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S U M M A R Y
Finite elements can, in some cases, outperform finite-difference methods for modelling wave
propagation in complex geological models with topography. In the weak form of the finite-
element method, the delta function is a natural way to represent a point source. If, instead of
the usual second-order form, the first-order form of the wave equation is considered, this is no
longer true. Fourier analysis for a simple case shows that the spatial operator corresponding to
the first-order form has short-wavelength null-vectors. Once excited, these modes are not seen
by the spatial operator but only by the time- stepping scheme and show up as noise. A source
with a larger spatial extent, for instance a Gaussian or a tapered sinc, can avoid the excitation
of problematic short wavelengths. A series of numerical experiments on a 2-D problem with
an exact solution provides a suggestion for the best choice of parameters for these source
term distributions. The tapered sinc provided the best results and the resulting accuracy can be
better than that of the second-order form. The higher operation count of the former, however,
does not make it more efficient in terms of accuracy for a given computational effort, at least
not for the 2-D examples considered here.

Key words: Numerical approximations and analysis; Numerical modelling; Computational
seismology; Wave propagation.

1 I N T RO D U C T I O N

Modelling of seismic data requires substantial computational re-
sources. The finite-difference method is widely used in the oil in-
dustry because it is relatively easy to code up and optimize. The
finite-element method is computationally more demanding but may
offer better accuracy at a given cost in the presence of topography
and large impedance contrast, but only if the mesh follows the in-
terfaces between different rock types (Kononov et al. 2012; Zhebel
et al. 2014).

A typical finite-element discretization of the wave equation in
its second-order form involves a stiffness matrix, related to the
spatial derivatives, and a mass matrix, related to the second deriva-
tives in time. Because inverting the large sparse mass matrix at
each time step is costly, it is replaced by its mass-lumped version,
a diagonal matrix obtained by taking its row sums. The resulting
weights are equivalent to those of a numerical quadrature rule.
For rectangular types of elements, quadrangles in 2D and hex-
ahedra in 3D, Legendre–Gauss–Lobatto quadrature produces the
well-known spectral elements (Komatitsch & Tromp 1999). The
accuracy of the inexact mass-lumped version is amply sufficient,
exceeding that of the exactly evaluated stiffness matrix by one
order.

Spectral elements for simplicial elements, triangles in 2D and
tetrahedra in 3D, are more difficult to construct. One or more orders
in spatial accuracy are lost by mass lumping, but can be recovered
by augmenting the basis function with higher-degree polynomials
that are the product of a bubble function and a polynomial (Fried
& Malkus 1975). A bubble function is a polynomial that vanishes
on all the edges of the triangle. At present, triangular elements
are known up to degree nine (Fried & Malkus 1975; Cohen et al.
1995, 2001; Mulder 1996, 2013; Chin-Joe-Kong et al. 1999; Cui
et al. 2017; Liu et al. 2017). In 3D on tetrahedra, two kinds of
bubble functions are required: face bubbles that vanish on the edges
of the faces and interior bubbles that are zero on all edges and
faces of the tetrahedron (Mulder 1996). Tetrahedral elements are
known up to degree three (Chin-Joe-Kong et al. 1999). Mulder
& Shamasundar (2016) considered their performance for elastic
wave propagation. Geevers et al. (2018a,b) recently showed that
the accuracy requirements for the construction of these elements is
too strong. A modified accuracy condition led to a series of new
tetrahedral elements up to degree four.

Discontinuous Galerkin (DG) methods offer an alternative to
diagonal mass lumping by giving up conformity and restoring it
by penalty terms leading to additional fluxes in the discretization
(Rivière & Wheeler 2003; Grote et al. 2006; Käser & Dumbser
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2006; De Basabe & Sen 2007; Diaz & Grote 2009). The resulting
mass matrix is block diagonal and easy to invert. Note that more
accurate schemes for the stiffness matrix, formulated on Fekete
(Chen & Babuška 1995; Taylor et al. 2000; Komatitsch et al. 2001;
Mercerat et al. 2006) or other optimized sets of nodes (Hesthaven
& Warburton 2002, 2006; Hesthaven & Warburton 2007; Modave
et al. 2015) are well suited for DG methods but not for diagonal
mass lumping without loss of accuracy.

Finite-element schemes for the acoustic and elastic wave equation
are commonly based on the second-order form of the partial differ-
ential equations. Dispersion analysis by Ainsworth (2014) showed
that the first-order form provides an accuracy that is better by two
orders for the odd-degree Legendre–Gauss–Lobatto elements. How-
ever, if the error in the eigenvectors is included, as it should (Mulder
1999), the full error only shows this improvement for the lowest de-
gree elements (Shamasundar & Mulder 2016): a first-order formu-
lation with linear elements in 1D has fourth-order spatial accuracy,
but this requires a consistent or full, mass matrix. With mass lump-
ing, required to avoid the inversion of the mass matrix, the accuracy
drops to second order. However, by invoking the defect-correction
principle (Stetter 1978), we could show that iterative inversion of
the mass matrix requires only one iteration when using the lumped
mass matrix as preconditioner, at least on equidistant grids. This
result motivated us to consider the first-order formulation of the
wave equation with continuous linear elements in 2D, because it
might lead to a gain in efficiency over the second-order formula-
tion. Note that the first-order formulation with the DG method is
less uncommon (Hesthaven & Warburton 2002, 2007; Chung &
Engquist 2009; Delcourte et al. 2009; Etienne et al. 2010; Wilcox
et al. 2010; Modave et al. 2015, e.g.).

