predefined solutions is characteristic of the anticipation approach, although not 

every disruption can be anticipated in detail. A minimum level of reactive capacity will always 

be required. Hence, a balance should be found for this tradeoff as well. 

With regard to the above tradeoffs, considerable differences exist in the organization of railway 

disruption management in different countries. By understanding these differences, the rele-

vance of the results from the data analysis can be determined for other countries. Schipper and 

Gerrits (2018) compared disruption management practices for the Netherlands, Germany, 

Austria, Belgium and Denmark. The performance of these countries on the discussed tradeoffs 

is illustrated in Figure 3.1. Regarding the first tradeoff, all countries have a division of tasks 

between national and regional control centers. However, the decentralized management by 

TOCs is unique to the Netherlands and Germany. In Germany this is due to the sheer number 

of TOCs. The size of the German network also means that decision making during disruptions 

is decentralized and that regional control centers have a greater level of autonomy compared 

to the other countries. Still, in all of these countries the IM and the dominant TOC are co-

located in a national control center. In Belgium, the IM and TOC also work in mixed teams. 

Regarding the second tradeoff, Schipper and Gerrits (2018) indicate that the reliance on prede-

fined contingency plans in the Netherlands is high compared to the other countries. Austria 

has also developed plans for the most common disruptions, but these serve more as a template 

to controllers. The use of contingency plans is much less common in the other countries, which 

rely more on the reactive capacity of controllers to find a tailor-made solution to each disrup-

tion. In Belgium this is facilitated by the mixed and flexible composition of the teams, where 

other countries have special crisis rooms for shared decision making. In Germany, much 

communication also takes place over the phone, as face-to-face meetings with all the involved 

TOCs are difficult to arrange. All things considered, the Dutch and Austrian approach are 

mainly anticipatory, whereas decision making in Belgium is highly reactive. Whether this also 

results in a more resilient system remains an open question. 

 

Figure 3.1. Disruption management tradeoff scores per country (Schipper & Gerrits, 2018). 

3.2. Classification of disruptions 
The response that is required by controllers and dispatchers depends on the type of disruption. 

It is therefore useful to understand which types of disruptions could occur and how they may 

be classified. Two types of classifications are discussed: by cause and by consequence. 
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Classification by cause 

Although disruptions are inherent to transport systems, they are not random events. There is 

always a cause that triggers the disruption. Three subclassifications by cause are identified: by 

aggregated cause, specific cause and train incident scenario (TIS). First, classification by aggre-

gated cause means tracing the cause of a disruption back to the rolling stock, infrastructure or 

an external event. Second, the aggregated cause can be specified further, which leads to a classi-

fication by specific cause. There are many possibilities for the specific cause of a disruption. 

Rolling stock related disruptions are mostly train defects, while infrastructure related disrup-

tions are more diverse. These include the failure of signals, switches, overhead lines, crossings, 

bridges, etc. Even more diverse are disruptions with an external cause, as they include all 

remaining causes that cannot be influenced by the IM or TOC. Figure 3.2 presents the 

distribution of disruptions in the Dutch railway network (2,152 in total) for timetable year1 

2019 per aggregated cause and per specific cause. The distribution per aggregated cause is 

fairly even, but the distribution per specific cause shows a greater differentiation. The top five 

specific causes occurring at least once per week on average are train defects, section or signal 

failures, collisions2, switch failures and overhead line failures. All remaining specific causes 

were labeled as “other causes”. 

 
Figure 3.2. Distribution of disruptions per aggregated cause (left) and specific cause (right) for 2019. 

Third, disruptions may be classified by cause based on the train incident scenario registered 

by ProRail. This classification is specific to the Netherlands. The TIS prescribes the response 

and eventual upscaling by the IM, TOCs and emergency services, which may vary per region or 

location. Similar scenarios exist for incidents occurring on highways, on waterways and in air 

transport. From the perspective of traffic control, a TIS is purely administrative*. Five TIS 

categories have been specified: 

• TIS 1: Disrupted train service 

• TIS 2: Fire 

• TIS 3: Collision or derailment 

• TIS 4: Hazardous goods 

• TIS 5: Bomb threat 

 

1 A timetable year starts the second Sunday of December and ends the second Saturday of December the 
year after. Timetable year 2019 lasted from December 9, 2018 until December 14, 2019. 
2 Includes collisions with a person, (motor) cyclist, small road vehicle, large road vehicle, large animal 
and infrastructure object. 
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Each category has four subcategories depending on the severity of the event. Many disruptions 

(85% of the cases in 2019) are classified as TIS 1, although their causes may differ significantly. 

As a result, classifying disruptions by TIS would create a diffuse picture of system performance 

during disruptions which is not preferred for the data analysis. 

Classification by consequence 

Apart from classification by cause, disruptions may be classified by their consequence. Two 

subclassifications are identified: by impact type and by customer hindrance. Some new defini-

tions are introduced first: 

• Timetable point: A location in the railway network for which a plan time is included in 

the timetable. Usually a train station, but also possibly a bridge, junction, shunting yard 

entrance, etc. 

• Line: Railway infrastructure between two timetable points consisting of one or multiple 
sections. 

• Logistical functionality: The ability to accommodate stranded passengers, accommo-

date crew, park stranded or malfunctioning trains, or at least allow trains to short-turn. 

• Boundary point: A timetable point that can be marked as the boundary of a disrupted 

area. Amounts to the closest timetable point with logistical functionality relative to the 

location of a disruption. A map of all boundary points is included in Appendix E. 

• Decoupling point: A timetable point where trains are allowed to start or end their route 
in case of a disruption. 

First, disruptions are classified by consequence based on the impact type, which determines 

the remaining infrastructure capacity. Three impact types are identified: line blockage (partial 

or full), timetable point outage (partial or full) and control center outage. In addition, a line or 

timetable point may experience reduced functionality, for example because of temporary speed 

limitations or the deployment of emergency services. Classification by impact type is a common 

approach in the Netherlands. A description of the impact types is presented in Table 3.3. Each 

row specifies the impact type, its translation in Dutch and the description of the impact type. 

Figure 3.3 presents the distribution of disruptions per impact type, which shows that 85% of 

the disruptions in 2019 were line blockages and a mere 10% were timetable point outages. 

Control center outages are so uncommon that they do not appear in the chart. 

Table 3.3. Disruption impact types based on infrastructure availability. 

Impact type  Description 

Reduced line 

functionality 

Functiebeperking 

baanvak 

All tracks on a line are available, but the capacity 

is reduced. 

Reduced timetable 

point functionality 

Functiebeperking 

begrenzingspunt 

All tracks at a timetable point are available, but 

the capacity is reduced. 

Partial line blockage 
Partiële 

baanvakstremming 

One or multiple tracks on a line are blocked. At 

least one track remains available. 

Full line blockage 
Volledige 

baanvakstremming 

All tracks on a line are blocked. There is no train 

traffic on the particular line. 

Partial timetable point 

outage 

Partiële 

begrenzingspuntuitval 

One or multiple tracks at a timetable point are 

blocked. At least one track remains operational. 

Full timetable point 

outage 

Volledige 

begrenzingspuntuitval 

All tracks at a timetable point are blocked. There 

is no train traffic to or from the particular 

timetable point. 

Control center outage Postuitval 

The functionality of a regional control center is 

compromised. There is no train traffic in the 

entire traffic control area. 
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Figure 3.3. Distribution of disruptions per impact type for 2019. 

Second and more specific to the Netherlands, disruptions are classified based on customer 

hindrance (klanthinder), which amounts to the cumulative delay in minutes caused by a single 

disruption. The train passenger is defined herein as the customer. Each disruption is allocated 

to one of four hindrance classes (hinderklasse, HK): 

• HK 1: Total delay ≥ 2400 min. 

• HK 2: 680 min. ≤ Total delay < 2400 min. 

• HK 3: 40 min. ≤ Total delay < 680 min. 

• HK 4: Total delay < 40 min. 

Customer hindrance is calculated after the end of a disruption to evaluate the impact of the 

disruption on the train service. For trains with a delay greater than 5 minutes, the actual delay 

is used in the calculation. For rerouted trains, a standard 15 minutes are added to the cumula-

tive delay. For canceled trains, a standard 30 minutes are added. A maximum yearly number 

of HK 1 and 2 disruptions is agreed upon between the Dutch government and ProRail, which 

is why customer hindrance should be prevented as much as possible. If the agreed number is 

exceeded, a fine is imposed by the government. The way in which customer hindrance is in-

cluded in the design of contingency plans and during rescheduling is explained in Section 3.3. 

Based on the discussed classifications, it is expected that classifying disruptions by their 

specific cause yields the most uniform picture of system performance within each group, as 

classification by aggregated cause or TIS is too generic and classification by consequence would 

create a rather unequal comparison. After all, line blockages are far more common than time-

table point outages or control center outages. The same holds for HK 3 disruptions, which are 

far more common than HK 1 or 2. 

3.3. Disruption management in the Netherlands 
The way in which disruption management is organized in the Netherlands is specific to the 

country and permeates through the data used in the data analysis. Therefore, the organization 

and working practices need to be properly understood in order to correctly interpret the data, 

draw valid conclusions from the experiments and make useful recommendations based on the 

results. This section discusses the coordination structure, process flow, design and application 

of measures, identification of impact areas, performance measurement and state of the practice 

regarding disruption management in the Netherlands. 
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The Dutch railway traffic coordination structure 

As mentioned in Section 3.1, railway traffic control and operations control in the Netherlands 

are both characterized by a division of tasks between national and regional control centers. 

Traffic is coordinated nationally from the Operational Control Center Rail (OCCR) in Utrecht, 

which facilitates cooperation between the IM, TOCs and maintenance contractors. An overview 

of the coordination structure is shown in Figure 3.4. Traffic control at the OCCR is the respon-

sibility of the Central Monitoring and Operations Control Center (Centraal Monitoring en 

Beslisorgaan, CMBO) which employs four national traffic controllers (verkeersleider CMBO, 

VLC): three for passenger traffic and one for freight traffic. The VLCs are supervised by the 

duty officer rail (officier van dienst spoor, OvD-S). Requests for unscheduled maintenance are 

managed by a planner. When necessary, the duty officer may contact the supervisor of NS’ 

national control center, which otherwise plays a minor role in disruption management. 

 

Figure 3.4. The Dutch railway traffic coordination structure. 

Regional traffic control is distributed over twelve regional traffic control centers, each of which 

are operated by one or two traffic controllers (decentrale verkeersleider, DVL) and multiple 

train dispatchers (treindienstleider, TRDL) supervised by a duty officer. Some control centers 

also have a bridge keeper employed. Depending on the location in the network, regional traffic 

control handles a variety of TOCs. Control centers in the middle of the country are mostly faced 

with NS traffic, while control centers in the periphery are more involved with regional TOCs. 

Control center Kijfhoek is an exception as it exclusively deals with freight traffic. A map of the 

areas monitored by the control centers is included in Appendix F. The dominant TOC in the 

Netherlands, the NS, also has a decentralized coordination structure. Operations control is 

distributed over five regional operations control centers (regionaal besturingscentrum, RBC). 

Communication between ProRail’s regional control centers and NS’ RBCs is maintained for the 

purpose of rolling stock and crew rescheduling. 

Process flow and decision making 

The process that is initiated when a disruption occurs is large and complex, because it involves 

many process steps and decisions by multiple actors. During this process the bathtub model is 

followed. The model is fundamental to the operation of traffic control in the Netherlands, and 

therefore, each bathtub phase (or: resilience phase) is characterized by a unique set of tasks. A 

simplified overview of the process flow from the perspective of traffic control is shown in a 

swimlane diagram in Figure 3.5. The sequence of events is portrayed vertically and starts at 

the top of the diagram. The diagram offers an updated and more complete overview compared 

to Ghaemi et al. (2017). For the sake of readability, decision boxes were not included. 
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First phase 

The process starts with a notification, usually reported by a train driver or an external source. 

The notification is registered by the back office of the control room (meldkamer spoor, MKS) 

at the OCCR. The control room distributes the notification and appoints a general controller 

(algemeen leider, AL), who may be sent to location to assess the situation. When necessary, 

mechanics are sent to location. After gaining a first perception of the situation, initial measures 

are taken by the dispatcher and the DVL regarding safety and logistics, respectively. The DVL 

is supported by the VLC who may take additional measures to ensure that timetable points 

outside the disrupted area do not become saturated. After gaining a detailed perception of the 

situation by the dispatcher and the DVL, the DVL proposes a capacity reallocation (verdeel-

besluit, VDB) which is checked by the VLC. A capacity reallocation specifies the boundary 

points and impact type of the disruption, and with that, also the remaining infrastructure 

capacity. Based on the capacity reallocation, a contingency plan (versperringsmaatregel, 

VSM) is selected by the DVL which is again checked and possibly modified by the VLC. A VSM 

prescribes the actions to be taken for the relevant train series in the disrupted area as specified 

in Table 3.2, and it essentially provides a revisited traffic plan for the second phase. In case no 

suitable VSM is available, the next most suitable one is selected and modified. Before the VSM 

is applied, the disrupted area must be cleared by the dispatcher and the DVL. This typically 

involves retrieving stranded trains. The TOC is informed as the preparation for the VSM may 

require trains to be shunted. 

During the first phase, the workload on dispatchers and controllers is highest. This phase is 

characterized by much communication and the time pressure to prevent an out-of-control 

situation. A complicating factor is that ProRail has little to no insight into crew rescheduling 

by the RBC*. Also, the first phase becomes complicated when incorrect or fragmented infor-

mation is received by traffic control. For instance, it could be the case that a stranded train is 

running again while measures are already being taken, which then causes substantial delays*. 

A characteristic of the first phase that could be observed in the resilience curve is the “drain” 

of the bathtub, which represents the lowest point in the curve. This may occur when trains are 

halted as a result of emergency measures. Performance is then slightly restored towards the 

end of the first phase, before the VSM is applied*. Another characteristic of the first phase is 

wishful thinking: the tendency to believe that a disruption will resolve itself. This may cause 

trains to keep running with minor delays, potentially creating a disruption elsewhere in the 

network due to the accumulation of delays*. 

Second phase 

The start of the second phase represents the transition from disrupted traffic to traffic that 

follows the revisited timetable, eventually leading to a steady state. In practice, this transition 

will be smooth rather than immediate. The second phase starts with monitoring the revisited 

traffic plan by the dispatcher, DVL and VLC. Meanwhile, the VLC monitors if the disruption is 

at risk of becoming a HK 2 disruption. If that is the case, the OvD-S is informed. The OvD-S 

may arrange a meeting to discuss additional measures. Critical at this stage is to check whether 

the capacity reallocation is as well defined as possible. The DVL logs mutations to the traffic 

plan for the first 30 minutes of the VSM in the computer system. Subsequent mutations are 

logged by the VLC. Apart from monitoring traffic in the current state, the second phase involves 

preparing a plan to restart the train service according to the original timetable. First, remaining 

obstacles such as delayed freight trains must be cleared. The sequence in which train series are 

reinserted is usually included in the VSM. If not, the VLC checks this with the involved TOCs. 

The DVL further prepares the restart plan in detail and checks with the dispatcher and the TOC 

if the plan is feasible. When the plan is approved and the infrastructure is reclaimed by the AL, 

the VLC announces that the restart can be initiated. The definitive prognosis for this moment 

should be made 30 minutes in advance by the AL. In practice, it may occur that the restart is 
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already possible before prognosis, in which case the VLC is taken by surprise because a feasible 

restart plan has not yet been devised*. 

 

Figure 3.5. Swimlane diagram of the main disruption management processes. 

Third phase 

In the third phase, the restart plan is applied and monitored. The purpose of the restart plan 

is to return to the original timetable. At this point, ProRail’s control over the situation is 

reduced compared to the previous two phases, since there is not much more to be done from 

the IM’s perspective. The infrastructure has been made available, and it is up to the TOCs to 

get the trains running again. Naturally, the restart is postponed if the TOCs are not ready. 

Similar to the first phase, NS’ crew planning can be a bottleneck when initiating the restart, 
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because crew is taken off the train when the train is canceled and put back on the train prior to 

restart. This is not the case for regional and freight TOCs, which typically prefer to let their 

crew stay with the delayed or canceled train due to less flexibility in rescheduling*. 

Design and application of measures 

The process flow described in Figure 3.5 reveals that the application of predefined solutions is 

crucial to the disruption management process. In literature (e.g. Veelenturf, 2014; Ghaemi et 

al., 2018), these solutions are referred to as contingency plans. For the design of such plans, 

the network has been divided on corridor level. Every line in the Dutch railway network (except 

for the Betuweroute, which is freight only) is part of one of four passenger corridors, which are 

the A2/A12, IJssellijn, Oudelijn and Groene Hart/Veluwe. A map of the corridors is included 

in Appendix G. The division on corridor level lays the foundation for the design of measures 

for train delay management (TADs) and disruption management (VSMs), which are discussed 

separately in this subsection. 

Train delay management 

Traffic control on corridor level requires a shared perspective between controllers in different 

control centers on how to handle delays. This is documented in a guideline (leidraad) for train 

delay management unique to each corridor. A guideline is a document of a few pages describing 

the goals, principles and measures on corridor level. The first guideline was developed jointly 

with the NS for the A2/A12 corridor in anticipation of the frequency increase between 

Amsterdam and Eindhoven. Guidelines for the other corridors followed shortly after the first 

one based on the corridor-specific goals. For example, the goal on the A2/A12 corridor is to 

maintain the 10-minute rhythm, whereas the goal on the IJssellijn is to facilitate as many 

connections as possible to the intercity service that traverses the corridor. The measures that 

are described in the guideline vary accordingly. There are currently no guidelines for regional 

and freight routes because of the lower complexity and demand*. 

Specific measures and dispatching rules for handling delays are defined in train delay handling 

documents (treinafhandelingsdocument, TAD) unique to each dispatch area. A TAD describes 

how long a train is allowed to wait for a connecting train and how a train series needs to be 

rescheduled or canceled when delays grow too large. For example, the TAD for dispatch area 

Eindhoven specifies that the 3900 series from Heerlen to Amsterdam shall be canceled when 

it has a delay of 10 minutes or more by the time it reaches Roermond. The TADs are built on 

existing knowledge from before the guidelines and current VSMs were developed*. Nowadays, 

the guidelines provide a framework for updating and improving TADs, and they prescribe a 

coherent approach in case a TAD does not offer resolution. 

Disruption management 

Because TADs are not suitable for use in disruption management, VSMs are designed by the 

VGB team. The philosophy behind the VSMs is documented in an assessment framework that 

outlines the interests and prioritization of different service types. The framework provides 

rules for scenario makers who design and manage the VSMs and TADs, and more simple rules 

for traffic controllers to be followed when no VSM is available. Essential in both cases is the 

allocation of remaining infrastructure capacity when capacity is reduced due to a disruption. 

The standpoint that ProRail takes in this respect is twofold. Of the two principles, the first one 

is superior to the second one: 

1. Infrastructure should be utilized to maximum capacity. 

2. TOCs should be treated nondiscriminatory. 

The starting points in VSM design are that measures should be predefined based on the TOCs’ 

interests and that they should be feasible. This means a VSM has to meet planning standards 

(i.e. headway and crossover times) as well as minimal process times to ensure the safe opera-
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tion of trains. Planning standards are generic, although an additional calculation can be made 

which takes location-specific characteristics of the infrastructure or rolling stock into account. 

This may result in a tighter, but still feasible VSM that utilizes the potential of the local infra-

structure as much as possible. However, the tight planning in a VSM is also a potential source 

of new delays*, which could be observed in the response phase of the resilience curve. 

Because a VSM is designed as a revisited timetable, it follows a basic hour pattern, which is a 

generic timetable for exactly one hour that can be repeated throughout the day. The translation 

from basic hour pattern to an actual timetable and from train series to train number needs to 

be made in real time by traffic control. Based on the number of reroutes and cancellations in 

the VSM, customer hindrance can be calculated in advance. The calculated cumulative delay is 

increased by 10% to account for delays occurring during a disruption, which cannot be antici-

pated with certainty. Still, customer hindrance has little added value in VSM design because 

the scenario maker builds security into the VSM* to ensure that the VSM will nearly always be 

feasible. Relaxation of the VSM can be considered in real time by the duty officer to prevent 

customer hindrance of HK 2 or worse. 

Each VSM is designed to accommodate a specific impact type as presented in Table 3.3. This 

means for example that a line blockage is treated equally, regardless of whether it is caused by 

a collision or an overhead line failure. However, the effects and duration of these events could 

differ significantly. VSMs are mostly designed for line sections, since line blockages are more 

common and easier to deal with than disruptions at timetable points, especially when a point 

serves more than two directions. This approach yields a decent coverage*, although the end 

goal remains to develop a suitable plan for every kind of infrastructure restriction. The current 

VSMs have only been designed and updated in recent years based on the principles from the 

Railway Control and Rescheduling of the Future program (Be- en Bijsturing van de Toekomst, 

BBT). A core principle of BBT is to prevent cascading effects, which means in practice that a 

single train is inferior to the larger network: it is preferred to cancel a delayed train rather than 

to keep the train running with a delay that could eventually propagate onto successive trains. 

Identification of impact areas 

The actions included in a VSM not only vary per train series, location and impact type, but also 

per impact area. ProRail makes a distinction between the first, second and third impact area. 

The first impact area is bounded by the first intercity (IC) decoupling points from the location 

of the disruption. The impact on the train service is greatest in this area. The second impact 

area is bounded by the next closest IC decoupling points from the first decoupling points. This 

means that the complexity of the impact area so far increases quickly for a strongly connected 

network, and the size of the impact area increases quickly for a location in the network with a 

low decoupling point density. The third impact area again is bounded by the next closest IC 

decoupling points from the second decoupling points. The impact on the train service should 

be minimal in the third impact area. This is underlined by the fact that, in principle, it is not 

allowed to cancel trains in the third impact area, whereas cancellations are allowed in the first 

and second impact area as long as certain conditions are satisfied. 

Figure 3.6 illustrates how the impact area is determined per impact type for part of a hypo-

thetical network. A real-world example is provided in Chapter 5. The figure provided here 

assumes a worst-case scenario since according to the newest definition, a decoupling point only 

becomes part of an impact area when it is reached by a “contaminated train”, which is a train 

that passes through the disrupted line or timetable point. In Figure 3.6, the orange and yellow 

colored points would not be part of the impact area if all disrupted traffic were to be contained 

in the first impact area. Hence, in the newest definition, the impact area is not geographically 

fixed based on the location of a disruption, but it is codependent on the remaining traffic flow. 

In this thesis, the old definition (described in the previous paragraph) is followed. 
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Figure 3.6. First, second and third impact area per impact type. 

Performance measurement 

Since the bathtub model plays such a prominent role in disruption management practices in 

the Netherlands, one might expect that close attention is paid to performance measurement 

along both axes of the curve, but this is not the case. Rather, the model serves mostly as a 

theoretical foundation. Traffic control during disruptions is assessed on six critical perfor-

mance indicators (KPIs) which all describe lead times in the first phase. There are no KPIs for 

traffic control in the second and third phase. The KPIs apply to national traffic control by the 

CMBO, but not to traffic control in the regional control centers. Furthermore, they relate to the 

internal processes, not to system performance as shown in the resilience curve. The KPIs for 

the CMBO describe the following time differences: 

1. “Notification known to MKS” until “concept VDB and VSM” 

2. “Concept VDB and VSM” until “definitive VSM”  

3. “Definitive VSM” until “VSM applied” 

4. “VSM applied” until “cancellations until expected end of disruption logged by VLC” 

5. “VSM applied” until “framework for restart logged by VLC” 

6. “VSM applied” until “traffic according to VSM” 

When all KPIs are met, the first phase should take no more than 44 minutes, which equals the 

time until a notification reaches the control room plus the summed target values for KPIs 1, 2, 

3 and 6. The KPIs are monitored, but they are not a hard constraint. Additional performance 

indicators are available that do relate to railway system performance, but those indicators are 

not considered critical. An overview of these indicators and their definitions is given in Table 

3.4. One of the indicators in the table (passenger traffic punctuality) has been a KPI for ProRail 

in the past, but was dropped after passenger punctuality had been redefined by the NS in 2017. 

Note that passenger traffic punctuality indicates the punctuality of trains, whereas passenger 

punctuality (based on check-in times) indicates the punctuality of people’s travels. Passenger 

traffic punctuality is still reported and used to assess the performance of regional services*. 
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Table 3.4. System performance indicators used by ProRail. 

Performance indicator Definition 

Realized train paths 

The percentage of realized train paths for all TOCs. A train path is 

realized when an activity is registered at all timetable points of this 

path, either by the original train or a replacement train. 

Delivered train paths 
The percentage of realized train paths for all TOCs plus all 

unrealized train paths that are caused by the TOCs. 

Passenger traffic punctuality 
The percentage of passenger train arrivals with a delay of less than 

three minutes. 

Freight traffic punctuality 

The percentage of freight trains that reach their final destination 

with an additional delay of less than three minutes relative to the 

delay at the starting point. 

Canceled services 
The percentage of train activities included in the original traffic plan 

that have not been realized. 

 

Along with the change of passenger traffic punctuality to a noncritical performance indicator, 

the so-called “red” and “black” days lost their official status as well. Yet, it remains common 

practice to refer to a traffic day in the following manner: 

• Green day: A traffic day characterized by a traffic punctuality greater than 92.5% and 

canceled services lower than 1%. 

• Red day: A traffic day characterized by a traffic punctuality lower than 85% and/or 

canceled services greater than 5%. 

• Black day: A traffic day characterized by a traffic punctuality lower than 75% and/or 
canceled services greater than 10%. 

Red and black days are often related to extreme weather and can thus be anticipated based on 

the weather forecast. A red day may also be the result of an unfortunate or incorrect decision 

by traffic control or by problems with the TOC (e.g. a shortage of shunting train drivers). Some-

times, a red day may simply be coincidence, when multiple disruptions lead to the congestion 

of a major node in the network*. Red and black days present a challenge to traffic controllers, 

for on those days, disruptions can no longer be considered independent from each other. This 

means VSMs need to be adjusted to meet the current state of traffic in the network, which takes 

more time and communication than usual* causing a longer first phase. A timeline of red and 

black days and some of their causes for calendar year 2019 is presented in Figure 3.7. The black 

day of November 27 stands out as no single cause could be identified. This simply appears to 

have been a rather eventful day, with an overhead line failure on a single track line between 

Leiden and Utrecht and a train defect occurring shortly afterwards at the station in Woerden 

severely disrupting railway traffic in the western part of the country. 

 

Figure 3.7. Timeline of red and black days in 2019. 
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State of the practice 

Although the bathtub model and the resilience curve are two different names describing the 

same concept, the resilience of the railway network has not been studied by ProRail before. 

Improvement initiatives have been undertaken based on the bathtub, but those studies focused 

on a single phase of the curve with the goal to find process improvements. For example, a study 

on the first phase identified the elements that may contribute to a complex disruption with a 

long first phase and proposed ways to act on this. A study on the third phase found a positive 

correlation between the duration of the third phase and the likelihood of causing customer 

hindrance of HK 1 or 2. Furthermore, a dashboard on the bathtub phases has been developed 

in Microsoft Power BI. The dashboard reports the average duration of (parts of) each phase. 

The total duration is also reported for the most common types of disruptions. Other than that, 

existing knowledge about resilience is limited and provides little foundation to build on. 

3.4. Chapter summary 
This chapter started with an overview of disruption management practices regarding the roles 

and responsibilities, management actions and tradeoffs in disruption management. Possible 

ways to classify disruptions by cause and by consequence were discussed. Disruption manage-

ment in the Netherlands was discussed with an emphasis on the process flow, design of prede-

fined solutions, identification of impact areas and measurement of system performance. 

Answer to subquestion 2 

With the knowledge obtained in this chapter, the second subquestion is answered. 

Subquestion 2: What is the current state of the practice and quantitative knowledge 
regarding different types of railway disruptions in the Netherlands? 

 

Each country has its own specific coordination structure and approach to railway disruption 

management. In the Netherlands, there is a heavy reliance on predefined solutions known as 

contingency plans. These plans specify the actions to be performed on each train series in the 

disrupted area and are designed to function as a revisited timetable. Contingency plans apply 

to the second phase of the bathtub model. The bathtub model is rooted in ProRail’s working 

practices regarding disruption management, and each phase in the model is characterized by 

a unique series of processes. These processes require cooperation between the control room, 

dispatchers, traffic controllers, train operating companies and maintenance contractors. 

Contingency plans consider the effects on infrastructure capacity, but not the underlying cause 

of a disruption. The aggregated causes are rolling stock, infrastructure and external, but these 

can be specified further. In the light of resilience, not much is known about different types of 

disruptions other than the average duration of each phase and the total duration of a disruption 

for the most common causes. Although these durations are known, they are currently not used 

to evaluate the resilience of the network. As a consequence, the evolution of system perfor-

mance during disruptions is not known, even though the necessary traffic realization data are 

available. This means there is a similar knowledge gap in practice as there is in scientific 

literature regarding the quantitative knowledge about different types of disruptions, or even 

disruptions in general. This gap is addressed in the upcoming chapters. 
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4. Methodology 

The previous two chapters addressed the theoretical and practical background on resilience 

and disruption management in railways. Building on the insights obtained in those chapters, 

this chapter describes the methodology for the data analysis. Section 4.1 discusses the perfor-

mance indicators and resilience metrics that were selected in order to quantify railway system 

performance. Section 4.2 presents the resilience evaluation framework and discusses the input 

data and calculation procedure in detail. Section 4.3 discusses the algorithms that were devel-

oped to calculate the resilience curve and resilience metrics. Section 4.4 gives an overview of 

the statistical methods to be considered and the theory behind them. Section 4.5 summarizes 

the chapter and provides the answer to subquestion three. 

4.1. Selection of indicators and metrics 
A crucial first step prior to data analysis is the selection of one or more performance indicators 

by which to calculate the resilience curve. Also, a selection should be made of resilience metrics 

that describe the profile of the resilience curve quantitatively. The selection of indicators and 

metrics is covered in this section. 

Performance indicators 

In Chapter 2, four categories of real-time performance indicators were identified: travel time, 

travel demand, traffic flow and use of resources. Such categories are referred to by Jafino et al. 

(2020) as “functionalities”. In Chapter 3, five additional performance indicators used in Pro-

Rail were presented that partly resemble the previously identified indicators. Unique additions 

were the realized and delivered train paths, but since a train path spans a period of time and 

can therefore only be evaluated after the fact, these indicators were not considered as viable 

alternatives to the available indicators. As a result, sixteen potential indicators were consid-

ered, accounting for the various definitions of punctuality. Empirical similarity between the 

indicators should be avoided, which means no two indicators of the same functionality should 

be selected (Jafino et al., 2020). An updated overview of the available performance indicators 

per functionality is presented in Table 4.1 based on Table 2.3. 

Table 4.1. Available system performance indicators per functionality. 

Travel time Travel demand Traffic flow Use of resources 

Passenger punctuality Satisfied demand Traffic throughput Track occupation 

Passenger traffic punctuality Passenger volume Speed reduction Rolling stock usage 

Freight traffic punctuality Network saturation  Transport capacity 

Journey time   Canceled services 

Average delay    

Secondary delay    

Cumulative delay    

 

Some of the issues with certain indicators were already addressed in Chapter 2. First, all travel 

demand indicators require passenger counts or at least accurate estimates, which are typically 

not available to the infrastructure manager and particularly not in real time. Second, the speed 

reduction and rolling stock usage are difficult to retrieve as this kind of information lies with 

the TOCs and may be considered as competitively sensitive information*. In terms of traffic 

flow indicators, traffic throughput is therefore the better option compared to speed reduction, 

although it is more appropriate for studying a route or cross-section than an entire area. In 

terms of resource indicators, data access is less of an issue for track occupation and transport 

capacity compared to rolling stock usage. However, the problem with these indicators is that 

their direction is ambiguous: a higher value generally indicates better performance, but this 
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switches around when trains are halted*. Canceled services is a more suitable resource indica-

tor as its direction is unambiguous: a cancellation indicates nonperformance by definition. 

In terms of travel time indicators, journey time is the least suitable given the lack of a consistent 

reference value. A slightly better option is the secondary delay, which is difficult to retrieve as 

it requires disentangling primary and secondary delays. The three best options are the average 

delay, cumulative delay and punctuality. Regardless of its exact definition, punctuality has the 

disadvantage that it is binary: a train activity is either punctual or not, based on a tolerance for 

the maximum acceptable delay. It does not tell whether the delay is for example 5 minutes or 

20 minutes. However, an advantage of punctuality is that it is the most relatable indicator to 

visualize in a resilience curve, as it represents an increasing system service function with clear 

upper and lower bounds. For the average and cumulative delay to be described in a similar 

way, delay measurements would have to be transformed and normalized. While this is not an 

issue when studying an individual disruption, it becomes problematic when studying multiple 

disruptions simultaneously, as the normalized delay is not comparable across disruptions. This 

means that punctuality is ultimately the preferred travel time indicator. 

To summarize, two performance indicators were preferred over the rest: canceled services and 

punctuality. These are complementary since punctuality does not include cancellations, and 

canceled services does not include delays. The two indicators shall therefore be used alongside 

each other*. To allow an easy comparison between them, both indicators should preferably 

represent an increasing system service function. Therefore, canceled services was transformed 

into traffic intensity, which represents the percentage of realized train activities. Hence, traffic 

intensity is effectively the opposite of canceled services. With respect to punctuality, the traffic 

punctuality was considered since passenger punctuality data are not available to ProRail. Also, 

traffic punctuality has the advantage that it is not affected by anticipating passengers and 

replacement transport, which is a problem with passenger punctuality*. For example, when a 

passenger completes the first leg of a trip by train, switches to a replacement bus and completes 

the last leg of the trip by train again, this could be interpreted as two punctual trips although 

the total travel time is longer than usual. In line with the definition of traffic punctuality in 

ProRail, a three minute tolerance was set for the maximum allowable delay. However, as a 

deviation from this definition, punctuality was defined for arrivals as well as passings. This was 

done to capture the real-time state of the railway system as accurately as possible. Ultimately, 

this led to the following definitions of railway system performance. 

Traffic punctuality: The proportion of train activities with a delay of less than three minutes 
relative to the number of realized train activities. 

Traffic intensity: The proportion of realized train activities relative to the total number of 
planned train activities in the timetable. 

 

To include both indicators in the same curve, they were combined in a composite performance 

indicator 𝑄 which is the weighted sum of traffic punctuality (P/R) and traffic intensity (R/T): 

                                                                𝑄 = ((1 − 𝜆)
𝑃

𝑅
+ 𝜆

𝑅

𝑇
) ∙ 100%                                                          (2) 

Where: 

• 𝑃 is the number of punctual train activities 

• 𝑅 is the number of realized train activities 

• 𝑇 is the number of planned train activities 

• 𝜆 is the normalized performance weight (0 ≤ 𝜆 ≤ 1) 
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It is acknowledged that there are downsides to using a composite indicator. First, the result is 

somewhat abstract and less easy to communicate than when using a single indicator. Second, 

there is an implicit relationship between the two indicators that cannot be ignored, since 𝑃 is 

a subset of 𝑅 and 𝑅 is a subset of 𝑇. The dependency between the indicators is reduced since 

the proportions are evaluated, but the implicit relationship remains. Yet, there are also benefits 

to using a composite indicator. Most importantly, the composite indicator is useful to represent 

delays and cancellations in the same curve. A pilot investigation of the shape of the resilience 

curve was carried out for the two indicators and showed that the curve could exhibit strong 

fluctuations, especially with regard to punctuality. These fluctuations were largely canceled out 

with the composite indicator, which indicates there may be some (currently unknown) interac-

tion between traffic intensity and punctuality. The composite indicator also helps account for 

the fact that not every disruption has the same impact on the train service. In one case, trains 

may keep running while delays start to build up, where in another case, some trains may be 

canceled while the remaining ones are running on time. More specifically, the added benefit of 

the punctuality component may be observed for partial blockages (which do not necessarily 

lead to cancellations, but can still cause delays) and for disruptions where it takes a long time 

before a VSM is applied. It is known from practice that the latter occurs regularly and may have 

a significant effect on ProRail’s KPIs. Studying the traffic intensity alone would underestimate 

the impact of a disruption in such cases. 

Since performance is defined as a weighted sum, one of the indicators could be made more 

important than the other. A weight 𝜆 < 0.5 puts more emphasis on punctuality, where a weight 

𝜆 > 0.5 puts more emphasis on traffic intensity. Given the fluctuating nature of punctuality and 

based on the premise that it is more important that trains are running at all than that they are 

running on time, a weight 𝜆 > 0.5 should be favored. Different values for the weight were tested 

which led to 𝜆 = 0.67 to be chosen as a starting point. At this value for 𝜆, the resilience curve is 

relatively well behaved while the punctuality component is dominant enough so that changes 

in punctuality may be observed. Also, 𝜆 = 0.67 is relatively easy to communicate as this makes 

traffic intensity twice as important as punctuality. The effect of the choice of the weight on the 

resilience curve is illustrated for one of the studied disruptions in Figure 4.1, which shows the 

curves for an overhead line failure between The Hague Central and Ypenburg on August 18, 

2019. The curve for 𝜆 = 0.67 is shown in gold. Notice the complex interaction between traffic 

intensity and punctuality, and how the peaks and valleys are smoothed in the golden curve. In 

this case, punctuality dropped rapidly already before the reported start of the disruption and 

again during the restart, which would not have been observed if only the traffic intensity was 

studied. The changes in punctuality can be observed though with the composite indicator. 

 

Figure 4.1. Resilience curve for different performance weights for an example disruption. 
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Resilience metrics 

The selection of multiple resilience metrics makes it possible to account for the multidimen-

sional nature of resilience, which could be observed in the resilience curve through different 

degradation and recovery behaviors. Similar to the selection of performance indicators, the 

metrics should be complementary and have no or limited overlap to avoid multicollinearity. 

An overview of the metrics identified in Chapter 2 is presented in Table 4.2. The table briefly 

describes each of the metrics and the dimension they represent. 

Table 4.2. Available resilience metrics per dimension. 

Dimension Metric Description 

Time Recovery time The total duration of a disruption. 

 Recovery rate The average slope of the resilience curve in the third phase. 

 Deterioration rate The average slope of the resilience curve in the first phase. 

Performance Initial impact 
The vertical distance between target performance and 

minimum performance in the first phase. 

 Maximum impact 
The vertical distance between target performance and 

minimum performance. 

 Residual functionality 
The vertical distance between zero performance and 

minimum performance. 

Time and 

performance 
Performance loss 

The area enclosed by target performance and the resilience 

curve. 

 ITAE Performance loss multiplied by a time penalty. 

 Profile length Length of the recovery profile. 

 Weighted sum Time-dependent deviation from a linear recovery profile. 

 

Based on the four metrics printed in bold in Table 4.2, seven resilience metrics were defined. 

First, the time dimension was captured. Rather than defining recovery time as the total dura-

tion of a disruption, such as in Nicholson et al. (2015) or Chan and Schofer (2016), a distinction 

was made between the resilience phases to account for the unique processes and characteristics 

of each phase. Thus, degradation time gives the duration of the first phase; response time gives 

the duration of the second phase; and recovery time gives the duration of the third phase. 

Second, the performance dimension was captured. Maximum impact was selected because it 

is measured over the entire duration of a disruption, as opposed to the initial impact. Third, 

the joint dimension of time and performance was captured. Performance loss was selected to 

represent the area above the resilience curve. This metric was preferred over the integral of 

time absolute error (ITAE), which is mainly useful to describe oscillatory behavior around the 

optimal performance. However, oscillatory behavior cannot occur for the chosen indicators 

since optimal performance represents the upper limit of what is theoretically achievable. 

To capture time and performance specifically for the transition phases, the weighed sum was 

considered. Munoz and Dunbar (2015) used it to evaluate supply chain resilience, but it has 

not been applied in a railway context before. However, during the experiments discussed in 

Chapter 5 it became apparent that the weighted sum is easily inflated due to the time penalty. 

This means that large positive or negative values could result from relatively small deviations 

from a linear degradation or recovery, which makes the outcome of the weighted sum difficult 

to interpret. Thus, it was decided to abandon the time penalty and only consider the summed 

deviation from a linear profile. This does not imply that it is assumed that degradation and 

recovery are linear; it merely provides a reference frame for determining the nonlinearity of 

the resilience curve in the transition phases. The degradation profile represents the summed 

deviation from a linear degradation, and the recovery profile represents the summed deviation 

from a linear recovery. In contrast with the previous metrics, the degradation and recovery 



39 
 

profile can take on negative values as well. A negative value indicates a concave deviation from 

a linear profile, where a positive value indicates a convex deviation. 

