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A B S T R A C T

Machine learning techniques receive significant responsibilities, despite
growing privacy concerns. Early-stage autonomous vehicles are increasingly
appearing on the streets, carrying the burden of transporting human-lives
to their destination. Meanwhile, doctors are involving Artificial
Intelligence (AI) in their medical diagnoses, basing treatment of patients on
the analyses AI provides. For these services to reach their full potential, a
vast amount of training data is required, often gathered from a variety of
sources. In many cases, the required data is considered to be
privacy-sensitive (e.g., medical data). Due to the sensitivity of the
underlying information, many individuals and organizations are not
willing to entrust its protection to another party.

A field that attempts to limit the need to transfer training data openly is
called collaborative learning, where multiple data generators cooperate to
jointly train a classifier. In the proposed techniques the participants aim to
limit the privacy loss of their collected training data to other collaborators.
We contribute a clear overview of the current state-of-the-art and identify its
limitations. Based on these limitations, we present two innovative protocol
designs that pave the way towards private collaborative learning.

The ECONoMy protocol is developed to suit the needs of a high
participant use case (i.e., Internet of Things (IoT)), under an assumed
semi-honest adversarial model. The experimental results show that
ECONoMy offers the desired privacy properties while remaining
competitive to the non-privacy preserving alternative with which it is
compared. However, in certain environments the incentives can grow
exceedingly large rendering the ’semi-honest’ adversary assumption
impractical.

We, therefore, created the PRECLUDE protocol which uses traceable ring
signatures to protect against adversaries in the covert adversarial model.
The tracing capability allows to detect malpractice and leak the identity of
the deviant while preserving the anonymity of honest participants. These
additional privacy-preservation properties came at a high cost to the overall
efficiency, which is what we aimed to reduce by designing our extended
protocol called PRECLUDE+.

PRECLUDE+ manages to drastically improve efficiency by reducing the
number of participants included in a single signature. Further, we created
a batch-verification phase that allows us to omit several exponentiations in
each execution. We provide a detailed statistical analysis showing how to
balance the efficiency improvements, with the required privacy parameters.
The protocols presented in this thesis significantly improve upon the privacy
guarantees offered by current alternatives, and provide a clear direction in
which future work can continue to build.
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Part I

I N T R O D U C I N G T H E P R O B L E M

The work presented in this thesis is divided into four different
parts. First, we will introduce the research problem to acquaint
the reader with the identified problem. In the second part, we will
set the scene providing relevant background knowledge as well as
the applied methodology. Afterward, we introduce the proposed
solutions to the presented problem statement. In the final part
of this thesis, we evaluate the presented work and identify open
problems for future work.





1I N T R O D U C T I O N

The impact that AI will have on the future of society is the subject of intense
debate [18, 130]. Organizations and their users want to benefit from improved
service, offering higher utility and increased productivity, while recent data
leaks incite a widespread awareness of privacy, as they highlight the risks
accompanying the collection of large amounts of data needed to provide the
desired benefits.

Despite growing concerns, the underlying techniques receive significant
responsibilities. Early-stage autonomous vehicles are increasingly appearing
on the streets, carrying the burden of transporting human-lives to their
destination. Meanwhile, doctors are involving AI in their medical diagnoses
basing treatment of patients on the analyses AI provides [12, 23, 69].

For these services to reach their full potential, a vast amount of training
data is required, often gathered from a variety of sources. In many cases,
the required data is considered to be privacy-sensitive (e.g., medical data).
Due to the sensitivity of the underlying information, many individuals or
organizations are not willing to entrust its protection to another party.

A field that attempts to limit the need to openly transfer training data is
called collaborative learning, where multiple data generators cooperate to
jointly generate a model. In the proposed techniques the participants aim to
limit the privacy loss of their collected training data to other collaborators.

Although these efforts have improved the situation, new attacks can extract
sensitive information from the used derivatives of the training data (e.g., the
classifier). To continue to use data to provide us with the benefits AI has to
offer, novel, privacy-preserving training techniques are essential. Within this
thesis, we present two innovative protocol designs that pave the way towards
private collaborative learning.

1.1 machine learning

Within the general concept of AI, machine learning has emerged as the
method of choice for developing techniques such as computer vision,
speech recognition, natural language processing, and robot control [66].
Machine learning can be defined as a field of study focusing on algorithms
that can learn from and make predictions based on data [46]. The training
process takes in example inputs to generate a model which aims to improve
a predefined performance measure. For example, by training a particular
machine learning algorithm on examples of both routine and fraudulent
transactions, the resulting model can prevent future malicious transactions
by flagging these transactions as such (i.e., [81], [82]).

Both conglomerates and private investors are increasingly moving into
the machine learning industry to strengthen their competitive advantage for

3



4 introduction

years to come. McKinsey & Company estimates that in 2016, $20-30 billion
worth of AI investments originated from Google and Baidu, while the
amount invested by private equity and venture capital totaled up to $5-8
billion [23]. Nevertheless, privacy is often not considered a main priority, as
shareholder interest trumps societal impact due to the fiduciary duty of
those who are running the companies. On the other hand, there are
initiatives such as the non-profit OpenAI (which received $1 billion in
funding), which focus on benefiting humanity as a whole, without any
financial obligations [51], and accompanying expectations.

Due to the sharp increase in available resources originating from this
increase in investments, many early-stage techniques are encountered in
everyday life already. Innovations like the concept of a virtual assistant,
early stage autonomous vehicles, and improved recommender systems are
becoming ingrained into our daily lives. A good example is Netflix, a major
entertainment company with over 117 million subscribers as reported in the
fourth quarter of 2017 [91]. Netflix states that they prevent over $1 billion of
canceled subscriptions due to improved recommender systems every single
year [47], benefiting the different stakeholders of the firm (e.g., shareholders,
end-customers).

1.2 privacy awareness

Society is becoming more aware of the privacy risks associated with their
digital presence [62]. Two primary drivers constitute this trend. First of all,
numerous data breaches are highlighting the sensitivity of centralized
solutions. Secondly, there is an increasing amount of legislation focusing on
protecting one’s privacy, forcing organizations and individuals to be aware
of their rights and duties.

Recent scandals such as that of Cambridge Analytica, where private
information was used to influence political preference [52], fuel awareness
on both the value and inherent risk of the data generated and shared with
third parties. Despite growing concerns, private data (e.g. bank records,
photos, and videos) is still collected by different organizations that retain
this sensitive information indefinitely or for the legal maximum allowed
term.

Despite legislation lagging behind technological advances [113], privacy
has a high priority for governments around the world. In 2017, the
Information Technology & Innovation Foundation (ITIF) published research
on the state of privacy regulation on data transfer across borders [24]. Nigel
Cory, the writer of the published report, hypothesizes that the costs of the
increase in legislation could exceed $100 billion dollars for the European
Union alone, under the given assumptions. Figure 1 shows which countries
block what type of data at the time of publishing (2017). Note that this does
not yet include the new legislation devised by the European Union
European Union (EU), the general data protection regulation General Data
Protection Regulation (GDPR), which came into effect in May 2018 [121].
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Which Countries Block Data Flows?*

No data blocked

3+ types of data blocked

1-2 types of data blocked

Figure 1: An overview of the available limitations on data export across borders as
given by Nigel Cory [24]. Note that this is before the inauguration of the
GDPR.

There are exorbitant costs associated with limitations to data usage as
well as indirect costs due to involvement in a data breach. Therefore, there
is a drive to develop novel techniques that allow organizations to continue
their value-adding practices, while continuously adhering to current and
future legislation. The creation of such techniques requires a
multi-disciplinary approach to machine learning research, introducing
relevant cryptographic primitives into protocols while keeping the
performance of the final model a priority.

By having privacy-sensitive information collected at a central entity, a
third party, the system becomes susceptible to several risks (i.e., the central
entity becomes a single point of failure), which are not always apparent to
those who will be affected when it is compromised. Lengthy, obfuscated
user agreements that indicate what the collected data may be used for are
often not read. A report published by the cybersecurity alliance states that
only around 5% of Americans do read privacy policies [62]. Even if one
reads the fine print, it often does not reflect the level of security used to
protect these data sources, which is a critical piece of information required
to evaluate a service [62]. Moreover, in certain parts of the world, the rule of
law allows access to centrally stored information for surveillance during
government investigation [83]. If an individual party retains his or her
information, as opposed to transferring training samples to a central entity,
these risks are removed or significantly reduced.

As mentioned, in collaborative learning collaborators share derivatives of
training data, to achieve this. Nevertheless, due to newly introduced attacks,
a potential adversary can still obtain private information from such
derivatives. We aim to create a way to generate high-performing models
that utilize multiple distributed data sources that belong to a variety of
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participants, without compromising the privacy of the parties providing the
data. For example, such a protocol could be relevant for institutes operating
within the healthcare and finance industries which handle sensitive
information, located at a variety of locations, alleviating their privacy
concerns.

1.3 collaborative learning

Collaborative learning offers a solution to train a model based on such
distributed data sources while adhering to relevant laws that aim to protect
privacy. Whereas in a traditional machine learning setting different data
sources transfer their collected training samples to a central location,
collaborative learning eliminates the need for a trusted entity to protect the
privacy of the individual data owners by safeguarding the actual samples.
Instead, different techniques based on iterative or ensemble-based model
aggregations are used to combine the underlying knowledge that is present
within the training data. This distributed nature is useful for entities that
prefer to retain control of their data or when regulation limits how data can
be transferred among organizations and across country boundaries.
Nevertheless, information derived from the training samples is in some
cases still shared with a central party to coordinate the aggregation of the
provided information. Removing the need to trust a central entity
all-together can be accomplished by decentralizing a protocol, thereby
distributing trust over multiple parties, as is currently being done by some
researchers within the field of collaborative learning [3, 9].

why learn collaboratively? Collaborative learning can offer
different benefits as opposed to a more traditional machine learning setting.
Firstly, the added value obtained by collaborating can originate from the
number of available examples per participant, or from the subset of the
entire population covered by a particular group of participants. Figure 2
shows how two example participants can complement each other to
generate a better depiction of the entire population distribution by
collaborating. The increased diversity in training data can help to produce
more robust classifiers.

Secondly, by sharing abstractions from the original data, one can adhere
to current privacy legislation. For example, the previously mentioned GDPR
directive aims to protect the data that belongs to any European citizen, as it
covers any data that directly, or indirectly identifies a natural person [17]. It
applies to companies (both those that are responsible for the underlying
data and those processing the data) located in the EU, even if data
processing occurs outside of the EU. It is assumed that by only transferring
data derivatives as an organization and allowing clients to contribute
derivatives directly, an organization can limit the legal exposure as the
information is no longer assumed to be personally identifiable.
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Figure 2: An example where the samples encountered by two participants originate
from different subsections of the population distribution.

use cases Collaborative learning can deliver an anonymized solution to
train a classifier on personal information while exporting only derivatives
extracted based on the structure of the used training samples. By using such
a protocol, rather than sharing training samples to a central location for
training, one can obtain a robust model that represents the sample
population across multiple nations without having to share identifiable
information. Such an infrastructure can help multinational companies to
generate robust, international models, within their organizational structure
in a privacy-preserving manner.

Another possible use case would be a consortium of data providers who
want to cooperate in generating a machine learning model. Such a group
could have a peer-to-peer nature, where individuals would prefer to
cooperatively train a particular model rather than having a central party, or
a coopetitive nature, where multiple organizations in the same industry
cooperate to jointly provide an improved service without assigning full
responsibility to a single party. For example, competing financial
institutions could collaborate to jointly improve their fraud detection
capabilities.

Finally, the rise of IoT devices being used to collect data offers a chance to
see individual devices as participants in a collaborative setting. In such a way,
the device would not need to transfer actual training samples, preserving the
privacy of the environment in which it is located.

Due to an increase in attacks that can retrieve privacy-sensitive
information from the shared derivatives, the protocol as a whole should
have privacy as its main priority. The currently available approaches,
especially in the decentralized categories, are lacking in privacy
preservation, raising significant privacy issues. We will discuss these
concerns in the next section.
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1.4 adversary objectives

Even though the field of collaborative learning seems promising to help
build a more privacy-aware future for machine learning, the currently
available approaches that are reviewed for this thesis are lacking. Many of
the proposed solutions either trust a central entity, or approach the
decentralization in such a fashion that they do not consider the classifiers,
the model predictions, nor the parameter updates as private information.

Recent advances in the field of adversarial machine learning show that an
adversary can not only willingly cause a machine learning model to
misinterpret its input [49, 70], he or she can also extract information that
can be considered privacy-sensitive [57, 110] using only the abstractions of
the training samples. An adversary who can access this type of information
could commence in attacks that allow training data extraction [41] or
membership inference [110]. Notably, this can be done in the ’semi-honest’
threat model, as it does not pose any deviation from the prescribed
protocols, and can be done purely by observing the transferred information.
If an adversary successfully conducts these attacks, he or she can obtain
insights into the privacy-sensitive training data used by a participant.

Another possible objective of an adversary could have in a decentralized
setting would relate to their influence on the resulting global machine
learning model. An adversary might be motivated to reduce the prediction
capabilities of its peers rather than helping them improve. Such influence
can be exerted by contributing intentionally faulty votes. Unfortunately, it is
not evident whether the model did, in fact, consider that label to be most
likely or the originating sender maliciously manipulated the message. What
can be done, however, is limiting the ability of an adversary to contribute
multiple times. Do note that when assuming that adversaries do in fact
completely follow the protocol this does not directly apply.

Thus, to facilitate decentralized executions of collaborative learning, a
privacy-preserving approach is needed that hides the required information
and limits the number of allowed contributions, making the underlying
attacks more difficult, if not infeasible to execute successfully. By doing so,
the privacy of the training data used by the different participants is fortified,
while still being able to generate globally shared machine learning models.
Creating a method to do so, and validating its correctness together with a
complexity analysis, are the primary research goals of this thesis.

1.5 research statement

As introduced in the previous paragraph, there are two primary adversary
objectives which we aim to defend against.

We desire to provide execution verifiability, allowing participants to verify
that the protocol steps have been executed correctly, whereas consensus is
an agreement on the state of the shared transactions among participants. In
addition, the individual participants do not want others to gain insights
into the contributions they provide, and therefore it should be
privacy-preserving.
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Meanwhile, it should not be possible for a participant to wilfully degrade
the global model’s performance in excess of their own allocated share (1/n).
Every participant, who is a valid contributor to the protocol, should be
entitled to a pre-defined number of votes. An adversary can degrade the
performance of the final model by actively providing wrong votes, thereby
transferring false information to the global model. While it is currently not
possible to verify whether or not a particular vote originates from a hidden
model, we can limit the impact of a potential adversary by preventing
excessive contributions.

The presented research attempts to provide a novel collaborative learning
system that provides these requirements while limiting the effect on
prediction performance of the model. The research statement is as follows:

How can we facilitate the joint generation of a shared machine learning model in a
privacy-preserving manner, and refrain participants from degrading the final

models’ performance more than their own, allowed contribution, in a decentralized
setting?

Based on this research statement, the following sub-questions can be
derived:

1. How can we create a transparent, decentralized joint machine learning
model generation system?

2. How can we limit the number of contributions of a participant to a
pre-specified amount?

3. How can we remove the linkability of their contributions to the
originating user, while assuring a valid sender?

4. How can we leverage the setting of the protocol to improve efficiency?

5. How can the above sub-questions be achieved without significantly
degrading the prediction accuracy as compared to centralized
variants?

1.6 our contributions

In this thesis, we propose two protocols to preserve individual participants
privacy in a collaborative learning setting. Both protocols utilize different
techniques to provide privacy under their security assumptions. The
protocols presented in this thesis are, to the best of our knowledge, the first
to provide a privacy-preserving approach to decentralized, ensemble-based
collaborative learning. The efficiency of the proposed protocols is
determined, and the prediction performance compared to its alternatives,
employing a naive implementation. The main contributions are as follows:

• A detailed overview of the work done in the field of collaborative
learning, provided with its advantages and disadvantages.
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• A masking based protocol that preserves participant privacy within
a decentralized ensemble based collaborative learning setting, called
ECONoMy, under a semi-honest threat model.

• A protocol that uses traceable ring signatures to preserve participant
privacy within a decentralized ensemble based collaborative learning
setting, called PRECLUDE, under a covert threat model.

• Problem specific efficiency improvements to the traceable ring
signatures protocol, combined with a detailed analysis on how to
determine the optimal values for the privacy-efficiency trade-off.

1.7 outline

The accrued information leading to these contributions, and ultimately the
answer to the research question, will be introduced according to the
following structure. Chapter 2 gives an overview of the important
preliminaries which the following chapters will build upon. In Chapter 3,
the current work in collaborative learning is discussed with both its
strengths and weaknesses. Chapter 4 sets the foundation of the
methodology that will be used to approach the research problem, where
Chapters 5 and 6 introduce the protocol designs that were built on top of
this. Chapter 7 proposes extensions that improve upon the base PRECLUDE
protocol, whereas Chapter 8 evaluates and compares the performance of the
models using naive implementations. Finally, Chapter 9 exposes the
limitations and highlights the identified open problems and relevant future
work.



Part II

S E T T I N G T H E S C E N E

Now that we have introduced the problem and have explained
our research goal, we can continue to exhibit all relevant context
elements for this thesis. Here we guide the reader through
necessary primitives to ensure an equal footing before
presenting any technical terminology. Afterward, we will go
through all reviewed related works and identify their limitations.
Using these, we identify which area presents the most versatile
opportunities for growth, which we will focus on when creating
our designs. Finally, we will go through what methodology will
be used to answer our research questions. Here we emphasize
the use of design science and the challenges that are inherent to
our problem scenario.
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The work done to overcome privacy issues within the field of decentralized
collaborative learning, as well as our work presented in this thesis, is based
on a variety of concepts. In this chapter, we introduce the used primitives,
which form a foundation on top of which the following chapters will
continue to build. First, we discuss the relevant cryptographic primitives,
after which we elaborate upon the applicable machine learning concepts.
Finally, we explain blockchain technology and the desired properties for the
field of collaborative learning.

2.1 cryptographic primitives

The cryptographic concepts form the foundation of the security and privacy
guarantees that can be made by a collaborative learning protocol. In this
chapter, we introduce primitives relevant to the related work done in
collaborative learning. Those primitives that are specific to our contributions
will be presented in more detail in their respective design chapters.

2.1.1 Cryptographic Encryption Schemes
The two types of cryptosystems will be addressed as primitives to this thesis:
symmetric and asymmetric cryptosystems.

symmetric cryptosystems A symmetric cryptosystem is dependent
on a shared secret between multiple participating parties, the symmetric
key. Encryption and decryption can be done using the same key k, where
c = E(k,m) and m = D(k, c). The mapping performed to retrieve the cipher
text using the key and message should thus be invertible. Notable examples
of symmetric cryptosystems include the one-time pad [10, 32], and the
Advanced Encryption Standard (AES) [27] as is used in the first design
proposed in this thesis.

asymmetric cryptosystems Diffie and Hellman [32] introduced
asymmetric cryptography. Within this strand of cryptography, each party
holds both a public key pki, and secret key ski, where the first is used for
encryption, Epki

(m), and the latter for decryption of the ciphertext c,
Dski

(c). This thesis utilizes this form of encryption in both its proposed
protocols, where the public keys of all participants are known, and each
party retains his or her secret to decrypt or sign information.

2.1.2 Zero-Knowledge Proofs
The concept of a zero-knowledge proof, especially the more detailed
descriptions that are given, is required to understand a crucial part of our

13
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second protocol design, which employs these zero-knowledge proofs in its
traceable ring signatures.

A Zero-Knowledge proof (ZKP), as presented by Fiege et al. [37], is the
ability to construct a proof of knowledge of specific information, without
disclosing this information. It consists of a series of message exchanges,
typically dependent on random values to probabilistically prove a particular
statement [85]. Rackoff and Simon [103] continued upon this work by
removing the need for interaction between the prover and the verifier. A
ZKP must adhere to three requirements: 1. completeness, if the statement is
true, an honest verifier can be convinced, 2. soundness, it is not possible to
convince the honest verifier of the correctness of a false statement, and 3.
zero-knowledge, the verifier learns nothing about the statement despite its
validity [85].

witness-indistinguishable interactive proofs Cramer et al.
[25] have proposed a technique to generate interactive proofs of languages,
where the prover reveals no information about the subset of knowledge he
or she has (i.e., witness indistinguishable).

fiat-shamir heuristic The heuristic presented by Fiat and Shamir [38]
is used to create a signature based on a proof of knowledge. The combination
of the Fiat-Shamir heuristic, and the interactive proof provided by Cramer et
al. [25], is used to construct digital ring signatures which will be discussed
next.

2.1.3 Digital Signatures
Another essential cryptographic primitive that is employed in our second
design is the concept of a digital signature. In this subsection, we will go
over the different types of digital signatures to provide the foundation upon
which the used variant of traceable ring signatures builds.

Digital signatures aim to prove that a message originates from a particular
sender, and thus provides authenticity to a message. As described by Rivest
et al. in 1978 [105], such operations are essential in a digitalized world:

"If electronic mail systems are to replace the existing paper mail system for business
transactions, ’signing’ an electronic message must be possible."

Using public key cryptography, as discussed in Section 2.1.1, a digital
signature provides integrity, non-repudiation, and authenticity of a signed
message. A sender signs a message by using its secret key, only known to
this particular sender, to ’encrypt’ the message into a signature �. A
recipient can decrypt this message using the public key of the expected
sender to validate that this results in the original message. Mathematically
this would be denoted as:

� = Eski
(m), (2.1)

m = Dpkj
(�), if i = j. (2.2)
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ring signatures In 2001, Rivest et al. [106] proposed digital ring
signatures. By signing a message with a ring signature rather than a direct
digital signature as described before, the signer can preserve his or her
anonymity behind a group of peers called a ’ring.’ A verifier can determine
that the signature is valid, while not knowing which of the ring members
produced the message, nor are sequential signatures made by the same
signer linkable. Ring signatures are often compared with group signatures
[8, 19]. Group signatures require a group manager, designated setup, and
have a limited ability to generate ad-hoc groups, whereas these
dependencies are not present in ring signatures. Extensions of the original
ring signatures protocol are abundant, adding new properties desirable in
different circumstances [79, 90, 92]. The second protocol proposed in this
work uses such an extension called Traceable Ring Signatures (TRS) [43],
which state that unrestricted anonymity is not always desirable. Fujisaki
and Sukuzi [43], add double-spending traceability while assuring one-more
unforgeability. Double-spending traceability means that signing multiple
items for the same ’issue’, will be detected and the identity of the signer
will be leaked. An issue can be seen as a unique object that corresponds
with an event for which the signers are allowed to contribute a predefined
number of times. By allowing such tracing, the protocol essentially limits
the anonymity of the signer to execute a set number of signatures per
’issue’. The term one-more unforgeability originates from the work
proposed by Pointcheval and Stern [100, 101], who state that a receiver
should not be able to receive more valid signatures than the number of
interactions with a valid signer. A more detailed description of the protocol
itself will be given in Chapter 6.

2.1.4 Cryptographic hashing
A cryptographic hash function transforms an arbitrarily long input message
into an output, the hash, consisting out of a predetermined number of bits.
The mathematical representation is as follows [30]:

h : {0, 1}⇤ �! {0, 1}n,m �! h(m). (2.3)

Here n represents the predetermined bit length of the resulting hash, and m

is the input message. The function h depends on three properties to be a
valid one-way hash function. Determining the input based on a given hash
should be computationally infeasible, which is called pre-image resistance.
Furthermore, given a message m, it should not be possible for a
computationally bounded individual to compute a message m0, where
m0 6= m, that results in the same hash value, h(m) = h(m0). If this condition
did not hold, the individual providing the hash could claim either of the
two messages as their own as they both correspond with the hash. Finally,
the function h should be collision resistant. In this case, the attacker can
freely choose any combination of m and m0, where m0 6= m, and it should
be computationally infeasible to determine a message pair that results in
h(m) = h(m0).
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The work presented in this thesis assumes a random oracle model, where
a hash function is assumed to be a function that provides a truly random
string [7]. However, if the input given to the function has already occurred
before, the same output will be given. In our naive implementation, the NIST
standard hash function SHA-3 has been used to approximate this [35].

2.1.5 Differential privacy
Differential Privacy (DP) is a commonly used approach to protect privacy.
DP gives bounds on the probability that two neighboring datasets are
differentiable. Neighboring datasets can differ in at most one element, and
one of which is a proper subset of the other. These bounds are defined as ✏
and � in (✏, �)-differential privacy. The � represents the probabilistic
component in providing privacy, where a lower probability symbolizes
greater confidence. ✏ represents the privacy protection bound, for which a
lower value represents higher privacy guarantees. When there is no
probabilistic factor, a stronger form of privacy can be proven:
(✏, 0)-differential privacy which is equal to ✏-differential privacy. The
definition given by Papernot et al. [94] is as follows:

"A randomized algorithm M satisfies (✏, �) differential privacy if for all
pairs of neighbouring datasets (d,d0), for all subsets S of outputs:"

Pr
⇥
M(d) 2 S

⇤
6 e✏PR

⇥
M(d0) 2 S

⇤
+ �. (2.4)

When publicly releasing a global model, there needs to be some form of
DP present to hide information loss given when multiple classes are close
too each other before labeling. By adding calibrated noise, the impact that
a single person can make is reduced. It obfuscates the cases where the local
models disagree and do not strongly agree [96].
Balcan et al. [5] describe three forms of differential privacy within the field
of collaborative learning:

1. Differential privacy for individual records - each participant is
responsible for each training sample (i.e. each image of one of their
pets).

2. Differential privacy for the databases - a dataset has equal probability
to belong to each of the participants. It can not be retrieved which set
of pet images belongs to which participant.

3. Distributional privacy for the databases - limiting the information
shared about your own samples to what is inherent to the population
distribution itself. This would mean that a participant actively filters
the provided images to remove outliers that provide too much
information.

Approaches within collaborative learning often use DP. These approaches
show that there is a trade-off between providing local differential privacy
(within the private-local dataset) and global differential privacy (among all
considered items over all participants). Thereby differentiating between the
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level of privacy provided other than the privacy protection bound discussed
earlier. A comprehensive survey on DP has been written by Cynthia Dwork
[34], that can provide additional background knowledge on the topic. In
addition, Ji et al. [64] present a survey on the application of the DP concept
to machine learning.

