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Abstract—This article presents a data-compressive neu-
ral recording IC for single-cell resolution high-bandwidth
brain—-computer interfaces (BCIs). The IC features wired-OR
lossy compression during digitization, thus preventing data
deluge and massive data movement. By discarding unwanted
baseline samples of the neural signals, the output data rate is
reduced by 146x on average while allowing the reconstruction
of spike samples. The recording array consists of pulse-position
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modulation (PPM)-based active digital pixels (ADPs) with a
global single-slope (SS) analog-to-digital conversion scheme,
which enables a low-power and compact pixel design with signif-
icantly simple routing and low array readout energy. Fabricated
in a 28-nm CMOS process, the neural recording IC features
1024 channels (i.e., 32 x 32 array) with a pixel pitch of 36 xm that
can be directly matched to a high-density micro-electrode array
(MEA). The pixel achieves 7.4-uV,,s input-referred noise with a
—3-dB bandwidth of 300 Hz-5 kHz while consuming only 268 nW
from a single 1-V supply. The IC achieves the smallest area per
channel (36 x 36 pm?) and the highest energy efficiency among
the state-of-the-art neural recording ICs published to date.

Index Terms— Brain—computer interface (BCI),
brain-machine interface (BMI), compression, multi-electrode
array, neural interface, neural recording, pulse-position
modulation (PPM), single-cell resolution.

I. INTRODUCTION

RAIN-COMPUTER interfaces (BCIs) have the poten-

tial to revolutionize therapy for neurological diseases,
because they target the nervous system with high spatiotempo-
ral resolution as opposed to pharmacological, surgical, or gene
therapies [1], [2], [3]. Next-generation BClIs for clinical appli-
cations will benefit from an implantable neural recording IC
with a dense, high channel count recording array that can
be directly matched to a micro-electrode array (MEA) at the
pitch of neurons (&30 um) to effectively capture spatiotem-
poral patterns of neural activity at single-cell resolution. Over
the last five decades, the doubling rate for simultaneously
recorded neurons was approximately seven years, and the
number is still less than a few thousand [4]. Future BCIs
must support simultaneous recording from tens of thousands
of neurons or more within the form factor and power budget
of a fully implanted device. Recently, custom requirements
for clinical BCIs that focus only on action potentials are
emerging [5], [6], [7]. Hence, there is an opportunity for an
architectural paradigm shift that can increase the number of
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channels while reducing channel area and power consumption.
However, meeting these requirements poses a number of
significant design challenges [8] (see Fig. 1). First, as the
number of channels (N?) increases, the system data rate
becomes unmanageable (e.g., 10000 channels digitized at
10-bit resolution and 20 kS/s generate 2 Gb/s). On-chip spike
detection (SD) can compress the raw data by transmitting
only a snippet around the spike [9], [10]. However, this
solution incurs significant overhead in threshold management,
typically per channel, and in the memory, buffers needed to
compensate for the SD latency. Compressive sensing [11],
[12] and compressive autoencoder [13] architectures can be
designed with hardware-friendly encoders on the implant
site. However, they require all raw data to be digitized and
buffered. Notably, the data movement cost can be a limit-
ing factor when compression happens after digitization (e.g.,
to buffer 1-ms spikes in the above case, caching 2 Mbit into a
0.6-pJ/bit SRAM [14] at 1 kHz consumes 1.2 mW). Analog
implementations of compressive sensing reduce the amount
of raw data that are digitized [11], but require bulky analog
filters that do not scale well to large-scale high-density arrays.
Second, as the channel density increases, the routing from
the analog signals in the array to the peripheral recording
channels becomes a limiting factor. A common strategy is
to perform sub-array digitization using a switch matrix [15],
[16]. However, this eliminates the possibility of simultaneous
recording over the entire array. Active digital pixels (ADPs)
digitize the analog input inside the array and reduce routing
congestion [17], but it comes at the cost of large pixels. Third,
most of the prior high-density neural recording ICs consume
chip total power per channel of more than 10 uW. Practical
wirelessly powered biomedical implants have a power budget
of less than 10 mW [18]. Hence, the number of channels
(N?) is limited to less than 1000. Also, as the size of the
channel is getting smaller, power density increases, and it
leads to a safety issue along with a maximum allowable heat
dissipation of implantable device in direct contact with a tissue
(e.g., a power dissipation limit of 1 mW/mm? requires less
than 1 uW per channel in the area of 33 x 33 um). Finally,
for all the prior works, the area of the channel is too large
(>0.004 mm?) to achieve a single-cell resolution neural inter-
face in most regions of the nervous system.