Unfortunately, the first-order form with linear elements led to
noisy results. We will show that this can be traced back to the odd-
even or checker-board decoupling that may occur for some discrete
schemes in first-order form. The scheme of Brossier et al. (2008)
shows a similar behaviour when used on a regular structured mesh.
This decoupling is related to the shortest wavelengths that happen
to lie in the null-space of the discrete spatial operator. The first-
order form considered here even has additional null-vectors. Once
excited, these will not disappear if the scheme is not dissipative. In
this paper, we investigate how to suppress the excitation of these
waves by spatially extending the source. This lets the source term
act as a high-cut filter.

In seismic simulations, the source term is typically much smaller
in size than a wavelength and can therefore be represented by a
delta function. In the finite-element formulation of the wave equa-
tion, be it in second- or first-order form, integration of the spatial
delta function against the basis functions offers a natural way to
obtain its discrete representation. To further reduce the wavenum-
ber spectrum of the excited waves, we can extend the size of the
source beyond a single element. One option is to replace the delta
function by a spatial Gaussian with a small standard deviation.
An alternative to a Gaussian is the tapered sinc that Hicks (2002)
proposed for finite-difference schemes. A sinc function is the spa-
tial equivalent of a band-limited delta function and the tapering
keeps it localized. Waldén (1999) presented piecewise polynomial
approximations of the delta function, both for finite-element and
for finite-difference schemes. Petersson et al. (2016) applied these
ideas to finite-difference scheme for the wave equation in first-order
form.

We will examine the performance of four source representations,
delta function, Gaussian, tapered sinc and a polynomial approxima-
tion of the delta function, with linear mass-lumped finite elements

in first-order form in combination with defect correction. For refer-
ence, we will also consider the standard second-order mass-lumped
finite-element discretization of the acoustic wave equation with lin-
ear elements on a triangular mesh.

Section 2 contains a description of the first-order formulation
of the acoustic wave equation, the source term representations and
Fourier analysis of the schemes for a simple structured 2-D periodic
mesh, offering some insight in what to expect. Section 3 presents
results for a series of numerical experiments that assess the perfor-
mance of the various schemes. It ends with a non-trivial example.
Section 4 summarizes the main conclusions.

2 M E T H O D

2.1 Finite elements in second-order form

Before turning to the first-order form of the 2-D acoustic wave
equation, we first review the more common second-order form,
which we will use for reference:

1

ρc2

∂2 p

∂t2
= ∂

∂x

(
1

ρ

∂p

∂x

)
+ ∂

∂z

(
1

ρ

∂p

∂z

)
+ f. (1)

Here, p(t, x) is the pressure as a function of time t and position
x = (x, z), f = w(t)s(x) is the source term with wavelet w(t) and
spatial distribution s(x), typically taken as a delta function s(x) =
δ(x − xs, z − zs) for a source position (xs, zs). The sound speed c(x)
and density ρ(x) characterize the material through which the waves
propagate.

For the finite-element discretization, we consider a triangular
mesh with N nodes and expand the pressure as

p =
N∑

j=1

p jφ j (x), (2)

where the basis functions φ j (x) are piecewise linear on those tri-
angles that have x j as one of their vertices and φ j (xk) = δ j,k for
all vertices xk . The mass matrix M and stiffness matrix K on the
computational domain � have elements

M j,k =
∫

�

1

ρc2
φ jφk dx dz, K j,k =

∫
�

1

ρ

(∇φ j

) · (∇φk) dx dz,

(3)

respectively. They are both of size N × N and sparse symmetric.
The lumped mass matrix L is obtained from the row sum of M:
L j,k = δ j,k

∑N
k=1 M j,k .

In practical computations, the material properties are often taken
as piecewise constant per element, so that they can be moved outside
the integrals in eq. (3). With mass lumping, the mass-lumped values
that go into the assembly of the full mass matrix are proportional
to numerical quadrature weights of second-order accuracy. We then
may represent 1/(ρc2) as piecewise linear per element and evaluate
them at the vertices, or just inside the triangle if there is a discon-
tinuity from one element to the next, to carry out the numerical
integration.

The discrete scheme becomes

pn+1 = 2pn − pn−1 + (�t)2L−1 (fn − K pn) , (4)

where pn contains the pressures pj on the nodes at time tn = t0 + n�t.
The size of the time step �t should not exceed 2/

√
λmax (L−1K),

where λmax ( · ) denotes the spectral radius or maximum eigenvalue
(Mulder et al. 2014, e.g.). We will discuss the source term vector fn

later on.
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The pressure should be zero at the free surface. This condition
can be imposed on the mass matrix by simply eliminating the entries
that correspond to the free-surface boundary. Alternatively, one can
set those entries to zero in the inverse lumped mass matrix L−1. For
the other boundaries, zero pressure is imposed as well together with
sponge boundary conditions (Cerjan et al. 1985), or without in one
specific test problem.