Figure 4.2 shows an enriched resilience curve based on Figure 2.1 including the selected resili-

ence metrics. In this figure and in the definition of the resilience metrics, 𝑄(𝑡) represents the 

performance function, 𝑓(𝑡) represents the linear degradation function and 𝑔(𝑡) represents the 

linear recovery function. The metrics are defined as follows: 

1. Degradation time (DT) is defined as the duration of the first resilience phase, from the 

start of the disruption to the start of the response phase. 

                                                                                 𝐷𝑇 = 𝑇1 − 𝑇0                                                                          (3) 

2. Response time (RST) is defined as the duration of the second resilience phase, from the 

start of the response phase to the start of the recovery phase. 

                                                                                𝑅𝑆𝑇 = 𝑇2 − 𝑇1                                                                         (4) 

3. Recovery time (RCT) is defined as the duration of the third resilience phase, from the 

start of the recovery phase to the end of the disruption. 

                                                                               𝑅𝐶𝑇 = 𝑇3 − 𝑇2                                                                         (5) 

4. Maximum impact (MI) is defined as the vertical distance between target performance 

𝑄0 and minimum performance 𝑄𝑚𝑖𝑛 occurring at any point during the disruption. 

                                                                              𝑀𝐼 = 𝑄0 − 𝑄𝑚𝑖𝑛                                                                       (6) 

5. Performance loss (PL) is defined as the area enclosed by target performance 𝑄0 and the 

performance function 𝑄(𝑡), calculated as the sum of the area of each interval [𝑡𝑖 , 𝑡𝑖+1] 

where 𝑛 is the number of intervals 𝑖 and 𝑇0 ≤ 𝑡𝑖 ≤ 𝑇3. 

                                                           𝑃𝐿 = ∑ (𝑄0 − 𝑄(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖)

1≤𝑖≤𝑛
𝑄(𝑡𝑖)<𝑄0

                                                   (7) 

6. Degradation profile (DP) is defined as the sum of the vertical distance between the 

linear degradation function 𝑓(𝑡) and the performance function 𝑄(𝑡) calculated over the 

𝑚 equally spaced measurement points 𝑗 in the first phase, where 𝑇0 ≤ 𝑡𝑗 ≤ 𝑇1. 

                                                                     𝐷𝑃 = ∑ (𝑓(𝑡𝑗) − 𝑄(𝑡𝑗))

𝑚

𝑗=1

                                                              (8) 

7. Recovery profile (RP) is defined as the sum of the vertical distance between the linear 

recovery function 𝑔(𝑡) and the performance function 𝑄(𝑡) calculated over the 𝑠 equally 

spaced measurement points 𝑘 in the third phase, where 𝑇2 ≤ 𝑡𝑘 ≤ 𝑇3. 

                                                                     𝑅𝑃 = ∑(𝑔(𝑡𝑘) − 𝑄(𝑡𝑘))

𝑠

𝑘=1

                                                             (9) 

For all resilience metrics it holds that a larger positive value indicates worse performance in 

terms of resilience. Note how Equation (7) has been converted into a left-hand Riemann sum 

compared to the definition of performance loss in Chapter 2. The reason for this is that the 

actual performance function 𝑄(𝑡) is not known, so the integral can only be approximated. 

Given that the resilience curve both decreases and increases over the course of a disruption, a 

left-hand sum will not likely result in a significant under- or overestimation of the integral. The 
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sum was defined to include only performance measurements below target performance. This 

was done to prevent an underestimation or even a negative value of performance loss in case 

performance is already above target performance when the train service is restarted, which was 

taken as the starting point for determining the end of disruption as explained in Section 4.2. 

Also note that Equations (8) and (9) do not approximate an integral but are a summation over 

points, although the result would be equal to a Riemann sum of the net area between the linear 

function and the resilience curve in case a unit interval is used. 

 

 

 

 

 

 

 

 

 
Figure 4.2. Resilience curve including the selected resilience metrics. 

4.2. Resilience evaluation framework 
The selected performance indicators and resilience metrics were incorporated in the newly 

developed resilience evaluation framework presented in Figure 4.3, which summarizes the 

methodology for the data analysis. The framework has been divided into three parts: input, 

processing and output. 

 

Figure 4.3. The resilience evaluation framework. 
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In short, the resilience evaluation framework works as follows. The evaluation starts with the 

collection of traffic realization data, disruption log data and network data. Realization and 

network data are used to calculate the evolution of performance in the disrupted area according 

to Equation (2). The performance measurements are then used to calculate the resilience met-

rics according to Equations (3) to (9). The metrics are stored along with essential information 

about the disruption retrieved from the disruption log data. Quantitative results are obtained 

from statistical analysis of the resilience metrics. Graphic results in the form of resilience 

curves are obtained directly from the performance measurements. The input and processing 

parts are explained in more detail in this section. 

Input 

Traffic realization data 

The first type of input data is traffic realization data, which can be observed in the activity 

viewer in Sherlock. The structure of the dataset is long-form: each row corresponds to an obser-

vation (in this case: a train activity), and each column corresponds to a variable. The required 

variables in this dataset are specified by their original column names in Table 4.3. The last four 

rows of the table describe the various plan times and the realization time of a train activity. 

Table 4.3. Overview and description of traffic realization variables. 

Variable Column name Description 

TOC basic.treinnr_vervoerder The TOC responsible for the train activity. 

Train number basic.treinnr 
The train number corresponding to the train 

activity. 

Service type basic.treinnr_rijkarakter 
The service type corresponding to the train 

activity. 

Timetable point basic.drp 
The timetable point where the activity is 

registered. Usually the location of a train station. 

Control area basic.drp_post 
The traffic control area to which the timetable 

point belongs. 

Activity type basic.drp_act 

The type of activity that is registered. Includes 

departures, arrivals, passings and shunting 

movements. 

Original VOS time vklvos.plan_oorspronkelijk 
The original plan time in traffic control system 

VOS. 

Actual VOS time vklvos.plan_actueel 
The actual plan time in traffic control system 

VOS. Usually the same as the original time. 

Plan time basic.plan 
The most recent plan time determined from a 

range of input sources. 

Realization time basic.uitvoer 
The most accurate approximation of the 

realization time. 

 

The exact realization time of a train activity is not known and is therefore approximated using 

the most accurate source available. This source is usually Trento, a measurement system that 

determines the realization time of a train activity based on the moment of passing the axle 

counter or insulated rail joint closest to the particular timetable point. The time gap that corre-

sponds to the distance traveled between the measurement point and the actual location of the 

timetable point is estimated based on the distance, train length and acceleration or braking 

behavior of the particular train type. Trento has an accuracy of approximately five seconds. 

When Trento data are not available, the realization time comes from UIS, which is a component 

of the traffic control system VOS. Whereas realization times in UIS are measured in real time, 

realization times in Trento are not. Still, the accuracy of UIS is lower compared to Trento. 
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Missing realization times must be addressed in data preparation as it could occur that a train 

activity has no realization time entry. This does not necessarily mean that the activity was 

canceled. A missing realization time entry can mean one of the following four things: 

1. The activity was canceled. 

2. No accurate approximation of the realization time is available. 

3. The entire path of the particular train was erroneously canceled. 

4. The train was included in the year plan, but not in the timetable. 

In the last case, the VOS columns can be used to filter out these activities in order to properly 

identify cancellations. When neither of the columns has a data entry, the activity did not take 

place and was also never intended to. The only activities that should be counted as cancella-

tions are activities with an original VOS time and plan time, but without an actual VOS time 

and realization time. Yet, it may occur that an entire train path was canceled in VOS when a 

train did in fact complete part of its journey. As there is no way of checking when or how often 

this occurs, it is acknowledged that performance in terms of traffic intensity may be slightly 

underestimated in some cases. 

Disruption log data 

The second type of input data is disruption log data, which was exported from the Spoorweb 

table viewer in Sherlock. Spoorweb is the online platform that enables information sharing and 

communication among traffic controllers, TOCs, contractors etc. Again, the data structure is 

long-form, with each row corresponding to a disruption. The viewer contains essential infor-

mation about disruptions, including many time entries that mark decision points or milestones 

in the disruption management process. The time entries in the disruption log data are used in 

ProRail to determine the start and end of the resilience phases. Most entries are logged in real 

time, but some are approximated in Sherlock. The relevant variables in this dataset are speci-

fied by their original column names in Table 4.4. 

Table 4.4. Overview and description of disruption log variables. 

Variable Column name Description 

Spoorweb ID IncidentID The Spoorweb record ID of the disruption. 

Specific cause IncidentLabel 
The specific cause of the disruption as reported by 

the control room. 

Control area Dvlpost1 
The traffic control area in which the disruption 

has occurred. 

Impact type Logistiek_VDBs The impact type of the disruption. 

Boundary points 
Logistiek_VDB_ 

Begrenzingpunten 

The boundary points of the disruption according 

to the capacity reallocation. 

Start of disruption T_voorval 
The moment when the disruption approximately 

occurred. 

First VSM applied T_gekozeneerstevsm The moment when the first VSM was applied. 

Restart initiated T_opstartenmogelijk 
The moment when the VLC reports that the 

restart can be initiated. 

End of ICB T_EindeIncidentICB 
The moment when the end of the disruption was 

reported by ICB. 

End of disruption T_EindeIncident 
The moment when the end of the disruption was 

reported by the control room. 

Service restored T_Treindienstopgestart 

The moment when two consecutive trains of each 

train series in the VSM have run again, except for 

the last series, which should have run only once. 

Record closed T_afsluit 
The moment when no further logistic measures 

are required and the Spoorweb record is closed. 
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Given the available time entries in the disruption log data, the formal definitions in ProRail of 

the start and end time of the resilience phases (𝑇0 … 𝑇3 as in Figure 4.2) are introduced to allow 

a comparison to these timepoints later on. First, 𝑇0 is defined as the moment when a disruption 

occurs, which is approximated as a standard five minutes prior to when the notification reaches 

the control room. Second, 𝑇1 is defined as the moment when all trains series in the VSM have 

short-turned for the first time. If no trains have short-turned, this entry is not available. Also, 

it creates a distorted picture for disruptions that involve long routes* or train series with a low 

frequency (e.g. one train per hour), since the first short-turns may be performed relatively late. 

This timepoint may be reported quite early as well (even before the VSM is applied) in case the 

prescribed short-turns were already performed as emergency measures in the first phase. Most 

of the interviewed respondents preferred to see 𝑇1 defined as the moment when the VSM is 

applied, which is also the definition that is followed in this thesis. Third, 𝑇2 is defined as the 

moment when the VLC reports that the restart can be initiated. When this entry is missing, 𝑇2 

is defined as the moment when calamity control (Incidentenbestrijding, ICB) reports the end 

of disruption. ICB is the division of ProRail that resolves a disruption on site, handles collateral 

damage and manages the aftermath. When this entry is also missing, 𝑇2 is defined as the 

moment when the control room reports the end of disruption. Note that reporting the “end of 

disruption” is misleading as this only indicates the end of the second phase. Fourth, 𝑇3 is 

defined as the moment when the train service has been restored. This moment is approximated 

in Sherlock as the moment when two consecutive trains of each train series in the VSM have 

run again according to the regular timetable, except for the last series, which should have run 

only once. In theory, this might be an appropriate moment to choose for 𝑇3, though the approx-

imation is occasionally missing or at least questionable. For example, a case was studied in 

which “service restored” was reported at 20:22 when in fact, traffic had already been resumed 

by the start of the afternoon. The cause of this anomaly was a regional series that had been 

canceled every other half hour for the rest of the day. In case “service restored” is not available, 

𝑇3 is defined as the moment when the Spoorweb record is closed. 

Network data 

The third type of input data is network data, which specifies how each timetable point is con-

nected to its nearest neighbor(s) in the network. The text file that was retrieved for this purpose 

is a DONNA infrastructure file from Infra Atlas, which normally serves as input for DONNA, 

the application used in timetable design. The details of this file, which was accessed through a 

shared folder, are found in Appendix D. Each row in the file corresponds to a connection to a 

neighboring timetable point by a single track. By looping though the rows, an adjacency list 

was created that specifies the neighbor(s) of each point. The list is required to determine the 

disrupted area for which to draw the resilience curve, as is explained in the next subsection. 

Processing 

Impact area 

For the calculation of system performance from the input data, it is first necessary to determine 

the area for which the curve is drawn. Ideally, this would be a fixed area such as the entire net-

work, which provides a consistent reference frame for comparing the resilience metrics among 

disruptions. However, the impact of an individual disruption on the entire network is typically 

low and the probability that multiple disruptions are observed at the same time is high. The 

question is therefore which alternative approach could give an accurate representation of the 

affected area and allow single disruptions (i.e. disruptions that are not connected to any other 

disruption) to be studied individually. Several resilience curves were therefore compared in a 

pilot investigation of the disrupted area for a number of disruptions. Curves were drawn for 

the first and second impact area; the first, second and third impact area; the own traffic control 

area; and all traffic control areas contributing to the first and second impact area. The curve 

for the first and second impact area was usually affected the most. The curve that also included 
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the third impact area was affected less, which indicates that the impact in this area is generally 

limited and that the concept of decoupling points seems to work in practice as it should. Thus, 

it was concluded that studying the first and second impact area is the most practical approach 

for drawing and analyzing the resilience curve. The impact area of a disruption is determined 

according to the algorithms explained in Section 4.3. An added benefit of impact areas is that 

they can be used to identify connected disruptions (i.e. disruptions that cannot be considered 

as single disruptions). Logically, it also makes sense that the location of a disruption lies at or 

near the center of the studied area. 

Performance 

With the impact area and the reported start and end of disruption known, it is possible to take 

a subset of the traffic realization data for which to calculate the evolution of performance over 

time. As it may be possible that the reported timepoints are not accurate representations of the 

actual state of the system, the start and end of disruption were determined by checking at which 

moment performance dropped below and recovered to target performance, respectively. For 

the end of disruption, target performance was checked no earlier than 𝑡 = 𝑇2 to avoid an 

underestimation of the disruption length. Target performance was determined as the average 

performance over a number of arbitrary, relatively quiet days, each of which experienced no 

more than four disruptions. The disruptions were deliberately included in the calculation of 

target performance to ensure that target performance is realistic in most cases. For 𝜆 = 0.67, 

target performance was determined at 97.0%. In some cases though, the system may already 

be operating below target performance when a disruption occurs. Searching for target perfor-

mance would then result in an overestimation of the disruption length, which is why a search 

limit of one hour before the reported start of disruption was introduced. Likewise, a search 

limit of three hours after the reported end of disruption was introduced to ensure as much as 

possible that the observed end of disruption is not affected by other, unobserved disturbances 

(where no VSM was applied). Still, it should be noted that some cases were encountered where 

the end of disruption seemed to be correctly identified at more than three hours after “service 

restored” without any sign of interference from other disruptions or disturbances. 

For each disruption, the performance 𝑄 at time 𝑡𝑖 was calculated as a moving average in order 

to create a relatively smooth curve. A downside of the backward moving average, which only 

considers past values, is that an artificial time shift of half the interval size is introduced. The 

time shift can be eliminated by applying a centered moving average (Bashan et al., 2008). The 

interval size 𝐿 and step size 𝑆 were defined similarly for each disruption. This means that at 

time 𝑡𝑖 the interval [𝑡𝑖 −
𝐿

2
, 𝑡𝑖 +

𝐿

2
] is considered, at time 𝑡𝑖+1 the interval [𝑡𝑖 −

𝐿

2
+ 𝑆, 𝑡𝑖 +

𝐿

2
+ 𝑆], 

and so on. At each time step, the oldest activities drop out of the interval and newer activities 

are added to the interval. The activities in each interval were divided into two dataframes: one 

containing the realized activities (df1) and one containing the canceled activities (df2). As illus-

trated in the lines of code below, traffic intensity was calculated as the ratio of realized to total 

activities. Punctuality was calculated as the ratio of punctual to realized activities, but only for 

activities with a realization time (and thus, a numerical value for the delay). The performance 

calculation per time interval was coded in Python as follows: 

intensity   = len(df1) / (len(df1) + len(df2)) 

punctuality = (df1[df1['delay'].notna()]['delay'] < punc_tol).sum() / 

               df1['delay'].notna().sum() 

values[T]   = (weight * intensity + (1 - weight) * punctuality) * 100 

A pilot investigation of different parameter values for the interval size 𝐿 and step size 𝑆 showed 

that 𝐿 = 30 minutes and 𝑆 = 1 minute are appropriate choices to obtain a fairly well-behaved 

curve. A smaller interval size (e.g. 𝐿 = 15 minutes) would be better able to show the dynamic 
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nature of the curve, but this would also make the curve more difficult to analyze. After com-

pleting the calculations, performance measurements were stored in a wide-form dataframe, 

which is a dataframe that represents three variables in a spreadsheet-like manner. The times 

were used as row indices while the Spoorweb IDs were used as column indices. 

Resilience metrics 

Given the performance measurements for each disruption, the resilience metrics were calcu-

lated according to Equations (3) to (9). All metrics, including the durations of the resilience 

phases, were calculated based on the resilience curve itself and not on the reported timepoints 

in Sherlock. Therefore, the timepoints 𝑇1 and 𝑇2 had to be derived from the curve as well. This 

was achieved by applying a steady state detection algorithm as explained in Section 4.3. A long-

form dataframe was constructed where each row corresponds to a disruption. The Spoorweb 

IDs were used as row indices while the resilience metrics and other variables were used as 

column indices. An overview of the columns in the dataframe is included in Appendix D. 

4.3. Algorithms 
Two kinds of algorithms were developed in order to determine the impact area and timepoints 

required for calculating the resilience curve and resilience metrics. The impact area was deter-

mined with the help of a graph search algorithm that returns the timetable points in the first 

and second impact area. The timepoints were determined with the help of a steady state detec-

tion algorithm that returns the start and end of the second resilience phase. The algorithms are 

explained in more detail in this section. 

Graph search 

In general, a graph search algorithm is used to traverse a graph and find each node (or: vertex) 

in the graph. Several graph search algorithms have been invented, including the breadth first 

search (BFS) by Moore (1959). A breadth first search starts from a source node, referred to as 

the start vertex, and visits any adjacent, unvisited vertices until none are left. The graph is 

explored one level at a time, and the vertex from which a neighboring vertex is visited is called 

the “parent”. The basic algorithm is summarized in three steps: 

1. Select a start vertex. 

2. Visit any adjacent, unvisited vertices, mark them as visited and insert them in a queue. 

3. As long as the queue contains elements, extract the first vertex from the queue and start 

again from this vertex in step 2. 

In the context of this thesis, a breadth first search algorithm was developed in which the start 

vertex or vertices is/are the boundary point(s) of a disruption, and the visited vertices are the 

timetable points in the first and second impact area. This approach is also applied in the VGB 

solver which is currently being developed at ProRail. An example of the first three levels of a 

breadth first search is presented in Figure 4.4 for a real part of the network. In the example, 

Gvc is the parent of Gv, Bkh and Laa, Laa is the parent of Gvm, etc. 

Certain characteristics of the network structure and the concept of impact areas required 

imposing constraints on the basic algorithm. First, it had to be specified that the algorithm 

does not continue its search along a branch of the network when a second decoupling point is 

reached, as this point marks the end of the second impact area. Second, it had to be specified 

that the algorithm cannot follow a path that is not driven by any train, for example due to the 

inability of trains to make sharp turns or the absence of a railway switch at a certain location. 

Third, the algorithm had to account for the fact that not all vertices may appear in the same 

path in opposite directions. For example, on the line between Leiden and Haarlem, timetable 

point Noordwijkerhout is visited when traveling from south to north, but not when traveling 

from north to south. Fourth, the algorithm had to allow a vertex to have more than one parent, 
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and to visit this vertex when it had already been visited from another parent. For example, 

when traveling from east to west, Amsterdam Sloterdijk (Ass) can be visited from Transfor-

matorweg Aansluiting (Asdta) and Overbrakerpolder Aansluiting (Obpa). When it is visited 

from Asdta, the path continues towards Schiphol. When it is visited from Obpa, the path 

continues towards Haarlem. If only one parent was allowed, either Haarlem or Schiphol would 

never be reached depending on the parent from which Ass is visited first. Fifth, the algorithm 

had to be able to handle more than one start vertex, since a single start vertex only occurs for 

a timetable point outage. A line blockage will always have two or even three start vertices. 

 

Figure 4.4. First three levels of a breadth first search starting from The Hague Central. 

Because of the increasing complexity of the search with each additional start vertex, three sepa-

rate algorithms were developed for one, two and three start vertices. The algorithms are in-

cluded in Appendix H. In each of the algorithms, the first four constrains were incorporated as 

follows. The algorithm knows when to stop searching along a branch of the network by tracking 

the impact area rather than the level. It checks for feasible paths by comparing a sequence of 

three vertices (the current vertex 𝑛, its parent 𝑣 and the parent of 𝑣) to a concatenated string 

of all realized train paths in a day. The reverse sequence is checked as well. Multiple parents 

per vertex are allowed by storing them in a list and reading the parent of a vertex either as a 

string or a list. In the algorithm for two start vertices, the ability to handle more than one start 

vertex was incorporated by starting the search from one of the boundary points and breaking 

when the other one is reached. Then, the algorithm backtracks to the first boundary point to 

find the first impact area (or part of the first impact area, in case the boundary points are not 

decoupling points) and continues searching outwards from both boundary points. A similar 

approach was taken in the algorithm for three start vertices, but here it must be checked how 

the boundary points are connected. Possible scenarios are: 

• The three boundary points lie on the same line (Figure 4.5a). 

• The three boundary points do not lie on the same line. 

o All boundary points can be reached from any boundary point (Figure 4.5b). 

▪ All paths are accurate. 

▪ One of the paths is a detour; the longest path should be ignored. 

o All boundary points can be reached from only one boundary point (Figure 4.5c). 

A large part of the algorithm involves checking which of these conditions is true, and conse-

quently, which area to consider as part of the first impact area. Once this area is determined, 

the search continues in a similar fashion as for one and two start vertices. 
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a. 
 

b.  c.  
      

Figure 4.5. Possible scenarios for line blockages with three boundary points. 

Steady state detection 

In general, a steady state detection (SSD) algorithm is used to identify the steady parts of time 

series data. Several of these algorithms have been invented, for example by Cao and Rhinehart 

(1995), Castiglioni and Di Rienzo (2004), Luo et al. (2009), Kelly and Hedengren (2013), Liao 

et al. (2016) and Dalheim and Steen (2020). Dalheim and Steen (2020) also reviewed a number 

of current techniques and concluded that many require the definition and finetuning of several 

filters or model parameters, which can make them difficult to implement. Dalheim and Steen 

(2020) therefore developed a robust and computationally efficient technique of their own that 

uses a sliding window. The basic approach of Dalheim and Steen (2020) is as follows. A linear 

regression model is fitted to the data in each time window with length 𝑛. Two consecutive 

windows overlap by (𝑛 − 1) measurement points, as illustrated in Figure 4.6. If the slope of the 

regression model is significantly different from zero, the window is considered unsteady. This 

is tested by comparing the t-value from the regression analysis to the critical t-value. The t-

value for each window is written to the first and last position of the window in a dataframe. 

The front of the window marks the change from a steady to an unsteady state if such a change 

were to occur, while the rear marks the change from an unsteady to a steady state. Only two 

parameters need to be determined: the significance level 𝛼 and the window size 𝑛. This makes 

the approach easy to implement. 

 

Figure 4.6. The sliding window approach (Dalheim & Steen, 2020). 

In this thesis, an adapted steady state detection algorithm is proposed based on the approach 

of Dalheim and Steen (2020) with the purpose of identifying the second resilience phase. The 

approach was tested for several dozen disruptions, but only led to a satisfactory result in part 

of the cases. This is attributed to the diverse behavior of the resilience curve and the inherently 

different nature of the data compared to Dalheim and Steen (2020), who evaluated ship perfor-
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mance and navigation data. These kind of data are generally steady, whereas the resilience 

curve is more dynamic. Therefore, modifications were made to the algorithm which suit the 

data better and which enable the algorithm to handle both short and long disruptions as well 

as calm and noisy curves. The modifications are as follows: 

• The window length was made dependent on the total number of measurement points, 
which is equal to the disruption length. To avoid too long time windows for relatively 

long disruptions, the square root of the number of measurement points was taken and 

multiplied by a factor 1.8. A pilot investigation of the window length showed that this 

works well for both short and long disruptions. A factor 1.5 occasionally resulted in too 

short windows, whereas a factor 2 occasionally resulted in too long windows. 

• The search for a steady state was allowed only when the first measurement point in a 

time window is below a performance threshold. This is to avoid the detection of a steady 

state in the first or third phase. A pilot investigation showed that a threshold of 40% is 

usually adequate to capture the steady state that would be expected by visual inspection 

of the curve. This means a steady state can be observed when the first measurement in 

a window is below 𝑄𝑚𝑖𝑛 + 0.40(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛), where 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 are the minimum 

and maximum performance for the studied resilience curve, respectively. 

• Evaluation by the front and rear of the sliding window was dropped since the algorithm 
should only return the first and last steady point in the lower part of the curve. For this 

application it is not important to know exactly which part of the second phase is steady 

and which part is not, although this could be a direction for future research. 

Apart from these modification, the algorithm compares the p-value of the slope of the fitted 

line to the significance level instead of comparing the t-value to a critical t-value. A window is 

marked as steady when the p-value is greater than 𝛼. Because it should be really evident when 

a window is unsteady, a 99% confidence interval was defined. This translates to a significance 

level of 𝛼 = 0.01. A larger 𝛼 would mean that fewer time windows are marked as steady. The 

steady state detection algorithm is included in Appendix I. 

4.4. Statistical methods 
A range of methods are available for statistical analysis of the resilience metrics to evaluate the 

differences and similarities in the metrics among disruptions. Two classes of analyses were 

explored: group comparisons and regression analysis. The different options for these classes 

of analyses are discussed in more detail in this section. 

Group comparisons 

Group comparisons help identify the differences among groups based on one or more depend-

ent variables. The independent categorical variable, also referred to as the factor, defines group 

membership. In the context of this thesis, the dependent variables are the resilience metrics 

and the factor is the disruption cause. The parametric option for group comparisons is analysis 

of variance (ANOVA). Nonparametric options are the Kruskal-Wallis test and Welch’s ANOVA. 

Parametric group comparison 

ANOVA evaluates the differences in a dependent variable among more than two groups. It does 

so by comparing the variance between groups (𝑀𝑆𝐵) to the variance within groups (𝑀𝑆𝑊). 

ANOVA takes both the mean and the variance of the observations into account. The resulting 

test statistic is referred to as the F-statistic, which is calculated according to Equation (10). 

                                                                                    𝐹 =
𝑀𝑆𝑊

𝑀𝑆𝐵
                                                                           (10) 
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The F-statistic “compares the amount of variance that can be explained by group membership 

to the amount of variance that cannot be explained by the group” (Mertens et al., 2017). The 

null hypothesis is that there are no differences among groups, which is indicated by a low F-

statistic. If the null hypothesis is rejected, it means that differences among groups exist, and 

that splitting the total sample into groups helps clarify the data. As only one categorical variable 

is used to define group membership, this type of analysis is also referred to as one-way ANOVA. 

Since ANOVA is a parametric method, it assumes that the data approximately follow a normal 

distribution. Parametric assumptions must be met to correctly interpret the test results. The 

assumptions vary with the type of analysis. For one-way ANOVA, they are: 

• Independence of observations 

• Normality of the dependent variable 

• Homogeneity of variance of the dependent variable 

ANOVA is an omnibus test which is two-sided by definition. This means it only reveals whether 

a difference exists among groups. It does not tell where exactly the difference lies or how large 

it is (Mertens et al., 2017). Therefore, an additional post hoc test is required to explore the 

results in more detail. Common post hoc tests for ANOVA include: 

• Fisher’s Least Significant Difference (LSD): Applies a series of pairwise comparisons 

among groups while controlling for the individual error rate. 

• Tukey’s Honest Significant Difference (HSD): Applies a series of pairwise comparisons 

among groups while controlling for the family error rate. This decreases the probability 

of making a Type I error (also known as a false positive) compared to Fisher’s LSD. 

Nonparametric group comparison 

In case parametric assumptions are violated, an alternative test is available: the Kruskal-Wallis 

test. This test is considered to be the nonparametric equivalent of one-way ANOVA. Instead of 

evaluating the means of all samples, Kruskal-Wallis evaluates the medians. The resulting test 

statistic is referred to as the H-statistic. The Kruskal-Wallis test applies ranking, which means 

that the numerical value of each observation is replaced by its rank. For example, three obser-

vations {40, 60, 50} would be ranked as {1, 3, 2}. A tie occurs when two observations with exactly 

the same numerical value compete for the same rank. In case the data contain no ties, the H-

statistic is calculated according to Equation (11). 

                                                            𝐻 =
12

𝑁(𝑁 + 1)
∑ 𝑛𝑖 (𝑟̅𝑖 −

𝑁 + 1

2
)

2
𝑔

𝑖=1

                                                  (11) 

Where: 

• 𝑁 is the total number of observations 

• 𝑔 is the number of groups 

• 𝑛𝑖 is the number of observations in group 𝑖 

• 𝑟̅𝑖 is the average rank of all observations in group 𝑖 

Although parametric assumptions do not need to be met in order to perform a Kruskal-Wallis 

test, the test does require independence of observations and identically shaped distributions 

(and thus, equal variances). Like ANOVA, Kruskal-Wallis is an omnibus test which follows the 

same hypotheses. This means that when the null hypothesis is rejected, the result is significant 

and a post hoc test is required to study the observed differences in detail. Common post hoc 

tests for Kruskal-Wallis include: 
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• Nemenyi test: Similar to Tukey’s HSD, except that it tests between rank means instead 

of numerical means. This test relies on the studentized range distribution. 

• Dunn’s test: Similar to the Nemenyi test, except that it relies on the normal distribution 

and includes a correction for ties. 

• Conover test: Similar to Dunn’s test, except that it relies on the Student’s t-distribution 

and assumes a different definition of the standard error. 

When the assumption of identically shaped distributions is violated, the Kruskal-Wallis test 

may give inaccurate results. As an alternative, Welch’s ANOVA can be considered. This method 

is similar to one-way ANOVA and applies weights to adjust the grand mean (i.e. the mean of 

the total sample) based on the group means. Due to this modification, it does not require homo-

geneity of variance. Since ANOVA is pretty robust against violation of the normality assump-

tion (Mertens et al., 2017), Welch’s ANOVA is useful for analyzing data that are nonnormally 

distributed and have unequal variances among groups. As in regular ANOVA, the resulting test 

statistic is referred to as the F-statistic, which is calculated according to Equation (12). 

                                                                           𝐹 =
𝑆𝑆 (𝑔 − 1)⁄

1 +
2Λ(𝑔 − 2)

3

                                                                  (12) 

Where: 

• 𝑆𝑆 is the weighted sum of squares 

• Λ is a factor based on the weights and group sizes 

The common post hoc test for Welch’s ANOVA is the Games-Howell test, which is similar to 

Tukey’s HSD but does not require equal variances. For more details on the calculation of the 

test statistics for the described methods, the interested reader may refer to Liu (2015). 

Regression analysis 

Regression analysis helps identify the relationships between one or more independent varia-

bles and a dependent variable. With regression analysis, it could for instance be determined if 

the value of one resilience metric can be inferred from the value of another resilience metric or 

from other explanatory variables. The size and direction of the relationships offer insights into 

the dynamics between the resilience phases. This is something the group comparisons cannot 

provide, because the metrics are studied independently in those comparisons. Just as for group 

comparisons, there is a distinction between parametric and nonparametric regression models. 

Parametric (linear) regression analysis 

Arguably the simplest form of regression analysis is linear regression, which assumes that the 

dependent variable can be predicted by a linear predictor function. When the relationship to a 

single independent variable is studied, linear regression is referred to as simple regression. The 

general form of the predictor function is given by Equation (13). 

                                                        𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀                                               (13) 

Where: 

• 𝑌 is the dependent variable 

• 𝑋1 … 𝑋𝑛 are the independent variables 

• 𝛽0 is the intercept at the vertical axis 

• 𝛽1 … 𝛽𝑛 are the coefficients assigned to each variable 

• 𝜀 is the error term which captures all factors not explained by the model 
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The approach to regression modeling is to fit a line through the measurement points so the 

error term is reduced as much as possible. This is usually performed by applying the Ordinary 

Least Squares (OLS) estimator, which minimizes the sum of the squared vertical distance 

between the fitted line and the measurement points. The resulting betas describe by how much 

the dependent variable changes for a one unit increase or decrease in an independent variable. 

In the context of this thesis, a larger value for each of the resilience metrics indicates a less 

resilient system, and so, improvement efforts may be focused on the independent variable with 

the largest positive beta. Like ANOVA, linear regression is a parametric method, which means 

parametric assumptions must be met. For regression analysis, the assumptions are: 

• Independence of residual errors 

• Normality of residual errors 

• Absence of multicollinearity 

• Homoscedasticity of residual errors 

• Linearity 

According to the Gauss-Markov theorem though, the first two assumptions do not have to be 

met as long as the errors are uncorrelated and have a mean expected value of zero. In that case, 

OLS is still the best linear unbiased estimator (Theil, 1971). In case the linearity assumption 

is violated, one can either choose to transform the data to a linear form (for example by taking 

the logarithm) or resort to nonlinear regression analysis. 

Nonparametric (robust) regression analysis 

When parametric assumptions are violated and transforming the data or expanding the model 

does not help, robust analysis methods offer an alternative. Robust methods are designed to 

be sufficiently insensitive to deviations from the parametric assumptions (Draper, 1988). A 

particular advantage of robust regression models is that they are less sensitive to outliers. Well-

known examples of robust regression models include the following: 

• Huber regression: Assigns less weight to observations with large residuals. 

• Theil-Sen regression: Fits multiple lines to pairs of observations, then takes the median 

of the slopes of all lines. 

• Random Sample Consensus (RANSAC): Separates the dataset into outliers and inliers, 

then fits a line to the set of inliers. 

4.5. Chapter summary 
This chapter started with the selection of performance indicators and resilience metrics for a 

quantitative description of the resilience curve. The resilience evaluation framework was pre-

sented and the input data and calculation procedure were discussed. A graph search algorithm 

and a steady state detection algorithm were presented which can identify the impact area and 

the steady state in the resilience curve, respectively. Lastly, statistical methods were discussed 

by explaining the basic principles of the available parametric and nonparametric options for 

group comparisons and regression analysis. 

Answer to subquestion 3 

With the knowledge obtained in this chapter, the third subquestion is answered. 

Subquestion 3: How can the spatiotemporal effects of disruptions and recovery measures 
on railway system performance be quantified for the different resilience phases? 

 

When defining system performance, it is important that no two indicators represent the same 

functionality. Two indicators were preferred over the others: traffic punctuality, which repre-

sents the functionality of travel time, and traffic intensity, which represents the functionality 
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of use of resources. Punctuality and traffic intensity are complementary, since punctuality does 

not consider cancellations and traffic intensity does not consider delays. The two indicators 

were combined in a composite performance indicator which is calculated as a weighted sum. 

In the weighted sum, more weight should preferably be put on the traffic intensity component 

because of 1) the potentially strong fluctuations in the punctuality component, and 2) the 

premise that it is more important that trains are running than that they are running on time. 

The spatiotemporal effects of a disruption may be quantified and visualized in the resilience 

curve in terms of the selected performance indicators. The temporal effects were incorporated 

by calculating performance as a centered moving average over an interval of 30 minutes. The 

spatial effects were incorporated by calculating performance for all timetable points in the first 

and second impact area. As performance is calculated relative to the timetable and is expressed 

in percentages, it is not biased by the size of the area. Still, when the spatial impact is substan-

tial, more points in the area will be affected and performance will be lower as a result. 

Seven resilience metrics were defined to describe the profile of the resilience curve quantita-

tively. The degradation time, response time and recovery time were selected to represent the 

time dimension. Maximum impact was selected to represent the performance dimension. 

Lastly, the performance loss, degradation profile and recovery profile were selected to repre-

sent the combined dimension of time and performance. Together, these seven metrics should 

account for the multidimensional nature of resilience. 
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5. Case study and results 

This chapter presents the results of the data analysis based on the resilience evaluation frame-

work. Results were obtained from a number of experiments with a focus on single disruptions. 

Connected disruptions were briefly explored as well. The goal of the experiments was to incre-

mentally gain a better understanding of the behavior of the resilience curve, the resilience met-

rics, and the dynamics between the resilience phases for different types of disruptions. Section 

5.1 introduces the case study and presents an overview of the experiments. Section 5.2 presents 

the resilience curve, steady state, timepoints, resilience metrics and impact area for an example 

disruption. Section 5.3 presents representative resilience curves for different types of disrup-

tions and discusses the differences between the observed and reported timepoints. Section 5.4 

presents the results of the group comparisons which aimed to identify differences between the 

resilience metrics among disruption causes. Section 5.5 presents the results of the regression 

analyses which aimed to identify relationships between the resilience metrics and with other 

explanatory variables. Section 5.6 discusses the resilience curve for two separate connected 

disruptions. Section 5.7 presents the networkwide resilience curves for a number of red and 

black days. Section 5.8 summarizes the chapter and provides the answer to subquestion four. 

5.1. Case description 
The resilience evaluation framework was applied in a case study on the Dutch railway network. 

This section covers the study area and period; the studied disruption causes; the identification 

of connected disruptions; handling missing, invalid and inconsistent data; and the order and 

contents of the experiments. 

Study area and period 

The study area includes the entire Dutch railway network with the exception of traffic control 

area Kijfhoek. Because Kijfhoek exclusively handles freight traffic, it cannot be treated in the 

same way as the rest of the network which handles both passenger and freight traffic. Thus, the 

study area contains 684 timetable points spread across 12 traffic control areas. Studying dis-

ruptions in the entire network has two main benefits. First, it helps identify as many potentially 

different resilience curves as possible. Second, the greater the amount of data, the more the 

sensitivity to outliers is reduced. The study period was limited to timetable year 2019, which 

was the last regular timetable year before the COVID-19 pandemic. ProRail considers this as 

the benchmark for returning to the regular timetable when COVID-19 restrictions are lifted. 

In total, 2,152 disruptions with a logistical record were observed in this period. Part of the 

disruptions occurred on the six black days and three near-black days presented in Table 5.1. 

The table specifies the date, cause and networkwide performance for each day. The black and 

red day of November 27 and 28, respectively, were difficult to attribute to a single cause 

(ProRail, 2020), which is why these were labeled as “multiple causes”. Because of the extreme 

conditions on these nine days, they were excluded from the majority of the experiments. 

The collected traffic realization data for the study area and period include all possible service 

and activity types. Not all of these data were relevant for the experiments. The studied service 

types and their abbreviations in the data include regional rail (SPR, ST, S), intercity rail (IC), 

high-speed rail (HSN) and international rail (THA, ICE, ES). The studied activity types include 

arrivals, short stops (which are arrivals planned in the same minute as the departure) and 

passings. Counting the departures as well would mean that a train is observed twice at the same 

location when it makes a stop, which results in double counting. Yet, excluding the departures 

does not mean that departure delays are overlooked: when a train is delayed during a stop at 

the platform, for example due to a longer dwell time, the departure delay is simply observed at 

the next activity. After filtering the realization data for the specified activities, the datafile 

contained 49,005,094 rows, which amounts to approximately 132,000 activities per day. 
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Table 5.1. Red and black days initially excluded from the experiments. 

Date Type of day Cause Punctuality (%) Cancellations (%) 

22-01-2019 Black Snowfall 77.8 20.0 

30-01-2019 Black Snowfall 89.3 18.4 

18-03-2019 Black Regional strike 89.9 13.8 

28-05-2019 Black National strike 95.2 95.2 

24-06-2019 Red Collision in Utrecht 79.2 9.8 

25-07-2019 Red Extreme heat 83.2 9.6 

26-07-2019 Black Extreme heat 87.4 11.8 

27-11-2019 Black Multiple causes 74.2 5.5 

28-11-2019 Red Multiple causes 75.7 3.7 

 

Studied disruption causes 

Disruptions that match the top five specific causes were analyzed as single disruptions in this 

case study. This includes train defects, section or signal failures, collisions, switch failures and 

overhead line failures. Together, these disruptions made up 76% of all disruptions requiring a 

capacity reallocation in 2019. Section and signal failures were considered as a single cause 

because they are often related. The various disruption causes are defined as follows: 

• A train defect is a defect in the train itself such as a brake failure, electronic failure, fire, 

smoke development, improperly closing doors or a damaged pantograph. 

• A section failure is a situation where there is a problem with the train detection on a 

track section, which usually means that the section is falsely reported as occupied. 

• A signal failure is a situation where a signal reverts to a fail-safe state and shows a red 

signal aspect, for example due to a disrupted power supply or a section failure. 

• A collision is an encounter of a train with an obstacle such as a person, animal, road 

vehicle or infrastructure object. 