Due to the extensive research performed in this field, we assume
differential privacy as a primitive to our protocols. In our designs, we use
the approach proposed by Papernot et al. [94], who use a moments
accountant to track privacy costs. The accountant yields low privacy costs
when there is a substantial agreement present among the individual models.
Papernot et al. can attain a state-of-the-art privacy-utility trade-off using
these techniques.

2.1.6 Adversarial models
When interacting with other individuals, it is important to make certain
assumptions on what capabilities a potential adversary has if one of the
other participants would behave maliciously. This can be done by assuming
an adversarial model which defines the capabilities of a potential adversary,
and what needs to be protected against to be considered secure within this
model. Hazay and Lindell [55], define three different threat models:
semi-honest, covert, and malicious.

semi-honest adversarial model When an adversary is assumed to
be semi-honest, also referred to as ’passive’, the corrupted protocol
participant will adhere to the pre-defined steps. Nevertheless, the adversary
attempts to learn everything possible from observing the transmissions by
keeping a record of all intermediate results. The semi-honest adversarial
model is also referred to as ’honest-but-curious’.

malicious adversarial model While the passive adversary follows
the protocol description to the letter, a corrupted entity within the malicious
model can arbitrarily deviate from the specifications according to the
adversary’s instructions. The increased maneuverability of the corrupted
entity earned this adversarial the name ’active’.

covert adversarial model Security under this adversarial model is
dependent on the concept of deterrence. Honest parties will detect
malicious activity by a cover adversary with a given probability, allowing
the cheating party to be penalized accordingly. Hazay and Lindell [55] refer
to this adversarial model to be in between the semi-honest and malicious
variants. They use an analogy of protecting a house, where malicious
assumes a guard that is present 24/7, whereas covert would count on
regular visits by a police patrol. The proposed protocols assume the
semi-honest and covert adversarial model respectively.
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2.2 machine learning

In this work, we focus on semi-supervised learning using ensemble
machine learning. We do not make any constraints on the type of models
combined by the ensemble, but focus on the majority vote, and the
distribution summation weighing methods to determine what classification
prediction to give. The local models originate from a collaborative setting,
and the process of training the classifier is protected from attacks
originating out of the field of AML. This section focuses on explaining every
part of machine learning that we depend upon in this thesis.

Witten and Frank [123] define machine learning as finding and describing
structural patterns within data, which offers additional knowledge on the
data, and can help make predictions on new samples. The different data
points, or samples, used to retrieve such structural insights can either be
labeled, which refers to the concept of supervised learning, or unlabeled,
unsupervised learning.

Theodoridis and Koutroumbas [116] define supervised learning as,
designing a classifier by exploiting a priori known information, namely the
labels corresponding to the available training data. Unsupervised learning,
on the other hand, can be used without the presence of class labels. A given
set of feature vectors attributes extracted from the training data, is used to
determine underlying similarities or clusters, thereby grouping ’similar’
items together [116]. Semi-supervised learning exists in between these two
types, having access to a set of patterns without their corresponding class,
and to a subset for which the class is known. The unlabeled data can then
be used to obtain additional information about the general structure
belonging to the data at hand [116].

2.2.1 Ensemble Learning
Ensemble learning is a form of supervised learning that uses an ’ensemble’
of different classifiers rather than a single model. An ensemble is a
collection of a (finite) number of predictors that are trained independently
for the same task, after which their predictions are combined [112]. Lior
Rokach [108] refers to an ensemble as a weighted combination of the
individual classifier opinions to obtain a classifier that outperforms every
single one. The combination of classifiers can be done by allowing the
individual models to be dependent on, or independent of one another. In a
dependent framework, a classifier is dependent on the output of the
previous classifier, while independent frameworks allow each classifier to
be built independently.

A common dependent ensemble framework is boosting. In boosting, a
weak base classifier is selected and iteratively designed based on a different
subset of the training data. Within boosting, we select the subset based on
the computed distribution, which emphasizes those samples that are most
difficult to classify. Finally, all individual classifiers are combined by taking
the weighted average. An example algorithm is called AdaBoost, as
proposed by Freund and Schapire [42].
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Two common independent ensemble frameworks are bagging, and random
forest. Bagging uses the output of multiple classifiers and outputs a label
for a new unknown instance using based on which has been predicted the
most. Random forests are very similar to bagging, despite selecting a random
subset of features for the classifiers to use.

The employed classification technique of the ensemble is used to
determine the class label corresponding to an unlabeled sample. Table 1
gives an overview of several available techniques to perform the label
determination based on the input of individual classifiers.
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Table 1: An overview of combination methods for ensemble learning as discussed
by Lior Rokach [108]

Type Name Main formula Explanation

Weighing
methods

Majority
vote

Class(x) = arg max
ci2dom(y)

 
X

k

g (yk(x), ci)

!

Also known as the plurality vote
(PV) or basic ensemble method
(BEM) where classification results
in the class with the most votes.

Performance
weighting

↵i =
(1-Ei)PT

j=1(1-Ej)
An additional validation data set
is used to assess the performance
of the classifiers and weigh them
accordingly.

Distribution
summation

Class(x) = arg max
ci2dom(y)

X

k

P̂Mk
(y = ci|x) The conditional probability vectors

are aggregated, and the class with
the maximum value within the total
vector is selected.

Bayesian
combination

Class (x) = arg max
ci2dom(y)

X

k

P (Mk|S) · P̂Mk
(y = ci|x) The predictions made by

the different classifiers are
weighed based on their posterior
probabilities given their respective
training sets.

Dembster-
Shafer

bpa (ci, x) = 1-
Q

k

�
1- P̂Mk

(y = ci|x)
�

Bel (ci, x) = 1
A · bpa(ci,x)

1-bpa(ci,x)

The basic probability assignment
(BPA) is a density function. The
outcome acts as the base to
compute the belief function, where
the class with the maximum belief
will be selected.

Entropy Class (x) =

arg max
cj2dom(y)

X

k:ci= arg max
cj2dom(y)

P̂Mk

�
y = cj|x

�
E (Mk, x)

The ensemble predictions are
weighed that is inversely correlated
to the amount of uncertainty,
entropy, within the classification
vector.

Density
based

Class (x) =

arg max
cj2dom(y)

X

k:ci= arg max
cj2dom(y)

P̂Mk

�
y = cj|x

�
P̂Mk

(x)

The probability that the classifier
would sample the proposed
unknown item weighs the classifier,
it assumes that classifiers trained
on data originating from different
parts of population distribution.

Meta
learning

Stacking N/A1 A meta classifier is introduced
that uses the predictions as input
attributes instead of the original
feature vectors.

Arbiter
trees

N/A1 Each data subset is used to design
a classifier. For every pair of
classifiers their classification is used
to determine which elements of the
joint dataset should be included in
the subset used to train an arbiter
on. This process continues until the
tree converges to a single classifier.

Grading N/A1 The items most commonly wrongly
predicted by a classifier are
identified by a meta classifier, the
predictions are combined for those
classifiers for which their meta
marks them as being correct.

1 Due to the generic nature of these approaches, there is no mathematical representation that
justifies the underlying approaches.
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Xiaohua Hu [59] states that diversity within an ensemble is needed to
dismiss the correlation between classifiers, and thereby increase overall
classification performance. Such diversity can, for example, originate from
the use of different training data by each participant, utilizing different
classifier types, or having participants focus on different parts of the search
space [108] .

2.2.2 Collaborative Learning
A form of machine learning that can either be supervised, unsupervised or
even a combination of both (i.e., semi-supervised) is collaborative learning.
The primary focus of collaborative learning is on the cooperation of multiple
data sources working together in generating a model and will be introduced
next. Figure 3 illustrates the fact that five participants jointly provide inputs
to generate a globally known model ⌦G. The type of information that is
iteratively shared, and the employed method using which the sharing occurs
differ per approach.

ΩG

Figure 3: A visualization of the cooperative nature of collaborative learning

In a collaborative setting, the original training samples remain at its local
host, a globally known model is constructed using distributed techniques
that aggregate derivatives of the locally acquired knowledge. Such an
approach can work in several ways: by either sharing a subset of updated
model parameters, as described in the case of a neural network by [109] and
[57], by sharing complete models, or by sharing predictions on specific
items contained in a public dataset as done in [53]. The current approaches
within the field will be discussed in detail in Chapter 3.

2.2.3 Adversarial Machine Learning
Adversarial Machine Learning (AML) is an upcoming research area that
focuses on training and use of machine learning classifiers in adversarial
environments [73]. This field assumes that the environment contains a
potential adversary who can be defined as one’s opponent in a contest,
conflict or dispute [31], meaning the person or organization from whom an
entity would want to protect their system. Adversaries conduct different
types of attacks on the training or inference phases of machine learning to
reach a particular objective. Huang et al. [60] have proposed a taxonomy for
the research field in which they define these different types of attacks. The
taxonomy classifies attacks on three different criteria: 1) the type of
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influence exerted, 2) the resulting security violation, and 3) the specificity of
the attack. The influence that an attack can be either causative or
exploratory, where the first can actively adapt the training data whereas the
latter attempts to obtain information about the training data or underlying
model. The second requirement evaluates the impact a successful attack can
have. An attack could lower the integrity of the system by allowing
malicious samples to be labeled as benign, degrade the availability by
increasing the number of wrong classifications in general, or by extracting
privacy-sensitive information belonging to the learner. Finally, an attack can
focus on a particular misclassification (or target), or any misclassification
(all possible targets) determining the specificity of the aim of the attack. A
more generic classification of attacks distinguishes between poisoning and
evasion attacks. Poisoning attacks focus on the training phase, whereas
invasion attacks focus on the inference phase of machine learning. The work
presented in this thesis mainly focuses on the loss of privacy of the learners
participating in a collaborative learning protocol, exercised to train a
globally shared classifier. Using the previously described terminology, our
focus can be described as exploratory attacks, extracting privacy-sensitive
information focused on either all participants or a specific victim.

adversarial examples An adversarial example is a modified data
sample that is misclassified by a classifier [70], allowing an adversary to
trick a model to for example classify malicious traffic as benign. Figure 4
shows an example, visualizing a perturbation added to an image to
generate an adversarial example that is misclassified. Usually, a
perturbation is applied to a valid sample to achieve this and have the
classifier decision disagree with what a human would see it as [86]. Such a
perturbation can be specifically designed for a single model, a particular
target class, or universal applications. The latter, proposed by
Moosavi-Dezfooli et al. [88], computes the perturbation values in such a
way that they can convert a diverse range of images into adversarial
examples. The creation of an adversarial example can on the other hand
already be achieved by the alteration of a single pixel as shown by Su et al.
[114]. Kurakin et al. [70] have shown that the concept of adversarial
examples also transfers to the physical world by physically printing the
generated examples.

access type and knowledge The amount of available knowledge
needed to conduct such attacks depends on the assumed threat model.
Within AML, one can differentiate between white-box, gray-box, and
black-box access to a machine learning model as mentioned by Meng et al.
[86]. In a black-box setting, an adversary only sees the output
corresponding to an input sample, without any knowledge of the
underlying classifier type. In a white box setting, an adversary is assumed
to have all information available to conduct an attack successfully. Finally, a
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Figure 4: An example given by Goodfellow et al. [48], where an Imagenet picture of
a panda combined with noise generated by the Fast Gradient Sign method
to misclassify the Panda as a Gibbon with a high confidence level.

grey-box setting resembles a white-box threat model, without revealing the
actual classifier parameter values.

privacy The attacker can compromise privacy by obtaining the
underlying model or the information derived from the training data. Thus,
attacks and defenses for privacy focus on preventing an adversary from
obtaining either. The most prevalent attacks that can harm privacy are:
membership inference attacks [110], model inversion attacks [41], model
extraction attacks [119], and Generative Adversarial Network (GAN) attacks
[57].

Shokri et al. [110] have proposed a membership inference attack that
given 1) a data record �1 and 2) black-box access to a model m1, one can
determine whether �1 was in the training dataset on which model m1 has
been trained. Federikson et al. [41] introduced a model inversion approach
abusing confidence levels that accompany label predictions to extract
information of the used training data. Tramer et al. [119] propose a method
to learn a close approximation of the original model function of a black-box
model.

Finally, Hitaj et al. [57] devised an attack that uses GANs to extract
prototypical examples of a class. A GAN as proposed by Goodfellow et al.
[49] is a combination of two neural networks, a generative and a
discriminative model. Both models commence in an iterative minimax
game, where the generative model attempts to generate samples that fool
the discriminator while the discriminator aims to detect any false samples.
Using this construct, a malicious participant of an iterative, collaborative
learning protocol generates samples that are drawn from the same
distribution as the private training data of the victim.

when can privacy loss occur Privacy-sensitive information can leak
during the training-phase of machine learning or during inference. In early
forms of machine learning that use distributed data sources, all training data
is sent to a central authority to train a global model. Transferring data can
be seen as a breach of privacy for all parties involved. Besides the loss of
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actual data, attributes such as the size and dynamics of local datasets can be
considered confidential as is assumed by Shokri et al. [109]. During inference,
model information and training data attributes can be extracted using the
earlier mentioned attacks.

Within this thesis, we attempt to limit the risk of privacy loss introduced
due to the open, distributed trust setting. Rather than having a central entity
from whom we are protecting our insights, we are now attempting to shield
our derivatives from our fellow participants.

2.3 immutable fistributed ledgers

There exists a growing public concern about user privacy which has
spurred a trend in decentralization. Decentralization concerns the removal
of the dependency on a central entity for data protection and availability. It
spurs the creation of new protocols that remove the need for a central entity,
and the trust that is required in using such a system. The inception of
blockchain technology, originating from the introduction of bitcoin by
Satoshi Nakamoto [89], has been a significant driver for research in
decentralized solutions in a wide variety of industries (i.e., energy [87] and
supply chain industry [117]).

A blockchain is a distributed ledger where all transactions are stored at
every participant’s node. There are three key properties to a blockchain:

1. Decentralization - whereas traditional centralized systems have a single
point of failure, the decentralization ensures the continuation of the
system as a whole if a single node deactivates.

2. Immutability - it is infeasible to alter previously created transactions.

3. Distributed trust (trustless) - by reaching consensus on the correct state
of the system, no individual party is assigned the responsibility to do
so and thereby is rewarded the trust of all others.

variants of blockchain Peters and Panayi [99] mention two main
possible blockchain types. These types are permissioned, and
permissionless. A permissionless blockchain allows any individual to join
the group of peers and validate transactions. Most of these are public
allowing anyone to both read and write transactions within the ledger. A
permissioned blockchain, on the other hand, requires the permission of a
subset of current members to perform any validation. The majority of such
blockchains are private, restricting access to those individuals accepted into
the system.

consensus In order to obtain a definitive version of the truth, their needs
to be a consensus among the participants of the blockchain network. Current
consensus algorithm such as proof of work [89] and Practical Byzantine fault
tolerance (PBFT) [21] indicate how the truth should be determined.

Within the PBFT consensus model, the participation of a certain number
of malicious nodes can be tolerated up to a certain degree. This consensus
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model defines this according to the Byzantine Generals Problem (PGB) [72]
on which it is based. The proof of work algorithm depends on a particular
group of participants called miners to execute expensive mathematical
operations. The miner is required to find a hash with a particular structure
by adding a nonce, a number only used once, as input along with the
underlying block of transactions. The computation time invested increases
the difficulty of altering a transaction that has been validated since to do so
all blocks that were created afterward have to be recomputed.

relevance In this work, there is no direct need for the chaining
capability provided by blockchain. The decentralization, consensus, and the
immutability are however desirable properties. Decentralization removes
the need to trust a single party with the provided data and correct usage.
Consensus ensures that all involved parties have obtained the same set of
votes and that the votes can be validated. Finally, by having a state stored at
every participant, the system obtains auditability, as any individual when
needed can prove that certain votes have originated from them, while others
corroborate the transaction did occur. It is important to note that we use this
immutable distributed ledger technology to provide us with the capability
to decentralize our system. We provide our method of ’transaction
validation,’ while still requiring the offered benefit of consensus allowing all
participants to agree on the series of events performed in the protocol. In
theory, for our design, the blockchain could be replaced by a trusted
centralized server with access rights to all participants.
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The principal objective of this chapter is to introduce the current state of the
art in the field of collaborative learning. We first introduce five categories
into which we divide the works that have been reviewed for this thesis. After
which, these categories are evaluated one by one introducing the present
works and identifying links between them. Based on the retrieved insights,
we provide a comprehensive overview allowing easy comparison between
the works. Finally, we discuss the advantages and disadvantages of each
research category along with the key takeaways relevant to this thesis.

The goal of this chapter is to identify the type of approach most
appropriate for our research goal. We evaluate the currently available
approaches to attempt to find open problems in the field of collaborative
learning. Additionally, the internal structure and the versatility of the
aggregation technique is weighed to determine the protocol structure that
will be our primary focus in this thesis. In our analysis we evaluate a variety
of aspects (see Table 2). We analyze what privacy preserving technique is
used, if the sender can be validated, whether the contribution of an
individual participant can be retrieved, and whether the authors clearly
assume a threat model. Table 3, shows whether or not these aspects were
included in the reviewed works. Moreover, Table 4 gives an overview of the
related work and their presented approaches.

3.1 contemporary approaches for privacy preservation in
collaborative learning

As noted in the introduction, privacy in machine learning is a growing
concern. The following section attempts to show the currently available
alternatives to obtain this desired trait during the training phase of machine
learning models. We have divided the research reviewed for this survey into
five main categories. These categories have been created by looking at both
similarities and differences in the approaches used to attain privacy when
using distributed data sources. The categories are defined as follows:

1. Centralized (Iterative) Parameter Aggregation (CIPA)

2. Centralized Ensemble Model Aggregation (CEMA)

3. Decentralized (Iterative) Parameter Aggregation (DIPA)

4. Decentralized Ensemble Model Aggregation (DEMA)

5. Adapting Existing Learning Algorithms (AELA)

The first four categories exhaust all possible combinations focused on
whether there is a central server required within the protocol and the
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utilized combination technique. Decentralization indicates that no central
entity is used and all participants train by communicating directly with one
another. The centralized categories, on the other hand, do have a central
server that handles communications and aggregates data or model-findings.
The second differentiating factor (i.e., iterative/ensemble), defines how
knowledge originating from the individual participants is combined into a
single model. We have identified two possible approaches: aggregating
model parameters to determine those of the global model or doing so using
an ensemble structure that combines the local models through their
predictions. The final category resembles a research direction that focuses
on the adaptation of current machine learning algorithms to allow for
encrypted processing of data. This category has been added to indicate
other approaches within private data mining with possibilities for the field
of collaborative learning. In the following sections, each of these categories
will be discussed, and the available literature examined. We accompany
each category with an image of the typical layout of a system belonging to
its respective category. Figure 5 provides a list of the symbols used
throughout these depictions.

∆
The differences between the downloaded
parameters and those retrieved after 
local retraining.

θ
A predetermined fraction of parameter
updates that are downloaded from the 
central server.

(Re)Train model using the newly available
information

Transition between participating parties,
as  computation is done iteratively.

Ω
A model trained on ΩL = local data,

ΩG = public data, and Ω = {ΩL,  ΩL, ... , ΩL}

ρ Public unlabeled dataset

Figure 5: A list of all symbols used within the figures provided for each category
resembling the components used.

3.1.1 Centralized (Iterative) Parameter Aggregation
This category resembles protocols that utilize a central server and iteratively
aggregate model parameters that converge to a global model. The majority
in this category employs differential privacy mechanisms, whereas there are
also approaches using multiparty computation and homomorphic
encryption. Figure 6 shows a typical infrastructure belonging to this
category. A central entity initiates the beforehand agreed upon model
structure (i.e., a neural network with pre-specified layers) with random
weights and defines both an upload and download percentage which are
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communicated with the participants. After initialization, the first participant
downloads a fraction ✓ of these parameters. The local model with the same
structure is updated with these weights and trained (on the locally stored
data) for several epochs. After this (re-)training, the weights have shifted,
and the participant uploads the difference between the weights on the
server and the local values. Afterward, the other participants repeat the
same process, until an ending condition is met. Each of the proposed
schemes differ in their approach, and their method of choice to protect
privacy.

∆
∆

∆

∆∆

θ

θθ

θθ

Figure 6: An overview of a typical system structure of the systems belonging to the
CIPA category.

differential privacy approaches The first approach is by Pathak
et al. [97]. Here, a central entity averages all the model parameters retrieved
from the individual participants, without the iterative nature described
earlier. The presence of a central entity maintains the relevance of the
structure presented in Figure 6, with the slight adaptation that the
interactions between the server and the participants should be interpreted
as uni-directional. Using a private multiparty protocol, an untrusted curator
named Charlie shares additive shares of the final classifier with all
participants. The curator here does not gain insights into the parameters
due to the use of both homomorphic encryption and data permutations.
The individual data points are combined with a stochastic element during
the averaging process to attain ✏-differential privacy. The authors consider
the use of a logistic regression classifier but do claim that the techniques are
generally applicable to any classification algorithm. Wu et al. [124] also
focus on linear regression with the introduction of the Grid Binary LOgistic
REgression (GLORE). However, this approach requires all participants to be
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synchronized during the computation of the gradients. Also, since no secure
multiparty computation is used, it does not provide any provable security.

Rajkumar et al. [104], questions why the authors of Pathak et al. [97]
perform averaging over local regularized empirical risk minimization (ERM)
classifiers learned by the individual parties stating that this might not be the
right way to approximate the overall regularized ERM classifier. The
approach devised by Rajkumar et al. [104], does, however, build on top of
the work done by Pathak et al. [97], focusing on the use of stochastic
gradient descent. Their approach provides the weaker variant,
(✏, �)-differentially privacy by perturbing the shared gradients by two
different noise vectors. A new noise vector is retrieved every iteration, in
addition to a constant noise vector that prevents the noise from canceling
out over time. Nevertheless, it is more robust to the number of parties and
the variability of the amount of data located at the different locations. The
authors assume the loss function to be convex and differentiable, ensuring
that gradients exist for which the minimizer of the objective is unique.

Shokri et al. [109] also state that the averaging performed by Pathak et al.
[97] does not always lead to improved accuracy, stating that it is highly
dependent on the underlying problem. Their approach performs a
distributed form of gradient descent to train a deep learning model using a
central parameter server through which the parameter gradients are
communicated. This configuration has been used as a prototype for the
example structure shown in Figure 6. It provides an upload and download
parameter that defines the number of variables that a participant transfers.
Limiting this is a form of selective stochastic gradient descent and reduces
the chance of getting stuck in local optima. The sparse vector technique is
used to prevent information leakage on the gradient selection technique or
the actual values. Parameter updates above a threshold are selected and
shared after being perturbed using Laplacian-noise. The protocol
guarantees ✏-differential privacy, however, the privacy loss is computed per
parameter and thus not for the entire model. Later, Abadi et al. [1]
improved the privacy guarantees of the model proposed by Shokri et al.
[109] by randomly perturbing parameter values during the stochastic
gradient descent algorithm execution. Shokri et al. [109] state that an
oblivious parameter server would be able to remove linkability between the
updates and the participants, but this has been identified as future work.

Hamm et al. [54] took a different approach, mainly focusing on using
smart-devices as different data sources. The protocol allows multiple
devices (with a maximum of six) to update the central parameters at the
same time, which improves the communication overhead when a large
number of participants are involved. Thus, Figure 6 would be adapted to
each participant representing a multiple performing their update protocol
simultaneously. In addition, the proposed protocol uses stochastic gradient
descent and provides ✏-differential privacy by locally adding Laplacian
noise.
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McMahan et al. [84] propose a similar federated approach to collaborative
learning as that of Shokri et al. [109]. However, according to the McMahan
et al. [84], Shokri et al. [109] do not focus on unbalanced, and independent
and identically distributed (IID) data, whereas their algorithm is robust to
both. Additionally, there are fewer (by orders of magnitude) communication
rounds needed due to the introduction of new processes such as techniques
reducing the complexity of gradient computation.

Rodriguez et al. [107] shift the focus towards personalized model creation
extension to the category. The first step is to create a global model using
either data collected from a small set of users, or using a public dataset. In
the case where individual users data is used, the authors refer to the earlier
mentioned approaches for differentially private training [53, 84, 109]. Users
receive the shared model, where they can either retrain it to create a
personal model or use the global model for the inference phase. They found
that using a global model to create a personal model requires fewer samples
than directly training a local model with the same amount of samples.
Interesting to note is that this is the only research paper that explicitly
considers possible attacks and how they impact their protocol. They
investigate the accuracy of the final personal model under different
proportions of corrupted training samples (poisoning attack), for both
random perturbation, and targeted label perturbation.

Finally, it is important to highlight that Hitaj et al. [57] have shown that
the iterative types of differentially private collaborative deep learning models
are vulnerable against an attack that uses Generative Adversarial Networks
(GAN). By training such a GAN actively during the iterative process, the
malicious entity can generate prototypical class examples of a class belonging
to another participant. This research focuses on the work by Shokri et al.
[109], but other papers using a similar approach can also be vulnerable to
such attacks.

multi-party computation (mpc) Tian et al. [118] describe an
implementation to securely aggregate multiple locally trained machine
learning models using MPC. This aggregation is done by having two central
entities which are trusted not to collude with each other who complete a
secure multiparty computation to aggregate encrypted shares of local
models to obtain the global model. To the best of our knowledge, this is the
first MPC-approach in this category.

