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Abstract

Organizational and political responses to strategic surprises such as the credit crunch

in 2008 and the pandemic in 2020 are increasingly reliant on scientific insights. As a

result, the accuracy of scientific models has become more critical, and models have

become more complex to capture the real‐world phenomena as best as they can. So

much, so that appeals for simplification are beginning to surface. But unfortunately,

simplification has its issues. Too simple models are so generic that they no longer

accurately describe or predict real‐world cause‐effect relationships. On the other

hand, too complex models are hard to generalize. Somewhere on the continuum

between too simple and too complex lies the optimal model. In this article, the

authors contribute to the ongoing discussion on model complexity by presenting a

logical and systematic framework of simplification issues that may occur during the

conceptualization and operationalization of variables, relationships, and model

contexts. The framework was developed with the help of two cases, one from

foresight, a relatively young discipline, and the other from the established discipline

of innovation diffusion. Both disciplines have a widely accepted foundational

predictive model that could use another look. The shared errors informed the

simplification framework. The framework can help social scientists to detect possible

oversimplification issues in literature reviews and inform their choices for either in‐

or decreases in model complexity.

K E YWORD S

complex causal models, foresight, innovation diffusion, innovativeness, oversimplification,
weak signals

1 | INTRODUCTION

Predictive models are a balancing act between a valid representation

of complex real‐world phenomena and well‐focused research by

isolating (parts or dimensions of) phenomena. Unfortunately, despite

the rigor applied to model development, focus and isolation can lead

subsequent research into an implicit downward spiral towards severe

oversimplification.

Individual studies develop models on the shoulders of their

predecessors, but sometimes lose sight of the older model variants’

contextual limitations or incomparable operationalizations. At the

level of overarching theory, a string of small, justifiable simplifications

can lead to myopia, confusion, and, at its worst, wrong notions. The

social sciences exhibit several examples of such oversimplification

strings, and two of them underpin the theoretical simplification

framework detailed in this paper. Both cases deal with real‐world
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foresight: the first looks at strategic intelligence in the shape of weak

(paradigm unrelated) signals, and the second at strategic insight into

the adoption of innovations.

Since the mid 20th century, policymakers have turned to science

for insights into and solutions for societal challenges. In our century,

governmental and organizational responses to climate changes, the

pandemic, or the invasion of Ukraine made the direct links between

science and politics all the more visible. Such direct links emphasize

the significance of the real‐world validity of research and, thus, the

significance of avoiding oversimplification. The simplification frame-

work can be seen as an urgent and relevant step in addressing

problems with real‐world validity.

The framework took a basic or foundational model to develop a

catalog of simplification steps. The basic model presents the

relationship in which one phenomenon affects another. It distin-

guishes between a variable representing a phenomenon acting as a

cause, a variable representing a phenomenon acting as an effect, a

link between variables representing the effect from one phenomenon

on the other, and the context in which the model applies (see

Figure 1).

Such models represent a foundational component in efforts to

explain and predict phenomena. Phenomenon 1 as represented by

variable V1 can thus be used to explain or predict phenomenon 2 as

represented by variable V2. But such models can also simplify real‐

world complexity in its three components: phenomena, relationships,

and context.

Firstly, single or few dimensionally defined variables may in

reality represent multi‐dimensional phenomena. In cases of over-

simplification, the reduction of dimensions is too severe and

unintentionally hides significant dimensions, incompleteness, or

overlap of dimensions.

Secondly, when a relationship between phenomena is modeled

as a one‐sided linear effect, the actual relationship may be two‐sided,

involve multiple relationships between different dimensions of

phenomena, or be nonlinear. Oversimplified relationships can

unintentionally hide significant facets of a much more complicated

relationship from view.

Finally, if models are presented in splendid isolation, the actual

issue under study may be contingent on contextual conditions not

included in the representation. When oversimplified, isolated models

omit significant information like moderating and mediating variables,

joint causes, multiple consequences, and limitations that emerge from

different contexts.

The balance between real‐world complexity and model focus is

settled during the conceptualization, operationalization, and valida-

tion stages. Each stage is completed with academic rigor. In scientific

research, our shared methods to arrive at models are careful,

conscientious, and covered with explicit model limitations and

caveats. In addition, the rigorous methodological rules give us the

confidence to select and combine model parts to induce our model.

We strive for elegance: to find the most straightforward model that

accurately depicts deep insights and is uncomplicated to test. Peer

review does a final check on the quality of decisions made.

Nevertheless, individual acts at the level of conceptualization and

operationalization of phenomena, relationships, and contexts can,

over time, still lead to a model unable to reveal the insights we seek,

despite passing validation tests.

In the next section, we will briefly discuss the ongoing

discussions about the optimal complexity of models and explain

our choice to develop the framework for two distinct cases

(Section 2). The first case is from the research domain of

managerial foresight. The second example is from the domain of

innovation diffusion. Both domains work hard to develop predic-

tive models as a decision‐making means. In Section 3, the two

cases are discussed per framework component (phenomenon,

relationship, and context) and stage (conceptualization and

operationalization). In Section 4, the cases’ issues were inductively

extrapolated into a framework (Section 4, Table 2). Conclusion and

discussion are in Section 5.

2 | BACKGROUND

The need for a simplification framework emerged from the ongoing

discussion about model complexity. Supporters and opponents of

complex models try to find the optimal level of complexity that makes

a model easy to understand yet still accurate and informative about

the underlying real‐world phenomenon. For example, a very complex

model may merely inform on one, highly context‐specific situation,

while a straightforward model may not be accurate enough to explain

and predict any real‐world phenomenon (Del Giudice, 2021; Perkins

& Grotzer, 2005). In other words, both overcomplicating and

oversimplifying models have tradeoffs, and the solution is finding

the optimal level of complexity to minimize both tradeoffs. The

optimal level sits between the upper extreme of individual models for

each situation or innovation and the lower extreme of the broad,

F IGURE 1 A model of phenomenon 1 serving
as a cause (represented by variable V1),
phenomenon 2 serving as an effect (represented
by variable V2), and the effect from phenomenon
1 on phenomenon 2 (represented by relationship
V1‐V2).
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untestable general law and gravitates around the combination that

still refers to real world phenomena but can be quantitatively tested.

