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Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits.
However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We
demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially
selective approach for large qubit arrays. By applying simultaneous microwave bursts to different gate
electrodes, we observe multichromatic resonance lines and resonance anticrossings that are caused by the
ac Stark shift. Our theoretical framework aligns with experimental data, highlighting interdot motion as the
dominant mechanism for bichromatic driving.

DOI: 10.1103/PhysRevLett.132.067001

Introduction.—Spin qubits based on semiconductor
quantum dots represent a promising platform for quantum
computing owing to their small qubit footprint, long
coherence times, and compatibility with semiconductor
manufacturing techniques [1,2]. However, the present
control of spin qubit devices relies on a brute force
approach, where each qubit is individually connected to
at least one control line. This approach poses a significant
challenge for scaling to larger systems and is affecting
current progress [3,4]. Multiplexing strategies will most
likely become essential and this has been the motivation for
various proposals, such as crossbar arrays with shared
control [5,6]. Executing quantum algorithms requires
selective quantum control, but its implementation in large
qubit arrays poses significant challenges. Recently, the
concept of bichromatic spin resonance has been proposed
to offer addressable microwave control in qubit crossbar
architectures [7]. In this approach, two microwave tones
with frequencies fw and fb are utilized. These tones are
applied to the word and the bit line of the crossbar array,
respectively. By exploiting the nonlinearity of electric
dipole spin resonance (EDSR) [8–16], rotations of a qubit
with Larmor frequency of jfw � fbj at the intersection of
the two lines [Fig. 1(a)] can be targeted. This operation
scheme presents new opportunities for both spatially
selective qubit addressing and gate parallelization [7].
Analogous two-photon processes have been utilized in

Rydberg-atom processors [17,18] and superconducting
qubits [19] to optimize qubit performance.
Here, we investigate experimentally and theoretically

the bichromatic driving of semiconductor spin qubits in a
2-qubit system defined in a strained germanium quantum
well. We find that both qubits can be coherently driven by
mixed frequency signals, including the sum and difference
of the corresponding frequencies. We investigate the
occurrence of resonance anticrossings in EDSR spectro-
scopy maps, which originate from the Autler-Townes (also
known as ac Stark) shift of a photon-dressed spin transition.
Additionally, we introduce a model that reveals the impor-
tance of spin-conserving and spin-flip tunneling terms in
bi- and monochromatic EDSR.
Results.—We investigate bichromatic driving of spin

qubits in a 2-qubit system within a 4-qubit germanium
quantum processor [Figs. 1(b) and 1(c)] [20,21]. By tuning
the electrostatic potential using plunger and barrier gates,
we confine a single-hole quantum dot underneath each of
the four plungers P1–P4 and define virtual gate voltages
vP1–vP4 based on P1–P4 to achieve independent control
(Supplemental Material Note 1 [22]). We focus on the spin
qubitsQ1 andQ2, whileQ3 andQ4 remain in their ground
state. We furthermore define the detuning voltage ϵ12 ¼
vP1–vP2 [29].
Figure 1(d) displays the charge stability diagram of

the double quantum dot system, obtained through
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rf-reflectometry charge sensing [30]. The device is operated
in an in-plane magnetic field of 0.675 T, resulting in qubit
frequencies of fQ1 ¼ 1.514 and fQ2 ¼ 2.649 GHz. To
investigate the bichromatic driving approach, we follow
the pulse protocol outlined in Fig. 2(a). We initialize the
Q1,Q2 qubits in the j↓↓i state by adiabatically pulsing ϵ12
from the (0,2) to the (1,1) charge state via the spin-orbit
induced anticrossing. Next, we manipulate the spins by two
simultaneous microwave pulses on plunger gates P2 and
P4, with a duration tp and microwave frequencies fP2
and fP4. We perform such two-tone qubit manipulation
at the voltage point indicated in Fig. 1(c) corresponding to
ϵ12 ¼ −20 mV. Finally, we return to the (0,2) charge
sector and perform readout using latched Pauli spin block-
ade [20].
The 2D EDSR spectroscopy in Fig. 2(b) reveals reso-

nance lines from mono- and bichromatic spin excitations.
Monochromatic qubit transitions labeled as Q1P2, Q1P4,