The initial research proposed by Konecny et al. [68] lowered
communication costs of distributed learning. However, one of the
limitations of this approach is that the cloud-provider in their scenario
learns all updates and aggregates them in the clear. Therefore, part of the
research team continued to improve this work in [13]. Here, a
communication-efficient, failure-robust protocol for secure aggregation of
high-dimensional data is introduced that limits the knowledge of the
cloud-provider to only the aggregated model. The secure multiparty
computation used guarantees security in the honest-but-curious and active
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adversary settings. Sender validation is actively considered, while input
validation is defined as future work. Moreover, identifying and recovering
from abuse of the protocol (i.e., a denial of service attack) is identified as an
open problem. Although not mentioned explicitly, this also seems to be the
case for the other works reviewed.

homomorphic encryption Yonetani et al. [127] propose another
federated approach with a large focus on privacy. The individual
parameters are aggregated using Double Permuted Homomorphic
Encryption (DPHE), allowing all gradients to be encrypted during
aggregation. The efficiency is claimed to be kept practical by using certain
sparsity constraints limiting the number of needed encryptions. A
permutation matrix that is only known to the user is used to hide which in
indices are non-zero. However, a malicious user that intercepts the message
is still able to find the weights. Therefore, an additional permutation matrix
is shared between the user and the aggregator, preventing this from being
possible. The name double permuted originates from the fact that there are
two permutations used.

Overall, the current state of this category of private machine learning
suffers from several drawbacks. First of all, communication often represents
a significant bottleneck due to the centralized nature. Further, it has become
apparent that sharing gradient updates can also reveal private information
causing further improvements to become necessary in this space [111].

3.1.2 Centralized Ensemble Model Aggregation
This category focuses on Ensemble approaches in distributed learning that
aggregates the individual predictions at a central point. Figure 7 shows an
example of three participants transferring their models to a server, which
uses their predictions to label a public dataset upon which a final global
model is trained. Hamm et al. [53] highlight the importance of this category
of distributed learning by stating that parameter averaging is not applicable
when using different types of local classifiers or non-numerical ones like the
decision tree. Here the approaches that do consider privacy, focus on the use
of differential privacy.

One of the first occupants of this category is the research proposed by
Folino et al. [39]. These researchers generated a novel approach to
distributed intrusion detection systems, which aggregates locally generated
decision trees, at a central location to train a Genetic Programming Ensemble.
Each peer can communicate with its neighboring peers (its neighborhood)
and the collector island (the central entity). The collector combines the
hypotheses generated by each classifier to produce the ensemble. The paper
does not indicate any privacy concerns, and it mentions no security or
privacy precautions.

Xie et al. [125] take a similar approach where locally-trained classifiers are
combined at the aggregator. The individual models trained on the sensitive
data are assumed to be linear-binary classifiers trained using the
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Figure 7: An overview of a typical system structure of the systems belonging to the
CEMA category.

differentially private variant of empirical risk minimization (ERM) to
achieve ✏-differential privacy. The aggregator uses the individual classifiers
as features, projecting the public data onto them. By doing so, the
aggregator can train a low-dimensional classifier which resembles a
weighted-linear combination of all local classifiers.

Soon after, Hamm et al. [53] published their approach to distributed
ensemble learning. In the first step, the participants share all classifiers with
a trusted central entity. Then, the central entity labels an auxiliary, public
dataset similar to the one used in Xie et al. [125]. This labeling is done by
aggregating all individual predictions and assigning the full gradient to the
public entry. The subsequent step uses this labeled dataset to train the final
classifier, adding differential privacy using output perturbation to all
samples involved, not just of those belonging to a single party. The used
output perturbation does require a limited sample space or the truncation of
feature values to assess the size of the to be added noise [65]. After noticing
a lack of robustness in the majority vote procedure used to aggregate label
predictions, soft labels were introduced as weights in the minimized loss
function. Overall, the approach proposed by Hamm et al. is not constricted
to a classifier type and provides global differential privacy, whereas Xie et al.
[125] only allows for linear-binary classifiers and provides local differential
privacy. This approach is extended upon by Papernot et al. [94] in an
entirely centralized setting, as the authors state that there is no condition on
the provided privacy as well as no restrictions on the chosen classifiers.

Cyphers et al. [26] use an entirely different approach. Here, the
participants send partial feature vectors of the sensitive data to the
aggregator. By combining these partial vectors, the aggregator can
reconstruct the complete feature vector corresponding to a particular label.
The distribution of a subset of peers, called a partition, is used to generated
synthetic training data, upon which a model can be built. The authors also
consider a validation step that checks whether the data originates from a
valid participant, and focuses on unlinkability, removing any link to the
provided data and the originating peer to the aggregator. This sender
validation accompanied with double-spending prevention is done using
Anonize tokens [58], which will be introduced more elaborately in Chapter
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8 in more detail. Local differential privacy can also be guaranteed according
to the author.

To conclude, there are several drawbacks present in this category. Openly
sharing models with a trusted entity violates one of the privacy goals as
mentioned in section 2. Besides the technique proposed by Cyphers et al.,
no data or sender validation is done nor is the impact of malicious activity
taken into account. Nevertheless, the approach proposed by Cyphers et al.
does maintain a link between individual contributions and the obfuscated
identities generated.

3.1.3 Decentralized Iterative Parameter Aggregation
This category decentralized the earlier work shown in section 3.1.1. Both of
the reviewed approaches utilize differential privacy to preserve the privacy
of the training data. Figure 8 shows a typical overview of a system that fits
in this category. Each participant instantiates the shared model structure and
shares its updates with a pre-determined amount of neighbors iteratively.

∆ ∆

∆

∆∆

Figure 8: An overview of a typical system structure of the systems belonging to the
DIPA category.

According to Huang et al. [61], this is the first solution in this category
that also maintains privacy. The difference with the research done in the
centralized iterative category is that in the system designed by Huang et al.
the parameter updates belonging to a participant are shared with its
neighbors. Initially, the gradient updates are perturbed using Laplacian
noise that converges to the Dirac distribution achieving ✏-differential
privacy.

Bellet et al. [9], advocate the creation of personalized models where the
underlying process is similar to the one used by Huang et al. [61]. They
propose a completely decentralized, asynchronous, iterative method of
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aggregating the knowledge of local data and adapting the resulting model
to the personalized problem statement. Again, the individual model
parameter updates are communicated with the neighborhood of the
participant in question, which consists of a fixed amount of other
neighboring participants. Additionally, a confidence level is provided when
sending weights to illustrate the amount of certainty of the sender in the
delivered weight updates. Laplacian noise is added to the gradient of the
local loss function to achieve (✏, �)-differential privacy. The authors of Bellet
et al. [9] state that they believe that the decentralized nature of the approach
significantly reduces the effectiveness of the attack mentioned in Section
3.1.1, devised by Hitaj et al. [57]. Nevertheless, this has not been proven and
left for future work.

Only two approaches have been identified to belong to this category.
Nevertheless, these approaches do seem promising and warrant the need
for further development.

3.1.4 Decentralized Ensemble Model Aggregation
The result that falls into this category resembles attempts to decentralize the
centralized ensemble approach discussed in section 3.1.2. Unfortunately, the
research identified to belong to this category has a limited focus on privacy,
presumably due to the limited number of approaches currently available.
Figure 9 attempts to give the reader an example overview of a protocol
belonging to this category. When compared to its centralized variant in
Figure 7, one sees that the operations executed centrally are done at each
participant seperately. Also, the model belonging to a participant is
transferred to every other participant.
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Figure 9: An overview of a typical system structure of the systems belonging to the
DEMA category.

Early approaches such as proposed by Luo et al. [80] and Bhaduri et al.
[11] introduce distributed classification using ensemble learning by
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aggregating votes produced by local models. Therefore, the transferred
information shown in Figure 9 should represent votes for these two papers.
Both focus on the use of peer-to-peer (P2P) networks which are categorized
as an at the time emerging technology for content sharing. Unfortunately,
none of these incorporate any privacy precautions, leaving data-owner
privacy lacking. The lack of privacy-preservation means that all
communication is unprotected, allowing all neighbors with whom an
individual communicates to see its votes in the clear, which also creates the
opportunity for manipulation.

Li et al. [75] proposes adaptive distributed privacy-preserving algorithms.
It provides every participant all individual models to aggregate any
combination of sub-models as they please. However, the authors assume
that a local model can be shared without any privacy impact as they state
that sharing the models enables the creation of an integrated model,
without sharing the individual datasets and thus preserving private of this
training data. However, according to Amir-Khalili et al. [3], if the local
models are known to all peers, there is a possibility for a malicious peer A
to forward a crafted model to peer B and use B’s response to inferring data
at B. In addition, the system does not involve any failure precautions and
allows an adversary to have detailed insights into the model, a white box
scenario. Furthermore, the local sample size is used to assign weights to
different classifiers in the global ensemble. Sharing this can be considered a
privacy breach as it can leak sensitive information about the underlying
entity. Finally, the desired combination models are selected by assessing
performance on the local training data. Since the local data does not
accurately describe the entire population distribution, this performance can
be considered biased. Insulearn, proposed by Amir-Khalili et al. [3]
themselves, incorporates a byzantine fault tolerance algorithm and clearly
defines a threat model.

The decentralized ensemble approaches show a lack of privacy-preserving
approaches, leaving room for significant improvement in future work.

3.1.5 Adapting Existing Learning Algorithms
This section aims to highlight a different approach to attain privacy in
machine learning. The authors whose work falls into this category mainly
focuses on the conversion of specific algorithms to allow for the use of
encryption. Here, existing classification techniques are adapted to allow for
training or inference on encrypted data. Encrypting the data protects the
confidentiality of the individual inputs. First, we will discuss early work in
the field and review more recent approaches afterward.

the foundation Secure multiparty computation based approaches
became prevalent in the early 2000’s. In these methods, secure protocols
replace a few critical steps within a specific classification algorithm and
aggregate the results at a centralized node. Lindell and Pinkas [77]
proposed a protocol to compute an essential step in the ID3 algorithm
needed to build a decision tree without revealing input values from either
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party. Vaidya et al. [122] introduce secure dot protocols to perform
privacy-preserving K-means clustering over vertically partitioned data.
Kantarcioglu and Clifton [67] provided another approach, who focus on
association rule mining. Finally, Yu et al. [128] focus on support vector
machines by proposing secure dot product and sum protocols to retrieve
the kernel matrix. These works show a variety of approaches to turn specific
machine learning algorithm operations into their privacy preserving
counterpart.

neural networks More recently, Yuan et al. [129] proposed an
adaptation of the back-propagation algorithm used in neural networks. This
adaptation allows for encrypted data to be uploaded to the cloud, where
one can then train a neural network without seeing any plaintext values.
The data is homomorphically encrypted, and the decryption is done using
an adaptation of the method proposed by Boneh et al. [15], allowing
multiple entities to jointly decrypt values. The paper focuses on cloud
computing where data from different sources is combined while encrypted.
Nevertheless, there is a trusted authority involved that has access to the
underlying information during the intermediate steps.

Gilad-Bachrach et al. [45] proposed Cryptonets, focusing on the inference
stage of machine learning. Instead of training a network on encrypted data,
an existing neural network is adapted such that the model can classify
encrypted samples. Unfortunately, according to [22, 96], the overhead of the
resulting model makes the method impractical, especially for deeper
networks. In addition, there is a restricted set of arithmetic operations that
are supported by homomorphic encryption.

other classifiers Aslett et al.[4] attempted a similar approach to
Yuan et al. [129], focusing on the training phase of machine learning,
generating models using encrypted data. The presented algorithms include
random forest, and Naive Bayes, putting a coding scheme in place that
facilitates the comparison of the values and a needed threshold. This
protocol imposes strict requirements over the used data, more than are
needed for the proposed work by Gilad-Bachrach et al. [45].

Graepel et al. [50] propose a method of training several binary-linear
machine learning techniques using a somewhat homomorphic encryption
scheme. This type of homomorphic encryption only allows a fixed number
of multiplications; thus the approach uses a fixed number of iterations of
gradient descent. Additionally, private inference is achieved in a weaker
security model where the client is allowed to learn more about the model
than only the label. Finally, Bost et al. [16] have developed a two-party
computation framework using fully homomorphic encryption. Using this
framework, three different classifier types are converted to allow
classification of encrypted data namely: hyperplane decision, naive bayes,
and decision trees. There is a large communication overhead due to the
required interactions between the two honest but curious participants. Aslett
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et al.[4] also mentioned this as a limitation of the work proposed by Bost et
al. [16].

Even though this category does have its limitations, whether that is a
trusted third party or impractically large overhead, the used techniques
highlight a different research direction within the field.

3.2 creating an overview

After carefully analyzing the literature, we have obtained insights into the
methods used in the field of collaborative learning. Most notably, we have
identified what choices have been made for the vital design-decisions
shown in Table 2. The first three variables indicate whether a specific
privacy-preserving technique has been employed. The latter three indicate
what type of protection is provided, and thus what type of limitations
might still be present. Based on these aspects, we create an overview in
Table 3 that shows a check-mark whether the subject is present in the
conducted research.

A threat model indicates which type of adversary the authors consider,
and by assuming one defines the scope of the research in terms of security.
Here we define unlinkability as not having a link between private
information and its owner. This property is desirable since if every
parameter update or classification vote retains its link to its source, a clear
overview of individual behavior will allow for more targeted attacks.
Finally, verifiability is considered to represent whether or not both the
sender, and the received data can be verified. In a collaborative setting, this
is important to prevent malicious non-participants from participating in the
protocol, and that each participant can only contribute its allowed portion
of information to the aggregate model.

Table 2: The design decisions encountered in the considered papers, and their
respective description

Variable Description
Differential Privacy (DP) Is differential privacy used in the presented work?
Multiparty Computation (MPC) Is multiparty computation used in the presented work?
Homomorphic Encryption (HE) Is homomorphic encryption used in the reviewed work?
Threat model (TM) Does the work assume a clear threat model?
Unlinkability (U) Throughout the protocol, is there a link between private

information and the owner?
Verifiability (V) Is there a check on the validity of sender and the

conveyed information (vote/gradient)?

Table 3 presents the presence of the design decisions posed in Table 2 in
the reviewed literature. This table provides a clear overview of the attributes
present in the different approaches. The provided design decision overview
shows that verifiability of the originator and the provided data is most often
left disregarded. Moreover, the linkability between updates and their
originators, which allows more intricate model inversion, is considered in a
limited amount of cases. Furthermore, it seems that the older, more
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Table 3: Overview of the discussed papers and their approach according to the
provided criteria.

Paper DP MPC HE TM U V

CIPA Pathak et al. [97] X X X X - -

Rajkumar et al. [104] X - - - - -

Shokri et al. [109] X - - X - -

Hamm et al. [54] X - - X - -

McMahan et al. [84] X - - - X -

Rodriguez et al.[107] X - - - - -

Tian et al. [118] - X - X X -

Bonawitz et al. [13] - X - X - X
Yonetani et al. [127] - - X X X -

CEMA Folino et al. [39] - - - - - -

Xie et al.[125] X - - - - -

Hamm et al. [53] X - - - - -

Cyphers et al. [26] X - - X X X
DIPA Huang et al. [61] X - - X - -

Bellet et al. [9] X - - X - -

DEMA Luo et al. [80] - - - - - -

Bhaduri et al.[11] - - - - - -

Li et al. [75] - - - - - -

AELA Yuan et al. [129] - - X X - X
Gilad-Bachrach et al.
[45]

- - X - - -

Aslett et al.[4] - - X - - -

Graepel et al. [50] - - X X - -

Bost et al. [16] - - X X - -

researched categories cover a wider variety of approaches whereas both
distributed categories (DIPA and DEMA) are insufficient in their offering.

Similarly, Table 4 shows an overview of paper attributes such as the
evaluation techniques used, analyzed machine learning algorithms, and the
used datasets. It becomes apparent that a variety of different models are
used on a large variety of datasets, showing a lacking standardization in the
field. Therefore, it remains complicated to compare the performance of
different studies. Nevertheless, as can be seen in the evaluation column,
certain papers such as the one written by Rajkumar et al. [104] do perform a
comparison with their direct alternatives.

Furthermore, an overview focusing on practical details is provided in Table
4. Here features such as the use case, model type, and datasets used are
mentioned. Even though not all papers mention everything, it does provide
the reader with an indication of what is common practice within this field.
For example, the majority of the reviewed research focuses on supervised
learning, and there is a large variance in the datasets used to review the
performance of the generated models.
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Table 4: An overview of the reviewed work which provides high-level insights into
the techniques used in each approach.

Authors Evaluation Use Case Learning
Paradigm

Model Type Datasets

CIPA Pathak et al. [97] Empirical evaluation of privacy
protection provided by predicting
annual income based on census data.

Supervised Logistic
regression
but extendable

UCI Adult
data

Rajkumar et al.
[104]

Performance comparison of the
proposed algorithm with the local
aggregation algorithm proposed by
Pathak et al. [97].

Supervised Private
stochastic
gradient
descent

Synthetic data,
Wisconsin
breast cancer
data set

Shokri et al. [109] Determining the effect of ✓ and mini-
batch size to select the version of
SGD, while validating classification
performance and the effect of
collaboration of the proposed
algorithm.

Supervised MultiLayer
perceptron,
Convulutional
Neural
Network

MNIST,
SVHN

Hamm et al. [54] Validating performance by making a
proof of concept for a crowd sensing
system on mobile devices, using
Google’s activity recognition as
ground truth. In addition, additional
validation is provided using digit
recognition.

Unsupervised
and
supervised

Multiclass
logistic
regression

Actual phone
movement
data, MNIST

McMahan et al.
[84]

Evaluation of privacy costs within
the proposed framework. Analyzing
the impact of the allocated privacy
budget, complexity, training
efficiency, and model quality.

Supervised Multilayer
perceptron

MNIST,
CIFAR-10

Rodriguez et
al.[107]

Determining the benefit of
personalizing global models, and
comparing this to pure local training
and the unpersonalized global
model.

Unsupervised
and
supervised

Multilayer
Perceptron

WISDM,
Wikipedia
and NIPS
datasets

Tian et al. [118] Verifying accuracy loss due to the
aggregation using MPC focusing on
high dimensional regression.

Supervised Linear
Discriminant
Analysis

Synthetic data,
Heartdisease
dataset

Bonawitz et al.
[13]

Both a theoretical and a prototype
evaluation are given to validate
the proposed protocol, focusing on
the efficiency and not on machine
learning performance.

- Neural
Networks

-

Yonetani et al.
[127]

Comparing classification
performance of novel protocols
to those proposed of Pathak et al.
[97] and Rajkumar et al. [104].

Supervised Linear Support
Vector Machine
(using SGD)

Caltech101,
Caltech256

CEMA Folino et al. [39] This work only validates
classification accuracy (no privacy)
on the dataset compared to other
methods, focusing on distributed
intrusion detection.

Supervised Adaboost KDD Cup
1999

Xie et al.[125] Evaluating performance of this data-
weighted ensemble approach for
variying privacy guarantees, and the
size of each local site.

Supervised ERM with
linear loss

MNIST,
Covertype



3.2 creating an overview 41

Hamm et al. [53] The proposed protocols are
compared to a non-private setting,
a varient where only local data is
used, as well as the work proposed
by Pathak et al. [97] on activity
recognition, network intrusion
detection, and malicious URL
prediction.

Semi-
supervised

Linear
classifiers

UCI Human
Activity
Recognition,
KDD-99,
Malicious
URL

Cyphers et al. [26] The aim is to build a discriminatory
model with locally-private data.The
performance of the resulting system
is evaluated by comparing it to
traditional adaboost and random
forest algorithms.

Supervised Ensemble
classifier

MOOCDB
EDX dropout
data, Adult
Data Set

DIPA Huang et al. [61] The proposed protocol is evaluated
by analyzing the impact on
the accuracy based on the set
parameters, tweaking the noise
distribution added throughout
different iterations.

- - -

Bellet et al. [9] Personalizing globally generated
model and comparing this with a
baseline that only uses local data and
validating increased performance by
collaborating.

Supervised Coordinate
Descent

Synthetic data,
MovieLens-
100K

DEMA Luo et al. [80] This work evaluates the proposed
algorithms in different P2P
topologies in terms of classification
performance and communication
overhead and converge time.

Supervised Ensemble Covtype
from UCI
repository

Bhaduri et al.[11] Using synthetic data, the proposed
solutions are evaluated against a
completely centralized alternative,
and the impact of noise in data is
analyzed.

Supervised Decision tree Synthetic data

Li et al. [75] The proposed framework is
evaluated by comparing the
aggregated model to one that is
trained solely on its own EHR data.

Supervised Adaboost Diabetis EHR
data

AELA Yuan et al. [129] In addition to a complexity analysis,
three different experiments are
performed comparing the proposed
scheme to two alternatives as well as
a not privacy preserving version.

Supervised Neural
Network

Iris, Diabetes
and kr-vs- kp

Gilad-Bachrach et
al. [45]

The provided network conversion is
reviewed in terms of classification
performance and the efficiency of the
different steps is assessed in terms of
transmission size and training time.

Supervised Convolutional
Neural
Network

MNIST

Aslett et al.[4] The proposed solution is
implemented and the efficiency
timings are shown for different
scalar operations.

Supervised Naive Bayes,
Random Forest

Synthetic data

Graepel et al. [50] The focus of the evaluation is on
efficiency due to the inherent
complexity of homomorphic
encryption, for both algorithms.

Supervised Linear Means,
Fisher’s Linear
Discriminant

Synthetic data

Bost et al. [16] Performance is evaluated as
opposed to their unencrypted
counterparts, while execution time,
and transmission size of the various
stages are also measured.

Supervised Linear, Naive
Bayes, Decision
Tree

Breast cancer,
Credit,
Audiology,
Nursery, ECG
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3.3 discussion

In an ideal scenario, a protocol is able to protect the used training data, the
private models made by the individual participants, and remove any
linkability between released information and the data owner. Furthermore,
malicious attempts to alter the outcomes or provide falsified data, from
both a valid and non-valid participants should be detected and prevented.
The current state of the art does not provide the combination of these
features, but this survey has identified a trend towards more privacy-aware
machine learning approaches.

First of all, when reflecting upon Table 4, it becomes apparent that in
order to compare the performance of future protocol designs, a more
standardized dataset selection should be made. By selecting a standardized
dataset for a specific model type, it will be easier to compare papers and
their contributions and thus improve the interpretability of the contribution
presented in future papers. Currently, there is a significant variance between
the used datasets making it difficult to compare the performance of the
resulting models directly. By being able to compare performance directly, it
also becomes easier to make the trade-off between the attained privacy and
performance.

Furthermore, Table 3 shows us what decisions have been made by the
authors of the reviewed papers. Most of the protocols did not provide any
form of verifiability or linkability between the data, and its sender remains
present. To achieve these aspects, different requirements need to be met.
These consist of the implementation of both anonymity and unlinkability of
the participants, verifiability of the sender and the accompanying data,
consensus on the correct execution of the used techniques, and a certain
degree of protection against the different attacks mentioned in Section 2.
Especially the implementation of the inherently opposing concepts of
unlinkability and verifiability can be a challenge.

Moreover, an explicit threat model should be adopted providing insights
into what information is available to the attacker and what his or her goal is.
Providing this assumption allows future researchers as well as potential
users to evaluate for which scenarios the proposed protocol is or is not
destined. Even though a notable portion of the papers did include this, not
all did, and security should become a primary concern when designing
novel protocols. It warrants a cross-over between both research areas to
jointly conduct research into on the one hand maintaining and improving
performance while on the other hand providing increased privacy.

When we zoom in on the categories as a whole, we can see higher level
patterns. It can be seen that the centralized approaches (CIPA and CEMA) are
comprehensive and vary in their offerings. Nevertheless, many do not
consider and evaluate every aspect of privacy, resulting in open problems,
often denoted as future work. For example, an oblivious parameter server
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can add unlinkability to the work presented by [109], while Bonawitz et al.
[13] leave the identification of well-formed inputs to future work.

The distributed collaborative learning categories offer significant
opportunities for future work as it does show promising aspects for
privacy-preservation. In these settings, one does not need to trust a central
entity resulting in there being no single point of failure. Nevertheless, the
iterative approaches within DIPA might still be vulnerable to the GAN attack
[57], and the ensemble category (DEMA) is significantly lacking in terms of
privacy protection as the authors do not take it into account at all.
Distributed methods should also focus on establishing a consensus
methodology, on when the process has indeed been properly executed. The
value of the final result produced would increase if every participant can
themselves verify that all steps belonging to the protocol have in fact been
executed properly.

The final category (AELA) gives insights into works that attempt to
convert specific model types to handle the use of encrypted data. The
techniques proposed can be used to improve performance and privacy
protection. Nevertheless, the use of homomorphic encryption can lead to
significant computational overhead, and even though performance might be
improved, efficiency should also be compared to allow readers to make a
careful trade-off between the two. The main downside of such methods in
distributed learning include both the use of a trusted central entity ([129]),
as well as impractical computational overhead ([45]). Moreover, there is still
only a limited amount of available models that allow for encrypted training
or inference. However, unlike using an ensemble approach, there is no loss
in classification performance since there is no information lost in transition
as everything is encrypted.

Overall, the discussed approaches show that collaborative learning has
compelling use cases and warrants future work focused on making it usable
in an era where privacy awareness and legislation are playing an increasingly
more prominent role.

3.4 key takeaways

We have discussed current approaches to collaborative learning, which have
been divided into five categories each with their respective advantages and
disadvantages. Based on our findings, an overview has been presented both
on the properties attained by each paper as well as practical facts exposing a
lack of standardization. It has become apparent that the currently available
options are lacking a focus on privacy. The DEMA architecture offers several
benefits such as the fact that the local models can be of any desired type
allowing a group of participants to use already available classifiers. The
decentralized nature removes the need to transfer these models to a single
entity. The generic model creation can be abstracted from the global process
and initiated locally, where every participant can decide on the preferred
architecture if so desired. Moreover, the training process can be very
intensive, especially for those model types that used in the CIPA/DIPA
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categories. The ensemble-based approaches benefit from the fact that the
communication is depended on the number to be labeled items rather than
training epochs. In general, an ensemble-based approach is a more flexible
approach that can be used for and freely tuned to a variety of different
problem statements. Additionally, the ensemble-based approaches do not
allow for iterative attacks such as the GAN attack. Therefore, we have
decided for our primary focus to be on the DEMA category in finding a
solution for our research problem. This and the rest of our application
setting and how we aim to answer our research question will be discussed
next.
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Privacy needs to be the foundation of the design process to enable the
decentralization of collaborative machine learning model generation. The
current alternatives have been evaluated, and we argue that these do not
meet the current privacy requirements. The related work shows a limited
focus on privacy, leaving the state of participant privacy to be inadequate.
In this chapter we are going to introduce how we aim to overcome these
limitations and provide an improved solution. Firstly, we will go over the
generic application setting for which we will design our solution. Secondly,
we will discuss how we attempt to answer the questions derived from our
principal research goal (Chapter 1) in our research. Finally, we will identify
the challenges that are present in overcoming the currently present
limitations.