Problems with modeling have been explored for many types of

advanced models like longitudinal growth models (Bliese &

Ployhart, 2002), structural equation models (Landis et al., 2000), or

models with multiple mediation paths (Taylor et al., 2008), to the

point that appeals to reduce model complexity are appearing (Saylors

& Trafimow, 2021; Schoenenberger et al., 2017). Unfortunately,

insights on avoiding oversimplification are difficult to find. Primarily,

insights draw attention to specific types of oversimplification, like the

lack of explicating model boundaries (Busse et al., 2017) or problems

with integrating mediation and moderation effects (Hayes, 2012;

MacKinnon, 2011). A generic framework of issues could have tactical

value as a useful checklist for researchers and practitioners using, or

developing models to be conscious of potentially misleading

simplifications or complications. Therefore, we aim to bring a

coherent perspective on simplification issues to contribute to the

discussion of optimal model complexity and to provide indicators that

warn against errors at the oversimplification end of the balance

between oversimplification and overcomplication.

The current thinking on oversimplification in scientific literature

is severely fragmented and disjointed. Therefore, we chose to

develop a framework inductively. Following the seminal work of

Eisenhardt and Graebner on using cases for theory building

(Eisenhardt & Graebner, 2007; Eisenhardt, 1989), we chose to

explore two diametrical cases.

We selected two case studies from two distinct disciplines that

can be seen as different in field maturity, yet both include a broadly

accepted two‐variable model. Using an established and nascent

discipline reduced the likelihood that the classification emerged as a

side effect of either maturity level. Using broadly accepted models

may help readers follow our inductive logic. Using the most basic

model of two variables and their relationship allowed for more

straightforward problem exploration. Results can then serve as a

reference for exploring more complex models.

The first case describes modeling problems in weak signals (weak

signals are paradigm unrelated strategic information) from the

domain of strategic foresight. The second case describes modeling

problems of the innovativeness phenomenon from the field of

innovation diffusion. These cases represent the opposite poles of

research domains. Strategic foresight is a relatively young domain

with fluid paradigms that are hardly separated from its multi-

disciplinary origins. Innovation diffusion is a mature, clearly demar-

cated domain with fixed paradigms. Nevertheless, analysis of the

cases resulted in the emergence of the same issues, suggesting that

these were generalizable across organizational and managerial

research disciplines.

The domain of strategic foresight aims to find robust ways to

predict changes in the organizational environment and their impacts

on organizations. One of its research lines focuses on detecting the

earliest signals of a change. As a change emerges in the organizational

environment, it emanates signals in the shape of ambiguous,

incomplete, and sometimes (partly) erroneous information. In the

eyes of outsiders, such signals are weak because they are more or

less unrelated to their paradigms and thus difficult to detect and

interpret.

One of the first studies on the phenomenon was done by

Ansoff (1975), who also coined the term “weak signal”

(Ansoff, 1975, p. 23). He described the relationship between the

emergence of a change and the progression of knowledge of that

change within strategic planning processes (Ansoff, 1979). Weak

signals would become less weak over time, as more becomes

known about the change, until it is perfectly understood. At that

point the signal was called strong.

The idea still stands and has been enriched with research into

methods to elicit weak signals (Thorleuchter & Van den Poel, 2015;

Yoon, 2012), barriers to signal detection and interpretation (Ilmola &

Kuusi, 2006; Lesca et al., 2012), ways to increase the accuracy of

signal interpretation (Kaivo‐oja, 2012; van Veen et al., 2019), and the

link between signal interpretation and organizational behaviors and

performance (Battistella, 2014; Rohrbeck & Kum, 2018).

Although this theory is seen as the foundation of modern

research into strategic foresight and planning (Holopainen &

Toivonen, 2012), there is a lack of consensus about the phenomenon

it describes (van Veen et al., 2021). One of the models describing the

effects of weak signals is the relationship between signal weakness

and interpretation speed (see Figure 2). Imaginably, this effect is

different for the various explanations of weakness, which range from

vague pressures that loom but cannot be enacted (King, 1984) to

knowledge in the shape of threats or opportunities that can be

enacted right away (Schoemaker & Day, 2009).

The lack of consensus on the conceptualization and operationa-

lization of the weak signal phenomenon not only leads to first‐order

problems like confusing results but also to second‐order problems for

both foresight academics and practitioners. Lack of consensus

emerges from the abundance of weak signal definitions

(Rossel, 2011). Definitions no longer always refer to the same

phenomenon, which hinders the combining of findings into new

F IGURE 2 A positive linear relationship
between weak signals (cause) and the effect of
weakness on interpretation speed.
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theory (van Veen et al., 2021). We see two problems emerge from

that point:

Firstly, when academics and practitioners use insights and

methods from academic research to make sense of weak signals,

they should be able to rely on insight and method soundness.

Unfortunately, the lack of consensus and thus of validation means

that they have no way of checking that soundness. Therefore, they

have no way of knowing if there are blind spots to overcome in the

identification of weak signals and how to do that effectively and

efficiently. There is excellent work done by Rohrbeck and Kum

(2018) that shows that firms who match foresight efforts to the level

of uncertainty in their environments outperform, and when firms

oversimplify or overcomplicate, they underperform. These findings

imply that a correct conceptualization and operationalization of weak

signals is crucial for competent foresight research and practices.

