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Abstract In this paper, we present a new approach
on how the multiple time-scales perturbation method
can be applied to differential-delay equations such that
approximations of the solutions can be obtained which
are accurate on long time-scales. It will be shown how
approximations can be constructed which branch off
from solutions of differential-delay equations at the
unperturbed level (and not from solutions of ordinary
differential equations at the unperturbed level as in the
classical approach in the literature). This implies that
infinitely many roots of the characteristic equation for
the unperturbed differential-delay equation are taken
into account and that the approximations satisfy initial
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conditions which are given on a time-interval (deter-
mined by the delay). Simple and more advanced exam-
ples are treated in detail to show how the method based
on differential and difference operators can be applied.

Keywords Perturbation methods · Delay differential
equations · Multiple time-scales · Asymptotic validity
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1 Introduction

Perturbation theory for differential equations finds its
origin in the 19-th century when Poincaré approxi-
mately solved systems of ordinary differential equa-
tions (ODEs) originating from problems in Celestial
Mechanics [28]. The idea is to approximate the solu-
tion of a problem in a power series of ε, where ε is
a small parameter in the problem. First, the unper-
turbed (that is, ε = 0) problem is solved, and then
small corrections to this solution are added and one
finally obtains an approximation of the solution in the
form of a (truncated) asymptotic series [13,19,22,35]).
The approximations are usually not accurate on long
time-scales. To obtain approximations which are valid
on long time-scales, a multiple time-scales perturba-
tion method was developed in the period 1935–1970
by Krylov and Bogoliubov, Kuzmak, Kevorkian and
Cole, Cochran and Mahony, and Nayfeh. The reader is
referred to [5,13,19,21,22,24–27]) for further details
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on the historical development of the multiple time-
scales perturbation method (MTS) for ODEs.

In various fields of science, technology, and engi-
neering, one encounters time delays. Mathematical
modelling of problems involving time delays often
leads to problems for differential delay equations
(DDEs). Examples of these DDEs can be found in
mechanical engineering [9,37,38], in biology [10], and
in for instance predator–prey problems [1,2,6,12,32,
40]. Stability properties, resonances, bifurcations, and
chaotic behaviour are important issues to be studied
for these DDEs. These DDEs can also contain a small
parameter, and one can try to construct an approx-
imation of the solution by using the MTS-method.
In the literature, one can find many papers in which
the MTS-method is used for DDEs (see for instance
[3,8,11,18,26,30,39]). In all these papers the authors
have as the unperturbed equations (that is, for ε = 0)
an ODE. So, in the so-called O(1)-order problem, one
does not have a DDE. This implies that the usually
infinitely many roots present in the characteristic equa-
tion for aDDE are “truncated” to only a few oneswhich
are present in the characteristic equation for an ODE.
Moreover, for an initial value problem for a DDE, one
has to satisfy initial values on an interval, and not at a
point as in the case for an initial value problem for an
ODE.

A different approachwas taken in [7,9,15,23,31,36,
37]. The unperturbed equations are in the form of lin-
ear DDEs. The analysis is carried out on systems close
to the Hopf bifurcation point. Due to the dominance
of purely imaginary characteristic roots, the authors
exclude other characteristic roots with a negative real
part. In this paper, we want to complete this method
by considering all its characteristic roots. The purpose
of this approach is to investigate the possibility of the
occurrence of secular terms and to obtain approxima-
tionswhich satisfy given initial conditions and are valid
on long time-scales. We will propose a new approach
on how to apply the MTS method to DDEs such that
all roots of the characteristic equation for the DDE are
taken into account and such that the initial values (in a
specified interval depending on the delay) can be satis-
fied. The new approach is partly based on the classical
MTSmethod for ODEs and is partly based on theMTS
method for ordinary difference equations (OΔEs) as
given by van Horssen and ter Brake in [34].

This paper is organized as follows. In Sect. 2 of this
paper, we described shortly theMTSmethod for ODEs

and the MTS method for OΔEs (see also [34]). In
Sect. 3 of this paper, the MTS method for DDEs will
be introduced by using differential and difference oper-
ators, and by applying theMTSmethod to some simple
DDEs. The asymptotic validity of the approximations
of the solutions of DDEs on long time-scales will be
discussed and will be proved in Sect. 4 of this paper.
In Sect. 5 more advanced examples for weakly non-
linear DDEs will be treated, and in Sect. 6 analytically
obtained approximations are compared with approxi-
mation which are obtained by direct numerical integra-
tion of the problem. Finally, in Sect. 7 of this paper,
some conclusions will be drawn and some remarks on
future research will be given.

2 Preliminary: the multiple scales perturbation
method for ODEs and for OΔEs

In this section,we shortly describe the essential features
of the method of multiple scales for ODEs (see also
[13,19,22,25]), and for OΔEs (see [34]). These essen-
tial properties are necessary to describe the method of
multiple time-scales for DDEs in the next section of
this paper.

2.1 ODEs

Let us consider an oscillator problem with weak damp-
ing:

ẍ + εẋ + x = 0, t > 0, x = x(t),

x(0) = 0, and ẋ(0) = 1, (1)

and where ε is a perturbation parameter, 0 < ε � 1.
Of course the exact solution of problem (1) can readily
be obtained, and is given by

x(t) =
(
1 − ε2

4

)−1/2

e− 1
2 εt sin

((
1 − ε2

4

)1/2

t

)
.

(2)

Now, let us assume that we do not know how to con-
struct the exact solution and that we want to expand the
solution in a formal expansion given by

x(t) = x0(t) + εx1(t) + O(ε2), (3)

where xi (t) = O(1) for times t under consideration.
By substituting the expansion (3) into problem (1), and
by solving the O(1)- problem, one finds

x(t) ≈ sin(t) + 1

2
εt sin(t). (4)
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Since xi (t) should beO(1), it is obvious that the formal
approximation is only valid for t = O(1) and breaks
down for larger values of t . By looking at the exact
solution (2), it can be seen that two time-scales, that is,
T0 = t and T1 = εt , are describing the solution. The
idea of the two time-scales perturbation method is now
to seek an approximation of the solution of problem (1)
in the following form (5)

x(t) = x̄(T0, T1) = X0(T0, T1) + εX1(T0, T1)

+O(ε2), (5)

where Xi (T0, T1) = O(1) for times t under consider-
ation. By substituting the expansion (5) into problem
(1) one obtains asO(1)-problem and asO(ε)-problem

O(1),
∂2X0

∂T 2
0

+ X0 = 0, (6)

X0(0, 0) = 0, and
∂ X0

∂T0
(0, 0) = 1. (7)

O(ε),
∂2X1

∂T 2
0

+ X1 = −2
∂2X0

∂T0∂T1
− ∂ X0

∂T0
, (8)

X1(0, 0) = 0,

and
∂ X1

∂T0
(0, 0) = −∂ X0

∂T1
(0, 0). (9)

respectively. TheO(1)-problem (6)–(7) can readily be
solved, yielding

X0(T0, T1) = A(T1) cos(T0) + B(T1) sin(T0), (10)

where A(T1) and B(T1) are still arbitrary functions sat-
isfying A(0) = 0 and B(0) = 1. The arbitrariness of
A(T1) and B(T1) can be used to solve theO(ε)-problem
(8)–(9) for X1(T0, T1) in such a way that X1(T0, T1) is
O(1) on a sufficiently long time-scale, which is usu-
ally a time-scale t of O(ε−1). In fact A(T1) and B(T1)
will be chosen in such a way that the coefficients of
the resonant terms in the right-hand side of (8) are set
equal to zero (that is, the coefficients of cos(T0) and of
sin(T0) in the right-hand side of (8) will be set equal to
zero). In this way, one obtains a so-called secular free
(in T0) X1(T0, T1). From (6)–(10) it then follows that
X0(T0, T1) = e− 1

2 T1 sin(T0), and

x(t) ≈ e− 1
2 T1 sin(T0) + O(ε), (11)

for t = O(ε−1), and T1 = εt , and T0 = t . As illustra-
tion the exact solution (2), the formal approximation
(4), and the two-time scales perturbation approxima-
tion (11) are given in Fig 1 for ε = 0.1. In fact, it can
be shown that

|x(t) − X0(T0, T1)| = O(ε), for t = O(ε−1). (12)

Fig. 1 Plots of the exact solution (2), solid line, the approxima-
tion using the formal expansion (4), dashed line, and the approx-
imation (11) using the Multiple time-scales method, dotted line,
for ε = 0.1

2.2 OΔEs

The multiple time-scales perturbation method for
OΔEs was first introduced by Hoppensteadt and
Miranker in [14] by transforming the “differences” into
derivatives. In 2009, Van Horssen and Ter Brake intro-
duced in [34] a formulation of the multiple time-scales
perturbation method for OΔEs completely in terms of
diffe-rence operatorsmaintaining in such away the dis-
crete character of the problem. The classical difference
operators are defined in the following way:

Exn = xn+1, Δxn = xn+1 − xn, and I xn = xn,

(13)

where E is the shift operator, Δ the difference oper-
ator, and I the identity operator, respectively. When
a two-time-scales perturbation method is applied, it is
assumed that xn = x(n, εn). By introducing the (for-
ward) partial difference operators

Ẽ1x(n, εn) = x(n + 1, εn),

Ẽεx(n, εn) = x(n, ε(n + 1)), I (n, εn) = x(n, εn),

Δ̃1x(n, εn) = x(n + 1, εn) − x(n, εn)