2.2 Finite elements in first-order form

The acoustic wave equation in first-order form is given by the system

1

ρc2

∂p

∂t
= ∂u

∂x
+ ∂v

∂z
+ g, (5a)

ρ
∂u

∂t
= ∂p

∂x
, (5b)

ρ
∂v

∂t
= ∂p

∂z
, (5c)

where the particle velocity in the x-direction is denoted by u and in
the z-direction by v. The source term g = W (t)s(x), with d

dt W (t) =
w(t). At the level of the partial differential equations, the first- and
second-form are equivalent. After discretization, they may yield
solutions with different numerical errors.

An intermediate representation, more easily amenable to higher-
order time stepping, is

1

ρc2

∂2 p

∂t2
= ∂a

∂x
+ ∂b

∂z
+ f, (6a)

ρa = ∂p

∂x
, (6b)

ρb = ∂p

∂z
, (6c)

with particle accelerations a and b in the x- and z-directions, respec-
tively.

For the first-order formulation, we expand u and v into the same
basis function as the pressure p and define derivative matrices D(x)

and D(z) with elements

D(x)
j,k =

∫
�

φ j
∂

∂x
φk dx dz, D(z)

j,k =
∫

�

φ j
∂

∂z
φk dx dz. (7)

They are sparse and of size N × N. Now there are three mass
matrices, M(p), M(u) and M(v). The first is the same as in eq. (3).
The other two mass matrices have entries

M(u)
j,k = M(v)

j,k =
∫

�

ρφ jφk dx dz. (8)

Zero-pressure boundary values can be eliminated from M(p). Doing
the same for the differentiation matrices, we obtain non-square
matrices. More precisely, the divergence theorem provides∫

�

ψ · ∇φ dx dz =
∫

∂�

φ (ψ · n) dx dz −
∫

�

φ ∇ · ψ dx dz, (9)

where ∂� denotes the boundary of the domain � and n the outward
normal on that boundary. Here, the scalar field φ = φ(p)(x) and the
vector ψ = (

φ(u)(x), φ(v)(x)
)T

. If we set φ = 0 everywhere on the
boundary ∂�, the first term on the right-hand side vanishes. In the
discrete representation, we can let the earlier matrix D(x) act on p
and drop the columns that correspond to zero-pressure values on
the boundary and do the same with D(z), making these matrices

non-square. For the velocities, minus the transpose matrices can
then be used: D(x)

v = −(
D(x)

)T
and D(z)

v = −(
D(z)

)T
. In this way, the

condition of zero transverse velocity is not explicitly imposed, but
the pressure at the boundary remains zero.

With a leap-frog time-stepping scheme, the discrete system be-
comes

1

�t
M(u)

(
un+1/2 − un−1/2

) = D(x)pn, (10a)

1

�t
M(v)

(
vn+1/2 − vn−1/2

) = D(z)pn, (10b)

1

�t
M(p)

(
pn+1 − pn

) = gn+1/2 − (
D(x)

)T
un+1/2 − (

D(z)
)T

vn+1/2.

(10c)

The superscripts with n denote the solution at time tn = t0 + �t. The
time step �t should not exceed 2λ−1/2

max (B) where the spatial operator

B = (
M(p)

)−1[(
D(x)

)T(
M(u)

)−1
D(x) + (

D(z)
)T(

M(v)
)−1

D(z)
])

(11)

follows from eq. (10) by using M(p)
(
pn+1 − pn

) − M(p)
(
pn − pn−1

)
to eliminate the velocities u and v.

In 2D, the inversion of the mass matrices can be accomplished
by a sparse Cholesky decomposition, but is costly. One or two
iterations preconditioned by the lumped mass matrix should suffice.
As the lumped mass matrix provides second-order accuracy and
the consistent one fourth-order, at least in 1D on a uniform mesh,
the defect-correction principle (Stetter 1978) states that one extra
iteration on top of the initial step should suffice. Given the results
of the Fourier analysis in Section 2.4, we do not expect fourth-order
convergence but still hope for some improvement in accuracy.

To describe the method, we define iteration matrices

G(p) = I − (
L(p)

)−1
M(p),

G(u) = I − (
L(u)

)−1
M(u), (12)

G(v) = I − (
L(v)

)−1
M(v),

and let

A(x) = (
L(u)

)−1
D(x), A(z) = (

L(v)
)−1

D(z), (13)

B(x) = −(
L(p)

)−1(
D(x)

)T
, B(z) = −(

L(p)
)−1(

D(z)
)T

, (14)

and

g = (
L(p)

)−1
g. (15)

The Ni iterations proceed as

d0 = B(x)un−1/2 + B(z)vn−1/2 + g n−1/2
, (16a)

dm = G(p)dm−1, m > 0, (16b)

pn − pn−1 = �t
Ni∑

m=0

dm . (16c)

Likewise, following the same pattern but written in a concise form

un+1/2 − un−1/2 = �t
Ni∑

m=0

(
G(u)

)m
A(x)pn, (17)

vn+1/2 − vn−1/2 = �t
Ni∑

m=0

(
G(v)

)m
A(z)pn . (18)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/2/1231/5075202 by Technische U

niversiteit D
elft user on 17 Septem

ber 2018



1234 R. Shamasundar and W.A. Mulder

The factor �t may be absorbed into A(x), A(z), B(x), B(z) and g for
efficiency.

