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Abstract

In the past few years, rapid strides have been made in the modelling of complex systems due to the
advent of machine learning (ML) technologies. In particular, the transformer neural network (TNN) has
gained a lot of attention due to its powerful “sequence-to-sequence” modelling for several tasks in science
and engineering. Predictive ML models are trained to learn the relationship between a set of input and
output data so that new input data can be mapped to their expected output values. This gives us
the ability to understand the key factors impacting a system and to make predictions about its future
behaviours. This research investigates how to use TNNs for decision making by optimising the output
of a TNN. To this end, a non-convex mixed-integer non-liner programming (MINLP) formulation for a
trained TNN is proposed. The proposed formulation facilitates solving problems with TNNs embedded
to global optimality. The effectiveness of the formulation is tested on three case studies consisting of
an optimal trajectory problem, a verification problem, and a reactor optimization case study. Results
show that optimisation over small TNNs can be achieved in under 3 minutes. However the tractability
of the formulation quickly vanishes for larger models, highlighting the need for further research to refine
the proposed formulation.
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Nomenclature

Abbreviations
Acronym Definition
FBBT Feasibility-based bound tightening
FFN Feed-forward neural network
GNN Graph neural network
GRU Gated recurrent units
LSTM Long-short-term memory
MHA Multi-head attention
MILP Mixed integer linear program
MINLP Mixed integer non-linear programming
ML Machine learning
NLP Natural language processing
NN Neural network
ReLU Rectified linear unit
RNN Recurrent neural network
SiLU Sigmoid linear unit
TNN Transformer neural network

Symbols
Sets

Symbol Definition
D Set of indices for the embedding dimensions
F Set of indices for the dimension of FFN
H Set of indices for the number of attention heads in MHA
I Set of indices for the sequence length dimension of the input
Idec Set of indices for the sequence length dimension of the decoder input
J Set of indices for the feature dimension of the input
K Set of indices for the dimension of each attention head in MHA

Parameters

Symbol Definition

bed Learned bias parameter for embedding indexed over set D
bh Scalar bias for a single hidden node in FFN
bH
f Learned bias parameter for the first FFN layer indexed over set F

bKα

h,k Learned bias parameter for key variable indexed over sets H,K
boαd Learned bias parameter for MHA output indexed over set D
bQα

h,k Learned bias parameter for query variable indexed over sets H,K
bVα

h,k Learned bias parameter for value variable indexed over sets H,K
d Feature dimension of the embedded input
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iv

Symbol Definition

dk Feature dimension of MHA heads
I Sequence length
M− Lower bound parameter of the first FFN layer output
M+ Upper bound parameter of the first FFN layer output
MC′ Big-M value for max compatibility calculation
We

j,d Learned weight parameter for embedding indexed over sets J ,D
Wh Weight vector for a single hidden node in FFN
WH

d,f Learned weight parameter for the hidden layer of FFN indexed over D,F
WKα

d,h,k Learned weight parameter for key variable indexed over sets D,H,K
Wo

f,d Learned weight parameter for the output layer of FFN indexed over F ,D
Woα

d,h,k Learned weight parameter for MHA output indexed over sets D,H,K
WQα

d,h,k Learned weight parameter for query variable indexed over sets D,H,K
WVα

d,h,k Learned weight parameter for value variable indexed over sets D,H,K
βℓd Layer normalization offset parameter indexed over D
γℓd Layer normalization scaling parameter indexed over D
ϵℓ A parameter added to the variance in layer normalization to prevent division by 0
πi,d Positional embedding parameter indexed over sets I,J
Ψ Number of elements in the power series approximation of the exponential function

Variables

Symbol Definition

Aα
h,i,k Attention score variable in multi-head attention layer indexed over sets H, I,K

C′max
αh,i

Maximum compatibility variable indexed over sets H, I
Cα
h,i,i Compatibility variable of multi-head attention layer indexed over sets H, I, I

Eα
h,i,i Exp(Cα

h,i,i) in multi-head attention layer indexed over sets H, I, I
Kα
h,i,k Key variable of multi-head attention layer indexed over sets H, I,K

Qα
h,i,k Query variable of multi-head attention layer indexed over sets H, I,K

Sαh,i Sum of Exp(Cα
h,i,i) in multi-head attention layer indexed over sets H, I

V α
h,i,k Value variable of multi-head attention layer indexed over sets H, I,K

xi,j Input variable indexed over sets I,J
xH
i,d Output variable of FFN layer indexed over sets I,D

x+
i,d Output variable of residual layer indexed over I,D

xαi,d Output variable of multi-head attention layer indexed over I,D
xei,d Embedded input variable indexed over sets I,D
xℓi,d Output variable of layer normalization layer indexed over sets I,D
xπi,d Positionally encoded input variable indexed over I,D
xdec
i,d Input to decoder indexed over sets I,D

xenc
i,d Input to encoder indexed over sets I,D

xpool
d Output variable of pooling layer indexed over sets D

zH
i,f Binary variable used for ReLU activation formulation of FFN indexed over sets I,F

zC
′

h,i,i′ Binary variable for max compatibility calculation indexed over sets H, I, I



v

Symbol Definition
αn→m A scalar value representing the attention or importance of element m in the sequence to

element n
δℓi Variance variable of layer normalization input indexed over sets I
Θℓ
i,d Standard deviation of layer normalization input indexed over sets I,D

ξℓi Sum of layer normalization input variable indexed over sets I
σℓi Standard deviation variable in layer normalization input indexed over sets I
υℓi,d Mean centered value of layer normalization input variable indexed over sets I,D
Υℓ
i,d Squared mean centered value of layer normalization input indexed over sets I,D

ωαh,i,i Attention weight variable in multi-head attention layer indexed over sets H, I, I
ΩH
i,f Output variable of ReLU activation layer of FFN indexed over sets I,F
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1
Introduction

Optimisation problems are all around us: we encounter them every time we try to maximize or minimize
an outcome. This could be minimizing travel time by finding the shortest path between a set of
locations or planning a diet so that the consumption of certain minerals is maximized. Optimisation
problems become more difficult to solve as the size of the problem increases. Over the years, many have
investigated how to efficiently solve these problems to optimal (or near optimal) solutions. This work
has produced two overarching categories of optimisation techniques: (meta-)heuristic and exact [43].
Heuristic based methods, generally provide quick solutions to a problem with the caveat that there is
no proof of optimality. On the other hand, exact methods often require more computational effort but
can prove a solution’s global optimality [43].

Exact optimisation approaches formulate optimisation problems using a mathematical model known as
a mathematical program. Here, the goal is described as a function of variables in the problem (objective
function), and the constraints on the problem are described by a set of constraints, often equality and
in-equality equations [47].

Mathematical programs require that every part of the problem being modelled has a clear mathematical
representation; which is not always the case. This can limit mathematical programming to applications
where the underlying mechanisms of the system are explicitly understood.

Looking to the field of machine learning (ML), this limitation has already been surpassed, whereby we
can model complex systems using data-driven approaches. The high levels of accuracy achieved by these
models has lead to them becoming one of the most common modelling techniques. A lot of attention
has been garnered by neural networks (NNs) for their ability to create accurate yet simplified models of
complex or currently indescribable systems [1]. Consequently, NNs have been widely applied in fields
of science and engineering [52][12].

These advancements in our modelling capabilities open the door to optimizing systems that could not
previously be modelled as part of a mathematical program. This in turn allows for informed decision
making for such systems. Current research has investigated how to create efficient mathematical formu-
lations of NNs, that can be solved in a reasonable amount of time. Formulations have been proposed for
the feed-forward NN, recurrent NN, convolutional NN and graph NN. These NN formulations have been
applied to solve a variety of optimisation problems. For example, the optimisation of oil production
systems with multi-phase flows [16], molecular design [39] and NN verification [14][56].

In recent years, a new NN model known as the transformer neural network (TNN) was developed by
Vaswani et al. [57]. Although the model was originally proposed for natural language processing, it
has been shown to have outstanding predictive abilities for other tasks such as time series modelling
and computer vision [35]. Their success in other predictive tasks has been attributed to the TNN’s
ability to capture complex dependencies in the input data [59]. Moreover, the model’s parallelized
architecture, has resulted in faster training times than other similar NNs like long-short-term memory
(LSTM) and recurrent NNs (RNNs) [26]. Due to the TNN’s high performance and wide applicability,
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this NN has quickly gained a lot of research attention. Lin et al. [35] provide an extensive survey of
various transformer architectures and their applications.

Given the wide variety of applications of TNNs and their popularity as a modelling technique, this work
aims to create an efficient formulation of a trained TNN for mathematical programming. With this
goal in mind, the following research questions were devised:

1. How can a trained TNN be formulated as part of a mathematical program?
2. What is the solving performance of the formulated trained TNN?
3. How can solving be improved for efficient global optimisation?

The remainder of this thesis is structured as follows. First, background information about mathematical
programming, TNNs and related works is presented in Chapter 2. Next, a MINLP formulation for a
trained TNN is proposed in Chapter 3. The results of computational experiments are discussed in
Chapter 4. Finally, the main takeaways of this thesis and recommendations for future research are
described in Chapter 5.



2
Background

This chapter provides the necessary theoretical background for different types of neural networks (NN)
and serves as a basis for the formulated transformer neural network (TNN) used in this thesis.

2.1. Neural Networks
Neural networks take inspiration from the biological neural systems. These models learn the relationship
between given input and output data during a process called training. During training the model is
essentially figuring out how to transform and combine the input values to arrive at the desired output
value. These models rely on a large number of connected neurons and a large collection of data to discern
complicated patterns and relationships [53]. Typically, their ability to capture difficult relationships is
improved by using large data for training and by increasing the size of the NN [53].

These data-driven models have become a popular topic in research due to their ability to represent
high-dimensional non-linear systems with precision. Within engineering fields, there has been a rapid
uptake of NNs as a way to simplify the modelling of complex physical phenomena, and as a means
to gain insights into behaviours that cannot be modelled by traditional approaches [37]. NNs provide
new avenues for approximating the behaviour of such systems, which in turn has stimulated research
into leveraging these less computationally intensive models. This research includes predicting future
behaviours of a system as well as investigating how to configure systems to achieve desired outcomes.

2.1.1. Feed-Forward Neural Networks
The feed-forward neural network (FFN) has the simplest NN architecture and is the building block
from which other NNs are created. FFNs are made up of units called neurons (or nodes), which receive,
process and transmit data. These neurons are organised by layers, such that the neurons of a given
layer transmit their outputs to a subsequent layer. The layers can be categorised into three groups: the
input layer, the hidden layers, and the output layer. The input layer feeds the input data into the FFN.
The hidden layers model the relationship between the input and output data. Lastly, the output layer
gives the prediction of the FFN depending on the task at hand. An example of a FNN with 1 hidden
layer is shown in Figure 2.1.

Figure 2.1: Architecture of feed-forward Neural Network

3



2.1. Neural Networks 4

The implementation of the FFN relies on two main components: linear transforms, which adjust the
value input to each neuron, and activation functions in the hidden layers, which allow for non-linear
relationships to be modelled. In Figure 2.1, every arrow can be seen as a scaling operation to adjust
the input to the next node, while each node can serve as an indication of a bias operation. These linear
transforms are implemented using weight and bias parameters learnt during training.

Aside from the weight and bias operations, nodes in the hidden layers apply an activation function as
shown in Figure 2.2. There are many activation functions that can be chosen when designing a FFN.
For example, one of the most popular is the rectified linear unit (ReLU) which caps negative values
to zero while allowing positive values to remain unchanged. Another popular activation function is
the sigmoid linear unit (SiLU) or swish function which provides a smooth approximation of the ReLU
function.

Figure 2.2: Computation at a hidden node for an arbitrary activation function σ̈

For an arbitrary activation function, σ̈, the computation at each hidden node can be written as,

y = σ̈(awh + bh) (2.1)

where a is a vector of inputs, [a1, a2, a3], wh is a vector of associated weights [wh
1 , w

h
2 , w

h
3 ], and bh is a

scalar bias term. At each hidden node, the dot product of the input vector and the weight vector is
computed, and the bias is added to produce the node’s input to the activation function. This process
transforms the input vector a into an output y based on the activation function σ̈.

To describe an entire layer of hidden nodes, this operation is extended by combining the weight vectors
of each node into a weight matrix, and the biases into a bias vector. This allows the computation for
the entire layer to be performed efficiently as a single matrix operation as shown in Equation 2.2, where
WH and bH are the weight matrix and bias vector for the hidden layer, similarly Wo and bo are the
weight and bias for the output layer.

FFN(a) = Wo(σ̈(aWH + bH)) + bo (2.2)

2.1.2. Transformer Neural Networks
Transformers are currently one of the most popular NNs. They were originally applied to Natural Lan-
guage Processing (NLP) tasks such as translation, text summarising and question answering, bringing
about one of the most well-known AI applications Chat-GPT [41]. However, they are now being used
for a plethora of tasks. For example, recent works show its application for time series forecasting [3][17],
molecular property prediction [44][49], and computer vision for both images and videos [6][4][51]. This
expansion of the TNNs application has come about from viewing it as a model that converts an input
data sequence to an output data sequence (sequence-to-sequence model). Thus, the TNN can be applied
to any task that uses sequential data.

The first transformer model, often referred to as the “Vanilla Transformer”, was proposed in 2017 by
Vaswani et al. [57]. It introduced the novel construction of multi-head attention components which
extract information about how each element in a sequence interacts with the other elements. The
transformer combines information about element similarity, proximity, and dependencies to create a
representation of each element that is informed by its context. This contextual understanding can for
example allow the transformer to distinguish between when the word “Apple” refers to the fruit and
when it refers to the company.

The multi-head attention unit set the transformer apart from other sequence-to-sequence models due
to its ability to capture long-range dependencies and highly parallelized architecture; which leads to
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faster training times [26]. Moreover, all input tokens can be simultaneously fed into transformer models
instead of processing one token at a time like recurrent neural networks (RNNs), long-short-term memory
(LSTM) and gated recurrent Units (GRUs) [3].

Another notable advantage of transformer models is their minimal reliance on assumptions about the
structure of input data [35]. In contrast, convolutional neural networks (CNNs) are inherently biased
toward translation invariance and assume that local patterns are spatially repeated. Similarly, RNNs
are constrained by their reliance on locality, as they assume that the current state depends primarily on
recent past states. These inductive biases make CNNs highly efficient for image processing and RNNs
well-suited for time-series tasks. However, they also limit these architectures to specific applications, as
they struggle to represent and capture global relationships in data. Transformers, on the other hand,
offer a more universal and flexible framework, allowing them to become a powerful tool in a wide range
of applications. The only caveat is that the lack of structural information makes the transformers prone
to overfitting on small datasets [35].

Implementation
This section describes the Vanilla Transformer model in the context of a translation task. Although
numerous transformer architectures exist, they all share the same foundational components. At a high
level, a transformer neural network comprises input embedding layers, an encoder block, a decoder block,
and an output prediction head, as illustrated on the left side of Figure 2.3. Typically, the encoder is
responsible for building a contextual understanding of the input data, while the decoder handles the
predictive task.

Examining these two components in greater detail reveals several key modules: multi-head attention,
addition and normalization, and feed-forward neural network layers (depicted on the right side of
Figure 2.3). Notably, Figure 2.3 highlights the structural similarity between the encoder and decoder.
The primary distinction is the decoder’s inclusion of an additional masked multi-head attention layer,
as well as corresponding addition and normalization layers. These additional layers are essential for
enabling the transformer to autoregressively generate a sequence of output predictions.

The functionality and roles of these modules within the transformer architecture are outlined below.

Figure 2.3: Vaswani et al. [57] transformer showing an overview of main components (left) and sub-components (right)
with L encoder/decoder layers. Image modified from [35]
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Token Embedding
In the first step of the training task, the input sequence is tokenized and embedded into a numeric
vector. The tokenization process breaks down the input sequence into smaller chunks called tokens each
with an associated value [58]. There are many Python libraries available to segment text at varying
levels of granularity. The most simple of them is word-level tokenization which divides a sentence such
that there is one partition (or token) for each word. In this case, each token (or word) is assigned a
unique token ID. This segmentation of the input text is important for creating structured data with
clearly defined numeric elements. A tokenized sequence (x) is thus given by Equation 2.3 where N is
the number of tokens.

x = [x0, ..., xN ]T (2.3)

After the sequence is tokenized, each token transformed into a numeric vector with d dimensions. The
role of these dimensions is to represent the tokens based on their meaning in relation to the other tokens
[3]. Each embedding dimension can be interpreted as capturing a specific attribute or feature of the
data. This allows the model to understand the similarity of a token in relation to the other tokens in
the vocabulary. Taking the example from [34], when the embeddings of the words woman, man, king,
and queen are plotted in a 2-dimensional plane, we can visualize their similarities in terms of royal
status and femininity. For instance, we see queen-king are more similar (closer) than king-woman. The
embeddings can capture similarities to the degree that if a calculation is performed to find the value
of king - man + woman, the resulting value is approximately equal to the representation of the word
queen.