Secondly, when academics build on Ansoff's theory on strategic

surprises, they should be able to rely on and build with results that

reflect real‐world phenomena. Oversimplification limits that. For

example, most research on weak signals does not discriminate

between weakness levels like Ansoff did, which led to a bias that

favors medium level weakness. We do not know if our insights in

managing strategic surprises are true for severely weak signals.

Hence, with all respect for the efforts in the nascent field of

foresight and the rolling insight that goes hand in hand with the

maturing of the field, considerations for oversimplification should be

part of its instrumentarium.

Now our attention turns to the mature domain of innovation

diffusion. In contrast to the work on weak signals, innovation

diffusion is an old and well‐established scientific domain. Ideas about

diffusion as a social phenomenon were formulated by the sociologist

Tarde in the 19th century for example (see Kinnunen, 1996). Initially,

in the first half of the 20th century, different disciplines separately

worked on diffusion research without knowing each other and thus

different traditions in terms of variables and models emerged (Katz

et al., 1963). Later, in the second half of the 20th century, a multi‐

disciplinary theory of diffusion of innovations was developed. One of

the central authors of this theory is Rogers, who first published the

theory in 1962. His book, “Diffusion of Innovations,” soon became

the norm for innovation diffusion researchers and practitioners alike

(Rogers, 1983). Diffusion of innovations became a comprehensive

theory involving different levels of analysis and different parts that fit

together. The theory involves a macro level studying the diffusion of

an innovation in society, a meso level focusing on subsequent groups

of customers (adopters) and a micro level studying the adoption

process followed by individuals. Each level involves multiple models.

On the individual level, for example, the stages in the process of

adoption by individuals were studied (Ettlie, 1980) and criteria by

which potential adopters can evaluate innovations (e.g., Ostlund,

1973, 1974). All the models on different levels of analysis combine

and thereby form one of the most established and comprehensive

theories in social science. The adoption processes of individuals add

up to form diffusion in groups, which in turn add up, forming a

diffusion curve, and hence the levels fit together. Yet, even in this

domain simplifications emerged that impair validity. These simplifica-

tions can be partly traced back to the origins of the domain.

Rogers was a graduate student of Ryan and Gross, two

agricultural sociologists, who initiated a basic part of the diffusion

model already in the 1940s (Ryan & Gross, 1943). Their work was to

explore the diffusion of a particular case in a specific context: the

diffusion of hybrid corn in the 1930s in the USA. Upon closer

inspection, it also seems that the context in which hybrid corn

diffused was very specific and hardly generalizable to the context of

radical innovations in general. Hybrid corn was dominant in price/

performance (radical innovations seldom are dominant from the

beginning onwards), the potential adopters, farmers, were well‐

known (potential adopters of radical innovations are often hardly

known), and the innovation could be tried by farmers on a limited

basis each year (while other innovations suffer from a legacy and

unmet infrastructural and institutional requirements that make them

difficult to try on a limited basis). These conditions were meticulously

described by Ryan and Gross (1943). We conclude that the context

that shaped the initial model was more of an exception rather than

widely generalizable to radical innovations.

The adoption of the innovation hybrid corn by farmers refers to

research explaining diffusion almost exclusively in terms of demand‐

side phenomena, which is understandable because that was the

bottleneck at that time. The demand‐side phenomena were further

narrowed down by focusing on the characteristics of potential

adopters. The focus allowed diffusion scholars to separate innova-

tors, early adopters, early majority, late majority, and use these

subgroups to explain the emergence of the diffusion curve (Ryan &

Gross, 1943). Hence a subdomain emerged in diffusion research that

focuses on the characteristics of subsequent groups of adopters of an

innovation, aiming to find what characteristics set innovative

individuals apart (e.g., the ones adopting an innovation relatively

early) (See Dedehayir et al., 2017). This was highly relevant from a

practitioner's perspective because predicting the first groups of

adopters for a radically new innovation is a difficult step (e.g.,

Tauber, 1975).

So, over time, a simplified model of the original comprehensive

and well‐founded theory of diffusion of innovations became popular.

In this model the innovativeness of individuals is assessed in terms of

their characteristics, and this innovativeness in turn is used to predict

(the timing of) adoption of an innovation by individuals with these

characteristics (see Figure 3).

This model formed the basis for hundreds of research projects, all

over the world, exploring characteristics of individuals adopting

innovations (for an old overview see Engel et al., 1990; for a more

recent overview see Dedehayir et al., 2017).

Figure 3 is straightforward but hides much confusion on what

defines the innovativeness of individuals, how to measure it, and how

context‐specific the model is. Many different definitions and

operationalizations of the variables “innovativeness of individuals”

do exist. Innovativeness of individuals is sometimes measured in

terms of a psychological scale, in practice referring to a set of 5‐point

or 7‐point items in a questionnaire. Many different scales can be
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distinguished (Bearden et al., 2011). Innovativeness is sometimes

inferred from specific personal characteristics, like level of education,

age, and so on. Adoption is often defined and assessed as

“buying.” Although, even for that fairly straightforward variable,

different definitions and operationalizations exist (Damanpour &

Schneider, 2006). Some see adoption as “buying,” others see

adoption as “implementation” or “putting into practice.”

Engel et al. (1990, p. 709–712) provide a comprehensive

overview of all relevant studies exploring which independent

variables describing (potential) customer characteristics relate to

early adoption. Per variable the number of studies supporting a

relationship between that variable and early adoption is tabulated.

The percentage of a relationship varies a lot indicating a rather weak

relationship.

In short, the weak signal model and the innovation diffusion model

are generally accepted and serve as a foundation for overarching

theories. Closer analysis will reveal the oversimplification within these

models and how that could lead to errors in theory (see Section 3).