This article presents a data-compressive neural recording
IC that addresses the above issues to realize a high-density
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Design challenges of neural recording ICs for massive MEA and issues of the prior works.

and channel count recording array for future single-cell res-
olution BCIs. The 1024-channel array consists of in-pixel
pulse-position modulation (PPM)-based ADPs with a global
single-slope (SS) A/D conversion scheme that significantly
reduces the design complexity and size of the pixel. Different
from [19] employing only a global SS A/D conversion to
reduce the size of digital pixel, the PPM-based ADP output is
read outside the array with a single routing line, thus signif-
icantly reducing the array’s routing congestion and readout
energy. A wired-OR compression method [20] compresses
massive data from the large array during the A/D conversion,
which addresses the data deluge problem and significantly
reduces data movement. The average compression rate is
146 x with pre-recorded neural signals, while the reconstructed
signal enables efficient spike sorting, cell type classification,
and recovery of cell mosaics [20], [21]. Since the compres-
sion occurs without a spike detector, there is no threshold
management and memory overhead. Fabricated in a 28-nm
CMOS process, it achieves the lowest power consumption
per channel (=268 nW) and the smallest area per channel
(=36 x 36 um?) among neural recording ICs while having
7.4-1t Vs input-referred noise in a [0.3, 5]-kHz bandwidth.

As an extension of [22], this article is organized as fol-
lows. Section II presents a system overview of the neural
recording IC, while its architectural benefits are described in
Section III. Section IV provides implementation details, and
the measurement results are presented in Section V. Finally,
the conclusions are drawn in Section VI.

II. SYSTEM OVERVIEW
A. Neural Recording IC Architecture Overview

Fig. 2 shows the block diagram of the data-compressive
neural recording IC. At the front end, the N x N MEA
interfaces with the neural cells, and the pitch-matched ADP
directly reads out each electrode in the N x N pixel array.
Each ADP consists of a front-end amplifier, comparator, and
wired-OR logic. Outside the array, the global ramp generator,
counter, and collision decoder process the array output data.

First, the input from the electrode is conditioned by the
amplifier in the band of interest. The continuous-time (CT)
comparator in the pixel applies PPM to the output of the
amplifier using a globally distributed ramp signal. Then, the
PPM output is connected to the row and column address
of each pixel through wired-OR logic. In this way, the

Authorized licensed use limited to: TU Delft Library. Downloaded on November 04,2024 at 14:08:54 UTC from IEEE Xplore. Restrictions apply.
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N x N array is simultaneously read out with a reduced
number of wires (from N2 to 2N when compared with
conventional analog and/or PPM-based pixels). Outside the
array, the collision decoder reads the wired-OR PPM outputs
and assigns the corresponding digital values based on a global
counter synchronized with the ramp generator. If multiple
pixels access the row/column buses during the same ramp step,
decoding is not possible. These events are called collisions and
are discarded (i.e., not stored) by the decoder performing data
compression. Hence, only data from pixels having a unique
digital value within a single ramp period are stored (see [20]
and [21] for extensive validation of the wired-OR compression
algorithm).

The described architecture has various advantages over
the prior works. First, the PPM-based ADP includes only a
single comparator for A/D conversion, which reduces its area
and power consumption (the global ramp generator is shared
among all pixels, making its power and area consumption neg-
ligible). Second, routing congestion in the array is significantly
mitigated, allowing an increase in the number of channels
while reducing the channel pitch (i.e., increasing the size and
density of the array). Finally, since the compression occurs
during A/D conversion and is realized without spike detection,
the readout chain does not have massive data movement
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(a) Chip architecture and (b) operation principle: two-channel example and its timing diagram.

and spike detection overhead. Therefore, this analog-to-digital
compression architecture enables simultaneous recording in
large-scale MEAs while addressing the data deluge problem.