Figure 2.4: A word embedding example retrieved from [34]

Mathematically, the embedding step performs a linear transformation. It multiplies the input and
output tokens by a learnt weight matrix of size (1 × I) [57]. The result is then scaled by a factor

√
d.

The choice of this scaling factor is not explicitly motivated in [57] however, it is expected that this
value is chosen to ensure that the magnitude of the embedded input and the positional encoding are
of comparable size. In this architecture, the positional encoding is implemented using sine and cosine
functions which are in the range [-1,1]. The value of the learnt weight (W e) is initialised as N (0, 1√

d
).

So, without scaling, the positional encoding values would outweigh the embedding values and as a result,
the model would lack descriptive information about the input. Therefore, this scaling factor is only
necessary due to how the Vanilla Transformer has been configured.

xe =
√
d (x ·W e) (2.4)

For numeric data, there is no tokenisation but the embedding layer is often kept, to transform the input
data using learnt weights and biases. Much like the NLP case, this transformation helps the model to
represent the data in a way that can better inform predictions.

Positional Encoding
As transformer models process all elements of the input sequence concurrently, a Positional Encoding
(PE) component is needed to feed information about the order of elements in the sequence. Vaswani
et al. [57] use a sinusoidal encoding method that gives a unique vector identifier for each position in
the sequence. Positional encodings, π, for each sequence position, P ∈ {0, . . . , N}, and embedding
dimension, i ∈ {0, . . . , d− 1}, are given by:

πP, 2i = sin(P/100002i/d−1) (2.5a)
πP, 2i+1 = cos(P/100002i/d−1) (2.5b)
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Figure 2.5: Illustration of positional encoding for embedding dimensions and sequence position. Image retrieved from
Haque, Ghani, and Saeed [23].

Figure 2.5 illustrates how these positional encodings are created. For each embedding dimension, i, a
sinusoid is constructed with a different angular frequency (1/100002i/d−1). This allows a wide range of
unique values to be generated even though cyclic functions are applied. The even embedding dimensions
are encoded using the sine functions while cosine functions are used for the odd. The trigonometric prop-
erties of these functions implicitly store information about the relative positions of elements. Consider
an element at position P + q. The positional encoding of this value, πP+q, can be written as,

πP+q, 2i = sin(P ′) cos(q′) + cos(P ′) sin(q′) (2.6)
πP+q, 2i+1 = cos(P ′) cos(q′)− sin(P ′) sin(q′) (2.7)

where P ′ = P/100002i/d−1 and q′ = q/100002i/d−1. Since q is a fixed offset, the positional encoding of
P + q is a linear transform of πP . As a result, every element’s encoding is a phase-shifted version of
the previous position. This gives information about the ordering of the sequence to subsequent layers.
The main benefit of this encoding approach is that it reduces training time as less time is needed to
decipher the relative positions of elements. Once calculated, these positional encodings are added to
the embedded input (Equation 2.8).

xπ = xe + π (2.8)

An example of the patterns created by sinusoidal encodings is depicted in Figure 2.6. At sequence
position 0, an oscillating pattern between dark green and yellow can be seen. This pattern occurs because
the encoding of the embedding dimensions will lead to sin(0) = 0 for even dimensions and cos(0) = 1
for odd dimensions. As the position increases (columns), more detailed patterns are developed, due to
the different angular frequencies used for each embedding dimension (rows). The colours of the rows
gradually change at slower rates. This indicates how the wavelength increases with higher embedding
dimensions as shown earlier in Figure 2.5. As a result, the encodings show similar patterns for nearby
positions (columns) and similarity decreases with distance in the sequence.

Figure 2.6: An example of token position in sequence vs embedding dimension with positional encoding values (π)
shown via the heat map. Image retrieved from [28].
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Other positional encodings are also seen in the literature. For example, computer vision applications
tend to use learnable position encoding vectors [6][51]. Alexey Dosovitskiy et al. [4] and Adi Haviv
et al. [2] also consider TNNs without positional information. Experiments by Alexey Dosovitskiy et
al. (2021) show that there is only slight performance degradation for their computer vision example.
While experiments by Adi Haviv et al. (2022) on an NLP use case report that excluding the positional
encoding layer can lead to poor performance depending on the TNN architecture. This shows that the
need for positional encodings is application and architecture dependent.

Encoder
The encoder’s primary role is to build a contextual understanding between the tokens in the input
sequence. These contextualised representations are typically used later by the decoder to make pre-
dictions. The encoder consists of multiple layers of multi-head attention, add and normalisation, and
FFN components. The attention module forms the core of the encoder, learning dependencies and
relationships which are further refined in the subsequent normalisation and FFN layers. Attention
is computed using three projections of the input sequences called the Query, Key and Value. These
matrices determine the pair-wise importance of each element in the sequence to all others, and inform
the model of how much attention a given element should pay to the other elements. This allows the
model to focus on the most significant relationships for every element in the sequence, which is useful
for modelling complex data.

Each encoder layer refines the output of the previous layer, progressively developing more nuanced
representations of the input sequence. In the Vanilla Transformer, the output of the final encoder layer
is used as input to the decoder. However, some popular transformer architectures, like BERT and
RoBERTa, use the encoder’s output to directly make predictions; bypassing the need for a decoder
[35]. These architectures, known as encoder-only models, are generally less computationally intensive
and require fewer resources to train due to their smaller size. However, encoder-only models tend to
perform worse than their encoder-decoder counterparts.

Decoder
The role of the decoder is to predict the output sequence based on a given input sequence. The decoder
does this by predicting a single output token at a time, and then appending this output token to the
output sequence. The new output sequence is fed back into the decoder each time to predict the next
token. The masked multi-head attention block facilitates this by only permitting each token in the
output sequence to attend to positions up to the current position. The subsequent attention step (cross-
attention) between itself and the encoder enables the decoder to focus on relevant parts of the input
sequence. In this case, the multi-head attention unit takes input values from both the encoder and
decoder. More precisely, the Keys and Values are from the final encoder layer, and the Query values
are from the decoder.

However, in some cases, decoder-only architectures are preferred. While decoder-only models capture
less contextual information than encoder-decoder models, they achieve sufficient performance while re-
ducing the size of the model. Decoder only are typically used for sequence generation [35] (e.g. GPT-3,
ChatGPT, GoogleLaMDA).

Multi-Head Attention
The concept of multi-head attention (MHA) is an expansion of self-attention [57]. Self-attention refers
to the process of determining relationships between each pair of elements in a given sequence. This
allows for the machine learning models to represent elements with regard to their value as well as
their interactions with other elements, thereby extracting the dependencies for a particular context.
Multi-head attention essentially repeats the self-attention process in order to capture information from
different representations of the relationships between elements in a sequence [57]. Each attention head
can be seen as projecting the embeddings to a lower dimension in order to focus on a particular attribute
of the data. Taking the example of a transformer comparing the words king, queen, man and woman,
one attention head could focus on relationships based on gender and the other based on royal status.

The multi-head attention unit first calculates the Query (Q), Key (K), and Value (V ) matrices. Q, K,
and V are computed using learnt weights for each head, h ∈ {1, . . . , H}; where H is a hyperparameter
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of the transformer model which is chosen as a factor of the embedding dimension, d (Equation 2.9) [54].
The learnt weights have a size (d × dk) where dk is the ratio of the embedding dimension (d) and the
number of attention heads (H) and the biases have a size (dk).

Qh(xπ) = xπ ·WQ
h + bQh (2.9a)

Kh(xπ) = xπ ·WK
h + bKh (2.9b)

V h(xπ) = xπ ·W V
h + bhV (2.9c)

Next a single attention weight (α) is calculated for each pair of tokens xπn and xπm where n,m ∈
{1, . . . , N}. This calculation is shown in Equation 2.10.

αhn→m = softmax
(
Qh(xπn) ·KhT

(xπm))√
dk

)
(2.10a)

softmax(Xi,j) =
eXi,j∑N
p=1 e

Xi,p

(2.10b)

Attention weights are used to describe the relative importance of a given token’s relationship with
another token. This is computed using the compatibility, or multiplication between the Q and K. The
compatibility compares two sequence elements, xπn and xπm. While the softmax function determines
the relative importance. The softmax function creates a probability distribution from the compatibility
scores of each token (xπn) with all other tokens (Figure 2.7). This essentially ranks the relationships
between elements since the sum of all compatibility scores related to an element, xπn

, will be 1.

Figure 2.7: Softmax function for increasingly large input values

Note, that before the softmax function is applied, the compatibility is scaled by a factor 1√
dk

. Vaswani
et al. explain that without scaling, as the value of dk grows, so will the magnitude of the dot products.
Consequently, the softmax function is pushed into regions with small gradients. As shown in Figure 2.7,
as the input to the softmax function increases, the function saturates more quickly, which severely
degrades learning. The scaling by 1√

dk
thus serves to prevent these unwanted effects.

The weighted sum of the attention weights and Value matrix are used to compute a new representation
of the input tokens at each head, xhn with dimensions (1× dk) as shown in Equation 2.11.

xhn =

N∑
m=1

αhn→m · V h(xπm)) ∀h ∈ {1, . . . , H} (2.11a)

xn = [x1
n, ...,x

H
n ] (2.11b)

The vector representations from each attention head are then concatenated and combined to produce
the multi-head attention output, xα with size (N × d) (Equation 2.12) [54].

xαn =

H∑
h=1

W T
h · xn (2.12a)

xα = [xα1 , ...,x
α
N ]T (2.12b)
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The multi-head attention block appears three times in the Vanilla TNN, once in the encoder and twice
in the decoder. In the decoder the MHA layers are adapted slightly but work in almost the same way.
The decoder produces the output sequence auto-regressively, taking the current output sequence as its
input. Each token in the output sequence depends on the previous tokens in the output sequence (via
masked multi-head attention) and the input sequence (via multi-head attention between the encoder
and decoder). The masked multi-head attention layer alters the compatibility calculation to ensure that
each predicted sequence element only depends on the previous sequence values. This is done by setting
the compatibility to − inf for all subsequent positions (i.e. where m > n in Equation 2.10), giving an
attention weight of zero after the softmax function has been applied. As a result, future sequence values
will have no influence on the calculation of previous values.

A different alteration appears in the second MHA block in the decoder. This block computes the cross
attention between the encoder and decoder, such that values from both the encoder and decoder are
used in the computations. Cross-attention is implemented by using the output of the previous decoder
component to compute the Query matrix and the encoder output to compute the Key and Value.

Add & Norm
The Add & Norm component enhances training robustness and is especially important for large networks.
It incorporates a residual layer which adds the input from the previous component (xres) to the current
input of the Add & Norm component (x) (Equation 2.13). A residual layer refers to this addition of a
previous output back into the network at a later stage. It allows the model to preserve information from
previous layers while learning new representations. He et al. [25] note that this is necessary because it
is difficult for deep networks to maintain identity mappings when they consist of a stack of non-linear
layers.

x+ = x+ xres (2.13)

Then layer normalization is performed to re-scale the data’s mean and variance. This calculation is
shown in Equation 2.14 where γ, β are learnable affine transforms and ϵ is a sufficiently small number
used to avoid division by zero. The mean and standard deviation are calculated across the set of
dimensions (D = {0, . . . , d− 1}) for each sequence position, n.

xℓni = LayerNorm
(
x+
ni, γ, β

)
∀i ∈ D (2.14a)

= γ
x+
ni − mean(x+

n )

std(x+
n ) + ϵ

+ β (2.14b)

mean(x+
n ) =

1

|D|
∑
i∈D

x+
ni (2.14c)

std(x+
n ) =

√∑
i∈D(x

+
ni − mean(x+

n ))2

|D|
(2.14d)

This re-scaling is important to stabilize the gradient descent during the training of NNs. When a NN
is trained, the loss gradients are back-propagated through the network to update the learnt parameters.
However, if the input distribution changes drastically for the next input sample, then learning is slowed
down and may even stop in extreme cases.

Position-wise FFN
FFNs, as described in Section 2.1.1, are applied in both the encoder and decoder. In the work of Vaswani
et al. [57], a FFN with 1 hidden layer and a ReLU activation function is applied to the representation
of the input tokens (x). This is shown in Equation 2.15, where W1 and b1 denote the learnt weights
and biases for the hidden layer and W2 and b2 for the FFN output layer.

FFN(x) = max(0,x ·WH + bH)Wo + bo (2.15)

The purpose of the FFN in the transformer architecture is not explicitly stated by its creators, however,
Sonkar and Baraniuk [50] perform experiments to investigate its effect. These experiments show that
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the FFN is used to spread out the token embeddings from the multi-head attention component. With-
out the FFN the token embeddings eventually converge to one single embedding and lose information
about individual tokens.

Output Prediction Head
Additional layers may also be added to the transformer output to create what is known as an output
prediction head, which serves as the final layer in the transformer architecture. This prediction head
is especially crucial in natural language processing tasks, where its role is to convert numerical token
representations back into words. For such tasks, the transformer predicts the next token by estimating
the probability of each possible token in the vocabulary being the next one. The token with the highest
probability is then selected as the predicted next token.

Vaswani et al. [57] implement this process using a combination of a linear layer and the softmax function.
The linear layer projects the transformer’s output into a space with dimensions equal to the vocabulary
size, using the same weight matrix as the embedding layer. This weight sharing reduces the number of
trainable parameters, improving efficiency. Subsequently, the softmax function converts the linear layer’s
output into a probability distribution over all tokens in the vocabulary, ensuring that the probabilities
sum to 1. This probabilistic output (y) enables the model to select the most likely next token using the
decoder output (x) as shown in Equation 2.16

y = softmax (x ·Ws) (2.16)

In non-NLP applications, output prediction heads may also be included. These prediction heads are
frequently made up of pooling and linear layers. Pooling layers compress the transformer’s output into
a fixed-size representation by applying operations such as average pooling (computing the mean across
tokens) or max pooling (selecting the maximum value across tokens). This compression step reduces the
sequence dimension, enabling the model to produce a fixed-size output regardless of the input sequence
length. The compressed representation can then be passed through a linear projection layer, which
maps it to the required output dimensions for the specific predictive task.

2.1.3. TNN Illustrative Example
In the previous subsection, the key components of the transformer architecture are introduced, using
the Vanilla Transformer as a reference to show how each module is implemented and its role in the
model. This provides a foundational understanding of the transformer’s structure and functionality
which will be expanded upon in this subsection. Here an illustrative example of a TNN is presented
that shifts the focus from NLP to learning from numeric data sequences. The example considers an
image classification use case, where a TNN is trained to determine the number displayed in a figure
(see Figure 2.8).

Figure 2.8: Transformer for image classification of hand written digits

The first step in training the TNN would be to prepare the data by formatting it as a sequence.
For images, this involves converting each image in the training dataset into a matrix. The matrix is
constructed such that each cell corresponds to a pixel in the image and the value of the cell represents
the colour at the given pixel. For gray-scale images, where values range from 0 (white) to 1 (black), this
transformation creates a structured representation, as shown in Figure 2.9. Once the matrix is created,
it can be flattened to create a single vector through row concatenation to create a data sequence which
can be fed directly into the transformer. In this example, an encoder-only model is considered as
these are the most popular for computer vision applications [22]. The TNN architecture is defined
in Figure 2.10 where the input image refers to the sequentially transformed image. This architecture
shares similar characteristics as the Vanilla Transformer and all components work in the same manner
as described in the previous subsection.
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Figure 2.9: Conversion of grey-scale image to matrix representation. Image retrieved from [9].

Figure 2.10: Example vision transformer

Given an image with dimensions I × I, the input image, x, will have dimensions I2 × 1. To generalise
this, let the sequence length dimension, I2 be denoted by N and the feature dimension, 1, be denoted
by F . Figure 2.11 illustrates how the learnt embedding is used to transform the input data to be
represented in a new feature dimension, D.

Figure 2.11: Input embedding operation

The next layer in the transformer is the positional encoding layer. This provides a unique value that
indicates an element’s position in the sequence and its proximity to other values in the sequence. The
positional encoding is essential in this case, without it the TNN would only have information about the
values of pixels in the image but no understanding of their configuration. As discussed previously, the
positional encoding could be a learnt parameter or calculated using the sinusoidal encoding proposed by
Vaswani et al. (2017). The definition of the encoding is merely a design choice in the TNNs architecture.
From an implementation standpoint, the positional encoding is a fixed-valued matrix of size N × D
which is added to the embedded input image, xemb (Figure 2.12).