Both models represent cause‐effect relationships between (sets

of) variables representing a real‐world phenomenon. The models

have one variable causing an effect on one other variable, claimed to

occur independently from the model context (Wright, 1921). Vari-

ables, relationships, and context are three essential model compo-

nents, and each one can be simplified. Simplification becomes

oversimplification when the model no longer represents the real‐

world phenomenon it refers to.

Furthermore, simplification can occur in two stages: model

conceptualization and operationalization. Conceptualization refers to

how phenomena, relationships, and contexts are represented and

defined in a model with variables and effect relationships. Oper-

ationalization describes how the variables and their effects are

measured and assessed empirically. Oversimplification can stem from

both overly simple definitions and measurements.

The following section will discuss the two cases per framework

component (variable, relationship, and context) and stage (concep-

tualization and operationalization).

3 | TWO CASES INFORMING THE
FRAMEWORK OF MODEL SIMPLIFICATION

Table 1 presents the main conclusions on the challenges associated

with each component and phase of the cases’ models. It starts with

the conceptualization and operationalization of variables that depict

the phenomenon (rows 1 and 2), proceeds to the relationships among

variables (rows 3 and 4), and concludes with the context of the model

(row 5).

It could be argued that a model is at its most advanced state

when it represents a universal law. The collective studies on

context specific models are supposed to bring it closer to

universality. Model refinements, limitations, moderating and

modifying variables are the scientist's tools to advance models to

universal validity.

In the two cases, one on weak signals from the relatively young

discipline of strategic foresight, and the other on innovativeness from

the established discipline of innovation diffusion, a broadly accepted

two‐variable model appeared to be rife with problems of

oversimplification.

In the conceptualization of weak signals and innovativeness,

the factors describing the phenomenon are not easy to dis-

entangle, let alone isolate. Despite conceptual unclarity,

the definitions are incredibly focused to assist academic study,

and in these two cases that resulted in at best inconsistent

definitions.

Moreover, the operationalization of these concepts often fails to

capture the real‐world phenomenon. The dynamic, continuous nature

of weakness is reduced to a static dichotomous variable, that

obscures the nonlinearity of the phenomenon. Measuring innova-

tiveness post hoc could also point to the mere act of adoption of an

innovation rather than an innate trait, and co‐occurring operationa-

lizations like education level can obscure actual effects of innova-

tiveness more than enlighten it when their effects depend on

innovation type.

In both cases, the oversimplifications of variables and relation-

ships has led to confusing and contradictory results, while individual

studies passed statistical tests and other validation challenges. In the

field of innovativeness, the tendency to oversimplify the character-

istics of innovators and the adoption process resulted in weak and

non‐generalizable research findings.

For weak signals, subsequent studies do not account for the

contextual differences of the phenomenon, but it is quite

imaginable that studying the weak signals of emerging financial

crises differs from those precursing a pandemic. In innovative-

ness, disregarding contextual sectors like, for instance,

supply, demand, or guiding institutions is likely to incur

considerable blind spots and provides reasonable doubts about

the level to which results of different studies can be combined

and compared.

F IGURE 3 “Innovativeness of individuals”
(represented by variable V1) affects (relationship
V1‐V2) the adoption of innovations (represented
by variable V2).
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4 | SIMPLIFICATION FRAMEWORK

Individual studies are steps in the scientific journey towards more

profound knowledge and theory building. Model simplification in one

step can lead to issues when left unchecked in the next step. After

several of those unchecked steps, our shared knowledge and theory

suffer from severe oversimplification and thus diminishes in quality

and functionality. A framework describing when, where in the model

and how much oversimplification has occurred can help researchers

check their work more efficiently for this problem.

Table 2 gives a helpful overview of simplification issues in three

ways. Firstly, by reading the table from left to right, researchers can

check new models for oversimplification per model component,

stage, and captured complexity level (Section 4.1). Secondly, by

reading the table from right to left, researchers can detect possible

oversimplification in existing models by its symptoms in literature

reviews (Section 4.2). Finally, reading column 3, researchers can

determine their model's complexity level. By plotting a model in

column 3, researchers can deliberately decide if the chosen level does

justice to the real‐world situation the model represents or if model

complexity should move up or down one or more levels (Section 4.3).

4.1 | Checking new models for oversimplification

Reading Table 2, columns 1–3, from left to right, researchers can

check new models for oversimplification per model component,

stage, and captured complexity level.

TABLE 1 Main conclusions on oversimplifications in the cases weak signals and innovativeness.

Weak signal Innovativeness

Phenomenon
conceptualization

The phenomenon “weak signal” has been captured in at
least 60 definitions that partly overlap, but the overlapping
factors vary broadly (van Veen et al., 2021), which indicates

conceptual confusion.

A conceptualization issue is that the “innovativeness”
phenomenon is seen sometimes as an innate trait, but logic
dictates that it can only be innate if the trait is not product‐
category specific. However, the same individual can adopt
one innovation and disregard or reject another, so the
phenomenon is more complex and found to be product‐
category‐specific (Dedehayir et al., 2017; Engel et al., 1990).

Variable
operationalization

Despite the accepted notion of weakness as a dynamic and
continuous phenomenon, variables representing weak
signals are foremost dichotomous and static (Ilmola &

Kuusi, 2006; Schwarz et al., 2014).

Product‐category specific innovativeness is often seen as a
multi‐dimensional construct yet the dimensions vary widely
and so does the operationalization (Bearden et al., 2011).

Relationship
conceptualization

The accepted linear relationship between weak signals and
interpretation or search characterizations was upended by
a study using different levels of weakness (vanVeen, 2020).

Considerable research effort to distinguish statistical
relationships between consumer characteristics (representing
individuals’ innovativeness) and early product adoption only
led to weak and hardly generalizable results. This may be

caused by oversimplifications during relationship
conceptualization. The mechanisms by which product
category‐specific innovativeness have an effect on adoption
are hardly unraveled (Dedehayir et al., 2017).