• A switch failure is a railway switch that can no longer be fixed in the right position, for 
example due to a mechanical failure or obstruction by snow, twigs or other objects. 

• An overhead line failure is the loss of power in an overhead line group, for example due 
to a broken cable or an object that is stuck in the overhead lines. 

Identification of connected disruptions 

Although the focus of this case study was placed on single disruptions, in practice it may occur 

that simultaneous disruptions affect each other which may require VSMs to be adjusted. These 

disruptions are “connected”. Note that this does not necessarily mean that they share a causal 

relationship. However, such disruptions should not be studied independently from each other, 

since the impact of one disruption may contaminate the resilience curve of another disruption. 

Zhu and Goverde (2021) defined connected disruptions as two or more disruptions that: 

1. Have overlapping time periods; 

2. May start or end at a different time; 

3. Occur at different geographic locations; 

4. Are connected by one or more train series. 

Tracing back all the train series involved in a disruption would be a cumbersome task. Instead, 

in this case study the impact areas were evaluated. It was stated that, in addition to the first 

three conditions, disruptions are connected if they have at least one timetable point in their 

impact area in common. This approach is not only more practical considering that the impact 

area already had to be determined for each disruption, it is also more appropriate for handling 

train series that run on long routes. For example, it prevents a disruption around Amsterdam 

from being connected to a disruption in the south of the Netherlands. In practice, those disrup-
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tions would not be connected as there are plenty of decoupling points in between. Overlapping 

time periods were checked for the reported start and end times before calculating the resilience 

curves. As disruptions were frequently observed to last longer in reality than reported, a second 

check was performed for the observed start and end times after calculating the curves. While 

this does not guarantee that there is absolutely no interaction between any two single disrup-

tions, the risk of contamination was reduced as much as reasonably achievable this way. 

Handling missing, invalid and inconsistent data 

The disruption log data (and to a lesser extent, the traffic realization data) rely on human input. 

Therefore it was necessary to handle missing, invalid and inconsistent data entries. In the reali-

zation data only the rows matching the specified TOCs, service types and activity types were 

preserved. It was specified that these rows should always have a valid train number, timetable 

point and plan time. Handling missing, invalid and inconsistent entries in the disruption log 

data was more complicated. Several filters were applied in consecutive filtering steps. Filtering 

the data in steps helps create a better understanding of which part of the data is lost. An over-

view of the remaining number of disruptions per cause, impact type and control area after each 

filtering step is included in Appendix J. In all filtering steps combined, the following cases were 

removed to find the set of disruptions that could potentially be studied as single disruptions: 

• Disruptions on extreme days. 

• Disruptions in traffic control area Kijfhoek. 

• Disruptions that do not match the top five causes. 

• Disruptions with a connection to one or more other disruptions. 

• Disruptions with an impact area of less than six timetable points3. 

• Disruptions with a reported duration longer than ten hours4. 

• Disruptions with a missing time entry for “restart initiated”. 

In addition, five cases were removed manually. This concerns the disruptions with IDs 359363, 

359402, 359406 and 359412, which were all affected by the control center outage in Maastricht 

in the afternoon of March 10, 2019. The fifth case that was removed is the section failure near 

Zutphen on April 7, 2019 with ID 367232. The disruption caused a line blockage with not three, 

but four boundary points. Five other cases with four boundary points were observed, but those 

could be converted to a two or three boundary point disruption. Instead of developing a dedi-

cated algorithm for the one remaining case with four boundary points, it was removed from 

the data after verifying that this disruption could not be connected to any other disruption. 

Some results of the data filtering process are worth discussing. First, 51% of the cases were lost 

in the transition from disruptions matching the top five causes towards single disruptions, 

which means that 791 disruptions had one or more connections and 750 disruptions had none 

based on the reported timepoints. Most connected disruptions appeared in the traffic control 

areas in the Randstad (Amsterdam, Amersfoort, Utrecht, The Hague and Rotterdam), which is 

explained by the relatively high network density in this area. Second, particularly many switch 

failures were lost in the transition towards single disruptions. Only 50 of the 153 switch failures 

(33%) could be classified as single disruptions. Studying the connected switch failures in detail 

revealed that most connections relate to train defects (33%), which is explained by the fact that 

 

3 Three possible impact areas were observed that contain only three timetable points: the two boundary 
points and one point in between. Because of a lack of passenger traffic in those areas, the breadth first 
search algorithm did not search beyond the boundary points. The smallest valid impact areas that were 
observed contain six timetable points. 
4 For disruptions longer than approximately ten hours, checking the performance threshold after the 
reported end of the second phase becomes problematic because it results in a significant overestimation 
of the actual disruption length. 
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train defects are simply the most common. In second place, switch failures were connected to 

other switch failures (24%). A telling example is the morning of December 16, 2018 when seven 

switch failures were reported at different locations around Amsterdam due to snowfall. In the 

end, 706 disruptions remained which could potentially be analyzed as single disruptions. An 

overview of the number of disruptions per cause and impact type is presented in Table 5.2. 

Table 5.2. Number of potential single disruptions per cause and per impact type. 

Specific cause Number Impact type Number 

Train defect 346 Full timetable point outage 10 

Section/signal failure 141 Partial timetable point outage 45 

Collision 146 Full line blockage 323 

Switch failure 47 Partial line blockage 299 

Overhead line failure 26 Reduced timetable point functionality 17 

  Reduced line functionality 12 

Total 706 Total 706 

 

In the experiments, only those disruptions were analyzed for which the resilience curve could 

be described properly, in other words: for which calculating the resilience metrics was justified. 

For example, calculating the recovery time or recovery profile would have no meaning if the 

end of disruption cannot be identified. Therefore, the following cases were excluded: 

• Disruptions for which the curve remained above target performance from the reported 

start until end of disruption. 

• Disruptions for which the start time could not be identified from the realization data, 

which means the curve was already below target performance at 𝑇0,𝑆 − 60 minutes. 

• Disruptions for which the end time could not be identified from the realization data, 

which means the curve did not yet recover to target performance at 𝑇3,𝑆 + 180 minutes. 

• Disruptions that were connected based on the observed start and end time. 

• Disruptions for which an empty time window was encountered. 

• Disruptions for which no steady state could be identified. 

For 𝜆 = 0.67, the remaining number of disruptions was 445 out of 706. Similar results were 

obtained for other values of 𝜆. This means that from the original set of 1,541 disruptions, less 

than one third could eventually be analyzed as single disruptions. 

Experiments 

Characteristics of the resilience curve for an example case 

Experiments started with the detailed evaluation of one arbitrary disruption. The aim of this 

evaluation was to build trust in the followed methodology and illustrate how the algorithms 

are brought to practice. For this disruption, the resilience curve was drawn for different perfor-

mance weights; the profile of the curve was explained based on the logging in Sherlock; the 

steady state and the observed and reported timepoints were examined; the resilience metrics 

were calculated; and the impact area was plotted in a network diagram. 

Representative resilience curves and time differences 

In the next part of the experiments, representative resilience curves were drawn with the aim 

to create an understanding of the different resilience curve behaviors that may be observed. 

First, distinctive types of resilience curves (such as the bathtub) were identified. Second, the 

mean resilience curve was drawn per disruption cause for 𝜆 = 0.67 and for the separate contri-

butions of punctuality (𝜆 = 0) and traffic intensity (𝜆 = 1). Third, the differences between the 

observed timepoints 𝑇0 … 𝑇3 and the reported timepoints 𝑇0,𝑆 … 𝑇3,𝑆 (with a subscript “S” for 

Sherlock) were evaluated to identify discrepancies in the timepoints. 
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Comparison of resilience metrics across disruption causes 

As part of the statistical analyses, group comparisons and post hoc tests were performed to 

identify differences and similarities in the resilience metrics. Disruptions were grouped by 

their specific cause. This means there were five groups and seven comparisons to be made: one 

for each metric. The comparisons were initially performed for 𝜆 = 0.67 and verified for other 

values of 𝜆 in the range of 0.5 to 1. 

Relationships between resilience metrics 

In subsequent statistical analyses, regression models were fitted to identify relationships be-

tween the resilience metrics and other explanatory variables. If such relationships exist, it 

would be worth conducting follow-up research on the underlying causes or even monitoring 

the metrics in real time. Again, the analyses were initially performed for 𝜆 = 0.67 and verified 

for other values of 𝜆 in the range of 0.5 to 1. 

Resilience curves for connected disruptions 

Following the experiments regarding single disruptions, resilience curves were drawn for con-

nected disruptions as well. For two arbitrary cases, the resilience curve was drawn for the total 

duration and combined impact area of the individual disruptions that constitute the connected 

disruption. The impact area was shown as well. Characteristics of connected disruptions were 

identified which deserve attention if one were to evaluate connected disruptions in more detail. 

Networkwide resilience curves for extreme days 

In the last experiment, the resilience curves were drawn for the previously excluded extreme 

days. As it is assumed that disruption effects propagate more strongly through the network on 

those days, it might be hard to distinguish between single or even connected disruptions. For 

this reason, the curves were drawn for the entire day on a networkwide scale as in Dekker et 

al. (2021) and compared to the networkwide resilience curve for a number of regular days. 

5.2. Characteristics of the resilience curve for an example case 
This section presents a detailed evaluation of an arbitrary disruption, which illustrates the 

working of the resilience evaluation framework. For this disruption, the resilience curve was 

drawn for the first and second impact area; the effect of different performance weights was 

investigated; the steady state and timepoints were identified; the resilience metrics were 

calculated; and the impact area was shown in a network diagram. 

The example case is a collision that occurred in traffic control area Amersfoort between Putten 

and Nunspeet on April 4, 2019. The collision occurred at 14:43 and resulted in a full line block-

age of the double track line. The first impact area (bounded by Amersfoort and Zwolle) and the 

second impact area (bounded by Steenwijk, Assen, Almelo, Deventer, Hilversum and Utrecht) 

comprised a total impact area of 64 timetable points, which is larger than the average traffic 

control area. The resilience curve for this disruption was drawn for different performance 

weights. The curves are presented in Figure 5.1. It is observed that traffic intensity (𝜆 = 1) 

dropped quickly at the start of the disruption. At the lowest point, traffic intensity measured 

79.3%. In contrast, punctuality (𝜆 = 0) remained relatively stable around 96% until approxi-

mately 100 minutes into the disruption. This illustrates how the rescheduling process is meant 

to work: in the beginning, enough trains were canceled or short-turned so the remaining trains 

did not experience delays, thereby preventing cascading effects. The moment when punctuality 

eventually dropped matches the moment when evacuation of the stranded passengers and 

retrieval of the damaged train began. During this time, punctuality dropped to 86.1% at the 

lowest point, while traffic intensity had already partly recovered. All resilience curves recover 

similarly towards the end of the disruption, which indicates that the restart was executed well 

and did not cause many new delays. Assessing the curves from start to end, much lower weights 

than 𝜆 = 0.67 would underestimate the impact in terms of traffic intensity, while much higher 
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weights would neglect the good performance in terms of punctuality. Thus, 𝜆 = 0.67 is still 

considered an appropriate starting point for use in the composite indicator. 

 

Figure 5.1. Resilience curve for different performance weights for the studied disruption. 

The steady state detection algorithm was applied to the resilience curve for 𝜆 = 0.67, which 

resulted in the timepoints 𝑇1 and 𝑇2. The timepoints 𝑇0 and 𝑇3 were derived directly from the 

performance calculation. The reported timepoints 𝑇0,𝑆 … 𝑇3,𝑆 were obtained from the disruption 

log data. The steady state and the observed and reported timepoints are presented in Figure 

5.2, which shows that a data-driven approach to determine the timepoints is rightly preferred 

over retrieving the timepoints from the disruption log data. The steady parts of the curve are 

shown in green, where the unsteady parts are shown in red. The detection of a steady state in 

the curve was successful, since it matches the steady state that one would identify by obser-

vation and it is not affected by the slight change in performance during the second phase. 

Regarding the timepoints, is observed that the disruption was reported at 𝑇0,𝑆 = 7 minutes 

relative to the moment when the curve dropped below target performance. The VSM was 

applied at 𝑇1,𝑆 = 25 minutes, just 18 minutes after 𝑇0,𝑆. Yet, the steady state was not reached 

until 𝑇1 = 68 minutes. The restart was initiated at 𝑇2,𝑆 = 163 minutes, which coincides with the 

observed timepoint 𝑇2. According to the approximation in Sherlock, the train service was 

restored at 𝑇3,𝑆 = 210 minutes, which is slightly earlier than the observed end of the disruption, 

𝑇3 = 223 minutes. In total, the disruption was found to last 20 minutes longer than reported. 

 

 
Figure 5.2. Steady state and timepoints for the studied disruption. 

𝑇3,𝑆 𝑇3 𝑇2,𝑆 / 𝑇2 

 

𝑇1 𝑇1,𝑆 𝑇0,𝑆 𝑇0 
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Based on the resilience curve in Figure 5.2, the resilience metrics were calculated as follows: 

• 𝐷𝑇 = 68.00 minutes 

• 𝑅𝑆𝑇 = 95.00 minutes 

• 𝑅𝐶𝑇 = 60.00 minutes 

• 𝑀𝐼 = 12.80 percentage points 

• 𝑃𝐿 = 1,848.62 minutes 

• 𝐷𝑃 = 108.53 percentage points 

• 𝑅𝑃 = −47.44 percentage points 

Interpretation of the first five resilience metrics is straightforward. The first, second and third 

phase lasted 68, 95 and 60 minutes, respectively. The maximum difference on the vertical axis 

measures 12.80 pp, and the area enclosed by target performance and the resilience curve 

measures approximately 1,848 minutes. The positive degradation profile of 108.53 pp indi-

cates a convex deviation from a linear degradation, which means performance dropped rapidly 

due to the cancellation of trains early in the disruption. The negative recovery profile of 47.44 

pp indicates a smaller, concave deviation from a linear recovery, which means performance 

recovered rapidly as many trains could be reinserted shortly after the restart was initiated. 

In addition to the obtained resilience curves, performance was calculated individually for each 

timetable point in the impact area. Minimum performance during the disruption was plotted 

in the network diagram presented in Figure 5.3. It is observed that performance was affected 

mostly in the first impact area, where it reached 13.3% locally near the site of the collision. In 

the second impact area, performance was affected moderately in southwestern direction 

towards Utrecht (Ut) and in northern direction towards Steenwijk (Swk) and Assen (Asn). This 

corresponds to the route of the 500/600 series, which is the intercity between Rotterdam and 

the north of the country. It shows that short-turning these series in Amersfoort and Zwolle had 

logistical consequences for the rest of the route. In contrast, the impact of the disruption was 

low in the direction of Hilversum (Hvs) and in eastern direction, where most of the traffic is 

local and starts or ends in Zwolle. The logistical functionality of Zwolle, which is the second 

largest hub in the network, proved to be sufficient so that intercity traffic could be rescheduled 

without interfering with local traffic. 

 
Figure 5.3. Impact area and minimum performance for the studied disruption. 

Disruption location 
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The third impact area was explored as well. This area, which was larger than the first and sec-

ond impact area combined, appeared to be unaffected in terms of traffic intensity. In terms of 

punctuality, a drop in performance was observed around 𝑡 = 75 minutes, although no relation 

to the studied disruption could be identified. Given the size of the area, it may well be the case 

that the change in punctuality was related to some other, unobserved disturbance. 

An even better understanding of the spatial impact is obtained by studying the time-distance 

diagrams for the first impact area. Diagrams showing the start, middle and end of the disrup-

tion are included in Appendix K. The diagrams show that no passenger trains were running 

between Putten and Nunspeet in the middle of the disruption, while only regional trains were 

running between Amersfoort and Putten and between Zwolle and Nunspeet. This explains why 

minimum performance was slightly higher towards the boundaries of the first impact area. 

5.3. Representative resilience curves and time differences 
After having built trust in the methodology and the chosen performance weight, this section 

presents the representative resilience curves that were identified in the experiments. This in-

cludes the different shapes of resilience curves and the mean and median resilience curve per 

cause. Differences between the observed and reported timepoints are discussed as well. 

Types of resilience curves 

The resilience curve is commonly depicted as a bathtub shaped curve with a clearly recogniza-

ble first, second and third phase. However, inspection of just a few resilience curves revealed 

that the actual shape of the curve may not be the same as in theory. Closer inspection of over 

100 randomly selected disruptions (at least ten per cause) revealed that it is possible to distin-

guish between eight types of curves. This number could be slightly lower or higher depending 

on one’s own interpretation. The different types were named as follows: 

1. The bathtub shaped curve, which is similar in appearance to the common depiction of 

the resilience curve in literature. 

2. The hammock shaped curve, which follows a smooth transition from degradation to 

recovery without a distinctive, steady second phase. 

3. The plateau curve, which recovers well initially but takes a long time to fully recover to 

target performance. 

4. The steady state curve, which shows a dominating and distinctive, steady second phase. 

5. The gradual recovery curve, which shows a gradual recovery that starts directly after 

the first phase without a distinctive, steady second phase. 

6. The aftermath curve, which recovers well initially but shows a drop in performance 

towards the end. Afterwards, the curve quickly recovers to target performance. 

7. The timetable influenced curve, which may resemble one of the other types of curves 

but also shows a periodic variation introduced by the timetable. 

8. The undefinable curve, which represents the cases that seem to defy all logic and do not 

fit any of the previous descriptions. 

Examples of the types of resilience curves are presented in Figure 5.4. The figures are included 

in full size in Appendix L. Observations of the sampled disruptions suggest that certain types 

of resilience curves could be more typical of one disruption cause than of another. The gradual 

recovery curve appears most typical of collisions, although it was also occasionally observed 

for train defects. This suggests that collisions may be characterized by a relatively short second 

phase, although this may be experienced differently in practice considering the required clear-

ing operations. The aftermath curve appears most typical of switch failures, but was occasion-

ally observed for the other infrastructure related causes as well. The late drop in performance 

in this curve appears to be related to the permanent repair of the infrastructure. Since the area 

where the mechanics are working must be secured, a higher number of trains may need to be 
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canceled temporarily, which would cause the drop in performance*. The undefinable curve 

appears most typical of section/signal failures, which could be explained by the sometimes 

unclear nature or location of the failure and the fact that this can result in a prognosis which is 

updated several times*, thereby changing the prospects for the restart repeatedly. This was at 

least the case for the example shown in Figure 5.4. 

The other types of curves do not appear typical of a specific disruption cause, but are still worth 

discussing. The plateau curve was thought to result from an updated, less restrictive VSM*, but 

this did not apply to the curves that were observed. However, it may also occur that certain 

tracks become available again without requiring a new VSM*, which could explain this curve 

after all. The steady state curve was occasionally observed for particularly long disruptions. An 

explanation for this type of curve could be that, in certain cases, it is immediately clear to traffic 

controllers that there will be little traffic for an extended period of time. The timetable influ-

enced curve was occasionally observed for disruptions involving relatively little traffic because 

they occurred in more isolated parts of the network and/or because they occurred in the early 

morning or late evening. A longer time window, for example with an interval size of 𝐿 = 60 

minutes, would filter out the periodic variation but would also smoothen the curve too much. 

 

 

 

 

Figure 5.4. Real examples of the different types of resilience curves. 
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Mean and median resilience curve per disruption cause 

To obtain a more general view of the resilience curve, the mean and median resilience curves 

were drawn for the studied disruption causes. The mean and median performance across a 

disruption cause were calculated at each time 𝑡, where time was expressed as a percentage of 

the disruption length rather than in minutes. For each curve 101 measurements were taken, 

from 𝑡 = 0% to 𝑡 = 100%. What this effectively means is that all resilience curves were normal-

ized along the time axis, so they could be presented on the same scale. The mean and median 

curves are presented in Figure 5.5. The first five plots show the mean and median curve and 

the central 80% range for each disruption cause for 𝜆 = 0.67. The central 80% range is defined 

as the range that contains all observations between the 10th and 90th percentile. The sixth plot 

shows all mean curves in the same plot. The last two plots show the mean curves for the 

separate contributions of punctuality (𝜆 = 0) and traffic intensity (𝜆 = 1). The plots with the 

mean, median and central 80% range per disruption cause for punctuality and traffic intensity 

are included in Appendix M. 

The plots in Figure 5.5 suggest that differences exist among disruption causes in terms of punc-

tuality and in terms of traffic intensity. A preliminary conclusion with respect to composite 

performance as well as traffic intensity would be that train defects are the least impactful dis-

ruptions on average, while collisions are the most impactful disruptions on average. The differ-

ence between collisions and the other causes is most clear in terms of traffic intensity, which is 

explained by the fact that all nearby trains are typically canceled shortly after a collision is 

reported. This causes traffic intensity to drop rapidly, which could work through the rest of the 

disruption as trains are not simply reinserted afterwards. Furthermore, the mean curves for 

section/signal failures and overhead line failures are quite similar, where switch failures seem 

to be slightly less impactful on average due to fewer cancellations, and thus, a higher traffic 

intensity. Differences are also observed in terms of punctuality, which is lowest on average for 

section/signal failures in the beginning of a disruption. This is explained by the fact that train 

drivers are often asked by traffic control to reduce their speed and try to “drive the failure out 

of the system”, which could work if for example some gravel were to be stuck in the insulated 

rail joint*. The reduced speed automatically causes a decrease in punctuality. The resulting 

delays can quickly escalate, particularly on busy routes*. Besides being able to show differences 

between disruption causes, the mean curves for punctuality also disprove the assumption that 

punctuality is high in the second phase. Punctuality may be high in certain cases, especially in 

the first impact area when few to no trains are running, but it will be low in other cases as well. 

With regard to the shape of the resilience curves in Figure 5.5, it is observed that they do not 

necessarily resemble the shape of a bathtub. Instead, the curves bear a stronger resemblance 

to a hammock that is skewed to the left in varying degrees, although the 80% range shows that 

an arbitrary resilience curve could deviate significantly from the mean curve. The width of the 

80% range is relatively small for train defects compared to the other disruption causes. This 

suggests that train defects are the most consistent type of disruption, which may be partly 

explained by the fact that as of 2019, extra effort is put by the A&E department into monitoring 

and evaluating the handling of stranded trains*. Also, train defects result in partial line block-

ages more often than the other disruption causes. Partial line blockages are generally believed 

to be less disruptive than full line blockages since a reduced amount of traffic is still possible 

in those cases. This assumption was supported by a pilot investigation into the mean resilience 

curve per impact type. With regard to the infrastructure related causes, it is observed that the 

width of the 80% range is largest in the transition from first to second phase or early in the 

second phase. This suggests that infrastructure related disruptions are more heterogeneous in 

terms of degradation behavior than in terms of recovery behavior. For collisions, the width of 

the 80% range is fairly constant throughout the second phase, which may be explained by the 

stable conditions during clearing operations. 
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Figure 5.5. Mean and median resilience curve per disruption cause. 

Differences between observed and reported timepoints 

In addition to the representative curves, the observed and reported timepoints and the total 

disruption duration were compared among disruption causes. Differences in the timepoints 

were calculated by subtracting the reported value from the observed value, so: ∆𝑇𝑖 = 𝑇𝑖 − 𝑇𝑖,𝑆 

for 𝑖 ∈ {0,1,2,3}. Thus, a negative outcome indicates that a timepoint was observed earlier than 

reported, and vice versa. Differences were obtained for 438 of the 445 studied disruptions, as 

in seven cases the timepoint 𝑇1,𝑆 was not available. The results are presented in Table 5.3 and 

Table 5.4 for 𝜆 = 0.67. Table 5.3 presents the mean total duration of the studied disruptions 

for each disruption cause. Table 5.4 presents an overview of the differences in timepoints. The 
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tables specify the mean, standard deviation (SD), standard error5 (SE) and confidence interval 

(CI) per cause. The standard deviation is a descriptive statistic that measures the variability 

within the sample. In other words, it measures how much the observed values differ from the 

sample mean. The standard error is an inferential statistic that estimates the variability across 

samples. In other words, it estimates how closely the sample mean is distributed around the 

unknown population mean. The 95% confidence interval is defined as the mean ± 1.96 SE. 

With respect to Table 5.3, it is observed that the studied disruptions lasted approximately 39 

minutes longer on average than reported. The differences are largest for train defects and colli-

sions. Collisions were also identified as the longest type of single disruption on average, with a 

mean observed duration of approximately 261 minutes. In practice though, overhead line fail-

ures are known to be the longest type of disruption as they can sometimes span several days. 

However, many overhead line failures were filtered out in data preparation, for example be-

cause of connections to other disruptions or because of the day-night transition that could not 

be handled in the performance calculation. Thus, the studied overhead line failures are mainly 

the shorter ones, and the same holds for the other disruption causes. After all, the longer a 

disruption lasts, the greater the chance that it becomes connected to another disruption. 

With respect to Table 5.4, it is observed that differences exist in all timepoints. The mean 

differences in 𝑇0 are mostly in the order of -10 minutes, which is explained as follows. For train 

defects, it is known that a train driver will usually try to resolve the cause of the problem by 

themself before reporting the train defect to traffic control. If the train systems are being reset, 

the train driver may be unreachable for traffic control in the meantime* while delays start to 

build up. For collisions, the difference may result from the 30-minute time window used in 

calculating the resilience curve. Given how rapidly traffic intensity can decrease for collisions, 

a drop in performance could be observed slightly earlier than it actually occurred. However, it 

is also known that it may take a while for the dispatcher to inform the control room of a 

collision, because the dispatcher may give priority to taking emergency measures*. For 

section/signal and overhead line failures, the differences are likely the result of delays that 

arise before the disruption is reported. The mean differences in 𝑇1 have positive values, which 

indicates that the second phase generally does not start directly after the VSM is applied. The 

difference is smallest for train defects and largest for switch failures. The mean differences in 

𝑇2 have both positive and negative values. The difference is in the order of 15 minutes for train 

defects and overhead line failures, but measures approximately -10 minutes for collisions. The 

mean differences in 𝑇3 are mostly in the order of 20 to 30 minutes, which indicates that the 

third phase generally lasts longer than reported. Note that for all timepoints, but especially for 

𝑇2 and 𝑇3, the standard deviations are quite large, which indicates that large negative and 

positives deviations from the mean difference were observed as well. This is partly due to the 

fact that the steady state detection algorithm may give inaccurate results for unconventional 

types of curves, but for the most part, the time differences seem to relate to the fact that the 

reported timepoints are not always logged in time or do not reflect the real state of the system. 

Since the reported timepoints do not account for delays, but are based on whether or not trains 

are running, it could be argued that the time differences are caused by the composite perfor-

mance indicator. Therefore, the differences were also checked for 𝜆 = 1. In this case, disrup-

tions were found to last only 25 minutes longer on average, which is mainly caused by devia-

tions in 𝑇3. The only other notable deviations (in the order of 10 minutes) were identified in 𝑇0 

for section/signal failures and switch failures; in 𝑇1 for overhead line failures; and in 𝑇2 for 

train defects and overhead line failures. In other cases, the time differences were fairly similar. 

 

5 To preserve space, the standard error was not included in Table 5.4. However, the interested reader 
may calculate the standard error based on the information in the table. 
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Table 5.3. Observed and reported mean disruption duration for 𝜆 = 0.67. 

  
Observed duration (minutes) Reported duration (minutes) 

Disruption cause N Mean SD SE 95% CI Mean SD SE 95% CI 

Train defect 196 153.31 81.85 5.85 141.78 164.84 109.90 70.41 5.03 99.98 119.81 

Section/signal failure 97 223.25 99.59 10.11 203.18 243.32 188.10 94.48 9.59 169.06 207.14 

Collision 95 261.29 79.53 8.16 245.09 277.50 217.38 72.20 7.41 202.68 232.09 

Switch failure 34 238.91 131.51 22.55 193.03 284.80 213.05 126.83 21.75 168.80 257.31 

Overhead line failure 16 216.50 54.20 13.55 187.62 245.38 203.41 111.59 27.90 143.94 262.87 

Average 438 201.17 99.88 4.77 191.79 210.55 161.95 96.11 4.59 152.93 170.98 

 

Table 5.4. Mean differences between the observed and reported timepoints for 𝜆 = 0.67. 

  
Difference in 𝑇0 (minutes) Difference in 𝑇1 (minutes) Difference in 𝑇2 (minutes) Difference in 𝑇3 (minutes) 

Disruption cause N Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI 

Train defect 196 -13.83 22.28 -16.97 -10.69 3.86 22.39 0.71 7.01 14.23 40.91 8.47 19.99 29.58 54.01 21.98 37.19 

Section/signal failure 97 -9.72 24.87 -14.73 -4.71 10.88 40.70 2.67 19.08 -1.52 48.63 -11.32 8.28 25.42 44.46 16.46 34.38 

Collision 95 -12.89 16.08 -16.17 -9.62 19.93 52.68 9.20 30.66 -9.64 47.34 -19.29 0.00 31.02 51.29 20.57 41.46 

Switch failure 34 -2.91 29.54 -13.22 7.40 25.04 58.44 4.65 45.43 7.03 51.15 -10.82 24.87 22.95 84.34 -6.48 52.37 

Overhead line failure 16 -11.38 31.77 -28.31 5.56 17.10 32.45 -0.20 34.39 15.97 43.20 -7.05 38.99 1.72 81.05 -41.47 44.91 

Average 438 -11.78 22.86 -13.93 -9.63 11.03 39.19 7.35 14.71 5.07 45.93 0.76 9.38 27.44 55.64 22.22 32.67 
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Table 5.5. Descriptive statistics of the resilience metrics for 𝜆 = 0.67. 

  
DT (minutes) RST (minutes) RCT (minutes) MI (percentage points) 

Disruption cause N Mean Median SD Mean Median SD Mean Median SD Mean Median SD 

Train defect 202 40.62 35.00 25.03 53.91 28.00 52.23 56.79 47.00 41.75 13.24 10.81 10.47 

Section/signal failure 97 53.61 43.00 44.53 91.04 67.00 79.75 78.60 72.00 57.37 22.35 17.80 13.50 

Collision 96 55.96 40.00 50.08 110.01 99.00 69.22 93.33 82.00 63.86 23.90 20.55 13.91 

Switch failure 34 69.88 47.50 84.32 92.79 69.50 73.81 76.24 53.50 58.73 17.89 13.23 13.44 

Overhead line failure 16 56.13 49.50 28.98 112.13 110.00 27.77 48.25 47.00 25.30 19.03 16.78 11.86 

Average 445 49.55 40.00 43.45 79.17 57.00 68.16 70.61 58.00 53.70 18.09 14.68 13.06 

 

  
PL (minutes) DP (percentage points) RP (percentage points) 

Disruption cause N Mean Median SD Mean Median SD Mean Median SD 

Train defect 202 1190.34 736.17 1590.88 -10.86 0.82 86.67 -52.90 -4.77 149.68 

Section/signal failure 97 2653.90 2153.74 2214.11 -24.66 -9.39 282.33 -43.07 -0.77 223.70 

Collision 96 3375.52 2889.97 2374.67 -10.60 -0.37 220.27 -41.10 -22.48 359.17 

Switch failure 34 2159.73 1308.50 2185.02 -109.25 -0.94 656.15 -124.36 0.59 312.87 

Overhead line failure 16 2358.22 1772.25 2091.90 38.82 -20.42 221.87 -74.74 -36.20 127.39 

Average 445 2096.83 1423.82 2170.91 -19.54 0.00 255.88 -54.46 -5.37 238.42 
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Based on the mean resilience curves and time differences, using the composite performance 

indicator that includes punctuality is believed to be justified. In addition to the arguments 

provided in Chapter 4, it was found that performance degrades faster on average in terms of 

punctuality for the infrastructure related causes than for train defects and collisions. Also, 

section/signal failures and switch failures were found to occur approximately 10 minutes later 

on average when considering traffic intensity alone than when using the composite indicator. 

In fact, the standard deviation of ∆𝑇0 for switch failures is more than double the size for 𝜆 = 1 

compared to 𝜆 = 0.67. This indicates there must have been a number of switch failures that 

were hardly affected in terms of traffic intensity, with a large deviation from the reported start 

time as a result. Also, it became clear that disruptions last longer on average when punctuality 

is included, which indicates that delays do occasionally arise in the first and third phase. If only 

traffic intensity were to be studied, the decrease in punctuality would be overlooked, which is 

why it is worthwhile to incorporate punctuality in the resilience curve as well. 

5.4. Comparison of resilience metrics across disruption causes 
This section discusses the group comparisons that were performed with respect to the resili-

ence metrics, where each group represents the disruptions that match one of the five studied 

disruption causes. First, descriptive statistics of the resilience metrics are reported per group 

and the assumptions for group comparisons are discussed. Next, the results of the group 

comparisons are presented for 𝜆 = 0.67 and verified for other values of 𝜆. 

Descriptive statistics 

To get an overview of the values of the resilience metrics for each disruption cause, descriptive 

statistics were reported. The mean, median and standard deviation of each metric is presented 

per cause in Table 5.5. The table shows that a single disruption on average has a degradation 

time of 49.55 minutes; a response time of 79.17 minutes; a recovery time of 70.61 minutes; a 

maximum impact of 18.09 percentage points; a performance loss of 2,096 minutes; a degrada-

tion profile of -19.54 percentage points; and a recovery profile of -54.46 percentage points. The 

standard deviations of the metrics are relatively large compared to the means. This suggests 

that the disruption dynamics may be quite heterogeneous, which is also reflected in the various 

types of resilience curves that were identified in Section 5.3. Since the first five metrics cannot 

have negative values, their distributions must be skewed to the left, which means that much 

larger values than the mean were occasionally observed. In contrast with the first five metrics, 

the degradation profile and recovery profile are allowed to have negative values as well. Given 

the size of the standard deviations for these metrics, their mean and median are relatively close 

to zero. This indicates that the shape of the resilience curve in the transition phases is neither 

strongly concave nor strongly convex on average, but rather linear or mixed. 

Assumptions check 

Next, the parametric assumptions for group comparisons were checked. The normality of the 

dependent variable was checked by performing the Shapiro-Wilk test, which is one of the more 

powerful normality tests (Yap & Sim, 2011). It evaluates the null hypothesis that the data were 

drawn from a normal distribution. Test results consist of the Shapiro-Wilk W-statistic and the 

corresponding p-value. The greater the W-statistic, the more likely it is that the data are 

normally distributed. The null hypothesis was rejected at a significance level 𝛼 = 0.05 for all 

metrics across most of the groups. Thus, as an alternative to ANOVA, the Kruskal-Wallis test 

was considered. Kruskal-Wallis requires independence of observations and equal variances 

among groups. The first had already been ensured by distinguishing between single and 

connected disruptions. The second was checked by drawing a kernel density plot for each 

metric and performing the Levene test, which evaluates the null hypothesis that the data have 

equal variances among groups. Test results consist of the Levene W-statistic and the corre-

sponding p-value. The greater the W-statistic, the less likely it is that the groups have equal 
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variances. The null hypothesis was rejected at 𝛼 = 0.05 for all metrics. As a result, the Kruskal-

Wallis test could not be used and Welch’s ANOVA was selected for the group comparisons. For 

completeness, the test results and kernel density plots are included in Appendix N. 

Results for λ = 0.67 

As group comparisons are by definition two-sided tests, the null hypothesis 𝐻0 and alternative 

hypothesis 𝐻1 for the comparison of resilience metrics among groups are as follows. 

𝐻0: The mean of the resilience metric is the same for each disruption cause. 

𝐻1: The mean of the resilience metric is different per disruption cause. 

 

The results of Welch’s ANOVA are presented in Table 5.6, which provides the F-statistic, p-

value, 𝜂-squared, and whether or not the null hypothesis was rejected6 at 𝛼 = 0.05. The effect 

size 𝜂-squared explains which part of the variation in the dependent variable is associated with 

group membership (Lakens, 2013). As a rule of thumb, 𝜂-squared = 0.01 is considered small, 

𝜂-squared = 0.06 is considered medium and 𝜂-squared = 0.14 is considered large. Table 5.6 

shows that the first five resilience metrics are significantly different per disruption cause, and 

that the effect sizes are medium to large. The largest effect size, 𝜂-squared = 0.169, was 

obtained with regard to the performance loss. 

Table 5.6. Welch's ANOVA test results for 𝜆 = 0.67. 

Resilience metric F-statistic p-value 𝜂-squared 𝐻0 rejected (𝛼 = 0.05) 

DT 4.770 1.77E-03 0.043 Yes 

RST 22.352 1.06E-12 0.125 Yes 

RCT 9.824 1.45E-06 0.081 Yes 

MI 15.954 1.53E-09 0.129 Yes 

PL 21.533 6.99E-12 0.169 Yes 

DP 0.437 7.82E-01 0.012 No 

RP 0.611 6.56E-01 0.008 No 

 

In addition to Welch’s ANOVA, the Games-Howell post hoc test was performed. The full results 

are included in Appendix O. A subset of the results is presented in Table 5.7, which provides 

the groups A and B, the difference in their means, the standard error, t-value, p-value, Hedges’ 

g and common language effect size (CLES). The effect size Hedges’ g expresses the difference 

between the means of two groups as a proportion of the standard deviation of this difference. 

As a rule of thumb, g = 0.2 is considered small, g = 0.5 is considered medium and g = 0.8 is 

considered large (Cohen, 1988). It is generally preferred not to use rules of thumb and instead 

compare the effect sizes to earlier results in similar research (Lakens, 2013). However, such 

results were not available in this case. The other effect size, CLES, expresses the probability 

that a randomly sampled observation from one group will have a higher measurement value 

than a randomly sampled observation from another group. For example: based on the last row 

in Table 5.7, it could be stated that a section/signal failure has a 1463.56 minutes greater per-

 

6 The p-value describes the probability that the test statistic would have been as least as large as observed 
if only chance was at play. A small p-value “simply flags the data as being unusual if all the assumptions 
used to compute it (including the test hypothesis) were correct” (Greenland et al., 2016). Thus, in saying 
that the null hypothesis is rejected, it is assumed that all other assumptions in the statistical model are 
correct. 
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formance loss on average than a train defect, which equals 0.718 times the standard deviation 

of the observed difference (Hedges’ g = 0.718). The probability that a random section/signal 

failure has a greater performance loss than a random train defect equals 69.5% (CLES = 0.695). 

Table 5.7. Games-Howell test results for 𝜆 = 0.67 and |Hedges’ g| ≥ 0.5. 

Metric Group A Group B (A - B) SE t-value p-value Hedges’ g CLES 

DT Overhead line failure Train defect 15.51 7.46 2.079 0.274 0.538 0.649 

RST Collision Train defect 56.10 7.96 7.046 0.001 0.871 0.732 

RST Overhead line failure Section/signal failure 21.08 10.67 1.977 0.289 0.530 0.647 

RST Overhead line failure Train defect 58.22 7.86 7.410 0.001 1.918 0.913 

RST Section/signal failure Train defect 37.14 8.89 4.176 0.001 0.515 0.642 

RST Switch failure Train defect 38.89 13.18 2.950 0.040 0.545 0.651 

RCT Collision Overhead line failure 45.08 9.08 4.964 0.001 1.331 0.828 

RCT Collision Train defect 36.54 7.15 5.112 0.001 0.632 0.673 

RCT Overhead line failure Section/signal failure -30.35 8.60 -3.529 0.008 -0.946 0.250 

RCT Overhead line failure Switch failure -27.99 11.89 -2.353 0.146 -0.702 0.307 

MI Collision Train defect 10.66 1.60 6.663 0.001 0.824 0.720 

MI Section/signal failure Train defect 9.11 1.56 5.854 0.001 0.721 0.695 

PL Collision Switch failure 1215.80 446.27 2.724 0.062 0.541 0.650 

PL Collision Train defect 2185.18 266.96 8.185 0.001 1.012 0.763 

PL Overhead line failure Train defect 1167.88 534.82 2.184 0.234 0.565 0.656 

PL Section/signal failure Train defect 1463.56 251.13 5.828 0.001 0.718 0.695 

 

With respect to Table 5.7, it is observed that train defects have a significantly shorter response 

time than the other causes, and that collisions have a significantly longer recovery time than 

train defects and overhead line failures. Train defects have a significantly smaller maximum 

impact than collisions and section/signal failures. In terms of performance loss, collisions 

perform significantly worse than switch failures and train defects, and section/signal failures 

also perform significantly worse than train defects. Medium-sized differences regarding over-

head line failures were not found to be significant, which may be explained by the small group 

size. To conclude, the test results are consistent with the mean resilience curves presented in 

Section 5.3, which already suggested that collisions are the most impactful single disruptions 

overall and train defects are the least impactful single disruptions overall. 