The resulting positionally encoded input values, xπ are then passed through the encoder layers. Each
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Figure 2.12: Positional encoding operations

encoder layer consists of normalisation, multi-head attention, residual, and feed-forward NN modules.
These submodules are applied sequentially and will be discussed in the order of their execution.

The first submodule, layer normalisation, re-scales and shifts values along the D dimension. These fea-
tures in the D dimension collectively represent a single pixel in the original image. Layer normalisation
ensures that the distribution of feature values remains within a fixed range. The range is determined
by fixed gain (λ) and offset (β) parameters, which are learnt during training. Another fixed parameter,
denoted by ϵ, is used to prevent division by zero. Figure 2.13 depicts the transformation performed in
the layer normalisation module. The mean and standard deviation are computed along the D dimension.
The results from these operations are then supplied to the layer normalisation calculation.

(a) Mean calculation along dimension D

(b) Standard deviation calculation along dimension D

(c) Layer normalisation of positionally encoded input (xπ). Arrows indicate that the function placed above it is being applied.

Figure 2.13: Layer normalisation operation

At this stage, the input image has been transformed through a series of preparatory steps, resulting in
a representation denoted by xℓ. The next step involves applying the multi-head attention mechanism,
which is designed to extract patterns and build a contextual understanding of the input image. The
attention mechanism creates the Query, Key and Value projections (Figure 2.14). These matrices have
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three dimensions, the first for the sequence length (N), the second for the attention heads (H) and
the last for the size of each attention head (S). Each attention head is viewed as a way to capture a
different attribute about the relationship between pixels. The head size parameter can be increased to
enable more nuanced insights to be gathered at each head.

Figure 2.14: Calculation of Query, Key and Value projections

The Query, Key and Value matrices are used to compute the importance of each pixel in the image in
relation to the other pixels. This results in a compatibility score which can be interpreted as determining
how much ”attention” a given pixel should allocate to others. This attention is what allows the TNN
to gain contextual insights and to capture long-range dependencies between elements in the flattened
image.

To compute the compatibility scores, the Query matrix is multiplied by the transpose of the Key matrix,
producing a measure of the similarity between each pair of pixels. In Figure 2.15, it can be seen more
clearly how each pair of pixels n,m ∈ N is examined in the dot product between the Query and Key
matrices for each head h ∈ H. This result is scaled by the factor |

√
S| to prevent large values from

saturating the softmax function. The softmax function is then applied to the scaled compatibility scores,
converting them into attention weights. These weights form a probability distribution, guaranteeing
that their values sum to 1 for each pixel. This probability distribution is useful because it allows the
model to consider the relative importance of the other pixels.

Figure 2.15: Attention weight calculation

Given these attention weights, the dot product between the attention weight and Value matrix elements
is found for each attention head. This step is the most crucial part of the attention mechanism. The
weighted sum of the Value matrix effectively aggregates a representation of each pixel based on the
attention distribution. The resulting context-informed pixel representations are then converted back to
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their original embedded dimensions, N ×D. This procedure is carried out in two steps. The first step
projects the pixel representations to the embedding dimension, D, using a learnt weight matrix (WO).
The second step aggregates the 3-dimensional matrices by summing over the head dimension (H). The
calculation of the MHA output, xα, is depicted in Figure 2.16, highlighting how pixels are transformed
and aggregated to produce the final output.

Figure 2.16: Calculation of multi-head attention output

Next, the output of the MHA module is passed through a residual layer, which helps preserve linear
relationships by adding the output of previous TNN layers back into the model. Following the residual
layer, the representation of the image data is normalized as shown in Figure 2.17.

Figure 2.17: Post multi-head attention residual and normalisation calculation

The normalized representation is then passed to through the feed-forward neural network (FFN) (Fig-
ure 2.18). The FFN has one hidden layer with R nodes and uses a ReLU activation function.

Figure 2.18: Feed-forward neural network operation

The final step in the encoder is a residual connection, where the output of the MHA layer is added to the
result of the FFN layer (Figure 2.19). The result of the residual connection is then used as input to the
next encoder layer. The above processes are repeated for each encoder layer, refining and constructing
more intricate representations of the pixel values with each iteration. This allows the model to capture
higher-level features and relationships within the input image sequence.

Figure 2.19: Final step in encoder layer

The following pooling, normalisation and linear layers act as an output prediction head for the vision
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transformer. The pooling layer condenses the encoder output along the sequence element dimension, N
(Figure 2.20). In this example, max pooling is used, which selects the largest value in the N dimension
for each feature dimension, D.

Figure 2.20: Pooling operation

The result of pooling, xpool, is normalised and passed through a linear layer to make the classification
prediction. The linear layer is used to create the classification prediction for each digit (0 to 9). The
output of this layer is a vector, storing the associated likelihood for each digit in a corresponding cell
(TNNout). The image can then be classified as the digit with the highest likeliness score (Figure 2.21).
If the TNN is given an input image showing the number 3, then it can be expected that the highest
likeliness score is found at position 3 in the TNNout array; granted that the transformer is well-trained.
This indicates that the image is classified correctly as the number 3.

Figure 2.21: Output prediction head operations

2.2. Neural Networks for Optimisation
This section describes the state-of-the-art in the integration of NNs within optimisation problems. NNs
excel at capturing sophisticated non-linear interactions between variables. Such NNs are useful in creat-
ing complex models to represent systems with unknown or difficult-to-represent mathematical structures
[16] [5]. Research has investigated the use of ML models in a mathematical optimisation setting and the
development of tools to integrate these representations into existing optimisation frameworks. These
advancements have brought about a way to optimise systems with complex components to meet given
objectives.

Current works propose optimisation formulations for various NNs and activation functions. These
studies highlight the challenge of efficiently optimising over mathematical programs that include a large
number of non-linear, non-smooth and non-convex functions. These complex functions increase the
difficulty of exploring the search space and can lead to slow or computationally infeasible models. This
has lead to research into the design efficient NN formulations that allow for fast global optimisation.
These designs aim to create tractable mathematical models for realistic NN models, which are often
large.

The following sub-sections describe the state-of-the-art in the integration of ML models into optimisation
problems across a variety of real-world applications.

2.2.1. Formulations
Grimstad and Andersson (2019) consider a feed-forward Neural Network (FFN) with ReLU activation
functions [16]. The authors model the piece-wise linear ReLU function using Big-M constraints and
develop a mixed integer linear program (MILP) formulation of the ReLU FFN. This formulation is
evaluated on an oil production optimisation problem that uses 10 ReLU FFNs to model the multi-
phase flow in the pipes. Grimstad et al. note that the feasibility of their exact formulation quickly
fades with the size of the network. Even after applying bound tightening techniques, it is not possible



2.2. Neural Networks for Optimisation 17

to solve optimisation problems with more realistic ReLU FFNs involving thousands of hidden nodes.
This results from the number of variables in the formulation scaling linearly with the number of nodes in
the trained NN. Anderson et al. (2020) study how the search space of such a Big-M FFN formulation can
be reduced [5]. The authors extend upon the MILP Big-M formulation, proposing a MILP formulation
of the ReLU FFN that constructs the convex hull of each node in the FFN, drastically reducing the
search space. Like the previous Big-M formulation, this approach also becomes infeasible for large FFNs
[56].

Tsay et al. (2021), take a different approach in formulating the FFN. The authors propose an adaptive
formulation which partitions the FFN formulation, creating distinct upper and lower bounds for each
partition [56]. At one extreme, using one partition for each node constructs the convex hull for individual
nodes, which requires an exponential number of constraints and auxiliary variables like the formulation
created by Anderson et al. [5]. At the other extreme, having one partition for all nodes constructs
the convex hull over all nodes, which is more compact but has weaker relaxations. Therefore, the
partition size can be used to balance computational efficiency, due to the number of constraints, and
relaxation strength. The partition-based formulation was evaluated for shallow FFNs and CNNs with
varying partition sizes. The experimental results show a speed up in solve time and an increase in the
number of solved problem instances as compared to the Big-M representation proposed by Grimstad
and Andersson (2019).

Fischetti and Jo (2018) investigate MILP formulations for FFNs and CNNs with ReLU, max pooling
and average pooling activations [14]. The MILP formulation and the effect of proposed bound tight-
ening techniques are assessed using feature visualisation and adversarial machine learning optimisation
problems. These examples highlight how optimising over NNs can be beneficial for assessing NNs. In
the first application, the optimisation objective is to find inputs that maximise a given activation. This
provides insights into how predictions are made in black box NN models. In the second application, the
aim is to find the minimum input modifications required to produce an incorrect classification. This
provides a measure of the NNs robustness against adverserial inputs. The computational experiments
show the possibility to optimise over small NNs within a few seconds. However, the solving times
increase drastically to the order of hours for larger NNs.

In an effort to extend optimisation to larger FFNs, Schweidtmann and Mitsos (2019) develop a reduced
space formulation of a FFN with hyperbolic tangent activation functions [45]. The formulation presented
reduces the dimensionality of the optimisation problem by “hiding” the FFN equations from the solving
algorithm. This is implemented by implicitly solving the FNN layers and substituting this result into an
optimisation of the over-arching NN. In this way, complex activation functions are not visible during the
optimisation of the NN. Furthermore, the formulation is strengthened by constructing tight concave and
convex envelopes for the hyperbolic tangent function via its envelopes. Results show that it is indeed
possible to optimise over larger FFNs using this approach. A FFN with 700 neurons was solved in under
30s. In Doncevic et al. (2020), the reduced formulation is extended to Recurrent NNs (RNNs) and
applied to solve a model predictive control problem. Additional reformulation techniques are proposed
to create a hybrid formulation which exposes one of the hidden variables to the optimiser. Results
indicate that reduced formulation of the RNN, and the proposed reformulation techniques both work
to lower the computational cost of optimisation. The creation of hybrid reduced space formulations is
emphasized as a promising technique for speeding up the global optimisation of complex models.

Yang, Balaprakash, and Leyffer (2022) propose two formulations, similarly investigating scalability to
larger FNNs [61]. A MILP-based and a non-convex non-linear program formulations are proposed. The
first approach employs Big-M constraints to model the ReLU activation function. This replaces the
non-linear max operation with a set of affine linear constraints and introduces a binary auxiliary variable
for each hidden node. As a result, this creates a mixed-integer formulation with a convex continuous
relaxation. The authors further strengthen the MILP by carefully determining Big-M values; which
impacts the size of the search space. Optimality-based bound-tightening techniques are applied to
determine the bounds on each node which are then used to instantiate the Big-M values. The non-
convex formulation, on the other hand, uses complementary constraints to model the ReLU activation
function. This adds one continuous slack variable for every hidden node and avoids the complexity
of including integer variables. The formulations are evaluated in three case studies: an engine design
problem to minimize emissions, an optimal adversary problem and an oil pump configuration problem.
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The results show that the non-convex formulation finds a feasible solution in significantly less time
than the MILP formulation using standard non-linear programming solvers; likely due to the lack of
integrality constraints. However, these solvers only produce locally optimal solutions to the non-convex
problem. Although the MILP version is slower to solve, its convex properties make it capable of solving
to global optimality. The proposed formulations are shown to scale to FNNs with hundreds of hidden
nodes. Nevertheless, the number of variables in both of the formulations increases with the number of
neurons, thus the formulations become infeasible for larger NNs.

Formulations for graph neural networks have also been established. McDonald et al. (2024) propose
two GNN formulations [39]. Namely an exact MINLP for the graph convolution neural network by Kipf
and Welling [29] and a MILP representation of the popular GraphSAGE model by Hamilton, Ying, and
Leskovec [21]. The formulations are assessed on a computer-aided molecular design case study, whereby
the GNN models the relationship between a molecular structure and its boiling point. The results show
that in most cases the benchmark Genetic Algorithm (GA) finds a solution of equal quality in a shorter
time than solving the proposed formulations. However, unlike the MILP formulation, the GA gives no
guarantees of converging to the global optimum.

Similarly, Zhang et al. (2023) propose two generalized GNN formulations that support various GNN
architectures [64]. The first is a bi-linear formulation while the second is a Big-M formulation that ex-
tends upon the MILP GraphSAGE formulation in [39]. A later paper by Zhang et al. (2024) strengthens
the Big-M GNN formulation of [63] by introducing symmetry-breaking constraints. The formulation is
evaluated using a molecular design case study. The results show that this method can handle larger
molecules than the previous works on embedding GNNs ([64],[39]). This emphasises the importance
of building efficient formulations and the progress that can be achieved through the strengthening of
existing formulations.

Thus far, the studies discussed focus on trained NNs, with fixed weight and bias parameters, applied
to model components within optimisation problems. However, other existing works formulate NNs for
different purposes. For instance, Thorbjarnarson and Yorke-Smith (2023) and Bernardelli et al. (2024)
explore the use of MILP solvers for training NNs, instead of traditional gradient-based approaches. In
these works, the learnt weights and biases are decision variables that must be found by the solver.

Thorbjarnarson and Yorke-Smith (2023) formulate binarised and integer-valued FNNs (BNNs and INNs)
with sign activation functions as MILPs using Big-M constraints [55]. The authors demonstrate a train-
ing strategy which finds the optimal learnt parameters while simultaneously optimising the number of
neurons in the architecture. This means that the size of the architecture does not need to be predefined,
resulting in more memory-efficient and compact models. Furthermore, this approach eliminates the
need for hyper-parameter tuning to configure the gradient descent method (e.g. learning rate, decay,
epochs). The main limitation of using MILP solvers for training is that optimisation becomes intractable
for large models. This currently limits solver-based training to small NNs with restricted domains (e.g.
discritised FNNs) and small amounts of training data. Although the authors propose batch training
techniques which greatly increase the amount of training data, it is only possible to optimise over small
models (single layer and few neurons) with relatively small datasets in a reasonable amount of time.

Bernardelli et al. (2024) further extend this research, again considering BNNs and INNs [8]. In their
work a multi-objective approach is described to concurrently optimise the accuracy, robustness to small
perturbations and sparsity of the NN. This creates NNs that require little post-training refinements
and can move more quickly from development to deployment. Compared to the state-of-the-art in
solver-based training, their method achieves superior test accuracy with up to 75.3% of NN connections
removed. Although these MILP-based training methods are currently constrained by model size, they
present a promising alternative to traditional gradient-based techniques. These approaches shift the
machine learning paradigm away from resource-intensive models that demand significant memory and
specialised hardware such as GPUs, towards more compact models with proven optimal configurations.

The literature surveyed has outlined methods and applications of mathematical models for the FFN,
RNN, CNN and GNN. The formulations consider how to effectively model the various NN layers as
well as commonly used activations, namely the sign, hyperbolic tan and ReLU functions. Currently, no
works examine how the TNN and softmax activation functions can be implemented in an optimisation
setting. This research aims to address this gap.
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2.2.2. Implementation
The extensive research into formulating the FFN has led to the development of libraries to implement
them in various coding languages and optimisation frameworks. López-Flores, Ramírez-Márquez, and
Ponce-Ortega (2024) survey the existing FFN formulations and the libraries that can be used to instan-
tiate them [37]. Of note are the OMLT package [11] which links to the Pyomo framework [10] [24] and the
GurobiML [18] for the Gurobipy framework [19].

Pyomo is an open-source optimisation framework which interfaces to numerous open-source and com-
mercial solvers. The OMLT package allows for ML models to be constructed within the Pyomo framework.
It offers a variety of FFN formulations with differing levels of complexity and available activation func-
tions. For example, it includes the Big-M, reduced space and complementary constraint formulations
of the FFN mentioned in the previous sub-section. This in addition to the numerous solvers available
in the Pyomo, provides a very flexible modelling environment.

The Gurobipy framework on the other hand provides a more limited modelling environment since it
only interfaces to the Gurobi. Gurobi is a state-of-the-art commercial solver which includes procedures
for solving MINLPs to global optimality; like the proposed TNN formulation. The GurobiML package
provides a Big-M formulation of the FFN with ReLU activations. While this modelling environment is
less flexible, it allows access for the proposed TNN formulated to be evaluated using a high-performing
MINLP solver.



3
Methods

This work focuses on embedding the TNN in a mathematical program, whereby the transformer models
part of the problem definition. To achieve this, the ML model must be recreated in a format that is
compatible with global optimisation techniques. This chapter outlines methods for constructing such
a formulation of a trained TNN. As such, the formulation is designed to mimic the behaviour of the
trained model and preserve its predictive performance. In this context, both the inputs and outputs of
the transformer are decision variables that must be determined during the optimisation process. This
contrasts with traditional ML approaches, which use fixed inputs to infer an outcome. Instead, this
approach optimises the output of the transformer to meet a specific objective, thus constraining the
values that the input can take. As a result, optimising over the TNN provides the input conditions
required to meet a predefined goal.