Relationship
operationalization

Study results pointing towards a linear relationship
between weak signals and i.e. search or interpretation
passed statistical tests and were validated by later studies,

which indicates that oversimplification can remain
obscured despite academic rigor (van Veen, 2020).

A lack of conceptualization of the relationship between
innovativeness and adoption has its consequences for
operationalization of the relationship. If product category‐specific
“innovativeness” is measured in terms of its consequence i.e.,
innovation adoption, then the relationship is altogether ignored.

Context Research on weak signals gets triggered by system shocks
and the wish to anticipate the next one as soon as possible.
These shocks differ from natural disasters to political,

economic, and societal discontinuities. Although the
phenomenon under study always disregards the shock and
concentrates on how we can anticipate new shocks early, it
cannot be ruled out that a shock's domain influences the

model we study.

Contextual phenomena play an important role in adoption and
diffusion processes. It is interesting to see that fast diffusion
requires conditions to be optimal in the entire market system:

on the supply side, the demand side, and the guiding
institutions in a context where the supply‐ and demand‐side
actors operate. Focusing on the demand‐side and neglecting
all supply‐side and other contextual variables makes the

results of innovation diffusion research incomparable to

contexts that are different from the initial context in which
the model was described (Dedehayir et al., 2017).
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TABLE 2 Classification of issues in model oversimplification.

Component Stage
Issues in increasing levels of model
complexity Symptoms in literature

Phenomena
Choices about how to represent a

phenomenon with variables:

variable development and

measurement.
Please find examples in sections

3.1. and 3.2.

Conceptualization
Are different (subsets of)

dimensions required to describe
the phenomenon accurately?

1. The phenomenon can be
described with an obvious one‐
dimensional variable.

2. The phenomenon should be
expressed in multiple
dimensions but is

conceptualized as
one‐dimensional.

3. Phenomenon intricacy should
result in multiple overlapping
variables but is conceptualized

in one variable.
4. The phenomenon should be

comprised of multiple partly
overlapping multi‐dimensional
variables.

Direct indicator:
• An abundance of definitions

emerges in the literature.
Definitions cannot easily be
combined.

• Different variable names are
proposed for the same

phenomenon.
• Different conceptualizations are

proposed for the same variable.
• Different disciplines focus on

different dimensions of a

phenomenon, raising validation
concerns.

Indirect indicator:
• Review articles ask for

conceptual clarity in defining

phenomena.

Operationalization
Are different items required to
measure a phenomenon
accurately?

1. A single one‐dimensional scale
suffices.

2. A multi‐dimensional scale is
required to capture different
phenomenal aspects, but a one‐
dimensional scale is used
instead.

3. The variables should be
measured with multiple
overlapping (linked) scales to

account for the underlying
phenomenon's entire behavior.

4. The variables should be
measured with multiple
overlapping (linked) multi‐
dimensional scales to account
for the underlying
phenomenon's entire behavior:
The measurement affects

relationships that can be
assessed empirically, e.g., a
binary variable can never lead
to a curvilinear relationship.

Direct indicator:
• Many different ways to measure

the phenomenon emerge in the
literature (even for similar
conceptualizations).

• The scaling of the variable does

not reflect the levels in the
phenomenon.

• The operationalization of the
variable is mixed up with

consequences of the variable or
with co‐evolving aspects of it.

Indirect indicator:
• Review articles ask for

consistency in measuring
variables.

Relationship
Choices about how variables

affect each other: relationship

direction and linearity.

Please find examples in

sections 3.3. and 3.4.

Conceptualization
Can different relationships be
hypothesized between the same
phenomena in terms of direction

and or linearity?

1. A single one‐directional linear
relationship suffices.

2. Different dimensions can lead
to varying relationships in terms

of direction and or linearity.
3. The direction of a relationship

(cause‐effect) is mis‐specified,
for example, two‐sided versus
one‐sided causality, covariation

versus causality.
4. Multiple relationships are

responsible for the behavior of
related phenomena in

different ways.

Direct indicator:
• Different disciplines build up

their models around the same
phenomenon.

Indirect indicators
• Siloed disciplinary perspectives

and review articles ask for
interdisciplinary collaboration.

Operationalization
Are different statistics required to
reveal the true nature of

1. The method is accurate.
2. The method assumes a

particular type of relationship,

Direct indicator:
• Within the same discipline,

empirical results regarding the

(Continues)

VAN VEEN and ROLAND ORTT | 7 of 13

 25735152, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.184 by T

u D
elft, W

iley O
nline L

ibrary on [28/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Table 2 separates models into three components in which

simplification can occur. Firstly, complexities in the model

phenomena (row 1), secondly in the relationship between

phenomena (row 2), and finally in the model context (row 3).

Issues can occur during two stages: model conceptualization and

operationalization (column 2). Oversimplification (or overcompli-

cation) occurs when the complexity captured by a model does not

match real‐world complexity close enough to remain a valid

representation (column 3).

Conceptualization refers to how phenomena, relationships, and

contexts are represented and defined in a model with variables and

effect relationships. Operationalization describes how the variables

and their effects are measured and assessed empirically. Over-

simplification can stem from overly simple definitions and

measurements.

We distinguish four levels of decreasing model simplicity. The

first level describes simple, elegant models. The second level

describes the models that have to incorporate more variables or

TABLE 2 (Continued)

Component Stage
Issues in increasing levels of model
complexity Symptoms in literature

relationships in terms of direction
and or linearity?

for example, some correlation
measures assume a linear
relationship.

3. The method assumes that
outlier removal will improve
accuracy, yet outliers describe
essential behaviors.

4. The method assumes singular

relationships instead of a
system of relationships.

same relationship yield different
results.

• Meta‐analysis in one discipline

assesses inconsistent results.