= (Ẽ1 − I )x(n, εn),

Δ̃εx(n, εn) = x(n, ε(n + 1)) − x(n, εn)

= (Ẽε − I )x(n, εn) (14)

and by expanding xn as

xn = x(n, εn) ≈ X0(n, εn) + εX1(n, εn) + O(ε2),

(15)
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one can set up a perturbation method (see [34]) which
leads to accurate approximations of the solutions on
time- or iteration scales of order ε−1. In the follow-
ing example, the method is shortly explained. Let us
consider the following problem for xn (with n =
0, 1, 2, . . . and 0 < ε � 1):

xn+2 + εxn+1 + xn = 0, (16)

x0 = 0, and Δx0 = 1. (17)

Of course, the exact solution can readily be obtained
and is given by

xn = sin(nθ(ε))

sin(θ(ε))
, (18)

where θ(ε) is given by cos(θ(ε)) = −ε/2 and
sin(θ(ε)) = √

(1 − ε2/4). When an exact solution
(18) is not available, one can try to use the expan-
sion (15). By assuming that Δε = O(ε) and by
using the difference operators (14), one then obtains
as O(1)−problem, and as O(ε)− problem:

O(1),
(
Δ2

1 + 2E1

)
X0 = 0, (19)

X0(0, 0) = 0, and Δ1X0(0, 0) = 1. (20)

O(ε), (Δ2
1 + 2E1)X1 = −(2E2

1Δε/ε + E1)X0.

(21)

X1(0, 0) = 0, and Δ1X1(0, 0) = 0 (22)

respectively. By solving (19)–(22) such that X1(n, εn)

does not contain secular terms, one obtains as O(ε)

accurate approximation of X (n, εn) for n = O(ε−1)

X0(n, εn) =
(
1 + ε2

4

) n
2

sin

(
1

2
nπ + nμ(ε)

)
(23)

with

cos (μ(ε)) = 1√
1 + ε2

4

,

and sin(μ(ε)) = ε

2
√
1 + ε2

4

. (24)

In Fig. 2, the exact solution (18) of problem (16)–(17),
and its approximation X0(n, εn) are given for ε = 0.05
and n up to 200. For more details and other examples
for OΔEs the reader is referred to [34].

3 The multiple scales perturbation method for
DDEs

In this section of the paper, we will introduce the MTS
method for DDEs. Use will be made of differential,

Fig. 2 Plots of the exact solution for Eq. (16) and (17), −, and
the approximation X0(n, εn), ·, for ε = 0.05

shift, and difference operators. We will restrict our-
selves to a two-time-scales perturbation method, but
more than two-time-scales can be introduced similarly.
In the two time-scales perturbation method, one usu-
ally encounters the fast time T0 = t and the slow time
T1 = εt , and the solution x(t) of the differential equa-
tion is usually approximated by

x(t) = x̃(T0, T1) = X0(T0, T1) + εX1(T0, T1)

+O(ε2), (25)

where Xi (T0, T1) are (usually) bounded functions on
time-scales of order ε−1, with ε a small parameter satis-
fying 0 < ε � 1. In DDEs one encounters derivatives
of x(t) like ẋ(t) = d

dt x(t), ẍ(t) = d2

dt2
x(t), . . . , and

delayed terms like x(t − 1), ẋ(t − 1), ẍ(t − 1), . . . .
The ordinary differential operators transform (in the
well-known way) into partial differential operators

d

dt
= ∂

∂T0
+ ε

∂

∂T1
,

d2

dt2
= ∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1

+ε2
∂2

∂T 2
1

, . . . . (26)

By introducing the following (backward) shift opera-
tors and partial difference operators

E1 x̃(T0, T1) = x̃(T0 − 1, T1), (27)

Eε x̃(T0, T1) = x̃(T0, T1 − ε), (28)

Δ1 x̃(T0, T1) = x̃(T0, T1) − x̃(T0 − 1, T1), (29)

Δε x̃(T0, T1) = x̃(T0, T1) − x̃(T0, T1 − ε), (30)

by observing that

Δ1 = I − E1, Δε = I − Eε, (31)
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where I is the identity operator, and by observing that
Δ1 x̃(T0, T1) = O(1) and Δε x̃(T0, T1) = O(ε) for
bounded functions x(t), it follows that the delayed
terms x(t − 1), ẋ(t − 1), and ẍ(t − 1) can be rewritten
in (by using (25) and (26)):

x(t − 1) = E1Eε (X0 + εX1) + O(ε2),

= E1 [1 − Δε] (X0 + εX1) + O(ε2), (32)

ẋ(t − 1) = E1
∂ X0

∂T0
+ εE1

[(
∂ X0

∂T1
+ ∂ X1

∂T0

)
− Δε

ε

∂ X0

∂T0

]

+O(ε2), (33)

ẍ(t − 1) = E1
∂2X0

∂T 2
0

+ εE1

[
2

∂2X0

∂T0∂T1
+ ∂2X1

∂T 2
0

− Δε

ε

∂ X2
0

∂T 2
0

]

+O(ε2). (34)

In the next subparagraphs, we will apply the MTS
method to a first-order linear DDE and to second-order
linear DDEs.

3.1 First order delay differential equations

Let us apply the perturbation method to the following
initial value problem:

ẋ(t) + ax(t) + bx(t − 1) = ε f (t, x(t)), (35)

with

x(t) = φ(t), for t ∈ [−1, 0],
where a and b are constants. Suppose that f (t, x(t)) =
f0(T0, T1, X0)+ε f1(T0, T1, X0, X1)+O(ε2). Substi-
tuting the expansion (25) into the initial value problem
(35) yields as O(1) problem and as O(ε) problem:

O(1),
∂ X0

∂T0
+ aX0 + bE1X0 = 0. (36)

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0], T1

= εT0, (37)

O(ε),
∂ X1

∂T0
+ aX1 + bE1X1 = −∂ X0

∂T1

+b

ε
E1Δε X0 + f0(T0, T1, X0) (38)

X1(T0, T1) = 0, T0 ∈ [−1, 0],
T1 = εT0, (39)

respectively. For theO(1) equation, the corresponding
characteristic equation is given by

h1(μ) ≡ μ + a + be−μ = 0. (40)

The set of the characteristic roots of the function h1 is
called the spectrum of h1 and is denoted as χ(h1). For

the characteristic Eq. (40), there exists a characteristic
root with multiplicity two if and only if bea = e−1,
(see also [33]). Now, let us restrict our discussion to
the case bea �= e−1. Hence, all characteristic roots,
μ̂ ∈ χ(h1), have multiplicity one. This implies that the
general solution of Eq. (36) can be written as

X0(T0, T1) =
∑

μ̂∈χ(h1)

βμ̂(T1)e
μ̂T0 , (41)

where βμ̂(T1) is still an arbitrary function in T1. Note
that X0 should also satisfy the initial condition (37), and
that X1 should satisfy the condition X1 = O(X0). The
arbitrary functions βμ̂(T1) can be used to avoid sec-
ular terms in X1(T0, T1). To avoid these secular (and
unbounded) terms in X1(T0, T1), it is well known that
the right-hand side of (38) should not contain reso-
nant terms, that is, in this case, terms eμ̂T0 . Obviously,
in the right-hand side of (38), the terms − ∂ X0

∂T1
and

b
ε

E1Δε X0 contain such terms. Fistly, let us assume that
f0(T0, T1, X0) in (38) does not contain resonant terms
(or equivalently does not contain terms which are solu-
tions of the homogeneous equation related to Eq. (38)).
Then, in order to avoid secular terms in X1(T0, T1) it
follows from (38) and (41) that βμ̂(T1) has to satisfy

− dβμ̂(T1)

dT1
+ b

ε
e−μ̂Δεβμ̂(T1) = 0 (42)

for all μ̂ ∈ χ(h1). Now it should be observed that for
0 < ε � 1

Δεβμ̂(T1)

ε
= dβμ̂(T1)

dT1
+ O(ε),

and so, (42) can be rewritten into (up to O(ε)):
(
1 − be−μ̂

) dβμ̂(T1)

dT1
= 0. (43)

By assuming thatbea �= e−1 all roots of the characteris-
tic Eq. (40) havemultiplicity one, and so, 1−be−μ̂ �= 0.
From (43) it then implies that βμ̂(T1) is constant for all
μ̂ ∈ χ(h1). By using the initial condition (37), (41),
and the Laplace transform method for problem (36)–
(37), it follows that:

βμ̂(T1) = Φμ̂, for T1 ∈ [−ε, 0] (44)

with

Φμ̂ = 1

1 − be−μ̂

(
φ(0)−be−μ̂

∫ 0

−1
e−μ̂θφ(θ) dθ

)
,

(45)
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and X0(T0, T1) is givenby (41), and x(t)= X0(T0, T1)+
O(ε). From (38), that is, from
∂ X1

∂T0
+ aX1 + bE1X1 = f0(T0, T1, X0), (46)

X1(T0, T1) can be computed, and x(t) can be written
as

x(t) =
∑

μ̂∈χ(h1)

Φμ̂eμ̂t + O(ε). (47)

Now, let us assume that f0(T0, T1, X0) in (38) contains
resonant terms. For that reason, we will consider the
following example.