This chapter begins by presenting the mathematical formulations for each constituent component of the
TNN architecture. Subsequently, proposed methods for strengthening the formulation and enhancing
the solving performance are described. Finally, the software implementation of the transformer is
explained. This provides practical insights into how the software interfaces with popular python libraries,
such as HuggingFace, Pytorch and Keras, to convert trained ML models into optimisation-based
formulations.

3.1. Transformer Formulation
A non-convex MINLP formulation of the TNN is presented in the following sub-sections for the Vanilla
TNN architecture [57]. Although linearisation and convexification techniques could be applied to create
a more tractable mathematical model, they are not used as this would lead to an approximated version
of the transformer. Refraining from these techniques ensures that the formulation gives the same
predictions and behaviour as the trained transformer. An overview of the sets, parameters, variables,
and equations used in the following component descriptions is shown in Table 3.1.

3.1.1. Input Embedding
Given an input variable, xi,j , with sequence dimensions i ∈ I and feature dimensions j ∈ J, this input
variable can be embedded to a new set of feature dimensions, D as follows. The multiplication between
the input and weight matrices is computed for each element at position (i, d), by summing the product
of the input and learned weight (We) over J . Then a learned bias vector (be) is added (Equation 3.1).

xei,d =
∑
j∈J

xi,jW
e
j,d + bed ∀i ∈ I, ∀d ∈ D (3.1)

Positional encoding is implemented using a linear layer which adds the encoding vector (bπ) to the
embedded input. The encoding vector is a fixed parameter that is determined by the positional encoding
method used in the trained transformer. Fixed sinusoidal values or learned values are commonly used

20
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TNN Layer Sets Parameters Variables Formulation Eqns

Linear I,J ,D We
j,d,b

e
d xei,d 3.1

PE I,D bπi,d xπi,d 3.2
Layer Norm I,D ϵℓ,γℓd,β

ℓ
d ξℓ1i ,x

α+

i ,υℓ1i,d,Υ
ℓ1
i,d, 3.14–3.21

δℓ1i ,σ
ℓ1
i ,Θ

ℓ1
i,d,x

ℓ1
i,d

Residual I,D - x+
i,d 3.13

MHA I,D,H,K WQα

d,h,k,W
Kα

d,h,k,W
V α

d,h,k, Q
α
h,i,k,K

α
h,i′,k,V

α
h,i′,k, 3.3–3.11, 3.37–3.42

Woαd,h,k
,bQ

α

h,k,b
Kα

h,k , ωαh,i,i′ ,A
α
h,i,k,x

α
i,d

bV
α

h,k,b
o
αd

Cα
h,i,i′ ,E

α
h,i,i′ ,S

α
h,i,

FFN I,D,F WH
d,f ,W

o
f,d,b

H
f ,b

o
d, ΩH

i,f , z
H
i,f ,x

H
i,d 3.22–3.27

M−,M+

Table 3.1: An overview of the sets, parameters, variables, and equations used for each layer.

as encodings.

xπi,d = xei,d + bπi,d ∀i ∈ I, ∀d ∈ D (3.2)

3.1.2. Encoder
The encoder consists of residual, layer normalization, multi-head attention and FFN layers (see Fig-
ure 2.3). For each encoder layer, the following constraints are added to the mathematical model.

First, the embedded input is linearly transformed to be represented by the Query (Qα), Key (Kα) and
Value (Vα) matrices. The embedding dimensions (D) are projected to H attention heads, each with K
dimensions. These calculations use learned weights (W) and biases (b).

Qα
h,i,k =

∑
d∈D

xπi,dW
Qα

d,h,k + bQ
α

h,k ∀h ∈ H, ∀i ∈ I, ∀k ∈ K (3.3)

Kα
h,i′,k =

∑
d∈D

xπi′,dW
Kα

d,h,k + bK
α

h,k ∀h ∈ H, ∀i′ ∈ I, ∀k ∈ K (3.4)

V α
h,i′,k =

∑
d∈D

xπi′,dW
V α

d,h,k + bV
α

h,k ∀h ∈ H, ∀i′ ∈ I, ∀k ∈ K (3.5)

The attention weight (Equation 2.10) is computed in multiple steps. The compatibility (C) between
query (Q) and value (V ) matrices is determined by:

Cα
h,i,i′ =

1√
|K|

∑
k∈K

Qα
h,i,kK

α
h,i′,k ∀h ∈ H, ∀i, i′ ∈ I (3.6)

where K is the dimension of each attention head (head size). Given the compatibility, the exponential
of the compatibility ( Eα) and its sum ( Sα) are calculated in Equation 3.7 and Equation 3.8.

Eα
h,i,i′ = exp(Cα

h,i,i′) ∀h ∈ H, ∀i, i′ ∈ I (3.7)

Sαh,i =
∑
i′∈I

Eα
h,i,i′ ∀h ∈ H, ∀i, i′ ∈ I (3.8)

The attention weight (ωα) is determined as the ratio of the exponential of the compatibility and its
sum over I. To avoid division by zero, this relation is formulated as the following product:

ωαh,i,i′ · Sαh,i = Eα
h,i,i′ ∀h ∈ H, ∀i, i′ ∈ I (3.9)
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The attention score (Aα), is determined from the product of the attention weight and Value matrices
in Equation 3.10. The attention score is then used to compute the attention-informed representation
of the input, xα.

Aα
h,i,k =

∑
i′∈I

ωαh,i,i′V
α
h,i′,k ∀h ∈ H, ∀i ∈ I, ∀k ∈ K (3.10)

xαi,d = boαd +
∑
h∈H

∑
k∈K

Aα
h,i,kW

oα
d,h,k ∀i ∈ I, ∀d ∈ D (3.11)

(3.12)

The residual connection between the MHA input and output is handled by the following summation.

xα
+

i,d = xαi,d + xπi,d ∀i ∈ I, ∀d ∈ D (3.13)

The first layer normalization layer (ℓ1) is applied to the residual layer’s output (xα+). The layer
normalisation calculation (Equation 2.14) is broken down into the following steps. The mean of the
input representation (xα+) over the embedding dimension, D, is given by,

ξℓ1i =
∑
d∈D

xα
+

i,d ∀i ∈ I (3.14)

xα
+

i =
ξℓ1i
|D|

∀i ∈ I (3.15)

where ξℓ1i is the sum of the input values for each element i in the sequence. The standard deviation,
σℓ1 , is derived from the variance, δℓ1 ; and a small constant ϵℓ1 is added to prevent division by 0. It is
important to use the same value of ϵℓ1 that is used during training to minimize discrepancies between
the formulated TNN’s output and the trained TNN’s output.

υℓ1i,d = xα
+

i,d − xα
+

i ∀i ∈ I, ∀d ∈ D (3.16)
Υℓ1
i,d = (υℓ1i,d)

2 ∀i ∈ I, ∀d ∈ D (3.17)

δℓ1i =
1

|D|
∑
d∈D

Υℓ1
i,d ∀i ∈ I (3.18)

(σℓ1i )2 = δℓ1i + ϵℓ1 ∀i ∈ I (3.19)

The layer normalization output, xℓ1i,d is determined using the learned scaling and offset parameters (γℓ1d ,
βℓ1d ) along with the mean and standard variation variables.

Θℓ1
i,d =

υℓ1i,d

σℓ1i
∀i ∈ I, ∀d ∈ D (3.20)

xℓ1i,d = γℓ1d Θℓ1
i,d + βℓ1d ∀i ∈ I, ∀d ∈ D (3.21)

After normalization, the transformed input is passed through the feed-forward NN (FFN). The FFN is
implemented using a Big-M formulation from existing libraries. The Big-M formulation of the ReLU
FFN is shown in Equations 3.22–3.26. Parameters M− and M+ refer to the upper and lower bounds
of the function f(x) = x ·W + b. These big-M parameters are not chosen, but rather determined in the
function that implements the FFN. More information about this formulation can be found in [5].
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ΩH
i,f ≥ 0 ∀i ∈ I, ∀f ∈ F (3.22)

ΩH
i,f ≥

∑
d∈D

xℓ1i,dW
H
d,f + bH

f ∀i ∈ I, ∀f ∈ F (3.23)

ΩH
i,f ≤ (

∑
d∈D

xℓ1i,dW
H
d,f + bH

f )−M−(1− zH
i,f ) ∀i ∈ I, ∀f ∈ F (3.24)

ΩH
i,f ≤M+zH

i,f ∀i ∈ I, ∀f ∈ F (3.25)

xH
i,d =

∑
f∈F

ΩH
i,fW

o
f,d + bo

d ∀i ∈ I, ∀d ∈ D (3.26)

zH
i,f ∈ {0, 1} ∀i ∈ I, ∀f ∈ F (3.27)

Finally, the residual connection between FFN input and output is added and the output of this residual
layer is normalized (equations 3.28 - 3.36). This is implemented in the same way as the previously
described residual and layer normalization components.

x1+

i,d = xH
i,d + xℓ1i,d ∀i ∈ I, ∀d ∈ D (3.28)

ξℓ2i =
∑
d∈D

x1+

i,d ∀i ∈ I (3.29)

x1+

i,d =
ξℓ2i
|D|

∀i ∈ I (3.30)

υℓ2i,d = xα
+

i,d − x1+

i,d ∀i ∈ I, ∀d ∈ D (3.31)
Υℓ2
i,d = (υℓ2i,d)

2 ∀i ∈ I, ∀d ∈ D (3.32)

δℓ2i =
1

|D|
∑
d∈D

Υℓ2
i,d ∀i ∈ I (3.33)

(σℓ2i )2 = δℓ2i + ϵℓ2 ∀i ∈ I (3.34)

Θℓ2
i,d =

υℓ2i,d

σℓ2i
∀i ∈ I, ∀d ∈ D (3.35)

xℓ2i,d = γℓ2d Θℓ2
i,d + βℓ2d ∀i ∈ I, ∀d ∈ D (3.36)

3.1.3. Decoder
The decoder component of the TNN can be implemented in a similar manner. The only differences occur
in the masked multi-head attention layer and the cross attention layer between the encoder and the
decoder. The masked MHA is implemented by adapting the calculation of the compatibility (3.6). Let
Idec be the set denoting the sequence elements for the decoder input. Then masking is applied such that
each element at position i in the sequence only computes the compatibility between itself and preceding
sequence elements at positions i′ ≤ i. The following sequence elements are masked by leaving the
compatibility values unconstrained for i′ ≤ i, and setting the exponential of the compatibility (Eα

h,i,i′)
to 0. This results in attention weights (ωαh,i,i′) equal to zero ensuring that subsequent elements have no
influence on preceding ones.

Cα
h,i,i′ =

1√
|K|

∑
k∈K

Qα
h,i,kK

α
h,i′,k, if i′ ≤ i ∀h ∈ H, ∀i, i′ ∈ Idec (3.37)

Eα
h,i,i′ = 0, if i′ ≥ i ∀h ∈ H, ∀i, i′ ∈ Idec (3.38)

(3.39)

For cross attention between the encoder and decoder equations 3.3– 3.5 are adapted. The Query variable
for this block is computed using the output of the previous decoder layer (xdec). The Key and Value
variables, however, are calculated from the final output of the encoder (xenc).
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Qα
h,i,k =

∑
d∈D

xdec
i,dW

Qα

d,h,k + bQ
α

h,k ∀h ∈ H, ∀i ∈ Idec, ∀k ∈ K (3.40)

Kα
h,i′,k =

∑
d∈D

xenc
i′,dW

Kα

d,h,k + bK
α

h,k ∀h ∈ H, ∀i′ ∈ I, ∀k ∈ K (3.41)

V α
h,i′,k =

∑
d∈D

xenc
i′,dW

V α

d,h,k + bV
α

h,k ∀h ∈ H, ∀i′ ∈ I, ∀k ∈ K (3.42)

3.1.4. Output Prediction Head
Pooling activation layers are often used in output prediction heads. The OMLT library has an existing
pooling layer function that implements max pooling (3.43). For average pooling, equation 3.44 is used.
Generally, the input to the pooling layer (xi,d) is the output of the TNN and is followed by a linear
projection.

xpool
d = max

i∈I
(xi,d) ∀d ∈ D (3.43)

xpool
d =

1

|I|
∑
i∈I

xi,d ∀d ∈ D (3.44)

3.2. Bounds Tightening
Global optimization seeks to find the best solution of an objective function over a well-defined feasible
domain. This domain is defined by bounds and constraints on the decision variables [46]. When the
domain of decision variables is restricted, the search space becomes smaller and there are fewer candidate
solutions to evaluate which can significantly improve solve efficiency.

One popular method of bounding variables is feasibility-based bound tightening (FBBT). The FBBT
method applies interval arithmetic to propagate the bounds of an input variable, to restrict the domain
of other associated variables [7]. Although FBBT techniques can provide weaker bounds as the number
of propagations increases, they are a fast and computationally efficient way of reducing variable domains.

The application of these low-cost bounds to transformer components are described in the following
subsections. Applying pre-computed propagated bounds complements the bounding strategies employed
by state-of-the-art solvers by providing a smaller initial search space, which can lead to faster solve
times. This is especially helpful for large or complex models like the proposed TNN formulation.
These propagated bounds are extended upon in Section 3.3, to provide the solver with function-specific
information that can further reduce the search space.

3.2.1. Linear Layer
Let LB (xi,j) and UB(xi,j) denote the upper and lower bounds on the input variable at sequence position
i and dimension j. Given that the linear layer consists of a weighted sum of the input plus a constant,
the following bounds are added to the model.

LB(xei,d) = bd +
∑
j∈J

min(LB(xi,j)Wj,d,UB(xi,j)Wj,d) ∀i ∈ I, ∀d ∈ D (3.45a)

UB(xei,d) = bd +
∑
j∈J

max(LB(xi,j)Wj,d,UB(xi,j)Wj,d) ∀i ∈ I, ∀d ∈ D (3.45b)

For each element in the input, the weighted value of its lower and upper bounds are compared. This is
necessary to account for negative weights.
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3.2.2. Residual
Given an inputs xi,j and x′

i,j to the residual layer, the bounds on the input variable are propagated as
follows:

LB(x+
i,d) = LB(xi,d) + LB(x′

i,d) ∀i ∈ I, ∀d ∈ D (3.46a)
UB(x+

i,d) = UB(xi,d) + UB(x′
i,d) ∀i ∈ I, ∀d ∈ D (3.46b)

3.2.3. Multi-head Attention
In the MHA layer, many bounds are calculated by propagation. To begin with, the bounds on the
compatibility variable, Cα, are computed as follows. Let ⊗min(a, b) and ⊗max(a, b), refer to the following
operations on two arbitrary variables (a) and (b),

⊗min(a, b) = min(LB(a)UB(b), LB(a)LB(b),UB(a)LB(b),UB(a)UB(b)) (3.47a)
⊗max(a, b) = max(LB(a)UB(b), LB(a)LB(b),UB(a)LB(b),UB(a)UB(b)) (3.47b)

The bounds on the compatibility are then derived as,

LB(Cα
h,i,i′) =

1√
|K|

∑
k∈K

⊗min(Q
α
h,i,k,K

α
h,i′,k) ∀h ∈ H, ∀i, i′ ∈ I (3.48a)

UB(Cα
h,i,i′) =

1√
|K|

∑
k∈K

⊗max(Q
α
h,i,k,K

α
h,i′,k) ∀h ∈ H, ∀i, i′ ∈ I (3.48b)

where LB(Qα
h,i,k),UB(Qα

h,i,k), LB(Kα
h,i′,k) and UB(Kα

h,i′,k) are found using Equations 3.45a – 3.45b.
Since the exponential function is monotonically increasing,

exp(LB(Cαh,i,i′)) ≤ exp(Cαh,i,i′) ≤ exp(UB(Cαh,i,i′))

Therefore, bounds for the exponential of compatibility (Eα), and the sum of exponential compatibility
(Sα) variables can be constructed as:

LB(Eα
h,i,i′) = exp(LB(Cα

h,i,i′)) ∀h ∈ H, ∀i, i′ ∈ I (3.49a)
UB(Eα

h,i,i′) = exp(UB(Cα
h,i,i′)) ∀h ∈ H, ∀i, i′ ∈ I (3.49b)

LB(Sαh,i) =
∑
i′∈I

LB(Eα
h,i,i′) ∀h ∈ H, ∀i ∈ I (3.50a)

UB(Sαh,i) =
∑
i′∈I

UB(Eα
h,i,i′) ∀h ∈ H, ∀i ∈ I (3.50b)

The limits of the attention score (Aα) are determined in the same way as the compatibility limits
(Equations 3.51).