4.1 application setting

Our primary goal is to create a protocol design that facilitates
privacy-preserving collaborative learning. In this section, we will identify
what assumptions we make of the environment to justify our problem
statement. We continue to discuss how our setting compares to currently
available alternatives solving similar issues.

4.1.1 Assumptions
In attempting to answer our research question, we have made several
assumptions about the underlying application setting. In this setting, we are
addressing the relevant assumptions on the global level, whereas the
protocol designs will include a clear overview of solution specific
assumptions. In our problem definition and overall solution structure we
make the following assumptions:

• There exists a need to combine insights retrieved from training data
located at three or more different locations, in a privacy-preserving
manner.

• These parties are willing to cooperate to obtain better-performing
classifiers, as long as the privacy of their training data can be
guaranteed.

• Participants have a means of identifying themselves during the protocol
setup, to validate the people with whom the protocol will commence.

• We assume that participants are willing to commit extra resources for
the additional training time to attain training data privacy, making the
protocol practically feasible.

45



46 research challenges and methodology

• We take the approach presented by Papernot et al. [94], and
blockchain technology, as primitives. We apply the state-of-the-art
differential privacy techniques presented by Papernot et al. Further,
we use blockchain technology to distribute our communication
channels with consensus. We assume the presence of these techniques
as this is not the core of our contributions.

4.1.2 How does our setting relate to previous work?
The inspiration for the generic application structure originates from
Papernot et al. [94], which achieves a similar goal in an individualistic,
non-collaborative setting. Their approach is comparable with the protocol
proposed by Hamm et al. [53], who assumes different originating data
sources as mentioned in Chapter 3. We attempt to convert their completely
centralized and central collaborative approach into a decentralized,
privacy-preserving variant. In order to do so, we first go over how each of
these solutions construct their final labels of the public data set.

Figure 10 indicates the approach proposed in the Private Aggregation of
Teacher Ensembles (PATE) framework. The proposed framework assumes a
white box adversary who can target the global model ⌦G. The user splits the
original data set into different partitions upon which models are trained, who
jointly label the public dataset as the ensemble model⌦E. By transferring the
knowledge of the ensemble to the public dataset ⇢, the authors set a bound
to the amount of privacy loss to the original training data, dependent on
the number of queries, i.e., the cardinality of ⇢. The main difference with our
setting is that within their approach there is no possible adversary within the
ensemble creation phase of the protocol. It is their semi-supervised structure
that we adopt as a primitive in our protocol designs, in addition to their
differential privacy approach to protect the final global model.

Ω1

Ωn

Ω3

Ω2

Training 
Data

Partition 1

Partition 2

Partition 3

Partition n

ΩE ρ ΩG

Figure 10: The generic structure proposed by Papernot et al. [94] to improve privacy-
preservation of a publicly released model generated by a single party.

A more detailed visualization of the protocol devised by Hamm et al. [53]
as compared to Figure 7 is given in Figure 11. All participants transfer their
models to the central entity c, who generates an ensemble out of the different
models and labels of a public dataset ⇢. In addition to the privacy risks
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concerning the public release of a final model, the internal communication
becomes a potential risk. Access to a machine learning model represents a
threat to privacy, as introduced in Chapter 2, which we do not want to have
in our system.

Ω1

Ωn

Ω3

Ω2

ΩE ρ ΩG

1
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3
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C

Figure 11: The generic structure proposed by Hamm et al. [53] to improve privacy-
preservation of a publicly released model generated by multiple parties
in a collaborative setting, part of the CEMA category.

We, on the other hand, assume that the different participants do not (want
to) trust a central entity, but still want to collaborate with others. Such an
assumption could hold for large multinational companies, forced by law to
act as independent entities, as well as a consortium of participants. By doing
so, we enable the inclusion of data sources whose knowledge might have
previously not been accessible for training purposes. Therefore, we want to
decentralize these types of protocols, resulting in a depiction as given in
Figure 12.

The decentralization of these protocols, as depicted by the use of a
distributed ledger, generates challenges for the execution of the protocol.
However, before we continue to address the challenges that will be present,
we will address what methodology we will employ to create such a system.

4.2 methodology

The inadequacy of the currently available alternatives is why our main
research goal is to provide a new protocol that overcomes currently present
limitations and delivers a way to train models in a privacy-preserving
fashion. This goal has been formulated as:

How can we facilitate the joint generation of a shared machine learning model in a
privacy-preserving manner, and refrain participants from degrading the final

models’ performance more than their own, allowed contribution, in a decentralized
setting?

In other words, we want to propose a protocol that allows multiple
participants to perform a classifier training operation jointly. In doing so, we
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Figure 12: The generic structure proposed in this thesis to improve privacy-
preservation of a publicly released model generated by multiple parties
in a collaborative setting, will be part of the DEMA category.

want to ensure that the amount of information that any participant can
learn with regards to the training data present locally at any other
participant to a determinable threshold. Meanwhile, we want to prohibit
participants from contributing more than their 1/n equal right to the final
label of a public sample. Finally, we want to be able to do so by removing
the need for a central entity. From these insights, we derive the following
five sub-questions which we will discuss individually.

4.2.1 Sub-questions
To answer the presented research question and achieve its corresponding
goal, we will design and implement two privacy-preserving protocols.
Different underlying techniques are used, each taking a different route to
obtain the required properties. In order to evaluate the research questions,
we execute proof-of-concept implementations, offering runtime analysis to
complement the theoretical computation and communication complexity
analyses. We will now go over each sub-question and discuss which aspects
are required to successfully answer them.

How can we create a transparent, decentralized joint machine learning model
generation system? Transparency is crucial in order to allow participants to
value the resulting global model. If any participant is able to recompute
intermediate steps and see that these have been validly constructed, one can
ensure herself from the correct execution of the protocol. In order to answer
this question, we should test the final protocol designs, and validate
whether any participant can reconstruct intermediate steps and ensure
proper execution. Meanwhile, this should not endanger privacy by allowing
insights into individual behavior.
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How can we limit the number of contributions of a participant to a pre-specified
amount? A technique must be employed that prevents a participant from
contributing more than a pre-specified amount. By doing so, we prevent
excess contributions as mentioned earlier. We can evaluate this question by
performing a proper analysis whether a participant, under the given
assumptions, is able to contribute more than allowed to the final protocol
outcome.

How can we remove the linkability of their contributions to the originating user,
while assuring a valid sender. In order to carefully evaluate this question, we
need to provide a detailed analysis on whether a contribution can be linked
to its sender. This analysis includes validating that there is no link between
a ’pseudonym’ or random derivation of the sender identity and all sender
contributions. Meanwhile, we require a valid sender, meaning that the
sender is included in the group of participants who are validated when the
protocol commences.

How can we leverage the setting of the protocol to improve efficiency? Since our
application setting assumes the involvement of multiple parties, how can
we use this as an advantage to improve efficiency? It might be the case that
in more substantial amounts of participants, there is no need for a message
to be equally likely to have originated from all participant. To evaluate this
question, we need to develop both a simple protocol design and compare its
efficiency with an approach that leverages the number of participants.

How can the above sub-questions be achieved without significantly degrading the
prediction accuracy as compared to centralized variants? The usage of privacy-
preservation techniques within the field of machine learning forms a delicate
trade-off, where the costs must not severely impact the attained benefit. The
impact to the equilibrium of this trade-off can be evaluated by analyzing the
applied techniques, and assessing whether or not they impact the knowledge
transfer that occurs. If the knowledge transfer is adversely impacted, we need
to evaluate the performance with and without these changes. Otherwise, the
analysis of the fact that the output of local classifiers is not altered would
assert that this is trivial.

4.2.2 Design science
In this thesis, we employ the design science methodology. Research
conducted according to this methodology aims to develop artifacts with the
explicit intention of improving the performance of the artifact [56]. The
design science framework [56] is used to ensure a proper process, and add
to the scientific nature of this thesis. Hevner et al. [56] have presented seven
guidelines to which valid design science-based research must cohere. Table
5 shows these seven guidelines and how this research attempts to abide by
them.
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Table 5: Application of the seven design guidelines of design science as presented
by Hevner et al. [56]

DS guideline Our approach

Design as an artifact Chapters 5 and 6 show the design of two IT artifacts in an
elaborate manner, making implementation, and validation
easily possible.

Problem relevance The combination of Chapter 1 and 3 sketches the
underlying problem statement and identifies it as an
open issue when compared to the available literature.
The significant costs involved due to misclassification
or the inability to export data make the business need
increasingly present.

Design evaluation Chapter 8 focuses on the evaluation of the proposed
artifacts. The design will be implemented experimentally
validated. We will compare the run-time results to peer-
reviewed alternative approaches.

Research contribution This thesis presents the contributions made as summarized
in Chapter 1. The extensive literature review in Chapter 3
indicates open issues which the design is made to solve.

Research rigor Peer reviewed works from the shared body of knowledge
are used as building blocks in the presented design.
Furthermore, these works are also used in the evaluation
of the presented design.

Design as a search process Two variants solving the underlying problem are
presented. These are designed after actively evaluating
different alternative cryptographic techniques to achieve
the required properties.

Communication of research The report is structured in such a way that both business
and technological identify the need for the proposed
solutions. The technical details might not necessarily be
applicable to both technical and managerial audiences.
However, we aim to make the rest of the report insightful
for any interested reader.

4.3 challenges

To eliminate the need for a central entity for both the ensemble generation
process as well as the execution of the labeling phase, we observe several
challenges that need to be overcome. Do note that these challenges are only
relevant within the scope of the assumed threat model and the abilities of
the adversary that come with it.

By allowing multiple participants to be part of the ensemble generation
process, we allow for adversaries to gain the increased power to disrupt the
machine learning process. These adversaries can now either be internal or
external to the protocol environment. An internal adversary gains limited
insights into what other participants contribute, and should not be able to
skew the outcome of the ensemble excessively. The challenges inherent to
decentralization are as follows:
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limited insights into participant behavior A participant
should not be able to relate the votes to the participant who has cast them.
If an internal adversary can track the behavior of each participant, he or she
can obtain knowledge from the used classifier. Similarly to the protocol as a
whole, the adversary can use this knowledge to make a new classifier based
on the knowledge provided by the participant. To prevent this from
happening, either the identity linked to a vote should be obfuscated, or the
content of the vote itself should be hidden.

no double spending The contribution given by a participant should be
limited to a predefined amount of votes per item. If the given votes exceed
the allowed values or multiple votes are cast, the outcome of the ensemble
can be skewed towards a particular dimension, possibly moving the decision
boundary of the ensemble and thereby misclassifying malicious traffic as
benign or vice versa.

verifiability and consensus The entire process should be verifiable.
Every participant should be able to verify that each vote has been cast
correctly within the given threat model. Also, all participants should agree
upon the state of the collected votes, meaning that no participant can claim
to have voted differently by changing their contribution later on.

auditability For a participant to allow verification of their contribution,
a participant should be able to prove that a specific vote value originated
from him or her. For example, imagine that due to the actions of an adversary,
the decision boundary moves slightly causing significant monetary damage.
In such a situation, the participants should be able to prove to both judicial
and regulatory entities that they behaved as they should have.

reasonable efficiency When executing the protocol, the cooperation
of multiple parties should be executed with reasonable efficiency. Efficiency,
in this case, is considered as being executable using a regular IT setup
without taking significantly longer than the currently available alternatives.
The protocol should be able to evaluate a large public dataset items, both
when a few participants, as well as large number of participants are
included. We assume that the actions do not necessarily need to be
real-time, since an updated version would be trained periodically in terms
of multiple days, weeks, or even months.





Part III

D E S I G N I N G T H E S O L U T I O N S

Part two has provided us with the necessary context on what
approaches are currently available, and how we aim to answer
our research goal. Part three we present our designs and provide
theoretical analyses on their performance. For both designs, we
first provide an overview of the entire protocol, after which we
examine every phase separately in more detail. Afterward, we
provide an extension to our second design, in which we attempt
to improve the efficiency of the protocol without losing our
desired privacy properties.





5E C O N O M Y: E N S E M B L E C O L L A B O R AT I V E L E A R N I N G
U S I N G M A S K I N G

The first protocol of two protocols that we have designed in our attempt to
attain our research goal is called ECONoMy, private collaborative learning
using an ensemble approach. The principal objective of the presented design
is to provide an efficient training scheme, applicable to a use case where the
protocol contains a large number of participants, such as in an IoT setting.

Since we desire the use of a decentralized architecture, we need to convert
the solutions presented in a centralized setting, and need to overcome the
research challenges discussed in Chapter 4. One of these challenges raises
the need to remove the link between the participant identity and the
prediction values. We can accomplish this by either anonymizing the
identity behind the prediction values or by making the data confidential to
all other participants of the protocol. ECONoMy achieves the required
property using the data confidentiality alternative. The prediction votes are
made confidential using masking, for which we generate values in such a
way that when the individually masked votes are aggregated, the
randomness is canceled out. The aggregate is subject to a label selection
technique to label the underlying samples, after the application of noise to
achieve differential privacy. The right combination technique is dependent
on the analyzed problem. Thus, we focus on the basic ensemble method as
described in Table 1, based on soft labels (note that this is the same as
distribution summation).

To the best of our knowledge, ECONoMy is the first collaborative
learning system that allows for privacy preservation in a decentralized
ensemble setting, assuming an ’honest-but-curious’ threat model. No
individual can extract information on the individual models as it requires
the combination of all masked values to retrieve the total.

We have structured this chapter as follows. First, we introduce the
required notation in Section 5.1, and discuss the utilized preliminaries in
greater, mathematical detail, continuing on the explanations given in
Chapter 2. After, we provide an all-encompassing overview of the
ECONoMy protocol in Section 5.3, which we dissect in a phase-by-phase
analysis in Section 5.4. Section 5.5 analyses the security of the proposes
scheme. Furthermore, the evaluation in Section 5.6 is done in terms of
complexity (5.6.1) anf communication (5.6.2). Finally, we provide a small
discussion of the presented protocol.

55
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5.1 notation

We will frequently need to refer to certain variables within this design
chapter. In order to make this as efficient as possible, Table 6 contains a full
overview of all the used notations.

Table 6: Explanation of the symbols used in the ECONoMy design chapter.

symbol explanation

n The number of participants in the protocol.
m The number of items for which there is to be voted.
u The number of possible classes the items can be classified as.
⌘ Number of zeros appended to the plaintext encoding.
� The number of bits required to represent one class in the vote

encoding.
⇠ The bit size of the created masking value.
 The size of an encrypted random number share.
� The size of a label.
E Denotes the use of the AES encryption function.
E0 Denotes the use of the Paillier encryption function.
D Denotes the use of the AES decryption function.
D0 Denotes the use of the Paillier decryption function.
I Set of identifiers where I = {1, 2, ...,n}, where |I| = n.

r �
x

Uniformly selecting x random values out of a specific space, if
omitted x = 1.

⇧ Set of participants ⇧ = {⇡1,⇡2, ...,⇡i}, where |⇧| = n and i 2 I

S Unlabeled public samples, S = {s1, s2, ..., sm}, where |S| = m.
C The possible classes, C = {c1, c2, ..., cu} , where |C| = u.
L Set of final labels, {L1,L2, ...Lm}

�⇡i Set of predictions for m items from participant i,
{q⇡i,s1 ,q⇡i,s2 , ...,q⇡i,sm }.

R⇡i Denotes the original set of random numbers generated by
participant ⇡i such that R⇡i = {ri1, ri2, ...rij} for ⇡j 2 ⇧ and i 6= j.

R⇡i,⇡j Denotes the random shares generated by participant ⇡i, meant for
participant ⇡j where ⇡i and ⇡j 2 ⇧ and i 6= j.

R⇡j,⇡i Denotes the set of random numbers that participant ⇡i received
from participant ⇡j, generated using the random number
generation. R⇡j,⇡i = {r⇡j,⇡i(1), r⇡j,⇡i(2), ..., r⇡j,⇡i(m)}, where
|R⇡j,⇡i | = m.

R̆⇡i,sk Denotes the set of random numbers of ⇡i, after aggregating all
received part per item 1 6 k 6 m.

M⇡i The set of masked votes where M⇡i = {m̆⇡i,1, m̆⇡i,2, ..., m̆⇡i,m}

where m̆⇡i,k = R̆⇡i,sk + q⇡i,k..
Msk The set of masked votes where Msk = {m̆1,sk , m̆2,sk , ..., m̆n,sk }

where m̆k,sk = R̆⇡k,sk + q⇡i,k.
� The set of all aggregated masked vote distributions.
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5.2 detailed primitives

In this section, we will introduce the four different cryptographic
preliminaries that are explicitly used in the ECONoMy protocol. The
protocol uses additive secret sharing, Diffie-Hellman key exchange, as well
as both a symmetric and asymmetric cryptosystem, to attain privacy
preservation. The underlying principles and a brief introduction of these
techniques have been given in Chapter 2. In this section, we will give a more
detailed, mathematical representation to provide a clear foundation for the
design chapters.

Additive secret sharing is used to split random values into different
shares. These shares form the foundation to generate random numbers, one
present with each participant, that sum up to zero and which we can use for
masking. By performing this masking, the intermediately shared votes
cannot be retrieved by an adversary, limiting the exposure to the total of all
individual votes. Furthermore, even after addition, no information of the
used random numbers is available using this technique.

To distribute the generated shares, the use of a symmetric cryptosystem
assures that only the destined party has access to their shares. By sharing the
messages in a single batch, we attain lower communication costs as opposed
to sending all parts in a separate secure channel. The other primitives are
used to assert a symmetric key between the different parties of the protocol.

additive secret sharing Our first protocol uses additive secret
sharing to compute the masking values that will obfuscate the transmitted
votes. We use a variant of the additive secret sharing procedures employed
by Kursawe et al. [71], and Gracia et al. [44]. Their approach uses the
assignment of leaders and aggregators, whereas we will not use these
constructs.

Instead, every individual starts out by generating m random numbers Rpi

for i 2 I (defined in Table 6), once for each item that is to be labeled. These
random numbers are then divided into n random shares, one for each of the
participants, such that the shares sum up to the original random value. The
following example assumes there is only one item, m = 1:

Alice (1): R1 = r11 + r12 + r13 mod p (5.1)
Bob (2): R2 = r21 + r22 + r23 mod p (5.2)

Charlie (3): R3 = r31 + r32 + r33 mod p (5.3)

where p is a large integer. Alice will retain r11, and receive both r21 and r31
as the second letter in the denominator indicates the receiving party. Alice
then computes her masking value using the following function:

M1 =
nX

i=1

ri1 - R1 (5.4)

By deducting the original random value, we can be convinced that the
final parts that are used in the masking will cancel out to zero and thus
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leave us with an accurate aggregate of the, to be hidden, messages. All
shares meant for every different participant will be published in a single
operation to reduce communication costs. However, we publish these in the
clear without any masking; participants will gain insights into other shares
than their own. This limitation would allow them to compute the masking
value used by other participants, and break the confidentiality gained by
masking in the first place.

Imagine the same scenario as before, where m = 1, and Alice, Bob, and
Charlie have computed their shares. If all the to be transferred shares are
published Charlie would see the following shares:

r12, r13
r21, r23

r31, r32, r33.
(5.5)

If Charlie wants to compute M2 he can now do so, as shown below. By
substituting the underlying values, it becomes apparent that M2 can be
computed using only values present in the list above.

M2 = r12 + r22 + r32 - R2 (5.6)
M2 = r12 + r22 + r32 - r21 + r22 + r23 (5.7)
M2 = r12 + r32 - r21 + r23 (5.8)

In order to preserve the benefit provided by the masking operation, we
need to hide the shares from participants for whom they are not meant.
Therefore, we employ a symmetric block-cipher to encrypt the randomly
generated parts.

advanced encryption standard The AES, presented by Daemen
and Rijmen [27], is a symmetric block cipher commonly used in practice.
The scheme utilized a varying number of rounds, depending on the key size
(128, 192, 256) in which there are different executions of substitution and
permutation steps to generate a ciphertext. The symmetric nature results
from the fact that decryption can be done using the same key and by
reversing the order of the executed rounds.

Block ciphers have different modes of operation [36], which differ in how
the different blocks interact. In this thesis, we use counter mode due to its
parallelizable encryption and decryption, and a respectable security
reputation. Counter mode prepends a selected counter value which acts as
an initialization vector (IV). This mode can be replaced by any other mode
which is proven to be semantically secure.

The random numbers that will be encrypted are uniformly selected with
a bit size of ⇠. The probability of a plaintext collision offers a negligible
advantage. The selected algorithm is AES-128 in counter-mode, which is
assumed to be semantically secure.

diffie-hellman Diffie and Hellman [32] presented a key exchange
protocol that allows the generation of a symmetric key based on the public
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key information. In a two-party setting, each party selects a secret key
sk1, sk2. Using two commonly known prime numbers p and g, each
participant computes and publishes their public key:

pki = gski mod p. (5.9)

Each party can now obtain their shared-secret by computing the following
function:

shared_secret1 = pksk1
2 =

�
gsk2

�sk1 (5.10)

shared_secret2 = pksk2
1 =

�
gsk1

�sk2 (5.11)

where shared_secret1 = shared_secret2. In our application of this
primitive, we hash the shared secret after adding a counter value. By doing
so, we enable the creation of a new symmetric key over time without
additional communication.

paillier cryptosystem The Paillier cryptosystem [93] can be used to
encrypt a message m, and decrypt a ciphertext c using the following
functions:

Epk(m) = gm · rn mod n2 (5.12)

Dsk(c) = L(c� mod n2) · µ mod n (5.13)

These operations require the use of a keypair (pk, sk) = ((g,n), (�,µ)).
Here, g represents a value within Z⇤

n2 , n represents the product of primes p
and q, and r represents a random value for which the greatest common
divider of both r and n equals one, gcd(r,n) = 1. � represents the least
common multiplier of lcm(p - 1,q - 1), while µ represents (L(g�

mod n2))-1 mod n, where L(x) = (x- 1)/n.
The scheme is probabilistic due to the use of a random value r and

therefore will give different outputs for the same message, it is semantically
secure.

5.3 protocol overview

Before going into the details concerning every individual phase of the
protocol, we will first discuss the complete overview. The ECONoMy
protocol consists of five phases:

1. The initial startup - A phase where the required infrastructure gets
initialized. All participants generate their keys, publish their public
keys, and compute their shared secrets.

2. The random number generation phase - This phase enables the
generation of masking numbers in such a way that when all masked
individual votes Msj are aggregated for a specific item sj, the
aggregate of the original votes is retrieved. It results in a set R̆⇡i,sj for
each participant ⇡i 2 ⇧, containing a random masking value for each
item in S.
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3. Masking phase - All predictions q⇡i,sj are obfuscated by adding the
corresponding computed masking value, r̆⇡i,si , to obtain m̆⇡i,sj for all
⇡i 2 ⇧ and all sj 2 S. Each participant contributes their masked votes
in M⇡i .

4. Aggregation phase - For each item, sj 2 S, the obtained masked values
in set Msj are aggregated to obtain the aggregate of all predictions.

5. Noise addition and final model generation - The noise required to
obtain differential privacy on the predictions given by the released
global model. Similarly, the final labels are devised using the selected
classifier combination technique, and the training of a final model can
commence.

The design of ECONoMy originates from several required properties: 1)
prevent double voting, 2) the result should represent a unique vote per
party per item, and 3) the vote needs to be confidential from other
participants. We have opted for masking as our technique to hide vote
contents from other participants. Masking does not require exponentiations
of large prime numbers and results in relatively small masked values (as
compared to cipher text in public cryptosystems). The randomly generated
numbers will cancel out in aggregation, allowing us to obtain an unmasked
aggregate.

By having a random number generation phase, where shares are destined
for specific participants, every participant receives one valid masking value
per item. This constraint directly limits the number of votes per item per
participant to one and requires the addition of all numbers to obtain a valid
total, assuring the aggregation of precisely n votes when demasking has been
successful. Thus, by constraining our adversary by designing the protocol
description, he or she is not able to deviate from it and will not be able to
double vote.

The encryption of the secret shares before transmission is done using AES
since it requires no exponentiations using large values. A participant will
post his or her messages in a single transaction, making it essential that
there is no correlation between ciphertexts originating from the same input
plaintext. Thus, we require a semantically secure block-cipher mode. In our
described protocol we use the counter mode, which also has the added
benefit of allowing parallel encryption and decryption to allow system
optimization. Any other encryption scheme that provides us with the ability
to hide the transferred contents similarly could be used if preferred over
AES in counter mode.

In establishing this protocol, we have made the following assumptions that
should be taken into account when evaluating the design.

• We assume a ’semi-honest’ threat model, where adversaries follow the
protocol description but are curious enough to use all obtained
information to the fullest extent.
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• In a semi-honest structure, an adversary can store all known
information. We, therefore, assume that less than half of all parties are
sharing their information.

• We assume that the participants can jointly validate certain execution
steps, meaning that there is a certain degree of trust. If x participants
have approved a contribution or the initial infrastructure, the others
are willing to trust those x people to contain at least one honest verifier.
There is thus a threshold of x approvals in order for an operation to
succeed.

• We assume that the use of AES in counter mode provides semantically
secure encryptions.

• We assume that the G and g variables required for the Diffie-Hellman
key exchange are properly chosen.

• We assume that the discrete log problem holds for properly selected bit
sizes, upon which the Diffie-Hellman protocol depends as well as the
Paillier Cryptosystem.

5.4 phase-by-phase design description

In this section we will present the design of the ECONoMy protocol per
phase. Each of the phases will show the required procedures and their
respective analyses.