Q2P2, and Q2P4 (with the superscript defining the driving
plunger gate) are observed as vertical and horizontal lines at
the corresponding Larmor frequencies. Bichromatic exci-
tations appear as tilted resonance lines, with negative
(positive) slopes indicating the frequency sum (difference)
matching the qubit Larmor frequency. Three-photon
bichromatic excitations can also be observed when a
combination of two photons with the same frequency
and a third one with a different frequency match the qubit
Larmor frequency.
Figures 2(c) and 2(d) depict the expected resonance lines

considering the individual resonance frequencies of the
two qubits. The qubits exchange interaction resulting
from interdot tunneling (55 MHz at ϵ12 ¼ −20 mV, see
Supplemental Material Note 4 [22]) is taken into account.
To label the Larmor frequency of qubit i when qubit j is in
the excited state, we use the notationQi_ (with i; j∈ f1; 2g
and i ≠ j). The monochromatic transition from j↓↓i to
j↑↑i driven by P4 is then denoted as ðQ1þQ2−ÞP4. A
bichromatic transition can be visualized as a two-step
process via a virtual state, as illustrated in Fig. 2(e).
Following perturbation theory, bichromatic spin transitions
are activated thanks to spin-conserving (t) and spin-flipping
(Ω) tunneling terms, which hybridize the four possible spin
states with the Sð2; 0Þ state, as discussed below and in
Supplemental Material Note 8 [22].
We analyze three resonance lines [dashed lines in

Fig. 2(b)] resulting from bichromatic rotation of Q1 and
Q2. The bichromatic Q1 spin resonance (Q1−P2;P4) occurs
when the frequency difference matches the Q1 Larmor
frequency. Similarly, Q2 exhibits bichromatic resonance
lines from both frequency difference (Q2−P2;P4) and
frequency sum (Q2P2;P4). The bichromatic spin resonance
Q1P2;P4 is not investigated due to the presence of a
high-pass filter (Supplemental Material Note 6 [22]).
The conditions for the three studied bichromatic qu-
bit rotations are Q1−P2;P4, fP4 − fP2 ¼ fQ1; Q2−P2;P4,
fP4 − fP2 ¼ fQ2; and Q2P2;P4, fP4 þ fP2 ¼ fQ2. At these
frequency combinations, we also achieve coherent bichro-
matic qubit rotations with a Rabi frequency exceeding
1 MHz, as we demonstrate in Figs. 2(f) and 2(g) and
Supplemental Material Fig. 4 [22].
At the intersection of specific resonance lines [see

Fig. 2(b)], we also observe anticrossings (labeled as
ACn with n∈ f1;…; 5g in Figs. 2(c) and 2(d). In
Fig. 3, we analyze the evolution of the two bichromatic
spin resonances, Q2−P2;P4 and Q2P2;P4, in the frequency
plane. We vary the two microwave frequencies together to
follow the two resonance lines, using ΔfP2 in the range of
½−40; 40� MHz centered around the bichromatic resonance.
This procedure allows one to monitor in detail the Q2
bichromatic spin resonance within the boxed areas indi-
cated in Fig. 2(b). The bichromatic resonance aligns with
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FIG. 1. Bichromatic control of a spin qubit. (a) Bichromatic
driving in a crossbar architecture. (b) False-color scanning
electron microscopy of a 2 × 2 germanium quantum dot device,
nominally identical to the one used here. (c) Illustration of the
4-qubit processor. We operate Q1 and Q2 with microwave bursts
applied to P2 and P4. We model qubit rotations via ac detuning
modulation (sketched potential). (d) Charge stability diagram of
the double quantum dot illustrating the (1,1) charge sector and the
detuning ϵ12 axis (black line). The white star indicates the gate
voltages used for the qubit manipulation stage. The green and
blue arrows indicate the displacement within the vP1; vP2
framework, when applying a microwave burst on P2 and P4,
showcasing the different orientation of the driving fields. The
displayed length of the arrows is proportional to the ampli-
tude of the signal at the device, amplified by a factor of 5 for
visibility.
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the expected value of ΔfP2 ¼ 0 for most of the frequency
range. However, significant anticrossings occur when the
resonance intersects with other qubit transitions. Examples
of these anticrossings are observed at specific frequencies
and are labeled as AC5, AC3 (forQ2−P2;P4) and AC4, AC1
(for Q2P2;P4).
The appearance of anticrossings in the frequency plane,