LB(Aα
h,i,k) =

∑
i′∈I

⊗min(ω
α
h,i,i′ , V

α
h,i′,k) ∀h ∈ H, ∀i ∈ I, ∀k ∈ K (3.51a)

UB(Aα
h,i,k) =

∑
i′∈I

⊗max(ω
α
h,i,i′ , V

α
h,i′,k) ∀h ∈ H, ∀i ∈ I, ∀k ∈ K (3.51b)

Finally, the values of the MHA output are restricted using the linear layer’s bound equations (Equations
3.45a – 3.45b).

3.3. Strengthening Formulation
This section describes the methods used to strengthen the non-convex MINLP formulation of the TNN.
The formulation is strengthened by adding additional cuts and tightening the variable bounds. Cuts
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remove infeasible regions from the search space by injecting additional information about model vari-
ables. While bounds tightening imposes smaller domains on variables and provides tighter relaxations
[36]. This reduces the search space and can lead to faster solve times.

Strengthening techniques are outlined per TNN layers in the following subsections. Some of these
techniques make use of the propagated bounds defined in Section 3.2. No additional bounds or cuts are
proposed for the FFN layer. This layer is implemented using existing approaches since it has already
been widely investigated in the literature. The impact of the proposed strengthening techniques on the
solving process is examined in Section 4.1.

3.3.1. Layer Normalisation
The purpose of this layer is to rescale input values to a normal distribution with a mean of β and a
standard deviation of γ. The properties of this distribution indicate the percentage of values that lie
within N standard deviations (std) of the mean (Figure 3.1). This information is used to set the bounds
on the layer normalisation output (xℓ1i,d).

Figure 3.1: Normal distribution with mean, µ and standard deviation, σ. Image retrieved from [48].

Given that the bounds must not remove any feasible regions from the search space, the values of xℓi,d
are restricted to lie within 5 std of the mean. It is expected that 99.9994% of values lie in this range.
The upper and lower bounds for the layer normalisation are stated in equations 3.52a and 3.52b.

LB(xℓi,d) = βℓd − 5γℓd ∀i ∈ I, ∀d ∈ D (3.52a)
UB(xℓi,d) = βℓd + 5γℓd ∀i ∈ I, ∀d ∈ D (3.52b)

Additionally, the lower bounds of nonnegative variables (e.g. variance, standard deviation) are set to 0.

LB(δℓi ), LB(σℓi ), LB(Υℓ
i,d) = 0 ∀i ∈ I, ∀d ∈ D (3.53)

3.3.2. Multi-head Attention
The multi-head attention layer relies on matrix multiplications involving the Query, Key, and Value
matrices. Specifically, the compatibility scores are derived from the Query and Key matrices and then
used to compute the attention weight variables. The bounds on the compatibility variables depend
on the bounds on the input to the MHA and the learned weight and bias parameters. However, for
high-dimensional matrices or deep transformers with many encoder layers, the quality of the propa-
gated bounds degrades. This is a result of compounding approximations across layers, and non-linear
operations such as softmax and exponential functions.

One method of addressing this is to create an alternate formulation for the compatibility variable. The
main idea is to use max-normalisation to introduce fixed bounds for the exponential compatibility
and sum of exponential compatibility variables while scaling these values to smaller domains. These
operations are performed without changing the behaviour of the TNN. Since solvers operate with finite
precision, scaling the variables improves numerical stability of the exponential function and reduces the
search space. This can make it easier for the solver to handle these non-linear exponential functions.
The following paragraphs elaborate on how this is implemented.
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First, a new variable C′α is introduced whereby,

C′α
h,i,i′ =

1√
|K|

∑
k∈K

Qα
h,i,kK

α
h,i′,k ∀h ∈ H, ∀i, i′ ∈ I (3.54)

The compatibility Cα is then calculated by subtracting the max
i′∈I

(C′α
h,i,i′) from C′α

h,i,i′ . This is imple-
mented as,

C′α
h,i,i′ ≤ C′max

αh,i
∀h ∈ H, ∀i, i′ ∈ I (3.55)

C′α
h,i,i′ ≥ C′max

αh,i
− (MC′

· (1− zC
′

h,i,i′)) ∀h ∈ H, ∀i, i′ ∈ I (3.56)∑
i′∈I

zC
′

h,i,i′ = 1 ∀h ∈ H, ∀i ∈ I (3.57)

Cα
h,i,i′ = C′α

h,i,i′ −C′max
αh,i

∀h ∈ H, ∀i, i′ ∈ I (3.58)

where zC
′

h,i,i′ is a boolean variable that is 1 at the position corresponding to the maximum compatibility
value and 0 otherwise. MC′ is chosen as the upper bound of C′α; since UB(C′α) ≥ C′max

αh,i
≥ C′max

αh,i
−

C′α
h,i,i′ .

The softmax function can then be applied to this max-normalized compatibility variable, resulting in
what is known as the max-normalised softmax function [15]. The max-normalised softmax function is
written as,

softmax(C′α
h,i,i′ − C′max

αh,i
) =

e
C′α

h,i,i′− C′max
αh,i∑

p∈I
e
C′

αh,i,p
−C′max

αh,i

(3.59)

From this equation it can be seen that when C′α
h,i,i′ is equal C′max

αh,i
, the compatibility, C′

αh,i,p
, will

be zero, leading to a numerator of e0, which is equal to 1. For any compatibility value that is not
the maximum, the numerator will be the exponential of a negative value, resulting in a non-negative
value less than 1 (Figure 3.2). Thus the compatibility will maximally be 0 and the exponential of the
compatibility will lie in the range (0, 1]. Similarly, a fixed lower bound for the denominator can be

Figure 3.2: Graph of exponential function

established. In the denominator, the sum over the exponential of the compatibility is computed. At
least one value in this sum will be 1, therefore the denominator must be greater than or equal to 1.
Considering that the maximum value of Eα is 1, then

∑
i′∈I UB(Eα

h,i,i′) = |I|. Thus Sα is bounded
above by the number of elements in the sequence |I|.

This information can be used to update the bounds for the compatibility (C′
α), exponential of compat-

ibility (Eα), and sum of exponential compatibility (Sα) variables. These adaptations are written in
Equations 3.60a – 3.50b.
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LB(Cα
h,i,i′) = LB(C′α

h,i,i′)−max
r

(C′α
h,i,r) ∀h ∈ H, ∀i, i′ ∈ I (3.60a)

UB(Cα
h,i,i′) = 0 (3.60b)

LB(Eα
h,i,i′) = exp(LB(Cα

h,i,i′)) ∀h ∈ H, ∀i, i′ ∈ I (3.60c)
UB(Eα

h,i,i′) = 1 ∀h ∈ H, ∀i, i′ ∈ I (3.60d)

LB(Sαh,i) = max(1,
∑
i′∈I

LB(Eα
h,i,i′) ∀h ∈ H, ∀i ∈ I (3.60e)

UB(Sαh,i) = |I| (3.60f)

The introduction of the max-normalised softmax function tightens the bounds on Eα and Sα which
would otherwise increase disproportionately with changes in the bounds of C′

α. This is expected to
be effective at reducing the search space since Eα and Sα collectively account for |H||I|2 + |H||I|
variables. Furthermore, it can help the formulation to scale to longer sequence lengths (|I|) and larger
head dimensions (|H|).

It must be noted that while the input to the softmax function is changed, the output remains the
same because the max value can be cancelled out of the calculation. This can be seen more clearly by
rewriting Equation 3.59 to Equation 3.61.

softmax(C′α
h,i,i′ −C′max

αh,i
) =

e
−C′max

αh,i · eC
′α
h,i,i′

e
−C′max

αh,i ·
∑
p∈I

e
C′

αh,i,p

(3.61)

Therefore, this max-normalised softmax function effectively scales the inputs of the softmax function to
a smaller domain with fewer values to explore without affecting subsequent calculations. Furthermore,
this approach increases the robustness of the softmax function against under and overflow errors [15].

Further constraints are added to exclude infeasible regions from the search space, with regards to the
compatibility and attention score variables. Auxiliary variables are introduced to present the products
of Qα · Kα and ωα · V α, and McCormick envelopes are applied to bound their values with concave
and convex outer approximations [38]. Figure 3.3 shows an example of over-estimators created for a
product term, a · b. The blue and green solid lines in this figure represent the McCormick envelope,
while the dashed lines show the interval arithmetic bounds. This comparison highlights how these outer
approximations can be used to tighten bounds and improve search efficiency.

Figure 3.3: McCormick envelope for a bi-linear function m(a, b) = ab. Image retrieved from [40]
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For a function m(a, b) = ab, the McCormick envelope is defined as,

m(a, b) ≥ aL · b+ a · bL − aL · bL (3.62a)
m(a, b) ≥ aU · b+ a · bU − aU · bU (3.62b)
m(a, b) ≤ aU · b+ a · bL − aU · bL (3.62c)
m(a, b) ≤ a · bU + aL · b− aL · bU (3.62d)

These constraints put restrictions on the values that the auxiliary variables can take. This in turn acts
to tighten the bounds on the compatibility and attention weight variables’ feasible values.

The attention weight variable can also be constrained using properties of the softmax function. First,
the values of the attention weight can be restricted to the interval [0, 1] (Equation 3.63a). Second, the
sum of attention weights associated to each sequence element must equal to 1 (Equation 3.63b). These
constraints stem from the fact that the softmax function’s output is a probability distribution.

0 ≤ ωαh,i,i′ ≤ 1 ∀h ∈ H, ∀i, i′ ∈ I (3.63a)∑
i′∈I

ωαh,i,i′ = 1 ∀h ∈ H, ∀i ∈ I (3.63b)

While these constraints supply information about the feasible attention weight values, they do not pro-
vide tight bounds on the non-linear softmax function. To improve this, outer approximators can be
created that tighten the bounds on the softmax function. Previous research demonstrated methods for
deriving envelopes for similarly shaped non-linear functions. For example, Schweidtmann and Mitsos
describe techniques for constructing a convex-o-concave envelope for the hyperbolic tan activation func-
tion [45] and Wilhelm, Wang, and Stuber for the sigmoid activation function [60]. This work applies
similar strategies to create convex and concave approximators for the softmax function.

This strategy utilizes the fact that the softmax function can be decomposed into a convex and a concave
region. A convex approximation can then be created which is equivalent to the softmax function in
the convex region and smoothly transitions into a secant segment that under-approximated the concave
region (see Figure 3.4). The same principle can be applied to create the concave over-approximation.
The construction of these approximators is outlined in the following paragraphs.

Figure 3.4: Over-approximators for softmax function (fcv , fcc) with bounded region shaded in lilac

Let ai,j be the input to the softmax function with bounds [aLB, aUB]. The inflection point occurs
when eai,j =

∑
j ̸=p

eai,p , thus when softmax(ai,j) = 0.5. This can be derived by taking the second partial

derivative of Equation 3.64; where by the sum term is considered as a constant.

softmax(ai,j) =
eai,j

eai,j +
∑
j ̸=p

eai,p
(3.64)

Therefore, if softmax(aLB) ≥ 0.5, then softmax(ai,j) lies in the concave region of the softmax function.
Similarly, if softmax(aUB) ≤ 0.5, then softmax(ai,j) lies in the convex region. In other cases, the
softmax(ai,j) can be in the either region. As such the convex under-estimator (fcv) and the concave
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over-estimator (fcc) functions are defined as,

fcv(ai,j) =


softmax(ai,j) , if softmax(aUB) ≤ 0.5

sct(ai,j) , if softmax(aLB) ≥ 0.5

Fcv(ai,j) , otherwise
(3.65)

fcc(ai,j) =


sct(ai,j) , if softmax(aUB) ≤ 0.5

softmax(ai,j) , if softmax(aLB) ≥ 0.5

Fcc(ai,j) , otherwise
(3.66)

where sct(ai,j) is a secant function that constructs a line between the lower and upper bounds (Equa-
tion 3.67).

sct(ai,j) =
softmax(aUB)− softmax(aLB)

aUB − aLB
ai,j +

aUBsoftmax(aLB)− aLBsoftmax(aUB)

aUB − aLB
(3.67)

Fcv(ai,j) defines a function that smoothly transitions from the concave part of the softmax function to
a linear segment that under-approximates the concave region of the softmax function (Equation 3.68).
A preliminary tie point variable (acv∗i,j ) is introduced such that the gradient of the softmax function at
this point is equal to the gradient of a line between the tie point and aUB. The tie point variable, acvi,j
is then determined as max(acv∗i,j , aLB).

Fcv(ai,j) =
{

softmax(ai,j) , if ai,j ≤ acvi,j
sctcv(ai,j) , if ai,j > acvi,j

(3.68)

sctcv(ai,j) = softmax(aUB) +
softmax(aUB)− softmax(acvi,j)

aUB − acvi,j
· (ai,j − aUB) (3.69)

Fcc(ai,j) is similarly defined as,

Fcc(ai,j) =
{

softmax(ai,j) , if ai,j ≥ acci,j
sctcc(ai,j) , if ai,j < acci,j

(3.70)

sctcc(ai,j) = softmax(aLB) +
softmax(aLB)− softmax(acci,j)

aLB − acci,j
· (ai,j − aLB) (3.71)

where acci,j is then determined as min(acc∗i,j , aUB) and acc∗i,j is a point on the softmax function that
smoothly connects the concave region of the softmax function with a secant to the lower bound of ai,j .
This envelope is applied to the restrict the values of the attention weight variable using Equations 3.72a
and 3.72b.

ωαh,i,i′ ≥ fcv(C
α
h,i,i′) ∀h ∈ H, ∀i, i′ ∈ I (3.72a)

ωαh,i,i′ ≤ fcc(C
α
h,i,i′) ∀h ∈ H, ∀i, i′ ∈ I (3.72b)

3.4. Overview of Bounds & Cuts
The previous sections propose a number of bounds and cuts for each of the TNN layers. These pro-
posed enhancements can be classified based on whether they are calculated from propagated bounds
or not. The bounds and cuts calculated without propagated bound values are hereafter referred to as
“independent” while the others are referred to as “dependent”. Table 3.2 provides an overview of the
independent (I) and dependent (D) enhancements for each TNN layer. It must be noted that there are
conditional constraints that can lead to either independent or dependent enhancements. In these cases,
both the I and D columns in Table 3.2 are checked.

In Section 4.1 computational experiments are carried out to evaluate the effectiveness of the proposed
enhancements. Given the number of bounds and cuts, they are arranged into 6 groups before performing
experiments. The six groups are created as follows:
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# Layer Enhancement Descr. Equations I D
1 Linear bounds on layer output 3.45 - x
2 Layer Norm bounds on layer output 3.52 x -
3 Layer Norm lower bounds on non-negative variables 3.53 x -
4 Residual bounds on layer output 3.46 - x
5 MHA bounds on compatibility variable 3.48 - x
6 MHA bounds on exp(compatibility) variable 3.49 - x
7 MHA bounds on sum of exp(compatibility) variable 3.50 - x
8 MHA max-norm. softmax function 3.54–3.58 x -
9 MHA compatibility bounds with max-norm. softmax function 3.60 x x
10 MHA bounds on attention score variable 3.51 - x
11 MHA McCormick envelope for QK product in compatibility 3.62 - x
12 MHA McCormick envelope for ωV product in attention score 3.62 - x
13 MHA bounds on softmax output 3.63a x -
14 MHA softmax sum constraint 3.63b x -
15 MHA softmax convex and concave approximators 3.65 – 3.72 x x
16 MHA output of MHA layer 3.45 - x

Table 3.2: Summary of dependent and independent strengthening methods used in each layer

i. Standard (STD): dependent bounds in linear and residual layers, lower bounds of non-negative
variables in LN layer and max-normalized softmax constraints in MHA layer (1,3,4,8,9 in Table 3.2)

ii. Layer normalisation independent (LN_I): indepedent bounds in layer normalisation layer (2 in
Table 3.2)

iii. Multi-head attention independent (MHA_I): independent bounds and cuts in the MHA layer
(13,14 in Table 3.2)

iv. Multi-head attention dependent (MHA_D): dependent bounds and cuts in the MHA layer with
exception of bi-linear and softmax envelope constraints and max normalised softmax constraints
(5,6,7,10,16 in Table 3.2)

v. Multi-head attention McCormick (MHA_MC): bi-linear envelope constraints (11,12 in Table 3.2)
vi. Multi-head attention softmax enclosed (MHA_SE): constraints to construct concave/convex outer

approximations for softmax function (15 in Table 3.2)

3.5. Implementation
The original TNN architecture of Vaswani et al. [57] is commonly used to design TNNs; however, there
is no standardised architecture. In many cases, new architectures are preferred to tailor the model
to a given application. Some choose to arrange the layers differently, while others omit specific layers
[22][59]. For this reason, it is important to have a modular TNN implementation that can adapt to
many different TNN architectures. The formulated transformer was created with this in mind. As such,
each TNN layer is implemented as a python function which can be connected to any other layer as long
as the input and output dimensions of the connected layers match.