B. Neural Recording IC Operation Principle

Fig. 3(a) shows the neural recording IC architecture. The
recording pixel array has 1024 PPM-based ADPs, and its
pixel pitch is matched to the electrode pitch (Lg = 36 um)
of the MEA to directly read out each electrode. The output
of each ADP is read out by their row and column address
location outside the array through the row and column wires
(Viowo — Viows1 and Vi — Veors1). Then, the row and column
readouts process all row and column wires in parallel at
each ramp step and output the collision information (Ryy[5]
and Coy[5]) and addresses of the active pixels (R [4:0] and
Cout[4:0]). The collision decoder reads Rqy[5:0] and Cogy[5:0]
at each of the 256 ramp steps and combines it with the output
of an 8-bit counter (Goy[7:0]) to perform the 8-bit PPM.
Finally, it outputs the address (Aoy) and data (D) for the
collision-free channels with a data valid flag (Valid).

Fig. 3(b) shows a two-channel example and its timing
diagram. Each PPM-based ADP consists of a sample and hold
(fy = 20 kHz), an amplifier, filter, and a continuous-time
(CT) comparator that drives the local row and column using
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at t = 1.3 ms.

open-drain outputs. First, the acquired samples of each channel
(V3o and V3;) are amplified and filtered (V3oc and V3i¢) and
then compared with Viump. The ramp crossing occurs at 7Ty for
channel 30, and it makes the comparator output (V30) high,
which triggers the corresponding wired-OR outputs (Viewo
and Vio30). In the same way, Viowo and V3 are triggered
at T, for channel 31. Then, the row and column readouts
output the corresponding Ry [4:0] (=0 for both) and C[4:0]
(=30 and 31) at T; and 7, with the collision/no-collision
information (Roy[5] and Coy[5]). The 8-bit PPM outputs at T}
and T, are obtained from G,y [7:0] by the collision decoder
along with the Rqy[5:0] and Cqy[5:0]. In the case that the two
channels have different PPM outputs [Fig. 3(b) (bottom left)],
the collision decoder outputs Ay and D, of each channel
with Valid = 1 (no collision). However, if the input values
are so close that 77 and 7, occur in the same ramp step, the
two channels have the same PPM outputs [Fig. 3(b) (bottom
right)]. In this case, a collision occurs, and the outputs of
the decoder (Ao and Dyy) are not valid (Valid = 0), thus
discarded.

Fig. 4 shows an example of the data compression with
eight-channel data recorded from ex vivo primate retina [23],
[24]. A MATLAB behavioral model is used to emulate the
array digitization, including the wired-OR compression. As can
be seen, the wired-OR compression discards a large number
of unwanted samples near the baseline of the neural signals
where the probability of having the same PPM outputs is high.
In contrast, it retains the more important spike samples of
neural signals. This is because spike samples are rare, making
the probability of collisions very low.

III. ARCHITECTURAL BENEFITS

To investigate the benefits of the wired-OR architecture, the
readout energy and output data rate of the entire array are
compared with those of a conventional ADP array.

A. Read-Out Energy Reduction

Fig. 5(a) shows the readout energy of a 1024-channel
8-bit ADP array. For simplicity, the required readout energy/bit
for all pixels is assumed to be the bitline access cost CV?
(assuming 1 V and 0.1 pF for 1-mm bitline). Then, the readout
energy/pixel is 0.8 pJ for an 8-bit ADP, and the total energy
to read out the entire array is 819.2 pJ (Fig. 6).

Fig. 5(b) shows the readout energy of a 1024-channel PPM-
based ADP array. With the same assumption, since the PPM
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ADP has a single-bit output on each wire (row and column),
the required readout energy/wire is 0.1 pJ. Therefore, the
readout energy for a 1024-channel PPM-based ADP array is
equal to the total number of pulses on row and column wires
during the entire ramp period multiplied by 0.1 pJ and is
plotted in Fig. 6. The total number of pulses is minimum when
all 1024 pixels have the same PPM output [Fig. 7(a)]. This
results in 64 pulses in a single ramp step and a readout energy
equal to 6.4 pJ. In contrast, the number of pulses is maximum
when the PPM outputs of all pixels are evenly distributed with
a unique row and column address. For example, four pixels
having a unique row and column address are fired at each ramp
step [Fig. 7(b)]. This results in eight pulses at each ramp step
and a readout energy equal to 204.8 pJ. Therefore, the readout
energy is input-dependent (ranging from 6.4 to 204.8 pJ) and is
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4x to 128 lower than in the conventional case (Fig. 6). How-
ever, both extreme cases are unlikely, considering the statistics
of the neural signal. Instead, the average readout energy should
be estimated based on real neural signals. Fig. 8(a) shows
1000 samples for 1024 channels of pre-recorded neural signals
from ex vivo primate retina [23], [24], which corresponds
to 50-ms recording at 20-kHz sampling rate. These neural
signals are used as input to the behavioral model described in
Section II-B to obtain the total number of pulses per sample
[Fig. 8(b)]. The total number of pulses ranges from 325 to
499 with the average number being 420, which corresponds
to an average readout energy of 42 pJ. Therefore, the average
readout energy reduction is 19.5x when compared with an
8-bit conventional ADP array.