Model Context
Choices about the interaction

between a model and its context:

model heterogeneity and

dynamism.
Please find examples in
sections 3.5. and 3.6.

Conceptualization
Are different variables influencing

the relationship (e.g., moderators,
mediators, or joint causes) required
to keep a model accurate?

1. The model represents a
universal law.

2. The heterogeneity of the
context is simplified. Hence,
relevant variables are omitted,
and conditionality remains
implicit.

3. Dynamic relationships between
variables or models are
expressed as static. Hence, the
model represents one instance
of an interactive model.

4. The effect of the variable time
is ignored while intrinsic to the
phenomenon. Hence, emerging
effects remain implicit as well

as temporal limits to model
validity.

Direct indicator:
• Different disciplines build up

their models around the same

phenomenon.
Indirect indicators
• Siloed disciplinary perspectives

and review articles ask for
interdisciplinary collaboration.

Operationalization
Are different ways to measure or
isolate variables and to compensate
or deal with their effect required to
reveal the actual behavior of the

phenomena?

1. The model can be measured
independently from its context.

2. An integrated measurement
should reflect the effect of
contextual variables on the

primary relationship between
phenomena.

3. A holistic measurement should
reflect that the starting point of
reasoning determines what

cause is and what effect.
4. An infinite measurement should

reflect how a model changes
over time.

Direct indicator:
• Within the same discipline,

empirical results regarding the
same relationship yield different
results.

• Meta‐analysis in one discipline
assesses inconsistent results.

• Context is made up of different
variables in each research
project.

Indirect indicators
• Per discipline, context is

operationalized differently.

Note: The conceptualization and operationalization issues in assessing the context's relationship and effect can hardly be separated. They can originate

from conceptual and operational issues regarding the phenomena.
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dimensions to remain valid. The third level describes the models that

acknowledge the interference of multiple overlapping variables or

models for it to remain accurate. Finally, the fourth level describes

the intricate models that accommodate systems of multi‐dimensional

models to remain valid over time. Oversimplification occurs when a

given model should incorporate a higher level of complexity to

remain valid.

4.1.1 | Types of phenomenal oversimplification

When a one‐dimensional variable represents a multi‐dimensional

phenomenon, special attention must be given to the original cloud of

variables. When it is difficult to isolate a variable because natural or

other obvious logic is lacking, chances are that oversimplification

occurs.

For example, a one‐dimensional choice may lack significant dimen-

sions, or multiple variables may behave as dimensions of one variable. In

both cases, dimensions determining the phenomenon remain hidden.

That can become a validation problem when findings on a phenomenon

are combined into a body of knowledge. For example, if studies looked at

a partial phenomenon and these parts did not entirely overlap, one could

question the validity of the findings.

4.1.2 | Types of relationship oversimplification

When variable dimensions remain hidden, the relationship with other

variables suffers. For example, relationships may be modeled to show

a singular linear behavior, which hides significant findings. Curve‐

linearity or other hidden aspects of relationships may surface when

these relationships are multifaceted or aggregated for multiple

dimensions. This, too, can become a problem in the validation of

findings.

4.1.3 | Types of contextual oversimplification

When contextual phenomena influencing a model receive a mere

mention as model limitations, special attention must be given to all

research using that model. If limitations were not accounted for in

each repetition, significant information has been omitted, and

findings may become misleading.

Although Table 2 cannot be seen as a complete and finite

overview of issues, applying the table to the cases in Section 3

suggests that it can serve as a detection tool. Using the table will help

sensitize researchers to oversimplification issues and help them to

make deliberate, explicit choices about their models. Describing these

choices in their papers will help reduce oversimplification in shared

theories and bodies of knowledge.

In the next section, we will apply the table to a model's

provenance: the underpinning theoretical or empirical models from

literature.

4.2 | Checking underpinning models for
oversimplification

Reading Table 2 from right to left, researchers can detect possible

oversimplification in existing models by the symptoms that emerge

from literature reviews.

Table 2 lists symptoms from literature and separates them into

direct and indirect symptoms. Direct symptoms are the actual

references to an abundance of ways to define or measure the same

phenomenon, confusing results, or meta‐analyses. Indirect symptoms

are appeals for clarity or collaboration within or between disciplines.

4.2.1 | Symptoms of phenomenal oversimplification

When definitions or measures of a phenomenon have been

oversimplified, studies will likely differ in the chosen dimensions for

representing said phenomenon. The differentiation in definitions and

measures is a byproduct of the difference in the focus of empirical

studies on (parts or aspects of) a phenomenon in isolation. Studies

build on one another to fill knowledge gaps, and thus foci change

slightly. At the individual study level, the choices resulting from focus

are logical and grounded in previous research. However, at the

overarching level, definitions and measures may ‐at a certain point‐

no longer represent the same phenomenon or phenomenal dimen-

sion. At that point, any subsequent study should be very careful with

the grounding of its model in underpinning literature. Before

grounding can take place in those cases, earlier definitions and

measures should be analyzed to reveal a possible significant lack of

overlap.

A large number of definitions of a particular phenomenon as a

fraction of all the articles on that phenomenon directly indicates the

coexistence of significantly different definitions. Review articles

requesting clarity and unification are an indirect indicator of

phenomenal oversimplification.

A multitude of conceptualizations can occur between and within

disciplines. The same phenomenon can have multiple names, concep-

tualizations, and operationalizations between disciplines. Within disci-

plines, a phenomenon can be conceptualized and operationalized with

somewhat arbitrary or overlapping dimensions. Multidisciplinarity is not

a symptom of oversimplification, but when paired with inconsistent

results, oversimplification is a plausible cause.

In Section 3, we demonstrated that many alternative definitions

of individuals’ innovativeness have co‐existed for decades. For signal

weakness, we showed that over 60 different conceptualizations

emerged since the term's coinage in 1975. In both cases, this led to

oversimplification issues.