such as AC3 in Fig. 3(a), result from resonant driving of
mono- and bichromatic transitions from the j↓↓i state to
higher (1,1) states. As shown in Figs. 3(e) and 3(f),
AC3 involves three resonant processes: the bichro-
matic transition j↓↓i ↔ j↓↑i, the monochromatic P4
drive j↓↓i ↔ j↑↑i, and the monochromatic P2 drive
j↓↑i ↔ j↑↑i. Because of the greater driving efficiency
of P2 compared to P4 [see projected amplitudes in
Fig. 1(c)], the dominant transition is j↓↑i ↔ j↑↑i
(Supplemental Material Note 8 [22]).
Driving via P2 dresses up the spin states j↓↑i and j↑↑i

with microwave photons. In the rotating frame, where these

states are degenerate in the absence ofP2 driving, the eigen-
states become dressed in the form ½ðj↓↑i � j↑↑iÞ= ffiffiffi

2
p �, and

the corresponding eigenvalues exhibit a splitting set by the
Rabi frequency. In this context, dressing refers to the
coherent interaction between the electromagnetic field
and the spin system, resulting in entangled states of spins
and photons becoming the eigenstates of the coupled
system.
This effect, known as the Autler-Townes effect or ac

Stark shift, has been observed in quantum optics and in
strongly driven superconducting qubits [31,32]. It is at the
basis of control strategies for highly coherent solid-state
qubits [33]. In particular, the continuous driving can
decouple the spin from background magnetic field noise
and thus extend their coherence [34,35].
Because of the Autler-Townes effect, the resonance

frequencies of the two weaker transitions (j↓↓i ↔ j↓↑i
and j↓↓i ↔ j↑↑i) are shifted by the Rabi frequency of the
strongly driven j↓↑i ↔ j↑↑i transition, resulting in the
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FIG. 2. Bichromatic EDSR spectroscopy. (a) Bichromatic control sequence. (b) Single-shot probability versus fP4 and fP2, at
ϵ12 ¼ −20 mV. We include three turquoise, blue, and purple dotted lines to enclose the bichromatic resonances of Q2P2;P4, Q1−P2;P4,
andQ2−P2;P4, respectively. The broad vertical excitation at fP4 ∼ 1.8 GHz is associated with a transmission resonance in the lines, not to
a spin transition. (c),(d) Monochromatic, bichromatic, and three-photon bichromatic excitations in the 2D frequency plane, as predicted
by theory. (e) Energy diagram of a two-spin system with finite exchange and finite magnetic field. The green and blue arrows represent
the applied microwave frequencies fP2 and fP4, when driving the Q2−P2;P4 transition. Driven spin-flipping processes originate from
higher-order processes via the Sð2; 0Þ state involving the spin-conserving tunneling term t and spin-flip tunneling term Ω. (f),(g)
Coherent Rabi oscillations of theQ2−P2;P4 andQ2P2;P4 bichromatic transition. The corresponding fP2 and fP4 frequencies are indicated
with the purple and turquoise diamonds in (b).
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anticrossing between the resonance lines [AC3 in Figs. 3(a)
and 3(b)].
We use a two-spin qubit Hamiltonian to model our

system and gain a quantitative understanding. The model
considers the lowest orbital in each dot, including four
states in the (1,1) charge regime, as well as the (0,2) and
(2,0) singlet states. Spin-conserving and spin-flip tunneling
between the quantum dots are also included, with a
coupling strength of t for spin-conserving transitions and
Ω for spin-flip transitions (Supplemental Material Note 8A
[22]). Despite neglecting additional electrical g-tensor
modulations [2,36], this minimal model successfully
explains electrically driven spin transitions via ac modu-
lation of the detuning voltage using both mono- and
bichromatic resonance techniques. Here, spin dynamics
occur through virtual transitions between the (1,1) spin
states and the (0,2) and (2,0) singlet states, mediated by the
spin-conserving and spin-flipping terms, as shown in
Fig. 2(e).
Our model provides an explanation for the observed