Example 1 Let x(t) satisfy

ẋ(t) + ax(t) + bx(t − 1) = εx(t), (48)

subject to the initial condition as given in Eq. (35).
Following the analysis as given in the beginning of this
subparagraph 3.1, it follows that f0(T0, T1, X0) = X0

and all terms in the right-hand side of (38) are reso-
nant terms. To avoid secular terms in X1(T0, T1) it now
follows from (38) and (41) that βμ̂(T1) has to satisfy

− dβμ̂(T1)

dT1
+ b

ε
e−μ̂Δεβμ̂(T1) + βμ̂(T1) = 0, (49)

or equivalently

− (1 − be−μ̂)
dβμ̂(T1)

dT1
+ βμ̂(T1) = 0, (50)

for all μ̂ ∈ χ(h1). The ODE (50) can readily be solved,
and by using the initial values (44) and (45), one obtains

βμ̂(T1) = Φμ̂eνμ̂T1 . (51)

where νμ̂ = (1− be−μ̂)−1. And so, the solution of the
initial value problem for (48) can be written as

x(t) =
∑

μ̂∈χ(h1)

Φμ̂eνμ̂εt eμ̂t + O(ε). (52)

This simple example already shows how the MTS
method can be applied to a first-order DDE taking into
account all (infinitely many) roots of the characteris-
tic equation and taking into account the initial values
which are given on the time-interval [−1, 0]. In the next
subparagraph we will see how the MTS method can be
applied to some simple second-order DDEs.

3.2 Second order delay differential equations

Consider the following second order delay differential
equation

ẍ(t) + aẋ(t − 1) + bx(t) = ε f (t, x), (53)

subject to the initial condition

x(t) = φ(t), t ∈ [−1, 0], (54)

where a and b are constants, and where φ(t) is an
O(1)−function independent of T1 = εt , and φ(t) =
φ(T0). Firstly, we will approximate the solution of
(53) by using the expansion (25). Moreover, we will
assume that f (t, x) in (53) can be written as f (t, x) =
f0(T0, T1, X0)+ε f1(T0, T1, X0, X1)+ . . . . By substi-
tuting the expansion (25) for x(t) and by substituting
the expansion for f (t, x) into (53), we obtain the fol-
lowing O(1)−problem and O(ε)−problem,

O(1),
∂2X0

∂T 2
0

+ aE1
∂ X0

∂T0
+ bX0 = 0,

T0, T1 > 0, (55)

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0],
T1 = εT0, (56)

O(ε),
∂2X1

∂T 2
0

+ aE1
∂ X1

∂T0
+ bX1 = −2

∂2X0

∂T0∂T1

+aE1

(
−∂ X0

∂T1
+ 1

ε
Δε

∂ X0

∂T0

)

+ f0(T0, T1, X0), T0, T1 > 0, (57)

X1(T0, T1) = 0, T0 ∈ [−1, 0], T1 = εT0, (58)

respectively. By substituting eμT0 into (55) one obtains
the characteristic equation

h2(μ) ≡ μ2 + aμe−μ + b = 0. (59)

The set of all roots of h2 is denoted by χ(h2). To
simplify the computation, it will be assumed that all
roots of (59) have multiplicity one; that is, it will
be assumed that the constants a and b are such that
2μ + ae−μ − aμe−μ �= 0 for all roots μ ∈ χ(h2).
Then, the general solution of (53) is given by

X0(T0, T1) =
∑

μ̂∈χ(h2)

βμ̂(T1)e
μ̂T0 , (60)

where βμ̂(T1) is still an arbitrary function, which will
be used to avoid resonant terms in the right-hand side of
(57). By using the Laplace-transform method to (55)–
(56) it can be shown that βμ̂(T1) satisfies the following
initial condition:

βμ̂(T1) = N (μ̂)

2μ̂ + ae−μ̂ − aμ̂e−μ̂
=Φk, T1∈[−ε, 0]

(61)

with

N (μ̂) = μ̂φ(0) + φ̇(0) + aφ(−1) − aμ̂e−μ̂

∫ 0

−1
φ(T0)e

−μ̂T0 dT0. (62)
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If f0(T0, T1, X0) does not contain resonant terms, then
in order to eliminate secular terms, the following con-
dition should be satisfied for βμ̂

− 2μ̂β ′
μ̂
(T1) + ae−μ̂(−β ′

μ̂
(T1) + μ̂

ε
Δεβμ̂(T1)) = 0,

(63)

for all μ̂ ∈ χ(h2). Similar to the first order delay differ-
ential equation in Sect. 3.1, by rewriting the definition
for the partial difference operator and expanding the
delay form by using the Taylor expansion, we obtain
that β ′

μ̂
(T1) = 0. Hence, it can be concluded that the

solution of Eq. (63) is constant for all μ̂ ∈ χ(h2). As
a result, the value for βμ̂ is given by (61). However, if
f0 contains resonant terms, then the conditions for βμ̂

will be different as well. To determine the conditions
for such cases, let us give an illustration for different
cases of f0 in the following examples.

Example 2 Let x(t) satisfy

ẍ(t) + aẋ(t − 1) + bx(t) = εx(t), (64)

subject to the initial condition as given in Eq. (54).

Following the analysis as given in the beginning of this
subsection, it follows that f0(T0, T1, X0) = X0 and
that the right-hand side of (57) is given by

− 2
∂2X0

∂T0∂T1
+ aE1

[
−∂ X0

∂T1
+ 1

ε
Δε

∂ X0

∂T0

]
+ X0.

(65)

Therefore, by substituting the solution of the O(1)-
problem as given in (60) into formula (65), the condi-
tion to remove the resonant terms is

−2μ̂β ′
μ̂
(T1) + ae−μ̂(−β ′

μ̂
(T1) + μ̂

ε
Δεβμ̂(T1))

+βμ̂(T1) = 0, (66)

for all μ̂ ∈ χ(h2), or equivalently by using the defini-
tion of Δε, and the fact that 0 < ε � 1:

(−2μ̂ − ae−μ̂ + aμ̂e−μ̂)β ′
μ̂
(T1) + βμ̂(T1) = 0. (67)

By solving (67) for βμ̂(T1), and by using the initial
condition (61) for βμ̂(T1) one finds

βμ̂(T1) = Φμ̂eνμ̂T1 (68)

with

νμ̂ = [2μ̂ + ae−μ̂ − aμ̂e−μ̂]−1. (69)

And so, the solution of (64) can be written as

x(t) =
∑

μ̂∈χ(h2)

Φμ̂eνμ̂T1eμ̂T0 + O(ε). (70)

In the next two examples, wewill showhow themethod
can be applied when f (t, x) depends explicitly on t .

Example 3 Let x(t) satisfy

ẍ(t) + aẋ(t − 1) + bx(t) = εeεt x(t), (71)

subject to the initial condition as given in (54). Again
following the analysis as given in the beginning of this
subsection it follows that f0(T0, T1, X0) = eT1 X0, and
that in order to avoid resonant terms in the right-hand
side of (57) that βμ̂(T1) has to satisfy

(−2μ̂ − ae−μ̂ + ae−μ̂)β ′
μ̂
(T1) + eT1βμ̂(T1) = 0.

(72)

By solving (72) for βμ̂(T1), and by using the initial
condition (61) for βμ̂(T1), one finally finds that the
solution x(t) of (71) can be written as

x(t) =
∑

μ̂∈χ(h2)

Φμ̂eνμ̂eT1 eμ̂T0 + O(ε). (73)

where Φμ̂ and νμ̂ are given in (61) and (69), respec-
tively.

Example 4 Let x(t) satisfy

ẍ(t) + 0.5ẋ(t − 1) + x(t) = ε cos(ωt)x(t), (74)

subject to the initial condition as given in Eq. (54),
and where ω is a nonzero constant independent of ε,
that is, ω is a strict order one constant. The character-
istic equation in this case is a particular case of (59)
with a = 0.5 and b = 1. The analysis as given in the
beginning of this subsection can be followed again, and
f0(T0, T1, X0) = cos(ωT0)X0. By rewriting cos(ωT0)
as (eiωT0 +e−iωT0)/2, and by writing the characteristic
roots μ as v + iw with v, and w ∈ R, it follows that

f0(T0, T1, X0) = cos(ωT0)X0

= 1

2

∑
v+iw∈χ(h2)

βv+iw(T1)

(
e[v+i(w+ω)]T0 + e[v+i(w−ω)]T0

)
.

(75)

As we can see, v + i(w ± ω) will contribute to the
secular terms if it is again a characteristic root. Next,
we will show that it is only possible for ω = ±2ŵ,
where ŵ is an imaginary part of a characteristic root,
v̂ ± iŵ.

Note that Pontryagin’s theorem gives necessary and
sufficient stability conditions for an exponential poly-
nomial with a principle term. The theorem can be found
in [29].Using this theorem,weobtain that the zero solu-
tion of (74) for a = 0.5, b = 1, and ε = 0 is asymptot-
ically stable since all the real parts of the characteristic
roots in problem (74) are negative, that is, v < 0.
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First, we consider real-valued characteristic roots.
For v ∈ R

−: if v ∈ χ(h2) then it must satify v2 +
0.5ve−v + 1 = 0. Note that h2(v) = v2 + 0.5ve−v + 1
is monotonically increasing for all v < 0, h2(−2) <

0 and h2(−1) > 0. Hence, using the Intermediate
value theorem, there exists a unique vr ∈ R

− such
that h2(vr ) = 0. Moreover, there is no wr such that
vr ± iwr ∈ χ(h2). This implies that vr ± iω is again
a characteristic root only for ω = 0. This contradicts
the assumption that ω > 0. Hence, vr ± iω will be not
contributing to secular terms.