Higher-order time stepping for eq. (4) can be accomplished by
the Cauchy–Kowalevsky or Lax–Wendroff or Dablain or modified
equation method (von Kowalevsky 1875; Lax & Wendroff 1960;
Dablain 1986; Shubin & Bell 1987), which are all the same. Higher-
order time stepping for eqs (16)–(18) is easier to implement for the
discrete form of the intermediate representation (eq. 6). The second-
order time-stepping discretization of the latter is

an =
Ni∑

m=0

(
G(u)

)m
A(x)pn, bn =

Ni∑
m=0

(
G(v)

)m
A(z)pn, (19a)

pn+1 − 2pn + pn−1 = (�t)2
Ni∑

m=0

(
G(p)

)m[
B(x)an + B(z)bn + f

n]
.

(19b)

Higher-order time stepping requires repeated evaluation of the
spatial discretization. Note that in practical computations, higher-
order time stepping can be avoided altogether by suitable post-
processing of the recorded time-series at the receivers, using Stork’s
dispersion correction method (Stork 2013; Anderson et al. 2015;
Wang & Xu 2015; Qin et al. 2017). It completely removes the time-
stepping error of a second-order time-stepping scheme, thereby
reducing the overall computational cost.

Some elements next to the surface topography may end up with
zero pressures on all three vertices. If a receiver happens to be lo-
cated inside that element, linear interpolation to its position will
result in a dead trace. Higher-order mass-lumped or DG finite ele-
ments do not suffer from that limitation. Alternatively, an interpo-
lation scheme that involve more than one element (Putti et al. 1990)
may be used.

2.3 Source term representations

We consider three different ways to discretize the source term. The
delta function is the most straightforward, leading to a discrete
source term vector

s =
∫

�

φ(x)δ(x − xs) dx dz. (20)

Almost all entries are zero except for s j = φ j (xs) on the three ver-
tices x j of the triangle that contains xs. If the source position coin-
cides with a vertex, there is only one non-zero value at that point.

For a Gaussian with standard deviation σ , we have

s = Cσ

∫
�

φ(x)e−(x−xs)·(x−xs)/(2σ 2) dx dz. (21)

The normalization constant Cσ ensures that
∑N

j=1 s j = 1 when
summed over all vertices, similar to integration of the delta func-
tion over the domain. Although the Gaussian has infinite support,
we truncate it in practice to a region where its amplitude exceeds
a small tolerance. For the numerical convergence tests, we have
chosen this region rather large.

The tapered-sinc function in 2D reads

s(x, z) = 1

2

[
1 + cos

(
πζ

nw + 1

)]
sin πζ

πζ
,

for ζ = 1

rs

√
x2 + z2 ≤ (1 + nw), (22)

and zero otherwise. The integer nw, typically 2 or 3, controls the
length of the taper in terms of a number of extra loops of the sinc

Figure 1. A tiling of squares divided into two triangles compose the struc-
tured mesh.

function and (1 + nw)rs defines its actual radius. The corresponding
source term vector is

s = Cs

∫
�

φ(x)s(x − xs) dx dz, (23)

with normalization constant Cs.
The fourth-order polynomial approximation of the delta function

in eq. (A2) can be treated in the same way.

2.4 Fourier analysis

To obtain some insight in the properties of the chain of first-order
operators that leads to the discrete Laplace operator B, we consider
its Fourier representation on a simple periodic mesh (cf. Shamasun-
dar & Mulder 2016). The mesh is assumed to consist of squares
with sides of length h, each one divided in two triangles as sketched
in Fig. 1. The pressure pi, j is defined on the vertices (ih, jh). Shift
operators are defined by Txpi, j = pi + 1, j and Tzpi, j = pi, j + 1. One row
of the mass matrix M and derivative operators Dx and Dz can then
be expressed as

M = h2

12

[
6 + Tx + T −1

x + Tz + T −1
z + Tx T −1

z + T −1
x Tz

]
, (24a)

Dx = h
6

[
2(Tx − T −1

x ) + Tz − T −1
z + T −1

z Tx − T −1
x Tz

]
, (24b)

Dz = h
6

[
2(Tz − T −1

z ) + Tx − T −1
x + T −1

x Tz − T −1
z Tx

]
, (24c)

with Fourier symbols

M̂ = h2

6 [3 + cos ξ + cos η + cos(ξ − η)], (25a)

D̂x = ih
3 [2 sin ξ + sin η + sin(ξ − η)], (25b)

D̂z = ih
3 [2 sin η + sin ξ + sin(η − ξ )]. (25c)

Here, we have used the fact that T̂x = exp(iξ ) and T̂y = exp(iη).
The scaled wavenumbers in x and z are ξ = kxhx and η = kzhz,
where hx = hz = h denote the lengths of the sides of the squares and
kx and kz the wavenumbers.

The Fourier symbol of the corresponding spatial operator B in
eq. (11) is

B̂ = 4
h2 [3 + cos ξ + cos η + cos(ξ − η)]−2

{
5(sin2 ξ + sin2 η) +

8 sin ξ sin η + 2 sin(ξ − η)[sin ξ − sin η + sin(ξ − η)]
}
.