5.4.1 Initial setup
The first phase of the protocol initializes the required infrastructure and
enables the participants to identify themselves by allowing them to
participate in the protocol. Each individual ⇡i 2 ⇧, in turn generates a
key-pair Pki = gxi ,Ski = xi, corresponding to the Diffie-Hellman key-pairs
as discussed in Section 5.2. Additionally, every participant creates a Paillier
key pair is created, and both its public key and that corresponding to the
Diffie-Hellman key-pair are published. Each participant continues to
generate shared AES keys in the following way. First, every participant
⇡i 2 P, publishes n - 1 random values r̆ij encrypted using the public
Paillier key of each receiving participant ⇡j 2 ⇧ where i 6= j. Afterward, the
shared AES-Key can be generated by each participant by computing the
following function:

shared_secret =
�
pkj
�ski·r̆ij·r̆ij

resulting in a shared secret. This shared secret is then hashed to provide
a shared symmetric key of 128 bits suitable for AES-128, that is unique for
that combination of participants. Finally, the participants agree on the vote
encoding and a time frame within which all votes should be received.

At the end of this phase, the protocol is ready to commence, and every
participant knows who is participating. All participant have access to an AES
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key for its communication with each participant in the protocol. Now we are
ready to commence to the next phase, the generation of the masking values
that will be used to hide each participant ⇡i’s to be shared prediction values
�⇡i .

5.4.2 Random number generation
We create random number numbers using additive secret sharing, such that
they sum up to zero, to mask each vote for all items in I. By doing so, when
all votes corresponding to an item si 2 S are aggregated, the random values
that masked the individual votes will be negated leaving us with the total
of the vote distributions. To properly hide the underlying vote of bit size
(u · �+ ↵), a random value of a specific bit-length would need to be chosen,
corresponding to the currently required bit security,  bits, according to NIST
standards [6], where  is our security parameter. The required bit size will
be further discussed in the security analysis in Section 5.5.

Every participant will need to generate m random numbers that each mask
a prediction in � , as is done in the GenerateRandomNumberShares procedure
in Algorithm 1. Therefore, the procedure first generates m random numbers
that are ⇠ bits in length. Afterward, n parts are generated which modulo a
prime p sum up to the original random value. While generating these parts,
the computed shares are immediately ordered according to their destination
participant towards whom these particular shares are intended.

In order to transmit all shares in a single publishment, the shares are
encrypted using the public key of the intended recipient using the
EncryptShares procedure. A participant can, upon receiving all his or her
parts, decrypt using the DecryptShares procedure, which aggregates the
parts corresponding to the same item and subtracts her original random
value. This operation leaves the participant with a final random value which
can be used in the next phase, masking.

5.4.3 Masking
We mask each vote to hide the contents of the vote provided by a
participant. This masking can be done by simply adding the previously
computed random value, to the corresponding vote value creating a masked
value now containing the contents of the participant’s vote (note that this
can also be negative). Now, the resulting masked value can be shared with
the other participants as can also be seen in Algorithm 2. Every participant
⇡i 2 ⇧, where i is the participant identifier, executes this protocol for each
item i 2 I. All masked votes can be shared in a single transaction, where a
vote is contributed in concatenation with the hash of the original vote value.
By doing so, it prevents the originating party to alter the original
contributed value if he or she were to reveal the hidden information.

5.4.4 Aggregation
Now that the votes have been cast during the previous phase of the protocol,
the totals can be computed. In doing so, this phase only requires the addition
of the votes belonging to a to be labeled item due to the extensive work
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Algorithm 1 Random number generation protocol.
1: procedure GenerateRandomNumberShares(n, m)
2: R⇡i

r �
m

{0, 1}⇠

3: sharesPerRecipient ;
4: totals [ ]
5: for j in range(n), j 6= i do
6: R⇡i,⇡j  ;
7: for item in range(m) do
8: newShare

r � {0, 1}⇠
9: totals[item]+ = newShare

10: R⇡i,⇡j .include(newShare)

11: sharesPerRecipient.include(R⇡i,⇡j)

12: R⇡i,⇡i  ;
13: for item in range(m) do
14: R⇡i,⇡i .include((R⇡i [item])- totals[item]) mod p)

15: sharesPerRecipient.include(R⇡i,⇡i)
16: return sharesPerRecipient

17: procedure EncryptShares(R,PKN)
18: encryptions ;
19: ctr = newCounter()
20: for x in range(n) do
21: encryptions.include(E(R⇡i,⇡x |ctr))

22: return encryptions

23: procedure DecryptShares(E(R),SKi,R⇡i)
24: Rf,⇡i

 ;
25: for e in range(m) do
26: rf,⇡i

(e) 0
27: for d in range(n) do
28: rf,⇡i

(e)+ = D(E(R|ctr)[d])

29: rf,⇡i
(e)- = Ra[p]

30: Rf,⇡i
.include(rf,pi

(e))

31: return Rf,pi

Algorithm 2 Masking procedure, hiding the prediction values.
1: procedure MaskVotes(R⇡i,sj , �⇡i)
2: M⇡i  ;
3: for j in range(m) do
4: maskedValue R⇡i,sj + � [i]
5: M⇡i .insert(maskedValue)

6: return maskedVotes
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done in the random number generation phase. When adding all seemingly
random-looking numbers, there will be a result that corresponds to the same
value that would have been attained when all individual votes would have
been aggregated without the use of the random numbers, as these values
sum up to zero.

5.4.5 Noise addition and final model generation
Once the entire dataset is labeled, noise needs to be added according to the
process described by Papernot et al. [95]. A participant proposes a noise
distribution to extract perturbations from, which needs to be approved by
the majority of other participants. Finally, each individual can choose to
train their personal model, with desired structure and parameter settings,
or propose a global model which participants can validate and use.

5.5 security analysis

It is crucial for this protocol to provide a secure environment within the
assumed semi-honest or "honest-but-curious" threat model. Masking is the
selected technique for this protocol to hide the sensitive information, the vote,
and thereby providing confidentiality of the data. All participants generate
the random value used to perform the masking. Thus, a proper unmasking
of the value provides a guarantee that all participants have only submitted
one vote for this item, and that all allowed participants have contributed at
least one vote.

We assume that the input q⇡i,sj for each ⇡i 2 ⇧ and sj 2 S needs to be
protected. Additionally, the intermediately computed random parts that a
participant ⇡i sends to a participant ⇡j and vice versa are confidential, only
available to the receiving and originating participants. This confidentiality
must be provided to such a degree that the final masking values R̆⇡i,sk are
indistinguishable from truly random numbers. The output of the protocol is
visible to all participants and does not need to be private.

We assume a semi-honest adversary in a protocol setting where we have
an honest majority. The nodes controlled by the adversary follow the
protocol specification precisely, while collecting all information from the
transcript of messages and the nodes internal states. The privacy of the
contributions provided by the participants is argued using a
simulation-based security deduction [76].

Definition 5.1. A function ↵(·) represents a negligible function if for every
polynomial p(·) and a sufficiently large security parameter  2 N, ↵() <
1/p().

Definition 5.2. Computational Indistinguishability Given security
parameter , and the input provided, let X = X(input, ) and

Y = Y(input, ). The functions X and Y are indistinguishable, denoted as
c⌘

if for every non-uniform probabilistic-time algorithm D, the distinguisher, a
neglible function ↵(·) exists such that:

|Pr[D(X(input, ) = 1]- Pr[D(Y(input, )) = 1]| 6 ↵() (5.14)
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Definition 5.3. Security

• Let f = (f1, f2, . . . fn) be a functionality. We say that � securely
computes f in the presence of static semi-honest adversaries, if an
adversary cannot distinguish the protocol � form an ideal
functionality f. Meaning that the adversary cannot obtain any
additional information.

• The view of the i-th party (i 2 I) during an execution of � on (�⇡i ,R⇡i)
and security parameter  is denoted by
view�((�⇡1 ,R⇡1), (�⇡2 ,R⇡2), . . . , (�⇡n ,R⇡n), ) and equals
(w, ri,mi

1, ...,mi
t), where w 2 (�⇡i ,R⇡i) (its input depending on the

value of i), ri equals the contents of the i-th party’s internal random
tape r, and mi

k represents the k-th message that it received.

• The output of the protocol � on input (�⇡1 ,R⇡1 , �⇡2 ,R⇡2 , . . . �⇡n ,R⇡n)
and security parameter  is denoted by output�(M0

⇧) and can be
computed from all views of the execution.

We say that Protocol � securely computes f in the presence of ⇢ semi-honest
adversaries - simulators - S1,S2, . . . S⇢ such that:

Si(1
, � 0Si

,R0
Si
), fi(�⇡1 ,R⇡1 , �⇡2 ,R⇡2 , . . . �⇡n ,R⇡n)

c⌘
view�

i ((�⇡1 ,R⇡1 , �⇡2 ,R⇡2 , . . . �⇡n ,R⇡n), )
(5.15)

The communications of a single participant ⇡i with the other participants
is visualized in Algorithm 3. All outgoing arrows represents information
send to its peers by participant ⇡i, whereas the incoming arrows are all
messages that are received from the other participants. The transmission

Algorithm 3 Communication of a participant ⇡i with the protocol �

⇡i �

input�⇡i
(�⇡i ,R⇡i) output�(M⇡i)

R = {R⇡i,⇡j |j 6= i}
R

������!
RJ

 ������ RJ = {R⇡j,⇡i |j 6= i}

R̆⇡i,sk =
Pn

j=0 R⇡j,⇡i(k)- rik

R̆⇡i = {R̆⇡i,s|s 2 S}

M⇡i = �⇡i + R̆⇡i

M⇡i

������!
M = {Ms|s 2 S}

�s =
Pn

i=0 m̆i,s
M,�

 ������ � = {�s|s 2 S}

tape and internal state of a single participant ⇡i consists of the following
attributes:
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1. His or her own to be hidden contributions �⇡i .

2. The received random parts R⇡j,⇡i from all participants ⇡j where j 6= i.

3. All encrypted random shares destined for other participants, denoted
as E(R⇡v,⇡w), where w 6= i and v 6= w.

4. The final output of the aggregate of all inputs �.

We assume an ideal functionality f that simulates a trusted third party that
exchanges the relevant information, which has access to perfect encryption
and secure communication channels. Additionally, the random numbers
originate from true randomness. The transferred information between a
participant and the functionality f is visualized in Algorithm 7.

Algorithm 4 Communication Si with the ideal functionality f

Si f

inputfSi
(� 0Si

,R0
Si
) outputf(MSi

)

R0 = {R0
Si,⇡j

|j 6= i}
R0

������!
R0
J

 ������ R0
J = {R0

⇡j,Si
|j 6= i}

R̆0
Si,sk =

Pn
j=0 R

0
⇡j,Si

(k)- r0ik
R̆0
Si

= {R̆0
Si,s|s 2 S}

M
0
Si

= � 0Si
+ R̆0

Si

M0
Si

������!
M

0 = {M
0
s|s 2 S}

�0
s =

Pn
i=0 m̆

0
i,s

M0,�0

 ������ �0 = {�0
s|s 2 S}

The ideal functionality f makes it impossible for participants to access
random shares not meant for them, as only those can be decrypted.
Meanwhile, the masks are generated in such a way that an adversary cannot
distinguish between a random value and the masked votes. Only allowing
the adversary to gain insights into the total aggregate of votes.

Theorem 1. The protocol � securely and privately computed the aggregate
functionality f to obtain output�(M⇧).

Simulator Si executes the following steps to simulate the view of party i:

1. The Simulator generates true random parts R0
Si

, different from those
generated by a generic participant ⇡i who generates random parts R.

2. The Simulator generates contributions � 0Si
out of the same distribution

as an actual �⇡i .

3. The Simulator computes masked values to attain M
0
si , in a similar way

a participant ⇡i would compute M⇡i .



5.5 security analysis 67

The simulated view can be represented as:

{Si(1
, � 0Si

,R0
Si
), fi(�⇡1 ,R⇡1 , �⇡2 ,R⇡2 , . . . �⇡n ,R⇡n)} := {(1, � 0Si

,R0
Si
),M0

Si
,�0)}

(5.16)

view�
i ((�⇡1 ,R⇡1 , �⇡2 ,R⇡2 , . . . �⇡n ,R⇡n), ) := {(1, �⇡i ,R⇡i),M⇡i ,�)}

(5.17)

For any distinguisher D and negligability function ↵(·):

|Pr[D(1, � 0Si
,R0

Si
),M0

Si
,�0) = 1]- Pr[D(1, �⇡i ,R⇡i),M⇡i ,�) = 1]| 6 ↵()

(5.18)

An adversary controlling ⇢ nodes, where ⇢ represents a minority, thus has
access to a subset of the shared information. The random shares 1 in Rj are
encrypted using the assumed semantically secure AES. The provided
confidentiality causes an adversary only to observe the shares aimed for or
originating from the ⇢ participants. Every masking value is dependent on
one random share from each participant, and the original random value
generated by the victim. This dependency can be shown as follows:

R̆⇡v,sk =
⇢X

j=0

R⇡j,⇡v(k) +
nX

l=⇢+1

R⇡l,⇡v(k)- rvk (5.19)

for victim ⇡v. The adversaries are unable to reconstruct rvk, as this value is
split into n parts from which the adversary is only able to access ⇢.
Furthermore, the second term of equation 5.19 consists of unknown random
shares that form the majority of the final masking value. Therefore, due to
the inability of reconstructing both the original random value and the total
share aggregation term, an adversary controlling ⇢ nodes is unable to
obtain masking values used by honest participants.

If an independent random value generated from a uniform distribution is
added to a value, the result remains random. Thus, an adversary cannot
retrieve any information from the masked votes if a sufficiently large
masking value is used.

Therefore, by analyzing all the information seen by the adversaries, even
when controlling multiple parties, he or she is not able to retrieve information
on the individuals’ vote. Therefore, we can state that the proposed protocol
securely evaluates the function f in the presence of semi-honest adversaries.

The bit size of the used variables play a vital role in providing suitable
security in the encryption, and for the masked values to provide suitable
security. In the following paragraphs, we address both the encryption and
masking steps, and the minimum required security bit sizes be proposed.

The mask is required to be of a particular bit size to obfuscate the original
message. Over time, the minimum required bit size changes and should thus

1 Generated using the Yarrow algorithm [126] standard on MacOS assumed to generate truly
random numbers based on real-world entropy sources.
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be adjusted according to the appropriate value at the time of implementation
[6]. Currently, the bit size that provides proper security corresponds with the
bit size of the message plus 112 bits according to the current NIST standards
for key lengths [6]. Here the bit size of the message with the added 112 bits
can be described as follows:

⇠ = u ·�+ ⌘+ 112 (5.20)

During the initialization a prime p of bit size ⇠ is determined, p 2 {0, 1}⇠. To
generate random mask values of that particular bit size, the first randoms R

that are generated by the participants per item should originate from the set
R 2 {0, 1}blog2pc, where the values are of bit size ⇠, and less than p. Afterward,
n-1 random values are generated with the same bit size for each of the other
participants. As shown in Protocol 1, the final random parts are computed
to make sure that the sum of all parts mod p is equal to the original random
value. Finally, these parts received per item are aggregated, and the original
random numbers are deducted, leaving one with a random value of ⇠ bits.

The encryption done to send the masked parts requires a specific key size.
Today’s security standards warrant the use of a 128-bit key, mapping every
encryption to a ciphertext consisting of a multiple of this bit size rounded
up. An additional 128 bits are required to provide the counter used for
encryption.

In order to assume AES to be secure, we need to ensure that the number
of ciphertexts and encrypted blocks generated with the same key preserves
security. Therefore, we need to be able to alternate the used symmetric key
after a certain amount of encryptions which can be determined as follows.
Let us assume that the ratio of the exposed key information to the key size
should be less than 2-32. The following equation will need to hold for the
counter-mode of operation:

Q2l2

2128
< 2-32 (5.21)

Q2l2 < 296 (5.22)

Ql < 248 (5.23)

where Q is the number of encryptions and thus always a positive integer
and l is the number of blocks. Every symmetric key corresponds to a pair of
participants and thus will be used by two individuals for transmitting m

random parts of
⌃ ⇠
128

⌥
+ 1 blocks. This makes the total number encryptions

= m ·
⌃ ⇠
128

⌥
+ 1, which even for high levels of m is less than 248. Therefore,

the AES scheme is secure if the key is renewed with every protocol
execution. Every pair of participants has a shared secret counter, allowing
them to alter their shared secret without additional communication. This
counter can either be increased or decreased by one every new protocol
execution allowing both participants to compute a new AES key without any
additional interaction between the parties.
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5.6 complexity analyses

We conduct both a communication and computation analysis in Sections
5.6.1, and 5.6.2 respectively, through which we attempt to assess the
proposed protocol.

5.6.1 Computational analysis
The computational complexity of ECONoMy is analyzed by reviewing the
required number of operations per phase per party. The required operations
are dependent on the number of participants n, as well as the number of
items in the public data set m. The chosen size of the public dataset will
depend on multiple factors, such as availability (i.e., what data can be
acquired), as well as privacy requirements. The privacy obtained by
transferring knowledge from the ensemble to the public data provides a
bound to the number of queries done to the ensemble and limits privacy.
The number of items in this public dataset resembles this bound and
represents a trade-off between the amount of knowledge transferred that is
available to train the global model on, and the level of privacy offered to the
local training data. The number of participants is assumed to be smaller
than the number of items to be labeled, even though this is not a constraint
of the protocol. At least three parties should participate. When n = 2, the
masking will be ineffective as a participant can retrieve the vote of its
collaborator by detracting her own vote from the total.

Table 7 shows the number of mathematical operations that occur in each
phase. ECONoMy provides a lightweight solution, where the random
number generation can be done efficiently due to the use of the symmetric
cryptosystem AES opposed to an asymmetric cryptosystem. Moreover, the
masking only consists of adding the random values to the votes, and the
aggregation only consists of a limited amount of linear operations.
Furthermore, it is important to reiterate that the operations are performed
locally, in a distributed fashion. This parallelization means that the
encryptions in the per party column are most relevant as each party will be
executing the operations in parallel.

5.6.2 Communication analysis
Information is transferred between participants in different phases of the
ECONoMy protocol. The sizes of these messages are shown in Table 8, and
use the symbols defined in Table 6. The Total column shows the addition of
all messages combined in each of the phases, whereas the Per Party column
indicates the message sizes send or received per participant. It becomes
apparent that the total amount of bits transferred in one execution of the
protocol is equal to mn2 -mn +nm⇠+m�.

The majority of the transferred bits originate from the random number
generation, which depends on the number of participants, the number of
items, as well as the size of the ciphertext transferred. Inference voting
requires a smaller message size, since it does not have a quadratic
dependency on the number of included participants. An example size of a
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Table 7: Review of all operations occurring in a single execution of the ECONoMy
protocol to conclude the computation complexity.

Phase Operation Total per party

Initial Setup Key Generations n 1

Random Number Random number generation n ·m m

Generation Additive secret sharing n ·m m

Encryptions/Decryptions 2n2m 2nm

Additions m ·n m

Masking Additions n ·m m

Aggregating Additions n ·m n ·m
Maximum m m

masking value can be constructed as follows. If we assume the presence of 5
different classes (u = 5), � = 10, and we append 10 zeros to identify a
correct demasking, the correct masking size would be 172 bits. This would
require two separate AES-128 blocks, in the encryption, accompanied with
an IV! of 128 bits.

Table 8: An overview of all communications needed for ECONoMy, and the size of
the transferred information.

Phase Operation Total Per party
Random Number Send mn2 -mn mn -m 

Generation Retrieve mn2 -mn mn -m 

Inference voting Sharing votes nm⇠ m⇠

Labeling Publishing final labels m� m�

5.7 discussion

To the best of our knowledge, ECONoMy represents the first
privacy-preserving collaborative model generation using the distributed
ensemble learning approach. Assuming a passive, semi-honest adversary
the privacy risks inherent to the distributed nature are overcome using
symmetric encryption, masking, and differential privacy. After distributing
random numbers among the participant, a privacy-preserving voting
procedure allows for the accrued knowledge within the local models to be
transferred to the labels given to the public data set.

First of all, by using encryption, the required number of communications
is reduced, and the revelation of random shares is prevented as discussed in
Section 5.2. Furthermore, during the inference voting phase, the lightweight
masking procedure hides all individual contributions in such a way that no
intermediate value can be determined. This obfuscation protects individual
models’ training data against targeted attacks by removing the link between
the individual vote and the participant. Furthermore, the intuitive privacy
benefit inherent to this approach semi-supervised learning, suggested by
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Papernot et al. [95], allows for a fixed privacy loss of the original training
data set (combined over all local models) as only m queries are made to the
ensemble as a whole. If this ensemble were to be released directly, the
privacy loss does not have such an upper bound. Finally, by adding
calibrated noise, the outcomes generated by white box attacks are hidden
under differential privacy.

The most expensive computations are needed during the random number
generation phase, originating from the encryption of the random shares.
These operations bring the overall computational complexity of the protocol
to O(n2m), and O(nm) when considering the parallel nature of the
protocol. The inference voting phase itself requires every participant posting
each of their votes, which is the under-bound required by the operation at
hand. Similarly, the most significant communication costs also occur within
the random number generation phase. Many encrypted parts need to be
transferred and retrieved separately.

Chapter 4 indicates several research challenges that needed to be taken
into account, given the assumed threat model.

• Limited insights into participant behavior - The masking hides the
sensitive information when a sufficient security parameter is chosen.
Other participants can see that a specific participant has contributed,
but is unable to inspect the obfuscated content.

• No double spending - As all participants can verify which participants
have contributed to a specific item, it is infeasible for a vote to be
included if the originating participant has already voted before.

• Verifiability and consensus - The use of a permissioned blockchain
allows all participants to agree on the state of the protocol. Because
the blockchain is open to all participants, everyone can verify the
executed steps and recompute the labels themselves if so desired.

• Auditability - Every participant retains a link to their vote, and if insights
to a regulatory entity have to be given, the participant can provide their
mask as well as original vote. This auditability becomes feasible as a
participant provides a hash of the original vote with a contribution,
acting as a commitment to the underlying vote value.

• Reasonable efficiency - The use of masking rather than more expensive
techniques such as homomorphic encryption makes that the inference
phase is very efficient. The random number generation has a quadratic
complexity, where AES encryption is the most computationally
expensive operation. The practical computational and communication
complexity will be analyzed in Chapter 8.

ECONoMy provides a very lightweight solution to privacy-preserving
decentralized collaborative learning. The protocol is ideal for a use case
where a large number of participants are considered to be cooperating in a
’semi-honest’ environment. A frequent use case present within the field of
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collaborative learning, as also used by Hamm et al. [54], is for the internet
of things (IoT) devices. Where Hamm et al. [54] require transferring the
entire model with the privacy issues accompanying such an approach,
ECONoMy allows for a similar ensemble approach with added privacy to
the environment in which the device gathers its data. The lightweight
nature allows for fast computation even on resource-constrained devices
often present in the IoT space, especially when a dedicated AES hardware
solution were to be present in the device. Furthermore, a manufacturer of
IoT devices would not need to update the present Diffie-Hellman key once
deployed due to the ability to generate symmetric keys using the random
number communicated between participants. Nevertheless, we can argue
that the ’semi-honest’ threat model does not accurately reflect reality. This is
why we have constructed our next design that assumes a stronger, more
maneuverable adversary.
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ECONoMy offers a variety of benefits for participants who are willing to
assume a ’semi-honest’ threat model. In practice the potential benefits a
deviant could attain by misbehaving can be extremely large. A corrupt
organization profiting from the lack of fraude detection might not want the
detection models to be improved across different participants, as it could
potentially cause them to lose their income. Incentives such as these have
driven us to create another solution that is robust against stronger security
assumptions. The second protocol that we present is PRECLUDE, a
privacy-preserving approach to collaborative learning that uses traceable
ring signatures(TRS) to provide sender verifiability while retaining
anonymity.

In PRECLUDE, rather than hiding the contents of the individual votes, we
remove the identity of the sender. By using a TRS, each participant can prove
that he or she is allowed to vote for a specific item, without leaking any
information about from whom the vote originates. Only when a malicious
participant attempts to vote more than once for a particular item, the identity
of the person in question will be made public when these signatures are
traced. All verified and traced votes are included in the final aggregate. This
aggregate is subject to a label selection technique, i.e., majority vote, to label
the underlying samples, after the application of noise to achieve differential
privacy. The fact that there remains complete transparency of the executed
protocol steps during the entire process adds to the overall confidence the
individual parties have in the final result.

The robustness provided by these TRSs allows the influence of an
adversarial participant to be limited to its own allowed input, meaning 1/n.
Furthermore, there is no direct need to hide the vote values as a vote can
not directly be associated with a particular sender. So in short, it can be
verified that the sender is part of a valid set, double voting leaks the senders’
identity, and we can transmit votes in the clear due to the computational
infeasibility of reconstructing a sufficiently large set of corresponding votes.

To the best of our knowledge, the PRECLUDE protocol is the first
distributed collaborative learning protocol that protects against adversaries
under the covert threat model. It enables organizations who attempt to
adhere to legislation while building the best possible models across borders.

This chapter consists of both the description and evaluation of
PRECLUDE. First, we will provide an overview of the required
mathematical notations used throughout the chapter in Section 6.1. The
included cryptographic primitives will be introduced in more detail in
Section 6.2. First section 6.3 provides an intricate description of the design
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of the protocol, after which section 6.4 provides a phase-by-phase deep-dive.
Sections 6.5, and 6.6 analyze both the computational costs of the protocol
and the corresponding security. Finally, a discussion on the protocol is
included in Section 6.7.

6.1 notation

We will frequently need to refer to certain variables within this design
chapter. Table 6 contains a full overview of all the used notations, to which
the reader can refer for any unknown definitions.

Table 9: Explanation of the additional symbols used in PRECLUDE.

symbol explanation

! The size of a vote.
� The bitsize of the used safe-primes p, q.
⇣ The size of a single signature.
� The size of the item number.
⌧ The number of traces per to be labeled item.
⌫ The number of verifications per provided signature.
� The number of equal �’s in the tracing procedure.
V⇡i Set of verify outcomes provided by participant ⇡i.
T⇡i Set of trace outcomes provided by participant ⇡i.
H Denotes the use of a hash function.
G A multiplicative group.
g Generator of the multiplicative group G.
q The order of the multiplicative group G.
PKI Ordered list of all public keys used in ring signature.
⌃ Denotes the signature returned by performing a traceable ring

signature.
L Denotes the used tag (issue, PKn).
⇤ Set of signature-vote pairs {�⇡i |⇡i 2 ⇧}.
�⇡i,sk A signature-vote pair from participant ⇡i for an item sk, �⇡i,sk =

(⌃⇡i,q⇡i ,sk
).