Next, we consider complex-valued characteristic
roots. For a given v + iw ∈ χ(h2), v and w satisfy

v2−w2+0.5ve−v cos(w)+0.5we−v sin(w)+1 = 0,

(76)

2vw−0.5v sin(w)e−v+0.5we−v cos(w) = 0.

(77)

It is easy to see that also v− iw ∈ χ(h2). Next, we will
show that for problem (74), if v̂ + iŵ ∈ χ(h2), then
there is no w̄ �= ±ŵ such that v̂ + iw̄ ∈ χ(h2). First,
rewrite (76) and (77) as

v2 − w2 + 1 = −0.5ve−v cos(w) − 0.5we−v sin(w),

(78)

2vw = 0.5v sin(w)e−v − 0.5we−v cos(w).

(79)

Squaring both equations and adding the so-obtained
equations yields

w4 + f (v)w2 + g(v) = 0, (80)

where f (v) = 2v2 − 2 − (0.5e−v)2 and g(v) =
(v2 + 1)2 − (0.5ve−v)2. Let us define k(v) = f 2(v)−
4 g(v) = −16v2 +e−2v +0.54e−4v. By observing that
(80) is a quadratic equation in w2, the solutions of (80)
can be written as

w2 = − f (v) + √
k(v)

2
or

w2 = − f (v) − √
k(v)

2
. (81)

Now, we can show that there are four possibilities
for w. Those are

w1,2 = ±
√

− f (v) + √
k(v)

2
,

w3,4 = ±
√

− f (v) − √
k(v)

2
. (82)

Note that the squared Eq. (80) always has all the origi-
nal solutions of (78)–(79) but may also have additional
solutions because of squaring (78) and (79). Sowe need
to recheck the solutions (82).

1. For v < vr , since g(vr ) = 0, g′(vr ) > 0 and g
has only one real root, it satisfies g(v) < 0. This
implies that k(v) = f 2(v) − 4g(v) > f 2(v) for
all v < vr . Using this condition, we obtain that
− f (v) − √

k(v) < 0. This implies that w3,4 are
not real-valued. This contradicts that w3,4 are real-
valued. In conclusion, v + iw3,4 /∈ χ(h2).

2. For vr < v < 0, there is only one couple of charac-
teristic roots in this interval, and v + iw3,4 /∈ χ(h2)

for v < vr . The roots can be seen in the Fig. 3.

This analysis proves that each real part of complex-
valued characteristic roots, v, only corresponds with
two imaginary parts, ±w. So, v ± i(w + ω) is again a
characteristic root if ω = ∓2w.

Now, let us suppose that ω = 2ŵ, where ŵ is a
nonzero imaginary part of an eigenvalue, i.e, there exist
a v̂ such that (v̂ + iŵ) ∈ χ(h2), ŵ �= 0. We have to
consider three cases.

Case 1. For μ �= v̂ ± iŵ. In this case, f0(T0, T1, X0)

has no contribution to the secular terms. There-
fore, the condition for βμ to eliminate secular
terms is

(−2μ̂ − ae−μ̂ + aμ̂e−μ̂)β ′
μ̂
(T1) = 0.

Hence βμ(T1) is a constant function. Using the
initial conditions for βμ(T1) in (61), we obtain
that βμ(T1) = Φμ, for μ �= v̂ ± iŵ.

Case 2. For μ = v̂ + iŵ. In this case, f0(T0, T1, X0)

has a contribution to the secular terms. There-
fore,

− h′
2(v̂ + iŵ)β ′

v̂+iŵ(T1) + 1

2
βv̂−iŵ(T1) = 0.

(83)

Case 3. For μ = v̂ − iŵ. Similar to the previous case,
we obtain that

− h′
2(v̂ − iŵ)β ′

v̂−iŵ(T1) + 1

2
βv̂+iŵ(T1) = 0.

(84)

Hence, (83) and (84) are coupled linear first-order dif-
ferential equations. It is easy to show that for m =
1
2

(
h′
2(v̂ + iŵ)h′

2(v̂ − iŵ)
)−1/2, the general solution
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Fig. 3 The real part (Eq.
(76)) and the imaginary part
(Eq. (77)) of the
characteristic equation are
plotted by the solid lines
and by the dashed lines,
respectively. Roots of the
characteristic equation are
the intersection points of
these lines

of these equations is

βv̂+iŵ(T1) = c1emT1 + c2e−mT1 ,

βv̂−iŵ(T1) = 1

2mh′
2(v̂ − iŵ)

[
c1emT1 − c2e−mT1

]
.

(85)

By using the initial conditions (61)we obtain two linear
equations in c1 and c2. By solving it, we obtain

c1 = 1

2

[
Φv̂+iŵ + 2mh′

2(v̂ − iŵ)Φv̂−iŵ
]
,

c2 = 1

2

[
Φv̂+iŵ − 2mh′

2(v̂ − iŵ)Φv̂−iŵ
]
. (86)

So, the approximation of the solution is

X0(T0, T1) = βv̂+iŵ(T1)e
(v̂+iŵ)T0

+βv̂−iŵ(T1)e
(v̂−iŵ)T0 +

∑
μ∈χ(h2)
μ�=v̂±ŵ

ΦμeμT0 . (87)

In the next section,wewill prove that the constructed
approximations in Example 1 to Example 4 are O(ε)

accurate for t = O(ε−1). The presented proof can also
be used for the more advanced and weakly nonlinear
problems that will be studied in Sect. 5 of this paper.

4 Accuracy of the approximations on a long
time-scale

In this section, we are going to show how accurate the
constructed approximations of the solutions are on long
time-scales for the following initial value problem:

dn x(t)

dtn
+

n−1∑
m=0

am
dm x(t)

dtm
+

n∑
m=0

bm
dm x(t − 1)

dtm

= ε f (t, x(t)), t > 0, (88)

x(t) = φ(t), for t ∈ [−1, 0], (89)

where n is a positive integer, and where ε is a small
parameter with 0 < ε � 1. The function φ ∈
Cn−1 ([−1, 0]), and the function f satisfies the Lip-
schitz condition, i.e, there exists a constant L such that

| f (t, x(t)) − f (t, x̃(t))| ≤ L|x(t) − x̃(t)|, (90)

in a closed interval 0 ≤ t ≤ t1. Let h(s) be the charac-
teristic function related to Eq. (88) with ε = 0. For the
characteristic equation h(s) = 0, it will be assumed for
simplicity that all roots have multiplicity one, and that
the roots have a finite maximal real part d̂ ∈ R. Hence,
h(s) is analytic in s for all s with Re(s) ≤ d̂. According
to [4], h(s) has an inverse Laplace transform which is
usually called a fundamental solution. Let us denote it
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as H(t). From the definition of d̂, there exists a positive
constant M1 such that

|H(t)| ≤ M1ed̂t . (91)

Suppose that the approximation of the solution x(t) is
denoted as x̃(t) and satisfies

dn x̃(t)

dtn
+

n−1∑
m=0

am
dm x̃(t)

dtm
+

n∑
m=0

bm
dm x̃(t − 1)

dtm

= ε f (t, x̃) + R(t, ε), (92)

where R(t, ε) is called the residual. For the approxima-
tion as constructed by using the perturbation method as
given in Sect. 3, the residual satisfies

|R(t, ε)| ≤ ε2M2ed̂t , (93)

where M2 is a constant. It is also assumed that φ(t) =
O(1) such that x̃(t) satisfies x̃(t) = φ(t) for t ∈
[−1, 0]. In this research, only the first term in Eq. (25)
has been determined completely. The O(ε) equation is
considered only to obtain the condition for X0 such that
X1 does not contain secular terms.Hence, wewill show
that there exist positive constants c, ε0, K , and D such
that the approximation of the solution x(t) satisfies

|x(t) − x̃(t)| ≤ cεed̂t (94)

for 0 ≤ t ≤ K/ε, and 0 ≤ ε < ε0. The idea how to
prove the validity is motivated by the validity proof of
the MTS method for ODE for large times in [21] and
for higher order averaging in [27]. First, we rewrite the
DDE into an integral equation and then show that uni-
form validity holds. Using the Laplace transformation
method, we obtain the corresponding integral equation
for the initial value problem (88), yielding

x(t) =
∑

k

1

h′(μk)
N (μk)e

μk t

+ε

∫ t

0
H(t − s) f (s, x(s)) ds. (95)

with

N (μk) =
n∑

j=1

μ j−1φR
n− j +

n−1∑
m=1

am

m∑
j=1

μ
j−1
k φR

m− j

−
n∑

m=0

bm

[
μm

k e−μk

∫ 0

−1
e−μk tφ(t) dt

]

+
n∑

m=1

bm

⎡
⎣ m∑

j=1

μ
j−1
k φL

m− j

⎤
⎦ ,

where φR
k = φ(k)(0), and φL

k = φ(k)(−1). The corre-
sponding integral equation for the approximation (see
(92)) is given by

x̃(t) =
∑

k

1

h′(μk)
N (μk)e

μk t

+ε

∫ t

0
H(t − s) f (s, x̃(s)) ds

+
∫ t

0
H(t − s)R(s, ε) ds. (96)

By subtracting (96) from (95), and by taking the
absolute value, one obtains

|x(t) − x̃(t)| ≤ ε

∫ t

0
|H(t − s)|| f (s, x(s))