(26)

Near the origin of the wavenumber domain, a Taylor series expan-
sion for small ξ and η provides

B̂ � 1
h2 (ξ 2 + η2) − 1

180h2

[
2(ξ 6 + η6)

−5ξη(ξ − η)2(ξ 2 + ξη + η2)
]
. (27)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/2/1231/5075202 by Technische U

niversiteit D
elft user on 17 Septem

ber 2018



Source terms for finite elements 1235

-1 -0.5 0 0.5 1
/

-1

-0.5

0

0.5

1

/

0

1

2

3

4

5

6

-1 -0.5 0 0.5 1
/

-1

-0.5

0

0.5

1

/

0

1

2

3

4

5

6

7

8

(a)

(b)

Figure 2. (a) Fourier symbol of minus the discrete Laplace operator corre-
sponding to the first-order form as a function of the scaled horizontal and
vertical wavenumber for a structured periodic mesh composed of the pat-
tern in Fig. 1. Near the centre, the operator follows the exact one, ξ2 + η2.
Further away, the error is of order four, but still further away, the operator
becomes zero in a number of points, marked by crosses. The zero at the
centre, indicated by a circle, should be present, but the others correspond
to unwanted null-vectors. (b) Fourier symbol of the second-order operator,
shown for reference, only has a zero at the origin.

The first term represents the exact operator, k2
x + k2

z , the second
the discretization error, which is of order four relative to the exact
operator.

Fig. 2(a) displays B̂ over the whole wavenumber domain. The
bowl near the origin shows the quadratic term ξ 2 + η2. At higher
wavenumbers, the deviation from ξ 2 + η2 increases and hence the
numerical errors grow. The symbol B̂ should vanish only at the
origin, but it is also zero at the points (ξ , η) = (m1π , m2π ), with
integer m1 and m2, and at η = −ξ = ± 2

3 π . Viewed as an elliptic

operator, obtained by dropping the second time derivative from the
wave equation, B has a number of non-trivial null-vectors and is
therefore unstable. For the wave equation, it implies that the spatial
operator does not see certain waves but the time-stepping scheme
does. Once excited, these waves will start to live a life of their own
and not disappear, except perhaps at an absorbing boundary. The
net effect will be a noisy pressure wavefield.

For an actual problem that is not too large, we can numerically
evaluate the operator B and compute its singular-value decomposi-
tion to find the eigenvalues and corresponding eigenvectors. This
shows that zero Dirichlet boundary conditions can suppress some of
the unwanted modes and also that the number of zero eigenvalues
depends on the number of vertices in the mesh. On unstructured
meshes with zero Dirichlet boundary conditions, the zero eigen-
values disappear altogether. Still, some of the smallest eigenvalues
have eigenvectors with high wavenumbers that will still show up as
noise patterns once excited.

For reference, Fig. 2(b) shows the Fourier symbol for the second-
order discretization, which has a simple bowl-shaped form, flatten-
ing towards the edges at the high wavenumbers. Its Fourier symbol
is given by 4h−2[sin 2(ξ /2) + sin 2(η/2)] � h−2[ξ 2 + η2 + {ξ 4 + η4

− 2ξη(ξ − η)2}/12], showing that it does not have non-trivial null-
vectors and that it has second-order accuracy. Note that the error
expansion for the mass-lumped first-order form without defect cor-
rection is h−2(ξ 2 + η2)[1 − (ξ 2 + η2 − ξη)/3], having a significantly
larger second-order error than the second-order form.

2.5 Initial guess for source term parameters

To avoid noisy solutions, we either have to abandon the first-order
formulation altogether or ensure that such waves are not excited.
A sufficiently band-limited source function can accomplish that.
Here, we will use Fourier analysis to obtain reasonable values for
the source term parameters. In the next section, we will refine these
values by numerical experiments on a homogeneous problem.

For the chosen structured periodic mesh, Fig. 2(a) suggests that
wavenumbers with

√
ξ 2 + η2 � 1

2 π or
√

k2
x + k2

z � 1
2 πh should

not be excited. We can, for instance, replace the delta function
source by a Gaussian. In the 1-D case, we may require the Gaus-
sian to have half its maximum amplitude in the wavenumber do-
main halfway the spectrum. This leads to a standard deviation
σ/h = (2/π )

√
2 log 2 = 0.75. In the weak form of eq. (23), with

s(x − xs) replaced by a Gaussian, and after application of the inverse
mass matrix, this is not expected to be very different.

A similar consideration can guide the choice of parameters for
the tapered sinc. Fig. 3 shows a number of dispersion curves for the
first-order formulation in the 1-D case, taken from Shamasundar &
Mulder (2016). Shown is the spectrum of the 1-D first-derivative
operator, M−1D as a function of the normalized wavenumber ξ =
kxhx, scaled by π . Note that |ξ | ≤ π and that only the positive
axis is displayed as the rest follows by symmetry. The exact result
should be κ = iξ , implying that κ/i = ξ appears as a straight line.
The deviation from that line represents the numerical dispersion
error. For the first-derivative operator with a consistent mass matrix,
the dispersion curve is drawn in blue. It is given by 3 sin(ξ )/(2 +
cos ξ ) � ξ (1 − 1

180 ξ 4). As the scaled exact operator should be ξ

= kxhx, this shows that the relative error is proportional to ξ 4 or
h4

x and therefore, the discretization has fourth-order accuracy. With
mass lumping, shown in red and given by sin ξ � ξ (1 − 1

6 ξ 2), the
accuracy reduces to second order. One iteration produces the green
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Figure 3. Dispersion curves for the first derivative and two tapered-sinc
source window functions with nw = 3 and rs = 2h or 3h that should sup-
press high wavenumbers towards the right, where the dispersion curves
deviate strongly from the exact κ = iξ until it becomes zero at the highest
wavenumber, where it has a non-trivial eigenvector, proportional to a +1,
−1, +1, −1, ... mode.

curve, which is described by 1
3 (4 − cos ξ ) sin ξ � ξ (1 − 1

30 ξ 4), and
therefore restores fourth-order accuracy.