4.2.2 | Symptoms of relationship oversimplification

The second set of symptoms revolves around the relationship in

focus. The type and form of the relationship can be mis‐specified. For
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example, a cause‐and‐effect relationship assumes a one‐way rela-

tionship from the cause to the effect, yet other types of relationships

are also possible.

When phenomena consist of multiple dimensions, but research

focuses on different singular dimensions, then inconsistent results

regarding their measurement and relationships are expected. A

literature review showing confusing results is a red flag for

oversimplification.

Researchers are inclined to simplify phenomenal intricacies so

that their variables focus on phenomena’ main characteristics and

behaviors without distorting the assessment of the relationships

between phenomena. This simplification is, almost inevitably, a

function of the context and timeframe in which researchers operate.

Since researchers explore similar relationships between phenomena

in different contexts and timeframes, the inconsistency of their

results is inevitable.

4.2.3 | Symptoms of model contextual
oversimplification

A final set of symptoms revolves around the context in which the

relationship between the phenomena is assessed. The context

may include other phenomena affecting the cause‐and‐effect

relationship.

In the example of innovativeness, we have shown how the

context and timeframe of research on innovation diffusion have

caused particular simplifications. The first authors, Ryan and Gross,

meticulously described the context and timeframe in which they

formulated their innovation diffusion model: US farmers adopting

hybrid corn around 1940 (Ryan & Gross, 1943).

Moreover, the simplifications researchers adopt are a function of

their research's goal. Their goal determines the perspective from

which they observe the phenomena, relationship, and context and

the level of analysis they choose. Therefore, simplifications will vary

widely because goals and researchers’ perspectives vary. For

example, economic theories serve varying purposes, like explaining

unemployment and inflation as well as innovativeness in a country.

The goal is for researchers to emphasize particular phenomena and

discard other phenomena; hence, economic theories conceptualize

and operationalize a country entirely differently. An example of

varying perspectives is provided by differences between models of

innovation in an industry seen from a government's or a company's

perspective.

Checking findings from a systematic literature review for

oversimplification symptoms may prompt researchers to dig deeper

by reading the table from right to left. If a symptom mentioned in

Table 1, column 4 surfaces, columns 1‐3 may shed light on where,

when, and how much oversimplification occurred in individual

studies. A deeper insight into its causes can help researchers find

ways, logically or empirically, to reconcile the phenomenal, relation-

ship, or contextual differences at the individual level instead of

adding to the confusion at the overarching level.

In the next section, we will apply the table to possible up‐ or

downgrades of model complexity.

4.3 | Checking underpinning models for
oversimplification

Reading Table 2, column 3, researchers can determine the level of

complexity in model components and stages and deliberately decide

if the chosen level does justice to the real‐world situation the

components represent.

When symptoms of oversimplification occur, the first step is to

reflect on the extent of captured complexity in model components.

To manage oversimplification, researchers must be aware that a

continuous progression of complexity exists. Real‐world complexity

ranges from none to infinite, and its existence can remain unseen to

wholly understood. Hence, models can vary significantly in the extent

of complexity captured in the model components.

To manage oversimplification, we have aggregated component

complexity into model complexity, as shown in Table 3. We

distinguish four levels of captured complexity. A “clear model” is

presented in the first level, containing two obvious one‐dimensional

variables. One variable has a linear effect on the other, independent

of context. In the fourth level, a “cryptic model” is presented in which

multiple overlapping and multi‐dimensional variables have chaotic

relationships in a fuzzy context.

Levels of intricacies differ in the detailing a model requires to

keep resembling the real‐world problem it tries to replicate. The

determinism of the correct level in the case of a particular research

project is done through comparison with the description of the

intricacies per category per level.

Mere complexity does not cause symptoms of oversimplification.

As long as complexity can be unraveled in parts that are observed the

same way by researchers across disciplines and over time, these

symptoms do not emerge. On the other hand, if these symptoms are

pervasive or persistent, likely, oversimplification issues are too.

Table 3 suggests that models can be categorized in levels of

captured complexity and that moving up or down between levels can

help researchers find a complexity sweet spot. The sweet spot refers

to the lowest level of captured complexity to represent a real‐world

phenomenon and still significantly overlaps with earlier studies for

building theory and knowledge.

5 | CONCLUSION AND DISCUSSION

In the social sciences, models capture the behavior of social phenomena

in the most spartan form. Real‐world complexity and dynamism may be

reduced to two variables and their hypothetical relationship and then

tested for hypothesis accuracy. It is precisely this reduction that allows

us to do controllable and falsifiable research. We strive for the simplest

accurate version possible, the most elegant model. Rigorous procedures

bind reduction to avoid mistakes and misinterpretation. However, logical
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choices at the level of individual studies may lead to severe over-

simplification errors at the discipline level. In turn, literature reviews

unchecked for oversimplification errors can lead to misguided choices in

subsequent studies.

We developed a simplification framework to assist researchers in

checking their modeling in three ways. Firstly, researchers can check

new models for possible oversimplification in model components,

stages of development, and captured complexity. Secondly, research-

ers can check existing models for oversimplification by looking for

direct and indirect references to its symptoms in literature reviews.

Thirdly, researchers can locate the simplification/complexity sweet

spot: the lowest level of captured complexity while the model still

represents the real‐world phenomenon and remains integrated into

earlier conceptualizations.

We began exploring the problem of oversimplification with the

most basic model: that of two variables and their relationship. The

issues found for the basic model can then serve as a reference for

exploring more complex models, which may or may not suffer from

the same oversimplification. We used cases from two disciplines of

social sciences that can be seen as opposites in field maturity but

similar in their focus on prediction. Each case consisted of a broadly

accepted two‐variable model. Analysis of the cases resulted in the

emergence of the same issues, suggesting that these were generaliz-

able across organizational and managerial research disciplines.