Moreover, there are inconsistencies between the TNN implementations for various machine learning
(ML) libraries. The encoder and decoder blocks are constructed in different arrangements with different
default parameters. Furthermore, learned parameters are stored in different arrangements without
clear documentation of the format of the parameters. This is likely because the learned parameters are
typically not used outside of the given ML library. Nevertheless, this can make the parsing of TNN
parameters tedious. Another challenge in parsing the trained TNN is determining the layers used and
their ordering. Some layers like the residual, pooling and activation function layers are not instantiated
as layer components of the trained TNN, but are rather implemented as functions in the forward pass
through the TNN. As a result, TNNs architecture list of layer modules can be misleading because it will
not mention these layers. For Pytorch’s TNN module, the model summary does not print the layers
of the multi-head attention block in the order that they occur. Consequently, the documentation for
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the various layers and TNN functions must be closely examined to ensure that the formulated TNN is
constructed in the same way as the trained TNN.

The formulated TNN is implemented to offer solutions to the challenge of using the trained TNN models
outside of their intended environments. First of all, three parsing functions are created to build TNN
formulations for models created using the Keras, Pytorch and HuggingFace ML libraries. These
parsing functions extract information from files containing trained TNNs, including where necessary
information about the format of learned parameters, ordering of layers and any omitted layers. When
updates are made to the TNN modules in these libraries, the parsing function will likely also need to
be updated. For the Pytorch and HuggingFace libraries an additional function is included to build a
TNN formulation based on the default TNN configuration of these libraries. A more flexible approach
is taken for this function, whereby a forward pass through the trained TNN is carried out to identify
the correct ordering of the TNN layers. In this case placement of the omitted residual layers can be
inferred from the position of the normalisation layers.

The implementation also supports multiple mathematical modelling frameworks. This is necessary to
have access to an assortment of solving algorithms and FFN implementations (see [37]). The imple-
mentation is developed to be compatible with Pyomo framework, which allows for a wide variety of
open-source and commercial solvers and the Gurobipy framework which uses the Gurobi solver. Even-
though the Gurobi solver can be invoked in both frameworks, the Pyomo interface to Gurobi currently
does not support the modelling of non-linear functions [42]. The lastest two Gurobi releases, Gurobi
11 and 12, delivered updates for performing global optimisation on MINLPs, like the proposed TNN
formulation.

Strictly speaking, the formulation is constructed as a Pyomo mathematical model. For the Gurobipy
framework, a python function is created to convert the Pyomo mathematical model to Gurobipy. The
differences in the chosen optimisation framework gives some small differences in the overall formulation.
First, different libraries are used for constructing the Big-M FFN formulation. For Pyomo, the OMLT
package is used and for Gurobipy, the GurobiML package is used. Second, there are different methods
used for implementing the exponential function. Currently, the exponential function in the Pyomo
framework does not support inputs greater than 2. In this case, a static power series approximation
is used (Equation 3.73). For the Gurobi framework, a more accurate approximation is applied via
Gurobi’s exponential function (equation 3.7). Gurobi’s exponential function instantiates a dynamic
piece-wise linear approximation of the exponential function which is computed in the vicinity of the
current relaxation solution during solving (see [20]).

Eα
h,i,i′ =

Ψ∑
ψ=0

Cα
h,i,i′

ψ

ψ!
∀h ∈ H, ∀i, i′ ∈ I (3.73)



4
Case Studies

This chapter discusses a series of case studies aimed at evaluating the performance of the proposed TNN
formulation inside an optimisation problem. Three optimisation problems are considered to explore the
performance the formulation on transformers of various sizes in a variety of applications.

First, an optimal trajectory problem showcases a simple problem containing a small encoder-only TNN.
Next, a verification problem with a larger encoder-only transformer is examined. Finally, a reactor
optimisation problem with an encoder-decoder model is studied.

In the subsequent experiments, the performance of the formulated TNN is evaluated based on the
following metrics:

• Speed: This is measured as the time it takes to converge to the optimal solution (Time).
• Optimality: This is assessed using the objective value at the end of the run and the difference

between the lower and upper bound of the objective value (optimality gap or Gap).
• Computational complexity: The average amount of search iteration per second during the

solve is used as a proxy to indicate the formulation’s complexity (Iter./s).
• Ability to find feasible solutions: This is assessed using the number of solutions found within

the time limit (# Solutions) and the speed at which the first feasible solution is found.

All experiments are run on an Intel Core i7-10750H CPU @ 2.60 GHz with 6 physical cores and
12 threads. Furhtermore, the Gurobi 11.0.1 solver is used with fixed for each experiment which
creates a deterministic environment.1 More details about the experimental set ups for each case study
can be found in the following subsections and results in the form of solve logs can be retrieved from
https://zenodo.org/records/14261874.

4.1. Optimal Trajectory Problem
4.1.1. Problem Definition
This is a simple optimal trajectory problem which is adapted from an example in the Optimal Control
Estimation lecture notes by Yang [62]. This illustrative problem is defined as follows:

“Consider a canon placed at the origin of a 2-dimensional plane, which we can fire with
control over the initial velocities vx, vy; representing the decomposed velocities with respect
to displacement (x) and height (y). What is the best trajectory that can be achieved, so that
the cannonball follows a target path, defined by the coordinates (xtarget(t), ytarget(t)) at each
time step t, as closely as possible?”

This optimisation problem can be mathematically formulated as shown in equation 4.1. Here the
displacement, x(t), and height, y(t), over time is given by the projectile motion equations and the
objective function is set to minimize the absolute difference between the cannonball and some fixed

1Gurobi 11.0.1 was the most recent version at the time of this work
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target positions. In this case, the target trajectory is defined by projectile motion equations with some
random noise added to the ytarget trajectory.

min
vx,vy

T∑
t=0

(x(t)− xtarget(t))
2 + (y(t)− ytarget(t))

2 (4.1a)

s.t. x(t) = vxt ∀t ∈ {0, ..., T} (4.1b)
y(t) = (vyt)− (0.5gt)2 ∀t ∈ {0, ..., T} (4.1c)
xtarget(t) = vxtargett ∀t ∈ {0, ..., T} (4.1d)
ytarget(t) = (vytargett)− (0.5gt)2 + noise(t) ∀t ∈ {0, ..., T} (4.1e)
g = 9.81 (4.1f)
vx, vy ≥ 0 (4.1g)
x(0), y(0) = 0 (4.1h)
noise(t) ∈ R ∀t ∈ {0, ..., T} (4.1i)

The problem definition is then modified to include an encoder-only TNN that models the projectile
motion of the cannonball. A TNN is trained using the Keras library with an architecture as shown
in 4.1. A dataset containing the x and y trajectories over time for 300 different initial velocities is
generated and sampled to create 7200 training instances of sequence length 3. The TNN is trained to
predict the x and y positions of the cannonball at the third time step, given the x and y positions at the
first two time steps. The model has a mean absolute percentage error of 8.54% on unseen data. This
poor performance is expected to be a result of the small size of the training dataset since TNNs tend to
require large amounts of training data [32][35]. Another factor impacting predictive performance could
be the lack of a positional encoding layer [2].

(a) TNN architecture. MHA has a head size (k) = 4,
number of heads (h)= 1, FFN dimension = 32

Layers Count
Input 1
Linear 0
Residual 2
Layer Norm 2
MHA 1
FFN 2

(b) Summary of components

Figure 4.1: Description of TNN for the optimal trajectory problem

When the TNN is added to the illustrative problem it removes the physical projectile constraints from the
model and instead relies on the TNN’s predictions. It must be noted that in this case, it also removes the
control variables vx and vy from the problem, which should not occur in a decision problem. However,
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this problem was deemed as suitable for the purpose of testing the correctness of the formulation.
Nevertheless, the TNN finds the sequence of trajectory positions x and y, therefore the velocity is
inherently modelled by the change in these variables and the control variables vx and vy can be derived
from the solution.

The illustrative problem can be rewritten as,

min
xt,yt

T∑
t=0

(xt − xtarget(t))
2 + (yt − ytarget(t))

2 (4.2a)

s.t. xT ,yT = TNN(xt1 ,xt2 ,yt1 ,yt2) (4.2b)
xtarget(t) = vxtargett ∀t ∈ {t1, t2, T} (4.2c)
ytarget(t) = (vytargett)− (0.5gt)2 + noise(t) ∀t ∈ {t1, t2, T} (4.2d)
g = 9.81 (4.2e)
xt1 ,yt1 = 0 (4.2f)
xt2 ,xT ,yt2 ,yT ∈ R (4.2g)
noise(t) ∈ R ∀t ∈ {t1, t2, T} (4.2h)
T ≥ t2 ≥ t1 = 0 (4.2i)

whereby the height (y) and distance (x) positions at the third time step, T , is a function of the previous
y and x positions.

4.1.2. Experimental Set Up
Each experiment is run with a fixed time-limit. The solving process of the experiments is recorded
using Gurobi’s logging tool. Results are then extracted from the log files to obtain information about
the solving process.

In the first experiment, the standard MINLP formulation without any strengthening techniques is
considered. In the second experiment, the computational correctness of the formulated transformer
is verified by comparing the formulated TNN’s and trained TNN’s predictive results for the same
input value. In the last set of experiments examine the impact of the proposed bounds and cuts on
solve performance. Six different combinations of the proposed bounds and cuts are considered and the
configuration with no additional enhancements is included for reference. These set up configurations
are defined in Table 4.1.

Config STD LN_I MHA_I MHA_D MHA_MC
All 1 1 1 1 1
No_MC 1 1 1 1 0
I_only 1 1 1 0 0
LN_only 1 1 0 0 0
Prop_MC 1 1 0 1 1
LN_prop 1 1 0 1 0
None 1 0 0 0 0

Table 4.1: An overview of the additional enhancements that are activated for each configuration; where 1 indicates
that a given set of enhancements is activated and 0 indicates that it is deactivated. LN – refers to enhancements that
are added to the layer normalization layer, MHA – refers to the multi-head attention layer, I – refers to independent

enhancements that do not include propagated bounds, D – refers to dependent enhancements, MC – refers to the
addition of bi-linear McCormick envelopes and, SE – refers to the addition of softmax envelopes. A more detailed

description of these categories can be found in subsection 3.4.

Each of the configurations affects the number of constraints that constitute the formulated transformer.
The number of constraints that they add to the model is shown in Table 4.2. The baseline setup with
None has 248 constraints. Note well that these values do not account for the changes to the individual
bounds on variables.
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Config Constraints
All 50
No_MC 2
I_only 2
LN_only 0
Prop_MC 16
LN_prop 0

Table 4.2: Caption

4.1.3. Numerical Results
TNN performance without enhancements
In this experiment, the TNN is given the initial positions (x(0), y(0)) as inputs and must solve for the
values of the x and y positions at times t2 and T . No additional bounds or cuts (enhancements) are
added to the model. The results indicate that it is not possible to solve the optimal trajectory problem
with the TNN to optimality within a time limit of 3 hours. Moreover, no feasible solutions are found
before the time limit is reached despite 5.08× 107 nodes having been explored.

The results show that even for this small TNN and simple illustrative problem, finding a feasible
solution is not possible within the time limit. This highlights the additional computation overhead that
is incurred due to the formulated transformer. Moreover, it emphasises the need to reduce the size of
the feasible region that the solver must explore as the model is too complex to benefit from the advanced
techniques applied by the Gurobi solver. The experiments in the following subsections investigate how
performance can be improved by adding new bounds and cuts to the problem that are informed by the
properties of the functions used in the TNN.

TNN Validation
In this experiment, the inputs to the TNN are fixed so that the solution to the illustrative problem only
needs to be evaluated. First, the problem is run without any additional enhancements. The illustrative
problem is not solved within 6 hours and no feasible solutions are found. Time out is reached with a
best-bound value of 3.10 × 10−4 after exploring a larger number of nodes (9.37 × 107), revealing the
difficulty the solver faces in finding a feasible solution in this large search space.

Next, all of the proposed additional bounds and cuts are added to the model. The result of solving the
problem with fixed TNN inputs is shown in Figure 4.2 as the dashed lines. The expected solution based
on the result of solving the original problem without the TNN is also included for reference (shown as
solid lines).

Figure 4.2: Optimal toy trajectory with fixed TNN inputs

The first key result is that it is possible to optimize over the formulated TNN when enhancements are
added. Furthermore, it can be seen that the output of the formulated TNN is the same as the trained
TNN output (shown as squares) when they are given the same input values. This proves that the
formulated TNN calculates its output prediction in the same manner as the trained TNN and therefore
validates the correctness of the formulation.
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When the solution to the original problem (solid lines) and the solution to the problem with the TNN
(dashed lines) are compared, it can be seen that the original problem finds a better solution. Solving
the original toy problem results in an objective value of 3.30×10−4, while solving the toy problem with
the TNN results in an objective value of 5.06×10−4. This difference is likely due to the poor predictive
capabilities of the trained transformer because the formulated TNN’s predictions reflect those of the
trained model. With poor performing ML models, the true optimal solution may not be found simply
because the ML model is incapable of predicting these values.

TNN performance with enhancements
This section describes the results of solving the illustrative problem with the TNN when different
additional bounds and cuts are included in the TNN formulation. The results for 6 configurations
of enhancements are considered. A 7th configuration with no enhancements is included for reference.
The enhancement configuration summary is shown in Table 4.1. The MHA_SE enhancements are not
considered in these experiments since preliminary results showed that they led to unsolvable models.
This is likely due to the high computational overhead of this approach which can add up to (2 ×
number of heads× sequence length2) tie-point variables, 10 slack variables and (35×number of heads×
sequence length2) additional constraints.

The solve results for each configuration are shown in Table 4.3. At first glance, it can be seen that
in contrast to the experiment with fixed transformer inputs, the objective value found in this case
(2.06×10−4) is lower than the optimal objective value when solving the original toy problem (3.30×10−4).
This is expected to occur because the trained TNN does not adequately model the physical principles
of what constitutes a feasible projectile motion.

Time Iter./s # Nodes # Solutions Gap Objective
All 46 mins 9.03× 104 9.16× 106 79 3.73× 10−6 2.06× 10−4

No_MC 60 mins 8.69× 104 1.16× 107 43 3.97× 10−1 2.06× 10−4

I_only 12 mins 8.82× 104 2.26× 106 69 3.96× 10−6 2.06× 10−4

LN_only 13 mins 7.34× 104 2.36× 106 22 0 2.06× 10−4

Prop_MC 23 mins 1.08× 105 4.35× 106 55 8.69× 10−5 2.06× 10−4

LN_prop 6 mins 8.13× 104 1.09× 106 51 6.45× 10−5 2.06× 10−4

None 60 mins 1.97× 105 5.08× 107 0 inf 2.01× 10−4

Table 4.3: Summary solve results for various configurations of enhancements with a time limit of 1 hour. Here time
refers to wall clock time.

When making an overall comparison between the enhanced configurations and the configuration with
no enhancements (None), it can be seen that the enhancements allow for configurations with equally
many (or more) constraints (LN_prop, LN_only) to be solved to global optimality in a fraction of the
time. This shows that the benefit of adding the enhancements outweighs the drawback of having more
constraints (or a more complex model). Furthermore, enhanced configurations explore fewer nodes indi-
cating that the enhancements help to improve the search efficiency. The LN_prop configuration explores
the least nodes (1.09×10−6) before finding the optimal solution, showing that these enhancements best
assist the Gurobi MINLP solver in exploring the search space. However, this configuration is one of
the most computationally complex (8.13 × 104 iter./s). LN_prop takes about 3 times longer than the
least complex (None) configuration to complete an iteration. Together, these results show that while
the enhancements increase the toy problem complexity, they allow the solving algorithm to make better
choices while exploring the search space, thus finding solutions faster.

Looking at the solution time in Table 4.3, the results show clear differences for the various configurations.
The solve times for the enhanced formulations vary from 6 mins in the best case (LN_prop), to reaching
time-out (No_MC). The configurations All, No_MC, and Prop_MC give the slowest runtimes. This is
expected to arise from the added complexity of imposing more constraints on the same variables. For
example, one of the LN_I enhancements adds bounds to the attention weight (α) so that it must lie
between [0, 1]. While constraints are added to restrict the values of α ·V in the MHA_MC enhancements,
and bounds are added to the compatibility (Q ·K), which is used to calculate α (see Equation 2.10),
in the MHA_D enhancements. On the other hand, the fastest solving configurations I_only, LN_only
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and LN_prop each add new information about the variables in the layer normalization and multi-head
attention layers without adding restrictions to the same variables. These results align with Kosheleva,
Ceberio, and Kreinovich’s [30] discussion about the counter-intuitive relationship between problem
complexity and the difficulty of solving the problem. The authors note that in some cases the best
way to solve a complex problem is to make it more complex by adding additional constraints. More
specifically, they mention that when constraints are included in a problem that adds new information,
the benefit of these constraints generally outweighs their added complexity.