The tapered sinc should behave as a high-cut filter that removes
wavenumbers above |ξ |/π around 0.4 or 0.5. Fig. 3 shows the spec-
tra of the window function provided by the tapered sinc for two
parameter choices. To obtain these spectra, we choose a 1-D uni-
form periodic grid with element size h, placed a source at 0.2h from
a vertex, evaluated eq. (23), applied the inverse mass matrix and
performed a Fourier transform. The precise position of the source
inside an element does not seem to matter for the results shown in
Fig. 3, obtained for nw = 3 and rs = 2h or rs = 3h. Larger values
of nw will make the transition from 1 to 0 steeper, at the expense
of increasing the spatial source size, which will complicate matters
when close to the free surface. We expect that parameters in this
range will be close to optimal in the 2-D case.

In the weak form, the spatial part of the source function will be
multiplied by the basis functions, after which it will be multiplied
by the inverse of the mass matrix or its iterative approximation.
The effect of this will be another second-order error, as can be seen
easily by considering the same Fourier analysis as before. If the
integration against the basis functions is denoted by a linear operator
�, its Fourier symbol on the earlier structured mesh becomes

�̂ = 2h2 sin η − sin ξ + sin(ξ − η)

ξη(ξ − η)
. (28)

For small ξ ,

h−2�̂ � 1 − 1
12 (ξ 2 + η2 − ξη), (29)

showing its second-order error. The inverse mass matrix does not
compensate for that:

M̂−1�̂ � 1 + 1
12 (ξ 2 + η2 − ξη). (30)

This suggests that we cannot obtain fourth-order convergence with
the first-order formulation.

One may wonder if the second-order error term can be removed
by adjusting the spatial source distribution. An attempt to recover

fourth-order accuracy is presented in the appendix, for an equidis-
tant mesh in 1D. The idea is to compensate the second-order impact
of the discretization, M̂−1�̂, in the source function. In the 1-D
equidistant case, that can be accomplished easily. However, it is not
obvious how to generalize this idea to an unstructured 2-D mesh.

3 R E S U LT S

We examine the performance of the two discretizations, in first- or
second-order form, and four source terms, a delta function and three
extended ones: Gaussian, tapered sinc and a fourth-order polyno-
mial approximation of the delta function. The test problem is homo-
geneous with a constant sound speed c = 1.5 km s−1 and constant
density ρ = 1 g cm−3. The rectangular domain has a size of 3 × 1.5
km. A point source is located at xs = 1.5 km and zs = 0.5 km. The
compactly supported wavelet is

w(t) =
{−(Tw/8)2 d

dt [1 − (2t/Tw)2]8, if |t | < 1
2 Tw,

0 , otherwise.
(31)

The length of the wavelet, Tw, is related to peak frequency by Tw

= 0.934129/fpeak and we chose fpeak = 3 Hz. The simulations run
from a time − 1

2 Tw = −0.156 to tmax = 0.45 s. At that time the direct
wave has been reflected once by the free surface and another part
has reached the opposite boundary. We take all boundaries as zero
Dirichlet and use mirror sources with opposite sign when computing
the exact solution. The error in the pressure at tmax is measured at
all vertices. The coordinates and velocities were rotated by 30◦ for
testing purposes.

Fig. 4(a) illustrates what happens with a delta function as source
in the first-order formulation. It generates short wavelengths that
dominate the solution. With the tapered sinc, we obtain the result in
Fig. 4(b). For these examples, we used the consistent mass matrix,
fourth-order time stepping with a time step close to the stability
limit and an unstructured mesh.

To find good parameters for the extended sources, we computed
the root-mean-square (RMS) error for the above problem over a
range of source sizes, using the consistent mass matrix and a fourth-
order time-stepping method based on eq. (19). The time step was
chosen close to the stability limit. For the latter, we use �t ≤ C
min j(dinner, j/cj) where dinner/c is the ratio of the diameter of the
inscribed circle over the sound speed and the minimum is taken
over all triangles j. The constant C is estimated to be 1.36 with the
consistent mass matrix in eq. (19), C = 2.41 with mass lumping, C
= 1.76 with one iteration and C = 1.56 with two. With fourth-order
time stepping, these constants can be increased by a factor

√
3.

Fig. 5 plots the RMS error as a function of the source size r scaled
by the element size h, defined by the longest edge of the element that
contains the source. The consistent mass matrix was used, despite
its higher cost. For a Gaussian, r is its standard deviation scaled by
element size and the smallest error is obtained at r/h = σ /h = 1.04.
The graphs for the tapered sinc are less smooth. The smallest error
occurs for nw = 3 and r/h = rs/h = 1.91. The result is better than
for a Gaussian source. Here, h is the maximum edge length of the
element that contains the source position.