B. Output Data-Rate Reduction

With a typical sampling frequency of 20 kS/s, the output
data rate of the 1024-channel 8-bit ADP array (Dapp) can be
calculated as follows:

Dapp = 1024 x 8 bit x 20 kS/s = 163.84 Mb/s. (1)

In the case of a 1024-channel PPM-based ADP array with
wired-OR compression, 8-bit output data are transmitted at
20 kS/s only when the channels are collision-free. Therefore,
the output data rate (Dyor) depends on the total number of
collision-free channels (N¢¢) and can be calculated as follows:

Dyor = N¢r x 8 bit x 20 kS/s. 2)

Fig. 9(a) shows the output data rate as a function of
the number of collision-free channels. Since the number of
collision-free channels is input-dependent, the output data
rate also should be estimated based on the statistics of the
neural signal as done for the readout energy. The number
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ADP array with wired-OR compression. (b) Distribution of the number of
collision-free channels with the input signals in Fig. 8(a).

of collision-free channels ranges from O to 15, with an
average number of 7 [Fig. 9(b)], corresponding to an average
data rate of 1.12 Mb/s. Therefore, a data rate reduction of
around 146 x can be obtained compared with the 1024-channel
8-bit ADP array [Fig. 9(a)]. Even with this large compression
rate, the reconstructed signal still retains the critical samples
belonging to spikes and allows for efficient spike sorting, cell
type classification, and recovery of cell map features [20], [21].

IV. IMPLEMENTATION DETAILS

A. Overall Architecture

Fig. 10 shows the top schematic of the neural recording IC.
In the neural recording front end, an ac-coupled low-noise
boxcar (LNB) sampler and a low-pass filter (LPF) are imple-
mented for sample and hold, amplification, and filtering, which
are followed by a CT comparator to compare the input signal
against the global ramp signal (Vramp) and the wired-OR
logic. The local clock generator provides all the phases for
the recording front end from the system clock (fe). The
reference electrode is built-in on-chip and implemented with
an electrode ring around the 32 x 32 MEA, which is actively
driven by the neural recording IC.

The row and column pulse readout comprises a pulse
detector for each row/column wire and a decoder. The pulse
detector samples the output of the wired-OR logic using a
negative-edge triggered flip-flop and uses a tunable pull-up
current source to reset the wired-OR line (Ipuiiup[3:0]). The
pulse decoder uses one-hot detection on the row/column wires
to detect a collision (Roy[5] and Coy[5]) and performs one
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Fig. 11.  Architecture of neural recording front end and its timing diagram.

hot to binary conversion to output the address of the active
row/column wires (R [4:0] and Cyy[4:0]).

The collision decoder outputs the row and column address
together with the associated value from the global counter
(Addrgew[4:0], Addrcy[4:0], and D,y [7:0]) and a flag signal-
ing whether the output is collision-free or not (Valid). Using
up to eight wires (we,y[7:0]) per row and column, the array
can be split into multiple sub-arrays. This generates multiple
levels for collision decoding and allows to control the collision
rate (i.e., degree of compression).

The global ramp generator consists of a current source
(Iramp) and a tunable capacitor bank (Cramp and Cyyye With

Cal[7:0]), followed by a unity-gain buffer to drive the
1024 channels. Also, a global bias generator provides the
current bias (Ipiasp and Iyiaen) to each pixel. The digital control
unit is used to configure the chip and transmit the output
data (Addrgey[4:0], Addrcg[4:0], and Dy [7:0]) off the chip
using serial communication. The fix is 6.2 MHz, and the input
sampling rate (f;) is 20 kS/s.

