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Occupancy Grid Mapping for Automotive
Driving Exploiting Clustered Sparsity

Çağan Önen, Ashish Pandharipande , Senior Member, IEEE, Geethu Joseph , Member, IEEE,
and Nitin Jonathan Myers , Member, IEEE

Abstract—Occupancy grid maps provide information
about obstacles and available free space in the environment
and are crucial in automotive driving applications. An occu-
pancy map is constructed using point cloud data from sensor
modalities such as light detection and ranging (LiDAR) and
radar used for automotive perception. In this article, we for-
mulate the problem of estimating the occupancy grid map
using sensor point cloud data as a sparse binary occupancy
value reconstruction problem. Our proposed occupancy
grid estimation method, based on pattern-coupled sparse
Bayesian learning (PC-SBL), leverages the sparsity and spa-
tial dependencies inherent in occupancy maps typically
encountered in automotive scenarios. The proposed method
shows enhanced detection capabilities compared to two
benchmark methods based on performance evaluation with
scenes from the nuScenes and RADIal public datasets.

Index Terms— Light detection and ranging (LiDAR), nuScenes dataset, occupancy grids, pattern-coupled prior, radar,
RADIal dataset, sensor point clouds, spatial correlation.

I. INTRODUCTION

THE development of advanced driver assistance systems
and autonomous driving technologies is gaining signif-

icant momentum, given its potential to increase safety and
convenience in driving on the road. A holistic solution for
ensuring safe driving with increased autonomy involves two
key components: 1) an environment perception engine that
uses real-time sensor data and 2) a proactive decision-making
engine leveraging perceived information and object dynam-
ics to make real-time decisions. The focus of this work
is on the former: to develop an algorithm to obtain an
accurate perception and understanding of the surrounding
environment [1], [2]. Occupancy map estimation plays a vital
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role in this process, providing a grid map representation of
the occupancy status of the surrounding space using sensor
data [3], [4]. It provides information about the presence or
absence of obstacles in each grid within a given space. This
work considers the occupancy map estimation problem using
point cloud data derived from sensors such as light detection
and ranging (LiDAR) and radar, commonly used to support
advanced driver assistance systems and autonomous driving
applications.

Occupancy map building has been studied extensively
in robotics [3], [5], [6], [7] and for autonomous driving
applications [8], [9], [10]. The popular occupancy map esti-
mation methods use the inverse-sensor model [5], [11] and
kernel-based approaches [12], [13]. The inverse-sensor model
approach is computationally simple. However, it suffers from
occupancy estimation conflicts when combining multiple mea-
surements with partially overlapping fields of view. It also
overlooks the spatial correlation within the map, leading to less
accurate occupancy map estimates and sensitivity to sensor
noise. This problem is handled using a Gaussian process to
model the spatial dependencies at the expense of increased
computational complexity [12]. An improved version of this
approach, Bayesian generalized kernel (BGK)-based map-
ping [13], addressed the complexity issue. However, the above
mapping algorithms [5], [11], [12], [13] developed for robotic
applications do not exploit contextual information and the
underlying sparse structure in occupancy maps for automotive
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driving. Such contextual information can be street topology,
which can be derived from navigation maps. The sparse
structure arises because, even in the presence of obstacles,
only the borders or edges of objects are reflected in the map.
To this end, we present an occupancy map estimation method
that exploits both sparsity and spatial correlation within the
occupancy map.

Our approach relies on a signal model using preprocessed
sensor point cloud measurements. The preprocessing uses
digital map information to define focus areas of interest in
an automotive driving application. Digital map information
has also been used in other works, such as [4] and [14],
to characterize drivable spaces from nondrivable spaces. Hav-
ing defined the focus area, we construct a linear occupancy
map measurement for each point within the point cloud,
corresponding to the LiDAR or radar. Then, we leverage the
pattern-coupled sparse Bayesian learning (PC-SBL) frame-
work [15] for occupancy grid map estimation from the linear
measurements. In the PC-SBL framework, the sparse structure
is captured via a sparsity-promoting prior distribution on the
map, and the spatial dependencies are exploited by assuming
a block-sparse structure for the map. This assumption is valid
since real-world obstacles span multiple occupancy grid cells
for typical LiDAR and radar resolutions. PC-SBL estimates
block-sparse vectors without assuming the block size, making
it promising for automotive driving applications where prior
knowledge of the object sizes is unavailable.