We also examined a fourth-order polynomial approximations of
the delta function. The results were considerably less accurate than
for the tapered sinc and are therefore not shown.

Next, we study convergence on a range of meshes, from coarse
to fine, both structured and unstructured. We use fourth-order time
stepping and a source based on the tapered sinc with nw = 3 and r/h =
rs/h = 2. Fig. 6 shows the RMS error as a function of Nλ, the number
of elements per wavelength, defined as Nλ = hmean/λpeak, where the
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Source terms for finite elements 1237

Figure 4. Wavefield at 0.45 s for a delta function source (a) and for a
tapered sinc (b), both on an unstructured mesh. Positive pressures are red
and negative blue.
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Figure 5. Scan over the source size r scaled by the element size h. The RMS
error for a Gaussian is smallest for a standard deviation around 1. For the
tapered sinc, nw = 3 performs best with r/h = rs/h between 2 and 3 for the
current test problem.
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Figure 6. RMS error as a function of Nλ, the number of elements per
wavelength at the peak frequency, for the tapered sinc with nw = 3 and r/h
= rs/h = 2 on structured (a) and unstructured (b) meshes. Results are shown
for the consistent or full mass matrix (F) and for mass lumping with no, one
or two additional iterations. The blue line corresponds to the second-order
form with mass lumping. The triangles indicate the slopes for second- and
fourth-order convergence.

mean mesh size hmean = √
A�/Nt , A� is the total area of the mesh,

Nt the number of elements and λpeak = c/fpeak the wavelength at a
peak frequency fpeak for a constant velocity c. For the structured
mesh in Fig. 6(a), Nλ/

√
N � 0.331 whereas for the unstructured

mesh in Fig. 6(b), Nλ/
√

N � 0.234, with N the number of vertices.
The errors for an unstructured mesh in Fig. 6(a) start out with

fourth-order behaviour in hmean or Nλ on the coarser grids but de-
grade to second-order on finer ones. Given the results of the 2-D
Fourier analysis in the previous section, we cannot expect to do
better than second-order. The results for the consistent or full mass
matrix are included as a reference but are costly to compute, taking
an order of magnitude longer, depending on problem size. With
mass lumping, the accuracy drops to second order but one iteration
provides a significant improvement in accuracy, as expected. With
unstructured meshes, the errors are more erratic. Nevertheless, the
defect-correction approach still appears to pay off.
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We repeated the exercise for the second-order formulation in
eq. (4), but now with second-order time stepping and mass lumping
without iterations. The time step was close to the stability limit.
With a Gaussian source distribution, the smallest RMS error was
obtained at r/h = σ /h = 0.31, but was only 4 per cent smaller than
with a delta function source. For the tapered sinc, the best result was
found for r/h = rs/h = 0.92 and also only 4 per cent smaller than
with a delta function source. Given the simplicity of latter, there
seems to be no reason to replace it.

This leaves the question if the first-order is better than the second-
order form, meaning that it requires less floating-point operations
for a given accuracy. The answer, unfortunately, is no. The blue lines
in Figs 6(a) and (b) plot RMS errors obtained on the same meshes
for the second-order form with mass lumping and second-order time
stepping. They lie well below those for the first-order form without
defect correction, drawn as dashed lines. This is not unexpected,
given the result of Fourier analysis at the end of Section 2.4. The
iterations reduce the errors for the first-order form. On the structured
mesh, the final result is not better than that for the second-order form.
On the unstructured mesh, there is a significantly smaller error in
a small range of Nλ. The first-order form, however, requires seven
matrix-vector multiplications per time step for second-order and
double that for fourth-order time stepping. Although the maximum
allowable time step is larger by a factor of about 2.5 for the latter,
compared to the second-order scheme, this still results in a higher
computational cost for a given accuracy. Although we observed
this in our Matlab� implementations of both schemes, which is not
really suited for measuring performance, we believe this will carry
over to implementations in a compiled language like C or C++.
On top of that, there exist higher-order mass-lumped schemes in
second-order form that are more efficient than the second-order one
considered here (Mulder 1996; Chin-Joe-Kong et al. 1999), making
the first-order form considered here even less competitive.

To demonstrate that the first-order form can actually be used
on non-trivial problems, we have applied it to the inhomogeneous
sound speed model shown in Fig. 7. A source at xs = 2468.36 and zs

= 410.351 m with a 12-Hz Ricker wavelet generated the wavefield
displayed in Fig. 7(b), using the first-order formulation with fourth-
order time stepping. The tapered-sinc source had nw = 3 and rs/h =
3. The mesh contained 800466 elements and 401764 vertices. The
computations started at −0.17 s to let the Ricker wavelet peak at
zero time.