− f (s, x̃(s))| ds

+
∫ t

0
|H(t − s)||R(s, ε)| ds. (97)

To simplify the estimate (97) further it should be
observed that f satisfies a Lipschitz condition. Hence
there exists a positive constant L such that

| f (t, x(t)) − f (t, x̃(t))| ≤ L|x(t) − x̃(t)|. (98)

From Eqs. (91) to (98), we then obtain that∫ t

0
|H(t − s)|| f (s, x(s)) − f (s, x̃(s))| ds

≤
∫ t

0
M1ed̂(t−s)L|x(s) − x̃(s)| ds,

= M1L
∫ t

0
ed̂(t−s)|x(s)

−x̃(s)| ds. (99)

By using (91) and (93), we further obtain that∫ t

0
|H(t − s)||R(s, ε)| ds

≤
∫ t

0
M1ed̂(t−s)

[
ε2M2ed̂s

]
ds,

= ε2M1M2ted̂t ,

≤ εM1M2K ed̂t . (100)

Using the inequalities (99) and (100), the inequality in
Eq. (97) becomes

|x(t) − x̃(t)| ≤ εM1L
∫ t

0
ed̂(t−s)|x(s) − x̃(s)| ds

+εM1M2K ed̂t , (101)
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which is equivalent to

e−d̂t |x(t) − x̃(t)| ≤ εM1L
∫ t

0
e−d̂s |x(s) − x̃(s)| ds

+εM1M2K . (102)

By putting u(t) = e−d̂t |x(t) − x̃(t)|, we can rewrite
this inequality (102) into

u(t) ≤ εM1L
∫ t

0
u(s) ds + ε[M1M3K ]. (103)

Using the Gronwall inequality for (103), we obtain that

e−d̂t |x(t)− x̃(t)| ≤ ε [M1M2K ] exp

(∫ t

0
εM1L ds

)
,

= ε [M1M2K ] eεM1Lt (104)

For t = O(ε−1) the right-hand side is O(ε), the abso-
lute error is

|x(t) − x̃(t)| = O
(
εed̂t

)
, (105)

and the relative error (compared to the largest possible
solution) is:
|x(t) − x̃(t)|

ed̂t
= O(ε), (106)

where d̂ is the maximal real part of the roots of the
characteristic equation h(s) = 0. In conclusion, the

absolute error isO(εed̂t ), and the relative error isO(ε)

for all t = O(ε−1). The main result of this section can
be formulated as follows.

Theorem 1 Suppose that x(t) is the exact solution of
the initial value problem (88)–(89), and x̃(t) is an
approximation of x(t) and satisfies Eq. (92). Assuming
that the initial function φ(t) is O(1) for t ∈ [−1, 0], it
then follows that the absolute error between x(t) and

x̃(t) isO(εed̂t ), and the relative absolute error between
x(t) and x̃(t) is O(ε), on a timescale t = O (

ε−1
)
,

where d̂ is the maximal real part of the characteristic
equation related to (88) with ε = 0.

Next, in Sect. 5 of this paper, itwill be shownhow the
MTS method can be applied to more advanced prob-
lems, i.e, to weakly nonlinear initial value problems.

5 Advanced problems

In Sect. 3 of this paper, the MTS method for DDEs has
been introduced and has been applied to some simple,
linear problems. In this section, itwill be shownhow the
MTSmethod for DDEs can be applied to more compli-
cated problems, that is, to weakly nonlinear problems.

5.1 A first Order DDE with a weak quadratic
nonlinearity

Example 5 Consider the following DDE for x = x(t):

ẋ(t) + x(t) − x(t − 1) = εx2(t), t > 0, (107)

subject to the initial condition as given in the initial
value problem (35).

In fact, this is a particular example of problem (35)
with a = 1, b = −1, and f (t, x) = x2. Substituting
the expansion (25) into the equation of problem (107)
and into the initial value yields as O(1)-problem and
as O(ε)-problem

O(1),
∂ X0

∂T0
+ X0 − E1X0 = 0, (108)

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0], T1 = εT0,

(109)

O(ε),
∂ X1

∂T0
+ X1 − E1X1 = −∂ X0

∂T1
− 1

ε

E1Δε X0 + X2
0, (110)

X1(T0, T1) = 0, T0 ∈ [−1, 0], T1 = εT0. (111)

Now, let μ̂ be a root of the characteristic equation cor-
responding to (108), that is,

h3(μ) ≡ μ + 1 − e−μ = 0. (112)

For all μ = μ̂ with h3(μ̂) = 0, we have h′
3(μ̂) �= 0,

and so, all roots of (112) have multiplicity one. Hence,
the general solution of Eq. (108) can be written as

X0(t) =
∑

μ̂∈χ(h3)

βμ̂(T1)e
μ̂T0 . (113)

It is easy to show that zero is one of the characteristic
roots of (112). Using the Laplace transform method
and the initial condition, we obtain that βk(T1) should
satisfy the initial condition

βμ̂(T1) = Φμ̂, T1 ∈ [−ε, 0] (114)

with

Φμ̂ = 1

1 + e−μ̂

[
φ(0) + e−μ̂

∫ 0

−1
e−μ̂sφ(s) ds

]
.

(115)

By substituting the solution (113) into the right-hand
side of theO(ε)Eq. (110), it follows that this right-hand
side can be written as:∑

μ̂∈χ(h3)

(
−dβμ̂(T1)

dT1
− e−μ̂ Δε

ε
βμ̂(T1)

)
eμ̂T0

+
∑

μ̂1∈χ(h3)

∑
μ̂2∈χ(h3)

βμ̂1(T1)βμ̂2(T1)e
(μ̂1+μ̂2)T0 .

(116)

123



8442 N. Binatari et al.

Resonant terms in this right-hand side due to the
quadratic nonlinearity can occur whenr μ̂1 + μ̂2 ∈
χ(h3), where μ̂1 and μ̂2 satisfy (112), that is,

μ̂1 + 1 − e−μ̂1 = 0, (117)

μ̂2 + 1 − e−μ̂2 = 0, and (118)

(μ̂1 + μ̂2) + 1 − e(μ̂1+μ̂2) = 0. (119)

By substituting the exponential form from (117) and
(118) into (119), we obtain that

μ̂1μ̂2 = 0. (120)

Hence, the sum of two roots will be a root of the char-
acteristic Eq. (112) if and only if at least one of these
roots is identically equal to zero. The right-hand side
(116) can now be rewritten as(

−dβ0(T1)

dT1
− Δε

ε
β0(T1) + β2

0 (T1)

)
e0·T0

+
∑

μ̂∈χ(h3)
μ̂ �=0

(
−dβμ̂(T1)

dT1
− e−μ̂ Δε

ε
βμ̂(T1)

+2β0(T1)βμ̂(T1)
)

eμ̂T0

+
∑

μ̂1∈χ(h3),
μ̂1 �=0

∑
μ̂2∈χ(h3),

μ̂2 �=0

βμ̂1(T1)βμ̂2(T1)e
(μ̂1+μ̂2)T0 .

(121)

Obviously, the first two terms in (121) are resonant
terms, and the last term is not resonant. To avoid secular
terms in X1(T0, T1) it now follows from (110) and (121)
that β0(T1) has to satisfy

− dβ0(T1)

dT1
− Δε

ε
β0(T1) + β2

0 (T1) = 0. (122)

and that βμ̂(T1) for μ̂ �= 0 has to satisfy

− dβμ̂(T1)

dT1
− e−μ̂ Δε

ε
βμ̂(T1)+2β0(T1)βμ̂(T1)=0.

(123)

Since Δεβ0(T1) = β0(T1) − β0(T1 − ε) = εβ ′
0(T1) +

O(ε2), it follows from our perturbation procedure (that
is, (122) only containsO(1) terms) and from (122) that
β0(T1) satisfies:

− 2β ′
0(T1) + β2

0 (T1) = 0. (124)

The Eq. (124) for β0(T1) can readily be solved, and by
using the initial condition (114) for μ̂ = 0, it follows
that β0(T1) is given by

β0(T1) =
[
−T1

2
+ Φ0

]−1

, (125)

whereΦ0 = 2
[
φ(0) + ∫ 0

−1 φ(s) ds
]−1

.Similarly, the

Eq. (123) for βμ̂(T1) with μ̂ �= 0 can be written as

− (1 + e−μ̂)β ′
μ̂
(T1) + 2β0(T1)βμ̂(T1) = 0, (126)

and can be solved accordingly, yielding

βμ̂(T1) = Φμ̂(−2Φ0)
4/h′

3(μ̂)(T1 − 2Φ0)
−4/h′

3(μ̂)

(127)

So far, X0(T0, T1) has been determined completely, and
X1(T0, T1)does not contain secular terms (that is, X1 =
O(X0) for t = O(ε−1)). And so, we can conclude that

X0(T0, T1) =
∑

μ̂∈χ(h3)

βμ̂(T1)e
μ̂T0 , (128)

where β0(T1) and βμ̂(T1) with μ̂ �= 0 are given by
(125) and (127), respectively, and that

x(t) = X0(T0, T1) + O (εX0(T0, T1)) (129)

for t = O (
ε−1

)
.