Despite the differences in run time, all enhanced configurations converge to the optimal objective value
and find multiple feasible solutions. Only No_MC does not find the optimal solution within the 1-hour
time limit. However, it has a relatively small optimality gap, which is a positive indication that the
optimal solution could be found with more resources. To better understand the convergence properties
of the configurations, the changes in the incumbent and best bounds over time are examined (Figure 4.3).

Figure 4.3: Convergence of the incumbent and best bound over time for each configuration

Regardless of the configuration, the best bound remains constant over time and near to the optimal
solution. This indicates that the solver works well to tighten the lower bound of the objective value.
For the enhanced configuration, the best bound is improved to be equal to the optimal solution, thus
there is no room for improvement on these bounds.

The incumbent shows different initial gaps and convergence trends for the various configurations. For
example, configurations No_MC, I_only, and Prop_MC all find feasible solutions almost instantaneously,
but the quality of these solutions varies significantly. Prop_MC begins with a large optimality gap
which can be expected, as compared to the No_MC and I_only configurations, because Prop_MC does
not include independent bounds and cuts in the MHA layer. The independent enhancements constrain
variables to fixed regions which helps to reduce the growth of the propagated bounds to large and
uninformative values. Instead propagated bounds are applied in the MHA layer which are complimented
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by McCormick envelopes on the Query-Key and attention weight-Value products. The trace shows that
the gap progresses in large steps towards the optimum, and is one of the fastest configurations to
significantly close the gap. This indicates that the solver frequently finds a solution that is significantly
better than the previous one. When an improved feasible solution is found, the solver can eliminate
parts of the search space that lead to solutions less than this value. This tightens variable bounds and
leads to more informative propagated bounds and constructed envelopes, which are computationally
inexpensive. This provides a model with relatively fast iterations (1.08 × 105iter./s) and bounds that
effectively improve as better feasible solutions are found. This can explain how Prop_MC converges faster
than other configurations which have tighter initial gaps.

The trace for I_only has similar characteristics as Prop_MC but shows better performance as it starts
with a smaller optimality gap. This is expected to be a result of the fixed valued constraints on the
layer normalisation and attention weight values. These constraints include that the attention weights
but be in [0, 1], and that the attention weights associated with a given element in the sequence must
sum to 1. Even though these constraints do not provide the convex hull for the attention weight, they
provide fixed domains that do not grow, which can be useful for scaling to larger transformer models.
This configuration initially struggles to find improved feasible solutions (long plateau of the incumbent
in Figure 4.3), then quickly converges. This is likely due the fact that these enhancements only improve
the search space at the start of the solving process and provide little additional information to aid
the solver in later stages. Nevertheless, this configuration has a good trade-off between the problem
being quickly solved and the optimal solution being quickly found. Thus these fixed constraints create
a sufficiently small search space that solver can efficiently traverse using its built-in techniques.

The LN_only configuration uses a subset of the enhancements applied in I_only. LN_only only con-
strains the layer normalisation output values to be in a fixed range based on the properties of the normal
distribution. This configuration results in the smallest initial gap. This indicates that when the inde-
pendent MHA costraints are added in I_only, these weaken the formulation leading to a larger search
space and slower convergence. Therefore, these proposed MHA_I enhancements are not beneficial for
solving this problem.

Instead when dependent MHA and independent layer normalisation enhancements are combined in
LN_prop, the fastest convergence is achieved. However, this configuration is also the slowest to find
an initial feasible solution. These features in LN_prop’s convergence are attributed over approximated
propagated bounds on the MHA variables which can degrade solving in early stages but aid it as the
search space reduces. As such LN_prop is able to find better feasible solutions earlier than LN_only.

No_MC is a combination of the I_only and LN_prop configurations. The No_MC is one of the fastest
to find a feasible solution faster than most among the set of configurations. Only LN_only and All
result in a better initial feasible solution but it takes a longer time. Here it can be seen how the
combination of independent and dependent constraints on MHA variables leads to a smaller initial gap
than in I_only. This combines the benefits of a smaller initial search space due to fixed constraints,
and bounds that gradually improve during the search due to the propagated bounds. However, this
combination of bounds and cuts also degrades convergence (long plateau of the incumbent at the end
of solve in Figure 4.3). This effect is likely due to the No_MC configuration likely over-constraining the
MHA variables, as mentioned earlier. This can make the non-convex search space with multiple local
optima excessively complex and difficult to explore.

The All extends the No_MC to include McCormick envelopes on products in the MHA layer. McCormick
envelopes are added to the product of the Query and Key matrices as well as the attention weight and
Value matrices. These outer approximations construct tighter bounds that remove infeasible regions
from the bounding box created by the propagated bounds (see Figure 3.3). The plots in Figure 4.3 show
how adding these envelopes leads to faster convergence while exploring fewer nodes (9.16× 106 nodes)
than No_MC (1.16× 107 nodes). So while some of the MHA variables are still over-constrained, and the
search space is difficult to explore, there are fewer candidate solutions to explore in this case. As a
result, convergence is improved when compared to No_MC. Furthermore, these enhancements appear to
help the solver with finding improved feasible solutions since No_MC and All run for similar durations
but All finds almost twice as many solutions. This ability to frequently find better solutions can help
to quickly prune the search tree and improve solve efficiency.
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Each of the configurations shows long periods of time when the incumbent does not improve. This
indicates that the solver has difficulty in finding improved feasible solutions and that the formulation
would benefit from further refinements to help close the gap faster. Another method to improve the
solve could be to tune the solver’s parameters. For example, Gurobi provides a MIPFocus parameter
which makes the solver focus on finding feasible solutions quickly. Alternatively, warm-starting could
be used to provide a good initial solution that is in the neighbourhood to the optimal solution. This
could be helpful for these configurations because at some point in their solving process, a new feasible
solution is found which improves the incumbent and then the bounds converge rather quickly.

4.2. Verification Problem
4.2.1. Problem Definition
Consider a verification problem in which the robustness of an image classification TNN model against
perturbations to the input image is assessed. The input image, x, is sparsely perturbed to an image, x,
such that ||x − x||ℓ1 ≤ ϵ, where ϵ is a perturbation limit. Given the correct image classification label,
ltgt and an adversarial label, ladv, the optimisation objective is to maximize the difference between the
predicted probability of these labels (yltgt and yladv). This gives an indication of the degree to which
the classifier is deceived. Thus the optimisation problem is defined as,

max
x,δ

(
yladv − yltgt

)
(4.3)

s.t. xp ≤ min(1, xp − ϵ) ∀p ∈ P (4.4)
xp ≥ max(0, xp + ϵ) ∀p ∈ P (4.5)
δp ≥ xp − xp ∀p ∈ P (4.6)
δp ≥ xp − xp ∀p ∈ P (4.7)∑
p∈P

δp ≤ ϵ (4.8)

yladv , yltgt = TNN(x) (4.9)

where P is the set of all pixels in the image and δp is the perturbation at a pixel p ∈ P .

The TNN was trained to perform image classification of hand-written numbers (MNIST data [33]) using
the Pytorch library. The TNN uses an encoder-only architecture as shown in Figure 4.4. The input
images have a size of 4 × 4 pixels. The patch embedding layer reorganises these images as a set of
patches with smaller dimensions, in this case 2 × 2 patches of a 4 × 4 image. Then a linear transform
is applied to project each pixel to d, dimensions. This patch embedding step is common practice when
training a Vision Transformer [22].

4.2.2. Experimental Set Up
In this section each experiment is run once with a fixed time-limit of 4.5 hours using the Gurobi solver
(v11.0.1). Experiments are performed on a 4 × 4 image of the number 7 and the adversarial label is
1. The value of ϵ is set to 0.0001. Although this restricts the total perturbation to a small range, the
search space still remains relatively large due to the nature of the problem definition. The solver must
determine the perturbation to apply at each of the 16 pixels in the image such that all the perturbations
sum to ϵ. These combinatorial constraints along with the double-precision computations of the Gurobi
solver can lead to a large and complex feasible region. This choice of ϵ simplifies the problem in order
to examine how the performance of the formulation changes for larger TNNs.

The experiments in this subsection investigate how the formulated transformer performs when applied
to larger/more realistic models that increase the dimensions and depth of NN. In the first experiment,
the impact of increasing the embedding dimensions of the TNN input is considered. This increases the
number of variables and constraints created by each of the TNN layer functions and examines the scaling
of the TNN model to larger inputs. In the second experiment, the impact of increasing the number of
encoder layers is examined to determine the solve performance for deeper models with multiple encoder
layers.

Transformers with embedding sizes of 6, 12 or 18 and either 1 or 2 encoder layers (depth) are considered.
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(a) Architecture of vision transformer for verification problem

Layers Count
Input 1
Linear 3
Residual 2L
Layer Norm 2L +1
MHA L
FFN L

(b) Summary of components

Figure 4.4: Description of vision TNN, where L denotes the number of encoder layers

An overview of the number of variables for these formulated TNNs is shown in Figure 4.5. The number
of binary variables increases by the same factor as the depth while the number of continuous variables
scales with both the depth and embedding size. Although there are far more continuous variables, the
binary variables contribute significantly more to increasing the complexity of the formulation because
more integrality constraints are added to the model. Therefore, scaling to larger embedding sizes is
expected to be easier than scaling to deeper models, since the number of binary variables remains
constant.

Figure 4.5: Number of continuous, binary, and integer variables for formulated transformers with embedding size (E)
and depth (D).

4.2.3. Numerical Results
Scaling Input Size
The experiments in this subsection aim to evaluate how the proposed formulation scales to TNNs
with large embedding dimensions. Typically, increasing the embedding size is regarded as a way to
create a more descriptive models, however this can have adverse effects on the formulation. Increasing
the embedding size results in larger matrices throughout the TNN, which significantly increases the
number of decision variables and, consequently, the computational workload for the solver. More



4.2. Verification Problem 42

specifically, as shown in the previous subsection,increasing the embedding size by a factor, f scales the
number of continuous variables by almost the same amount ( Figure 4.5). Additionally, these larger
matrices introduce more variables in the dot product operations in the MHA layer which is expected
to cause propagated bounds to become exaggerated after fewer propagations, further challenging the
solver’s efficiency. The following paragraphs describe how scaling the embedding dimension impacts the
optimisation of the formulated transformer.

The transformer is solved using two enhancement configurations, namely All and LN_prop. Based on
the optimal trajectory experiments, All finds an initial solution quickly that has a small gap. All
is one of the best configurations in these regards. Furthermore, it produced the largest number of
feasible solutions which can aid the solver in removing suboptimal regions from the search space. It is
expected that proving optimality will become increasingly difficult for more complex models, given the
formulation’s non-convexivity. Thus a configuration that easily finds feasible solutions can be beneficial
for solving. On the other hand, the LN_prop is slower to find an initial feasible solution but converges
at a much faster rate. The LN_prop configuration supplies fewer and simpler additional bounds and
cuts to the solver. As a result, it relies more on the solver’s build-in techniques than All. In the
optimal trajectory problem, this led to faster convergence. Therefore, these experiments compare a
more informative yet slower to converge configuration (All) with a less informative configuration that
explores the search space more efficiently (LN_prop).The results can be found in Table 4.5.

Config E D Time # Nodes # Solutions Gap Objective
LN_Prop 6 1 15s 2.4× 103 4 4.00× 10−6 -12.498
All 6 1 13s 3.4× 103 4 5.00× 10−6 -12.498
LN_Prop 12 1 1m 3s 3.4× 104 3 9.20× 10−5 -15.711
All 12 1 44s 2.8× 104 3 8.60× 10−5 -15.711
LN_Prop 18 1 4h 30 min 2.6× 106 0 inf -16.735
All 18 1 2m 51s 4.4× 103 3 1.00× 10−5 -16.754

Table 4.4: Results with varying embedding dimension (E) and constant depth (D) equal to 1.

One notable result in Table 4.5 is the differing objective values for each combination of embedding size
and depth. This occurs because each of these combination represents a different trained TNN. As such
these trained models can have dissimilar learnt parameters and predictions.

Similar to the optimal trajectory results, the verification problem reveals that the All configuration
finds an initial feasible solution faster than LN_prop for all embedding sizes (Figure 4.6). Nevertheless,
with an embedding size of 6, both configurations find the optimal solution within similar amount of
time and find the same number of solutions (4). The configurations differ, however, in the number of
nodes they explore. The All configuration explores 1×103 more nodes than LN_prop before finding the
optimal solution, indicating that the solver was able to make better branching decisions for LN_prop.
This is likely due to LN_prop imposing fewer constraints and thus a less complex search space.

The convergence plots in Figure 4.6 highlight the the model complexity trade-off when the transformer is
scaled to larger embedding sizes. As the embedding size increases, the more complex All configuration
outperforms LN_prop. This indicates that as models grow and problem definitions become harder,
the advantages of more complex configurations outweigh their overhead. In this case, the additional
McCormick envelopes and fixed parameter and constraints bounds included in All can be seen to aid
in scaling the TNN. For All the solve times increase at a much slower rate than for LN_prop.

All, leads to tighter initial gaps which aligns with previous experimental results. This is expected to
be a results of its fixed valued bounds and constraints. Furthermore, the relatively fast convergence for
larger embedding sizes is likely due to the McCormick envelopes present in All, which create tighter
bounds on the products in the MHA layer. Given that the verification problem’s decision variables
have small domains (xp ∈ [0, 1], δp ∈ [0, 0.0001]) this can improve the effectiveness of the McCormick
envelopes at removing infeasible regions from the search space. However, these envelopes are computed
using propagated bounds and therefore become looser with the growing embedding size. This in turn
diminishes the effectiveness of the McCormick envelopes. Given the trend in the convergence plots, it
can be expected that further scaling will become infeasible.
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Figure 4.6: Optimality gap convergence with embedding sizes 6, 12 and 18, and 1 encoder layer

Scaling Depth
The following experiments examine the performance of the formulation for deeper transformer models.
Deep architectures are very common in ML applications as they allow for hierarchical features to be
captured by the model. For the TNN this means that more MHA and FFN components will be included
in the model. This can be problematic for optimisation as there will be a larger number of non-linear
and non-convex functions. Moreover, it drastically increases the number of decision variables since the
MHA layer has many high-dimensional matrices. These factors are expected to result in models that
have progressively more intricate search spaces and looser propagated bounds. Such models can struggle
to find feasible solutions and give rise to poor incumbents which is detrimental to solving. Therefore,
these experiments are run using the MIPFocus = 1 parameter which prioritises finding feasible solutions
over improving the objective bound.

In these experiments two trained TNNs with differing numbers of encoder layers (depth) are examined.
The No_MC and All configurations are selected for these experiments based on their performance in
previous experiments. Both of these configurations start with small initial gaps and are the fastest to
find initial feasible solutions. These characteristics are useful for solving larger models for which it is
harder to find feasible solutions, as was explained in the previous subsection. Moreover, these chosen
configurations allow for a better examination of the impact of the McCormick constraints which are
included in All but not No_MC.

An overview of the solve results can be found in Table 4.5. Interestingly, Table 4.5 indicates that the
TNN with an embedding size of 6 does not find a feasible solution within a time limit of 12 hours,
while the larger TNN with an embedding size of 12 reports a solve time of about 23 mins for both
configurations. It is unusual that the a smaller model will be intractable while a larger one solves.
These effects may be caused by the large number of binary variables that increases proportionately
with depth. The binary variables in combination with learnt parameters (which impact the propagated
bounds) appear to result in a search space that is difficult to traverse for the model with embedding
size 6 and depth 2.

Looking at the convergence plots in Figure 4.7, vastly different bounds can be seen for the two trans-
former models with embedding size 6. The model with embedding size 6 and 1 encoder layer has
significantly better best bounds that than the model with 2 encoder layers. This illustrates why there
is such a stark difference between their solve times.

The convergence plots for the model with an embedding size 12 are shown in Figure 4.8. For both
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Config E D Time # Nodes # Solutions Gap Objective
No_MC 6 1 14s 7.0× 103 3 9.80× 10−5 -12.498
All 6 1 10s 2.7× 103 2 6.80× 10−5 -12.498
No_MC 6 2 12h 0m 1.1× 107 0 inf NaN
All 6 2 12h 0m 8.7× 106 0 inf NaN
No_MC 12 1 54s 2.4× 104 3 9.90× 10−5 -15.711
All 12 1 1m 34s 4.9× 104 3 9.80× 10−5 -15.711
No_MC 12 2 23m 20s 2.8× 103 5 5.20× 10−5 -9.522
All 12 2 23m 11s 1.3× 104 3 9.90× 10−5 -9.523

Table 4.5: Results with varying embedding dimension (E) and encoder depth (D).