We evaluate our method using LiDAR and radar point cloud
data from the nuScenes and RADIal datasets [16], [17], [18].
For the benchmarks, we use the occupancy map estimation
methods in [5] and [13]. We use an angular scan normalized
mean-squared error (NMSE) and intersection over bounding
box (IoBB) metric for quantitative comparison of the methods.
The evaluation shows that the proposed approach outperforms
the benchmark methods by resolving obstacles better and
eliminating road reflections in some scenes.

We extend our earlier work [19] in multiple directions.
First, while we focus on LiDAR point cloud data in [19],
we generalize our sensor signal model presented in Section II
to encompass radar point cloud data. Second, in Section III,
we expand the description of the PC-SBL occupancy map
estimation algorithm. Finally, in Section IV, we expand the
performance evaluation results to include radar data from the
nuScenes and RADIal public datasets. In particular, we note
that the radar data in nuScenes and RADIal have differ-
ent resolutions. This allows us to evaluate the impact of
different point cloud resolutions on the occupancy mapping
method.

II. OCCUPANCY MAP MEASUREMENT MODEL

The occupancy map of an environment is defined over a
grid, where each cell represents a discrete location in 2-D. The
map consists of probability values that indicate the likelihood
of each cell being occupied. Typically, these probabilities are
updated using point cloud data acquired by the ego vehicle
through LiDAR or radar sensors [1], [20]. In this section,
we discuss constructing a linear occupancy map measurement
model using the acquired point cloud information.

A. Data Preprocessing
To preprocess and prepare the input to our estimation

algorithm, we first exclude point cloud data corresponding to
the cells that fall outside the range and elevation of interest.
Subsequently, we obtain a collection of points in the 2-D plane
from the 3-D points by discarding z-coordinate information.
Let M denote the remaining number of sensor measurement
points, referred to as reflection points, representing potential
occupancy locations inside the region of interest. The points
from which no reflections are observed are called free-space
points. Each of the M sensor measurements consists of the
3-D coordinates of a reflection point, denoted by xm , which
are represented in the global coordinate system using the ego
vehicle’s position as the origin.

We further process the measurements to reduce the dimen-
sion of the occupancy map to be estimated. To this end,
we include contextual information from digital maps [21] in
the model by defining a focus area. It comprises the cells
of interest, i.e., the cells on the ego vehicle’s road and the
walkways around [14]. The area beyond the walkways is
ignored as it is not crucial for driving scenarios. In practice,
the borders of the focus area can be obtained from digital
mapping services [21]. The focus area is then partitioned into
N 2-D cells. Then, the reflection points and free-space points
are discretized to the nearest grid cells. These points are then
represented using the indices of the corresponding grid cells.
We use f ∈ RN to denote the unknown map vector comprising
the occupancy probabilities of the N cells, representing the
occupancy grid map. The goal is to estimate this map vector
f from the M point cloud measurements.

B. LiDAR-Based Occupancy Map Measurement Model
We now construct a linear measurement model of the map

vector f using the M LiDAR point cloud measurements.
Each LiDAR point cloud measurement indicates that the
corresponding reflection point (discretized to the nearest grid
cell) is occupied, and the cells along the line connecting the
ego vehicle and reflection point are unoccupied. If the cell
corresponding to the nth entry of f is a reflection point, we set
fn = yocc. Here, yocc is a parameter close to 1 to indicate that
the cell is likely to be occupied. In compact form

eT
n f = yocc (1)

when a reflection is observed from a cell indexed n, where
en ∈ {0, 1}N denotes the nth column of the identity matrix.

We define Fn as a set that contains indices of the cells
sampled along the line from the ego vehicle to the nth cell.
The probability that all these cells are unoccupied is 5

k∈Fn
(1−

fk). For every index k ∈ Fn , fk is expected to be small as
the corresponding cell is likely to be unoccupied. Under this
assumption, 5

k∈Fn
(1− fk) ≈ 1−

∑
k∈Fn

fk = 1−
∑

k∈Fn
eT

k f.

We set this approximation equal to 1− yfree, where yfree is a
parameter chosen to be close to 0. Therefore,∑

k∈Fn

eT
k f = yfree. (2)
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Fig. 1. For LiDAR point clouds, our method labels all the cells along the
line between the sensor and a reflection point as free. For sparse radar
point clouds, the cells within a beamwidth of Ω are labeled as free, and
those in a region of width ∆ around the reflection point are labeled as
occupied. (a) LiDAR sensor model. (b) Radar sensor model.