Results for other values of λ 

The results of the group comparisons were verified for other values of 𝜆 which are easy to 

communicate, namely 𝜆 = 0.5, 𝜆 = 0.75, 𝜆 = 0.8 and 𝜆 = 1 (placing equal weight, three times 

the weight, four times the weight and all weight on traffic intensity, respectively). On average, 

only marginal changes in the mean values of the resilience metrics were observed. Per group 

though, some notable changes in the metrics were observed. As 𝜆 increases, performance loss 

steadily increases for collisions, while it steadily decreases for switch failures. The maximum 

impact of collisions also increases with increasing 𝜆. This underlines the disruptive effect of 

collisions in terms of cancellations. For 𝜆 = 1, the degradation time and recovery time are 

shorter on average than for the other values of 𝜆, which is consistent with the shorter total 

duration if only traffic intensity is considered. 

The results of the group comparisons for the selected values of 𝜆 are summarized in Table 5.8, 

which presents the effect size 𝜂-squared for each 𝜆 and for each resilience metric. Based on this 

table, a trend may be observed for some of the metrics. As 𝜆 increases, 𝜂-squared steadily in-
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creases for the response time, maximum impact and performance loss. Thus, the more weight 

is placed on traffic intensity, the more obvious the differences are between groups in terms of 

these metrics. For 𝜆 = 1, 𝜂-squared is considerably lower for the degradation time and recovery 

time. This means that if punctuality is not considered, the duration of the first and third phase 

varies less among groups. In fact, for 𝜆 = 1 the null hypothesis could no longer be rejected at 

𝛼 = 0.05 with regard to the degradation time. Furthermore, note how there are some incon-

sistencies in the increasing or decreasing trend in 𝜂-squared, for example with regard to the 

degradation time, maximum impact and performance loss for 𝜆 = 0.8. The explanation for 

these inconsistencies is twofold. First, it is probable that there are a number of resilience curves 

which are sensitive to changes in 𝜆 because of strong fluctuations in punctuality and/or traffic 

intensity. As a result, the timepoints may change significantly for slightly different values of 𝜆. 

Thus, 𝜆 = 0.8 could be a particularly unlucky parameter value for a small subset of disruptions. 

Second, there are slight differences in the disruptions that were evaluated for each value of 𝜆, 

since the sample depends on whether a curve stays above target performance; whether a start 

and end point could be identified; whether a disruption was connected based on the observed 

timepoints; and whether a steady state could be identified. Even though target performance 

was adjusted for 𝜆, part of the disruptions did not appear in all samples. 

Table 5.8. 𝜂-squared per resilience metric for different values of the performance weight. 

𝜆 𝜂2 (DT) 𝜂2 (RST) 𝜂2 (RCT) 𝜂2 (MI) 𝜂2 (PL) 𝜂2 (DP) 𝜂2 (RP) 

0.50 0.047 0.129 0.068 0.099 0.137 0.011 0.008 

0.67 0.043 0.125 0.081 0.129 0.169 0.012 0.008 

0.75 0.039 0.146 0.069 0.144 0.186 0.017 0.005 

0.80 0.051 0.154 0.063 0.152 0.196 0.021 0.002 

1.00 0.028 0.188 0.032 0.151 0.194 0.018 0.014 

 

5.5. Relationships between resilience metrics 
This section discusses the relationships that were evaluated between the resilience metrics and 

other explanatory variables for the studied disruptions. First, the results of the regression anal-

yses are presented for 𝜆 = 0.67 and verified for other values of 𝜆. Next, relationships that would 

have been evaluated but were excluded because of limitations in the data are commented on. 

Regression hypotheses 

In regression analysis, it is evaluated whether there is a relationship between the dependent 

variable (DV) and independent variable (IV). This is true when at least one of the coefficients 

is significantly different from zero. Thus, the hypotheses for each coefficient are as follows. 

𝐻0: The regression coefficient 𝛽𝑖 is different from zero. 

𝐻1: The regression coefficient 𝛽𝑖 is equal to zero. 

 

Since the normality assumption of the dependent variable was violated for most of the metrics 

in the group comparisons, it was assumed that the normality assumption of the residual errors 

was violated as well. Besides, no further effort was made to remove outliers from the remaining 

set of 445 single disruptions. Therefore, robust Huber regression was selected for regression 

analysis instead of the standard linear regression. As explained briefly in Chapter 4, a Huber 

regression model assigns less weight to outliers in the data. The number of observations that 

are classified as outliers is controlled by the tuning parameter 𝑡ℎ. Large values of 𝑡ℎ decrease 

the robustness of the regression model against outliers, making it similar to a linear regression 
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model, whereas small values of 𝑡ℎ increase the robustness of the model against outliers. The 

default parameter setting in Statsmodels (the Python module used to perform the regression 

analyses) is 𝑡ℎ = 1.345, based on Huber (1981). 

Additional data were collected to be evaluated against the resilience metrics. This concerns the 

customer hindrance per disruption in total minutes delay and the number of train series 

involved in the third phase. Several candidate DV-IV pairs were selected given the relation-

ships that could logically be expected, such as the response time vs. degradation time, recovery 

profile vs. response time and performance loss vs. maximum impact. However, based on the 

scatter plots that were drawn for the regression candidates, there was only reason to assume a 

relationship between performance loss on the one hand and the maximum impact and total 

duration on the other hand. This relationship is presented in linear form in Equation (14). 

                                                                           𝑃𝐿 = 𝛽1𝑀𝐼 + 𝛽2𝑇𝑇                                                                  (14) 

Where: 

• 𝑃𝐿 is the performance loss 

• 𝑀𝐼 is the maximum impact 

• 𝑇𝑇 is the total duration (𝑇𝑇 = 𝐷𝑇 + 𝑅𝑆𝑇 + 𝑅𝐶𝑇) 

• 𝛽1 is the slope of the regression line with regard to 𝑀𝐼 

• 𝛽2 is the slope of the regression line with regard to 𝑇𝑇 

Since performance loss represents the cumulative loss of performance over the course of a 

disruption, it could be expected to increase with a greater impact MI and longer duration TT. 

Also, when both the impact and the duration are zero, performance loss should be zero as well, 

which is why no constant 𝛽0 was included in Equation (14). The relationship of the dependent 

variable PL with the independent variables MI and TT was evaluated first for the independent 

variables separately. A Huber regression model was fitted with the default value 𝑡ℎ = 1.345. 

Smaller values of 𝑡ℎ further increase the robustness against outliers, which is why other values 

were attempted as well, including 𝑡ℎ = 1 which is the minimum value in the range that Huber 

(1981) identified as “good choices”. However, the differences were marginal. Subsequently, a 

multivariate Huber regression model was fitted that includes both independent variables. 

Results for λ = 0.67 

The results of the regression analyses for 𝜆 = 0.67 are presented in Table 5.9, which provides 

the variable name, coefficient value, standard error, t-value, p-value and 95% confidence inter-

val. The results in Table 5.9 show that the relationship between performance loss on the one 

hand and the maximum impact and total duration on the other hand is significant at 𝛼 = 0.05. 

In the first model, 𝑡(𝛽1) = 64.54 and r-squared = 0.677. The “goodness of fit” r-squared 

explains the proportion of the variation in the dependent variable that can be explained by the 

independent variable7. In the second model, 𝑡(𝛽2) = 39.83 and r-squared = 0.399. This means 

that changes in the maximum impact explain a larger part of the variation in performance loss 

than changes in the total duration, and thus, it could be stated that it is more important to 

reduce the maximum impact than to reduce the duration of a disruption in order to limit per-

formance loss. The regression lines for the obtained coefficient values are shown in Figure 5.6. 

For comparison, a Huber regression model with 𝑡ℎ = 1 and an ordinary least squares (OLS) 

model were fitted as well. The figure illustrates that mainly very large observations were 

marked as outliers, since the Huber regression lines are less steep compared to the OLS model. 

 

7 Note that r-squared should be interpreted with caution for robust models, as its value will always be 
lower than the value that would be obtained with an ordinary least squares model. 
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Table 5.9. Huber regression results for the separate and multivariate models for 𝜆 = 0.67 and 𝑡ℎ = 1.345. 

Model 1   
   

  

 Variable Coefficient SE t-value p-value 95% confidence interval 

 MI 113.60 1.76 64.54 ≈ 0 110.15 117.05 

Model 2   
   

  

 Variable Coefficient SE t-value p-value 95% confidence interval 

 TT  9.76 0.25 39.83 ≈ 0 9.28 10.24 

Model 3   
   

  

 Variable Coefficient SE t-value p-value 95% confidence interval 

 MI 88.88 3.11 28.56 ≈ 0 82.78 94.98 

 TT 2.82 0.31 9.07 ≈ 0 2.21 3.43 

 

 

 

Figure 5.6. Regression lines for a nonrobust OLS and robust Huber regression model. 
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In the multivariate model r-squared equals 0.709, which means 71% of the variation in perfor-

mance loss is explained by the maximum impact and total duration. The coefficient values 

measure 𝛽1 = 88.88 and 𝛽2 = 2.82, which means performance loss increases by 88.88 minutes 

for a one percentage point increase in maximum impact, and it increases by 2.82 minutes for 

a one minute increase in total duration. Still, 29% of the variation in performance loss is not 

explained by the multivariate model, which indicates that other factors influence the shape of 

the resilience curve as well. These could include characteristics of the infrastructure (e.g. the 

number of switches), timetable (e.g. the train frequency), human action (e.g. the proactiveness 

of traffic controllers) information supply (e.g. the certainty about the prognosed end time) and 

external conditions (e.g. the weather). These factors are discussed in more detail in Chapter 6. 

Results for other values of λ 

The regression results were verified for the same values of 𝜆 as used in the group comparisons, 

namely 𝜆 = 0.5, 𝜆 = 0.75, 𝜆 = 0.8 and 𝜆 = 1. The verification produced comparable results for 

the other values of 𝜆, though it was observed that r-squared steadily decreases for increasing 

𝜆. This occurred in the separate models as well as in the multivariate model. The decrease was 

mainly caused by a decreasingly strong relationship between performance loss and the total 

duration. For 𝜆 = 1, around 68% of the variation in performance loss could still be explained 

by the multivariate model, with 𝛽1 = 90.00 and 𝛽2 = 2.43. The fact that 𝛽1 remains relatively 

stable for increasing 𝜆 while 𝛽2 decreases is consistent with the fact that the shorter total dura-

tion for larger values of 𝜆 is primarily caused by a shorter duration of the first and third phase. 

These phases typically contribute less to the performance loss since performance is higher than 

in the second phase, where the maximum impact most often occurs. 

Limitations in the data 

Additional relationships would have been evaluated if it were not for limitations in the data. 

The first such relationship is that between recovery time or recovery profile and the number of 

train series involved in the third phase. It could be expected that a higher number of train series 

results in a more complex, perhaps longer third phase. The boxplot in Figure 5.7 suggests there 

may indeed be a positive relationship between the recovery time and the number of train series. 

This relationship was not evaluated further since it was found that the number of train series 

in the third phase, as reported in Sherlock, only applies to series that were short-turned and 

later reinserted. Also, the algorithm in Sherlock only considers the last applied VSM, so if trains 

were short-turned early in the disruption and this was no longer necessary after updating the 

VSM, no train series were reportedly involved in the third phase. This explains why 211 (47%) 

of the 445 studied disruptions were characterized by zero or one train series in the third phase, 

and why long recovery times were also observed for low numbers of train series. 

 
Figure 5.7. Boxplot of the recovery time vs. the number of train series involved in the third phase. 
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The second relationship that was disregarded is the relationship between customer hindrance 

and performance loss. Both variables measure the cumulative loss of performance in minutes, 

although they are calculated differently. Thus, a correlation between the two variables could 

be expected. Such a correlation would not represent a causal relationship, but would instead 

be a confirmation that the resilience metric is able to capture the impact of a disruption with 

reasonable accuracy, assuming that customer hindrance is reported correctly. Yet, based on 

the scatter plot for these variables, the correlation appears weak. Large values of performance 

loss were observed for small values of customer hindrance, and to a lesser extent, vice versa. A 

possible explanation for this discrepancy is that performance loss describes the profile of the 

resilience curve, and not the total impact on the train service. For example, a resilience curve 

calculated for a relatively small impact area could have the same performance loss as a resili-

ence curve calculated for a relatively large impact area. In the second case, it is likely that more 

trains were affected by the disruption, which could lead to more customer hindrance. To over-

come this apparent limitation of the resilience metric, the performance loss was normalized 

for the size of the impact area, but this made hardly any difference. Therefore, the source of 

the discrepancy should be sought in the reported customer hindrance. Of the 445 disruptions, 

53 (12%) were observed with a customer hindrance of zero, but with performance losses up to 

4,154 minutes. This deviation can be explained in three ways. First, the allocation of delays to 

a specific disruption by Monitoring is highly dependent on human input and leaves room for 

errors and interpretation, especially since input comes from traffic controllers from multiple 

traffic control areas. Second, it is unknown to what extent the coupling of a Monitoring ID to a 

Spoorweb ID in Sherlock is correct. Incorrect or missing couplings were observed when a 

minor disruption (without a VSM) occurred in the same area shortly before the disruption to 

which the customer hindrance should apply, or when the boundary points in the Monitoring 

record were different than the ones in the Spoorweb record. Third, delays are only allocated to 

a disruption until at most 30 minutes after the restart is initiated, whereas performance loss is 

calculated over the observed duration of a disruption, which includes the entire third phase. 

5.6. Resilience curves for connected disruptions 
So far, connected disruptions were excluded from the experiments. In an earlier version of the 

experiments however, the mean resilience curve was drawn for connected disruptions as well, 

and connected disruptions were also represented in the group comparisons. The results from 

those experiments led to believe that evaluating connected disruptions as if they were single 

disruptions could underestimate the impact of a connected disruption. Therefore, this section 

discusses the resilience curve behavior for connected disruptions separately and explains why 

connected disruptions should not be compared against single disruptions. First, two connected 

disruptions of different size are discussed in detail. Next, the factors that can influence the 

shape of the resilience curve for a connected disruption are summarized. 

Table 5.10. Details of the two connected disruptions. 

Example ID 𝑇0,𝑆  𝑇3,𝑆  Boundary points Disruption cause Impact type 

1 335628 06:56 13:52 Apd, Bnn Collision Full line blockage 

 335662 10:33 14:04 Amf ARI failure Full timetable point outage 

2 359646 12:24 18:28 Asd, Ass Section failure Partial line blockage 

 359708 15:34 17:37 Sdm, Rtd Train defect Full line blockage 

 359741 17:22 21:09 Mrn, Ed Collision Full line blockage 

 359764 18:10 18:33 Asd, Asdl, Ass Train defect Partial line blockage 

 359775 18:21 19:27 Shl Train defect Partial timetable point outage 

 359778 18:22 21:21 Ed Signal failure Full timetable point outage 
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Figure 5.8. Combined impact area of the first (left) and second (right) connected disruption. 

The first example concerns a connected disruption consisting of two subsequent disruptions 

around Amersfoort on December 15, 2018. The Spoorweb ID, reported start and end time, 

boundary points, disruption cause and impact type of the individual disruptions are presented 

in Table 5.10. In this example, the first disruption was a collision between Apeldoorn and 

Barneveld which reportedly occurred at 06:56. Shortly after the Spoorweb record was closed 

at 10:32 and no further logistical measures were deemed necessary, a failure in the automatic 

routing system ARI occurred around Amersfoort, which reportedly lasted until 14:04. The 

combined impact area of this connected disruption contained 146 timetable points, where the 

impact area of the first disruption (in blue) was a subset of the impact area of the second one 

(in orange) as shown in the left diagram in Figure 5.8. The resilience curve for the combined 

impact area is presented in Figure 5.9. The figure shows how the first disruption transitioned 

into the second one, as performance had already nearly recovered when the second disruption 

occurred. Due to the aftermath of the first disruption, the second part of the curve starts below 

target performance, which means no start point could have been identified if the second dis-

ruption was studied as a single disruption. 

 

 

 

Figure 5.9. Resilience curve for the first connected disruption. 

The second example concerns a connected disruption consisting of six disruptions spread 

across the west and middle of the country on March 11, 2019. Again, the details of the individ-

ual disruptions are presented in Table 5.10. The combined impact area of this connected dis-

ruption contained 197 timetable points. The maximum area size of the individual disruptions 

𝑇0,𝑆(335628) 𝑇0,𝑆(335662) 𝑇3,𝑆(335662) 



76 
 

measured 65 timetable points, so the geographical overlap between part of the disruptions was 

limited, as shown in the right diagram in Figure 5.8. However, there was significant overlap 

between the disruptions in Amsterdam (in blue) and Schiphol (in red), which is why those in 

Amsterdam are barely visible. The resilience curve for the combined impact area is presented 

in Figure 5.10. Similar to the first example, the first disruption transitioned into the second 

one. In this case however, the impact of the first disruption was greater than the impact of the 

second one. The second disruption then transitioned into the third one, which was a collision 

that caused a full blockage between Maarn and Ede-Wageningen. Three more disruptions 

occurred in the next hour, including a full timetable point outage in Ede-Wageningen due to a 

signal failure. As this timetable point was already disrupted due to the collision, the additional 

impact appears marginal. Around the reported end time of the train defect in Schiphol, the 

resilience curve starts to recover until eventually the reported end time of the signal failure is 

reached. Notice that target performance was not yet reached by that time. In fact, target 

performance was never reached during this connected disruption. Also notice that the impact 

of individual disruptions can be distinguished in the first part of the curve (until 𝑇0,𝑆(359741)), 

whereas this is difficult in the second part of the curve because of the greater overlap in time. 

 

 

Figure 5.10. Resilience curve for the second connected disruption. 

Based on the discussed examples, it could be expected that the resilience curve of a connected 

disruption can take on many different forms if it is drawn for the total impact area of the indi-

vidual disruptions combined. For instance, if the first two disruptions in the second example 

had not occurred, then Figure 5.10 would have resembled the bathtub shaped curve. Thus, the 

mean resilience curve for connected disruptions (which was found to be similar to the mean 

resilience curve for train defects) is not thought to be a meaningful nor accurate representation 

of the disruption dynamics for connected disruptions. Still, studying the resilience curve for 

connected disruptions or its individual constituents could be useful to learn about the degree 

in which cascading effects occur and about the performance of traffic control when measures 

need to account for disruptions elsewhere. Herein, attention should be paid to the following: 

• The number of individual disruptions that constitute a connected disruption. 

• The extent to which the individual disruptions overlap in time. 

• The extent to which the individual disruptions overlap geographically. 

• The size of the impact area of individual disruptions relative to each other. 

• The geographical separation between the location of individual disruptions. 

• The possibility of a causal relationship between two or more individual disruptions. 

𝑇0,𝑆(359646) 𝑇0,𝑆(359708) 𝑇0,𝑆(359741) 𝑇3,𝑆(359778) 

𝑇0,𝑆(359764) 𝑇0,𝑆(359775) 

𝑇0,𝑆(359778) 
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5.7. Networkwide resilience curves for extreme days 
This section presents the resilience curves for the red and black days that were excluded from 

previous experiments. So far, resilience curves for single disruptions were drawn locally for the 

affected area. However, on black and near-black days, the influence of simultaneous disrup-

tions or other factors such as the weather could be so strong that this is no longer considered 

appropriate. Therefore, the curves for extreme days were drawn networkwide for the entire day 

and were compared to the networkwide resilience curve for a number of nonextreme days in 

the same period. Although these curves could be inherently different from the curves that were 

presented earlier in this chapter, they may provide more insight into the potential effects of a 

disruption outside the first and second impact area. 

A distinction was made between extreme days that occur due to a common cause (e.g. snowfall, 

extreme heat, a strike) or due to an accumulation of disruptions in the network. The reason for 

this distinction is that the first category can mostly be anticipated in advance, while the second 

category is of a more coincidental nature, requiring a different approach to disruption manage-

ment. In particular, it could be argued that traffic control plays a larger role in the second 

category, since days in this category can hardly be prepared for and require a significant 

amount of rescheduling during the day. The curves for both categories are presented sepa-

rately. Resilience curves for extreme days with a common cause are presented in Figure 5.11. 

Resilience curves for extreme days that occurred due to an accumulation of disruptions are 

presented in Figure 5.12. As a reference, the range of values was plotted for the networkwide 

resilience curve on nonextreme days in January, July and November8. 

With respect to Figure 5.11, it is observed that the range of resilience curves for nonextreme 

days is quite narrow and average performance is quite high. This confirms the assumption that 

the effects of individual disruptions are typically not well observable on a networkwide scale. 

This is different for extreme days, which show larger fluctuations in the curve during the day. 

In addition, the curves for the snowy days in January appear different from the curves for the 

hot days in July. On January 22 and 30, the timetable was adjusted so that only 80% of the 

trains were running compared to the regular timetable. Decision making took place one day in 

advance, which means that the adjusted timetable was not observed in the realization data. As 

a result, the curves remain relatively stable around 80% in terms of traffic intensity until the 

start of the evening, when trains appear to have been slowly reinserted in the timetable. The 

fluctuations in the curves until approximately 19:00 are thus mainly explained by changes in 

punctuality. The curves for July show a different picture. On July 25 and 26, the timetable was 

not adjusted, which explains why the curves start relatively high. On both days, no more than 

two disruptions were reported in the morning, When temperatures began to rise in the after-

noon, more disruptions started to occur and the curves steadily degrade. The disruptions in 

question were almost exclusively train defects and section/signal failures. The curve for March 

18 shows a different picture again. The curve starts low because only few trains were running 

in the morning due to a strike, but for the rest, this was an ordinary day. When comparing the 

different resilience curves, notice that the curve does not always recover to its original level by 

the end of the day. This could be explained by the fact that, after a day full of disruptions, it is 

probable that much of the rolling stock is not in the correct place to resume service the next 

day or even the same evening. Still, performance at the start of the next day was consistently 

observed to be higher than the night before, although not necessarily near target performance, 

which indicates there could be spillover effects to the next day. 

 

8 The days that were selected as a reference are January 9, July 22 and November 21, 2019, which could 
be labeled as moderate days in terms of the number of disruptions. Each of these days was followed by 
two extreme days in the same month. 
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Figure 5.11. Networkwide resilience curves for extreme days due to a common cause. 

With respect to Figure 5.12, it is observed that the resilience curves for November 27 and 28 

are less exotic than the curve for June 24. It was already highlighted in Chapter 3 that an over-

head line failure west of Woerden and a train defect at the station in Woerden occurred shortly 

after each other on November 27. This caused the blockage of a major artery in the network 

for a large part of the day. The curve degrades as soon as the overhead line failure was reported 

at 12:20. It is less clear what caused the fluctuations in the curve for November 28, but a train 

defect near Amsterdam in the morning and a train defect near Amersfoort in the afternoon are 

probable explanations. For June 24, the drop in the curve around noon is explained by simul-

taneous disruptions near Woerden, The Hague and Eindhoven. Then, at 15:18 a collision 

occurred at the station in Utrecht. While the disruption was being managed, a national failure 

of the telephone network occurred at 15:42, which made it impossible to contact emergency 

services and made communication between traffic control centers more difficult. Additionally, 

two simultaneous train defects were reported around 16:41 on the high-speed line: one north 

of Rotterdam and one south of Rotterdam. All disruptions combined, this caused networkwide 

performance to drop as low as 63.5%. This means that at the lowest point in the curve, more 

than one third of the passenger trains in the entire country was either delayed or canceled. 

 
Figure 5.12. Networkwide resilience curves for extreme days due to accumulation. 
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Based on the resilience curves for extreme days it was concluded that there are multiple ways 

in which an extreme day could occur. Correspondingly, there are multiple ways in which the 

resilience curve could behave on those days. The evolution of performance during the day could 

be explained by studying the curve in terms of the composite performance indicator. The three 

extreme days that occurred due to an accumulation of disruptions have something in common: 

they could all be traced back to one or more disruptions in control area Utrecht. With regard 

to resilience, this raises the question whether or not the railway network is sufficiently resilient 

against disruptions at the heart of the network, which could be a direction for future research. 

5.8. Chapter summary 
In this chapter, the resilience evaluation framework was applied on a case study. The results of 

the experiments in the case study were discussed to incrementally build knowledge about the 

behavior of the resilience curve, and thus, the dynamics of disruption and recovery in the Dutch 

railway network. The key findings from the experiments are summarized as follows: 

• The observed shape of the resilience curve does not necessarily resemble the shape of 

the curve as depicted in theory. Instead, eight different types of curves could be identi-

fied. The mean resilience curve per disruption cause is shaped like a hammock that is 

skewed to the left. 

• Considerable differences exist between the observed and reported timepoints. Disrup-

tions were frequently observed to start earlier and/or end later than reported. A single 

disruption was observed to last 39 minutes longer on average than reported when using 

the composite performance indicator with 𝜆 = 0.67. When only traffic intensity is con-

sidered, a disruption was observed to last 25 minutes longer on average than reported. 

• The longest resilience phase on average is the response phase, although the recovery 
phase is not much shorter on average. The mean and median degradation and recovery 

profile are relatively close to zero, which indicates that the shape of the resilience curve 

in the transition phases is neither predominantly concave nor predominantly convex 

on average, but rather linear or mixed. 

• Significant differences exist among disruptions of different causes in terms of the dura-
tion of the resilience phases, maximum impact and performance loss. Train defects may 

be considered as the single disruptions with the lowest overall impact, whereas colli-

sions may be considered as the single disruptions with the highest overall impact. 

• There is a significant positive relationship between performance loss on the one hand 
and the maximum impact and total duration on the other hand. The relationship with 

the maximum impact is the most clear. No additional relationships could be identified 

between the resilience metrics. 

• The shape of the resilience curve for connected disruptions may be quite diverse when 

studying the combined impact area, which means generalizing connected disruptions 

does not yield a meaningful nor accurate representation of the disruption dynamics. 

• A distinction can be made between two categories of extreme days: those due to a com-
mon cause and those due to an accumulation of disruptions in the network. The evolu-

tion of system performance during the day can be explained by studying the network-

wide resilience curve. The effects of individual disruptions on a regular day are not well 

observable on a networkwide scale. 

Answer to subquestion 4 

With the knowledge obtained in this chapter, the fourth subquestion is answered. 

Subquestion 4: Which approach should be taken to evaluate railway network resilience for 
a large and heterogeneous set of disruptions based on traffic realization data? 
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The resilience evaluation framework proposed in this thesis proved successful for evaluating a 

large and heterogeneous set of disruptions. The evaluation requires at the very least knowledge 

of the plan time, realization time and location of a train activity; knowledge of the start and 

end time, location and cause of a disruption; and knowledge of the structure of the network. 

The evolution of performance in time can then be calculated as a centered moving average for 

a specified impact area. A composite performance indicator representing traffic intensity and 

punctuality may be used to account for the fact that 1) some disruptions perform worse in 

terms of traffic intensity while others perform worse in terms of punctuality, 2) the two compo-

nents may develop differently during the course of a disruption, and 3) excluding the punctual-

ity component means that the duration of a disruption could be underestimated. The start and 

end time of a disruption can be determined based on a performance threshold that represents 

the average performance on a regular day. Once the performance calculations are completed, 

the resilience curve can be drawn and inspected visually. The curve may be described quanti-

tatively by a set of resilience metrics, which should represent the multidimensional nature of 

resilience. Group comparisons may be performed to identify differences between the resilience 

metrics among groups, provided there are no dependencies among the studied disruptions. 

This can be ensured by making a distinction between single and connected disruptions. The 

specific disruption cause may be chosen as the variable that defines group membership. Subse-

quently, regression analysis may be performed to identify relationships between the metrics, 

although the presence of such relationships might not be abundant. 
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6. Discussion 

This chapter further elaborates on the results from the experiments, discussing the quantita-

tive but also qualitative aspects of resilience. Understanding these aspects helps create insights 

into how to prevent, anticipate and mitigate disruption effects. Section 6.1 discusses general 

remarks based on the experiments and interviews. It describes factors that might influence the 

shape of the resilience curve and summarizes frequently heard remarks made by respondents. 

Section 6.2 addresses the practical implications for disruption management practices in the 

Netherlands. It highlights areas of improvement, discusses the preferred shape of the resilience 

curve and discusses how the disruption dynamics might change in the near future. Section 6.3 

recapitulates the contributions of this thesis to railway resilience theory. Section 6.4 summa-

rizes the chapter and provides the answer to subquestion five. 

6.1. General remarks 
The general impression from the experiments in Chapter 5 is that the disruption dynamics are 

quite heterogeneous. Even though differences exist among disruption causes in terms of the 

resilience metrics, and some types of resilience curves were found to be more characteristic of 

one disruption cause than of another, there is still significant heterogeneity among disruptions 

within each cause. Furthermore, a positive relationship was found between performance loss 

on the one hand and the maximum impact and total duration on the other hand. Since part of 

the variation in performance loss could not be explained by the regression model, other factors 

are at play that determine the shape of the resilience curve, and thus, the values of the resilience 

metrics as well. This includes the maximum impact and total duration which are, after all, 

inferred from the resilience curve. Based on interviews and expert judgment, such factors may 

be categorized as characteristics of the infrastructure, timetable, human action, information 

supply or external conditions. Imagine comparing two disruptions of the same cause, with the 

same duration and maximum impact, but occurring at different times and/or locations in the 

network. Factors that explain differences in the shape of the resilience curve between the two 

hypothetical disruptions might include, but are not necessarily limited to, the following: 

Infrastructure 

• Number of railway tracks. A higher number of tracks improves the network capacity 

under normal conditions, and logically, under disrupted conditions as well. In case of 

a partial line blockage, quadruple tracks may still allow bidirectional traffic with one 

dedicated track per direction, while the partial blockage of a double-track line means 

that the remaining track has to be used to facilitate traffic in both directions. 

• Number of railway switches. A higher number of switches enhances the rescheduling 

options for traffic controllers, as this makes it easier for trains to be stabled or receive 

a track change. However, it also increases the probability of a switch failure occurring. 

• Network connectivity. A higher degree of connectivity means that trains are more 
easily rerouted, although this is uncommon for passenger trains. However, it also 

means that the impact area may grow more quickly and that disruptions may become 

connected more easily. 

Timetable 

• Number of train series. A higher number of train series, possibly from different TOCs, 

means that more trains are heading in different directions, which could increase the 

spread of disruption effects outside the disrupted area. It might also cause a more com-

plex and slower restart due to the setting of priorities as to which train series go first. 

• Train frequency. A higher frequency means that secondary delays might arise and 
propagate more easily because there is less space between trains. 
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• Ratio of intercity traffic versus regional traffic. Regional traffic might experience 
fewer logistical consequences than intercity traffic, since regional trains run on shorter 

routes and can be short-turned at more locations in the network. Intercity trains are 

only allowed to short-turn at stations with stabling capacity. 

• Number and length of freight trains. More and longer freight trains can make it more 
difficult to temporarily stable them on a siding so that priority can be given to passenger 

traffic, at least until the moment of restart. 

Human action 

• Experience of actors in the disruption management process. A more experienced 
traffic controller, dispatcher, general controller, first responder, mechanic etc. may be 

more likely to take swift and decisive action. 

• Proactive attitude of traffic controllers. A more proactive traffic controller may be 
more likely to take logistical measures early in the disruption in an attempt to prevent 

secondary delays. 

• Time pressure to reach the second phase. A higher time pressure to complete all of 

the preparations for the VSM may result in a suboptimal adjustment to the traffic plan, 

which may cause performance to be unnecessarily low in the second phase. 

• Time pressure to restart the train service. A higher time pressure to restart the train 

service may lead to a restart that is improperly prepared and that may be initiated when 

not all required rolling stock and/or crew are in place yet. 

Information supply 

• Swiftness of reporting the disruption. The quicker a problem with the rolling stock 
or infrastructure is reported (regardless of whether it eventually classifies as a disrup-

tion), the quicker logistical measures can be taken to prevent secondary delays. 

• Swiftness of communication throughout the chain. The quicker the details of a dis-
ruption are known to each actor in the disruption management process, the quicker 

each actor has the critical information needed to fulfill their role. 

• Clarity about the cause and location of a disruption. The more clear the exact cause 

and location of a disruption are, the more clear it is to traffic controllers and dispatchers 

which measures to take and whether or not to start working towards a VSM. 

• Availability of a VSM. When a suitable VSM is available, the actions taken in the first 

phase may be more consistent than if no suitable VSM were available, since in that case, 

traffic has to be managed in parallel with preparing an adjusted VSM. Once an adjusted 

VSM is applied, it could lead to a less steady and suboptimal second phase. 

• Certainty about the prognosed end time. The more certain the prognosed end time 

is, the easier it becomes for TOCs to adjust their rolling stock and crew planning while 

awaiting a feasible restart plan. 

• Knowledge about rolling stock and crew planning. The more knowledge traffic 

control has about rescheduling by the TOC, the less likely it is that suboptimal measures 

are taken or that the restart plan is applied prematurely or proves to be infeasible. 

External conditions 

• Time of day. Depending on the time of day, it may be necessary to update a VSM during 

the disruption or to postpone the moment of applying or ending the VSM, for example 

until after rush hour. 

• Weather. Suboptimal weather such as heat, snowfall or frost might make it more diffi-
cult to reach the disruption site, perform repair works, or guarantee the feasibility of 

the VSM without delays. 
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Additionally, a general picture of (the issues with) disruption management in the Netherlands 

was created based on frequently heard remarks from respondents. Most notable was the con-

tradiction between reactive and anticipatory disruption management. Although Schipper and 

Gerrits (2018) ranked disruption management in the Netherlands as highly anticipatory due 

to its reliance on contingency plans, the plans only apply to the second resilience phase. In the 

first phase, disruption management remains highly reactive due to the absence of guidelines, 

and traffic controllers and dispatchers rely mainly on their experience. It was mentioned that 

the increase in workload in the first phase in combination with the time pressure is intense. At 

the same time, the response at the very start of a disruption appears to be rather passive, even 

though acting more proactively might spread the workload. In preparation of the third phase, 

it appears to be hard to make an accurate prognosis of the end time, which determines the 

moment of restart. Uncertainty about the prognosis might result in suboptimal decisions with 

regard to timetable, rolling stock and crew rescheduling, for example if crew are not available 

in the right place when the prognosis is advanced. In fact, the cluelessness of ProRail’s traffic 

control about the rolling stock and crew planning from NS’ side in general was another notable 

and recurring remark. This might contribute to the fact that the restart plan frequently does 

not appear feasible after all, even though the plan is communicated with the TOCs in advance, 

which in turn could result in a longer third phase. 

6.2. Practical implications 
The findings from this thesis could have practical implications for disruption management in 

the Netherlands, which are discussed in this section. First, current areas for improvement are 

discussed, where the focus is placed on each of the resilience phases and on the handling of 

collisions in general. In this part, it is also discussed whether a particular shape of the resilience 

curve should be preferred and how this relates to the application of a VSM. Last, an outlook to 

the future is given by describing how the disruption dynamics might change as a result of future 

developments, specifically the shift towards high-frequency railway traffic and the implemen-

tation of the new train protection and signaling system ERTMS. 

Areas for improvement 

First phase 

Rescheduling in the first phase is still highly reactive, as there are currently no predefined 

solutions for this phase. Traffic controllers have to rely on their experience and are faced with 

a high workload, which leads some to say there is often “no time to think”. Taking logistical 

measures becomes more difficult when a problem is not reported immediately*, information 

supply is limited*, there is a dependency on the traffic controller of the neighboring traffic 

control area* or NS’ RBC cannot be reached*. From practice it was already known that train 

defects are often reported late. However, in the experiments it was found that the other types 

of disruptions (except for switch failures) are also reported late on average. This could be the 

result of a late notification or because of the decision by traffic control to wait and see how the 

situation develops. Yet, for every minute that is lost, delays can arise, which may spread to 

other trains. It is therefore important that trains are canceled if necessary to prevent secondary 

delays. Herein, it is also important that the notifier communicates the available information 

quickly throughout the chain of actors involved in the disruption management process, regard-

less of how relevant this information is to themself. In general, it is believed that there is always 

at least one actor in the chain who possesses critical information*, but may not realize the value 

of this information to others. 

To reduce the workload for dispatchers and traffic controllers in the first phase, it would be 

favorable to design predefined solutions for this phase as well. The standardization of 

measures could help streamline the rescheduling process*, which may also relieve some of the 

time pressure. On this note, it is important to raise awareness among practitioners about the 
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fact that getting quickly into the second phase does not necessarily tell much. In fact, the 

experiments showed no relationship between the degradation time and any other resilience 

metric. Thus, the purpose of predefined solutions for the first phase should not be to reduce 

the duration of this phase, which is already the shortest on average, but to allow traffic control-

lers to come to a well-advised decision about a feasible traffic plan for the second phase. 

Second phase 

Improvements in the second resilience phase are inextricably related to the design and applica-

tion of VSMs. Considering the current working practices, the existing VSMs are probably 

already as detailed as predefined solutions can be. More detailed VSMs that specify the train 

numbers instead of train series and account for real-time traffic conditions in the network 

would require a mathematical optimization model that can design tailor-made VSMs. Still, it 

could be worth investigating to what extent the current set of VSMs can be expanded, provided 

there is enough capacity in terms of personnel to design and manage the VSMs. Given the high 

number of connected disruptions that were excluded from the experiments, it might be good 

to assess if there are locations in the network where connected disruptions are common, and 

if combinations of disruptions exist which deserve dedicated VSMs covering a larger area. 

The fact that VSMs are currently still predefined does not mean that performance develops the 

same in all cases, as is illustrated by the different types of resilience curves and the large stand-

ard deviations in the resilience metrics. This raises multiple questions, such as: should a cer-

tain type of resilience curve be preferred? If so, which one is it? And how could it be achieved? 

The effect of a VSM varies per disruption and depends on how well the VSM is prepared, how 

closely it is followed and how well the transition towards the restart plan is arranged. Since a 

VSM does not dictate the actions for each specific train, but merely prescribes the actions per 

train series, traffic controllers are free to deviate from the VSM during the disruption. How-

ever, if predictability towards the TOCs and the passengers is valued as one of the rescheduling 

objectives, then deviating from the VSM is not preferred. To promote predictability, the bath-

tub in its essence could still be regarded as the preferred outcome of the rescheduling process, 

although performance might deviate from the bathtub shape in reality. The hammock shaped 

curve, the bathtub shaped curve and the steady state curve could be regarded as the preferred 

types of resilience curve, representing the short, moderate and long bathtub, respectively. In 

contrast, undesirable types of curves include the gradual recovery curve and the undefinable 

curve, which appear to be caused in broad terms by too many cancellations in the beginning 

and too much uncertainty around the prognosed end time, respectively. 

Regarding the shape of the resilience curve in the transition phases, the curve should ideally 

be made as concave as possible. A concave degradation would mean that performance degrades 

gracefully to an acceptable level in the first phase, where a concave recovery would mean that 

many trains are reinserted simultaneously and without delays in the third phase. In terms of 

the resilience metrics, this means that the degradation profile and recovery profile should 

ideally have as large negative values as possible, although a strongly concave profile might not 

be realistic. Still, a bathtub with a concave first and third phase could be achieved by taking 

sufficient, but not overly rigorous first-phase measures as soon as possible; preparing a 

structurally feasible VSM which is respected throughout the second phase; and preparing a 

structurally feasible restart plan that allows as many train series as possible to be reinserted 

with a limited risk of delays. 

Third phase 

Similar to the first phase, there are currently no predefined solutions for the third phase, aside 

from the restart framework that is included in a limited number of VSMs. Adjustments to the 

traffic plan in the third phase are therefore the result of the reactive capacity of traffic control-

lers. Yet, in the interviews it was often mentioned that traffic control has limited influence on 
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(and limited interest in) how the third phase develops. On the one hand, it could be argued 

that a traffic controller is not responsible for the product that the NS or other TOCs provide*. 

On the other hand, ProRail does have an indirect interest in how the third phase develops, as 

it is not only responsible for traffic management, but also supervises the utilization of network 

capacity*. Once in the third phase, it may be hard to make drastic changes to the traffic plan in 

case the restart does not go as planned. After all, canceling a train is an autonomous decision 

by the traffic controller, but reversely, the traffic controller cannot simply decide that a train 

should run again, as this depends on the availability of rolling stock and crew. Thus, improve-

ments in the third phase should focus on the preparation of this phase, specifically regarding 

the prognosed end time and the restart plan. 

Making an accurate prognosis of the moment when the infrastructure will become available 

again is already a first step towards preparing a feasible restart plan. When there is certainty 

about the prognosis, which means it is not likely to be postponed or advanced, TOCs can adjust 

their rolling stock and crew planning accordingly. Advancing the prognosis should not neces-

sarily imply advancing the restart by an equal amount of time, as TOCs may not yet have their 

rolling stock and crew in place and a feasible restart plan may not yet have been devised. Again, 

getting quickly into the next phase does not necessarily tell much, especially since the only time 

pressure comes from the steady increase in customer hindrance. Instead, it should be more 

important to come to a well-advised decision about a structurally feasible restart plan. 