B. Neural Recording Front End

Fig. 11 shows the architecture of the neural recording front
end and its timing diagram. An ac-coupled LNB sampler
minimizes the noise penalty from noise folding with its
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inherent anti-aliasing property due to the notches at the multi-
ples of sampling frequency (=20 kHz) and provides rail-to-rail
electrode dc offset tolerance. To minimize area, the circuit
uses a 1.1-pF input MOM capacitance (Cry) on top of ESD
and active devices. The LNB uses an inverter-based G,, with
a large feedback resistor (Rypp 21.3 GQ) for dc biasing
and setting the high-pass corner (fgp = 300 Hz). The Rypr is
realized with a duty-cycled resistor (DCR), which consists of a
50-M2 transistor in a triode region and a switch with 1/43 duty
cycle (¢pcr =~ 7.2T¢), resulting in low noise and small area.
The duty cycle is globally programmable with a 4-bit binary
delay control unit. The output of the inverter-based G,, is
integrated on Cint for 2967k (¢nt) and then sampled on Cypp
for 8Tk (¢Lpr) to implement a passive switched-capacitor low-
pass filter (SC-LPF) without additional power consumption.
The SC-LPF pole and the null from the boxcar result in an
overall fip = 5 kHz. The overall front end has a bandpass
filter (BPF) response with a gain and bandwidth of 38 dB
and 300 Hz-5 kHz; 6T are allocated to reset Cint between
samples (¢grst), Which leads to fix = 310f; (=6.2 MHz).
During the reset phase of the LNB, the outputs of the G, cell
are connected to set the common-mode voltage, which is then
copied to the input by the DCR resistor. During the integration
phase, the previous sample stored in Crpr is compared with
the global ramp for PPM. The 8-bit conversion phase lasts
(256 + 40)Tk to compensate for the comparator latency. The
comparator includes auto-zeroing (@az) and in-pixel offset
calibration to minimize the offset between channels to the level
required by the wired-OR compression [20]. The ramp (Viampp
and VpmpN) range and slope can be set to change the ADC
resolution and input range of the pixel. In the wired-OR logic
block, the comparator output trigger edge is converted into
the pulse having a width of T, and synchronized to f. by
the feedback synchronizer (Viense), resulting in an 8-bit PPM.
Then, it is transmitted outside the array through the row and
column OR buses. According to the array configuration for the
number of wires (wen[7:0]), wge1[7:0] determines the channel
connection to one of the row bus wires (Busgew[7:0]).

The G, cell is implemented with a current starved inverter
self-biased by a DCR [Fig. 12(a)]. With a bias current of only
100 nA, the resulting G,, is 2.8 uS, which corresponds to
an integrated input-referred thermal noise of 6 uV,,, over
1 Hz-10 kHz. The input-referred noise contribution from the

~

Schematic of (a) front end G, and (b) continuous-time comparator with auto-zeroing and in-pixel output offset calibration.
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Fig. 13.
diagram.

Schematic of row (or column) pulse read-out circuit and its timing

DCR is designed to be negligible (= 2.3 uV,,) compared
with G,,, while it only occupies an area of 1.6 x 2.8 um?.
Even with the G,, cell device size of 13.5 um?, the standard
deviation of the recording front-end’s input-referred offset
is 18 uVins based on Monte Carlo simulations because of
the auto-zeroing at the comparator. The CT comparator is
implemented with four inputs differential to single-ended
architecture [Fig. 12(b)]. It consumes 80 nA in the input
pairs (40 nA per branch), which are sized, such that, when
combined with auto-zeroing, the offset of the comparator does
not degrade the noise and offset performance of the pixel. In-
pixel offset calibration circuits are added at the single-ended
output to further reduce the offset variation across pixels.
By adjusting the amount of sink and source offset current at
the output, a delay in the CT comparator output is introduced,
which is equivalent to controlling the ADC digital output
value. The maximum calibration range is £7 LSB, which
corresponds to 17.9-uV input-referred offset.