In short, each LiDAR point cloud reflection results in two
linear measurements of the occupancy map as given in (1)
and (2). A collection of M point cloud reflections thus leads
to 2M linear equations of f given by

y = Cf+ w. (3)

Here, w ∈ R2M is modeled as independent and identically
distributed Gaussian measurement noise with zero mean and
unknown variance σ 2. Also, C ∈ {0, 1}2M×N is a selection
matrix defined by (1) and (2). Specifically, if the mth reflection
point corresponds to the nth entry of f, we set y[2m−1] = yocc
and y[2m] = yfree. Also, the (2m − 1)th and 2mth rows of C
are eT

n and
∑

k∈Fn
eT

k , respectively.

C. Radar-Based Occupancy Map Measurement Model
In this section, we construct a linear measurement model of

the map vector f using the M radar point cloud measurements.
We observed that the point cloud density in the radar dataset
used in this article is significantly lower than that in the LiDAR
dataset. Using such low-density points results in poor occu-
pancy grid map estimates than the LiDAR-based approach.
To address this issue, we adopt the approach proposed in [11]
wherein a conical beam originating at the ego vehicle’s sensor
is constructed for each point cloud measurement. This beam
has a width of � and terminates in a region of width 1 about
the reflection point, as shown in Fig. 1(b). The region where
the beam terminates is marked using dashed cells, while the
remaining cells within the conical beam are represented as
dotted cells. We use On and Fn to denote the sets comprising
the indices of the dashed cells and dotted cells, respectively.
Similar to our LiDAR-based measurement model, we define
two measurements of the occupancy map using these sets∑

k∈Fn

eT
k f = yfree, and

∑
k∈On

eT
k f = yocc. (4)

While our LiDAR-based model labels a single cell as occupied
for a reflection point, our radar-based model marks all the
cells within On as occupied for the same point. Here, the
motivation is to fill the gaps between the sparse radar point
data and represent the region’s obstacles using several cells.

A linear measurement model similar to (3) can be constructed,
by putting together (4) for all the M measurements. In the
radar case, if the mth reflection point corresponds to the nth
entry of f, we set the (2m − 1)th and 2mth rows of C as∑

k∈On
eT

k and
∑

k∈Fn
eT

k , respectively.

III. OCCUPANCY MAP ESTIMATION USING PC-SBL
The occupancy map estimation problem is to find the map

vector f from linear measurements of the form y = Cf +
w. In this section, we develop a PC-SBL-based method that
uses information from these linear measurements and exploits
the block-sparse structure in map vector f for maximum a
posteriori probability (MAP)-based inference.

In the PC-SBL framework, the vector to be estimated, i.e.,
f, is modeled as a realization of a random variable. The
distribution on f is modeled as a Gaussian hierarchical prior.
Specifically,

p(f|α) =

N∏
n=1

p( f [n]|α) =

N∏
n=1

N (0, (α[n] + β
∑
j∈Ln

α[ j])−1).

(5)

Here, α ∈ RN is an unknown hyperparameter vector that
controls the sparsity of f, the prefixed coupling parameter β ∈

[0, 1] models the spatial correlation within f, and Ln denotes
the set of immediate neighbors (the adjacent left, right, above,
and below cells) of the nth cell. We observe that the Gaussian
prior in (5) becomes increasingly concentrated at zero for a
large αn . This behavior promotes sparsity, encouraging fn to
be close to zero when αn is high. We also observe that the
prior corresponding to the cell indexed n concentrates at zero
if any of the neighboring hyperparameters in αLn increases.
The coupled structure in (5) thus enforces block sparsity in f.

We use a Gamma prior on the hyperparameter α and the
inverse of the noise variance γ = σ−2, as discussed in
the SBL hierarchical model [22]. These Gamma priors are
parameterized by a, b, c, d > 0 as shown in the following:

p(α) =

N∏
n=1

0 (α[n] | a, b) =

N∏
n=1

0(a)−1baα[n]ae−bα[n] (6)

p(γ ) = 0(γ | c, d) = 0(c)−1dcγ ce−dγ . (7)

Due to the linear model in (3) and the use of Gaussian priors
for the occupancy map and noise, it can be shown that the
posterior p(f|y, α, γ ) is Gaussian.