5.2 A second order DDE with a weak quadratic
nonlinearity.

Example 6 Consider the following initial value prob-
lem for x = x(t):

ẍ(t) + x(t) − x(t − 1) = εx2(t), t > 0,

x(t) = φ(t), t ∈ [−1, 0], (130)

where it is assumed that φ is a smooth function of order
1, and where ε is a small parameter with 0 < ε � 1.
By substituting the expansion (25) for x(t) into (130),
and by collecting terms of order 1, and of order ε, we
obtain the following O(1)-, and O(ε)− problems:

O(1),
∂2X0

∂T 2
0

+ X0 − E1X0 = 0, (131)

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0],
T1 = εT0, (132)

O(ε),
∂2X1

∂T 2
0

+ X1 − E1X1

= −2
∂2X0

∂T0∂T1
− E1

Δε

ε
X0 + X2

0, (133)

X1(T0, T1) = 0, T0 ∈ [−1, 0], T1 = εT0. (134)

First, we will investigate the multiplicity of the charac-
teristic roots of Eq. (131). Let us define the character-
istic function h4 as

h4(μ) ≡ μ2 + 1 − e−μ. (135)
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Suppose that there exists a characteristic root, μ̂ ∈
χ(h4), with multiplicity greater than one. Hence, it sat-
isfies

μ̂2 + 1 − e−μ̂ = 0, and 2μ̂ + e−μ̂ = 0. (136)

By adding those two equations in (136), we obtain that

μ̂2 + 2μ̂ + 1 = 0. (137)

Equation (137) can only be satisfied when μ̂ = −1.
However,−1 /∈ χ(h4). This contradicts the assumption
that μ̂ is a characteristic root with multiplicity greater
than one. Therefore, we can conclude that there are no
characteristic roots with amultiplicity greater than one.
The general solution of theO(1) problem (131)–(132)
can now be written as

X0(T0, T1) =
∑

μ̂∈χ(h4)

βμ̂(T1)e
μ̂T0 . (138)

Of course, βμ̂(T1) has to satisfy the initial condition
given by (61)–(62). Besides that the arbitrary functions
βμ̂(T1) have to be chosen such that no resonant terms
occur in the right-hand side of (133) (or equivalently,
βμ̂(T1) has to be chosen such that no secular terms
occur in X1(T0, T1) for all μ̂ ∈ χ(h4)). The right-hand
side of (133) can be rewritten into

∑
μ̂∈χ(h4)

[
−2β ′

μ̂
(T1)μ̂ − e−μ̂ Δε

ε
βμ̂(T1)

]
eμ̂T0

+
∑

μ̂1∈χ(h4)

∑
μ̂2∈χ(h4)

βμ̂1(T1)βμ̂2(T1)e
(μ̂1+μ̂2)T0 ,

(139)

and so, we need to investigate whether μ̂1 + μ̂2 can
be a root of the characteristic equation h4(μ) = 0, or
equivalently

μ̂2
1 + 1 − e−μ̂1 = 0, (140)

μ̂2
2 + 1 − e−μ̂2 = 0, (141)

(μ̂1 + μ̂2)
2 + 1 − e−(μ̂1+μ̂2) = 0. (142)

Substituting the Eqs. (140) and (141) into (142) yields

(μ̂1 + μ̂2)
2 + 1 =

(
μ̂2
1 + 1

) (
μ̂2
2 + 1

)
. (143)

By expanding both sides in (143), we obtain that μ̂2
1 +

2μ̂1μ̂2+μ̂2
2+1 = μ̂2

1μ̂
2
2+μ̂2

1+μ̂2
2+1,which implies

that μ̂2
1μ̂

2
2 = 2μ̂1μ̂2. And so, it follows that

μ̂1 = 0, or μ̂2 = 0, or μ̂1μ̂2 = 2. (144)

It is clear that the sum of two characteristic roots is
again a characteristic root if at least one of them is

Fig. 4 The real part (Eq. (146)) is depicted by solid lines, the
imaginary part (Eq. (147)) is given by dashed lines, and the
inequality (Eq. (148)) is given by the shaded area

zero. So, we still have to investigate the case μ̂1μ̂2 =
2. First, note that the only real-valued characteristic
root is zero. Hence, we need to check whether there
is a possibility that the multiplication of two complex-
valued characteristic roots is equal to 2. This can only
occur if there exists a complex-valued characteristic
root with a distance less than or equal to

√
2 to the

origin in the complex-plane. Let us write μ̂ = v + iw,
with v,w ∈ R. Then,

[v + iw]2 + 1 − e−(v+iw) = 0. (145)

By separating the real and the imaginary parts in (145),
we obtain that v and w should satisfy

v2 − w2 + 1 − e−v cos(w) = 0, (146)

2vw + e−v sin(w) = 0, (147)

v2 + w2 ≤ 2. (148)

In Fig. 4, the two equalities (146) and (147), and the
inequality (148) are plotted in the (v,w)-plane.

As can be seen from Fig. 4, no intersection of the
equality (146) lies inside the grey area of the inequality
(148), and so, there are no characteristic roots which
have modulus less than or equal to

√
2. Hence, the sum

of the characteristic roots can only be a characteristic
root if and only if at least one of those roots is equal
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to zero. The right-hand side of (133), or equivalently
(139), can now be rewritten into

−Δε

ε
β0(T1) +

∑
μ̂∈χ(h4)

μ̂�=0

[
−2β ′

μ̂
(T1)μ̂ − e−μ̂ Δε

ε
βμ̂(T1)

]
eμ̂T0

+β2
0 (T1) + 2

∑
μ̂∈χ(h4)

μ̂�=0

β0(T1)βμ̂(T1)e
μ̂T0

+
∑

μ̂1∈χ(h4)
μ̂1 �=0

∑
μ̂2∈χ(h4)

μ̂2 �=0

βμ̂1 (T1)βμ̂2 (T1)e
(μ̂1+μ̂2)T0 . (149)

From (149), it follows that βμ̂(T1) has to satisfy for
μ̂ = 0

− Δε

ε
β0(T1) + β2

0 (T1) = 0, (150)

and for all μ̂ ∈ χ(h4) with μ̂ �= 0

− 2β ′
μ̂
(T1)μ̂ − e−μ̂ Δε

ε
βμ̂(T1) + 2β0(T1)βμ̂(T1) = 0

(151)

in order to avoid secular terms in X1(T0, T1). Since
(150) and (151) should be strict order 1 equations, it
simply follows that (150) and (151) can be rewritten
into

− β ′
0(T1) + β2

0 (T1) = 0, and (152)

−h′
4(μ̂)β ′

μ̂
(T1) + 2β0(T1)βμ̂(T1) = 0, (153)

respectively. The ODEs (152) and (153) can easily be
solved, and by using the initial conditions (61)–(62)
one finds

β0(T1) = −1

T1 + C0
, and βμ̂(T1) = Cμ̂ [T1 + C0]

−2
h′
4(μ̂) ,

(154)

for μ̂ ∈ χ(h4) with μ̂ �= 0. Using the initial con-
ditions of βμ̂, we have C0 = −Φ−1

0 and Cμ̂ =
Φμ̂(−Φ0)

− 2
h′
4(μ̂) . And so, X0(T0, T1) has been com-

pletely determined and is given by

X0(T0, T1) = −1

T1 + C0

+
∑

μ̂,μ̂ �=0

Cμ̂ [T1 + C0]

−2

h′
4(μ̂) eμ̂T0 .

(155)

And so, by using the theorem from Sect. 4 it follows
that x(t) can be written as

x(t) = X0(T0, T1) + O(ε), (156)

for t = O(ε−1).

5.3 A first order DDE with a weak cubic nonlinearity.

Example 7 Consider the following initial value prob-
lem for x = x(t):

2ẋ(t) + ẋ(t − 1)+2x(t)+x(t − 1) = εx3(t), t > 0,

(157)

x(t) = φ(t), for all t ∈ [−1, 0], (158)

where φ is a smooth function of order 1, and where ε is
a small parameter with 0 < ε � 1. By substituting the
expansion (25) for x(t) into (157)–(158), and by taking
together terms of order 1, and of order ε, we obtain the
following O(1)−, and O(ε)−problems:

O(1), 2
∂ X0

∂T0
+ E1

∂ X0

∂T0
+ 2X0 + E1X0 = 0,

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0], T1 = εT0, (159)

O(ε), 2
∂ X1

∂T0
+ E1

∂ X1

∂T0
+ 2X1 + E1X1

= −2
∂ X0

∂T1
− E1

∂ X0

∂T1
+ E1

Δε

ε

∂ X0

∂T0

+E1
Δε

ε
X0 + X3

0,

X1(T0, T1) = 0, T0 ∈ [−1, 0], T1 ∈ [−ε, 0], (160)

respectively. To determine the general solution of the
O(1)-problem (159), we first have to study the char-
acteristic roots of the DDE in (159). The characteristic
equation is given by

h5(μ) ≡ 2μ + μe−μ + 2 + e−μ

= (μ + 1)(2 + e−μ) = 0. (161)

The roots μ = μ̂ of this equation are given by

μ̂ = −1, or μ̂ = − ln(2) + i(2n + 1)π,

for all integers n. Now we will show that all roots have
multiplicity one. If a root μ̂ has multiplicity two, then
μ̂ should satisfy (161) and h′

5(μ̂) = 2−μ̂e−μ̂ = 0. For
μ̂ = −1, we obtain that h′

5(−1) = 2+ e �= 0, and also
for μ̂ = − ln(2)+i (2n + 1) π , we obtain that h′

5(μ̂) =
2 − μ̂e−μ̂ = 2 + 2 [− ln(2) + i(2n + 1)π ] �= 0,∀n ∈
Z. Hence, we can conclude that all characteristic roots
of Eq. (161) have multiplicity one. This implies that the
general solution of Eq. (159) can be written as