C. Row and Column Pulse Readout

Fig. 13 shows the schematic of the row (or column) pulse
readout circuit and its timing diagram. The 4-bit programmable
pull-up current source drives 32x pixel output OR logic and
its bus routing line (ViowN Or Veoin). As soon as one of the
comparator output pulses (Voun) at a row (or column) triggers
the output OR logic, the Viown (or Veoin) goes low, and the
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buffered output Vowng (01 Veorng) goes high. Then, the Viowng
(or Veoing) is sampled by the flip-flop at the opposite phase
of fu (#2), and the pulse output VigwNout (O VeoiNout) Of the
Nth row (or column) is transmitted to the row (or column)
pulse decoder. If the parasitic capacitance (Cpys) from the
32x pixel output OR logic and the Vo N (or Vo N) bus routing
is so large, such that the pull-up current source cannot charge
it within a half f cycle, multiple counts of the pulse occur
(e.g., double count occurs if Vioynp is still high even after #4).
Therefore, the pull-up current source is designed to have its
row (or column) driving capability.

D. Global Ramp Generator

Fig. 14 shows the schematic of the global ramp generation
circuit. The ramp starting points (Viop and Vo) are generated
by a regulated resistor divider around the common mode
voltage (V.,) and are programmable with 4-bit resolution
(Calg[3:0]). The source and sink current sources (/p and Iy =
15 nA) and the capacitors, including Cy.np and the tunable
capacitor bank (Cysg and Crsp), determine a ramp slope,
which is adjustable with 8-bit resolution. The resulting input
range of the pixel is from 0.75 to 2.25 mVp,. The reset and
ramp timing (¢ and @ramp) is equal to the reset and integration
timing of the pixel. Finally, the unity gain buffer is designed to
have the driving capability of a 1024-channel array, including
gate and routing parasitic to ensure even distribution of the
ramp signals (Viamp,p and Vimp,n) across the array.

V. MEASUREMENT RESULTS
A. Electrical and In Vitro Measurements

The prototype IC was fabricated in a 28-nm standard CMOS
process with a 1-V supply voltage. It occupies a total active
area of 3.27 mm?. The size of the 1024-channel array is
1.2 x 1.2 mm?, and the size of each pixel is only 36 x
36 um? (~0.00129 mm?) with a 15 x 15 pum? electrode
deposited directly on top. As shown in Fig. 15, the pixel
area is dominated by the ESD protection diode and the input
capacitor.

Fig. 16 shows a power breakdown of the full chip and the
pixel. The measured total power consumption of the neural
recording IC is 508.7 uW, and the corresponding chip total
power per channel is 496 nW. It should be noted that the power
consumption of the pixel array and digital part dominate, while
the row and column readouts are only 2.6% of the total. The
total power consumption of the pixel is only 268.4 nW, and
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Fig. 16. Power breakdown of full chip and pixel.

it is mostly dominated by the comparator and the G, cell.
The power in the G, cell is limited by noise requirements,
while the power in the comparator is limited by bandwidth
requirements. Note that the pixel power also includes the
power consumption from the ramp generation, which is shared
among all channels and accounts for around 20% of the total
pixel power budget. The digital power could be further reduced
by supply voltage scaling and by introducing a multi-clock
domain and implementing more aggressive clock gating, since
the activity in the processing pipeline is mostly driven by
collision-free events.

Fig. 17(a) shows the measured pixel frequency response.
The bandpass filter response is obtained with a high-pass
and low-pass pole of 300 Hz and 5 kHz, respectively, and
an in-band gain of 38 dB, which is well matched with
the simulation results. Fig. 17(b) shows the measured out-
put spectrum of the single pixel when a 1-kHz, 1I-mVp,
sine wave is applied at the input. Under these conditions,
the pixel achieves a peak SNDR and SFDR of 34 and
63 dB, respectively, and the corresponding input-referred noise
iS 7 (V-

Fig. 18 shows the in vitro test setup and neural spike
recording result with a single channel. The platinum (Pt)
electrodes of 15 x 15 um? were deposited on each pixel
post-fabrication, and the pre-recorded retina neural signals
were injected in saline solution using an arbitrary waveform
generator (Keysight 33500B) connected to a platinum wire.
The neural recording IC was encapsulated after wire bonding,
so that only the MEA was exposed to saline solution. The
measured retina neural spike waveform shows that even with
small and high-impedance (*1.15 M at 1 kHz) electrodes,
the IC can accurately record neural spikes.
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Fig. 19 shows the measured input-referred noise and off-
set distribution of all 1024 channels. The saline solution is
grounded in the in vitro test setup (Fig. 18), and sputtered
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Fig. 20. Measured sinewaves with wired-OR compression. (a) Single channel
recording. (b) Two channels recording.

iridium oxide film (SIROF) electrodes are additionally
deposited on each pixel to reduce the electrode impedance
(250 k2 at 1 kHz). The mean and standard deviation of
the 1024-channel array are 7.4 and 1.07 uV,,,' [Fig. 19(a)],
respectively, which shows an even pixel noise characteristic
over the entire array. The measured 1024-channel input-
referred offset distribution is shown in Fig. 19(b). The standard
deviation of input-referred offset for the 1024-channel array is
14.4 1V, which is within the pixel-to-pixel offset calibration
range of 18 uV.