resonance crossings and anticrossings in Figs. 3(a) and 3(c).
Furthermore, by analyzing the five anticrossings AC1–AC5
using Floquet theory, as discussed in SupplementalMaterial
Note 8C [22], we estimate the spin-conserving and spin-
flip tunneling energies to be on average t ¼ ð18.1� 1.9Þ

and Ω ¼ ð14.3� 2.4Þ μeV (Supplemental Material Note
8F [22]).
To verify our theoretical description, we investigate the

dependence of the Q1−P2;P4 resonance anticrossing on the
detuning voltage. Experimental data and the expected
detuning dependence from the model are shown in Fig. 4.
In the model, we use the average tunneling amplitudes and
vary the detuning voltage.Moreover, we utilize an estimated
detuning lever arm of α ¼ 0.0917 eV=V and quantum dot
charging energy of U ¼ 2.56 meV (Supplemental Material
Note 8B [22]). Our theoretical model accurately captures the
diminishing size of the anticrossing as the detuning
approaches ϵ12 ∼ 0. Both the bi- and monochromatic res-
onance lines fade, indicating a reduced efficiency as detun-
ing approaches zero. This is consistentwith ourmodel, since
the transitions take place via the Sð0; 2Þ and Sð2; 0Þ states
and in the high detuning limit the transition through Sð0; 2Þ
dominates the driving. At zero detuning, the two contri-
butions become equal, while the Rabi frequency has a
minimum.
The diminished efficiency of bichromatic operations near

the charge-symmetry point supports the fundamental role of
virtual interdot transitions as the underlying driving mecha-
nism (Supplemental Material Note 3 [22]). In Supplemental
Material Note 8D, we discuss the limitations of our model

(a) (b) (c) (d) (e)

f

fP2 fP4

AC3

AC3

AC5

AC5

AC1

AC1

AC4

AC4

(e)

ffP4P4ffff

AC3 AC5

ff
AC1 AC4

FIG. 3. Modeling the frequency anticrossings due to the Autler-Townes effect. (a),(c) Single-shot probabilities (1 − P↓↓) in a
frequency range around the bichromatic Q2−P2;P4 and Q2P2;P4 resonance conditions, respectively. These scans are higher-resolution
measurements along the color-coded diagonals enclosed by two dashed lines in Fig. 2(b). Vertical lines of Fig. 2(b) appear horizontal,
and horizontal lines appear slightly tilted [as can be seen with Q1P2 and Q1P4 in (d)]. The values on the fP2 axes are valid at ΔfP2 ¼ 0.
(b),(d) Calculated transitions nearby the Q2−P2;P4 and Q2P2;P4 resonances. (e),(f) Illustration of the driven transitions at the four
anticrossings. Strong driving via P2 induces a photon-dressed spin transition.
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and suggest that additional mechanisms, such as EDSR
induced by g-tensor modulation, may be necessary to fully
interpret all experimental observations [37–39].
Conclusions.—Electric dipole spin resonance has

enabled high-fidelity quantum gates on individual qubits,
but a key challenge is the development of advanced
operations for scalable control. Here, we have established
bichromatic control of spin qubits and turned challenges in
EDSR [14] into an opportunity for addressable qubit
control in larger arrays. Moreover, we showed the relevance
of interdot motion in obtaining bi- and monochromatic
driving. Furthermore, as the positions of the observed
resonance anticrossings are predictable from the qubit
parameters, we envision that, while on the one hand these
can be exploited for the operation of dressed semiconductor
qubits, on the other hand, these frequencies should be
avoided when implementing bichromatic EDSR. Future
experiments may focus on the optimization of bichromatic
driving, for example, by tuning parameters such as the

interdot coupling, aiming to achieve high-fidelity control of
large qubit arrays.

All data and analysis underlying this study are available
on a 4TU.ResearchData repository [40].
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