X0(T0, T1) =
∑

μ̂∈χ(h5)

βμ̂(T1)e
μ̂T0 , (162)

where the still arbitrary functionsβμ̂(T1) have to satisfy
the initial conditions in (159), and have to be chosen in
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such a way that no secular terms occur in X1(T0, T1).
By substituting (162) into (160), the right hand side of
the equation for X1(T0, T1) becomes:

∑
μ̂∈χ(h5)

[
−2β ′

μ̂
(T1) + μ̂e−μ̂ Δε

ε
βμ̂(T1)

−e−μ̂β ′
μ̂
(T1) + e−μ̂ Δε

ε
βμ̂(T1)

]
eμ̂T0

+
∑

μ̂1∈χ(h5)

∑
μ̂2∈χ(h5)

∑
μ̂3∈χ(h5)

βμ̂1(T1)βμ̂2(T1)

βμ̂3(T1)e
(μ̂1+μ̂2+μ̂3)T0 . (163)

Aswe can see from (163) the sumof three characteristic
roots will contribute to secular terms if it is again a
characteristic root. Therefore, we will investigate the
possibility whether the sum of three characteristic roots
is again a characteristic root or not, that is, whether
h5(μ̂1 + μ̂2 + μ̂3) = 0 or not. There are four different
cases we have to consider to see whether μ̂1 + μ̂2 + μ̂3

is a root. These cases are the following ones.

Case 1. μ̂1 = −1, μ̂2 = −1, μ̂3 = −1. This implies
μ̂1 + μ̂2 + μ̂3 = −3. Hence,

h5(μ̂1 + μ̂2 + μ̂3) = h5(−3)

= [−3 + 1]
[
2 + e−(−3)

]
= −2(2 + e3) �= 0.

Case 2. μ̂1 = −1, μ̂2 = −1 and μ̂3 = − ln(2) +
i(2m + 1)π . This implies μ̂1 + μ̂2 + μ̂3 =
−2 − ln(2) + i(2m + 1)π . Hence,

h5(μ̂1 + μ̂2 + μ̂3)

= [−2 − ln(2) + i(2m + 1)π + 1][
2 + e2+ln(2)−i(2m+1)π

]

= [−1 − ln(2) + i(2m + 1)π ]
[
2 − e2+ln(2)

]

= [−1 − ln(2) + i(2m + 1)π ]
[
2 − 2e2

]
�= 0.

Case 3. μ̂1 = −1, μ̂2 = − ln(2) + i(2 l + 1)π and
μ̂3 = − ln(2) + i(2m + 1)π . Hence,

h5(μ̂1 + μ̂2 + μ̂3)

= [−1 − 2 ln(2) + i2(l + m + 1)π + 1][
2 + e1+2 ln(2)−i2(l+m+1)π

]

= [−2 ln(2) + i2(l+m+1)π ]
[
2−e1+2 ln(2)

]
= [−2 ln(2) + i2(l + m + 1)π ] [2 − 4e]

�= 0.

Case 4. μ̂1 = − ln(2) + i(2k + 1)π, μ̂2 = − ln(2) +
i(2 l+1)π and μ̂3 = − ln(2)+i(2m+1).Note
that each characteristic root here is satisfying
e−μ̂ = −2. Hence

h5(μ̂1 + μ̂2 + μ̂3)

= [−3 ln(2) + i(2(k + l + m) + 3)π + 1]

[2 + (−2)(−2)(−2)]

= −6 [1 − 3 ln(2) + i(2(k + l + m) + 3)π ]

�= 0.

So, in all cases in (163) the sum of three characteristic
roots can not be a characteristic root. Hence, the corre-
sponding condition to remove resonant terms in (163)
is:

−2β ′
μ̂
(T1) + μ̂e−μ̂ Δε

ε
βμ̂(T1) − e−μ̂β ′

μ̂
(T1)

+e−μ̂ Δε

ε
βμ̂(T1) = 0, (164)

and the corresponding equation for X1(T0, T1)becomes

2
∂ X1

∂T0
+ E1

∂ X1

∂T0
+ 2X1 + E1X1 = X3

0. (165)

Equation (164) canbe reduced (as in the previous exam-
ples) to: β ′

μ̂
(T1) = 0 for T1 > 0. By using the initial

condition (159) it also follows for T1 ∈ [−ε, 0] that
βμ̂(T1) = N (μ̂)

h′
5(μ̂)

, (166)

with N (s) = 2φ(0) + φ(−1) − (s + 1)e−s
∫ 0
−1 φ(T0)

e−sT0 dT0. Since β ′
μ̂
(T1) = 0 for T1 > 0 it then follows

that (166) also holds for T1 > 0, and so

X0(T0, T1) = N (−1)

h′
5(−1)

e−T0 +
∑

μ̂∈χ(h5)
μ̂�=−1

N (μ̂)

h′
5(μ̂)

eμ̂T0 .

(167)

Again it follows from Sect. 4 that x(t) = X0(T0, T1)+
O(ε) for t = O(ε−1). The following example looks
similar to this Example 7, but it will turn out that the
cubic nonlinearity gives rise to complicated, resonant
terms.

5.4 A second order DDE with a weak cubic
nonlinearity

Example 8 Consider the following initial value prob-
lem for x = x(t):

2ẍ(t) + ẍ(t − 1) + 2x(t) + x(t − 1) = εx3(t),(168)

x(t) = φ(t), for all t ∈ [−1, 0], (169)
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where φ(t) is a smooth function, and where ε is a small
parameter with 0 < ε � 1.

By substituting the expansion (25) for x(t) into (168),
and by collecting terms of order 1, and of order ε, we
obtain the following O(1)-, and O(ε)- problems:

O(1), 2
∂2X0

∂T 2
0

+ E1
∂2X0

∂T 2
0

+ 2X0 + E1X0 = 0,

X0(T0, T1) = φ(T0), T0 ∈ [−1, 0], T1 = εT0, (170)

O(ε), 2
∂2X1

∂T 2
0

+ E1
∂2X1

∂T 2
0

+ 2X1 + E1X1

= −4
∂2X0

∂T1∂T0
− 2E1

∂2X0

∂T1∂T0
+ E1

Δε

ε

∂2X0

∂T 2
0

+ E1
Δε

ε
X0 + X3

0,

X1(T0, T1) = 0, for T0 ∈ [−1, 0], and T1 = εT0,

(171)

respectively. The characteristic equation belonging to
the DDE in (170) is given by

h6(μ) ≡ 2μ2 + μ2e−μ + 2 + e−μ

= (μ2 + 1)(e−μ + 2), (172)

and its roots are given by

μ̂ = ±i, or μ̂ = − ln (2) + i(2n + 1)π,∀n ∈ Z.

(173)

Since h′
6(μ) �= 0 for all μ ∈ χ(h6), we can con-

clude that all characteristic roots have multiplicity one.
Therefore, the solution of theO(1)- problem (170) can
be written as

X0(T0, T1) =
∑

μ̂∈χ(h6)

βμ̂(T1)e
μ̂T0 , (174)

where for T1 ∈ [−ε, 0], βμ̂(T1) = N (μ̂)

h′
6(μ̂)

= Φμ̂ with

N (s) = 2 sφ(0) + 2φ̇(0) + sφ(−1) + φ̇(−1) − (s2 +
1)

∫ 0
−1 φ(T0)e−s(T0+1)dT0. For T1 > 0, βμ̂(T1) is still

undetermined and can be used to avoid resonant terms
in the right-hand side of the DDE in (171). The right-
hand side is given by∑

μ̂∈χ(h6)

[
−4μ̂β ′

μ̂
(T1) − 2μ̂β ′

μ̂
(T1)e

−μ̂ + μ̂2e−μ̂ Δε

ε

βμ̂(T1) + e−μ̂ Δε

ε
βμ̂(T1)

]
eμ̂T0

+
∑

μ1∈χ(h6)

∑
μ2∈χ(h6)

∑
μ3∈χ(h6)

βμ1

(T1)βμ2(T1)βμ3(T1)e
(μ1+μ2+μ3)T0 , (175)

and can be simplified (similarly as has been done in the
previous examples) to:

∑
μ̂∈χ(h6)

−h′
6(μ̂)β ′

μ̂
(T1)e

μ̂T0 +
∑

μ1∈χ(h6)

∑
μ2∈χ(h6)∑

μ3∈χ(h6)

βμ1(T1)βμ2(T1)βμ3(T1)e
(μ1+μ2+μ3)T0 .

(176)

From (176) it is obvious that the cubic nonlinearity
in (168) can lead to resonant terms in the right-hand
side of (172) when a sum of three characteristic roots
μ1, μ2 and μ3 is again a characteristic root, that is,
when h6(μ1 + μ2 + μ3) = 0, or equivalently, when
a sum of three characteristic roots is equal to i , or −i ,
or − ln(2) + i(2n + 1)π . So, we have to consider the
following three cases.