A structurally feasible restart plan could be achieved by better communication between ProRail 

and the TOCs, specifically NS’ RBC. In the current process depicted in Figure 3.5 communica-

tion already takes place, but in practice, traffic control has limited knowledge of the availability 

of rolling stock and crew. At the same time, the NS assumes that changes to the traffic plan are 

feasible in most cases*, when in fact, the restart plan is frequently not executed or infeasible 

after all*. This mismatch between knowledge and expectations might cause a longer third 

phase in which new delays can arise, as was observed in the experiments. Including a restart 

framework in the VSM more often could help keep the lines of communication short, since in 

that case, the restart plan has already been prepared in outline. Additionally, traffic control 

may want to be more in the lead during the third phase to ensure a smooth execution of the 

restart plan. This is eventually beneficial for all actors, including ProRail, as it may prevent or 

at least reduce imbalances in the network that could result from an improper restart. 

Collisions 

The experiments showed that collisions are the most impactful type of single disruption. This 

finding is intuitive and is consistent with practice. Collisions are also relatively common, being 

the third most frequently occurring disruption cause where a VSM is applied. Yet, relatively 

few improvement efforts seem to be made regarding traffic control during collisions, since it is 

argued that traffic control has limited influence on the course of action after a collision*. This 

applies particularly to collisions with a person, which involve actors such as emergency ser-

vices, forensic investigators and funeral providers. These actors also need to have safe access 

to the collision site*. Since they mainly operate in the second resilience phase, it is argued here 

that improvements can be gained in the first phase, specifically regarding the swiftness of 

reporting the collision and the number of trains that are canceled as first-phase measures. 

Since it is not always clear from the start if the collision is with a person or not, the worst-case 

scenario is normally assumed, which is why these improvements apply to collisions in general. 

With regard to the swiftness of reporting a disruption, it was found that collisions too are re-

ported late on average. This may be caused by a dispatcher who gives priority to taking emer-

gency measures such as deactivating ARI and calling nearby train drivers*, a dispatcher who 

awaits details provided by the train driver* or a train driver who is in shock*. However, the 

sooner a disruption is known, the sooner adequate logistical measures can be taken. If the time 
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pressure and emotional stress are too high in the heat of the moment, it should be considered 

to allow a quick and easy way of reporting a collision, such as an alarm button in the driver 

cabin. The dispatcher already has such a button to halt all traffic in the vicinity*. 

With regard to the number of canceled trains, it was found that the gradual recovery curve is 

frequently observed for collisions, including collisions with a person. This may explain why the 

maximum impact occurs relatively early compared to the other disruption causes as shown in 

Table 6.1, which presents the mean and median moment of maximum impact per cause in 

terms of the normalized duration for 𝜆 = 0.67. The gradual recovery curve makes it seem as if 

there is no second phase, although a clear second phase would normally be expected due to the 

necessary clearing operations. Hence, the gradual recovery curve may in fact be a distorted 

version of the bathtub shaped curve, where unnecessarily many trains are canceled in the first 

phase. It might thus be worthwhile to critically assess the number of trains that are canceled 

in the first phase of a collision, or potentially, the area in which trains are canceled. 

Table 6.1. Mean and median moment of maximum impact per disruption cause. 

Disruption cause Mean moment of max. impact (%) Median moment of max. impact (%) 

Train defect 44.7 43.5 

Section/signal failure 39.7 37.0 

Collision 38.7 31.5 

Switch failure 50.2 49.0 

Overhead line failure 47.5 44.0 

Average 42.8 41.0 

 

If no further improvements can be gained in reducing the impact of collisions, attention should 

be paid to ways by which to prevent collisions from occurring in the first place. One solution 

could be to better monitor persons on or nearby the tracks, for example by increased camera 

surveillance. Another solution could be to make the tracks less accessible, for example by 

further reducing the number of level crossings, placing more and/or higher fences next to the 

tracks and installing platform doors in stations, although the latter may be impractical due to 

the varying distance between the train doors per train type. 

Outlook to the future 

High-frequency rail 

To meet the growing demand for passenger and freight traffic by rail in the coming decades, 

the High-Frequency Rail Transport Program (Programma Hoogfrequent Spoorvervoer, PHS) 

was developed by ProRail with the aim to offer one train every ten minutes on the busiest parts 

of the network. PHS is currently being implemented, and as a result, the disruption dynamics 

identified in this thesis might change in the future. Before potential changes are discussed, 

some background information on PHS is provided. 

The first frequency increase was implemented in December 2017 on the A2 corridor between 

Amsterdam and Eindhoven, where three separate train series (each with a frequency of two 

trains per hour) together offer one intercity train every ten minutes. Until 2028, PHS will be 

implemented on six more corridors shown in Figure 6.1, including the freight corridor between 

the Port of Rotterdam and Venlo (shown in orange). The operationalization of PHS varies per 

corridor. For example, Breda-Tilburg will have four instead of two intercity trains per hour in 

each direction, whereas Rijswijk-Rotterdam will have eight instead of six intercity trains and 

six instead of four regional trains per hour in each direction. Preparations for the RoSA 

corridor between Rotterdam and Arnhem via Schiphol are currently ongoing, Note that this 

corridor is not shown as such in Figure 6.1. 



87 
 

With the implementation of PHS the railway network will become even busier, which is why 

additional infrastructure is being built to facilitate the extra trains. The higher frequency in 

parts of the network means that traffic controllers and dispatchers will have to be more alert, 

as the shorter time between trains requires a quick response. The fact that the workload in the 

first phase is already high emphasizes the need for predefined solutions that apply to the first 

phase. It will also be increasingly important for traffic controllers to be proactive and to cancel 

a train early on if required to prevent secondary delays, as delays may propagate more easily 

given the higher number of trains. This way, a traffic controller creates perspective for themself 

and for the passenger*. After all, canceling a train at the start of a corridor has fewer logistical 

consequences than canceling a train midway. As a result of the higher frequency, the resilience 

curve might degrade faster during the first phase, and the initial impact might be greater in 

case no immediate action is taken. In the third phase, the resilience curve might recover more 

slowly because reinserting more train series could ask for a more cautious and stepwise restart 

to prevent delays. After all, if delays were to arise and spread during the restart, some trains 

might need to be canceled again, which counteracts the purpose of the third phase. 

 

Figure 6.1. Overview of the corridors where PHS will be implemented (ProRail, 2018). 

ERTMS 

Another development that might change the disruption dynamics identified in this thesis is the 

implementation of the European Rail Traffic Management System (ERTMS), which is the new 

automatic train protection and signaling system that has already been partly implemented and 

continues to be implemented throughout Europe. Some background information on ERTMS 

is provided before potential changes in the disruption dynamics are discussed. 

ERTMS was designed to increase railway traffic safety and standardize train control systems, 

which should provide better interoperability of passenger and freight railway traffic across the 

European borders. The main components of ERTMS are the European Train Control System 

(ETCS) and Global System for Mobile Communications for Railways (GSM-R). In addition, the 

European Traffic Management Layer (ETML) was defined, but ETML has never been designed 

in detail nor operationalized. Still, ETML could have potential in the long term (European Rail 

Research Advisory Council, 2020). ETCS is the part that ensures the safe movement of trains. 



88 
 

It consists of both onboard equipment and trackside equipment. ETCS functionalities include 

automatic train protection, signaling and positioning. There are three different levels of ETCS 

which determine the degree of autonomy of the system. ETCS level 2 was chosen to be imple-

mented on the busiest parts of the Dutch railway network in the coming decade. On the high-

speed line between Amsterdam and Belgium and on the Betuweroute, ETCS has already been 

installed. At level 2, trackside signals are no longer required; the train position is determined 

through beacons in the tracks; and the movement authority (i.e. the permission for a train to 

move to a specific location, with supervision of speed, and under the constraints of the infra-

structure) is transmitted automatically via GSM-R. For a more detailed explanation of ETCS 

level 2 and the Dutch legacy automatic train protection system, the interested reader may refer 

to Goverde et al. (2013). 

The prospects of ERTMS for traffic control and ICB are just starting to be explored in ProRail. 

With ERTMS, headway times will decrease and the braking curve becomes more efficient, as 

trains are able to brake later and accelerate sooner. In case of delays, the infrastructure occupa-

tion is expected to improve (i.e. decrease) compared to the legacy train protection system under 

normal as well as disturbed conditions (Goverde et al., 2013). Assuming that train frequencies 

remain the same, this means there will be more room for rescheduling. However, as the created 

space will be likely be filled with more trains, this assumption does not hold. Furthermore, as 

long as the number and location of railway switches do not change, the logistical handling of a 

disruption is not expected to change either*. The real-time speed and positioning however will 

provide traffic controllers with a faster and more accurate source of information, which could 

be useful for recognizing imminent disruptions and determining the exact location of a 

defective or stranded train. By acting quickly on this information, delays could be prevented 

and the run-up at the start of the resilience curve could be reduced. Also, since train locations 

are known more accurately, the alarm area for a collision could be reduced, which in turn could 

reduce the initial impact because fewer trains need to be canceled. In the second phase, it could 

become easier to still have limited traffic in case of a partial blockage, as train drivers can rely 

on the movement authority that is displayed on their screen instead of worrying about driving 

on a track that they would normally perceive as “the wrong side”. Eventually, at ETCS level 3, 

section/signal failures will take on a different nature or perhaps disappear completely. Already 

at level 2, signals are no longer needed, and at level 3, the same goes for the insulated rail joints 

and axle counters that currently determine whether or not a section is occupied by a train. This 

means that ERTMS would not only improve resilience from an operational perspective, but 

also as a result of the lower complexity of the infrastructure. 

6.3. Contributions to resilience theory 
Besides having practical implications, the results from this thesis also contribute to the theoret-

ical understanding of resilience, in particular with respect to railways. The contributions are 

summarized by reflecting on the research gaps that were identified in Chapter 2. The broader 

application of the results is discussed as well. 

Reflection on the research gaps 

Research gap 1: The evolution of railway system performance during the consecutive resili-
ence phases is not well understood for disruptions of varying scale and origin. 

 

A general finding from this thesis is that resilience is indeed a multidimensional construct, as 

many factors were identified that might affect the shape of the resilience curve. It could be 

stated that resilience is not an intrinsic property related to just one category of factors, but 

rather, it is an emergent property of the system as a whole. Consequently, the resilience curve 

shows a range of different behaviors, some of which are more characteristic of one disruption 
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cause than of another. The different types of curves also show that the bathtub model is an 

oversimplified representation of the resilience curve, and that in most cases, the curve behaves 

more dynamically. 

In contrast with the existing body of research, the resilience curve was defined in terms of a 

composite performance indicator that accounts for cancellations as well as delays. This made 

it possible to capture the interaction between traffic intensity and punctuality, although more 

research is needed to understand this interaction in detail. The composite indicator proved to 

be particularly useful to account for delays that arise at the start or end of a disruption, which 

would be overlooked if only traffic intensity were to be studied. Also, it was shown that the start 

and end of a disruption can be identified when target performance for near-normal conditions 

is known, although target performance may not be achievable in all cases. 

To describe the profile of the resilience curve quantitatively, two new resilience metrics named 

the degradation profile and recovery profile were introduced which had not been applied in a 

railway context before. Given the mean and median value of these metrics, it was concluded 

that the resilience curve is neither strongly concave nor strongly convex on average. Other than 

that, the added value of the metrics was limited since no significant differences among groups 

were found in terms of these metrics. Regarding the other metrics, collisions were found to be 

considerably more impactful than other disruption causes in terms of performance loss, also 

known as the loss of resilience (Bruneau et al., 2003), deviation area (Nicholson et al., 2015) 

or service loss (Chan & Schofer, 2016). Additionally, it was found that performance loss 

depends more on the maximum impact than on the total duration of a disruption. 

Research gap 2: Realization data have not been used to assess the resilience of a railway 
network for a large and heterogeneous set of disruptions. 

 

To the best of the author’s knowledge, this thesis marks the first time that a large and hetero-

geneous set of disruptions in railways was evaluated by drawing and comparing their resilience 

curves. Despite the unique characteristics of each disruption, it was shown that the comparison 

of observed and reported timepoints and statistical analysis of the resilience metrics can pro-

vide clues about where to focus effort and resources to improve resilience. Information such as 

target performance, the start and end time and the steady state could be derived from the 

realization data itself, provided that details such as the location and the disruption cause are 

known. However, caution is required to ensure as much as possible that the resilience curve is 

not contaminated by other disruptions or disturbances, which is necessary to consider the 

studied disruptions as independent observations. Because of this, one should foresee that the 

initial sample size may be reduced significantly in data preparation. 

Research gap 3: The spatial attributes of a railway network have not been addressed explic-
itly when studying resilience as a function of time. 

 

Another novelty of this thesis is the study of the disrupted area based on the disruption location 

and impact type, instead of studying the entire network or a fixed part of the network. The 

disrupted area for each disruption was determined according to concepts which are specific to 

disruption management in the Netherlands. This required taking the network structure and 

realized train paths into account. Although the size of the impact area and the timetable points 

in the impact area vary with each disruption, the underlying methodology is always the same, 

which makes it possible to compare resilience curves for disruptions occurring in different 

parts of the network. Also, by drawing the resilience curve for the entire impact area instead of 

only the disrupted line, the propagation of disruption effects up to a certain distance away from 

the disruption location could be represented. 
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Broader application 

Other countries and transport modes 

The results from this thesis apply specifically to disruptions in passenger railway traffic in the 

Netherlands, raising the question that the results might be less relevant for railway networks 

in other countries or for other transport modes. It is acknowledged that each country is unique 

in terms of network density, coordination structure, internal business processes, and so on. 

Although there will likely be similarities in the disruption dynamics among countries, there 

will also be differences. In countries like Belgium, which rely more heavily on the reactive ca-

pacity of traffic controllers and dispatchers, there might be even more types of resilience curves 

or less obvious differences in terms of the resilience metrics as a result of less standardization. 

In countries like Germany, which have a more decentralized coordination structure, regional 

differences in the disruption dynamics might be larger, although it should be noted here that 

differences between traffic control areas in the Netherlands were not evaluated. 

The findings may not be transferable to other transport modes because of the different type of 

infrastructure, vehicles, business processes and coordination structure. This does not mean 

however that the resilience evaluation framework cannot be applied to other modes, perhaps 

after rethinking some of the components in the framework. Non-rail modes such as bus or taxi 

do not experience the same infrastructure related disruptions that occur in railway networks, 

and furthermore, they are more flexible in terms of routing because they are not limited to 

dedicated infrastructure. Similar disruptions as in railways could occur in other rail modes 

such as subway and light rail, but those networks are typically less interconnected. Hence, a 

disruption in one place might not necessarily affect the rest of the network. Also, the proportion 

in which different disruption causes occur will likely be different. 

Requirements for recovery functions 

A next step in quantifying the resilience of railway networks could be the formulation of analyt-

ical recovery functions such as in Cassottana et al. (2021), who developed a recovery function 

“capable of modeling various performance loss and recovery behaviors, including slow/fast 

losses of performance followed by faster/slower recoveries”. Their function was specified to 

represent a water distribution system, but recovery functions could be developed to represent 

other systems as well. A major limitation of the recovery function in Cassottana et al. (2021) 

with respect to railway resilience is that it does not appear to be capable of handling fluctuating 

behavior, which was frequently observed in the experiments. Only rarely does the resilience 

curve go down and up again in a fluent motion, in which case it would classify as the hammock 

shaped curve. When a recovery function, or a family of recovery functions, is developed to 

quantify the resilience of a railway network, the function(s) should meet at least the following 

six requirements: 

1. The function(s) shall start and end at the same level of performance. 

2. The function(s) shall not take on infeasible levels of performance at any time. 

3. The function(s) must be able to handle fluctuations in performance. 

4. The function(s) must be able to remain steady for a long period of time. 

5. The function(s) must be able to handle both short and long disruptions. 

6. The function(s) must be able to handle both low-impact and high-impact disruptions. 

6.4. Chapter summary 
In this chapter, the results from the experiments were further elaborated upon by highlighting 

the factors that could play a role in the disruption dynamics, and thus, could affect the resili-

ence of the railway network. Areas for improvement were discussed for disruption manage-

ment in the Netherlands, while also discussing the preferred shape of the resilience curve, and 

an outlook to the future was given by discussing how the disruption dynamics might change as 
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a result of current and future developments. Also, the contributions to railway resilience theory 

were summarized by reflecting on the identified research gaps. 

Answer to subquestion 5 

With the knowledge obtained in this chapter, the fifth subquestion is answered. 

Subquestion 5: Which insights do quantitative differences and relationships between the 
resilience metrics bring that may help practitioners evaluate and improve the quality of 
railway disruption management? 

 

The results from the experiments showed that the disruption dynamics are quite hetero-

geneous, and that the resilience curve does not necessarily resemble the theoretical shape of 

the bathtub model. Based on the mean resilience curves and the differences in the resilience 

metrics among groups, collisions were found to be the most impactful type of single disruption 

overall, and train defects were found to be the least impactful type of single disruption overall. 

Collisions stand out in terms of their maximum impact and performance loss, which is why it 

would be worthwhile to focus more effort on improving the handling of collisions, specifically 

regarding the swiftness of reporting the collision and the number of trains that are canceled. 

Furthermore, it was found that not only train defects are reported late on average, but other 

types of disruptions are reported late as well, even though quick communication throughout 

the chain of actors could help prevent secondary delays. To reduce the workload in the first 

phase, it would be favorable to design predefined solutions for the first phase as well, especially 

with the prospects of the upcoming frequency increase on busy routes. Since no clear relation-

ship was found between the degradation time and any other resilience metric, it should be 

stressed that getting quickly into the second phase does not necessarily tell much. Instead, it 

would be more important to come to a well-advised decision about a structurally feasible traffic 

plan. The same goes for the transition from second to third phase. Furthermore, it was found 

that the third phase frequently lasts (much) longer than reported, which may be explained by 

delays that arise during the restart or a restart plan that proves infeasible. Improvements could 

be gained with regard to the prognosed end time and the preparation of the restart plan. 
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7. Conclusions and recommendations 

Based on the findings from the literature review, interviews and quantitative data analysis, this 

chapter presents the conclusions and recommendations from the thesis research. Section 7.1 

presents the conclusions by recapitulating the answers to the subquestions and answering the 

main research question. Section 7.2 presents recommendations with regard to data processing 

and disruption management practices in ProRail. Section 7.3 discusses the limitations of this 

research and identifies future research directions from a methodological, practical and scien-

tific perspective. 

7.1. Recaps 
The answers to the five subquestions defined in Chapter 1 were already given in the last section 

of each chapter from Chapter 2 onwards. This section briefly recapitulates the answers to those 

questions after which a general answer to the main research question is given. 

Subquestion 1: What can be learned from previous quantitative, data-driven approaches 
for resilience evaluation of railway networks? 

 

Resilience research exhibits domain-independent characteristics, and so, resilience definitions 

and metrics are defined in broad terms and could apply to general systems. Performance indi-

cators on the other hand are more domain-specific. Previous data-driven resilience evaluation 

approaches leave research gaps by failing to study common types of disruptions, not realizing 

the potential of big data to assess network resilience and not explicitly addressing the spatial 

attributes of a system. When measuring the (loss of) performance, it is customary to compare 

actual performance with planned performance and also to aggregate the data. The resilience 

metrics found in railway resilience literature also appear in general systems literature. Addi-

tional metrics describing the nonlinearity of the resilience curve are found in supply chain 

literature. In case resilience metrics are the main output of a study, statistical analyses are 

commonly performed to assess their significance or dependence. 

Subquestion 2: What is the current state of the practice and quantitative knowledge 
regarding different types of railway disruptions in the Netherlands? 

 

Each country has its own specific coordination structure and approach to railway disruption 

management. In the Netherlands, there is a heavy reliance on predefined solutions known as 

contingency plans, which are designed to function as a revisited timetable. These contingency 

plans apply to the second resilience phase, although traffic needs to be managed in the first 

and third phase as well in order to make the transition towards and from the contingency plan, 

respectively. The plans consider the effects on infrastructure capacity, but not the underlying 

cause of a disruption. Regarding the state of the practice, the quantitative knowledge about 

disruptions is limited to the average duration per phase and the total duration. Although the 

bathtub model describes the disruption dynamics conceptually, the actual evolution of system 

performance during disruptions is not known, even though the necessary data are available. 

Subquestion 3: How can the spatiotemporal effects of disruptions and recovery measures 
on railway system performance be quantified for the different resilience phases? 

 

The effects of disruptions and recovery measures were described in terms of traffic punctuality, 

defined as the proportion of punctual to realized train activities, and traffic intensity, defined 

as the proportion of realized to scheduled train activities. The two indicators are complemen-

tary, since punctuality does not include cancellations and traffic intensity does not include 
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delays. The indicators were combined in a composite performance indicator by means of a 

weighted sum, where most weight was put on the traffic intensity component. The evolution of 

system performance during a disruption was calculated as a centered moving average for the 

entire disrupted area, which is referred to as the impact area. This does not only include the 

affected line or timetable point, but the entire area in which trains may be canceled in order to 

manage the disruption. Seven resilience metrics were defined to describe the profile of the 

resilience curve: degradation time, response time, recovery time, maximum impact, perfor-

mance loss, degradation profile and recovery profile. The metrics represent the different resili-

ence phases as well as the dimensions of time and performance, where the spatial component 

is included in the performance dimension. Together, the metrics should account for the multi-

dimensional nature of resilience. 

Subquestion 4: Which approach should be taken to evaluate railway network resilience for 
a large and heterogeneous set of disruptions based on traffic realization data? 

 

A resilience evaluation framework was developed which proved successful in evaluating a large 

and heterogeneous set of disruptions. The evaluation requires at the very least knowledge of 

the plan time, realization time and location of a train activity; knowledge of the start and end 

time, location and cause of a disruption; and knowledge of the network structure. The evolu-

tion of performance in time can then be calculated, and from those calculations, the resilience 

curve can be drawn and the resilience metrics can be determined. Group comparisons may be 

performed to identify differences in the resilience metrics among groups, provided there are 

no dependencies among the studied disruptions. The specific disruption cause may be chosen 

here as the variable that defines group membership. Subsequently, regression analysis may be 

performed to identify relationships between the metrics. The results from these analyses would 

indicate which disruption types and/or which parts in a disruption to focus on in order to im-

prove resilience. In addition, one resilience metric in particular (the maximum impact) could 

be monitored in real time in an attempt to predict, and if possible, limit performance loss. 

Subquestion 5: Which insights do quantitative differences and relationships between the 
resilience metrics bring that may help practitioners evaluate and improve the quality of 
railway disruption management? 

 

The experiments showed that the disruption dynamics are quite heterogeneous, and that the 

resilience curve does not necessarily follow the theoretical shape of the bathtub model. Differ-

ences in the resilience metrics were found to be more prominent than relationships between 

the metrics. Significant differences exist among disruption causes in terms of the degradation 

time, response time, recovery time, maximum impact and performance loss. Train defects were 

identified as the least impactful single disruptions on multiple resilience metrics, where colli-

sions were identified as the most impactful single disruptions on multiple resilience metrics. 

Therefore, it would be worthwhile to put more effort into improving the handling of collisions, 

specifically regarding the swiftness of reporting and the number of trains that are canceled in 

the first phase. Also, it was found that disruptions are reported late on average, even though 

quick communication would benefit the disruption management process. To reduce the 

workload in the first phase, it would be favorable to design predefined solutions for the first 

phase as well. It should be stressed here that getting quickly into the next phase does not 

necessarily tell much, since no clear relationships were identified between the duration of a 

specific phase and any other resilience metric. Instead, it would be more important to come to 

a well-advised decision about a structurally feasible traffic plan. In addition, it was found that 

the third phase frequently lasts (much) longer than reported. Improvements in the third phase 

could be gained with regard to the prognosed end time and the preparation of the restart plan. 
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Main research question: How does the system performance of a railway network develop 
during disruptions? 

 

As an answer to the main research question, the general conclusion from this thesis is that the 

system performance of a railway network during a disruption may approximately follow the 

shape of the resilience curve as depicted in theory. However, there is significant heterogeneity 

in the resilience curve behavior, despite the fact that all resilience curves result from the same, 

largely standardized disruption management process. Some resilience curves are fairly well 

behaved: they degrade, remain steady for some time and recover again, while other resilience 

curves may show atypical behavior and can even be quite unpredictable. Still, a logical expla-

nation for the shape of the curve can usually be found. Among the studied disruption causes, 

differences exist in terms of the resilience metrics that describe the shape of the resilience 

curve, and also, some types of resilience curves appear more characteristic of one disruption 

cause than of another. In terms of traffic intensity (or: cancellations), performance is generally 

affected the least for train defects and the most for collisions, especially in the beginning. In 

terms of punctuality (or: delays), performance is generally affected the most for the infrastruc-

ture related causes, again, especially in the beginning. The degree in which performance is 

affected explains a significant part of the cumulative loss of performance, and thus, monitoring 

the maximum impact in real time could help predict and limit the performance loss. 

7.2. Recommendations 
Building on the findings from this thesis research, recommendations are made with regard to 

data processing and disruption management practices in ProRail. 

Data processing 

With regard to the quality and completeness of traffic realization data and disruption log data 

in ProRail, the following is recommended: 

1. Make sure the reported timepoints are always available in case a VSM was applied, 

so that each disruption can be evaluated in the same way. Specifically, this concerns the 

timepoints “first phase complete” and “service restored” which formally mark the end 

of the first and third phase, respectively. Both are dependent on whether or not trains 

were short-turned, while clearly, short-turning is just one of the management actions. 

Without short-turning, the resilience curve still has a first, second and third phase for 

which the start and end time could be identified, perhaps by a change in definition or 

by applying the methods used in this thesis to derive the timepoints from the resilience 

curve itself. 

2. Critically review the start and end time of disruptions, as it was found that disrup-

tions tend to start earlier and end later than reported on average. Regarding the start 

time, it is advised to reconsider the five minutes that are subtracted as standard from 

the moment when a notification reaches the control room. Regarding the end time, it 

is advised to look beyond the first trains that have run again (especially when only few 

train series are involved), since delays may arise during the restart or the restart plan 

may prove to be infeasible after all. 

3. Reconsider the definition of the end of the first phase, since already before the start 

of the experiments, it was recognized that the formal definition “first phase complete” 

is usually not an accurate representation of the moment when performance stabilizes 

and the second phase is reached. Instead, the end of the first phase could simply be 

defined as the moment when the VSM is applied, which was identified in the interviews 

as the more common definition, and also, proved to be reasonably accurate on average 

(especially for train defects). 
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4. Improve the coupling of customer hindrance in Sherlock between a Monitoring ID 

and a Spoorweb ID. Currently, this coupling occasionally goes wrong, for example when 

a minor disruption (where no VSM was applied) occurred in the same area shortly 

before the disruption to which the customer hindrance should apply, or when the 

boundary points in the Monitoring record differ from the ones in the Spoorweb record. 

5. Improve the VSM assessment in Sherlock by performing a sanity check for the 

assessment made by the VLC in Spoorweb. Currently, the assessment is not necessarily 

accurate and the number of assessments does not always match the number of applied 

VSMs. The assessment would need to be improved if Sherlock data were to be used to 

make the comparison between disruptions where a suitable VSM was available and 

disruptions where no suitable VSM was available. 

6. Make sure realization times and plan times are available for all train activities at 

all timetable points, as this would increase the reliability of the performance calcula-

tion. Without a realization time, it cannot be assessed whether an activity was punctual 

or not, and without the most recent plan time, it cannot be ensured that all train paths 

that are used in determining the impact area are entirely correct. The latter is discussed 

in more detail in Section 7.3. 

Disruption management practices 

With regard to disruption management practices in ProRail, the following is recommended: 

1. Raise awareness among practitioners about the fact that getting quickly into the 

next phase does not necessarily tell much, and more specifically, that rushing through 

the first phase does not result in better (or worse) performance during the remainder 

of the disruption. Instead, it would be more favorable to take the time to come to a well-

advised decision about a structurally feasible traffic plan which limits the chance of new 

delays, as this might lead to a more steady second phase and a smoother and shorter 

third phase. 

2. Stress the importance of quick information sharing throughout the chain of actors 

involved in disruption management. Information sharing should take place regardless 

of how relevant the information is to the actor who holds the information, so that actors 

to whom the information is more relevant may act on it. This applies particularly to the 

start of a disruption, where automating the notification to the control room by a simple 

solution like the press of a button could initiate the various processes more quickly. 

3. Design predefined solutions for the first phase to reduce the workload for traffic 

controllers and dispatchers. The standardization of first-phase measures might leave 

traffic controllers more time to work towards an optimal VSM. A predefined solution 

for the first phase could specify the first cancellations and short-turns that are required 

given a hypothesized disruption location. Since timing is crucial here, the actions could 

be specified per time window of for example five minutes in a basic hour. Because the 

exact nature of a disruption is still unclear in the first phase, it would be wise to make 

the first-phase measure at least as restrictive as a VSM for a full line blockage. Also, the 

actions should not conflict with the actions in the VSM too much, as this would make 

the transition from first to second phase more difficult. 

4. Make more accurate prognoses of the moment when the infrastructure is reclaimed 

and the train service can be restarted. An accurate prognosis is already a first step 

towards a feasible restart plan, as this provides TOCs with the necessary constraints to 

optimize their rolling stock and crew planning until the moment of restart. Further-

more, if the prognosis is advanced, it should be ensured that the TOC has its planning 

in order before initiating the restart. 

5. Include a restart framework in the VSM more often and involve TOCs in the design. 

When a restart framework is available, traffic controllers could invest more time and 
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expertise in preparing a structurally feasible restart plan while keeping the lines of com-

munication short and efficient. A draft version could still be designed autonomously 

based on the guidelines in the assessment framework. However, it would be worthwhile 

to check this version with the TOCs. To improve the usefulness of a restart framework, 

it is also advised to specify the timeframe in which the train service can be restarted by 

defining which series can be restarted together and at what rate. 

6. Be more in the lead during the third phase to ensure a smooth execution of the 

restart plan. It is true that the prime objective for ProRail is to make the infrastructure 

available, after which it is the responsibility of the TOCs to run their trains again. Still, 

a well-executed restart plan with minimal delays is eventually in everyone’s benefit and 

creates better starting conditions in case a new disruption were to occur nearby. 

7. Put more effort into improving the handling of collisions, as these are relatively 

common and showed to be the most impactful single disruptions overall. This concerns 

not only collisions with a person, but other types of collisions as well, especially since it 

is not always clear from the start if a person is involved or not. Attention may be paid 

to improving the swiftness of reporting a collision and critically assessing the number 

of trains that are canceled as emergency measures. If no further improvements can be 

gained in reducing the impact of collisions, attention should be paid to ways by which 

to prevent collisions from occurring in the first place, such as better monitoring of 

persons on or nearby the tracks and making the tracks less accessible. 

8. Conduct more data-driven research into the evolution of system performance and 

the quality of disruption management, since resilience will be increasingly important 

as the railway network grows even busier. ProRail could also take more initiative in this 

research as the problem owner. The required data are there, although the disruption 

log data leave room for improvement as discussed earlier in the recommendations. 

9. Invest in mathematical optimization models for real-time rescheduling solutions. 

Similar to the solver which is currently being developed to design VSMs for the second 

phase, models could be developed to design measures for the first and third phase. 

Separate models would be preferred to allow the transition towards and from the VSM, 

since the actions in each phase are different, and also to ensure the practicality of the 

models in case the running time poses constraints on their application. Eventually, the 

models could be expanded to include the scheduling of replacement transport services. 

It is worth noting that the recommendations presented here are mostly in line with the pursued 

operationalization of the Koers van VL, which was last described in 2018 as a vision for 2020. 

Although the Koers van VL is seen as a positive development in which the findings from this 

thesis can be recognized, it is currently still a vision for the future. Thus, as a final recommen-

dation it is advised to actually realize this transition towards even more predefined, proactive 

disruption management, so the Koers van VL does not remain what it is now: a vision. 

7.3. Limitations and future research 
Given the scope of this thesis and the followed methodology, there are some limitations to this 

research which are addressed here. As a result, there are still plenty of opportunities for future 

research which are discussed next. 

Limitations 

Although (and partly because) much effort was put into representing the resilience curve accu-

rately for as many disruptions as possible, this research has its limitations. First of all, it was 

assumed that all delays and cancellations that were observed in the studied impact area during 

a disruption could be allocated to the disruption, when in fact, not all delays and cancellations 

are necessarily caused by the disruption itself. There could be other disturbances, events with-

out a logistical record in Sherlock, that occurred simultaneously and thereby contaminated the 
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resilience curve. Also, maintenance works were not taken into account while these typically 

reduce network capacity, and thus, constrain the rescheduling options for traffic controllers. 

As a result, it could be expected that the impact of a disruption is worse in case the disruption 

occurs near a maintenance site. 

Furthermore, not all train paths used in the breadth first search to check for feasible paths may 

be entirely accurate. Realization times could not be used because those were missing too fre-

quently in order to reconstruct a complete path, and thus, the plan times were used to recon-

struct realized train paths. Only realized train paths were considered because those have more 

accurate plan times which, for NS trains, are called Planning in Tenths of Minutes (PINT). 

However, if PINT is not available for each timetable point on a particular path, the order of two 

activities planned in the same minute at different locations (due to a small distance in between) 

could accidentally be swapped, creating an infeasible path. Another limitation with regard to 

the traffic realization data is that, as already mentioned in Chapter 4, it is unknown to what 

extent train paths are erroneously canceled in VOS when a train has in fact completed part of 

its route. This means the number of cancellations may have been overestimated in some cases. 

Another limitation of this research is that of the 1,541 disruptions matching the top five disrup-

tion causes, less than one third were preserved to be evaluated as single disruptions with a start 

and end time that could be derived from the resilience curve. The question is then how repre-

sentative the results are for the entire population of disruptions. Of the disruptions where a 

VSM was applied, especially the shorter ones were preserved, since those have a lower chance 

of being connected than longer disruptions. Nonetheless, longer disruptions were included as 

well in case they were not connected. However, disruptions lasting multiple days and disrup-

tions starting or ending at nighttime were mostly filtered out, even if they were not connected, 

because those are more likely to have empty time windows which would turn the resilience 

curve into a discrete function. 

With regard to the statistical analyses, it should be noted that the Python module Pingouin, 

which was used to perform Welch’s ANOVA and the Games-Howell post hoc test, is still under 

heavy development. For example, as recently as February 2021, an update was released which 

included a bugfix for an error in the calculation of p-values for the Games-Howell test. Hence, 

the results of the group comparisons and post hoc tests should be interpreted with caution. 

Future research 

Methodological improvements 

With regard to the methodology, other performance indicators and/or resilience metrics could 

be used to describe the resilience curve and identify more differences between disruptions of 

different categories. The variable that defines group membership could be changed from the 

disruption cause to the impact type, for example to investigate differences between partial and 

full line blockages. Also, the spatial element could be removed from the performance dimen-

sion and presented explicitly on a separate, third axis in a three-dimensional representation of 

the resilience curve. The resilience curve would then be a cross-section of a resilience plane 

that describes the evolution of system performance at a certain distance from the disruption 

location. This could make it easier to assess how fast or how strongly disruption effects propa-

gate through the network. Additionally, it is worth considering other detrending methods than 

the centered moving average for smoothening the resilience curve, specifically methods that 

are less sensitive to rapid changes in performance. In the regression analysis, a different kind 

of regression model such as exponential regression could be applied which might fit the data 

better, particularly regarding the relationship between performance loss and total duration. 

The model itself could also be expanded with more dependent variables to reduce the unex-

plained part of the variation in performance loss. 
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Practical research directions 

With regard to practical research directions in ProRail, it is worth most collecting newer data 

and repeating the experiments with the new data, considering the current organization of the 

VGB team and traffic control in ProRail is still relatively new and improvements to disruption 

management practices have been made continuously in the past years. As a result, the observed 

differences and relationships could have shifted slightly in the meantime. 

In second place, it is worth investigating regional differences in the disruption dynamics, for 

example between traffic control areas. This might help identify in which areas the network is 

more resilient. Follow-up research could then try to determine which factors make one part of 

the network more resilient than another, perhaps building on the factors discussed in Chapter 

6, and determine how these factors could be improved in the less resilient parts. Investigating 

regional differences could also help identify bottlenecks in the network. One potential bottle-

neck that occurred in the analysis of extreme days is the station in Woerden, which facilitates 

traffic between major cities in the Randstad. Such bottlenecks might deserve special attention 

in the design of VSMs, but also in infrastructure development. Regarding regional differences, 

it is also worth evaluating how different the third phase develops in a regional setting compared 

to a more nationally oriented restart with a higher share of NS trains. Large differences could 

require a critical review of the assessment framework, and potentially, targeted improvements 

in certain TOCs. 

In third place, it is worth investigating the effects of (large) maintenance works and freight 

traffic on the resilience curve, as these were disregarded in the analysis. Perhaps these effects 

can explain some of the peculiarities in the observed resilience curves. The evolution of perfor-

mance during disruptions could also be evaluated exclusively for freight traffic. This would ask 

for a different research design, with different performance indicators (e.g. representing fuel 

cost and on-time delivery) and a focus on train paths instead of train activities. Since freight 

trains often do not run according to the original plan, this evaluation could show if (and when) 

the reactive capacity of traffic controllers is sufficient to manage freight traffic next to the 

remaining passenger traffic. 

In fourth place, it is worth addressing the tradeoff in the number of railway switches, which is 

a topic that deserves better coordination between asset management and traffic control. On 

the one hand, reducing the number of switches also reduces the probability of a switch failure 

occurring anywhere in the network. On the other hand, the number of switch failures that 

require a VSM is already relatively low compared to the number of train defects, section/signal 

failures and collisions. Also, switch failures were not found to be that impactful on average, 

and reducing the number of switches limits the rescheduling options in all other disruptions. 

Perhaps increased maintenance of switches and other infrastructure elements would be an 

effective alternative to reduce the number of failures without limiting rescheduling options. 

In fifth place, it is worth investigating which parts of the second resilience phase are steady and 

which parts are not, and whether or not an unsteady second phase is purely the result of human 

action such as waiting for a mechanic or making inaccurate prognoses. In case of an unsteady 

second phase, it might need to be reviewed if the applied VSM was the correct one, and if not, 

which modifications could have helped in reaching a steady second phase. 

Scientific research directions 

With regard to scientific research into railway resilience, it is worth performing similar data-

driven analyses for other countries, while taking the uniqueness of each country into account 

in terms of network density, coordination structure, business processes etc. For this purpose, 

the resilience evaluation framework from this thesis could be applied. Although the results 

might not be directly comparable, they could give an indication of whether or not reactive 

rescheduling (or “resilient” rescheduling as in Schipper and Gerrits (2018)) improves network 
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resilience, or if the anticipatory approach followed in the Netherlands should be preferred to 

achieve resilience. Similar analyses could also be performed for the resilience evaluation of 

other (public) transport networks after incorporating the mode-specific characteristics. 

Another potential research direction is the interaction between punctuality and traffic inten-

sity. This interaction appears to be rather complex, and although it was described in this thesis 

in terms of the composite performance indicator, it is still not properly understood. Based on 

the disruptions that were studied in greater detail, such as the example disruption discussed 

in Chapter 5, no consistent pattern could be identified in this interaction. Particularly, it would 

be interesting to evaluate what makes punctuality vary so wildly over the course of a disruption 

on some occasions. 

Since connected disruptions were largely excluded from the experiments, it is also worth study-

ing connected disruptions in more detail based on the directions given in Chapter 5, and to see 

if different types can be identified here as well. A better understanding of connected disrup-

tions could help in finding ways to manage these potential out-of-control situations. Relatively 

long disruptions, especially those stretching over multiple days, deserve attention in future 

research as well. For these disruptions, it is worth investigating to what extent performance is 

affected the next day due to spillover effects and which consequences this has for new disrup-

tions occurring later that day. 

As a last scientific research direction, it is worth investigating the expected effects of automatic 

train operation (ATO) on the disruption dynamics, since ATO removes much of the human 

element that is so clearly observable in the entire disruption management process. For one, it 

could be investigated how ATO will change the nature of train defects, as it could help identify 

and resolve certain failures more easily, but also, introduce new kinds of failures. In addition, 

the absence of a human driver might affect the handling of other types of disruptions, which is 

worth studying as well. 