6.2 cryptographic preliminaries

In this section, we will expand upon the introduction given for a
cryptographic preliminary that is applied within the PRECLUDE protocol.
The PRECLUDE protocol uses an adaptation of the traceable ring signature
scheme proposed by Fujisaki and Suzuki [43]. Traceable ring signatures
allow a signer to prove that he or she originates from a group of
participants, without identifying the actual signer. Furthermore, the ability
to trace signatures limits this anonymity to a predefined number of allowed
signatures per tag. If such anonymity were not to be contained, an
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adversary would be able to arbitrarily sign messages, obstructing the
protocol, without any repercussions.

traceable ring signatures Traceable ring signatures are used to sign
a particular message m0 concerning a tag L. The tag consists of an issue and
the list of all public keys PKI. The issue represents an election for which a
participant can vote a predefined amount of times. In our use of the traceable
ring signatures protocol, the participants are allowed to sign exactly once.
The identity of the signer is released when this frequency is exceeded for
a specific tag, thereby absolving the signer of his or her anonymity. The
protocol assumes the presence of three hash functions H,H0, and H

00 that
act as random oracles, which have as introduced in Chapter 2. The functions
H,H0 map to a value within the group G, and H

00 maps to a value within
Zq, where q represents the prime-order of group G.

Fujisaki and Suzuki [43] provide four security requirements, with
corresponding security proofs, for their traceable ring signature protocol.

1. Public traceability - Any participant that publishes multiple signatures
for different messages corresponding to the same tag will successfully
be traced and identified.

2. Tag-linkability - All signatures based on the same tag, generated by a
specific participant that will be linked. This constraint means that there
can be at most n valid signatures, corresponding to a single tag, when
there are n ring-members if none of them are linked.

3. Anonymity - The identity of the signer remains hidden if the signer
does not sign different messages with respect to the same tag. If a
participant generates two signatures for distinct tags, it is infeasible
for anyone to determine that the same signer computed them.

4. Exculpability - An adversary cannot force identity leakage of another
participant by replaying a signature, even if n - 1 participants are
compromised, and a polynomial amount of signatures of the targeted
participant are available.

The original traceable ring signature scheme consists of four different
algorithms. We will give a detailed description of each of these algorithms.

generate The GEN algorithm focuses on the generation of the key-pairs
for each of the participants. A security parameter  is provided as input to
generate a keypair (pki, ski) for i 2 I. where I is the set of all identifiers.
The secret key ski is a random value xi 2 Zq, where q is the prime order of
the Abelian group G. The public key is derived using this private xi, and the
generator g of the group G, to compute pki = yi = gxi .

• Input: A security parameter , an Abelian group G, its prime order q,
and the generator g.

• Output: Key pair (pki, ski) = (gxi , xi).
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signing The first step in the signing process is the computation of the
signer’s own sub-signature �i using the SIG algorithm, where i 2 I is the
identifier belonging to the signer. First a variable h is computed by hashing
the tag L, h = H(L). We sign this hash using the secret key by computing
�i = hski = hxi .

Next, the signer generates values representing the � 0s of the other
participants. To generate these � 0s, the participant generates base values A0

and A1 using the following functions:

A0 = H
0(L,m) and A1 =

✓
�i
A0

◆1/i

(6.1)

where m is the message being signed. For each participant j 2 I for j 6=
i we compute �j = A0A

j
1. All the computed values serve as an input to

generate the actual signature values, which is done using a non-interactive
zero-knowledge proof on the following language:

L =� {(L,h,�N) | 9i0 2 I such that logg(yi0) = logh(�i0)} (6.2)

This statement states a secret key is includes in the generation of one of
the �’s, which is proven by executing the following four steps.

1. Choose a random ri 2 Zq to compute ai = gri and bi = hri .

2. For every j, where j 6= i, choose two random values zj, cj 2 Zq and
compute aj = gzjy

cj

j and bj = hzj�
cj

j .

3. Compute c = H
00(L,A0,A1,aN,bN) mod q where aI,bI are lists of all

computed a and b values.

4. Determine ci = c -
P

j 6=i cj and zi = ri - ci · xi mod q where the
values of c and z are returned as the proof of language L.

Finally, the signing algorithm returns a traceable ring signature which is
defined as follows � = (A1, cI, zI). Where cI and zI are a collection of c and
z values corresponding to all participants included in the signature.

• Input: The set of public keys PkI, the signer’s private key xi, the
message to be signed, and the corresponding tag.

• Output: A signature that contains a proof that there a private key that
corresponds with a public key included in the ring, has been used to
generated it ⌃ = (A1, cI, zI).

verification In order to start the verification, the provided values need
to be validated. Thus, a verifier checks whether the provided A1, and all yi

are within the group G, and all ci and zi values are within Zq. Afterward,
similar to the signing process, variables h and A0 are computed. The
verification of a signature slightly differs from the signing process, as it
needs to compute all values without knowing who the signer i is. This
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means that all �’s, a’s and b’s are generated using the same function for all
i 2 I, namely:

�i = A0A
i
1 (6.3)

ai = gziyci
i (6.4)

bi = hzi�ci
i . (6.5)

In order for the signature to be valid, computing the value c should be equal
to the sum of all the provided values within cI.

H
00(L,A0,A1,aI,bI) mod q

?
=

X

i2I

ci mod q (6.6)

Any of the participants could be the signer, since the c and z values for that
individual are dependent on all others. This attribute also indicates how the
ring is closed. The �i, ai, and bi of the signer need to be result in the same
value while being computed using a different function in the verification
phase. We will show that the verify function follows from the function used
in signing, in equations 6.7.

�i = A0A
i
1

= A0

 ✓
�i
A0

◆1/i
!i

= A0

 ✓
hxi

A0

◆1/i
!i

= hxi

(6.7)

Similarly, we will show that the computation of the a and b variables
converts as well. We reason from the formula used in the verification towards
the formula used in the signature. The conversion for both a and b depend
on the final computation performed in the signing process: zi = ri - ci · xi
mod q. as shown in Equations 6.8 and 6.9.

ai = gziyci
i = gzi (gxi)ci = gzigxici = gzi+xici = gri (6.8)

bi = hzi�ci
i = hzi (hxi)ci = hzihxici = hzi+xici = hri (6.9)

• Input: The to be verified signature ⌃, the corresponding message m

and tag L.

• Output: Accept or Reject the signature based on the final equality
statement.

tracing The Trace algorithm can be used to trace two signatures and
verify whether the same participant has signed them with respect to the
same tag. When tracing two signatures, there are three possible outcomes
for signer i and i0 2 I as is shown in Equation .
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Trace (L,m,�,m0,�0) =

8
>><

>>:

Independent if i 6= i0

Linked if m = m0

pki i = i 0 and m 6= m0

The first case covers distinct signers corresponding to the same tag. The
second case is aimed to prevent adversaries to replay a signature to be able
to leak the identity of the original sender. Finally, if both the signer id is the
same and the messages differ, we release the identity pki.

Similarly to the verification, we compute all sigmas for both signatures
after initializing the variables h and A0. In order to determine which of
the above-described scenario is applicable, we compare the computed sigma
vectors and count which signatures are exact copies denoted as �. If � = 0,
or 1 < � < n, the signatures are independent, if � = n, the signatures are
linked, and finally if � = 1 the signatures fall into the last category, signalling
a successful tracing.

• Input: Two signatures to be traced, ⌃ = (A1, cI, zI) and
⌃0 =

�
A0

1, c0IN, z0I
�
, with their messages and the corresponding tag.

• Output: The result of the trace, either "Independent", "Linked", or the
identity of the person attempting to sign multiple messages.

6.3 protocol overview

We will first discuss the complete of the PRECLUDE protocol, after which
the different steps will be highlighted separately. The PRECLUDE protocol
consists of five phases:

1. The initial startup - A phase where the required infrastructure gets
initialized and agree on the procedure. All participants generate their
keys, publish their public keys, and compute their shared secrets.

2. Collaborative voting phase - Each participant contributes their votes
with an accompanying TRS. Every identifier j corresponding to an item
sj 2 S is used as the issue for TRS, and the message correspond to the
prediction for the same item, q⇡i,sj 2 �⇡i .

3. Verification and Tracing phase - All provided votes are verified and
traced according to the number of traces ⌧, and verifications ⌫, required
for a vote to be considered valid. If this threshold is not met, the votes
are discarded.

4. Aggregation phase - For each item, sj 2 S, those votes that have been
sucessfully verified and traced, are aggregated to obtain the aggregate
of all predictions.

5. Noise addition and final model generation - The noise required to
obtain differential privacy on the predictions given by the released
global model. Similarly, the final labels are devised using the selected
classifier combination technique, and the training of a final model can
commence.
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Similar to the ECONoMy protocol introduced in Section 5, the aim is to
prevent double voting, and remove the link between the vote and the
originating participant. The PRECLUDE protocol attempts to do this in the
covert threat model while reducing the possible impact an adversary can
exert within the protocol by increasing the robustness.

The application of the TRS protocol allows a clear distinction between
valid votes and those that need to be discarded. We are able to prevent
double voting, remove replayed votes, and still retain a valid aggregate of
the approved votes.

In establishing this protocol, we have made the following assumptions that
should be taken into account when evaluating the design.

• We assume a ’covert’ threat model, where adversaries can actively
perform malicious activities and have a high probability of being
caught when doing so.

• We assume that the participants can jointly validate certain execution
steps, meaning that there is a certain degree of trust. If x participants
have approved a contribution or the initial infrastructure, the others
are willing to trust those x people to contain at least one honest verifier.
There is thus a threshold of x approvals in order for an operation to
succeed.

• We assume that the participants have access to anonymous routing, not
allowing their originating IP-address to identify their contributions.

• We assume that the use of TRS provides secure signatures. This
assumption inherently assumes the validity of the random oracle
model and the decisional Diffie–Hellman assumption.

• We assume that all shared parameters are properly chosen as a
participant’s identity is linked to their suggestion.

6.4 phase-by-phase design description

We will present the design of the PRECLUDE protocol per phase. Each of the
phases will show the required procedures and their respective analyses.

6.4.1 Initial setup
The setup phase initializes the needed infrastructure for the protocol to
commence. All participants identify themselves by linking their identity to
their public key generated using the GEN procedure, denoted by ypi for
1 6 i 6 n. The necessary hash functions are communicated, and the
corresponding keys for the initial two hash functions are determined. The
global variables proposed, including the unlabeled public data set. These
variables include the primes p and q, the generator g, and the list of all
public keys PKN. Any participant proposes the primes and generator and
validated by the others before moving on to the next round. The validation
requires a threshold value of the minimally required number of participants
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to approve a certain operation. Finally, a time frame needs to be agreed
upon within which all votes should be received.

6.4.2 Collaborative voting phase
The collaborative voting phase allows every participant to share their
predictions v, for each item w in the public dataset, while remaining
anonymous. The sender can remain anonymous by providing a traceable
ring signature as discussed in 6.2, that simultaneously validates that the
sender is from the group ⇧, while defending against double spending.
Algorithm 5 identifies three procedures: SignVote is the generation of the
signature for a particular vote and PublishVote shares the combination of
vote, signature, and item identifier with the other participants. Finally, the
CastVotes procedure is invoked by all participants that aim to cast their
predictions, linking the other procedures together.

Algorithm 5 The procedure highlighting the required steps to cast a signed
vote.

1: procedure CastVotes(votes, signerID, itemID)
2: for vin votes do
3: ⌃ SignVote(signerID, itemID, v)
4: Invoke: PublishVote(vote,⌃v, itemID)

5: procedure SignVote(signerID, itemID, vote)
6: i,w signerID, itemID
7: h H(L) for L = (w,pkI)
8: �i  hxi for xi 2 Zq

9: A0  H
0(L, vote)

10: A1  
✓
�i
A0

◆

11: for All j in range(1, n) do
12: if j 6= i then
13: �j  A0A

j
1 2 G

14: aj  gzjy
cj

i , bj  hzj�
cj

j for zj, cj
r � Zq

15: ai  gri , bi  hri for ri
r � Zq

16: c H00(L,A0,A1,aN,bN)
17: ci  c- ⌃j 6=icj (mod q),
18: zi  wi - cixi (mod q)
19: return ⌃ = (A1, cN, zN)

20: procedure PublishVote(vote, signature, itemID)
21: return vote || signature || itemID

Every participant in ⇧ will provide their prediction for each item in S, as
shown in the CastVotes procedure, which executes the three other
procedures m times. Every participant will sign, encrypt, and publish each
vote in order to move on to the next stage. As mentioned before, a deadline
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condition will be set to prevent any malicious participant from preventing
the protocol to finish.

6.4.3 Verification and Tracing phase
This phase contains two procedures: the VerifySignature procedure, which
verifies whether someone from the allowed participants has created a valid
signature, and the TraceSignature procedure that checks whether two
signatures originate from the same person, using the same tag. In order to
verify the incoming votes, the procedure VerifySignature will need to be
invoked � times in order for the vote to be counted. Moreover, the execution
of the TraceSignatures procedure will identify whether a participant has
double voted. If this is the case, the tracing participant can publish the
public key of that participant, and the vote will be disregarded during the
aggregation phase. Furthermore, if the TraceSignatures procedure returns
"Linked," it means that there has been a replay of the exact same signature,
meaning that it can be disregarded in the aggregation phase as well.

Algorithm 6 The procedure used to verify and trace signatures.
1: procedure VerifySignature(⌃)
2: h H(L) for L = (w,pkN)
3: A0  H

0(L, vote)
4: �i  A0A

i
1 2 G for all i

5: aj  gzjy
cj

i , bj  hzj�
cj

j for all i for zj, cj 2 zN, cN
6: c H00(L,A0,A1,aN,bN)
7: return c (mod q) == cN (mod q)

8: procedure TraceSignatures(⌃1,⌃2)
9: A01  H

0(L1, vote1)
10: A02  H

0(L2, vote2)
11: �i  A01A

i
1 2 G for all i

12: �0i  A02A
i
1 2 G for all i

13: similarityList ;
14: for all sigmas do
15: if �i == �0i then
16: similarityList.insert(PKN[i])
17: if |similarityList| == 1 then
18: return similarityList
19: else if |similarityList| == n then
20: return "Linked"

6.4.4 Aggregation phase
Once all votes are registered, the aggregation protocol can commence. For
each item, the total will be computed by summing the votes which are
accompanied by a valid signature. The totals will be broadcasted after
completion giving each participant both the desired labels, and the
opportunity to verify the correct computation of the encrypted totals.
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6.4.5 Noise addition and final model generation
Adding calibrated noise to the final aggregated and training a global model
will be done as presented in Section 5.4. Both the noise addition and model
generation consists of a proposal and verify process where a participant
proposes a noise distribution or final model. After which the other
participants verify the proposal.

6.5 security analysis

The privacy-preserving nature of the PRECLUDE protocol is inherent to the
security of the traceable ring signature. Only a verified participant of the
protocol must be able to produce a valid signature, any second vote must be
traced and discarded, the identity of the sender must remain hidden, and a
sender cannot be framed as being dishonest when this is not the case. If these
requirements are met, we can be sure that every validated, and traced vote,
originates from a valid participant and that participant has only voted once.
Additionally, if a malicious participant attempts to increase their influence
on the outcome, he or she is not able to double vote and must, therefore,
obtain the secret key from another participant to reconstruct signatures in
his or her name.

The secret key used by each of the participants is a random value
xpi 2 Zq. An adversary could attempt to retrieve this value by observing
the participant’s public key ypi = gxi , and attempting to compute
dlogg(ypi). In order to do this, an adversary would need to solve the
discrete log problem which is infeasible for a computationally bounded
adversary. The bit security offered by the scheme must be less than or equal
to 112 bits, to ensure that such an operation is indeed computationally
binding, as discussed in the Section 5.5. Such a security standard requires
the use of primes with the appropriate bit size, � = 2048.

We assume that the identity of the participant ⇡i 2 ⇧ should not be linked
to the contributions he or she provides for all items sj 2 S. The signatures are
required to validate the participant as being a part of the protocol and limit
the number of contributions. Meanwhile, these same signatures should not
leak any information of the protocol, providing anonymity to the participant.
The output of the protocol is visible to all participants and does not need to
be protected.

The transmission tape and internal state of a single participant ⇡i consists
of the following attributes:

1. His or her own contributions �⇡i , with accompanying signatures.

2. The received signature-vote pairs.

3. Verify and trace output performed by ⇡i.

4. All verify and trace outputs performed by other participants.

5. The final output of the aggregate of all inputs �.
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Algorithm 7 Communication between a party ⇡i and the rest of the protocol
�

⇡i �

input�⇡i
(⌃⇡i, �⇡i) output�(�)

⌃⇡i = {⌃sk(A1, cI, zI)|sk 2 S}
⌃⇡i

,�⇡i
������! � = {⌃⇡i(sk),q⇡i,sk |⇡i 2

⇧, sk 2 S}
⇤

 ������ ⇤ = {�⇡i |⇡i 2 ⇧}
V⇡i = VER(⇤)

T⇡i = TRACE(⇤)
V⇡i

,T⇡i

������! V = {V⇡i |⇡i 2 ⇧}
T = {T⇡i |⇡i 2 ⇧}
�sk =

Pn
i=0 q⇡i,sk

�,V ,T
 ������ � = {�sk |sk 2 S}

In the assumes covert adversarial model, an adversary can act in three
different ways: 1) he or she can abide by the prescribed steps of the protocol,
2) the malicious nodes can abort the protocol (abort), or 3) the participants
can cheat (cheat).

abiding protocol steps If the controlled nodes abide by the protocol
steps, they will not learn any additional information. This property is
inherent to the security proof provided for our primitive, traceable ring
signatures.

abort The protocol can commence when nodes abort. There is a
threshold of the required number of participants to proceed, which is
similar to ECONoMy set to a majority share. Therefore, the minority of
compromised nodes cannot move the protocol along before others have
voted. Moreover, there also exists an allocated period within which would
need to be voted, when no vote is received within this period the protocol
continues.

cheat We define cheating as attempting to have excessive influence over
the final label. An adversary can cheat by providing malformed votes, or by
providing multiple well-formatted votes. The initial case is made infeasible
by allowing votes to remain open, thus allowing verification on whether the
probabilities do in fact sum up to one. An adversary cannot execute the
latter case because multiple votes it is not possible to include multiple votes
in the final aggregate. If an exact replay is detected, the votes are dismissed.
If multiple votes originating from the same participant are detected, the
identity is leaked and the identity excluded from future executions of the
protocol without allowing a double vote to be entered in the aggregate.
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Table 10: Intuition behind the need for ⌫ = n- 1.

a b c d e

a x x x
b x x
c x x x
d x x x
e x x x

6.6 complexity analyses

This section will evaluate the theoretical performance of the PRECLUDE
protocol. Section 6.6.1 evaluates the complexity of the executed operations,
whereas Section 6.6.2 discusses the transferred information.

6.6.1 Computational analysis
Each phase of the PRECLUDE protocol is evaluated, and the number of
operations required in total and per party is computed. The required
operations are dependent on the number of participants n, the number of
items m in the public data set S. Similarly to the previously described
protocol, the number of public items considered for the knowledge transfer
is determined by determining the acceptable privacy guarantees, with the
precision of the global model. In general, the number of participants is
assumed to be smaller than the number of items, n < m, with n > 3. Within
a two-party scenario, the anonymity provided by the traceable ring
signatures is ineffective as each participant could directly link a vote to the
other participant.

Table 11 shows the number of operations included in a single execution
of the protocol, per phase. The variable ⌫ resembles the number of
verifications needed per signature in order to be accepted as valid. ⌧
represents the required number of tracings each participant needs to do per
item to be labeled. Since tracing has a larger space of possible combinations,
we initially assumed that ⌧ > ⌫. However, if not every participant traces all
signature combinations, there will be signature pairs for which only a single
participant has verified them. Table 10 shows the intuition behind this. In
this scenario, there are five parties whom each trace the combinations of
three signatures. As can be seen, there are several combinations of
signatures which are only traced by one additional, non-signer, participant.
An example would be the signatures originating from c and e, which
combination is only traced by one participant, thereby entrusting that
participant with the validity of this signature.

6.6.2 Communication analysis
Table 12 shows the amount of transferred information during the different
phases. The largest phase regarding the amount of transferring information
involves the inference voting. The cause of this is the size required in sharing
a signature accompanying a vote and corresponding item number. The size
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Table 11: An overview of the different types of operations encountered in the overall
protocol described above. Amount shown both in its totality, per party, and
per execution of the step.

Phase Step Operation type Total complexity Per participant Per execution

Inference voting Signing Hashing 3nm 3m 3

Exponentiation 5n2m- 2nm 5nm- 2m 5n- 2

RNG 2n2m-nm 2nm-m 2n- 1

x /÷ 3n2m- 2nm+n 3nm-m 3n- 1

+/- n2m nm n

Aggregation Verification Hashing 3nm⌫ 3m⌫ 3

Exponentiation 5n2m⌫ 5nm⌫ 5n

x /÷ 3n2m⌫ 3nm⌫ 3n

+/- n2m⌫-nm⌫ nm⌫-m⌫ n- 1

Tracing Hashing 3nm⌧ 3m⌧ 3

Exponentiation 2n2m⌧ 2nm⌧ 2n

x/÷ 2n2m⌧ 2nm⌧ 2n

Labeling +/- n2m-nm nm-m n- 1

of the shared item identifier depends on m, but will remain fairly small, even
in extreme cases of m being multiple hundreds of thousands, would still
require less than 25 bits to represent. The bit-size of the vote, �, depends on
the number of possible classes, which would not require a significant bit size.
A signature on tag L, and message m consists of the variables ⌃ = (A1, cI, zI).
Each of the transferred values have a worst-case size of 2048 bits, leading
the size of a single signature (⇣) to be (2n+ 1) · 2048. This means that ⇣ is
significantly larger than ! and �. For example, for n = 50, a single signature
will have an approximate size of 206.848 bits, or 0,025856 MB.

Table 12: An overview of the communication in bits between participants.

Phase Operation Total Per party
Inference voting Sharing votes n ·m · (!+ ⇣+ �) m · (!+ ⇣+ �)

Labeling Publishing final labels m · � m · �
Retrieving final labels n ·m · � m · �

6.7 discussion

PRECLUDE provides a robust, modular, approach to collaborative model
generation using the distributed ensemble learning approach. To the best of
our knowledge, PRECLUDE represents the first privacy-preserving
approach to do so, allowing more maneuverable adversaries than
ECONoMy. PRECLUDE assumes a covert adversary model, where
adversaries who attempt to increase their influence on the outcome of the
protocol have a chance of being caught.

The introduction of traceable ring signatures increases the number of
exponentiations required to 4mn2 - 4mn+ 3m. In addition, the signatures
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themselves are quite large as they contain 2n+ 1 large values, depending on
the security parameter.

As also mentioned in Chapter 5, the intuitive privacy benefit inherent to
this semi-supervised learning approach allows for a fixed privacy loss of the
original training data set (combined over all local models) as only m queries
are made to the ensemble. If this ensemble were to be released directly, the
privacy loss does not have such an upper bound. Finally, by adding
calibrated noise, the outcomes generated by white box attacks are hidden
under differential privacy.

Chapter 4 indicates several research challenges that needed to be taken
into account, given the assumed threat model. We will discuss these, one by
one.

• Limited insights into participant behavior - The individual votes are visible
for any participant, thereby validating the structure of the provided
votes. Nevertheless, it is infeasible to detect who cast a particular vote
and thus finding the correct vote combinations belonging to a specific
person has a chance of n-m.

• No double spending - The tracing capability provided by the traceable
ring signatures prevents any double vote to be included in the
aggregation. If an exact replay is detected, it will be discarded, and if a
second signature on the same tag belonging to a different message is
found, the identity of the signer is released.

• Verifiability and consensus - Similar to ECONoMy, the use of a
permissioned blockchain allows all participants to agree on the state
of the protocol. Because the blockchain is accessible to all participants,
everyone can verify the executed steps and recompute the labels
themselves if so desired. We obtain consensus by employing the
practical Byzantine fault tolerance algorithm. Another consensus
algorithm can replace this algorithm if it adheres to the same
requirements. As noted multiple times, this is not the core of this
research and is assumed as a primitive.

• Auditability - Only the creator of a signature can prove that he or she
signed this item. Therefore, if an external party would like to find out
who has votes what, each participant is able to prove it was or was not
them.

• Reasonable efficiency - The increased robustness obtained by the
addition of traceable ring signatures comes at a cost. Both the
theoretical communication and computation complexities have
increased. The high complexity could especially become a problem for
the tracing operations when there are a lot of participants. The proof
of concept computational analyses evaluation will be given in Chapter
8. But as can be seen from the theoretical analysis, the complexity is in
need of improvement which we will aim to do in Chapter 7.
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After completing the PRECLUDE protocol described in Chapter 6, we
constructed further improvements to the efficiency of the underlying
protocol. Two adaptations to the traceable ring signature scheme allow for
significant performance improvements for our use case. In this chapter, we
will introduce these improvements to the protocol called PRECLUDE+.

7.1 ring size reduction

Instead of signing a message originating from a group of n individuals,
selecting t participants could already suffice in certain circumstances.
Reducing the number of individuals included in a ring exposes a direct
trade-off between the provided anonymity and the efficiency of both the
signing and verification of the scheme. First, we introduce the challenges
that originate from adapting the original protocol. Next, we will elaborate
on how we propose to change the protocol to achieve increased efficiency
while preserving privacy. Afterward, we perform an analysis of the
required number of participants, which maximizes the efficiency gain, while
adhering to the given privacy constraints.

7.1.1 Research challenges
In order for the proposed adaptation to be valid, the four requirements of
the protocol given by the authors of [43] need to be maintained. Below, we
address each of these requirements and the changes that follow the proposed
alterations to the protocol.