Figure 4.7: Optimality gap convergence with embedding size 6 and depths 1,2

depths, near equal solve times are achieved. The No_MC however finds more solutions than All for
the deeper TNN. The convergence traces again show a drastic change in best bounds for a depth of 2
whereby it takes to solver a much longer time to improve these values. The result of scaling the depth
by 2, is a solution time that is about 23 times longer. Therefore, it can be expected that larger TNNs
will quickly be infeasible to solve.

Overall, for an embedding size of 12 the addition of the McCormick envelopes (All) leads to tighter
initial bounds for a depth of 1 but a slightly slower solution time. However for a depth of 2, the solution
time for All is somewhat better than No_MC. This gives the impression that the McCormick envelopes
are more advantageous for harder problems. Nevertheless further experiments with deeper TNNs would
be required to better understand the impact of the McCormick envelopes scalability.
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Figure 4.8: Optimality gap convergence with embedding size 12 and depths 1,2

4.3. Reactor Case Study
4.3.1. Problem Definition
The reactor problem determines the optimal temperature (Tin) and pressure (Pin) required at the
reactor inlet to produce the maximum amount of methanol (ṅCH3OH) at the reactor outlet. The reactor
is modelled as a sequence of spatial components, starting from the inlet at position 0 to the outlet at
position L, using a trained TNN. The transformer takes the initial states (x0) as input and predicts
the amount of methanol at the outlet. This is more formally represented as shown in the reactor
optimisation problem below.

max
Tin,Pin

ṅCH3OH(L) (4.10)

s.t. ṅCH3OH(L) = TNN(x0) (4.11)
ṅCO(L) ≤ 0.02 (4.12)
450 ≤ Tin ≤ 550 (4.13)
62 ≤ Pin ≤ 68 (4.14)

The TNN model is trained on inlet data consisting of the temperature, pressure, and amounts of
various compounds in the reactor stream: carbon monoxide (ṅCO), carbon dioxide (ṅCO2), hydrogen
(ṅH2), methane (ṅCH4), methanol (ṅCH3OH), water (ṅH2O), and nitrogen (ṅN2). These variables make
up the dimensions of the input variable x, and are auto-regressively predicted at each segment of the
reactor.

The trained transformer model was implemented using the time-series transformer class from the
HuggingFace library. The model embeds the 9 input features to 64 dimensions and has two encoder
and two decoder layers. The architecture of this model is shown in Figure 4.9. It must be noted that
the FFNs in this architecture use the SiLU activation function, which is a smooth approximation of the
ReLU activation function.

4.3.2. Experimental Set Up
The reactor problem experiments are run for a fixed time-limit of 24 hours with the Gurobi solver
(v11.0.1). Three enhancement configurations are considered, namely the All, No_MC, and LN_Prop
configurations. The All configuration is chosen as it was shown to be adept at scaling to larger
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(a) TNN architecture for reactor problem with SiLU FFNs

Layers Count
Input 2
Linear 8
Residual 5L
Layer Norm 5L + 2
MHA 3L
FFN 2L

(b) Summary of components

Figure 4.9: Description of reactor TNN, where L denotes the number of encoder and decoder layers

transformer models in the verification problem experiments. While, this configuration is fairly fast a
finding an initial, No_MC is faster. No_MC is the fastest at finding an initial solution. Therefore, this
configuration could potential provide a feasible solution to the problem and give an idea of the optimality
gap early on. The last chosen configuration is LN_Prop. This configuration boosted the fastest solve
times for the optimal trajectory problem but was not advantageous for the larger models used in the
verification problem. The effectiveness of this configuration degrades rather quickly with size and as a
result it can give insight into the limits of the proposed formulation for encoder-decoder models.

The trained transformer model results in a formulation with the following size: This model has a

Cont Bin Int
179255 388 0

Table 4.6: The number of continuous, binary, and integer variables for the formulated reactor TNN

similar number of binary variables as the previously discussed verification transformer. However it has
considerably more continuous variables.
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4.3.3. Numerical Results
Encoder-Decoder TNN
The experiments in this subsection investigates the performance of a larger encoder-decoder transformer
applied as a surrogate model in a reactor optimisation problem. A summary of the solve results is
presented in Table 4.7. These results reveal that none of the proposed configurations are capable of
optimising the reactor problem or even finding a feasible solution within 24 hours.

Config Time # Nodes # Solutions Gap Objective
No_MC 24h 1.78× 103 0 inf 4.36× 10−2

LN_prop 24h 3.41× 103 0 inf 4.36× 10−2

All 24h 1.38× 103 0 inf 4.36× 10−2

Table 4.7: Solve results for reactor optimisation problem. Time is shown in hours.

Figure 4.10 depicts the convergence plots for these experiments. These graphs show that the best
bound remains constant throughout the solve process for all configurations. No conclusions can be
drawn about the best bound without knowing the optimality gap. Therefore it is not clear how good
this upper bound to the objective value is.

Figure 4.10: Optimality gap convergence for reactor transformer

Overall, these results emphasize the need for the transformer formulation to be further strengthened
and extended upon before it can be useful for realistic TNNs with multiple encoder and decoder layers.

4.4. Key Results
This section serves as an overview of the key experimental results from the previous case studies. The
optimal trajectory problem verified the correctness of the TNN and showed that the formulation alone
is too complex to be solved even for a small illustrative example. The proposed enhancements improve
solving efficiency and allow the for small formulated TNNs to be solved to global optimality. More work
is needed, however, to optimise over larger NNs.

The solve performance for the different configurations of enhancements varies depending on the problem
set up and TNN architecture. For smaller models, less complex enhancement configurations are more
advantageous. However, as the problem size grows, applying more bounds and cuts became necessary for
solving. In terms of problem set up, the initial domains of decision variables impacts the effectiveness of
the proposed enhancements. Therefore, it is important to choose complementary enhancements that can
help the solver. For example, if decision variables in the optimisation problem have large bounds then
applying propagated bounds may only worsen the bounds in the problem. Instead, fixed founds, outer
approximations or rescaling techniques can be used to ensure that the search space is not drastically
expanded.

The proposed fixed bounds and cut are shown to be mostly beneficial for reducing the initial gap but
are not very impactful in the later stages of solving. On the other hand the dependent bounds and
cuts can lead to exaggerated initial bounds but aid in faster convergence to the optima. Nevertheless,
scaling the larger and deeper transformers remains a challenge.
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The main challenges in scaling these formulations to larger NNs are tight initial bounds and the in-
ability to quickly find improved solutions. In many cases the propagated bounds lead to vast over
approximations and create large search spaces. While some of the proposed bounds and cuts in the
configurations help to mitigate against these effects, further work is required to construct tighter bounds
for the continuous variables. For instance by using function approximators to construct bounds like
the bi-linear McCormick envelopes. Furthermore, even though there are fewer binary variables than
continuous, these variables lead to a significantly more intricate search space which greatly dimished
scalability. Thus it would be beneficial to eliminate them from the formulation. This can be done, for
example, by reformulating the max-normalised softmax function using a disjunctive approach rather
than a Big-M approach.



5
Conclusions

In this section the outcomes in relation to the research question are outlined. Subsequently, possible
future research directions are described.

5.1. Research Outcomes
In this work, the first mathematical optimisation formulation for a trained TNN is proposed (Section
3.1). To create this formulation, each component of the Vanilla transformer [57] is studied. The purpose
of each layer, as well as the operations they apply, are presented in Section 2.1.2. The operations of
the trained model are used to derive the proposed formulation in a manner which ensures that both
models give the same result. This design choice was made so that the behaviour of the trained TNN
would be preserved by the optimisation TNN. Thus the ML model can be converted to an optimisation
model without a need to reverify its performance. The choice to preserve exactness of the models,
leads to a non-convex MINLP formulation which is typically difficult to solve to global optimality.
Simpler formulations could be established using convexification or linearisation techniques, but this
would develop an optimisation TNN that only approximates the behaviour of the trained model.

In Section 4.1, a small TNN and a simple optimal trajectory problem are chosen to assess the formulation
strategy. The results illustrate the complexity of the formulation, showing that in such a simple context
the TNN cannot be optimised within 3 hours using the Gurobi solver. Thus, state-of-the-art solvers
alone are not sufficient to optimise over the formulated TNN.

In the hope of solving the optimal trajectory problem, enhancements are proposed to aid the solver in
its search. These enhancements focus on reducing the search space by excluding infeasible regions. Each
layer of the TNN is examined to determine how information about its operations can be leveraged to
create informed cuts or to reduce the bounds on variables. Other weaker bounds are also generated using
bound propagation and interval arithmetic. Furthermore, concave and convex outer approximators for
the dot product and softmax operations are applied as a way to strengthen variable bounds. These
techniques are presented in Section 3.3.

In Section 4.1 various subsets of the proposed bounds and cuts (configurations) are applied to the
optimal trajectory problem. Given the nature of non-convex MINLP problems, adding new bounds and
cuts can increase the intricacies of the search space by introducing more local optima. At the same time,
the enhancements can reduce the search space leading to fewer solve iterations and faster optimisations.
These experiments aim to understand the subtle balance between computational complexity and solving
efficiency when optimising over a TNN. The following key results are found.

First, the enhanced configurations, with the exception of No_MC, allow for the optimal trajectory problem
to be solved to optimality. In the best and worst case the optimality gaps are 0 and 3.97 × 10−1.
Moreover, the initial best bounds are improved to be equal to the optimal solution. This indicates that
by including the proposed enhancements, the solving efficiency of the formulation can be improved.

Nevertheless, the added benefit varies for each configuration. The configurations show a range of run
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times between 6 mins to reaching the time limit of 1 hour. Furthermore, some explore almost 10 times
more nodes before finding the optimum. The degradation in solve performance is found to be related
to overly restricting the values of specific variables. In cases where multiple enhancements are applied
to limit a variable’s domain, it must be carefully considered how these enhancements interact and if
all of them are necessary. As such, it would be beneficial to explore the enhancements added to the
multi-head attention layer in greater detail. Currently, the groupings of enhancement configurations
are too large. At this time, experiments are limited to either adding few enhancements or adding many
restrictions to the same variables in the MHA components. It would be interesting to further investigate
what would be the best combination of enhancements to achieve a small initial gap and frequent feasible
solutions, thus enabling fast convergence to the optima.

The results showed that configurations with a combination of fixed bounds and propagated bounds
performed better than other configurations. The fixed bounds were shown to be associated with smaller
initial gaps, and infrequent improved solutions. On the other hand, the propagated, especially the tighter
McCormick-based ones, were found to be associated with more frequent improved bounds which led
to progressively smaller gaps. Some constraints, like the summation of attention weights to 1 did not
provide any noticeable improvements and should be removed from other configurations to reduce the
unnecessary complexity of this combinatorial constraint.

The proposed enhancements are capable of improving the search efficiency for small encoder-only trans-
former models. For 1 encoder layer, models with up to 18 embedding dimensions and for 2 encoder
layers, models with up to 12 embedding are optimised. Still further work is required before larger NNs
can included in optimisation problems. The main challenge comes from the lack of feasible solutions.
Therefore, more cuts should be constructed to exclude infeasible regions from variable bounds, espe-
cially for the non-linear and non-convex functions. This work also constructed outer-approximations for
the softmax function which were not examined in detail during experiments. It would be interesting to
investigate these outer-approximation constraints as they could potentially help to solve larger models
despite their high computational overhead.

5.2. Limitations
This research is limited in the following ways. One limitation lies in the exploration of the various
proposed configurations. The current analysis of does not sufficiently explain interactions the interplay
between various proposed bounds and cuts. Thus few recommendations can be made about useful
combinations of enhancements. On the other side of things, the formulation may contain constraints do
not aid in solving but add unnecessary complexity. A more extensive analysis would be beneficial to give
a better understanding of what techniques would be promising to further strengthen the formulation.
A useful approach for investigating this is full factorial analysis of variance.

Furthermore, the decoder component has slightly different mechanisms than the encoder. However, no
clear examination of these differences and their impact on solving are presented. Given that there is
a masking component in the decoder which sets some variables to 0, this can effectively reduce the
number of decision variables the solver needs to determine. Therefore, it may be more tractable to
optimize over larger decoder-only TNNs.

Another limitation is that the optimal trajectory and verification experiments may provide misleading
optimisation results. The input values to these transformers are not restricted to be in a range close to
the training data. Since ML models only capture relationships in the training data, therefore they are
poor at extrapolating to data points that are significantly different to the training instances. This leads
to modelling errors and unrealistic solutions. Yang, Balaprakash, and Leyffer (2022) provide methods
for designing optimisation models with NNs that don not make predictions far outside the range of
their training data [61]. It is imperative that formulated NNs include such techniques in order to avoid
modelling errors.

5.3. Outlook and Future Work
Further research is still required to create a TNN formulation that solve more realistic scenarios with
larger TNNs embedded in harder problems. This work shows that the size of the TNN both in embedding
dimension and depth greatly diminishes solve efficiency. The main challenge is that the formulations
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complexity and general lack of strong bounds makes it difficult to find feasible solutions. The main
sources of complexity are the FFN and MHA layers. In terms of the FFN, other existing formulations
could be investigated. For example, the partition-based formulation [56] could be used to balance the
complexity and tightness of the FFN to improve the ability to find feasible solutions.

The MHA layer introduces a large number of continuous and binary variables into the model many of
which are part of non-linear functions. Therefore, the complexity of this layer should be reduced. Binary
variables can be removed by reformulating the max-normalised softmax function to use disjunctive
constraints instead of the Big-M method. Furthermore, tight approximations or envelopes would be
beneficial in reducing the search space by removing infeasible regions. This not only leads to fewer nodes
to examine in the search tree but makes it easier for the solver to find feasible solutions. Furthermore,
alternative formulations of the MHA layer can be investigated. For example, using a reduced space
formulation techniques [45]. In this way the complexity of the MHA layers could be hidden from the
solver and it would be easier to optimise over deeper TNNs.

Another avenue to research would be to investigate dynamically adding the proposed enhancements to
the model. The results in the reactor case study show that after some time the bounds stagnate around
the optimal solution and no further solving progress is made. It could be interesting to investigate the
addition of more constraints at this stage. If a dynamic setting is used, less constraints could be used in
the beginning to speed up solving, and then more complex constraints could be supplied when the gap
stagnates (e.g., the softmax approximators). This would provide additional information to the solver,
hence increase model complexity, only when it is necessary. These so called “lazy constraint” techniques
have been proven to be beneficial and are already included in many MINLP solvers [31].

Besides the investigation of new formulation approaches, future research could consider pruning of TNNs
as a means to optimisation over larger models. Using sparse networks can reduce the embedding size at
various stages in the transformer, which would make the model easier to solve. This could then lead to
less complex deeper models and potentially extend optimisation to more realistic TNNs. One drawback
could be a reduction in predictive performance. However, experiments by Jaszczur et al. [27] report
that sparse TNNs show comparable predictive abilities which indicates that this could be a promising
approach.

Lastly, research could investigate in more detail the impact of TNN architecture on optimisation perfor-
mance. Given that there is still no standard architecture used for this model, it would be worthwhile to
investigate how to structure TNNs for optimisation. For example, encoder-only architectures without
positional encoding components have no information about the ordering of sequence elements. As such,
every ordering of the same input values should lead to the same result, resulting in an unnecessarily
large search space. Symmetry breaking cuts can be used to reduce the search space by enforcing a
non-decreasing ordering of sequence elements. This applies a similar approach as outlined in [64], which
was shown to significantly reduce the search space for GNNs. It must be noted that such a TNN would
not be applicable for cases where sequence ordering is of high importance (e.g. time-series modelling)
or for TNNs with decoder components, due to their casual masking in the masked multi-head attention
layer.
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A
Academic paper

Title: Mixed-Integer Non-Linear Formulation for Optimisation over Trained Transformer Models

Abstract: Neural networks (NNs) have become indispensable tools across various disciplines for pre-
dicting future outcomes. Recent works propose a new use case for these models which determines the
inputs required to achieve a desired future outcome. To this end mathematical formulations for NNs
are designed to be used in optimisation problems. Promising results have been achieved for various
NNs, the Transformer Neural Network (TNN), a state-of-the-art model known for its multi-modal capa-
bilities and exceptional contextual understanding—remains, unexplored in this context. This research
develops an efficient mixed-integer non-linear formulation for a TNN, enabling the use of TNNs for
decision making. The proposed formulation is evaluated on three case studies consisting of an opti-
mal trajectory problem, a verification problem, and a reactor optimization case study. Results show
that optimisation over small TNNs can be achieved in under 3 minutes. However the tractability of
the formulation quickly vanishes for larger models, highlighting the complexity optimising over the TNN.
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