Fig. 20 shows sine-wave measurements to visualize the
wired-OR compression. A sine wave is applied to a sin-
gle channel, while all other channels are connected to the
grounded saline solution [Fig. 20(a)]. As can be seen, all
samples outside the baseline are captured, while missing sam-
ples near the baseline are reconstructed using an interpolation
filter. The interpolation is performed with a three-tap non-
causal finite impulse response (FIR) filter with coefficients
b_y =0.5,byp =0, and by, = 0.5. Fig. 20(b) shows data-
compressive sine-wave measurement with two active channels.
All critical samples for reconstructing the two signals are still
captured, since the two sinewaves are out of phase and rarely
present the same digital value at the same time.

Fig. 21 shows data-compressive measurements of a retinal
neural spike signal. The pre-recorded neural signal is applied
to a test channel, while all other channels are connected to the
grounded saline solution. As can be seen, all the spike samples

In [22], the numbers were measured with Pt electrodes deposition on each
pixel. Those are revised to the measured values with the additional deposition
of SIROF electrodes on each pixel.
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Fig. 22. (a) Ex vivo test setup. (b) Measured neural signals.

are well captured, while the baseline samples are discarded.
The missing samples near the baseline are also reconstructed
using a simple interpolation filter. The compression rate is
inversely proportional to the spike rate. Here, a 12.5x com-
pression rate is achieved with an artificially large spike rate of
13.2% (10x larger than typical spike rates).

B. Ex Vivo Validation

The neural recording IC was further validated through
an ex vivo experiment with a rat retina. Fig. 22(a) shows
the experimental setup used to obtain ex vivo recordings.
Dissected rat retina tissue is flattened onto the MEA using
a mini-plug covered with a dialysis membrane controlled by a
micro-manipulator, so that the retinal ganglion cells are close
to the SIROF electrodes. The ex vivo tissue is perfused with
perfluoro liquid to keep it healthy during the experiment.

The recording IC is able to recover spikes with high fidelity
during single-channel recordings without compression—see
Fig. 22(b). Spikes can also be recovered when the wired-OR
algorithm is enabled, and all 1024 channels are active—see
Fig. 23. As expected, the number of wires configured in

compression rate ranges from 111.2x to 38.8x with one wire
and four wires, respectively. Here, compression is defined as
the number of collision-free channels over the total 1024 chan-
nels for every sample. Waveform distortion can compromise
certain BCI tasks where spike sorting is needed. The analysis
of this compression-accuracy trade-off is beyond the scope
of this article. The reader can refer to our previous work
in [20] and [21] for an extensive analysis of this trade-off
across multiple experimental datasets.

C. Comparison With State-of-the-Art Works

Table I shows the performance summary and comparison
with other state-of-the-art neural recording ICs [9], [10], [17],
[25], [26], [27], [28], [29]. This work focuses solely on action
potentials, which have been shown to achieve the highest
performance in motor BCI tasks when compared with local
field potentials [5]. As a result, the AFE bandwidth is limited
to high-frequency content, and the required ADC resolution
is limited to 8 bits [5]. With the largest number of channels,
this work achieves the lowest power consumption per channel
with sufficiently low input-referred noise (IRN) required for
effective neural recording. Especially, power/Ch and chip total
power/Ch are significantly reduced to hundreds of nW levels,
which are 10.1x and 16.8x lower than the best prior works,

Authorized licensed use limited to: TU Delft Library. Downloaded on November 04,2024 at 14:08:54 UTC from IEEE Xplore. Restrictions apply.