Further anecdotal evidence for this assumption was found in the

handbook of marketing scales by Bruner, (2012). Almost all

phenomena are conceptualized in slightly different versions. One of

the most striking examples is the concept “attitude of individuals,” for

which 65 different scales or operationalizations are presented.

5.1 | Signals of possible oversimplifications within
domains

We discussed the effects on subsequent research if oversimplifica-

tion is uncorrected for the three model components. For instance,

when phenomenal intricacies remain unaddressed, the need to

redefine persists. Literature reviews will include studies and reviews

that refer to the many definitions and appeal to phenomenal clarity.

Such appeals could serve as an indicator that uncorrected intricacies

are an issue. When relationship intricacies remain unaddressed,

confusing or conflicting results can surface, or the gap between

findings and the real‐world situation remains challenging to bridge. A

domain's combined gap analyses can serve as an indicator of such

intricacies. Finally, when contextual intricacies remain unaddressed,

models can become established without their caveats and result in a

house‐of‐cards body of knowledge that surfaces with model

refinements. The abundance of these effects in extant literature

emphasizes how persistent and pervasive oversimplifications are.

5.1.1 | Effects of unaddressed oversimplifications

When phenomenal oversimplifications, indicated by a growing lack of

common definitions and operationalizations, are left unattended,

validation of findings could become a problem. When conceptualiza-

tions and operationalizations partially overlap across the studies that

researchers are building upon, they must clarify whether their

reasoning is based on the overlap or not. When tens of definitions

exist, statistical analysis of the distance between definition aspects

should replace logical deduction. When such an analysis does not

happen, studies lack construct validity.

More complex relationships like curvilinearity can remain hidden

when construct validity is an issue. If this is left unattended, studies

lack internal and predictive validity. When contextual oversimplifica-

tion is an issue, models have been separated from significant inherent

conditions and can keep moderating and mediating variables hidden.

If that is left unattended, studies lack external validity. When the

findings of studies lacking in validity are used for new studies (as

opposed to repetitive studies to check validity), a domain's body of

knowledge and theory building are in danger, and progress is shaky

at best.

TABLE 3 Levels of model complexity

Component

Level of Captured Complexity

Level 1 Level 2 Level 3 Level 4

Determinism Model Clear Model Complex Model Clouded Model Cryptic Model

Phenomena Obvious variables Multidimensional variables Multiple overlapping
variables

Multiple multi‐dimensional
overlapping variables

Relationships One‐directional linear
relationship

Multifaceted one‐directional
relationship

Bidirectional curvilinear
relationships

Chaotic relationships

Context Context independent Integrated contextual variables Dynamic system of
models

Fuzzy model or system
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5.1.2 | Suggestions to address oversimplifications

It seems evident that researchers pay more attention to indicators

like definition abundance, confusing or conflicting results, persistent

gaps between findings and real‐world situations, or serial model

refinement. However, oversimplification will not always surface

despite our attention to indicators. In the case of signal weakness,

only phenomenal oversimplification was noted but left to exist

because every subsequent study created its definition from literature

and logical deduction. The dichotomous character of the variables

representing weak signals suppressed relationship and contextual

complexity, and decades went by without any confusing or

conflicting results surfacing. We, therefore, suggest that researchers,

whenever they find indications of oversimplification, resort to

statistical analysis to let complexities surface instead of moving to

the next logical simplification. A systematic way to make such

complexity visible for variable definitions is provided by van Veen

et al. (2021).

5.1.3 | Future research avenues

We have already hinted at several avenues of future research. Firstly,

our assumption that the two cases represent a persistent and

pervasive problem involving many other relationships in the social

sciences should receive an empirical basis.

Secondly, the interrelatedness of the conceptualization and

operationalization of phenomena, their relationships, and model

contexts in simple models should be clarified further. Findings will

help establish if hidden complexity should be solved at the category,

conceptual, or operational levels or just for specific combinations. It

will also illuminate which statistical methods are preferable.

Thirdly, more complex models can be checked for oversimplifica-

tion and its effects. More complex models could suffer more due to

the addition of phenomena, variables, and relationships. However,

more complex models could also suffer less because they have

already captured more complexity. Only research will tell us how

more intricate models relate to the simple model discussed here.

Fourthly, our list of issues is by no means finished. For example,

we did not include the oversimplification issues that can occur when

a relationship is conceptualized at certain levels of analysis. We

suspect many decisions in a study's set‐up can lead to over-

simplification, but further research should clarify if an exhaustive list

is possible or necessary.

Fifthly, research into overcomplication, the other end of the

balance, could bring new perspectives on the optimal level of

complication. Saylors and Trafimow argue that while oversimplifica-

tion of models may not perfectly account for reality, the complexity

of reality does not necessarily require equally complex theories. They

highlight that the simplicity of a theory, like Newtonian theory in

physics, can still be effective despite not being a literal description of

reality. In contrast, they caution against the increasing complexity of

models in organizational research, which can lead to a decrease in the

joint probability of a model being true. We share the notion that the

optimal model strikes a balance, and hypothesize that research on

both ends of the balance combined may lead to clarification of what

optimal means (Del Giudice, 2021; Saylors & Trafimow, 2021).

Finally, a method could be developed to help mitigate hidden

oversimplification and its effects. At this point, we assume that

normative models can benefit from an explorative check. For

instance, a statistical exploration of possible variables could let a

competent variable surface from data without a natural or apparent

logical definition. Similarly, combining statistical and logical data

could let more complex models appear. In both cases, variables and

their relationships would suffer less from the implicit oversimplifica-

tions inherited from earlier findings. Establishing the value of an

explorative phase preceding a normative study is also an excellent

first step in future research.

To conclude, we frankly admit to being no better than the

simplified examples we discussed.
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