1. When a participant ⇡e signs a vote, he or she hides within a group of
n - 1 others. Furthermore, these n - 1 participants can also include
the identity of ⇡e, allowing our initial participant to be associated
with multiple signatures. A direct link between the signer and a ring
signature will remain if a signer’s identity does not occur in other
participants’ signatures. By reducing the number of participants
included in a signature, there are fewer possible signers from which
the signature could have arisen from. This is because the chance that
the identity of the participant ⇡e is incorporated in the signatures
produced by others becomes smaller, as rather than including all
individuals, a randomly selected subselection is used. When a
participant is included in fewer signatures, there is a higher chance
that an adversary links a valid participant-signature pair, thus
reducing the original anonymity requirement described in Section 6.2.

2. The tracing capabilities providing tag-linkability to the protocol need to
be maintained. Any two signatures with the same tag, message, and
overlapping sub-group need to be linked.

87
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3. The ability to trace prevents double spending and thus performs a
critical task in the correct execution of the protocol. Signatures based
on different messages or different sub-groups out of the population
concerning the same tag need to be traceable. The original definition
of public traceability as given in Section 6.2 is extended to allow tracing
of signatures based on the same message, but using a different
sub-group of size t, as this cannot represent a direct replay of the
signature/vote combination.

4. The concept of exculpability introduced in Section 6.2 needs to be
maintained, prohibiting adversaries from entrapping an honest
participant, and leaking his or her identity with the corresponding
votes. In general, allowing individuals to determine a sub-group t- n

extends the possibilities an adversary has within the protocol. It needs
to be determined what an adversary who controls a variable number
of participants can do with these new capabilities.

7.1.2 Protocol changes
The changes needed to adapt the protocol mainly instantiate within the
signing phase, while both the verification and tracing need to take the
selected participants into account when validating a signature. Note that the
initial setup, and the Gen portion of traceable ring signatures, do not
change.

signing Before signing a vote, a participant computes a random array of
selected participants. Each element in this list will contain either a 1 or a 0,
representing that the participant with that particular index within the PKN

array is either selected or not, respectively. Do note that the identity
belonging to the signer will need to be set to 1 to generate a verifiable
signature. Algorithm 8 shows how this list can be generated in the
generateSelectedParticipants procedure.

Algorithm 8 The generation of a random set of selected participants.
1: procedure generateSelectedParticipants(signerIndex, n, t)
2: selectedParticipants [0] ·n
3: selectedParticipants[signerIndex] = 1
4: included signerIndex
5: i 1
6: while len(included) < t do
7: random randomInt(0,n- 1)
8: if random 6= signerIndex then
9: selectedParticipants[random] = 1

10: included.append(random)

11: return selectedParticipants

To implement these alterations, we have adapted the original signing
protocol as shown in Algorithm 9, by using this generated list of selected
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participants of size t. Primarily, we reduce the number of computations to
only include the values corresponding to the selected participants, thereby
excluding those who have a 0 in their respective place within the selection
list. As a result, the computed ci and zi are only dependent on the included
participants. By doing so, we reduce the size of the signature by (n-t)⁄n% since
we do not need to add the previously required c and z values. We do also
have to transfer the selected participants to be made visible to all other
participants.

Algorithm 9 Vote signing and casting procedure based on a subset of t
parties.

1: procedure CastVotes(votes)
2: for vote in Votes do
3: sp generateSelectedParticipants(signerIndex,n, t)
4: � SignVote(signerID, itemID, vote, sp)
5: Invoke: PublishVote(vote,�(vote), itemID, sp)

6: procedure SignVote(signerID, itemID, vote, selectedParticipants)
7: i,w signerID, itemID
8: h H(L) for L = (w,pkN)
9: �i  hxi for xi 2 Zq

10: A0  H
0(L, vote)

11: A1  (
�i
A0

)

12: ai  gri , bi  hri where ri
r � Zq

13: for j in range(1, n) do
14: if j 6= i and selectedParticipants[j] = 1 then
15: �j  A0A

j
1 2 G

16: aj  gzjy
cj

i , bj  hzj�
cj

j for zj, cj
r � Zq

17: else if selectedParticipants[j] = 0 then
18: aj  0, bj  0

19: c H00(L,A0,A1,aN,bN)
20: ci  c- ⌃j 6=icj (mod q),
21: zi  wi - cixi (mod q)
22: return � (A1, cN, zN)

23: procedure PublishVote(vote, signature, itemID, selectedParticipants)
24: return vote || signature || itemID || selectedParticipants

verification and tracing The adaptations for both the verification
and tracing steps are very similar. The verifier (tracer) only computes those
variables corresponding to the selected sub-group. However, due to the
adaptations, the original tracing requirements have to be adapted.

The sigmas belonging to excluded participants are assigned the value -1 in
the tracing stage of the protocol. As a consequence, it should not be possible
for an intermediately computed sigma to be negative. Otherwise, a potential
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false positive trace could be obtained. The original computation of a sigma
value is done using the following function:

�j = A0A
j
1 (7.1)

where both A0 and A1 are elements from the multiplicative group. Thus,
this function will always result in a value within the group G, due to its
multiplicative nature, and thus be non-negative under the assumed data
representation class.

The resulting � and �0 arrays are of length n, where n- t entries contain
the value -1. We adopt the following alterations to possible outcomes the
tracing operation can result in:

Trace (L,m,�,m0,�0) =

8
>><

>>:

Independent ! i 6= i0

Linked ! i = i0,m = m0 and |sp\ sp0
| > 1

pki ! i = i0 and (m 6= m0 or |sp\ sp0
| = 1)

where sp stands for the selected participants. These rules are translated into
a specific requirement of the intersection cardinality of the resulting sigma
arrays computed by the tracer. In these operations, the replacement value -1
should not be counted as an intersection and there is still a requirement of
exactly one exactly one item to overlap to successfully trace two signatures.
Overall, the correctness of the protocol does not change. Note that similarly
to the original protocol, if multiple selected participants overlap and the
message remains stable, we can only link the signatures without leaking the
identity.

7.1.3 Factors dependent on t
Within this section we will analyze the different factors involved in selecting
the appropriate size of t, the number of participants to be included in a
single ring signature. First of all, we will evaluate the chance that an
adversary can determine the combination of votes originating from a
specific participant. After, we will generalize the chance that a participant is
chosen in the rings generated by other participants. Finally, we will touch
upon the benefits accrued by the change, analyzing the change in the
complexity analyses.

linkability Within this paragraph, we analyze how well we can protect
the anonymity of a specific participant when all votes and accompanying
signatures are available to an adversary. Equation 7.2 summarizes the initial
probability of finding a complete set of votes belonging to a single
participant.

g(n) =

✓
1

n

◆m

(7.2)
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The chance that the other participants included participant ⇡e in their
signatures was 100%. For a given variable t, the probability that another
participant includes ⇡e in its signature becomes:

t- 1

n- 1
(7.3)

as there need to be t individuals included in the signature out of which the
original signer is one. By multiplying this value by the total number of
participants, and combining this with the signature we generate ourselves,
we obtain t as the average number of signatures that are linked to a
participant.

✓
t- 1

n- 1

◆
· (n- 1) + 1 = t (7.4)

The total chance of selecting all votes belonging to your local model becomes:

g(t) =

✓
1

t

◆m

. (7.5)

However, this chance parameter reflects the average number of rings an
individual is included in, later we will include the worst-case scenario in
this computation which will cause the probability to increase due to a
lowered denominator.

anonymity The hiding property of the scheme determines how well a
participant can hide among multiple signatures for a specific item/election.
We can represent the probability that a participant is used in k different
signatures according to Equation 7.6.

P (k|n, t) =
✓
t- 1

n- 1

◆k

·
✓
1-

t- 1

n- 1

◆n-1-k

·
✓

n- 1!
k!(n- 1- k)!

◆
(7.6)

Within this function, the first term represents the probability of being
included in a signature, the second term constitutes not being included in
the others, and the final term denotes the number of possible combinations.

complexity improvements Other important factors that instantiate
from this extension are the reduction in both the communication and
computational analyses that originate from this alteration. Table 13 indicates
the difference in computational complexity. Signature generation requires
several exponentiations that is dependent on n. By lowering the number of
individuals included in the ring to t, we improve the efficiency as long as
t < n. Similarly, we reduce the bit size of a valid signature. Rather than
providing n, c, and z values, we provide t. By omitting these variables, we
reduce the size of a signature by n - t · � as each c and z value has a
worst-case bit size of �.
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Table 13: The improvements to the theoretical computational analysis provided by
reducing the ring size.

Phase Step Total complexity Per ⇡ Per s

Inference voting Signing n2m-nm nm-m n

Adapted signing ntm-nm tm-m t

Aggregation Verification n2m⌫ nm⌫ n

Adapted verification ntm⌫ tm⌫ t

Tracing n2m⌧ nm⌧ n

Adapted tracing ntm⌧ tm⌧ t

Total Sign vote n2m⌧ nm⌧ n

Adapt sign vote ntm⌧ tm⌧ t

7.1.4 Determining the size of t
The adjustments made to the protocol must retain their privacy-preservation.
The difference between PRECLUDE and its plus variant only exists in the
subgroup of participants among which one hides. In this section, we will
show that a predefined level of privacy can be maintained while improving
efficiency.

The level of anonymity provided by the adapted protocol is dependent on
three parameters that are manually assigned by the executors of the
protocol. These parameters are used as constraints to compute the optimum
value of t corresponding to the security needs of the participants. These
parameters are k, which we define as the minimum number of rings an
individual participant should be included in, and the probability ✏̆,
representing the required maximum likelihood that a participant is in less
than k rings, and p̆ which represents the chance of finding a linked set of
votes. In order to determine k, one can use the linkability probability as a
constrained by computing, g(k) = p̆.

In a worst case scenario, an individual is included in the minimum number
of signatures k, for each of the votes. This would reduce the chance of finding
the set of votes originating from this participant to:

g(k) =

✓
1

k+ 1

◆m

(7.7)

p̆ >

✓
1

k+ 1

◆m

(7.8)

where one is added to k as k is the number of additional signatures that
refer to a participant. Notice that the minimum probability is bounded by
k = n- 1, reducing the ring size is infeasible for a problem with a likelihood
requirements that results in a k > n.

Table 14 gives an example in how k can be determined using a given m

and p̆. It visualizes the lowest values of k for low values of m to show that
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Table 14: Example probabilities of retrieving complete sets of votes for low values of
k and m.

k / m 1 5 10 50

1 0,5 0,031 0,98E-3 8,88E-16

2 0,33 0,41E-2 0,17E-4 1,39E-24

3 0,25 0,98E-3 0,95E-6 7,89E-31

4 0,2 0,32E-3 0,1E-6 1,126E-35

5 0.17 0,13E-3 0,17E-7 1,24E-39

the chance decreases significantly even for these low values. Once k has been
determined according to this formula, thus guaranteeing a satisfactory level
of vote unlinkability, one can determine t. The minimum required k = 2

because if a participant is included in two rings, the other selected participant
can directly see the signer’s identity.

To compute the required value for k, we first look at how to compute the
probability that an individual participant is included in at least k rings. This
probability is computed using the following function:

P (a < k|n, t) =
k-1X

j=0

P(j|n, t) (7.9)

P (any < k|n, t) =
k-1X

j=0

P(j|n, t) ·

0

@1-
k-1X

j=0

P(j|n, t)

1

A
n-1

·n (7.10)

which we require to be lower than the preset maximum bound ✏̆. Here
Equation 7.9 represents the probability that there is a participant which is
included in less than k rings. Equation 7.10, computes the probability that
any participant is included in less than k rings. Algorithm 10 shows how to
determine the lowest level of t that still adheres to the bounds set by the
parameters k and ✏̆.

Algorithm 10 Optimizing t according to the set parameters k and ✏̆.
1: procedure optimizeT(k, n, ✏̆)
2: for t in range(1, (n-1)) do
3: chance 0
4: for i in range(0, (k-1)) do
5: chance += P(i)
6: if chance < ✏̆ then
7: return t

In general, it appears that higher values of n require a lower value of
t (proportional to n), and can, therefore, gain more considerable efficiency
improvements. The relationship of t and its constraint can be explained using
Equation 7.11.
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t⇤ (k, ✏̆) = arg max
t

0

@
k-1X

j=0

P(j|t,n)

1

A , for
k-1X

j=0

P(j|t,n) < ✏̆ (7.11)

An example method of establishing the required probability ✏̆ could be to
set it in relation to the total number of signatures nm. This chance could be
set equal to one over the size of nm + 2. By using this formula, there will
always be less than one percent chance of an undesired result. If it is desired
to obtain a lower probability, the constant in the denominator (i.e., 2) can be
incremented to reduce the maximum chance further.

We will now discuss an example to validate and illuminate the above
claims, with the parameters as shown in Table 15. We ran extensive
simulations to verify our claims using these example values. When we enter
these parameters into the equations described above, the selected ring size
becomes t = 20. Each signature now only includes 20 individuals rather
than the initial 50, improving efficiency. A total of one million simulations
are done rather than the 5000 signatures that would be performed in a
standard protocol execution using these parameters. Figure 14 shows the
effect of the selected t under such extreme conditions. Here, when a
lower-than-computed t is utilized, the distribution fitted on all occurrences
moves to the left-hand side. When t is selected to be either 18 or 19, there
are 16 and 5 instances respectively for which a participant was included in
less than k rings. When the computed value 20 is used, there is no
participant present in less than k, thus adhering to the probability ✏̆, as the
chance that this does happen becomes: 3, 0743 · 10-7. After a million
executions there is an approximate 30% chance of one participant being
included in less than k rings. The probabilistic nature can also be seen in the
following analysis where we indeed encounter an iteration for which a
participant is in less than k rings.

Figure 13 shows the number of iterations for which there was a person
who was included in less than k rings. As can be seen, selecting t in the
proposed way offers the set probabilities, while achieving the highest
possible efficiency improvement.

Table 15: Variable values for determining t in an example scenario.

Variable Used value

n 50
m 100
p̆ 1 · 10-50

k 3
✏̆ 1 · 10-6

t 20

There exists a risk of exposing the participant from which a set of votes
originates that was not present before. An adversary could analyze the
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Figure 13: Example showing the amount of iterations for which a participant was
included in less than k rings, for t=[5,25].

items in the public dataset that have a strong correlation. If we assume that
a participant ⇡i gives an outlier prediction for these samples, overlapping
the individuals included in the signatures could expose ⇡i. Therefore, a
correlation analysis on the public samples should be used for signers to
select overlapping subsets of participants for correlating items rather than
purely random. By doing so, we prevent an adversary from exploiting the
structure of public data set to obtain additional information. We assume
that there is a limited amount of sample pairs that have a strong correlation
in our agreed upon public dataset, which would not significantly affect the
analyses described above.

Additionally, we need to set the minimal value k in parallel with the
number of parties within the protocol an adversary can control. If an
adversary controls k or more nodes, no non-malicious participants may be
selected within the ring signature, allowing the adversary to link the vote
directly to the originating party.

Overall, the final determination of t thus depends on the required level of
linkability, corresponding with the maximum probability of an individual
participant being included in less than k rings. These dependencies
guarantee that the unlinkability and anonymity properties of the proposed
protocol are maintained according to the desired bounds while lowering the
complexity exponentially for growing values of n and m.

7.2 batch verification

We achieve another performance improvement by merging the verification
and tracing phases into a batch verification phase. Due to the large number
of signatures present in our protocol, the traceable ring signature structure
is sub-optimal as the re-computation of the � elements done for both the
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verification and tracing adds a significant amount of exponentiations, and in
turn computation time.

7.2.1 Proposed alterations
Every participant is currently required to verify ⌫ signatures and
accompanying votes. After which, a participant traces ⌧ signature pairs, in
order to detect potential fraud. By merging these two phases, all �
computations, containing one exponentiation each, are performed within
the verification. All intermediate values are stored according to their item
number, after which we can identify duplicates. When a duplicate is found,
the duplicate location within the pkn array will reveal which user signed
those two particular signatures. Algorithm 11 highlights how this merger
can be done in pseudocode based on an input item number and the
corresponding set of signatures.

Algorithm 11 Batch verification and tracing algorithm.
1: procedure batchVerify(�I)
2: sigmaHashSet, seen, tracing, linking, invalidSigns ;
3: h H(L) for L = (w,pkN)
4: A0  H

0(L, vote)
5: for all sigma in �I do
6: �i  A0A

i
1 2 G for all i

7: if �i in seen then
8: if (i, sigmaHashSet)(�i) not in tracing then
9: tracing.append(i, sigmaHashSet(�i))

10: linking[i, sigmaHashSet(�i)]+ = 1
11: else
12: tracing.pop((i, sigmaHashSet(�i)))
13: else if �i >=0 then
14: sigmaHashSet[�i] = i
15: seen.append(�i)
16: aj  gzjy

cj

i , bj  hzj�
cj

j for all i for zj, cj 2 zN, cN
17: c H00(L,A0,A1,aN,bN)
18: if c (mod q)! = cN (mod q) then
19: invalidSigns.append(sigma)

20: for x in linking do
21: if linking[x] < n then
22: linking.pop(x)
23: return [invalidSigns, tracing, linking]

7.2.2 Performance improvement
The overall complexity of the tracing, as shown in Table 13, is reduced from
n2m⌧ to n2m.

Every participant n will need to find duplicates within m lists, where the
use of hash sets would suffice to assign a time complexity of O(n) to the
duplicate detection. When merging this with the complexity still required
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for the verification, we get n2 ·m · ⌫+ n2 ·m = n2 ·m · (1+ ⌫). Before this
alteration, this complexity would have totaled to n2 ·m · ⌫+ n2 ·m · ⌧. Also,
the complexity is no longer dependent on the number of sigmas that are
traced, as the tracing is done over one complete array per item, rather than a
trace per signature pair.
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Figure 14: An overview showing how the distribution of signatures a participant is
included in changes for k=3, n=50, m=100, p̆ = 1 · 10-50, ✏̆ = 1 · 10-6. t is
set to 18, 19, or 20.



Part IV

E VA L U AT I N G T H E P R O T O C O L S A N D D E F I N I N G
F U T U R E W O R K

Now that we have a complete overview of the proposed designs,
we will now evaluate their performance. In order to do this, we
have developed naive implementations of our protocol designs,
as well as comparable alternatives. Our experiments are
discussed and visualized, and we analyze the attained results.
We continue to evaluate our research sub-questions to obtain an
answer to our primary research question. Finally, we go over the
limitations inherent to this thesis and describe open problems
available for future work.





8E VA L U AT I O N

In order to establish the relevance of our contributions, we will compare the
performance of the proposed work with alternative approaches. The
currently available alternatives show a general lack in privacy focus.
Nevertheless, the approaches used for the comparison do approximate a
certain degree of privacy preservation. When comparing, we will focus on
the efficiency and thereby attempt to assess the cost of implementing the
improved privacy guarantees provided by our protocols. We will first
introduce the setting in which we evaluate all protocols, after which we
present the alternatives. Finally, we showcase the experimental results and
analyze the outcome.

8.1 the experiment setting

To provide a clear context to the provided execution times, we will
introduce aspects of the produced code as well as the hardware on which it
ran. These details will aid any interested reader in reproducing the
experiments or justify any deviations from the execution times based on
differences in these primitives. In selecting these primitives, the primary
objective has been to provide an even playing ground for each protocol,
thus not skewing any of the retrieved results in any direction. Moreover, all
experiments have been executed five times, and their results have been
averaged to negate any potential outlier test results.

8.1.1 The code
For each of the evaluated protocols, we have developed a naive
implementation. These have not been optimized for performance, but do
reflect the proportional efficiency by executing the required operations.

The naive implementations are written in Python 2.7 [40], because this
scripting language is the most popular within data science and machine
learning in particular [102]. Also, the accessibility of relevant packages such
as pycrypto [78], providing the necessary cryptographic primitives, and
scikit-learn [98], providing relevant machine learning models, makes it a
suitable language for our problem. Even though Python is considered to be
less efficient than its alternatives, it should not hinder our ability to
compare alternatives as we are performing a relative comparison.

Unfortunately, to the best of our knowledge there is no available,
validated implementation for the traceable ring signature protocol, and
therefore this has been implemented and checked for correctness. We have
made a custom implementation that provides an equal playing field when
comparing with the other protocols implemented in python, inhibiting the
language from becoming a decisive factor in the comparison. We ensure

101
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that any inefficiencies introduced by the programming style are present in
both PRECLUDE with PRECLUDE+, having changed the minimum
required to attain the new mode of operation.

8.1.2 The used hardware
Selecting the hardware to execute our tests on, we evaluated three
possibilities. A personal computer, with limited capacity, the Kova cluster
provided by the Delft University of Technology [115], and the use of an
external server such as Amazon Web Services (AWS) [2]. Since the test
executions require the simulation of multiple participants, it is relatively
easy to deplete the resources provided by a personal laptop for increasing
values of n. In order to facilitate the more computationally intensive
executions, and be able to execute these multiple times to average the
execution time, we require a more powerful infrastructure. However, the
use of the Kova cluster offered by the university has certain limitations. In
previous experiments, it became apparent that the test results vary over
time, due to others utilizing the infrastructure. We have therefore decided to
use AWS to have the highest chance of a fair comparison.

More specifically, we have selected the c5d.18xlarge instance, to provide
sufficient computing power to prevent resource constraints from playing an
active role in the comparison. This machine is used for all tests of all sizes
related to the PRECLUDE protocol. The selected instance offers 72 virtual
CPU’s and 144 GiB memory, where the number of vCPUs is the main
reason for choosing the instance. We use the c4.4xlarge machine to execute
the experiments related to ECONoMy, which offers 16 virtual vCPUs and 30
GiB memory [2].

8.2 the alternative approaches

It is important to compare our protocols with peer-reviewed alternatives and
see how our approach performs in contrast and highlight the contribution
of the presented work. As discussed in Chapter 3, there are a variety of
alternatives present in the field of collaborative learning. The most relevant
alternatives are within the CEMA and DEMA categories as they also aim to
generate ensemble models. Unfortunately, none of the reviewed entries for
distributed ensemble model aggregation focus on privacy preservation. In
the centralized category, however, two approaches are good candidates for
comparison, which we will briefly introduce in this section.

8.2.1 CrowdML
First of all, the CrowdML approach proposed by Hamm et al. [54] follows
the same semi-supervised approach to machine learning thereby bounding
the privacy loss of the final released model. Nevertheless, this approach
does trust a central entity in such a way that the participants transfer their
models from the participants without taking into account potential privacy
loss this can cause. Nevertheless, our ECONoMy approach aims to be used
in similar situations where a lot of small devices are used to generate an
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ensemble of the underlying data. Therefore, a naive implementation of the
Hamm approach will be compared to our ECONoMy model in terms of
efficiency.

functional comparison The CrowdML setting requires all entities to
trust the central entity with their models. As has been discussed in Chapter
2, this can allow a malicious central entity to retrieve information from the
underlying training data. Nevertheless, the bulk of the complexity is
removed as the central party can directly predict the public data set with
the available models, and provide a wider variety of classifier combiner
techniques. In the CrowdML setting, the central party can directly see
which predictions originate from which model, and perhaps even provide
an additional test set. This advantage allows the protocol to provide
classifier weighing which is currently not possible within the ECONoMy
setting. ECONoMy, on the other hand, focuses on being as maneuverable as
possible, allowing all possible local classifiers without sharing these details
with others, while only exposing the effect has on the final aggregate of
votes. It is unclear to any other participant what type of local model any
participant has, nor are any details of the training data exposed. This results
in a black-box situation for any internal adversary, whereas CrowdML
grants the central party white-box access. Meanwhile, the techniques that
ECONoMy employs are light-weight and can be executed in parallel
whereas the prediction for each of the models on the public data sets in
CrowdML has to be executed sequentially. In an IoT setting, also described
by Hamm et al. themselves, a significant number of participating entities
could require additional computing resources at this central entity.

the implementation We will compare the CrowdML approach with
our ECONoMy approach based on a large number of participants.
Therefore, we simulate the prediction of a public dataset of different sizes,
for a varying number of participants, on a single computer. We then
continue to compare these results with the vote-based approach presented
in ECONoMy. All model types are allowed when participating in a protocol
such as ECONoMy and CrowdML. Since prediction time varies among
classifier types, we have selected a variety of basic, well-known classifier
types from which every participant randomly chooses. These classifiers
include Naive Bayes, Decision Tree, Linear Regression, Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Random
Forrest (RF) with default settings provided by sklearn in their
documentation. The classifiers are trained on samples from the MNIST
dataset [74] using the pixel values as features.

8.2.2 AnonML
The second approach, called AnonML, as devised by Cyphers et al. [26] will
be used to compare to our PRECLUDE and PRECLUDE+ protocols.
AnonML was the only reviewed approach that focused on aspects such as
sender validation, prevention of double-spending, and anonymity.
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Therefore, the approach attempts to provide similar privacy guarantees to
our protocols.

a more detailed view of anonml As previously discussed,
AnonML splits the various nodes into participant partitions of size kP. Each
data sample is divided into groups of Ks features per non-overlapping
subset kh. The central entity receives a separate data packet from each
participant for each feature subset requested, accompanied with a
verification token using the Anonize protocol [58]. In total there are
kp · kh · n data transfers, after which the central entity trains a classifier on
each of the received kp · kh partitions. In our protocols we assume local
model generation to be part of pre-processing. Therefore, we will do the
same for the AnonML, considering any data partitioning as pre-processing.
Thus we will only focus on the generation of the Anonize verification
tokens. These tokens allow the aggregator to validate that the sender is
authorized to contribute as part of a particular partition, for a survey as
described by Hohenberger et al., without identifying the sender. Moreover,
a second contribution for a specific request from the aggregator is
discarded, and thus double-spending is prevented. The central entity
detects a secondary input by using a pseudo-random function to compute a
unique code for a participant to which is committed in the initialization.
However, by doing so there remains a link between individual contributions
from a particular entity, even though there is no link to the original identity.
In order to compare the AnonML protocol with PRECLUDE and
PRECLUDE+, we will generate and verify these verification tokens
according to the different amount of participants and features.

functional comparison AnonML protects data from participants
from the central party by using differential privacy. The added noise does
perturb the feature values and could lead to slightly lowered prediction
performance. This decrease is also seen in the evaluation performed by
Cyphers et al. [26]. There is no link to the identity of the participant, despite
there being a link between the different data samples provided to the
aggregator by one of the participants. Thus, while the protocol prevents
excess contributions, there is no ability to trace which participant is
exhibiting this deviant behavior. Additionally, the central entity still needs
to train models after receiving the partitioned data, to achieve the final
ensemble. The PRECLUDE protocols do not concede in terms of local
classifier performance as there is no need to add noise locally. The use of
traceable ring signatures allows each participant to hide every vote among
the included ring members. Not only are we able to prevent double
contributions, but additional contributions can also be traced, and
misbehaving participants can be excluded from the following protocol
executions (while protecting Exculpability).
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the implementation The Anonize verification tokens have been
implemented according to the descriptions presented in [58]. The bplib [28]
package has been used together with petlib [29], to execute asynchronous
bilinear mappings. We have implemented both the Dodis-yampolskiy PRF
[33] and the Boneh-Boyen signature scheme [14] on which the Anonize
token construction is dependent, using these dependencies. Unfortunately,
the AWS Linux host OS used in the other experiments did not facilitate the
required Elliptic Curve cryptography operations used in bplib; therefore
Ubuntu has been used instead.