JANG et al.: 1024-CHANNEL 268-nW/PIXEL 36 x 36 m*/CHANNEL DATA-COMPRESSIVE NEURAL RECORDING IC

1133

TABLE I
PERFORMANCE SUMMARY AND COMPARISON WITH STATE-OF-THE-ART WORKS
This work [25] [17] [10] [26] 27] [9] 28] [29]
Tecg‘rﬁl]"gy 28 22 180 65 55 130 180 180 130
Supply [V] 1.0 038 8 12 12 12 0.5/1/1.8 05 12
Input type AC-coupled | AC-coupled | DC-coupled | AC-coupled | DC-coupled | AC-coupled AC-coupled | AC-coupled | AC-coupled
Toodio Boxcar 1% order 2 step 1A 2" order 1A 1A LNA LNA
pology +SS ADC AAY IAY + SAR AAY + SAR + AAY + SAR + SAR
Ts}gia‘;f AP LFP+AP LEP+AP LFP+AP LFP+AP LFP+AP LEP+AP AP AP
3 of 1024 128 8-24 1024 16 384 1024 16 64
Channels
BW [Hz] 300-5k 0.5-10k 0.5-10k 0.5-10k 0.5-10k 0.5-10k 0.4-9.2k 1-6.8k 192-7.4k
ADC [bif] 8 - 11 10 - 4 1173 8 8
EowEr/Ch 0.268 6.02 8.59 272 - 48.7 - 0.88 3.04/4.54
[pW]
Chip Total
Power/Ch 0.496 8.34 14.94 24.08 612 95.1 15.35 . 5.15
[pW]
RN (Vo] 74 771 (AP) | 437 (AD) | 889 (AD) | 5.53 (AP) 743 (AD) 518 54 33
Y s (AP) 11.9 (LFP) | 2.72 (LFP) | 6.8 (LFP) | 2.88 (LFP) | 7.78 (LEP) | (LFP+AP) (AP) (AP)
*NEF / PEF ) 1537 1527 , 3327
(AP band) | 2847807 | 96/737 | 485/424 e 5755 25.5/ 6503 21594 - a9
Input. range 0.75-2.25 43 14 0.75-4.87 148 12,5 = . :
[mVpp]
THD [%] 0.097 0.015 0.078 0.57 0.05 0.17 0.062 22 0.08
i @-3dBFS | @21.5mVy, | @10mV,, | @-0.8dBFS | @20mVp, @10mVpp @32mVy, | @92mVy, @3mVyyp
A[:sfé E]h 0.00129 0.0045 0.0046 0.0062 0.0077 0.035 0.098 0.16 0.16
Toi?gce Rail-to-Rail | Rail-to-Rail | + 60 mV | Rail-to-Rail | + 70 mV | Rail-to-Rail | Rail-to-Rail | Rail-to-Rail | Rail-to-Rail

"NEF / PEF are calculated using Chip Total Power/Ch

respectively [10], [25]. This enables a sub-mW chip total
power consumption even with a 1024-channel array. As a
result, this work achieves the highest power efficiency among
neural recording ICs with the best NEF and PEF of 2.84 and
8.07, respectively, advancing the PEF of the best state of
the art by 5.2x. It should be noted that NEF and PEF are
calculated by using chip total power/Ch to compare the power
efficiency of the entire neural recording IC, which includes a
signal acquisition chain (front-end amplifier and ADC, or only
ADC in the cases of direct conversion), and digital back end.
It also achieves the smallest area per channel (=0.00129 mm?)
among all neural recording ICs, advancing area efficiency of
the best state of the art by 3.5x. This enables a single-cell
resolution neural interface, while the wired-OR compression
method significantly reduces the data deluge problem from
massive MEA and immense data movement in the recording
chain without any spike detection overhead.

VI. CONCLUSION

A 1024-channel data-compressive neural recording IC is
realized for future single-cell resolution high-bandwidth BClIs.
It achieves a high-density and large-scale recording array by
implementing PPM-based ADP, which significantly reduces
routing congestion. By using a wired-OR data compression
method, the data-deluge problem in large-scale MEAs is
mitigated. Also, on-chip massive data movement and spike
detection overhead are avoided, thus enabling massively par-
allel recording arrays. The prototype achieves the power

consumption per channel of 268 nW and an area per channel
of 36 x 36 um? with 7.4-1 Vs input-referred noise and 0.3—
5-kHz bandwidth, which results in the best power and area
efficiency among the neural recording ICs published to date.
The neural recording IC architecture offers great promise in
enabling massively parallel single-cell resolution MEAs for
future BClISs.
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