Case 1. μ1 + μ2 + μ3 = i .
This case only holds for (μ1, μ2, μ3) =
(i, i,−i), (μ1, μ2, μ3) = (i,−i, i), or (μ1,

μ2, μ3) = (−i, i, i). Hence, the coefficient of
eiT0 should satisfy the condition (177)

− h′
6(i)β

′
i (T1) + 3β2

i (T1)β−i (T1) = 0. (177)

Case 2. μ1 + μ2 + μ3 = −i .
This case only holds for (μ1, μ2, μ3) =
(i,−i,−i), (μ1, μ2, μ3) = (−i, i,−i), or
(μ1, μ2, μ3) = (−i,−i, i). Hence, the coef-
ficient of e−iT0 should satisfy the condition
(178)

− h′
6(−i)β ′−i (T1) + 3β2−i (T1)βi (T1) = 0. (178)

Case 3. μ1 + μ2 + μ3 = − ln(2) + i(2n + 1)π .
This case only holds for the six permutations
of (i,−i,− ln(2) + i(2n + 1)π). To simplify,
let us define μ̂n = − ln(2)+i(2n+1)π . Hence
the coefficient of eμ̂n T0 should satisfy the con-
dition

−h′
6(μ̂n)β ′

μ̂n
(T1) + 6βi (T1)β−i (T1)βμ̂n (T1) = 0.

∀n ∈ Z. (179)

So, to avoid resonant terms in the right-hand side of
(176) it follows that the functions βμ̂(T1) in (174) have
to satisfy (177), (178), and (179). The Eqs. (177) and
(178) for βi (T1) and β−i (T1) can readily be solved, and
by using these solutions the Eq. (179) for βμ̂n can be
solved. Finally, by using the initial conditions for the
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function βμ̂, one obtains

βi (T1) = Φi e
3Φi Φ−i T1/h′

6(i), (180)

β−i (T1) = Φ−i e
3Φi Φ−i T1/h′

6(−i), (181)

βμ̂n (T1) = Φμ̂n e6Φi Φ−i T1/h′
6(μ̂n), (182)

for all μ̂n ∈ χ(h6) \ {i,−i}. As in the previous exam-
ples, one simply obtains that

x(t) =
∑

μ̂∈χ(h6)

βμ̂(T1)e
μ̂T0 + O(ε), (183)

for t = O(ε−1).

6 Comparisons of analytically obtained
approximations and numerically obtained
approximations

In this section, the results obtained from the proposed
study, which has at least two purely imaginary charac-
teristic roots, are compared. The first example is Exam-
ple 8, see Eq. (168). For φ(t) = 1, the corresponding
analytical approximation is given in Eq. (183), where
the coefficients are given by (180), (181), and (182)
with

Φμ̂ = N (μ̂)

h′
6(μ̂)

, N (μ̂) = 3μ̂ − (μ̂2 + 1) · 1 − e−μ̂

μ̂
, and

h′
6(μ̂) = 4μ̂ − (μ̂ − 1)2e−μ̂, (184)

for all μ̂ ∈ χ(h6). To show how accurate the ana-
lytical approximation is, we will compare the analyt-
ical approximation with a numerical approximation
which is obtained by numerically integrating (168)–
(169) with a Runge-Kutta 45 method. The results can
be seen in Fig. 5. The first one is the approximate solu-
tion if we only consider the purely imaginary charac-
teristic roots, see (173). Next, for the proposedmethod,
we consider two purely imaginary roots and six pair of
complex conjugates (14 roots in total). Both will be
compared with the numerical approximation. As we
can see from Fig. 5, both approximate analytical solu-
tions describe the behaviour of the numerical solution
very well. Since all the real parts of μ̂n are negative
(except for the two purely imaginary roots) we obtain
that the amplitudes of the almost purely oscillatory part
of the solution will slowly increase in time (see (180),
(181), and (184)). This slow increase in amplitude can
also be clearly seen in Fig. 5. For a constant initial

Fig. 5 Plot of the approximate solutions for Example 8, where
φ(t) = 1 and ε = 0.1

value φ(t) ≡ 1, the analytical results and the numeri-
cal results agree very well. However, when φ(t) is not
constant, a simple truncation to only the first two purely
imaginary roots will give rather inaccurate results for
small times as can be seen in Fig. 6. Taking into account
the first 14 roots gives amuch better result on the whole
time interval. In Fig. 6, we took φ(t) = cos(2π t), so
that,

N (μ̂) = 3μ̂ − (μ̂2 + 1)μ̂

[
1 − e−μ̂

μ̂2 + 4π2

]
, (185)

for all μ̂ ∈ χ(h6). Hence, the graphical representation
of these results can be seen in Fig. 6. Here, we can see
that the existing method has different behaviour in the
beginning but it starts to coincide for t > 4.

Next, let us consider another example with at least
two purely imaginary roots. Here, we consider a
second-order delay Mathieu Equation, see also [16,17,
20].

Example 9 Consider the following second-orderMath-
ieu Equation.

ẍ(t) + 2π2x(t) + π2x(t − 1)

= 2ε cos(2π t)x(t), t > 0, (186)

x(t) = sin(2π t), for all t ∈ [−1, 0]. (187)

Using the perturbation procedure as described in this
paper, we obtain at the O(1)-level as characteristic
function

h7(μ) ≡ μ2 + 2π2 + π2e−μ. (188)

Once again, the roots of the characteristic function
(188) are obtained by computing the intersection points
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Fig. 6 Plot of the approximate solutions for Example 8, where φ(t) = cos(2π t) and ε = 0.1

Fig. 7 Plot of some of the roots of h7

of the real and imaginary curves as given inFig. 7.Obvi-
ously, we have two purely imaginary roots ±iπ

Suppose that μ̂ is a characteristic root for the func-
tion h7, μ̂ ∈ χ(h7). The solution of the O(1) equation
can be written as

X0(T0, T1) =
∑

μ̂∈χ(h7)

βμ̂(T1)e
μ̂T0 , (189)

where the initial conditions for βμ̂(T1) are

βμ̂(T1) = Φμ̂, for T1 ∈ [−ε, 0], (190)

with

Φμ = 1

2μ − π2e−μ

(
2π − π2e−μ

∫ 0

−1
e−μθ sin(2πθ) dθ

)
,

= 1

2μ − π2e−μ

(
2π − 2π3 · 1 − e−μ

μ2 + 4π2

)
. (191)

Todetermine the secular terms in theO(ε)-problem,we
have to study the right-hand side of theO(ε) equation.

The right-hand side is given by:

∑
μ̂∈χ(h7)

[(
−2μ̂

dβμ̂(T1)

dT1
+ π2

ε
e−μ̂Δεβμ̂(T1)

)
eμ̂T0

+2βμ̂(T1)e
μ̂T0 cos(2πT0)

]
. (192)

Since 2 cos(2πT0) = ei2πT0 + e−i2πT0 and ±iπ are
two of the characteristic roots, μ̂± i2π will contribute
to the secular terms for μ̂ = −iπ and μ̂ = iπ . Hence,
the conditions to avoid secular terms are

dβiπ (T1)

dT1
= − π

i2ε
Δεβiπ (T1) + 1

i2π
β−iπ (T1),

dβ−iπ (T1)

dT1
= π

i2ε
Δεβ−iπ (T1) + 1

−i2π
βiπ (T1).

dβμ̂(T1)

dT1
= 0, for μ̂ �= ±iπ. (193)

Solving these Eq. (193) and using the given initial con-
ditions (190), we obtain that

βiπ (T1) = c1emT1 + c2e−mT1 ,

β−iπ (T1) = −m−1

π(2i + π)

[
c1emT1 − c2e−mT1

]
,

βμ̂(T1) = Φμ̂, for μ̂ �= ±iπ. (194)

wherem =
[
π

√
4+π2

]−1
, c1= 1

2

[
Φiπ + π−2i√

4+π2 Φ−iπ

]
,

c2 = 1
2

[
Φiπ − π−2i√

4+π2 Φ−iπ

]
.

The approximation based on only the two purely
imaginary roots, the approximation based on the first 10
characteristic roots (including the twopurely imaginary
ones), see also Fig. 7 for the roots, and the numerical
approximation of the solution are given in Fig. 8. Again
it can be seen that for short times just after t = 0, the
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Fig. 8 Plot of the approximations for Example 9 with ε = 0.1

approximation based on only the two purely imaginary
roots is rather inaccurate. for larger times, all approxi-
mations coincide.

7 Conclusion and remarks

In this paper, it has been shown how the multiple
time-scales perturbation method can be applied to
differential-delay equations. Approximations of the
solutions can be constructed which are accurate on
long timescales of order ε−1. By using differential and
difference operators, it is shown how approximations
can be obtained which branch off from solutions of
differential-delay equations at the unperturbed level.
In the classical approach in the literature, only approx-
imations of solutions which branch off from solutions
of ordinary differential equations were considered. In
this classical approach, only a finite number (usually
only two) of the infinitely many roots of the character-
istic equation of the DDE are considered. Moreover, in
the classical approach, the approximations are not sat-
isfying the initial conditions which are given on a time-
interval determined by the delay. By using themultiple-
time scales perturbation method for DDEs which is
based on differential and difference operators (as pre-
sented in this paper), one can take into account the
infinitely many roots of the characteristic equation of
theDDE, and one can satisfy the initial conditionwhich
are given on the time-interval determined by the delay.
In this paper, some simple and some more complicated
examples are treated in detail to show how the method
can be applied and to indicate what kind of underlying

problems related to internal resonancesmight occur. As
far as we can conclude now, the presented method can
be applied to a large class of problems for DDEs, and
for future research, one can try to extend the presented
approach to problems for partial differential equations
with delays.
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