  



100 
 

Bibliography 

ACM. (2019, March 22). ACM Rail Monitor: the Netherlands has Europe’s busiest railway network. 

https://www.acm.nl/en/publications/acm-rail-monitor-netherlands-has-europes-busiest-

railway-network 

Adjetey-Bahun, K., Birregah, B., Châtelet, E., & Planchet, J.-L. (2016). A model to quantify the 

resilience of mass railway transportation systems. Reliability Engineering & System Safety, 

153, 1-14. https://doi.org/10.1016/j.ress.2016.03.015 

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European 

Journal of Operational Research, 175(1), 475-493. https://doi.org/10.1016/j.ejor.2005.05.016 

Azad, N., Hassini, E., & Verma, M. (2016). Disruption risk management in railroad networks: An 

optimization-based methodology and a case study. Transportation Research Part B: 

Methodological, 85, 70-88. https://doi.org/10.1016/j.trb.2016.01.001 

Baroud, H., Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2014). Importance measures for 

inland waterway network resilience. Transportation Research Part E: Logistics and 

Transportation Review, 62, 55-67. https://doi.org/10.1016/j.tre.2013.11.010 

Bashan, A., Bartsch, R., Kantelhardt, J. W., & Havlin, S. (2008). Comparison of detrending methods 

for fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 387(21), 5080-

5090. https://doi.org/10.1016/j.physa.2008.04.023 

Bešinović, N. (2020). Resilience in railway transport systems: a literature review and research agenda. 

Transport Reviews, 40(4), 457-478. https://doi.org/10.1080/01441647.2020.1728419 

Bevilacqua, M., Ciarapica, F. E., & Marcucci, G. (2017). Supply Chain Resilience Triangle: The Study 

and Development of a Framework. International Journal of Economics and Management 

Engineering, 11(8), 2046-2053. https://doi.org/10.5281/zenodo.1131597 

Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A Contingent Resource-Based 

Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain 

Management, 50(3), 55-73. https://doi.org/10.1111/jscm.12050 

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., 

Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A Framework to Quantitatively 

Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733-

752. https://doi.org/10.1193%2F1.1623497 

Büchel, B., Spanninger, T., & Corman, F. (2020). Empirical dynamics of railway delay propagation 

identified during the large-scale Rastatt disruption. Scientific Reports, 10, 18584. 

https://doi.org/10.1038/s41598-020-75538-z 

Cacchiani, C., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., & Wagenaar, J. (2014). An 

overview of recovery models and algorithms for real-time railway rescheduling. 

Transportation Research Part B: Methodological, 63, 15-37. 

https://doi.org/10.1016/j.trb.2014.01.009 

Cao, S., & Rhinehart, R. R. (1995). An efficient method for on-line identification of steady state. 

Journal of Process Control, 5(6), 363-374. https://doi.org/10.1016/0959-1524(95)00009-F 

Carvalho, H., & Cruz-Machado, V. (2011). Integrating Lean, Agile, Resilience and Green Paradigms in 

Supply Chain Management (LARG_SCM). In P. Li (Ed.), Supply Chain Management. InTech. 

Cassottana, B., Aydin, N. Y., & Tang, L. C. (2021). Quantitative Assessment of System Response during 

Disruptions: An Application to Water Distribution Systems. Journal of Water Resources 

Planning and Management, 147(3), 04021002. https://doi.org/10.1061/(ASCE)WR.1943-

5452.0001334 

Castiglioni, P., & Di Rienzo, M. (2004). How to check steady-state condition from cardiovascular time 

series. Physiological Measurement. 25(4), 985-996. https://doi.org/10.1088/0967-

3334/25/4/016 



101 
 

Cats, O., & Jenelius, E. (2014). Dynamic Vulnerability Analysis of Public Transport Networks: 

Mitigation Effects of Real-Time Information. Networks and Spatial Economics, 14, 435-463. 

https://doi.org/10.1007/s11067-014-9237-7 

Chan, R., & Schofer, J. L. (2016). Measuring Transportation System Resilience: Response of Rail 

Transit to Weather Disruptions. Natural Hazards Review, 17(1), 05015004. 

https://doi.org/doi:10.1061/(ASCE)NH.1527-6996.0000200 

Chen, L., & Miller-Hooks, E. (2012). Resilience: An Indicator of Recovery Capability in Intermodal 

Freight Transport. Transportation Science, 46(1), 109-123. 

https://doi.org/10.1287/trsc.1110.0376 

Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Seismic resilience of a hospital system. 

Structure and Infrastructure Engineering, 6(1-2), 127-144. 

https://doi.org/10.1080/15732470802663847 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge. 

https://doi.org/10.4324/9780203771587 

Dalheim, Ø. Ø., & Steen, S. (2020). A computationally efficient method for identification of steady 

state in time series data from ship monitoring. Journal of Ocean Engineering and Science, 

5(4), 333-345. https://doi.org/10.1016/j.joes.2020.01.003 

Dekker, M. M., & Panja, D. (2021). Cascading dominates large-scale disruptions in transport over 

complex networks. PLOS ONE, 16(1), e0246077. 

https://doi.org/10.1371/journal.pone.0246077 

Dekker, M. M., Van Lieshout, R. N., Ball, R. C., Bouman, P. C., Dekker, S. C., Dijkstra, H. A., Goverde, 

R. M. P., Huisman, D., Panja, D., Schaafsma, A. A. M., & Van den Akker, M. (2021). A next 

step in disruption management: combining operations research and complexity science. Public 

Transport. https://doi.org/10.1007/s12469-021-00261-5 

De-Los-Santos, A., Laporte, G., Mesa, J. A., & Perea, F. (2012). Evaluating passenger robustness in a 

rail transit network. Transportation Research Part C: Emerging Technologies, 20(1), 34-46. 

https://doi.org/10.1016/j.trc.2010.09.002 

D'Lima, M., & Medda, F. (2015). A new measure of resilience: An application to the London 

Underground. Transportation Research Part A: Policy and Practice, 81, 35-46. 

https://doi.org/10.1016/j.tra.2015.05.017 

Dorbritz, R. (2011). Assessing the resilience of transportation systems in case of large-scale disastrous 

events. 8th International Conference on Environmental Engineering (ICEE) Selected Papers, 

1070-1076. 

Draper, D. (1988). Rank Based Robust Analysis of Linear Models. I. Exposition and Review. Statistical 

Science, 3(2), 239-257. https://doi.org/10.1214/ss/1177012915 

European Rail Research Advisory Council. (2020). Rail Strategic Research and Innovation Agenda. 

Click Click Graphics, https://shift2rail.org/wp-content/uploads/2020/12/RAIL-Strategic-

Research-and-Innovation-Agenda-2020-_FINAL_dec2020.pdf 

Evans, I. (2011). Railway disruption recovery: lessons from airlines. WIT Transactions on Modelling 

and Simulation, 51, 681-692. https://doi.org/10.2495/CMEM110601 

Ghaemi, N., Cats, O., & Goverde, R. M. P. (2017). Railway disruption management challenges and 

possible solution directions. Public Transport, 9, 343-364. 

https://doi.org/10.1007/s12469-017-0157-z 

Ghaemi, N., Cats, O., & Goverde, R. M. P. (2018). Macroscopic multi-station short-turning model in 

case of complete blockages. Transportation Research Part C: Emerging Technologies, 89, 

113-132. https://doi.org/10.1016/j.trc.2018.02.006 

Gonçalves, L. A. P. J., & Ribeiro, P. J. G. (2020). Resilience of urban transportation systems. Concept, 

characteristics, and methods. Journal of Transport Geography, 85, 102727. 

https://doi.org/10.1016/j.jtrangeo.2020.102727 



102 
 

Goverde, R. M. P., Corman, F., & D'Ariano, A. (2013). Railway line capacity consumption of different 

railway signalling systems under scheduled and disturbed conditions. Journal of Rail Transport 

Planning & Management, 3(3), 78-94. https://doi.org/10.1016/j.jrtpm.2013.12.001 

Goverde, R. M. P., & Hansen, I. A. (2013). Performance Indicators for Railway Timetables. 2013 IEEE 

International Conference on Intelligent Rail Transportation Proceedings, 301-306. 

https://doi.org/10.1109/ICIRT.2013.6696312 

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. 

(2016). Statistical tests, P values, confidence intervals, and power: a guide to 

misinterpretations. European Journal of Epidemiology, 31, 337-350. 

https://dx.doi.org/10.1007%2Fs10654-016-0149-3 

Henry, D., & Ramirez-Marquez, J. E. (2012). Generic metrics and quantitative approaches for system 

resilience as a function of time. Reliability Engineering & System Safety, 99, 114-122. 

https://doi.org/10.1016/j.ress.2011.09.002 

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of 

system resilience. Reliability Engineering & System Safety, 145, 47-61. 

https://doi.org/10.1016/j.ress.2015.08.006 

Huber, P. J. (1981). Robust Statistics. John Wiley and Sons, https://doi.org/10.1002/0471725250 

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 

9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55 

Ivanov, D., Sokolov, B., & Dolgui, A. (2014). The Ripple effect in supply chains: trade-off ‘efficiency-

flexibility-resilience’ in disruption management. International Journal of Production 

Research, 52(7), 2154-2172. https://doi.org/10.1080/00207543.2013.858836 

Jafino, B. A., Kwakkel, J., & Verbraeck, A. (2020). Transport network criticality metrics: a comparative 

analysis and a guideline for selection. Transport Reviews, 40(2), 241-264. 

https://doi.org/10.1080/01441647.2019.1703843 

Jalali, S., & Wohlin, C. (2012). Systematic Literature Studies: Database Searches vs. Backward 

Snowballing. Proceedings of the 2012 ACM-IEEE International Symposium on Empirical 

Software Engineering and Measurement, 29-38. https://doi.org/10.1145/2372251.2372257 

Janić, M. (2015). Reprint of “Modelling the resilience, friability and costs of an air transport network 

affected by a large-scale disruptive event”. Transportation Research Part A: Policy and 

Practice, 81, 77-92. https://doi.org/10.1016/j.tra.2015.07.012 

Janić, M. (2018). Modelling the resilience of rail passenger transport networks affected by large-scale 

disruptive events: the case of HSR (high speed rail). Transportation, 45(2), 1101-1137. 

https://doi.org/10.1007/s11116-018-9875-6 

Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., Maróti, G., & Nielsen, M. N. 

(2009). Disruption Management in Passenger Railway Transportation. In R. K. Ahuja, R. H. 

Möhring, & C. D. Zaroliagis (Eds.), Robust and Online Large-Scale Optimization. (pp. 399-

421). Springer. 

Jin, J. G., Tang, L. C., Sun, L., & Lee, D.-H. (2014). Enhancing metro network resilience via localized 

integration with bus services. Transportation Research Part E: Logistics and Transportation 

Review, 63, 17-30. https://doi.org/10.1016/j.tre.2014.01.002 

Kelly, J. D., & Hedengren, J. D. (2013). A steady-state detection (SSD) algorithm to detect non-

stationary drifts in processes. Journal of Process Control, 23(3), 326-331. 

https://doi.org/10.1016/j.jprocont.2012.12.001 

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical 

primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. 

https://doi.org/10.3389/fpsyg.2013.00863 

Liao, W., Tordeux, A., Seyfried, A., Chraibi, M., Drzycimski, K., Zheng, X., & Zhao, Y. (2016). 

Measuring the steady state of pedestrian flow in bottleneck experiments. Physica A: Statistical 

Mechanics and its Applications, 461, 248-261. https://doi.org/10.1016/j.physa.2016.05.051 



103 
 

Liu, H. (2015). Comparing Welch’s ANOVA, a Kruskal-Wallis test and traditional ANOVA in case of 

Heterogeneity of Variance [Master’s thesis, Virginia Commonwealth University]. 

https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=5026&context=etd 

Luo, Y., Li, Z., & Wang, Z. (2009). Adaptive CUSUM control chart with variable sampling intervals. 

Computational Statistics and Data Analysis, 53(7), 2693-2701. 

https://doi.org/10.1016/j.csda.2009.01.006 

Macdonald, J. R., Zobel, C. W., Melnyk, S. A., & Griffis, S. E. (2018). Supply chain risk and resilience: 

theory building through structured experiments and simulation. International Journal of 

Production Research, 56(12), 4337-4355. https://doi.org/10.1080/00207543.2017.1421787 

Madni, A. M., Erwin, D., & Sievers, M. (2020). Constructing Models for System Resilience: Challenges, 

Concepts, and Formal Methods. Systems, 8(3). https://doi.org/10.3390/systems8010003 

Malandri, C., Fonzone, A., & Cats, O. (2018). Recovery time and propagation effects of passenger 

transport disruptions. Physica A: Statistical Mechanics and its Applications, 505, 7-17. 

https://doi.org/10.1016/j.physa.2018.03.028 

Mattsson, L.-S., & Jenelius, E. (2015). Vulnerability and resilience of transport systems – A discussion 

of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34. 

https://doi.org/10.1016/j.tra.2015.06.002 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th 

Python in Science Conference, 56-61. https://doi.org/10.25080/Majora-92bf1922-00a 

Melnyk, S. A., Closs, D. J., Griffis, S. E., Zobel, C. W., & Macdonald, J. R. (2014). Understanding 

Supply Chain Resilience. Supply Chain Management Review, 18, 34-41. https://www. 

researchgate.net/publication/285800059_Understanding_supply_chain_resilience 

Mertens, W., Pugliese, A., & Recker, J. (2017). Quantitative Data Analysis: A Companion for 

Accounting and Information Systems Research. Springer. 

https://doi.org/10.1007/978-3-319-42700-3 

Metselaar, D. (2021, January 5). Coronacrisis leidt tot halvering check-ins OV in 2020. OVPro. 

https://www.ovpro.nl/special/2021/01/05/coronacrisis-leidt-tot-halvering-check-ins-ov-in-

2020/?gdpr=accept 

Moore, E. F. (1959). The shortest path through a maze. Proceedings of the International Symposium 

on the Theory of Switching, 285-292. 

Munoz, A., & Dunbar, M. (2015). On the quantification of operational supply chain resilience. 

International Journal of Production Research, 53(22), 6736-6751. 

https://doi.org/10.1080/00207543.2015.1057296 

Nicholson, G. L., Kirkwood, D., Roberts, C., & Schmid, F. (2015). Benchmarking and evaluation of 

railway operations performance. Journal of Rail Transport Planning & Management, 5(4), 

274-293. https://doi.org/10.1016/j.jrtpm.2015.11.004 

Ouyang, M., Dueñas-Osorio, L., & Min, X. (2012). A three-stage resilience analysis framework for 

urban infrastructure systems. Structural Safety, 36-37, 23-31. 

https://doi.org/10.1016/j.strusafe.2011.12.004 

Parkinson, H. J., & Bamford, G. (2017). A journey into railway digitisation. Stephenson Conference: 

Research for Railways 2017, 333-340. 

https://www.researchgate.net/publication/320352839_A_journey_into_railway_digitisation 

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The Evolution of Resilience in Supply Chain 

Management: A Retrospective on Ensuring Supply Chain Resilience. Journal of Business 

Logistics, 40(1), 56-65. https://doi.org/10.1111/jbl.12202 

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The 

International Journal of Logistics Management, 20(1), 124-143. 

https://doi.org/10.1108/09574090910954873 

ProRail. (2018). Programma Hoogfrequent Spoorvervoer (PHS) [Map]. https://www.prorail.nl/ 

siteassets/homepage/programmas/documenten/phs-algemene-kaart-1.pdf 



104 
 

ProRail. (2020). Jaarverslag 2019. https://www.prorail.nl/siteassets/homepage/over-

ons/documenten/jaarverslag-2019-prorail.pdf 

Ren, X., Yin, J., & Tang, T. (2020). Quantitative analysis for resilience-based urban rail systems: A hybrid 

knowledge-based and data-driven approach. Proceedings of the 29th European Safety and 

Reliability Conference, 3531-3538. https://doi.org/10.3850/978-981-11-2724-3_0235-cd 

Rijden de Treinen. (n.d.). Statistieken. Retrieved March 16, 2021, from 

https://www.rijdendetreinen.nl/statistieken 

Rodrigue, J.-P. (2020). The Geography of Transport Systems (5th Edition). Routledge. 

https://transportgeography.org/ 

Schipper, D., & Gerrits, L. (2018). Differences and similarities in European railway disruption 

management practices. Journal of Rail Transport Planning & Management, 8(1), 42-55. 

https://doi.org/10.1016/j.jrtpm.2017.12.003 

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and Statistical Modeling with Python. 

Proceedings of the 9th Python in Science Conference, 92-98. 

http://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf 

Simons, R. (2019). The influence of railway signalling characteristics on resilience [Master’s thesis, 

Delft University of Technology]. https://repository.tudelft.nl/islandora/object/ 

uuid:0e76a919-3d02-4282-a56b-dd20a94b61fa 

Spiegler, V. L. M., Naim, M. M., & Wikner, J. (2012). A control engineering approach to the 

assessment of supply chain resilience. International Journal of Production Research, 50(21), 

6162-6187. https://doi.org/10.1080/00207543.2012.710764 

Theil, H. (1971). Principles of Econometrics. Wiley. 

https://archive.org/details/principlesofecon0000thei/page/n5/mode/2up 

Tsuchiya, S., Tatano, H., & Okada, N. (2007). Economic Loss Assessment due to Railroad and Highway 

Disruptions. Economic Systems Research, 19(2), 147-162. 

https://doi.org/10.1080/09535310701328567 

Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: definition, 

review and theoretical foundations for further study. International Journal of Production 

Research, 53(18), 5592-5623. http://dx.doi.org/10.1080/00207543.2015.1037934 

Uday, P., & Marais, K. (2015). Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, 

and Challenges. Systems Engineering, 18(5), 491-510. https://doi.org/10.1002/sys.21325 

Vallat, R. (2018). Pingouin: statistics in Python. Journal of Open Source Software, 3(31), 1026. 

https://doi.org/10.21105/joss.01026 

Van Aken, S., Bešinović, N., & Goverde, R. M. P. (2017). Designing alternative railway timetables 

under infrastructure maintenance possessions. Transportation Research Part B: 

Methodological, 98, 224-238. https://doi.org/10.1016/j.trb.2016.12.019 

Van Hoek, R. (2020). Research opportunities for a more resilient post-COVID-19 supply chain – closing 

the gap between research findings and industry practice. International Journal of Operations & 

Production Management, 40(4), 341-355. https://doi.org/10.1108/IJOPM-03-2020-0165 

Van Wee, B., & Banister, D. (2016). How to Write a Literature Review Paper? Transport Reviews, 

36(2), 278-288. https://doi.org/10.1080/01441647.2015.1065456 

Veelenturf, L. P. (2014). Disruption Management in Passenger Railways [Doctoral thesis, Erasmus 

University]. https://repub.eur.nl/pub/77155 

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 

6(60), 3021. https://doi.org/10.21105/joss.03021 

Wong, A., Tan, S., Chandramouleeswaran, K. R., & Tran, H. T. (2020). Data-driven analysis of 

resilience in airline networks. Transportation Research Part E: Logistics and Transportation 

Review, 143, 102068. https://doi.org/10.1016/j.tre.2020.102068 



105 
 

Woodburn, A. (2019). Rail network resilience and operational responsiveness during unplanned 

disruption: A rail freight case study. Journal of Transport Geography, 77, 59-69. 

https://doi.org/10.1016/j.jtrangeo.2019.04.006 

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical 

Computation and Simulation, 81(12), 2141-2155. 

https://doi.org/10.1080/00949655.2010.520163 

Zhou, Y., Wang, J., & Yang, H. (2019). Resilience of Transportation Systems: Concepts and 

Comprehensive Review. IEEE Transactions on Intelligent Transport Systems, 20(12), 4262-

4276. https://doi.org/10.1109/TITS.2018.2883766 

Zhu, Y., & Goverde, R. M. P. (2021). Dynamic railway timetable rescheduling for multiple connected 

disruptions. Transportation Research Part C: Emerging Technologies, 125, 103080. 

https://doi.org/10.1016/j.trc.2021.103080 

Zhu, Y., Ozbay, K., Xie, K., & Yang, H. (2016). Using Big Data to Study Resilience of Taxi and Subway 

Trips for Hurricanes Sandy and Irene. Transportation Research Record: Journal of the 

Transportation Research Board, 2599(1), 70-80. https://doi.org/10.3141%2F2599-09 

Zhu, Y., Xie, K., Ozbay, K., Zuo, F., & Yang, H. (2017). Data-Driven Spatial Modeling for Quantifying 

Networkwide Resilience in the Aftermath of Hurricanes Irene and Sandy. Transportation 

Research Record: Journal of the Transportation Research Board, 2604(1), 9-18. 

https://doi.org/10.3141%2F2604-02 

Zilko, A. A., Kurowicka, D., & Goverde, R. M. P. (2016). Modeling railway disruption lengths with 

Copula Bayesian Networks. Transportation Research Part C: Emerging Technologies, 68, 

350-368. https://doi.org/10.1016/j.trc.2016.04.018 

Zobel, C. W. (2011). Representing perceived tradeoffs in defining disaster resilience. Decision Support 

Systems, 50(2), 394-403. https://doi.org/10.1016/j.dss.2010.10.001 

  



106 
 

Appendices 

A. Research paper 
This appendix contains the research paper which summarizes the problem, approach, methods 

and most important scientific results from this thesis report. 
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1 Introduction 

The Dutch railway network is known as the busiest in Europe (ACM, 2019), with approximately 1.3 million passenger trips and 

148 million ton kilometers of freight transport every day. Under normal conditions, trains arrive and depart according to the timetable 

and only minor variations in the train service are observed, which are referred to as disturbances (Cacchiani et al., 2014). Larger 

variations involving an unexpected change due to the failure of infrastructure, breakdown of vehicles, unscheduled maintenance, 

extreme weather conditions or other external events are referred to as disruptions (Bešinović, 2020). Where disturbances are handled 

by making adjustments only to the timetable, disruptions require additional adjustments to the rolling stock and crew planning 

(Mattsson & Jenelius, 2015; Zilko et al., 2016). The consequences of a disruption generally include cancellations and significant 

delays. Due to the intrinsic characteristics of railway networks, disruptions can easily propagate through the network in time and 

space (Cats & Jenelius, 2014; Malandri et al., 2018) and their effects may even build up to a systemwide scale (Dekker & Panja, 

2021). When this is the case, primary delays will have caused extensive secondary delays, and imbalances in the available rolling 

stock and crew will have emerged, potentially leading to an out-of-control situation. The evolution of system performance during a 

disruption can be visualized in the resilience curve, which is illustrated schematically in Figure 1. The resilience curve shows how 

performance first degrades and eventually recovers. Three phases are distinguished in the curve: the first and the third phase are 

transition phases, whereas the second phase represents disrupted but stable system behavior. The resilience curve is sometimes 

referred to as the bathtub model (Ghaemi et al., 2017), since it is presumed to resemble a bathtub. 

Traffic control during disruptions is also referred to as rescheduling and is commonly performed by the infrastructure manager. 

Rescheduling is anticipation-based in case recovery measures are predefined. However, if rescheduling happens mostly in real time, 

tailor-made solutions have to be made for each disruption, which places more focus on the reactive capacity of train dispatchers and 

traffic controllers (Schipper & Gerrits, 2018). Adjusting the rolling stock and crew planning during a disruption is the responsibility 

of the train operating company (TOC). The joint actions taken by the infrastructure manager, TOCs and additional actors such as 

maintenance contractors and emergency services can be referred to as disruption management. For a detailed overview of the roles 

in the disruption management process, the tradeoffs in disruption management and the differences between countries, the interested 

reader may refer to Schipper and Gerrits (2018). 

In the Netherlands, traffic control is the task of the infrastructure manager ProRail. Disruption management in ProRail is 

organized according to the bathtub model. In the first phase, emergency measures are taken regarding safety and logistics. In most 

cases, a contingency plan (versperringsmaatregel, VSM) is applied which provides a revisited timetable for the second phase. In the 

second phase, the execution of the VSM is monitored and the cause of the disruption is resolved. Meanwhile, a restart plan is 
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Disruptions occur frequently in railway networks, requiring adjustments to the timetable, rolling 

stock planning and crew planning while causing delays and cancellations. Although the evolu-

tion of system performance during a disruption can be visualized in the resilience curve, not 

much is known about performance during disruptions or the extent to which the curve applies 

in practice. The limited quantitative knowledge about the resilience of railway networks makes 

it hard to design appropriate recovery measures. In this paper, a data-driven evaluation approach 

is presented to make an ex post assessment of the resilience of railway networks. Several resili-

ence metrics are extracted from literature and two new resilience metrics are introduced. Using 

historical traffic realization data, resilience curves are reconstructed for a large and heterogene-

ous set of single disruptions and are quantified in terms of the resilience metrics. Among others, 

the values of the resilience metrics are compared across disruptions of different causes using 

Welch’s ANOVA and the Games-Howell test. The approach is applied to a case study of the 

Dutch railway network, with a focus on the five most common disruption causes. The results of 

the case study show that there is significant heterogeneity in the shape of the resilience curve, 

even within disruptions of the same cause. Train defects are found to be the least impactful 

disruptions on multiple resilience metrics, while collisions are found to be the most impactful 

disruptions on multiple resilience metrics. The successful application of the approach shows 

that it can be used by practitioners to assess which types and which parts of disruptions deserve 

attention to improve disruption management practices, and thus, improve resilience. 



 

prepared to resume the train service according to the original timetable. When the plan is approved and the infrastructure is 

reclaimed, the restart can be initiated. In the third phase, the execution of the restart plan is monitored. This standardized process is 

followed regardless of the disruption cause. Because of the strong reliance on contingency plans, disruption management in the 

Netherlands is highly anticipation-based (Schipper & Gerrits, 2018). 

Despite the fact that disruption management is organized according to the bathtub model, practical knowledge about system 

performance during disruptions is limited. In scientific literature as well, the resilience curve has mostly remained a theoretical 

concept, which is why this interpretation has not resulted in major findings (Madni et al., 2020). The exact shape of the curve and 

the extent to which it applies in practice are not properly understood. Because of this limited quantitative knowledge, designing 

appropriate measures for disruption management has been a challenge (Bešinović, 2020). The complex interaction between delay 

propagation and management actions is most likely to blame for the relatively limited amount of past research (Büchel et al., 2020). 

However, there is currently a growing demand for the quantification of system performance during disruptions (Bešinović, 2020), 

as resilience has become a critical design requirement for increasingly complex and interconnected systems (Uday & Marais, 2015; 

Madni et al., 2020). Better quantitative knowledge on this topic would contribute to the effective allocation of resources to prevent, 

mitigate and recover from disruptions (Malandri et al., 2018). Therefore, the main research question in this study is: how does the 

system performance of a railway network develop during disruptions? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, a data-driven evaluation approach is presented to make an ex post assessment of the resilience of railway networks 

using historical traffic realization data and disruption data. Several resilience metrics that quantify the shape of the resilience curve 

are extracted from literature and two new resilience metrics are introduced: the degradation profile and the recovery profile. For a 

large and heterogeneous set of common disruptions, the resilience curve is reconstructed and the phases in the resilience curve are 

identified. Each resilience curve is described in terms of the resilience metrics. The values of the metrics are evaluated in statistical 

analyses to identify differences and similarities among disruptions of different causes. The proposed approach is data-driven, as it 

uses historical traffic realization data which most importantly specify the plan time and realization time of a train activity. A train 

activity is defined here as an arrival, short stop, departure or passing of a train at a certain location in the network referred to as a 

timetable point. In comparison with other evaluation approaches (e.g. topological, optimization-based, simulation-based), the 

benefits of this data-driven approach are that it removes the need to model the traffic conditions in the network explicitly, and that 

it allows a direct comparison between what practitioners believe to be true and what happens in reality. 

This study contributes to the field of transport and railway resilience research from the following perspectives. First of all, a new 

data-driven approach is presented, which is summarized in a resilience evaluation framework, to ex post assess the resilience of 

railway networks. A composite performance indicator is defined which is capable of representing delays and cancellations simulta-

neously. Two new resilience metrics are introduced and a method is proposed for identifying the resilience phases from the resilience 

curve. The final contribution consists of empirical testing of the proposed evaluation approach on a case study. 

The remainder of this paper is organized as follows. Section 2 provides a literature review on the quantification of resilience in 

railways and other domains. Section 3 presents the proposed resilience evaluation framework and discusses the methodology for 

the resilience evaluation. Section 4 provides the case study description and presents the results of empirical testing of the proposed 

evaluation approach on the case study. Section 5 provides a more thorough discussion on the results. Section 6 concludes the paper 

and presents future research directions. 

2 Literature review 

Numerous studies have investigated the resilience of railway networks. A review can be found in Bešinović (2020). In addition, 

Mattsson and Jenelius (2015), Zhou et al. (2019) and Gonçalves and Ribeiro (2020) have reviewed the resilience of transport systems 

in general. Based on these previous studies, a revisited definition of resilience may be formulated as follows. Resilience is the ability 

of a system to: 1) prepare for a disruption, as well as 2) reduce, absorb and accommodate the impact of a disruption while maintaining 

an acceptable level of service, and 3) recover to a desired state of operation within a reasonable amount of time. To provide a 

thorough literature review on the quantification of resilience in previous studies, we first review the existing resilience evaluation 

Figure 1. Schematic illustration of the theoretical resilience curve. 
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approaches in Section 2.1. Different types of approaches include topological, optimization-based, simulation-based and data-driven. 

Here, we focus on data-driven approaches in railway transport and other transport modes including subway, taxi and air transport. 

Next, in Section 2.2 we review existing resilience metrics, which are used later for selecting appropriate metrics that describe the 

shape of the resilience curve. Section 2.3 presents the existing research gaps in railway resilience research. 

2.1 Evaluation approaches 

With respect to railways, Chan and Schofer (2016) studied the recovery of the New York City metropolitan railway network in 

terms of revenue vehicle miles after several extreme weather events. Using the revenue vehicle miles, they defined the number of 

lost service days as an aggregate measure of resilience. Janić (2018) studied the recovery of the Japanese high-speed railway network 

after the 2011 earthquake by deriving an aggregate measure of resilience. This measure was composed of several performance 

indicators covering infrastructural, operational, economic and socio-economic aspects. Woodburn (2019) studied the consequences 

of a lengthy, unplanned closure of a major freight route in Britain by tracking the gradual improvement in traffic and service levels 

over a two-month period. Büchel et al. (2020) studied delay propagation in the Swiss railway network after a two-month disruption 

in Germany by comparing arrival delays for the disrupted and undisrupted scenario. The cascading effects over large distances were 

also replicated in a simulation. 

With respect to other transport modes, Janić (2015) studied the resilience and friability of the air transport network around New 

York LaGuardia by deriving an aggregate measure of resilience, defined as the sum of the resilience of individual airports. Zhu et 

al. (2016) studied the recovery of taxi and subway ridership in New York City after extreme weather events by assessing the loss of 

resilience per evacuation zone in terms of service capacity. Zhu et al. (2017) further investigated the spatial dependence of resilience 

per zone in a multivariate regression model. Ren et al. (2020) identified the relationships between causal factors and resilience with 

respect to disruptions in the Beijing subway network by constructing a Bayesian network. Wong et al. (2020) studied the resilience 

of individual airlines rather than network resilience by searching for abnormalities in arrival delays in four US airlines. These 

abnormalities were quantified using a statistical measure called the Mahalanobis distance. 

To summarize, previous data-driven studies on the resilience of transport systems mainly examined single, large-scale disruptive 

events which are relatively uncommon. Only Ren et al. (2020) and Wong et al. (2020) studied a large number of disruptions, but 

they did not do so to assess the evolution of system performance during disruptions. 

2.2 Resilience metrics 

An immediate question arising after plotting the resilience curve would be how to describe the shape of the curve quantitatively. 

Assuming that the exact mathematical function of the curve is not known, one way is to design a set of resilience metrics that are 

capable of summarizing how performance developed during the disruption. Since resilience is believed to be a multidimensional 

construct, it is incapable of being captured in a single metric (Munoz & Dunbar, 2015), which is why multiple metrics are needed. 

If only one metric were to be used, then entirely different loss and recovery behaviors could result in the same resilience value 

(Zobel, 2011). Hosseini et al. (2016) made the distinction between deterministic and probabilistic resilience metrics. In this review, 

we only consider deterministic metrics. 

Resilience metrics defined in a railway context include the recovery time, recovery rate, deterioration rate, initial impact, 

maximum impact and minimum performance (e.g. Nicholson et al., 2015; Janić, 2018). Minimum performance may also be referred 

to as residual functionality (Cimellaro et al., 2010). Recovery time is in fact the most common metric in transport literature (Zhou 

et al., 2019). Another common metric is the area above the resilience curve, which is known by different names such as the deviation 

area (Nicholson et al., 2015), service loss (Chan & Schofer, 2016), or originally, loss of resilience (Bruneau et al., 2003). Resilience 

metrics are found to be domain-independent, which explains why the discussed metrics also appear in studies that investigate the 

resilience of systems in general. 

Table 1 

Resilience metrics used in previous studies. 

Resilience metric Research domain References 

Recovery time General systems, railways, 

supply chain 

Chan & Schofer (2016), Dorbritz (2011), Janić (2018), Munoz & Dunbar (2015), 

Nicholson et al. (2015), Ouyang et al. (2012), Zhou et al. (2019), Zobel (2011) 

Recovery rate General systems, railways Cimellaro et al. (2010), Janić (2018) 

Deterioration rate Railways Janić (2018) 

Initial impact General systems, railways Dorbritz (2011), Ouyang et al. (2012), Zobel (2011) 

Maximum impact General systems, railways, 

supply chain 

Janić (2018), Munoz & Dunbar (2015), Nicholson et al. (2015), Ouyang et al. (2012) 

Residual functionality General systems, railways Cimellaro et al. (2010), Dorbritz (2011) 

Performance loss General systems, railways, 

supply chain 

Bruneau et al. (2003), Chan & Schofer (2016), Munoz & Dunbar (2015), Nicholson 

et al. (2015), Zhu et al. (2016) 

ITAE Supply chain Spiegler et al. (2012) 

Profile length Supply chain Munoz & Dunbar (2015) 

Weighted sum Supply chain Munoz & Dunbar (2015) 



 

For a broader perspective, resilience metrics in supply chain literature are explored, which introduces additional metrics not 

encountered in transport literature. Spiegler et al. (2012) adopted the integral of time absolute error (ITAE) commonly applied in 

control engineering. Munoz and Dunbar (2015) defined the profile length and the weighted sum to describe the nonlinearity of the 

resilience curve, although in their interpretation, the drop in performance is abrupt and the resilience curve consists only of a third 

phase. The weighted sum is defined in Munoz and Dunbar (2015) as the time-dependent deviation from a linear recovery. An 

overview of the resilience metrics used in previous studies, including those from supply chain literature, is presented in Table 1. 

2.3 Research gaps 

Previous data-driven studies on the resilience of railway networks have left a number of research gaps. First, the evolution of 

railway system performance during the consecutive resilience phases is not well understood for disruptions of varying scale and 

origin. The reviewed studies addressed mostly large-scale disruptions, while in reality, disruptions of a smaller scale such as switch 

failures and train defects occur frequently. Yet, these disruptions have not been subject to resilience research. 

Second, realization data have not been used to assess the resilience of a railway network for a large and heterogeneous set of 

disruptions. While modern technologies and data analytics create opportunities for the use of empirical data (Parkinson & Bamford, 

2017), only Ren et al. (2020) collected data for a large and heterogeneous set of disruptions in a railway-like context. The lack of 

useful reference material in this area poses challenges with regard to data collection, preparation and analysis. 

Third, the spatial attributes of a railway network have not been addressed explicitly when studying resilience as a function of 

time. This is illustrated by the fact that the dimension of time is usually presented on a separate axis, whereas the dimension of space 

is not. The reviewed studies provide insufficient insights into how the spatial attributes of a network can be properly accounted for 

in the calculation of performance. 

3 Methodology 

Based on theoretical and practical insights, a data-driven approach is developed to ex post evaluate the resilience of railway 

networks given a large number of disruptions of different types. The approach is generic and can work for different performance 

indicators, resilience metrics and categorizations of disruption types. The approach is structured in the resilience evaluation 

framework presented in Figure 2. The framework has been divided into three parts: input, processing and output. In short, the 

framework works as follows. The evaluation starts with the collection of traffic realization data, disruption log data and network 

data from a database. Traffic realization data should include at least the plan time, realization time and location of a train activity. 

Disruption log data refer to information about the disruption such as the reported start and end time, location, cause, etc. Network 

data specify how each timetable point in the network is connected to neighboring timetable points. Using these data, the evolution 

of performance over time can be calculated for each disruption for a disruption-specific impact area. Performance measurements at 

each time instant are stored in a dataframe, which serves as the basis for calculating the resilience metrics. The metrics are stored in 

a separate dataframe, which serves as the basis for conducting statistical analyses. The statistical analyses are meant to identify 

differences and similarities among disruptions of different types. The resilience metrics and the test statistics are the quantitative 

output of the resilience evaluation. The resilience curves, which can be drawn directly from the performance measurements, are the 

graphic output of the resilience evaluation. Apart from plotting individual resilience curves, one could also identify different types 

of resilience curves and the mean and median resilience curve per disruption type. 

 

Figure 2. The resilience evaluation framework. 



 

The process blocks in the resilience evaluation framework are explained in more detail in the remainder of this section. Section 

3.1 explains how the impact area is determined. Section 3.2 explains how performance is defined and how it is calculated. Section 

3.3 explains which resilience metrics are selected and how they are defined. Section 3.4 describes the statistical methods applied in 

the statistical analyses. 

3.1 Determining the impact area 

A question arising before calculating the performance during a disruption is which area to consider in the calculation. Since 

disruption effects can easily spread through the network, it is preferred to study a larger area than just the disrupted line or timetable 

point. If the studied area is too small, then disruption effects further away from the disruption location could be overlooked, but if 

the studied area is too large, the impact of the disruption becomes less visible. Disruption management in the Netherlands provides 

a theoretical foundation for determining which area to consider, based on the concepts of decoupling points and impact areas. A 

decoupling point is defined as a timetable point where trains are allowed to start or end their route in case of a disruption. The first 

impact area is bounded by the first intercity decoupling points from the disruption location; the second impact area is bounded by 

the next closest intercity decoupling points from the first ones; and the third impact area is bounded by the next closest intercity 

decoupling points from the second ones. Since cancellations in the third impact area are in principle not allowed, disruption effects 

are mostly contained in the first and second impact area. Thus, the first and second impact area are identified as the appropriate area 

to consider. The size of this area depends not only on the location in the network, but also on the type of impact. This is illustrated 

in Figure 3, which shows the first and second impact area of a hypothetical disruption for a partial or full line blockage in Figure 3 

(a) and for a full timetable point outage in Figure 3 (b). 

To determine the impact area of each disruption given the disruption location, a modified breadth first search algorithm is 

developed. Breadth first search, first described by Moore (1959), is a type of graph search that is used to traverse a graph and find 

each node or vertex in the graph. Basically, the algorithm starts from a source node, referred to as the start vertex, and visits any 

adjacent, unvisited vertices until none are left. Several constrains need to be imposed on the basic algorithm in order to use it in a 

railway context. For details on the algorithm, the interested reader may refer to Knoester (2021). 

       
            (a) Partial/full line blockage                (b) Full timetable point outage 

Figure 3. Timetable points in the first and second impact area for (a) a line blockage between Amersfoort (Amf) and Apeldoorn (Apd), and (b) a 

full timetable point outage in Apeldoorn (Apd). 

 

3.2 Calculating performance 

In order to calculate performance, it is necessary to specify a performance indicator which measures the level of operations at a 

given time instant. A common approach is to express railway system performance in terms of the traffic level (e.g. Ghaemi et al., 

2017), which we refer to as the traffic intensity. Traffic intensity is defined as the proportion of realized train activities relative to 

scheduled train activities in a given time period. While the traffic intensity indicator accounts for cancellations, it does not account 

for delays. Therefore, we consider the traffic punctuality as well. Traffic punctuality is defined as the proportion of punctual train 

activities (with a delay less than three minutes) relative to realized train activities in a given time period. Together, the performance 

indicators account for cancellations as well as delays. 

To measure both indicators simultaneously, they are combined in a composite performance indicator 𝑄 which is calculated as 

the weighted sum of traffic punctuality (𝑃/𝑅) and traffic intensity (𝑅/𝑇): 

𝑄 = ((1 − 𝜆)
𝑃

𝑅
+ 𝜆

𝑅

𝑇
) ∙ 100%                                                                                                                                                            (1) 

where 𝑃 is the number of punctual train activities, 𝑅 is the number of realized train activities, 𝑇 is the number of scheduled train 

activities and 𝜆 is the normalized performance weight. A weight 𝜆 < 0.5 puts more emphasis on punctuality, whereas a weight 𝜆 >

0.5 puts more emphasis on traffic intensity. Although the composite indicator is somewhat abstract and less easy to communicate 



 

than a single indicator, it does have its benefits. For one, it makes it possible to measure delays and cancellations simultaneously. It 

also smoothens fluctuations in these indicators, which are most prominent in the punctuality component. Furthermore, the composite 

indicator helps account for the fact that not every disruption has the same impact on the train service: some disruptions may be more 

impactful in terms of delays, while others may be more impactful in terms of cancellations. Lastly, the composite indicator helps 

identify the start of a disruption more accurately in case measures are not taken immediately and delays start to build up as a result. 