8.3 run-time analyses

In this section, we will show the results gathered by running experiments
using the described implementations. First, we show the experimental
results obtained from the experiments aimed to compare ECONoMy and
CrowdML. Afterward, we will present the experimental results for the
comparison between PRECLUDE, PRECLUDE+, and AnonML.

8.3.1 ECONoMy
The comparison performed between CrowdML and ECONoMy is made for
varying values of participants (n) and to be predicted items (m). Table 16
shows the run-time results obtained from these experiments. Upon review,
it becomes clear that there is a difference between the performance of
CrowdML and ECONoMy. As previously mentioned, CrowdML offers no
privacy on the base machine learning models, which are shared openly.
Hence, we will concern ourselves with the increased costs of the added
privacy in ECONoMy.

As can be seen in Table 16, the amount of time taken per vote appears to
increase linearly by the number of included participants. Due to the
significantly low time required per vote, the protocol can accommodate
high values of both n and m. Especially so, if the implementation were to
be optimized and the inherent parallelism of the protocol exploited. Each
participant executes their respective share of computations locally, meaning
that the computational work-load is dispersed among all participants. In
CrowdML on the other hand, the work-load is concentrated in a single
entity, the central server. Figure 15, shows the run-time if we were to divide
the single-threaded experimental execution time of ECONoMy by the
number of participants (n), displaying the work-load per party represented
in time. CrowdML still outperforms ECONoMy for both m = 500 and
m = 1000. At n = 500 ECONoMy takes approximately 5,4 times as long
with an m of 500, while for m = 1000 this is reduced to 3,1. These values
show that there is an additional dependence on m for CrowdML that is not
present in ECONoMy.

We continue to analyze this by looking at a per vote basis as depicted
in Figure 16. When we compare the experimental results for m = 500 and
m = 1000, we see that the execution time linear in the number of to be
predicted items, while ECONoMy has a linear dependency on the number
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Figure 15: Comparing the per participant computation time of ECONoMy with
CrowdML.

of participants while it is not affected by the number of to be labeled items.
In the graph, we see both ECONoMy variants very close to one another, and
an approximate doubling of execution time for CrowdML.

Figure 16: Highlighting the dependency on m inherent to CrowdML, which is not
as present in ECONoMy.

For a participant to make a valid contribution to the ECONoMy protocol,
he or she needs to participate in the random number generation protocol.
The generation of a single mask is dependent on all other participants.
Thus, despite computing the execution per party per vote, there remains a
dependency on the number of participants.
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The CrowdML protocol is directly dependent on the number of data
partitions transferred to the central entity. When this is removed by dividing
by the number of tokens, we see a constant performance. The curve is lifted
due to an apparent dependency on the number of public items. The
experimental results show that the average time of a single prediction
increases with increasing values of m. To corroborate this result, additional
tests have been executed on each of the utilized classifiers separately, which
shows that all appear to have this dependency on m.

Table 16: The experimental results obtained by running both CrowdML and
ECONoMy.

ECONoMy CrowdML
n m nm time (s) time/n (time/n)/vote time (s) time/p

50
500 25.000 76,193 1,524 6,096E-5 0,305 1,22E-5
1000 50.000 153,008 3,060 6,120E-5 1,156 2,321E-5

100
500 50.000 307,432 3,074 6,149E-5 0,714 1,428E-5
1000 100.000 620,036 6,200 6,201E-5 2,225 2.225E-5

250
500 125.000 1975,087 7,900 6,320E-5 1,619 1,30E-5
1000 250.000 3991,550 15,966 6,388E-5 6,205 2,482E-5

500
500 250.000 8205,644 16,411 6,564E-5 3,296 1,318E-5
1000 500.000 17.059,580 34,119 6,824E-5 12,907 2.581E-5

1000
500 500.000 37.345,950 37,346 7,747E-5 6,886 1,377E-5
1000 1.000.000 76.970,465 76,970 7,697E-5 24,556 2.456E-5

8.3.2 PRECLUDE
We have executed experiments designed to evaluate the PRECLUDE
protocols have for different values for n and m. When executing
PRECLUDE+, a conservative t value has been used, computed using the
methods described in Chapter 7. This conservative nature is indicated by
the use of a low p̆, ✏̆, and ⌫ = n. By putting the selected constraints on the
determination of t, the PRECLUDE+ model can be used from n = 12, as
before the required properties cannot be guaranteed. AnonML, on the other
hand, is given a optimistic variable setup by assigning ks = 1. The factor
with which this value were to increase can be directly multiplied with the
result as the required number of tokens is dependent on this parameter.

preclude+ Table 18 shows the results obtained from the experiments.
The execution time of the original PRECLUDE model grows significantly
due to the sharp increase in the number of exponentiations required for each
signature with increasing n. The alterations made in PRECLUDE+ combat
this effectively as can be seen by the lower amount of time required per
signature. Figure 17 shows the relative efficiency improvements of the plus
variant over the original PRECLUDE.

Within this figure, we see the execution times in contrast to the number of
items for two different values of n. The curves appear to be linear, this is
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Figure 17: The efficiency of a protocol execution of PRECLUDE and PRECLUDE+

for varying m and n.

because the implementation uses parallelization to simulate the presence of
multiple parties, removing the quadratic nature of the protocol into the
second column of the provided theoretical analyses in Section 6.6.1. The
parallelization is only a naive approximation not resembling the actual use
of n different machines.

For increasing values of n (50 rather than 25), the difference between
PRECLUDE and PRECLUDE+ grows significantly. When comparing both
variants for n=25, we see a reduction in execution time when using the plus
variant. This improvement can be directly attributed to the corresponding
values of t as computed according to the guidelines described in Chapter 7.
The required t decreases to 15 (or 60% of n) with increasing values of m,
requiring fewer exponentiations in the process. For the executions
performed on n = 50, we see that t decreases to 20 (or 40%) for increasing
m. Thereby gaining an efficiency improvement of roughly 60% as opposed
to PRECLUDE.

The steepness of the curve increases drastically for the PRECLUDE
protocol, which will continue to grow for increasing values of n. The
PRECLUDE+ protocol shows similar behavior, but it can significantly
reduce this effect.

The same improvement also occurs in the transmission size of each
signature as 60% fewer values are included when providing a TRS. Figure 18
visualized this effect for the obtained experimental values. The size of a
single signature is directly dependent on the number of included parties.
When t decreases as opposed to its corresponding n, we see a larger
discrepancy between the signature size of PRECLUDE and PRECLUDE+.

anonml At first glance, Table 18 shows AnonML outperforming both
PRECLUDE and PRECLUDE+ significantly. The majority of this difference
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Figure 18: The size of a single signature in the experiments for PRECLUDE and
PRECLUDE+ for varying m and n.

for our proposed protocols originates from the Verification phases. Within
AnonML, an average of 45% of the execution time can be attributed to the
token generation, whereas the complementing 55% corresponds to the
verification of the supplied information. For the PRECLUDE protocols, the
signature creation contribution drops significantly for increasing n and m.

The massive growth in execution time of the verification phases arises
from the number of verifications needed per signature. AnonML currently
requires precisely one verification per produced token without performing
any tracing. Our protocols, on the other hand, have been set to require each
signature to be verified by each participant. The significant growth shown
in these verification phases could be reduced by tuning this parameter to be
closer to the majority who are assumed to be honest.

If we were to convert our batch verify into a per item verify, we would
significantly reduce the difference between the two protocols. Table 17
shows the results of this when approximating the batch verification time
from PRECLUDE+ from the attained data. Notice that this includes tracing
on the PRECLUDE+ side, due to the extension called batch verification,
shown in Section 7.2. The values from Table 17 are visualized in Figure 19.
The figure depicts that in this scenario, PRECLUDE+ outperforms AnonML
for both n = 25 and n = 50, where there does appear to be some overlap for
lower values of m. This indicates that our selected technique in similar
circumstances is more efficient, and provides the additional privacy
properties which we want to attain. In this scenario, we show that when
comparing PRECLUDE+ in a CEMA fashion to AnonML also belonging to
that category, our protocol outperforms AnonML.

Nevertheless, Table 18 does highlight the cost of decentralization when
looking at the total experimental results. The need to verify additional
signatures, by multiple parties, significantly increases the time required to
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Figure 19: Trend comparison of PRECLUDE+ and AnonML based on a single
verification per item.

complete the verification stage. Of course, if we would loosen our stringent
privacy requirements, fewer individuals will need to be included in
signatures thereby further increasing efficiency. Furthermore, since we
assume that the majority of the individuals are indeed benign, we can lower
the ⌫, which will reduce the time needed for the batch verify stage.



8.3 run-time analyses 111

Table 17: Comparison of the time needed to cast and verify nm votes for
PRECLUDE+ and AnonML.

PRECLUDE+ AnonML
n m nm time (s) time (s)

25

50 1250 215,243 188,329
75 1875 264,435 282,917
100 2500 333,234 378,586
250 6250 733,123 939,989
500 12500 1469,768 1904,356

50

50 2500 386,846 378,871
75 2750 440,684 565,697
100 5000 533,658 756,282
250 12500 1332,234 1882,932
500 25000 2665,355 3773,365

Table 18: Run-time experiment results comparing PRECLUDE, PRECLUDE+, and
AnonML in their execution timings for different n and m.

PRECLUDE PRECLUDE+ AnonML
n m nm Sign (s) Ver + Tra (s) t/� k ✏̆ t Sign (s) Verify (s) t/� Token (s) t/�

5

50 250 24,880 99,551 0,50 9 1E-5 - - - - 37,734 0,151
75 375 37,258 149,293 0,50 4 1E-5 - - - - 56,437 0,151
100 500 49,689 199,203 0,50 3 1E-5 - - - - 76,150 0,152
250 1250 124,124 496,474 0,50 2 1E-6 - - - - 188,344 0,151
500 2500 249,993 1010,007 0,50 2 1E-6 - - - - 374,837 0,150

10

50 500 49,768 452,360 1,00 9 1E-5 - - - - 75,402 0,151
75 750 75,507 676,110 1,00 4 1E-5 - - - - 113,432 0,151
100 1000 99,419 902,081 1,00 3 1E-6 - - - - 150,854 0,151
250 2500 230,521 2284,479 1,01 2 1E-6 - - - - 375,820 0,150
500 5000 501,336 4518,664 1,00 2 1E-6 - - - - 757,553 0,152

25

50 1250 124,714 3204,857 2,66 9 1E-6 22 109,960 2632,069 2,19 188,329 0,151
75 1875 187,418 4818,364 2,67 4 1E-6 18 134,915 3238,001 1,80 282,917 0,151
100 2500 249,914 6408,944 2,67 3 1E-6 17 170,100 4078,342 1,70 378,586 0,151
250 6250 624,347 16014,039 2,67 2 1E-6 15 374,367 8968,896 1,50 939,989 0,150
500 12500 1248,274 32113,258 2,67 2 1E-7 15 750,200 17989,198 1,50 1904,356 0,152

50

50 2500 337,023 22564,565 9,16 9 1E-6 29 195,738 9555,381 3,90 378,871 0,152
75 3750 505,262 33825,127 9,15 4 1E-6 22 222,763 10896,054 2,97 565,697 0,151
100 5000 674,111 45135,718 9,16 3 1E-6 20 270,121 13176,872 2,69 756,282 0,151
250 12500 1522,987 112977,013 9,16 2 1E-7 20 673,916 32915,921 2,69 1882,932 0,151
500 25000 3326,417 222097,166 9,15 2 1E-7 20 1346,887 65873,398 2,69 3773,365 0,151
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The recent advances in machine learning allow everyone to experience the
potential that is inherent to the underlying techniques on a daily basis.
Privacy scandals are reducing the trust people have in central entities, and a
more general increase in privacy awareness fuels demand for
privacy-preserving techniques. The utility that is provided by the use of
machine learning should, however, be maintained in this quest to preserve
privacy. In this thesis, we have reviewed a wide variety of approaches that
aim to allow participants to collaborate in learning a machine learning
model. However, the majority of the reviewed prior art lacks commitment
when it comes to privacy. The protocol designs proposed in this work aim
to change the industry mentality to a privacy-first approach, handling user
data with the care it deserves. This research shows that people can
collaborate in training a machine learning model without the need for a
central entity while preserving privacy. The main research question
reviewed in this work was as follows:

How can we facilitate the joint generation of a shared machine learning model in a
privacy-preserving manner, and refrain participants from degrading the final

models’ performance in excess of their own, allowed contribution, in a decentralized
setting?

In this chapter, we revisit the original research question and discuss how
the proposed approaches achieve our research goal. Also, we discuss the
limitations of our proposed methods, and possible future improvements are
identified.

9.1 discussion

We have presented two privacy-preserving protocols for decentralized
collaborative learning, applicable to two different use cases. Both protocols
are based on the semi-supervised ensemble learning approach suggested by
Papernot et al. [95], providing differential privacy to the resulting global
model. ECONoMy uses random number generation with symmetric key
encryption to mask vote values in a ’semi-honest’ setting. Every participant
has the opportunity and freedom to select their desired model type for both
the local and the global classifier. Nevertheless, in practice, the assumed
’semi-honest’ threat model might not be sufficient. It may very well be the
case that there are compelling incentives that would drive participants to
deviate from the protocol description. This motivated us to create our
second protocol, PRECLUDE, which uses traceable ring signatures to not
only limit the contributions made by participants but allow for active
tracing to identify malicious protocol participants. However, the
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computational complexity presented by the second protocol depreciated
quickly as opposed to ECONoMy. To improve the efficiency, we continued
our work and extended the PRECLUDE protocol to increase its efficiency.
The result of this, called PRECLUDE+, considerably reduces both the
communication and computation load, while maintaining
privacy-preservation. Our protocols limit the insights obtained from the
training data by moving towards a vote based system while hiding the
identity linked to a vote. We move the privacy leakage from an individual’s
classifier to the contributed part of the global total.

In Chapter 1 we identified five sub-questions to be answered by our
research. The first sub-question describes the need for transparency in a
decentralized approach. Both of the presented protocols offer the ability to
verify the aggregation of votes and allow for a verification step when
participants suggest global variables. Furthermore, the PRECLUDE
protocols allow every participant to validate and trace each vote, ensuring
themselves of the value he or she can attribute to the final labeling. It can
thus be argued that transparency is, in fact, a large factor in the proposed
solutions. Additionally, both protocols can prove that a participant made a
particular contribution. In ECONoMy, the participants provide a hash of the
original vote, acting as a commitment on the vote value. In PRECLUDE this
can be proven by computing a second signature on the same tag in such a
way that it ’leaks’ the identity. These features allow a participant to
demonstrate what he or she has voted to an auditing party.

The second question focuses on the contributions allowed per participant,
and how to limit these. Both of the suggested protocols take a different
approach to achieve this. ECONoMy requires the use of a random number
that is jointly generated by all participants in order to mask a value. When a
participant makes an additional contribution, either separate randomness is
added to the total, or the vote will not be masked. The extra randomness
will cause the ’unmasking’ to fail whereas a vote in the clear is easily
recognizable as such due to the particular encoding used. PRECLUDE on
the other hand limits contributions due to the tracing capability of its
signatures. An additional input is caught as such and allows the validating
participant to leak the identity of the deviant, or discard a duplicate vote.

In the third sub-question, we identify the need to remove the link
between the contribution and the originating user, while providing sender
validation. Again the two protocols take a different approach in affirming
this question. ECONoMy hides the content of the contribution by masking
the value, thereby not linking the contents to the sender identity. Moreover,
the random number generation includes open identities, and if a person can
contribute a valid random number, he or she is thus part of the validated
identities. PRECLUDE hides the identity corresponding to the message
while allowing any participant to verify that a valid party has indeed signed
the vote.

The fourth sub-question, the need for efficiency is mentioned, and the
possibility of leveraging an increasing number of participating parties is
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highlighted. PRECLUDE+ clearly shows that for an increasing amount of
parties, we can remain anonymous under the assumed constraints while
reducing the number of parties we are hiding among. Doing so increases
the efficiency of the entire protocol significantly. Nevertheless, both the
communication and computational complexity weigh heavily on the ability
to implement the PRECLUDE protocols in practice.

Finally, in the fifth sub-question, we inquire how the previously described
aspects can be attained while limiting the degradation of prediction
accuracy. By not perturbing the intermediate votes, we ensure that the
labeling is not disturbed more than is done during the addition of global
noise. As shown by Papernot et al. high prediction performance can still be
achieved while adding this noise to the overall totals. Therefore, by not
introducing additional limitations on the actual labeling process, while
attaining the previously mentioned desired attributes, we do not alter the
actual labeling and thus do not affect the prediction performance.

9.2 future work

Although the presented protocols show promising results, there are several
limitations currently present that allow for improvements. In this section,
we will introduce several limitations and thereby introduce opportunities for
future work.

security assumptions The presented PRECLUDE protocol depends
on the security provided by the TRS protocol. Fujisaki et al. [43] assume the
random oracle model upon which they prove the security of the TRS
protocol. This security assumption is often criticized, e.g. Canetti et al. [20]
state that being secure in the random oracle model cannot be taken as
evidence, nor indication, to the security of (possible) implementations of the
scheme. There is a misalignment between the theoretical proof and its
implementation. This discrepancy originates from the fact that the random
oracle model is approximated by the use of currently available hash
functions, which we assume to act accordingly. Future work will need to
adapt the protocol to be proven secure under a different security
assumption, where the security proof could extend to a practical
implementation.

malicious model We currently assume non-malicious adversarial
models in our protocols. In practice, the adversary could have significant
incentives to prevent the protocol from completing successfully. An industry
leader might not want the other participating parties to attain more robust
machine learning models, thereby threatening their position in the market
with the accompanying financial consequences. These incentives could
entice the industry leader to provide malformed input, prevent others from
contributing, or attaining IoT devices that participate in a competitor’s
protocol to poison the input data. Future work can focus on upgrading the
assumed adversarial model to offer protection in high-stakes environments.
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Our first protocol ECONoMy is proven to be efficient, allowing it to be used
with a larger number of participants, labeling a large number of items.
However, the protocol currently assumes the ’semi-honest’ adversarial
model, i.e., the adversaries are expected to follow the protocol description,
while attempting to extract sensitive information from the information they
obtain. It would be interesting to see if this efficiency can be maintained by
devising a joint random number generation protocol that can cope with
participants misbehaving, and possibly offer a tracing capability similar to
that in PRECLUDE. Similarly, in certain situations, the covert adversarial
model might not be sufficient.

performance The ECONoMy protocol attains high computational
performance, by providing a relatively fragile protocol. The successful
completion of the protocol depends on whether all participants following
precisely follow the protocol description (although privacy is preserved if a
party would deviate from the intended plan). A possible direction to
improve the performance of ECONoMy would be to, similar to
PRECLUDE+, divide the trust among fewer parties. An extensive analysis
would be required to see how this impacts the possible outcomes of a vote
aggregation and the potential loss of anonymity. To provide stronger
privacy guarantees, we have introduced PRECLUDE which offers a much
more robust protocol that can come to its completion even if participants
misbehave. Nevertheless, the computational performance drastically
deteriorated due to the use of more computationally expensive operations.
PRECLUDE+ manages to thoroughly reduce the added complexity while
remaining quite intensive due to the high number of verifications required
on the proposed signatures. The same goes for the communication
complexity of PRECLUDE. To apply the proposed protocols in practice, the
TRS protocol will need to be adapted to provide smaller signatures to
prevent the transmission from being a bottleneck in more heavy protocol
executions. The extension provided in PRECLUDE+ reduces the
communication size of a signature compared to the original TRS protocol,
but it can be argued that for large values of n, t, and m this is reduction is
not sufficient to become practical. Future work should focus on reducing
the size of a single signature. Currently, a signature includes 2t values of
2048 bits, resulting in significantly large signatures. Each of the provided
values is required in the verification step of the protocol. The size of the
signature could be reduced by allowing verification to be done a fixed
number of values rather than two sets depending on the number of
participants included in the ring.

applicability of the protocols The proposed protocols focus on
the DEMA category of collaborative learning. We can adapt the underlying
techniques that remove the link between the identity and the contribution
for the CEMA, DIPA, and CIPA categories. In the evaluations chapter, we
already indicated the performance of PRECLUDE+ in a centralized setting.
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Similarly, the contributed votes which now represent predictions on the
public data set could represent gradient updates on a shared global model.
Initially, we did not focus on these fields since we preferred the versatility
offered by the DEMA category, allowing for a more generalizable solution.
However, it would be interesting to see how these techniques can be applied
to the iterative environment and analyze how the different gradient updates
interrelate and could potentially leak identifiable information after several
epochs.

public dataset alteration In our protocols, we add differential
privacy to the total number of votes, as is done in CrowdML or the
Papernot approach we have used as a primitive. In the PRECLUDE
approach, we openly share votes with the accompanying signature to
provide input validation. Over multiple executions of the protocol, if the
underlying model does not change, there is a chance that the contributions
of specific individuals participating in a subset of executions overlap,
possibly providing the link that we aim to remove. This risk can be reduced
by altering the public dataset and assuming that the re-execution of the
protocol is only relevant when local models are updated, and thus the
contributed votes would most likely differ. An interesting problem would
be to find a relation between when the participants desire to update a global
model, and how much the public data needs to vary to maintain participant
anonymity over time.

open protocol The proposed protocols are assumed to be executed
using a curated set of participants, no unknown participants can freely join
without registering their identity in the public key generation phase. Future
work can focus on developing a similar approach as described in this
research, which allows anyone who wants to contribute their data to a
model generation to participate. However, this would raise significant
challenges in order to maintain participant anonymity. An open protocol
would require stricter key management, and active participation would
need to be required to gain insights into the executed protocol. Otherwise,
external individuals could attain a machine learning model without
contributing which can be considered unfair to the other participants. Also,
the ability to freely participate could encourage malicious participants to
register multiple times and thereby still be able to contribute more than
their intended allowance.

adversarial training The use of adversarial training shows
promising results to make a model more robust to adversarial inputs.
Techniques such as Ensemble Adversarial Training [120], show how to do
such training efficiently. A collaborative model training scheme such as
those proposed in this thesis needs to accommodate the use of such
techniques to provide more robust global models. The current versions
allow for such training in a ’semi-honest’ setting, as every participant can
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themselves generate adversarial examples and include them in their training
data according to specified steps. However, when a more complicated
environment is assumed, for which adversarial training is more relevant, it
needs to be possible to assure that participants are doing this correctly.

combining techniques As discussed in Chapter 2, there is a wide
variety of combining techniques within ensemble learning. The best
performing one depends on the underlying problem, its data, and the
extracted features. Our protocols currently offer a limited variety of
combining possibilities, especially since we remove the link between the
classifier and the vote. Pursuing the ability to weigh classifiers according to
their prediction performance could add to the range of problems the
protocols can be used for. In a semi-honest setting, we could assume that
the participants provide an accurate performance representation to their
peers. However, in a covert or malicious adversarial model, this would not
be feasible and can be seen as an open problem.

implementation There are several possible optimizations possible for
our naive implementations that can drastically improve the presented
numbers. The distributed nature would need to be evaluated in a more
thoroughly constructed environment. The parallelization of function calls
might not perfectly mimic the behavior of different instances in practice.
Thus, a full-scale optimized implementation, utilizing multiple nodes,
would be very interesting to evaluate the run-time more realistically.
Further, the use of more efficient components in the implementation could
help elevate the current implementation from showing correctness, to be
practically feasible. Such elements might be along the lines of a
speed-centric programming language, more efficient use of data structures,
and the use of faster cryptographic constructs to implement our primitives.

9.3 conclusion

The main goal of this thesis has been to maintain the ability to use the
benefits offered by machine learning while preserving the privacy of
participating individuals. The reviewed previous work is limited in its
ability to provide this, especially in the wake of new adversarial machine
learning attacks, while user demand for privacy is increasing. This thesis
presents two protocols that move the collaborative learning space in the
right direction. The protocols aim to alleviate privacy concerns for two
different use cases, both offering stronger privacy properties than currently
available alternatives.

The first protocol offers a light-weight alternative suitable for high
participant application setting. It allows for a large number of users to
interact with efficiency, under the ’semi-honest’ threat model. However, in
practice, strong incentives can be present for adversaries to ensure a
sub-optimal protocol outcome. Therefore, we upgraded the threat model in
our second protocol, allowing for the protocol to complete successfully,
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even if a participant aims to contribute additional votes. However, the
significant computational costs associated with the generation of the
underlying traceable ring signatures hinders the practicality of the protocol.
By adapting the underlying technique, we have been able to reduce this
problem by significantly reducing run-time complexity by up to 60% as
shown in Chapter 8. The presented work shows that the cost associated
with privacy, regarding efficiency, can be used in a cost-benefit analysis
allowing the balancing of the benefits of machine learning with the
protection of training data.

The protocols described in this work provide an initial step towards
solving a multi-disciplinary challenge of collaborative private model
generation. The conflicting interests of machine learning researchers with
those in the field of privacy need to be overcome to continue to build
improved approaches to private machine learning. By aggregating insights
obtained by various participants in a privacy-preserving manner, this
research shows how such a multi-disciplinary mindset can allow us all to
privately learn together.
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