4 C O N C LU S I O N S

We have examined the performance of four source distributions,
the delta function, a Gaussian, a tapered sinc and a polynomial
approximation of the delta function, in a finite-element formulation
of the acoustic wave equation. The spatial operator in the discrete
first-order form of the wave equation may have short-wavelength
null-vectors. The corresponding waves are therefore not seen by the
spatial operator and persist on their own once excited. The result
is a noisy solution that can be avoided by suppressing the short
wavelengths. One approach is to replace the weak form of the delta
source function by a source of wider extent. We have performed
numerical experiments to find suitable parameters for the Gaussian,
for the tapered sinc and for a polynomial approximation of the delta
function. The tapered sinc provided the most accurate results.

In the standard second-order form, the Gaussian and tapered sinc
hardly improve the accuracy and a delta function appears to be the
most attractive choice, given its simplicity.

Figure 7. (a) Velocity model for an inhomogeneous sound speed model,
including topography. The orange star marks the source position. (b) Pressure
wavefield at 0.5 s.

The first-order form with one iteration may have a better accuracy
than the second-order form, but that does not appear sufficient to
compensate for its higher cost, at least not in our 2-D Matlab� im-
plementations. The second-order form and in particular its higher-
order versions appear to be more attractive.

A C K N OW L E D G E M E N T S

This work was partly funded by the Industrial Partnership Pro-
gramme (IPP) ‘Computational sciences for energy research’ of the
Foundation for Fundamental Research on Matter (FOM), which
is part of the Netherlands Organisation for Scientific Research
(NWO). This research programme is co-financed by Shell Global
Solutions International B.V. The authors are grateful for the helpful
comments of the two reviewers, Vincent Etienne and Nobuaki Fuji.

R E F E R E N C E S
Ainsworth, M., 2014. Dispersive behaviour of high order finite element

schemes for the one-way wave equation, J. Comput. Phys., 259, 1–10.
Anderson, J.E., Brytik, V. & Ayeni, G., 2015. Numerical temporal dispersion

corrections for broadband temporal simulation, RTM and FWI, in SEG
Technical Program Expanded Abstracts, pp. 1096–1100, New Orleans,
LA.

Brossier, R., Virieux, J. & Operto, S., 2008. Parsimonious finite-volume
frequency-domain method for 2-D P–SV-wave modelling, Geophys. J.
Int., 175(2), 541–559.

Cerjan, C., Kosloff, D., Kosloff, R. & Reshef, M., 1985. A nonreflect-
ing boundary condition for discrete acoustic and elastic wave equations,
Geophysics, 50(4), 705–708.
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A P P E N D I X A : A N O T H E R W I N D OW
F U N C T I O N

We examine a method that possibly may compensate for the second-
order impact of the discretization. Consider a periodic equidistant
1-D mesh with xj = jh, j = 0, 1, . . . , Nx − 1. The mass matrix
has a Fourier symbol M̂ = h

[
1 − 2

3 sin2(ξ/2)
]

with ξ = kh and
wavenumber k. Integration against the basis function has an oper-

ator symbol �̂ = h
[

sin(ξ/2)/(ξ/2)
]2

, corresponding to the linear
operator � having (� f) j = ∫

�
φ j (x) f (x) dx .

We choose a window function with Fourier symbol

ŵ =
[

sin(ξ/2)

(ξ/2)

]6 [
1 + α sin2(ξ/2)

]
. (A1)

The motivation for this choice is the finite-difference fourth-order
polynomial approximation of the delta function (Petersson et al.
2016, eq. 8), given by

w4(ζ ) =
⎧⎨
⎩

1
32 (16 − 4|ζ | − 4ζ 2 + |ζ |3), |ζ | < 2,
1
96 (48 − 44|ζ | + 12ζ 2 − |ζ |3), 2 ≤ |ζ | < 4,

0, |ζ | ≥ 4,

(A2)

which has a Fourier symbol ŵ4 = [
sin(ξ/2)/(ξ/2)

]4
(1 + 1

6 ξ 2) �
1 − 11

720 ξ 4, revealing its fourth-order behaviour. To undo the effect

of �̂, we increase the power for the sinc function from 4 to 6 to obtain

ŵ. Its Fourier transform back to the spatial domain becomes sim-
pler if ξ 2 is replaced by sin 2(ξ /2). The expansion ŵ � 1 + 1

4 (α −
1)ξ 2 + 1

240 (7 − 20α)ξ 4, provides a fourth-order approximation for
α = 1. The inverse Fourier transform to the spatial domain leads
to

w(ζ ) = 1

π

∫ ∞

0
�̂−1 M̂ŵ cos(ξζ ) dξ, (A3)

with ζ = x/h. We have included the mass matrix and the inverse of
�. The result is the function

w(ζ ) = 1
288

[
114|ζ |3 − 70

(|ζ − 1|3 + |ζ + 1|3)
+8

(|ζ − 2|3 + |ζ + 2|3) + 6
(|ζ − 3|3 + |ζ + 3|3)

−(|ζ − 4|3 + |ζ + 4|3)], (A4)

or

w(ζ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
144 (92 − 3ζ 2(40 − 19|ζ |)), |ζ | < 1,
1

144 (162 − |ζ |(210 − |ζ |(90 − 13|ζ |))), 1 ≤ |ζ | < 2,
1

144 (98 − |ζ |(114 − |ζ |(42 − 5|ζ |))), 2 ≤ |ζ | < 3,
1

144 (4 − |ζ |)3, 3 ≤ |ζ | < 4,

0, |ζ | ≥ 4.

(A5)
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