If only traffic intensity were to be studied, these effects would not be observed. 

Performance at each time instant is calculated according to Equation (1) as a centered moving average over a time period of 30 

minutes and with a step size of one minute. A smaller time period would be better able to show the dynamics in system performance, 

but would also make the resilience curve more difficult to analyze. Calculations are performed on a subset of the realization data 

containing only those train activities in the specified impact area. 

3.3 Calculating the resilience metrics 

The shape of the resilience curve is described by seven resilience metrics. The degradation time (𝐷𝑇), response time (𝑅𝑆𝑇) and 

recovery time (𝑅𝐶𝑇) describe the duration of the first, second and third resilience phase, respectively. The maximum impact (𝑀𝐼) 

describes the vertical distance between target performance (𝑄0) and minimum performance (𝑄𝑚𝑖𝑛). Performance loss (𝑃𝐿) describes 

the area enclosed by target performance and the resilience curve. Finally, the degradation profile (𝐷𝑃) and recovery profile (𝑅𝑃), 

which are based on the weighted sum in Munoz and Dunbar (2015) but do not include a time penalty, describe the summed deviation 

from a linear degradation and recovery, respectively. The metrics are defined as follows: 

𝐷𝑇 = 𝑇1 − 𝑇0                                                                                                                                                                                              (2) 

𝑅𝑆𝑇 = 𝑇2 − 𝑇1                                                                                                                                                                                            (3) 

𝑅𝐶𝑇 = 𝑇3 − 𝑇2                                                                                                                                                                                            (4) 

𝑀𝐼 = 𝑄0 − 𝑄𝑚𝑖𝑛                                                                                                                                                                                          (5) 

𝑃𝐿 = ∑ (𝑄0 − 𝑄(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖)

1≤𝑖≤𝑛
𝑄(𝑡𝑖)<𝑄0

      𝑇0 ≤ 𝑡𝑖 ≤ 𝑇3                                                                                                                     (6) 

𝐷𝑃 = ∑ (𝑓(𝑡𝑗) − 𝑄(𝑡𝑗))

𝑚

𝑗=1

                           𝑇0 ≤ 𝑡𝑗 ≤ 𝑇1                                                                                                                     (7) 

𝑅𝑃 = ∑(𝑔(𝑡𝑘) − 𝑄(𝑡𝑘))

𝑠

𝑘=1

                           𝑇2 ≤ 𝑡𝑘 ≤ 𝑇3                                                                                                                    (8) 

where 𝑇0 is the start time of the disruption; 𝑇1, 𝑇2 and 𝑇3 are the end time of the first, second and third phase, respectively; 𝑓(𝑡) and 

𝑔(𝑡) are the linear degradation and recovery function, respectively; 𝑛 is the total number of time intervals; and 𝑚 and 𝑠 are the 

number of equally spaced measurement points in the first and the third phase, respectively. The first five metrics can only have 

nonnegative values, whereas the last two metrics can have positive values as well as negative values. For all metrics though, a higher 

value indicates a stronger disruptive effect, and thus, a less resilient network. 

In order to calculate the resilience metrics, it is necessary to identify the timepoints 𝑇0 … 𝑇3 which are shown in Figure 1. All 

timepoints are derived from the resilience curve itself. 𝑇0 is defined as the last moment before the reported start of the disruption 

when performance is still above target, and 𝑇3 is defined as the first moment after the restart is initiated when performance is above 

target again. Target performance is defined here as the average networkwide performance during the day, measured over a number 

of relatively quiet days throughout the year. Assuming an approximately steady second phase, 𝑇1 and 𝑇2 are determined by applying 

a steady state detection algorithm. A steady state detection algorithm is generally used to identify the steady parts of time series 

data. The approach taken in Dalheim and Steen (2020), which involves fitting a regression model to consecutive, overlapping time 

windows, is taken as a starting point for the algorithm. The algorithm is modified to account for the dynamic nature of railway 

system performance. For details on the algorithm, the interested reader may refer to Knoester (2021). 

3.4 Conducting statistical analyses 

Statistical analysis is a means to investigate patterns and relationships in quantitative data. Group comparisons are a class of 

statistical analysis, which we use to identify differences and similarities in the resilience metrics among disruptions of different 

types. Knowing where and how large these differences are could help improve resilience in specific parts of certain types of 

disruptions. First, it is necessary to categorize the disruptions into groups. The disruption cause is taken as the variable that defines 

group membership, since for example, a line blockage due to a train defect might be inherently different than a line blockage due to 

an overhead line failure. 



 

The standard parametric option for group comparisons of a single dependent variable is one-way analysis of variance (ANOVA), 

while the nonparametric alternative is the Kruskal-Wallis test. In both cases, a number of assumptions must be satisfied in order to 

draw justified conclusions from the test results. Because the distributions of the resilience metrics violate the assumptions of one-

way ANOVA as well as the Kruskal-Wallis test, we use Welch’s ANOVA for the group comparisons. This method is similar to 

one-way ANOVA, but it applies weights to adjust the grand mean (i.e. the mean of the total sample) based on the group means. 

Since ANOVA is robust against violation of the normality assumption (Mertens et al., 2017), Welch’s ANOVA is useful for 

analyzing data that are nonnormally distributed and have unequal variances among groups. The F-statistic, which describes the part 

of the variation in the dependent variable that is explained by group membership, is defined as follows: 

𝐹 =
𝑆𝑆 (𝑔 − 1)⁄

1 +
2Λ(𝑔 − 2)

3

                                                                                                                                                                                  (9) 

where 𝑆𝑆 is the weighted sum of squares, 𝑔 is the number of groups and Λ is a factor based on the weights and group sizes. A high 

F-statistic indicates that differences among groups likely exist. ANOVA is an omnibus test, which is two-sided by definition. This 

means it only reveals whether a difference exists among groups, but it does not tell where exactly the difference lies or how large it 

is (Mertens et al., 2017). A post hoc test is required to explore the results in more detail. The common post hoc test for Welch’s 

ANOVA is the Games-Howell test, which applies a series of pairwise comparisons among the groups while controlling for the 

family error rate. This test is similar to Tukey’s Honest Significant Difference but does not require equal variances among groups. 

4 Case study and results 

The methodology is applied to a case study on disruptions in the Dutch railway network. The case study consists of several 

experiments designed to incrementally gain a better understanding of the disruption dynamics. First, Section 4.1 defines the scope 

of the case study. Section 4.2 presents the detailed evaluation of an arbitrary disruption to illustrate the working of the resilience 

evaluation framework. Section 4.3 presents the different types of resilience curves that are observed. Section 4.4 presents the mean 

and median resilience curve per disruption cause. Section 4.5 presents the results of the group comparisons of the resilience metrics. 

4.1 Case description 

The case study focuses on passenger traffic in the Netherlands in timetable year 2019, which was the last regular timetable year 

before the COVID-19 pandemic. Passenger traffic includes regional rail, intercity rail, high-speed rail and international rail. The 

study area includes the entire Dutch railway network with the exception of traffic control area Kijfhoek, since Kijfhoek exclusively 

handles freight traffic. In total, 2,152 disruptions occurred in this area and time period for which a capacity reallocation and usually 

also a VSM were applied. The five most common disruption causes are studied, which together accounted for 76% of the disruptions 

in 2019. In descending order of occurrence, these causes include train defects, section/signal failures, collisions, switch failures and 

overhead line failures. Section failures and signal failures are regarded as a single category because they are often related. Also, 

collisions are regarded as one general category, including collisions with a person, (motor) cyclist, road vehicle, animal and infra-

structure object. Regarding the train activities, only the arrivals, short stops and passings are included, since including the departures 

as well would mean that a train is observed twice at the same location when it makes a stop. After filtering the realization data for 

the specified activities, the data contain approximately 132,000 activities per day. 

To prevent contamination of the resilience curve, we focus on single disruptions, which are defined as disruptions that are not 

related to other nearby disruption. If a disruption cannot be treated as a single disruption, then it is connected. Connected disruptions 

are identified as two or more disruptions that have overlapping time periods and that have at least one timetable point in their impact 

area in common. Note that this does not necessarily imply a causal relationship between connected disruptions. In addition, we 

exclude disruptions on black days (i.e. days when traffic punctuality is below 75% and/or traffic intensity is below 90% network-

wide) and near-black days; disruptions with an impact area of less than six timetable points; disruptions with a reported duration 

longer than ten hours; and disruptions with a missing time entry for the moment when the restart was initiated. This leaves 706 

disruptions of the initial 1,541 disruptions that match the top five causes, which is primarily due to excluding connected disruptions. 

For the remaining disruptions, it must be ensured that the resilience curve can be described properly so that calculating the 

resilience metrics is justified. Therefore, we also exclude disruptions for which performance remained above target for the entire 

reported duration; disruptions for which the start time cannot be identified, meaning performance was already below target at least 

60 minutes before the reported start of the disruption; disruptions for which the end time cannot be identified, meaning performance 

was still below target at least 180 minutes after the reported end of the disruption; disruptions for which an empty time window is 

encountered in the performance calculation; and disruptions for which a steady state cannot be identified. 

How many disruptions are excluded based on the former conditions depends on the way performance evolved, and thus, on the 

value of the performance weight 𝜆. We consider 𝜆 = 0.67 as a starting point, which puts twice the weight on traffic intensity 

compared to punctuality. At this value, the resilience curve is relatively well behaved while the punctuality component is dominant 

enough so that changes in punctuality may be observed. The remaining number of disruptions for 𝜆 = 0.67 is 445 out of 706. Other 

values of 𝜆 yield similar results. An overview of the original and the remaining number of disruptions for the studied disruption 

causes is presented in Table 2. 



 

Table 2 

Number of disruptions matching the five most common causes. 

Disruption cause 
Number of disruptions 

in the original dataset 

Number of disruptions potentially 

studied as single disruptions 

Number of disruptions studied as single disruptions 

for the specified performance weight (𝜆 = 0.67) 

Train defect 742 346 202 

Section/signal failure 306 141 97 

Collision 275 146 96 

Switch failure 153 47 34 

Overhead line failure 65 26 16 

Total 1,541 706 445 

 

4.2 Characteristics of the resilience curve for an example case 

An arbitrary disruption is selected to illustrate the working of the resilience evaluation framework up until the statistical analysis. 

The example case is a collision that occurred between Putten and Nunspeet on April 4, 2019. The collision occurred at 14:43 and 

resulted in a full line blockage of the double track line. The first impact area (bounded by Amersfoort and Zwolle) and the second 

impact area (bounded by Steenwijk, Assen, Almelo, Deventer, Hilversum and Utrecht) comprised an impact area of 64 timetable 

points. Performance is calculated firstly for different values of the performance weight. The resulting resilience curves are presented 

in Figure 4 (a) as cubic splines fitted to the actual performance measurements. It is observed that traffic intensity (𝜆 = 1) dropped 

quickly at the start of the disruption, while punctuality (𝜆 = 0) remained relatively stable until approximately 100 minutes into the 

disruption. The moment when punctuality eventually dropped matches the moment when the evacuation of the stranded passengers 

and retrieval of the damaged train began. Meanwhile, traffic intensity had already partly recovered. Performance recovered similarly 

for the different values of the performance weight, which indicates that the restart was executed well and did not cause many new 

delays. Much lower weights than 𝜆 = 0.67 would underestimate the impact in terms of traffic intensity, while much higher weights 

would neglect the good performance in terms of punctuality. This provides additional support for the initial choice of 𝜆, which is 

why 𝜆 = 0.67 is maintained throughout the experiments. 

The steady state detection algorithm is applied to the resilience curve for 𝜆 = 0.67, resulting in the timepoints 𝑇1 and 𝑇2. The 

steady state in the resilience curve is presented in Figure 4 (b). The steady parts of the curve are shown in green, where the unsteady 

parts are shown in red. The detection of a steady state is successful, since it matches the steady state that one would identify by 

observation, and also, it is not affected by the slight change in performance during the second phase. 

Based on the resilience curve in Figure 4 (b), the resilience metrics are calculated. The degradation time, response time and 

recovery time measure 68, 95 and 60 minutes, respectively. The maximum impact measures 12.80 percentage points, and the 

performance loss measures approximately 1,848 minutes. The degradation profile measures 108.53 percentage points, indicating a 

convex deviation from a linear degradation. This means performance dropped rapidly due to the cancellation of trains early in the 

disruption. The recovery profile measures -47.44 percentage points, indicating a smaller, concave deviation from a linear recovery. 

This means performance recovered rapidly as many trains could be reinserted shortly after the restart was initiated. 

    

  (a) Resilience curve for different values of the performance weight          (b) Resilience curve with the identified steady state 

Figure 4. Resilience curves for the example case, showing (a) the evolution of performance for different values of the performance weight, and 

(b) the identified steady state for the resilience curve with 𝜆 = 0.67. 

4.3 Different types of resilience curves 

Although the resilience curve is depicted in theory as a bathtub shaped curve with a clearly recognizable first, second and third 

phase, other shapes are possible as well. Inspection of over 100 randomly sampled disruptions (at least ten per cause) reveals that it 

is possible to distinguish between eight types of resilience curves, including the bathtub. The newly identified types are named the 

hammock shaped curve, plateau curve, steady state curve, gradual recovery curve, aftermath curve, timetable influenced curve and 

undefinable curve. Real examples of the different types of curves are presented in Figure 5. 
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Figure 5. Examples of the different types of resilience curves. 

Observations of the sampled disruptions suggest that certain types of resilience curves are more typical of one disruption cause 

than of another. The gradual recovery curve appears most typical of collisions, but is also occasionally observed for train defects. 

This seems to contradict the belief that collisions have a long and clear second phase due to the necessary clearing operations. The 

shape of the curve may be explained though by the fact that many trains are canceled shortly after a collision is reported. The number 

of cancellations could be unnecessarily high, creating a distorted version of the bathtub. The aftermath curve appears most typical 

of switch failures, but is occasionally observed for the other infrastructure related causes as well. The drop in performance in the 

end appears to be related to the permanent repair of the infrastructure, requiring a higher number of trains to be canceled temporarily 

to create a safe and accessible workspace for the mechanics. The undefinable curve appears most typical of section/signal failures, 

which may be explained by the sometimes unclear nature or location of the failure and the fact that this can result in a prognosis 

which is updated several times, creating uncertainty around the moment of restarting the train service. 

The other types of resilience curves do not appear typical of a specific disruption cause, but are still worth discussing. The 

plateau curve could occur when part of the infrastructure becomes available again. The steady state curve could occur for particularly 

long disruptions where it is immediately clear that there will be little traffic for an extended period of time. The timetable influenced 

curve could occur for disruptions that involve relatively little traffic because they occur in a more isolated part of the network and/or 

occur in the early morning or late evening, when train frequencies are low, thus introducing an hourly pattern in the resilience curve. 

4.4 Mean and median resilience curve per cause 

To obtain a more general view of the resilience curve, the mean and median resilience curves are drawn for the studied disruption 

causes. Mean and median performance across a disruption cause are calculated at each time instant 𝑡, where time is expressed as a 

percentage of the disruption length rather than in minutes. For each disruption, 101 measurements are taken, from 𝑡 = 0% to 𝑡 =

100%. Thus, all resilience curves are normalized along the time axis so they can be presented on the same scale. The mean and 

median curves and the central 80% range are shown in Figure 6 (a)-(e) for 𝜆 = 0.67, where the central 80% range is defined as the 

range of observations between the 10th and the 90th percentile. The mean curves are shown together in one plot in Figure 6 (f)-(h) 

for composite performance (𝜆 = 0.67), punctuality (𝜆 = 0) and traffic intensity (𝜆 = 1), respectively. 

The resilience curves in Figure 6 suggest that differences exist among disruptions of different causes. A preliminary conclusion 

would be that train defects are the least impactful single disruptions on average, whereas collisions are the most impactful single 

disruptions on average. This is most obvious in terms of traffic intensity, as it appears that train defects cause relatively few 

cancellations on average, while collisions cause relatively many cancellations on average. Switch failures also cause relatively few 

cancellations on average compared to the other infrastructure related causes. Although the differences in terms of punctuality are 

smaller, it is observed that punctuality is affected more strongly on average for the infrastructure related causes than for train defects 

and collisions, particularly in the beginning. This may be explained by the fact that train drivers can be instructed to drive past the 

failure location at reduced speed to see if the infrastructure failure disappears by itself. The resulting delays can escalate quickly, 

especially on busy routes, which causes the lower punctuality. 
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Figure 6. Mean and median resilience curve per disruption cause. 

In addition, it is observed that the mean resilience curves do not necessarily resemble the shape of a bathtub, although the width 

of the 80% range shows that an arbitrary resilience curve could deviate significantly from the mean curve. The width of the 80% 

range is relatively small for train defects, which suggests train defects are the most consistent type of disruption. Another observation 

is that the width of the 80% range for the infrastructure related causes is largest in the transition from first to second phase or early 

in the second phase, which suggests that those disruptions are more heterogeneous in terms of degradation behavior than in terms 

of recovery behavior. Also, the width of the 80% range for collisions, which is fairly constant from about 𝑡 = 20% until 𝑡 = 60%, 

shows that certainly not all collisions have a gradual recovery curve, and that a significant number of collisions must have a resilience 

curve similar to the bathtub shaped curve or the steady state curve with a distinguishable second phase. 

4.5 Comparison of resilience metrics across disruption causes 

Group comparisons of the resilience metrics are performed to determine if differences indeed exist among disruptions of different 

causes. To get an overview of the values of the resilience metrics per cause, descriptive statistics are reported first. The mean, 

median and standard deviation (SD) of the resilience metrics are presented in Table 3. The table shows that a single disruption on 

average has a degradation time of 49.55 minutes, a response time of 79.17 minutes, a recovery time of 70.61 minutes, a maximum 

impact of 18.09 percentage points, a performance loss of 2,096 minutes, a degradation profile of -19.54 percentage points and a 

recovery profile of -54.46 percentage points. Note that the standard deviations are relatively large compared to the means. This 

suggests that the disruption dynamics are quite heterogeneous. Given the size of the standard deviations, the mean and median of 

the degradation and recovery profile are relatively close to zero, which indicates that the shape of the resilience curve in the transition 

phases is neither strongly concave nor strongly convex on average, but rather linear or mixed. 

Table 3 

Descriptive statistics of the resilience metrics per cause for 𝜆 = 0.67. 

  DT (minutes) RST (minutes) RCT (minutes) MI (percentage points) 

Disruption cause N Mean Median SD Mean Median SD Mean Median SD Mean Median SD 

Train defect 202 40.62 35.00 25.03 53.91 28.00 52.23 56.79 47.00 41.75 13.24 10.81 10.47 

Section/signal failure 97 53.61 43.00 44.53 91.04 67.00 79.75 78.60 72.00 57.37 22.35 17.80 13.50 

Collision 96 55.96 40.00 50.08 110.01 99.00 69.22 93.33 82.00 63.86 23.90 20.55 13.91 

Switch failure 34 69.88 47.50 84.32 92.79 69.50 73.81 76.24 53.50 58.73 17.89 13.23 13.44 

Overhead line failure 16 56.13 49.50 28.98 112.13 110.00 27.77 48.25 47.00 25.30 19.03 16.78 11.86 

Average 445 49.55 40.00 43.45 79.17 57.00 68.16 70.61 58.00 53.70 18.09 14.68 13.06 

 



 

(Table 3 continued) 

 
 PL (minutes) DP (percentage points) RP (percentage points) 

Disruption cause N Mean Median SD Mean Median SD Mean Median SD 

Train defect 202 1190.34 736.17 1590.88 -10.86 0.82 86.67 -52.90 -4.77 149.68 

Section/signal failure 97 2653.90 2153.74 2214.11 -24.66 -9.39 282.33 -43.07 -0.77 223.70 

Collision 96 3375.52 2889.97 2374.67 -10.60 -0.37 220.27 -41.10 -22.48 359.17 

Switch failure 34 2159.73 1308.50 2185.02 -109.25 -0.94 656.15 -124.36 0.59 312.87 

Overhead line failure 16 2358.22 1772.25 2091.90 38.82 -20.42 221.87 -74.74 -36.20 127.39 

Average 445 2096.83 1423.82 2170.91 -19.54 0.00 255.88 -54.46 -5.37 238.42 

Since the disruption cause is taken as the variable that defines group membership, there are five groups and seven comparisons 

to be made: one for each metric. Group comparisons in general are by definition two-sided tests, which is why the null hypothesis 

𝐻0 and alternative hypothesis 𝐻1 are as follows: 

𝐻0: The mean of the resilience metric is the same for each disruption cause. 

𝐻1: The mean of the resilience metric is different per disruption cause. 

The test results of Welch’s ANOVA are presented in Table 4, which provides the F-statistic, p-value and 𝜂-squared, and states 

whether or not the null hypothesis is rejected at 𝛼 = 0.05. In saying that the null hypothesis is rejected, it is assumed that all other 

assumptions in the statistical model are correct, since a small p-value “simply flags the data as being unusual if all the assumptions 

used to compute it (including the test hypothesis) were correct” (Greenland et al., 2016). The effect size 𝜂-squared explains which 

part of the variation in the dependent variable is associated with group membership (Lakens, 2013). As a rule of thumb, 𝜂-squared 

= 0.01 is considered small, 𝜂-squared = 0.06 is considered medium and 𝜂-squared = 0.14 is considered large. The results in Table 4 

show that the first five metrics are significantly different per disruption cause, and that the effects are medium to large. The largest 

effect size, 𝜂-squared = 0.169, is obtained with regard to the performance loss. 

Table 4 

Welch’s ANOVA test results for 𝜆 = 0.67. 

Metric F-statistic p-value 𝜂-squared 𝐻0 rejected (𝛼 = 0.05) 

DT 4.770 1.77E-03 0.043 Yes 

RST 22.352 1.06E-12 0.125 Yes 

RCT 9.824 1.45E-06 0.081 Yes 

MI 15.954 1.53E-09 0.129 Yes 

PL 21.533 6.99E-12 0.169 Yes 

DP 0.437 7.82E-01 0.012 No 

RP 0.611 6.56E-01 0.008 No 

In addition to Welch’s ANOVA, the Games-Howell post hoc test is performed. The most telling results of the Games-Howell 

test are presented in Table 5, which provides the groups A and B, the difference in their means, the standard error (SE), t-value, p-

value, Hedges’ g and common language effect size (CLES). The effect size Hedges’ g expresses the difference between the means 

of two groups as a proportion of the standard deviation of this difference. As a rule of thumb, g = 0.2 is considered small, g = 0.5 is 

considered medium and g = 0.8 is considered large (Cohen, 1988). Although it is generally preferred not to use the rules of thumb 

and instead compare the effect sizes to earlier results in similar research (Lakens, 2013), such results are not available in this case. 

The other effect size, CLES, expresses the probability that a randomly sampled observation from one group will have a higher 

measurement value than a randomly sampled observation from another group. 

The results in Table 5 show that the largest differences in the resilience metrics mostly relate to comparisons where train defects 

are less impactful and/or collisions are more impactful than the other group. For example, train defects have a significantly shorter 

response time than all other causes, and collisions have a significantly longer recovery time than train defects and overhead line 

failures. Train defects also have a significantly smaller maximum impact than collisions and section/signal failures. In terms of 

performance loss, collisions perform significantly worse than switch failures and train defects. Medium-sized differences involving 

overhead line failures are not found to be significant at 𝛼 = 0.05, which may be explained by the small group size. To conclude, 

the test results are consistent with the mean resilience curves presented in Figure 6, which already suggested that train defects are 

the least impactful single disruptions and collisions are the most impactful single disruptions. 

The values of the resilience metrics and the ANOVA results are verified for other values of 𝜆 which put at least half the weight 

on traffic intensity and are relatively easy to communicate, namely 𝜆 = 0.50, 𝜆 = 0.75, 𝜆 = 0.80 and 𝜆 = 1. As 𝜆 increases, it is 

observed that performance loss steadily increases for collisions, while it steadily decreases for switch failures. The maximum impact 

of collisions also increases with increasing 𝜆, which underlines the disruptive effect of collisions in terms of cancellations. For 𝜆 =

1, the degradation time and recovery time are shorter on average than for smaller values of 𝜆, which means the transition phases 

(and the disruption as a whole) are found to last shorter if delays are not accounted for. 



 

Table 5 

Games-Howell test results for 𝜆 = 0.67 and |Hedges’ g| ≥ 0.5. 

Metric Group A Group B (A - B) SE t-value p-value Hedges’ g CLES 

DT Overhead line failure Train defect 15.51 7.46 2.079 0.274 0.538 0.649 

RST Collision Train defect 56.10 7.96 7.046 0.001 0.871 0.732 

RST Overhead line failure Section/signal failure 21.08 10.67 1.977 0.289 0.530 0.647 

RST Overhead line failure Train defect 58.22 7.86 7.410 0.001 1.918 0.913 

RST Section/signal failure Train defect 37.14 8.89 4.176 0.001 0.515 0.642 

RST Switch failure Train defect 38.89 13.18 2.950 0.040 0.545 0.651 

RCT Collision Overhead line failure 45.08 9.08 4.964 0.001 1.331 0.828 

RCT Collision Train defect 36.54 7.15 5.112 0.001 0.632 0.673 

RCT Overhead line failure Section/signal failure -30.35 8.60 -3.529 0.008 -0.946 0.250 

RCT Overhead line failure Switch failure -27.99 11.89 -2.353 0.146 -0.702 0.307 

MI Collision Train defect 10.66 1.60 6.663 0.001 0.824 0.720 

MI Section/signal failure Train defect 9.11 1.56 5.854 0.001 0.721 0.695 

PL Collision Switch failure 1215.80 446.27 2.724 0.062 0.541 0.650 

PL Collision Train defect 2185.18 266.96 8.185 0.001 1.012 0.763 

PL Overhead line failure Train defect 1167.88 534.82 2.184 0.234 0.565 0.656 

PL Section/signal failure Train defect 1463.56 251.13 5.828 0.001 0.718 0.695 

The results of Welch’s ANOVA for the selected values of 𝜆 are summarized in Table 6, which presents the effect size 𝜂-squared 

per resilience metric. As 𝜆 increases, the differences between groups become more obvious in terms of the response time, maximum 

impact and performance loss. On the contrary, the differences between groups for 𝜆 = 1 are less obvious in terms of the degradation 

time and recovery time. Note how there are some inconsistencies in the increasing or decreasing trend, for example with 𝜆 = 0.80. 

One explanation for these inconsistencies is that there may be a number of resilience curves which are sensitive to changes in 𝜆 

because of strong fluctuations in punctuality and/or traffic intensity throughout the disruption. Consequently, the timepoints could 

change significantly for small changes in 𝜆. Thus, 𝜆 = 0.80 might be a particularly unlucky parameter value for a small subset of 

disruptions. A second explanation is that there are slight differences in the disruption samples, since the sample depends on the 

conditions outlined in Section 4.1. Even though target performance was adjusted for 𝜆, some disruptions do not appear in all samples. 

Table 6 

𝜂-squared per resilience metric for different values of the performance weight 𝜆. 

𝜆 𝜂2 (DT) 𝜂2 (RST) 𝜂2 (RCT) 𝜂2 (MI) 𝜂2 (PL) 𝜂2 (DP) 𝜂2 (RP) 

0.50 0.047 0.129 0.068 0.099 0.137 0.011 0.008 

0.67 0.043 0.125 0.081 0.129 0.169 0.012 0.008 

0.75 0.039 0.146 0.069 0.144 0.186 0.017 0.005 

0.80 0.051 0.154 0.063 0.152 0.196 0.021 0.002 

1.00 0.028 0.188 0.032 0.151 0.194 0.018 0.014 

5 Discussion 

Based on the results of the case study, a general conclusion is that the disruption dynamics are quite heterogeneous. Even though 

differences exist among disruptions of different causes in terms of the resilience metrics, and some types of resilience curves are 

found to be more typical of one disruption cause than of another, there is still significant heterogeneity among disruptions within 

each group. Since composite performance represents the interaction between punctuality and traffic intensity, this heterogeneity 

also illustrates how complex the interaction between the two indicators can be. A common observation is that punctuality drops at 

the start of the disruption, before any trains are canceled. Later, when trains are canceled or short-turned towards the second phase, 

punctuality might recover again, because a lower number of trains means delays can propagate less easily. If the train service is then 

restarted too fast or in a way that is infeasible for the TOCs, punctuality might drop again while traffic intensity already recovers. 

However, this is merely one of the possible scenarios. It could also be the case that punctuality is unaffected because trains are 

canceled immediately, or that punctuality and traffic intensity both recover at a similar rate, to give a few examples. Plotting the 

resilience curve for the separate indicators as well as for different combinations (i.e. different values of 𝜆) creates a foundation to 

better understand this interaction. 

Given that the resilience curve can have different shapes, even though each curve results from the same largely predefined and 

standardized process, one could ask whether a certain resilience curve behavior is preferred over another. Related to that, one could 

ask what the consequences are if a resilience curve does not resemble the bathtub shape like it is expected to. It should be noted that 

the bathtub model is mainly useful from a conceptual point of view. It helps translate the message that performance is temporarily 

lower than usual, but in practice, the real-time conditions in the network determine what is possible and what is not, and these 

conditions could change throughout the disruption. If the resilience curve were to follow the shape of a bathtub, which it occasionally 

does, this mainly creates predictability towards the TOCs and the passengers. When the constraints for the rescheduling of rolling 



 

stock and crew in the second phase are clear, and TOCs can guarantee the availability of rolling stock and crew at the prognosed 

time of restart, then passengers know they can rely on the revisited timetable to reach their destination in spite of the disruption, 

which should be the end goal after all. 

Regardless of the type of resilience curve, an array of factors might affect how performance develops during a disruption, and 

as a result, affect the shape of the resilience curve and the values of the resilience metrics. Based on expert judgment and interviews 

with practitioners, such factors may be categorized as characteristics of the infrastructure, timetable, human action, information 

supply or external conditions. An overview of explanatory factors per category is presented in Table 7. The number of factors alone 

illustrates how each disruption can be treated as a unique case. Still, the results of the resilience evaluation show that general 

conclusions can be drawn by studying all of these unique disruptions simultaneously, and that data-driven approaches do have 

potential to evaluate and improve resilience, even when part of the data are confounded by human interference. 

Table 7 

Factors per category that might affect how performance develops during a disruption. 

Category Explanatory factors 

Infrastructure Number of railway tracks, number of railway switches, network connectivity 

Timetable Number of train series, train frequency, ratio of intercity traffic versus regional traffic, number and length of 

freight trains 

Human action Experience of the involved actors, proactive attitude of traffic controllers, change in workload, time pressure 

to reach the second phase, time pressure to restart the train service 

Information supply Swiftness of reporting the disruption, swiftness of communication throughout the chain, clarity about the 

cause and location, availability of a contingency plan, certainty about the prognosed end time, knowledge 

within the infrastructure manager of rolling stock and crew rescheduling by the TOC 

External conditions Time of day, weather conditions 

6 Conclusion 

In this paper, a data-driven resilience evaluation approach was proposed based on a newly developed framework. The approach 

involves collecting traffic realization data for a large and heterogeneous set of disruptions and reconstructing the resilience curves 

for these disruptions. The shape of each resilience curve is described by a set of resilience metrics, which are evaluated in group 

comparisons. By specifying the disruption cause as the grouping variable, differences and similarities can be found among 

disruptions of different causes in terms of the resilience metrics. 

The approach was applied to a case study of the Dutch railway network. The main conclusion based on the results of the case 

study is that the system performance of a railway network during a disruption may approximately follow the shape of the resilience 

curve as depicted in theory. However, there is significant heterogeneity in the resilience curve behavior, even within disruptions of 

the same cause. Some resilience curves are fairly well behaved: they degrade, remain steady for some time and recover again, while 

other curves may show atypical behavior and can be quite unpredictable. With regard to the resilience metrics, significant differences 

were found among disruptions of different causes in terms of the degradation time, response time, recovery time, maximum impact 

and performance loss. The largest effect size was obtained for the performance loss. Post hoc tests showed that train defects are the 

least impactful single disruptions on multiple resilience metrics, whereas collisions are the most impactful single disruptions on 

multiple metrics. This finding is consistent with the mean resilience curves that were plotted for each disruption cause. 

The resilience evaluation discussed in this paper has some limitations. Most importantly, less than one third of the initial 1,541 

disruptions matching the top five causes were eventually studied as single disruptions. The studied disruptions are mainly the shorter 

ones, since those have a lower chance of being connected to other disruptions. Furthermore, it was assumed that all delays and 

cancellations observed in the studied impact area were related to the disruption, while does not necessarily have to be the case. Also, 

scheduled maintenance works were not accounted for, while these could have reduced the infrastructure capacity in some disruptions 

more than usual, potentially adding to the disruptive effects. 

Future research could focus first of all on the interaction between punctuality and traffic intensity, which was described in terms 

of the composite performance indicator but is still not properly understood. Second, the same analysis could be repeated with newer 

data from after the pandemic, when traffic levels are back to normal again. Third, similar data-driven analyses could be performed 

for railway networks in other countries, where it would be particularly interesting to determine if anticipation-based or reaction-

based disruption management should be preferred to build resilience. Fourth, it could be investigated how connected disruptions are 

best evaluated, and if different types are observed here as well. Fifth, it is worth investigating the expected effects of automatic train 

operation (ATO) on the disruption dynamics, since ATO removes much of the human element that is so clearly observable in the 

entire disruption management process. 
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B. Recommendations (in Dutch) 
Naar aanleiding van de conclusies uit dit onderzoek zijn er aanbevelingen gedaan met betrek-

king tot de dataverwerking en bijsturingspraktijken binnen ProRail Verkeersleiding, welke hier 

worden besproken. Met betrekking tot de verwerking van realisatiedata en Spoorweb-data in 

Sherlock wordt het volgende aanbevolen: 

1. Zorg ervoor dat de meetmomenten altijd beschikbaar zijn indien er een VSM is 

toegedeeld, zodat elke calamiteit op dezelfde manier kan worden geëvalueerd. Het gaat 

hierbij specifiek over de tijdstempels “eerste fase gereed” en “treindienst opgestart”, die 

volgens de formele definitie respectievelijk het einde van de eerste en derde fase aange-

ven. Beide tijdstempels zijn afhankelijk van het feit of er al dan niet treinen zijn gekeerd, 

terwijl keren slechts één van de mogelijke bijsturingsacties is. Zonder keringen is er nog 

steeds een veerkrachtcurve te bepalen met een eerste, tweede en derde fase waarvoor 

de start- en eindtijd kunnen worden afgeleid, wellicht door middel van een definitie-

wijziging of zelfs door toepassing van de methodes die zijn gebruikt in deze thesis om 

de tijdspunten uit de curve zelf te halen. 

2. Beoordeel de start- en eindtijd van calamiteiten kritisch, aangezien is gebleken dat 

calamiteiten gemiddeld genomen vaak eerder beginnen en later eindigen dan gerappor-

teerd. Met betrekking tot de starttijd wordt geadviseerd om de vijf minuten te herzien 

die standaard worden afgetrokken van het tijdstip wanneer een melding de meldkamer 

bereikt. Met betrekking tot de eindtijd wordt geadviseerd om verder te kijken dan de 

eerste gereden treinen bij het opstarten, zeker als er weinig treinseries bij betrokken 

zijn, aangezien het kan voorkomen dat vertragingen ontstaan tijdens het opstarten of 

dat het opstartplan alsnog niet maakbaar blijkt. 

3. Heroverweeg de definitie van einde eerste fase, aangezien al voor aanvang van de 

experimenten bleek dat “eerste fase gereed” vaak geen nauwkeurige beschrijving geeft 

van het moment dat de veerkrachtcurve stabiliseert en de tweede fase is bereikt. In 

plaats daarvan zou het einde van de eerste fase simpelweg kunnen worden gedefinieerd 

als het moment waarop de eerste VSM is toegedeeld, wat uit de interviews naar voren 

kwam als de meer gangbare definitie. Bovendien bleek dit moment gemiddeld genomen 

redelijk nauwkeurig te zijn in vergelijking met het door het algoritme gevonden einde 

van de eerste fase, met name voor defect materieel. 

4. Verbeter de koppeling van klanthinder in Sherlock tussen een Monitoring ID en 

een Spoorweb ID. Momenteel gaat deze koppeling in een aantal gevallen fout, bijvoor-

beeld wanneer een eerdere verstoring (zonder VSM) heeft plaatsgevonden in hetzelfde 

gebied kort voor aanvang van de calamiteit waarop de klanthinder eigenlijk betrekking 

zou moeten hebben, of bijvoorbeeld wanneer de begrenzingspunten in het Monitoring-

dossier niet overeenkomen met die in het Spoorweb-dossier. 

5. Verbeter de VSM-beoordeling in Sherlock door een extra check uit te voeren op de 

beoordeling die door de VLC in Spoorweb wordt ingevoerd. Momenteel is deze beoor-

deling niet altijd even betrouwbaar, en daarnaast komt het aantal beoordelingen niet 

altijd overeen met het aantal toegedeelde VSM’s. De beoordeling zou moeten worden 

verbeterd wanneer Sherlock-data zouden worden gebruikt om een vergelijk te maken 

tussen calamiteiten waar een geschikte VSM beschikbaar was en calamiteiten waar 

deze niet beschikbaar was. 

6. Zorg ervoor dat realisatietijden en plantijden beschikbaar zijn voor alle treinacti-

viteiten op elk dienstregelpunt, aangezien dit ten goede zou komen van de betrouw-

baarheid van de prestatieberekening. Zonder realisatietijd kan niet worden bepaald of 

een activiteit punctueel was of niet, en zonder de meest recente plantijd kan niet met 

zekerheid worden gesteld dat alle treinpaden die gebruikt worden bij het bepalen van 

het impactgebied volledig kloppen. Hier wordt verder op ingegaan in Sectie 7.3, waarbij 

het gaat over de Planning in Tienden van Minuten (PINT) van NS-treinen. 
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Met betrekking tot de bijsturingspraktijken wordt het volgende aanbevolen: 

1. Creëer een stuk bewustwording over het feit dat het snel bereiken van de volgende 

fase niet per se veel betekent, zowel voor de overgang van eerste naar tweede fase als 

voor de overgang van tweede naar derde fase. Meer specifiek betekent dit dat het snel 

doorlopen van de eerste fase niet per definitie leidt tot een betere (of slechtere) prestatie 

gedurende de rest van de calamiteit. Het zou dan ook de voorkeur verdienen om juist 

de tijd te nemen voor een weloverwogen en structureel maakbaar verkeersplan waarbij 

de kans op nieuwe vertragingen wordt beperkt, aangezien dit zou kunnen bijdragen aan 

een stabielere tweede fase en een kortere en meer vloeiende derde fase. 

2. Benadruk het belang van het snel delen van informatie door de logistieke keten. 

Informatie omtrent een calamiteit hoort zo snel mogelijk te worden gedeeld, ongeacht 

hoe relevant de informatie is voor de actor die de informatie bezit, zodat andere actoren 

voor wie de informatie wel (of meer) relevant is hierop kunnen handelen. Het gaat hier 

voornamelijk om het begin van de versperring, waar het automatiseren van de melding 

richting de meldkamer door iets simpels als een druk op een knop kan helpen bij het 

sneller opstarten van de verschillende processen. 

3. Ontwerp vooraf gedefinieerde maatregelen voor de eerste fase om de werkdruk 

voor verkeersleiders en treindienstleiders te verminderen. De standaardisatie van 

maatregelen voor de eerste fase zou verkeersleiders meer tijd kunnen geven om naar 

een optimale VSM toe te werken. Een dergelijke maatregel zou de eerste opheffingen 

en keringen kunnen specificeren op basis van de hypothetische locatie van een versper-

ring. Aangezien timing cruciaal is bij het nemen van maatregelen in de eerste fase, 

zouden de acties per tijdvak van bijvoorbeeld vijf minuten in een basis-uur kunnen 

worden beschreven. Omdat de exacte toedracht van een versperring in het begin nog 

onduidelijk is, zou het verstandig zijn om een maatregel voor de eerste fase minstens 

zo beperkend te maken als een VSM voor een volledige baanvakstremming. De acties 

moeten daarnaast niet te veel conflicteren met de acties in een later toe te delen VSM, 

aangezien dit de overgang van eerste naar tweede fase zou bemoeilijken. 

4. Maak nauwkeurigere prognoses van het moment waarop de infrastructuur wordt 

vrijgegeven en het opstarten van de treindienst kan beginnen. Een nauwkeurigere 

prognose is al een eerste stap richting een maakbaar opstartplan, aangezien dit de ver-

voerders voorziet van de nodige beperkingen om hun materieel- en personeelsplanning 

te optimaliseren tot het moment van opstarten. Indien de prognose wordt vervroegd, 

moet het bovendien zeker zijn dat de vervoerder zijn planning op orde heeft voordat er 

wordt begonnen met opstarten. 

5. Neem vaker een opstartkader op in een VSM en betrek vervoerders hierbij. Indien 

er een opstartkader beschikbaar is, zou een verkeersleider meer tijd en vakmanschap 

kunnen steken in het voorbereiden van een structureel maakbaar opstartplan, waarbij 

de communicatielijnen kort en efficiënt worden gehouden. Een concept opstartkader 

kan nog steeds autonoom worden ontwikkeld op basis van de richtlijnen in het afwe-

gingskader. Het zou echter verstandig zijn om deze versie daarna aan de vervoerders 

voor te leggen. Om de bruikbaarheid van het opstartkader te vergroten wordt tevens 

aanbevolen om het tijdsbestek vast te stellen waarin de opstart kan plaatsvinden, en 

daarbij te aan te geven welke series tegelijk kunnen worden opgestart en in welk tempo. 

6. Neem meer regie in de derde fase om ervoor te zorgen dat het opstartplan wordt 

nageleefd en dat het soepel verloopt. Het klopt dat het beschikbaar stellen van de infra-

structuur het voornaamste belang van ProRail is, waarna het aan de vervoerders is om 

hun treinen opnieuw te rijden. Desalniettemin is een goed uitgevoerd opstartplan met 

minimale vertragingen uiteindelijk in ieders voordeel, en creëert dit ook betere start-

condities voor het geval dat er een volgende versperring in de buurt zou optreden. 
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7. Vestig meer aandacht op het verbeteren van de afhandeling van aanrijdingen, 

aangezien aanrijdingen met regelmaat voorkomen en de meest impactvolle opzichzelf-

staande calamiteiten bleken te zijn. Het gaat hierbij niet enkel om aanrijdingen met een 

persoon, maar ook om andere soorten aanrijdingen, zeker aangezien het niet altijd 

gelijk duidelijk is of er een persoon bij betrokken is of niet. Aandacht zou uit kunnen 

gaan naar het versnellen van de melding bij een aanrijding en het kritisch beoordelen 

van het aantal treinen dat wordt opgeheven als noodmaatregel, ofwel het gebied waarin 

de treinen worden opgeheven. Als er geen (verdere) verbeteringen haalbaar zijn in het 

terugbrengen van de impact, zou aandacht moeten worden besteed aan manieren om 

aanrijdingen te voorkomen, zoals betere monitoring van personen op of nabij het spoor 

en het minder toegankelijk maken van de spoorbaan. 

8. Doe meer datagedreven onderzoek naar de ontwikkeling van de systeemprestatie 

van het spoornetwerk en de kwaliteit van de logistieke afhandeling van calamiteiten, 

aangezien veerkracht steeds belangrijker zal worden naarmate het drukker wordt op 

het spoor. ProRail kan hierin bovendien meer initiatief nemen als probleemeigenaar. 

De benodigde data is beschikbaar, al dient deze eerst op een goede manier bij elkaar te 

worden gebracht en is er ruimte voor verbetering op het gebied van dataverwerking. 

9. Investeer in wiskundige optimalisatiemodellen voor real-time bijsturingsmaatre-

gelen. Net als de solver die wordt ontwikkeld voor het ontwerpen van VSM’s, zouden 

modellen ook kunnen worden ontwikkeld voor maatregelen in de eerste en derde fase. 

Afzonderlijke modellen zouden de voorkeur krijgen boven één groot model om de over-

gang naar en van een VSM mogelijk te maken, aangezien de bijsturingsacties per fase 

verschillen, en om de bruikbaarheid ervan te waarborgen in het geval dat de rekentijd 

een beperkende factor is voor de toepassing van de modellen in de praktijk. Uiteindelijk 

zouden de modellen kunnen worden uitgebreid om ook vervangend vervoer mee te 

nemen in de maatregelen. 

Het mag vermeld worden dat de aanbevelingen die hier zijn gepresenteerd grotendeels in lijn 

liggen met de operationalisering van de Koers van VL, die meest recentelijk in 2018 is beschre-

ven als een toekomstvisie voor 2020. Hoewel de Koers van VL wordt gezien als een positieve 

ontwikkeling waarin veel bevindingen uit dit onderzoek zijn te herkennen, is het momenteel 

nog steeds een toekomstvisie. Als laatste aanbeveling wordt dan ook geadviseerd om de 

transitie naar een nog meer vooraf gedefinieerde en proactieve bijsturing daadwerkelijk te 

realiseren, zodat het niet slechts bij een visie blijft. 

Behalve deze aanbevelingen zijn er ook mogelijkheden voor vervolgonderzoek binnen ProRail 

beschreven. Deze zijn te vinden in Sectie 7.3. 
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C. Overview of respondents 
This table provides an overview in chronological order of the department and position of the 

respondents that were interviewed throughout the course of the research. In accordance with 

the General Data Protection Regulation, the respondents’ names were not published. 

# Department Position 

1 PAB Advisor performance analysis 

2 VGB Scenario maker 

3 Staff VL Staff worker 

4 Staff VL Advisor central staff 

5 A&E Manager analysis and advice 

6 PAB Advisor performance analysis 

7 A&E Project leader continuous improvement 

8 A&E Project leader continuous improvement 

9 CMBO National traffic controller 

10 VL Post Midden-Nederland Senior traffic controller 

11 VL Post Zuid-Nederland Regional traffic controller 

12 A&E Process leader continuous improvement 

13 VGB Scenario maker 

14 CMBO National traffic controller 

 
Go back to page 5 
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D. Data collection summary 
These tables provide detailed information about the collected data. This concerns traffic reali-

zation data, disruption log data, network data, VSM data and customer hindrance data. 

Realization data 

Description: Traffic realization data 

File name: act_export_2018-12-09_2019-12-14 

File size: 8.87 GB 

Data format: CSV 

Retrieval date: 17-05-2021, 09:07 

Retrieval method: Request by e-mail 

Contact person: Wilco Tielman 

Retrieved columns: basic.drp, basic.drp_act, basic.drp_post, basic.plan, basic.treinnr, 

basic.treinnr_rijkarakter, basic.treinnr_vervoerder, basic.uitvoer, 

vklvos.plan_actueel, vklvos.plan_oorspronkelijk 

Used columns: All retrieved 

Time period: 09-12-2018 until 14-12-2019 

 

Disruption log data 

Description: Disruption log data for disruptions with a logistical record, 

retrieved from the Spoorweb viewer in Sherlock 

File name: export_spoorwebtabel_2019 

File size: 1,650 kB 

Data format: Excel 

Retrieval date: 19-04-2021, 19:14 

Retrieval method: Sherlock export 

Sherlock version: v2.46, 19-04-2021, 17:04 

Retrieved columns: All available 

Used columns: IncidentID, IncidentLabel, Dvlpost1, T_afsluit, T_voorval, 

T_gekozeneerstevsm, T_EindeIncidentICB, T_EindeIncident, 

T_opstartenmogelijk, T_Treindienstopgestart, Logistiek_VDBs, 

Logistiek_VDB_Begrenzingpunten 

Time period: 09-12-2018 until 14-12-2019 

 

Network data 

Description: Connection of each timetable point to adjacent timetable points 

File name: DONNA_71479_VER_1_IAUF_DRGLPT_VERBINDING 

File size: 210 kB 

Data format: Text 

Retrieval date: 04-05-2021, 10:53 

Retrieval method: Access through shared folder (VenD Datamarkt > 1_BU > 2019) 

 
Go back to page 5 

Go back to page 43 
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VSM data 

Description: Detailed information about the actions performed according to the 

VSM in each of the resilience phases 

File name: isvl-vsm-controle_[yyyy-mm-dd] 

File size: 77 kB per file on average 

Data format: DAT 

Retrieval date: 15-07-2021, 10:31 

Retrieval method: Request by e-mail 

Contact person: Wilco Tielman 

Retrieved columns: All available 

Used columns: Type, Treinserie_van, meldkaartnummer 

Time period: 09-12-2018 until 14-12-2019 

 

Customer hindrance data 

Description: Customer hindrance data measured in hindrance class and total 

minutes delay, retrieved from the VSM vs. customer hindrance 

analysis tool in Sherlock 

File name: export_klanthinder_2019 

File size: 289 kB 

Data format: Excel 

Retrieval date: 15-07-2021, 11:14 

Retrieval method: Sherlock export 

Sherlock version: v2.46, 13-07-2021, 12:21 

Retrieved columns: All available 

Used columns: Mon_ID, Klanthinder, Vtgm, SpoorWeb_ID 

Time period: 09-12-2018 until 14-12-2019 
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For each disruption, all relevant data other than the points on the resilience curve were stored 

in a dataframe with the following columns: 

• Spoorweb_ID  Disruption ID in Spoorweb 

• Date   Date when the disruption was reported 

• Cause   Specific disruption cause 

• Impact   Impact type as a result of the disruption 

• Control_area  Traffic control area where the disruption occurred 

• Boundaries  Boundary points according to the capacity reallocation 

• N_boundaries  Number of unique boundary points 

• Impact_area  Timetable points in the first and second impact area 

• Area_size  Number of timetable points in the impact area 

• Hindrance  Customer hindrance in total minutes delay 

• VSM_available Availability and adjustment of a VSM 

• Series_in_VSM Number of train series involved in the third phase 

• Duration  Disruption length reported in Sherlock 

• TT   Total time (observed disruption length) 

• T0   Observed start of disruption 

• T0_S   Start of disruption reported in Sherlock 

• T1   Observed end of the first phase 

• T1_S   End of the first phase reported in Sherlock 

• T2   Observed end of the second phase 

• T2_S   End of the second phase reported in Sherlock 

• T3   Observed end of disruption 

• T3_S   End of disruption reported in Sherlock 

• DT   Degradation time 

• RST   Response time 

• RCT   Recovery time 

• MI   Maximum impact 

• PL   Performance loss 

• DP   Degradation profile 

• RP   Recovery profile 

Go back to page 45 
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E. Map of boundary points 
This map shows all timetable points in the Dutch railway network that can be identified as 

boundary points in case of a disruption. 

 

Go back to page 25 
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F. Map of traffic control areas 
This map shows the control area of each of ProRail’s regional traffic control centers. The area 

of Amersfoort (AMF) merged with Utrecht (UT) in 2019. Here it is shown separately since both 

areas appear in the analyzed datasets. 

 

Go back to page 27 
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G. Map of passenger corridors 
This map shows the division of the Dutch railway network into four main passenger corridors 

as used by the VGB team. The corridors are named A2/A12 (green), IJssellijn (red), Oudelijn 

(blue) and Groene Hart/Veluwe (black). 

 

Go back to page 30 
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H. Breadth first search algorithms 
Below are the breadth first search algorithms that were developed to determine the first and 

second impact area for one, two and three start vertices, where: 

• DCs is a list of decoupling points. 

• adjacency is a dictionary that specifies the neighbors of each timetable point. 

• train_paths is a string of all realized passenger train paths on a single day. 

• vertex or vertices is/are the boundary point(s) from which to start. 

• impact is a coded representation of the impact type. 

• max_area defines the furthest impact area to include. 

One start vertex 
 

def bfs1(vertex, impact, max_area = 2, graph = adjacency): 

    # initialize the algorithm 

    queue  = [vertex] 

    area   = {vertex: 1} 

    parent = {vertex: None} 

     

    # start the search 

    while queue: 

        v = queue.pop(0) 

        for n in graph[v]: 

            flag1 = False 

            flag2 = False 

            # search for neighbors of the start vertex 

            if n not in area and v == vertex: 

                if v in DCs and impact != 1:    # means: if not a full timetable point outage 

                    area[n] = area[v] + 1 

                else: 

                    area[n] = area[v] 

                parent[n] = v 

                flag1 = True 

            # search for neighbors of other vertices 

            elif n not in area or (n in area and n in queue): 

                if type(parent[v]) == str: 

                    sequence1 = ','.join([parent[v], v, n]) 

                    sequence2 = ','.join([n, v, parent[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        flag2 = True 

                elif type(parent[v]) == list: 

                    sequence1 = ','.join([parent[v][0], v, n]) 

                    sequence2 = ','.join([n, v, parent[v][0]]) 

                    sequence3 = ','.join([parent[v][1], v, n]) 

                    sequence4 = ','.join([n, v, parent[v][1]]) 

                    if any(s in train_paths for s in [sequence1, sequence2, sequence3, sequence4]): 

                        flag2 = True 

            # mark neighbor as visited 

            if flag2: 

                if n not in area: 

                    parent[n] = v 

                else: 

                    parent[n] = [parent[n], v] 

                if v in DCs: 

                    area[n] = area[v] + 1 

                else: 

                    area[n] = area[v] 

                flag1 = True 

            # add neighbor to the queue 

            if flag1: 

                if (area[n] == max_area and n in DCs) or n in queue: 

                    pass 

                else: 

                    queue.append(n) 

    return list(area.keys()) 
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Two start vertices 
 

def bfs2(vertices, max_area = 2, graph = adjacency): 

    # initialize the algorithm 

    queue   = [vertices[0]] 

    visited = [vertices[0]] 

    area    = {vertices[1]: 1} 

    parent  = {vertices[0]: None} 

     

    # PART 1: find the area between the start vertices 

    # search for the second start vertex 

    while vertices[1] not in visited: 

        v = queue.pop(0) 

        for n in graph[v]: 

            flag = False 

            # search for neighbors of the first start vertex 

            if n not in visited and v == vertices[0]: 

                visited.append(n) 

                queue.append(n) 

                parent[n] = v 

            # search for neighbors of other vertices 

            elif n not in visited or (n in visited and n in queue): 

                if type(parent[v]) == str: 

                    sequence1 = ','.join([parent[v], v, n]) 

                    sequence2 = ','.join([n, v, parent[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        flag = True 

                elif type(parent[v]) == list: 

                    sequence1 = ','.join([parent[v][0], v, n]) 

                    sequence2 = ','.join([n, v, parent[v][0]]) 

                    sequence3 = ','.join([parent[v][1], v, n]) 

                    sequence4 = ','.join([n, v, parent[v][1]]) 

                    if any(s in train_paths for s in [sequence1, sequence2, sequence3, sequence4]): 

                        flag = True 

            # mark neighbor as visited and add it to the queue 

            if flag: 

                if n not in visited: 

                    visited.append(n) 

                    parent[n] = v 

                else: 

                    parent[n] = [parent[n], v] 

                if n not in queue: 

                    queue.append(n) 

 

    # trace back the traveled path 

    while vertices[0] not in area: 

        n = list(area.keys())[-1] 

        if type(parent[n]) == str: 

            area[parent[n]] = 1 

        else: 

            area[parent[n][0]] = 1 

    # reinitialize the algorithm 

    queue  = [vertices[0], vertices[1]] 

    parent = {vertices[0]: list(area.keys())[-2], vertices[1]: list(area.keys())[1]} 

     

    # PART 2: find the rest of the impact area 

    # continue the search from the boundary points 

    while queue: 

        v = queue.pop(0) 

        for n in graph[v]: 

            flag = False 

            # search for neighbors 

            if n not in area or (n in area and n in queue): 

                if type(parent[v]) == str: 

                    sequence1 = ','.join([parent[v], v, n]) 

                    sequence2 = ','.join([n, v, parent[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        flag = True 
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                elif type(parent[v]) == list: 

                    sequence1 = ','.join([parent[v][0], v, n]) 

                    sequence2 = ','.join([n, v, parent[v][0]]) 

                    sequence3 = ','.join([parent[v][1], v, n]) 

                    sequence4 = ','.join([n, v, parent[v][1]]) 

                    if any(s in train_paths for s in [sequence1, sequence2, sequence3, sequence4]): 

                        flag = True 

            # mark neighbor as visited and add it to the queue 

            if flag: 

                if n not in area: 

                    parent[n] = v 

                else: 

                    parent[n] = [parent[n], v] 

                if v in DCs: 

                    area[n] = area[v] + 1 

                else: 

                    area[n] = area[v] 

                if (area[n] == max_area and n in DCs) or n in queue: 

                    pass 

                else: 

                    queue.append(n) 

    return list(area.keys()) 
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Three start vertices 
 

import copy 

 

def bfs3(vertices, max_area = 2, graph = adjacency): 

    # initialize the algorithm 

    queue1  , queue2  , queue3   = [vertices[0]]      , [vertices[0]]      , [vertices[1]] 

    visited1, visited2, visited3 = [vertices[0]]      , [vertices[0]]      , [vertices[1]] 

    area1   , area2   , area3    = {vertices[1]: 1}   , {vertices[2]: 1}   , {vertices[2]: 1} 

    parent1 , parent2 , parent3  = {vertices[0]: None}, {vertices[0]: None}, {vertices[1]: None} 

     

    # PART 1: find the area between the start vertices 

    # search for the second start vertex starting from the first start vertex 

    while vertices[1] not in visited1 and len(queue1) >= 1: 

        v = queue1.pop(0) 

        for n in graph[v]: 

            if n not in visited1: 

                if v == vertices[0]: 

                    visited1.append(n) 

                    queue1.append(n) 

                    parent1[n] = v 

                else: 

                    sequence1 = ','.join([parent1[v], v, n]) 

                    sequence2 = ','.join([n, v, parent1[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        visited1.append(n) 

                        queue1.append(n) 

                        parent1[n] = v 

    # search for the third start vertex starting from the first start vertex 

    while vertices[2] not in visited2 and len(queue2) >= 1: 

        v = queue2.pop(0) 

        for n in graph[v]: 

            if n not in visited2: 

                if v == vertices[0]: 

                    visited2.append(n) 

                    queue2.append(n) 

                    parent2[n] = v 

                else: 

                    sequence1 = ','.join([parent2[v], v, n]) 

                    sequence2 = ','.join([n, v, parent2[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        visited2.append(n) 

                        queue2.append(n) 

                        parent2[n] = v 

    # search for the third start vertex starting from the second start vertex 

    while vertices[2] not in visited3 and len(queue3) >= 1: 

        v = queue3.pop(0) 

        for n in graph[v]: 

            if n not in visited3: 

                if v == vertices[1]: 

                    visited3.append(n) 

                    queue3.append(n) 

                    parent3[n] = v 

                else: 

                    sequence1 = ','.join([parent3[v], v, n]) 

                    sequence2 = ','.join([n, v, parent3[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        visited3.append(n) 

                        queue3.append(n) 

                        parent3[n] = v 

     

    # trace back the traveled paths 

    if vertices[1] in visited1: 

        while vertices[0] not in area1: 

            n = list(area1.keys())[-1] 

            area1[parent1[n]] = 1 

    if vertices[2] in visited2: 

        while vertices[0] not in area2: 
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            n = list(area2.keys())[-1] 

            area2[parent2[n]] = 1 

    if vertices[2] in visited3: 

        while vertices[1] not in area3: 

            n = list(area3.keys())[-1] 

            area3[parent3[n]] = 1 

     

    # concatenate the traveled paths in both directions 

    area1_str = ','.join(list(area1.keys())) 

    area2_str = ','.join(list(area2.keys())) 

    area3_str = ','.join(list(area3.keys())) 

    area1_bw  = ','.join(list(reversed(list(area1.keys())))) 

    area2_bw  = ','.join(list(reversed(list(area2.keys())))) 

    area3_bw  = ','.join(list(reversed(list(area3.keys())))) 

    lengths   = [len(area1), len(area2), len(area3), len(area1_bw), len(area2_bw), len(area3_bw)] 

     

    # PART 2: check how the start vertices are connected 

    # for combinations where all paths are accurate 

    if all(x > 1 for x in lengths): 

        flag01 = False 

        flag02 = False 

        flag12 = False 

        if (area1_str in train_paths or area1_bw in train_paths) and (area2_str in train_paths or 

            area2_bw in train_paths) and (area3_str in train_paths or area3_bw in train_paths): 

            # check if one path contains the two other paths 

            if area2_str in area1_str and area3_bw in area1_str: 

                flag01 = True 

            elif area1_str in area2_str and area3_str in area2_str: 

                flag02 = True 

            elif area1_bw in area3_str and area2_str in area3_str: 

                flag12 = True 

            # reinitialize the algorithm in case all paths are unique 

            else: 

                queue  = [vertices[0], vertices[1], vertices[2]] 

                area   = {**area1, **area2, **area3} 

                parent = {vertices[0]: [list(area1.keys())[-2], list(area2.keys())[-2]], 

                          vertices[1]: [list(area1.keys())[1] , list(area3.keys())[-2]], 

                          vertices[2]: [list(area2.keys())[1] , list(area3.keys())[1]]} 

        # reinitialize the algorithm in case not all paths are unique 

        else: 

            if area1_str not in train_paths and area1_bw not in train_paths: 

                if len(area2) > len(area3): 

                    flag02 = True 

                else: 

                    flag12 = True 

            elif area2_str not in train_paths and area2_bw not in train_paths: 

                if len(area1) > len(area3): 

                    flag01 = True 

                else: 

                    flag12 = True 

            elif area3_str not in train_paths and area3_bw not in train_paths: 

                if len(area1) > len(area2): 

                    flag01 = True 

                else: 

                    flag02 = True 

        if flag01: 

            queue  = [vertices[0], vertices[1]] 

            area   = copy.deepcopy(area1) 

            parent = {vertices[0]: list(area.keys())[-2], vertices[1]: list(area.keys())[1]} 

        if flag02: 

            queue  = [vertices[0], vertices[2]] 

            area   = copy.deepcopy(area2) 

            parent = {vertices[0]: list(area.keys())[-2], vertices[2]: list(area.keys())[1]} 

        if flag12: 

            queue  = [vertices[1], vertices[2]] 

            area   = copy.deepcopy(area3) 

            parent = {vertices[1]: list(area.keys())[-2], vertices[2]: list(area.keys())[1]} 
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    # for combinations where not all paths are accurate 

    # check which paths are accurate and reinitialize the algorithm 

    else: 

        queue = [vertices[0], vertices[1], vertices[2]] 

        if (area1_str in train_paths or area1_bw in train_paths) and (area2_str in train_paths or 

            area2_bw in train_paths) and all(x > 1 for x in [len(area1), len(area2)]): 

            area   = {**area1, **area2} 

            parent = {vertices[0]: [list(area1.keys())[-2], list(area2.keys())[-2]], 

                      vertices[1]: list(area1.keys())[1], 

                      vertices[2]: list(area2.keys())[1]} 

        elif (area1_str in train_paths or area1_bw in train_paths) and (area3_str in train_paths or 

              area3_bw in train_paths) and all(x > 1 for x in [len(area1), len(area3)]): 

            area   = {**area1, **area3} 

            parent = {vertices[0]: list(area1.keys())[-2], 

                      vertices[1]: [list(area1.keys())[1], list(area3.keys())[-2]], 

                      vertices[2]: list(area3.keys())[1]} 

        elif (area2_str in train_paths or area2_bw in train_paths) and (area3_str in train_paths or 

              area3_bw in train_paths) and all(x > 1 for x in [len(area2), len(area3)]): 

            area   = {**area2, **area3} 

            parent = {vertices[0]: list(area2.keys())[-2], 

                      vertices[1]: list(area3.keys())[-2], 

                      vertices[2]: [list(area2.keys())[1], list(area3.keys())[1]]} 

     

    # PART 3: find the rest of the impact area (same as part 2 in bfs2) 

    # continue the search from the boundary points 

    while queue: 

        v = queue.pop(0) 

        for n in graph[v]: 

            flag = False 

            # search for neighbors 

            if n not in area or (n in area and n in queue): 

                if type(parent[v]) == str: 

                    sequence1 = ','.join([parent[v], v, n]) 

                    sequence2 = ','.join([n, v, parent[v]]) 

                    if sequence1 in train_paths or sequence2 in train_paths: 

                        flag = True 

                elif type(parent[v]) == list: 

                    sequence1 = ','.join([parent[v][0], v, n]) 

                    sequence2 = ','.join([n, v, parent[v][0]]) 

                    sequence3 = ','.join([parent[v][1], v, n]) 

                    sequence4 = ','.join([n, v, parent[v][1]]) 

                    if any(s in train_paths for s in [sequence1, sequence2, sequence3, sequence4]): 

                        flag = True 

            # mark neighbor as visited and add it to the queue 

            if flag: 

                if n not in area: 

                    parent[n] = v 

                else: 

                    parent[n] = [parent[n], v] 

                if v in DCs: 

                    area[n] = area[v] + 1 

                else: 

                    area[n] = area[v] 

                if (area[n] == max_area and n in DCs) or n in queue: 

                    pass 

                else: 

                    queue.append(n) 

    return list(area.keys()) 

 

Go back to page 45 
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I. Steady state detection algorithm 
Below is the steady state detection algorithm that was developed to detect the steady state in 

the resilience curve, and thus, the start and end point of the second resilience phase. In the 

second line, it uses the column of the performance dataframe for the specified disruption ID. 

import numpy as np 

from scipy import stats 

 

def ssd(ID, factor = 1.8, limit = 40, alpha = 0.01): 

    # specify data 

    data = performance[ID][performance[ID].notna()] 

    X = list(data.index) 

    Y = list(data) 

    # define parameters 

    n = int(factor * np.sqrt(len(X)))    # window length 

    N = len(X)                           # number of measurements 

    start_point = None 

    search_limit = min(Y) + limit / 100 * (max(Y) - min(Y)) 

     

    # search for a start point 

    for i in range(N): 

        if Y[i] < search_limit: 

            start_point = i 

            break 

    if start_point != None: 

        # take an initial subset of the data 

        end_of_window = start_point + n 

        x = X[start_point: end_of_window] 

        y = Y[start_point: end_of_window] 

        state = np.zeros(len(X)) 

        # perform regression analysis on each consecutive window 

        for i in range(start_point, N + 1 - n): 

            model = stats.linregress(x, y) 

            if model.pvalue > alpha and Y[i] < search_limit: 

                state[i: end_of_window] = 1 

            if i == N - n: 

                break 

            del x[0], y[0] 

            x.append(X[end_of_window]) 

            y.append(Y[end_of_window]) 

            end_of_window += 1 

        # generate output 

        if any(s > 0 for s in state): 

            T1 = next(i for i in X if state[i] == 1) 

            T2 = next(i for i in reversed(X) if state[i] == 1) 

            out = state, T1, T2 

        else: 

            out = None 

    else: 

        out = None 

    return out 

 

Go back to page 47 
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J. Overview of the data filtering steps 
This table presents an overview of the data filtering steps that were applied to find the set of 

disruptions that could be analyzed. The table shows the number of remaining disruptions per 

step and the percentage of the data that is lost relative to the previous step. 

Filtering step → 1 2 3 4 

Excluded data → 

▪ Disruptions on 
extreme days 
▪ Disruptions in 

control area 
Kijfhoek 

▪ Disruptions that do 
not match the top 
five causes 

▪ Disruptions with a 
connection to one 
or more other 
disruptions 

▪ Disruptions with 
an impact area size 
less than six 
▪ Disruptions longer 

than ten hours 
▪ Disruptions where 

“restart initiated” 
was not reported 

Specific cause cases % lost cases % lost cases % lost cases % lost 

Train defect 742 - 742 0% 364 51% 346 5% 

Section/signal failure 306 - 306 0% 156 49% 141 10% 

Collision 275 - 275 0% 148 46% 146 1% 

Switch failure 153 - 153 0% 50 67% 47 6% 

Overhead line failure 65 - 65 0% 32 51% 26 19% 

Total 1541+ - 1541 0% 750 51% 706 6% 

Impact type cases % lost cases % lost cases % lost cases % lost 

Full ttbp outage 55 - 23 58% 10 57% 10 0% 

Partial ttbp outage 147 - 124 16% 48 61% 45 6% 

Full line blockage 893 - 632 29% 344 46% 323 6% 

Partial line blockage 805 - 703 13% 316 55% 299 5% 

Reduced ttbp func. 32 - 23 28% 17 26% 17 0% 

Reduced line func. 49 - 36 27% 15 58% 12 20% 

Total 1981 -  1541 22% 750 51% 706 6% 

Control area cases % lost cases % lost cases % lost cases % lost 

AH 141 - 106 25% 61 42% 59 3% 

AMF 94 - 76 19% 29 62% 29 0% 

AMR 184 - 141 23% 90 36% 87 3% 

ASD 190 - 147 23% 54 63% 52 4% 

EHV 220 - 174 21% 91 48% 81 11% 

GN 97 - 66 32% 55 17% 54 2% 

GVC 102 - 80 22% 29 64% 28 3% 

MT 112 - 83 26% 52 37% 51 2% 

RSD 117 - 93 21% 44 53% 34 23% 

RTD 269 - 234 13% 83 65% 81 2% 

UT 234 - 170 27% 60 65% 59 2% 

ZL 221 - 171 23% 102 40% 91 11% 

Total 1981 - 1541 22% 750 51% 706 6% 

 
+ The causes of the remaining 440 disruptions are not shown in the first filtering step. 

Go back to page 55 
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K. Time-distance diagrams for Amersfoort-Zwolle 
These time-distance diagrams present the realized train paths between Amersfoort and Zwolle 

for the disruption discussed in Section 5.2. The first diagram shows the time period in which 

the disruption occurred (14:00-15:00), along with the reported and observed start time. 

 

Start of disruption 

was observed 

Start of disruption 

was reported 
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The second diagram shows the time period in the middle of the disruption (16:00-17:00). 
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The third diagram shows the time period in which the disruption ended (18:00-19:00), along 

with the reported and observed end time. 

 

Go back to page 57 

  

End of disruption 
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End of disruption 

was observed 
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L. Examples of the types of resilience curves 
These figures illustrate the different types of resilience curves that were observed. Keep in mind 

that the axes are scaled differently per figure. A cubic spline, which is a concatenation of third 

degree polynomials, was fitted to obtain a smooth curve. The calculated points on the resilience 

curve are shown as a black, dotted line. 

Go back to page 60 

 

The bathtub shaped curve 

 

The hammock shaped curve 
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The plateau curve 

 

The steady state curve 

 

The gradual recovery curve 
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The aftermath curve 

 

The timetable influenced curve 

 

The undefinable curve 

 

± 50 min ± 60 min ± 70 min 
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M. Mean resilience curves for separate indicators 
These figures present the mean and median resilience curve and the central 80% range for the 

two separate performance indicators. The first six figures show curves for punctuality (𝜆 = 0). 

The last six figures show the curves for traffic intensity (𝜆 = 1). 
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Go back to page 62 
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N. Assumptions check results 
These tables and figures summarize the results of the assumptions check for Welch’s ANOVA. 

The first table presents the Shapiro-Wilk test results regarding the assumption of normality. 

The second table presents the Levene test results regarding the assumption of equal variances. 

In addition, the kernel density plots for all metrics are presented. 

 
DT RST RCT MI 

Disruption 

cause 

Shapiro 

W-statistic 

Shapiro 

p-value 

Shapiro 

W-statistic 

Shapiro 

p-value 

Shapiro 

W-statistic 

Shapiro 

p-value 

Shapiro 

W-statistic 

Shapiro 

p-value 

Train defect 0.937 1.06E-07 0.739 1.41E-17 0.884 2.30E-11 0.833 5.58E-14 

Section/signal 

failure 
0.689 4.85E-13 0.801 4.07E-10 0.887 4.83E-07 0.930 6.43E-05 

Collision 0.698 9.32E-13 0.942 3.62E-04 0.889 6.79E-07 0.945 5.17E-04 

Switch failure 0.541 3.71E-09 0.818 5.75E-05 0.815 4.98E-05 0.880 1.41E-03 

Overhead line 

failure 
0.921 1.75E-01 0.938 3.26E-01 0.973 8.85E-01 0.924 1.95E-01 

 
PL DP RP 

Disruption 

cause 

Shapiro 

W-statistic 

Shapiro 

p-value 

Shapiro 

W-statistic 

Shapiro 

p-value 

Shapiro 

W-statistic 

Shapiro 

p-value 

Train defect 0.606 2.83E-21 0.755 4.83E-17 0.685 3.16E-19 

Section/signal 

failure 
0.874 1.39E-07 0.393 3.61E-18 0.890 7.15E-07 

Collision 0.911 6.89E-06 0.710 1.76E-12 0.783 1.42E-10 

Switch failure 0.797 2.24E-05 0.297 1.28E-11 0.637 6.03E-08 

Overhead line 

failure 
0.774 1.25E-03 0.478 1.41E-06 0.764 9.54E-04 

 

 
DT RST RCT MI PL DP RP 

Levene W-statistic 2.916 6.617 4.175 5.172 7.637 3.011 6.259 

Levene p-value 2.11E-02 3.50E-05 2.50E-03 4.43E-04 6.00E-06 1.80E-02 6.60E-05 
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O. Post hoc test results 
These tables present the full results of the Games Howell post hoc test for single disruptions 

and for single and connected disruptions. The pairwise comparisons for which Hedges’ g was 

smaller than -0.5 or greater than 0.5 (indicating a medium to large effect) are printed in bold. 

Metric: DT         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure 55.96 56.13 -0.17 8.87 -0.019 0.900 -0.005 0.499 

Collision Section/signal failure 55.96 53.61 2.35 6.82 0.344 0.900 0.049 0.514 

Collision Switch failure 55.96 69.88 -13.92 15.34 -0.908 0.888 -0.180 0.449 

Collision Train defect 55.96 40.62 15.34 5.41 2.838 0.042 0.351 0.598 

Overhead line failure Section/signal failure 56.13 53.61 2.52 8.54 0.295 0.900 0.079 0.522 

Overhead line failure Switch failure 56.13 69.88 -13.76 16.17 -0.851 0.900 -0.254 0.428 

Overhead line failure Train defect 56.13 40.62 15.51 7.46 2.079 0.274 0.538 0.649 

Section/signal failure Switch failure 53.61 69.88 -16.27 15.15 -1.074 0.796 -0.213 0.440 

Section/signal failure Train defect 53.61 40.62 12.99 4.85 2.677 0.063 0.330 0.592 

Switch failure Train defect 69.88 40.62 29.26 14.57 2.009 0.284 0.371 0.604 

Metric: RST         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure 110.01 112.13 -2.11 9.91 -0.213 0.900 -0.057 0.484 

Collision Section/signal failure 110.01 91.04 18.97 10.75 1.765 0.398 0.253 0.571 

Collision Switch failure 110.01 92.79 17.22 14.50 1.188 0.733 0.236 0.567 

Collision Train defect 110.01 53.91 56.10 7.96 7.046 0.001 0.871 0.732 

Overhead line failure Section/signal failure 112.13 91.04 21.08 10.67 1.977 0.289 0.530 0.647 

Overhead line failure Switch failure 112.13 92.79 19.33 14.44 1.339 0.649 0.400 0.613 

Overhead line failure Train defect 112.13 53.91 58.22 7.86 7.410 0.001 1.918 0.913 

Section/signal failure Switch failure 91.04 92.79 -1.75 15.03 -0.117 0.900 -0.023 0.493 

Section/signal failure Train defect 91.04 53.91 37.14 8.89 4.176 0.001 0.515 0.642 

Switch failure Train defect 92.79 53.91 38.89 13.18 2.950 0.040 0.545 0.651 

Metric: RCT         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure 93.33 48.25 45.08 9.08 4.964 0.001 1.331 0.828 

Collision Section/signal failure 93.33 78.60 14.74 8.74 1.686 0.447 0.242 0.568 

Collision Switch failure 93.33 76.24 17.10 12.00 1.425 0.600 0.283 0.580 

Collision Train defect 93.33 56.79 36.54 7.15 5.112 0.001 0.632 0.673 

Overhead line failure Section/signal failure 48.25 78.60 -30.35 8.60 -3.529 0.008 -0.946 0.250 

Overhead line failure Switch failure 48.25 76.24 -27.99 11.89 -2.353 0.146 -0.702 0.307 

Overhead line failure Train defect 48.25 56.79 -8.54 6.97 -1.225 0.715 -0.317 0.411 

Section/signal failure Switch failure 78.60 76.24 2.36 11.63 0.203 0.900 0.040 0.511 

Section/signal failure Train defect 78.60 56.79 21.81 6.52 3.343 0.009 0.412 0.615 

Switch failure Train defect 76.24 56.79 19.44 10.49 1.853 0.360 0.342 0.596 

Metric: MI         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure 23.90 19.03 4.87 3.29 1.480 0.576 0.397 0.611 

Collision Section/signal failure 23.90 22.35 1.55 1.97 0.786 0.900 0.113 0.532 
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Collision Switch failure 23.90 17.89 6.00 2.71 2.217 0.188 0.440 0.623 

Collision Train defect 23.90 13.24 10.66 1.60 6.663 0.001 0.824 0.720 

Overhead line failure Section/signal failure 19.03 22.35 -3.32 3.27 -1.015 0.828 -0.272 0.423 

Overhead line failure Switch failure 19.03 17.89 1.13 3.76 0.302 0.900 0.090 0.526 

Overhead line failure Train defect 19.03 13.24 5.79 3.06 1.896 0.357 0.491 0.636 

Section/signal failure Switch failure 22.35 17.89 4.45 2.68 1.660 0.468 0.329 0.592 

Section/signal failure Train defect 22.35 13.24 9.11 1.56 5.854 0.001 0.721 0.695 

Switch failure Train defect 17.89 13.24 4.66 2.42 1.924 0.322 0.356 0.600 

Metric: PL         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure 3375.52 2358.22 1017.30 576.40 1.765 0.419 0.473 0.632 

Collision Section/signal failure 3375.52 2653.90 721.63 330.57 2.183 0.191 0.313 0.588 

Collision Switch failure 3375.52 2159.73 1215.80 446.27 2.724 0.062 0.541 0.650 

Collision Train defect 3375.52 1190.34 2185.18 266.96 8.185 0.001 1.012 0.763 

Overhead line failure Section/signal failure 2358.22 2653.90 -295.67 569.25 -0.519 0.900 -0.139 0.461 

Overhead line failure Switch failure 2358.22 2159.73 198.50 643.37 0.309 0.900 0.092 0.526 

Overhead line failure Train defect 2358.22 1190.34 1167.88 534.82 2.184 0.234 0.565 0.656 

Section/signal failure Switch failure 2653.90 2159.73 494.17 436.99 1.131 0.764 0.224 0.563 

Section/signal failure Train defect 2653.90 1190.34 1463.56 251.13 5.828 0.001 0.718 0.695 

Switch failure Train defect 2159.73 1190.34 969.39 391.09 2.479 0.117 0.458 0.627 

Metric: DP         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure -10.60 38.82 -49.43 59.85 -0.826 0.900 -0.221 0.437 

Collision Section/signal failure -10.60 -24.66 14.06 36.43 0.386 0.900 0.055 0.516 

Collision Switch failure -10.60 -109.25 98.64 114.75 0.860 0.900 0.171 0.548 

Collision Train defect -10.60 -10.86 0.26 23.29 0.011 0.900 0.001 0.500 

Overhead line failure Section/signal failure 38.82 -24.66 63.49 62.44 1.017 0.827 0.273 0.577 

Overhead line failure Switch failure 38.82 -109.25 148.07 125.46 1.180 0.737 0.352 0.600 

Overhead line failure Train defect 38.82 -10.86 49.68 55.80 0.890 0.894 0.230 0.565 

Section/signal failure Switch failure -24.66 -109.25 84.59 116.12 0.728 0.900 0.144 0.541 

Section/signal failure Train defect -24.66 -10.86 -13.80 29.31 -0.471 0.900 -0.058 0.484 

Switch failure Train defect -109.25 -10.86 -98.39 112.69 -0.873 0.900 -0.161 0.454 

Metric: RP         

Group A Group B Mean(A) Mean(B) (A – B) SE t-value p-value Hedges’ g CLES 

Collision Overhead line failure -41.10 -74.74 33.64 48.56 0.693 0.900 0.186 0.553 

Collision Section/signal failure -41.10 -43.07 1.97 43.12 0.046 0.900 0.007 0.502 

Collision Switch failure -41.10 -124.36 83.25 64.98 1.281 0.680 0.254 0.572 

Collision Train defect -41.10 -52.90 11.80 38.14 0.309 0.900 0.038 0.511 

Overhead line failure Section/signal failure -74.74 -43.07 -31.67 39.12 -0.810 0.900 -0.217 0.439 

Overhead line failure Switch failure -74.74 -124.36 49.62 62.40 0.795 0.900 0.237 0.568 

Overhead line failure Train defect -74.74 -52.90 -21.83 33.54 -0.651 0.900 -0.168 0.452 

Section/signal failure Switch failure -43.07 -124.36 81.29 58.27 1.395 0.618 0.276 0.578 

Section/signal failure Train defect -43.07 -52.90 9.84 25.04 0.393 0.900 0.048 0.514 

Switch failure Train defect -124.36 -52.90 -71.45 54.68 -1.307 0.668 -0.241 0.432 
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