With the above hierarchical prior model, we use type II
MAP estimation of f where we first estimate the parameters
α and γ from the measurement vector y. The estimated
hyperparameters, α̂ and γ̂ , are then used to compute the
MAP estimate of f, which is the mean of the Gaussian
distribution p(f|y, α̂, γ̂ ). The hyperparameter estimation relies
on the iterative expectation–maximization (EM) method, with
f being the unobserved latent variable. The t th iteration of the
resulting EM algorithm is given by

αt [n] =
a

0.5ν̂t [n] + β
∑

j∈Ln
ν̂t [ j] + b

, (8)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 05,2024 at 11:55:39 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 Occupancy Map Estimation Using PC-SBL

Input: Reflection point coordinates {xm}
M
m=1

Parameters: Coupling parameters β, Gamma distribution
parameters a, b, c, d > 0
Output: Binary occupancy grid map: ĝ
For each measurement m do

if (sensor == LiDAR) then
n← index of the reflection point xm in f
Fn ← indices of (sampled) cells between vehicle

and xm
(2m − 1)th row of C← eT

n
if (sensor == Radar) then
On ← indices inside the radar conical beam for xm
Fn ← indices of the conical beam’s terminal points
(2m − 1)th row of C←

∑
k∈On

eT
k

2mth row of C←
∑

k∈Fn
eT

k
y[2m − 1] ← yocc
y[2m] ← yfree

Initialize t = 0, αt = 1 and γt = 1
repeat

Compute Dt using (10) and νt from (11)
Update αt , γt using (8), (9)
t ← t + 1

until convergence
Compute ĝ from (15)

γt =
∥ y − Cµ̂t∥

2
2 + γ−1

t−1
∑

n 8̂t [n, n]Dt [n, n] +2d

M + 2c
(9)

where we define Dt as a diagonal matrix with

Dt [n, n] = αt−1[n] + β
∑
j∈Ln

αt−1[ j] (10)

and ν̂t ∈ RN is the vector of second moments of entries of f
given γt−1, αt−1, and y

ν̂t [n] = µ̂t [n]2 + 8̂t [n, n] (11)

µ̂t = γt−18̂t CT y (12)

8̂t = (γt−1CT C+ Dt )
−1. (13)

We refer the interested reader to [15] for a comprehensive
derivation of the EM algorithm. The EM updates above are
iteratively performed until convergence. After convergence, the
vector µ̂t is the MAP estimate of the unknown occupancy map
that is f̂ = µ̂t , which is the mean of the converged Gaussian
distribution p(f|y, αt , γt ). A summary of the proposed PC-
SBL-based algorithm is given in Algorithm 1.

The computational complexity of the PC-SBL algorithm is
primarily determined by the E-step in (13). Therefore, using
the matrix inversion lemma, we can rewrite (13) as

8̂t = D−1
t − D−1

t CT (γ−1
t−1I+ CD−1

t CT )−1CD−1
t . (14)

Using the above update equation, the overall complexity is
O(N 2 M + M3), which grows quadratically with N .

Finally, a binary occupancy map ĝ ∈ {0, 1}N is obtained
by thresholding the estimated probabilities in f̂ with ηth.

TABLE I
ANGULAR SCAN NMSE FOR NUSCENES SCENE-165

TABLE II
IOBB FOR NUSCENES SCENE-165

TABLE III
IOBB FOR NUSCENES SCENE-204

TABLE IV
ANGULAR SCAN NMSE FOR NUSCENES SCENE-204

Specifically, for any 1 ≤ n ≤ N , we obtain

ĝ[n] =

{
0, f̂ [n] < ηth

1, f̂ [n] ≥ ηth.
(15)

The estimated binary occupancy map provides information
about potential obstacles (indicated by 1) and free cells (indi-
cated by 0) surrounding the ego vehicle.

IV. PERFORMANCE EVALUATION

In this section, we compare the occupancy grid maps
constructed using our approach with two other algorithms [5],
[13]. We use 2-D grids of equal size, each measuring 0.5 ×
0.5 m. The size of the generated maps is 40 × 40 m leading
to N = 6400 grid cells in total. Our results were obtained by
hand-tuning the parameters of the corresponding algorithms.
Specifically, the free-space line segments are sampled with a
resolution of 1 m for [13] and 0.5 m for the proposed approach.
The labels yocc and yfree are set to 1 and 0, respectively.
We set the kernel size as 1 m for [13] to exploit the spatial
correlation between neighboring cells. The coupling parameter

Authorized licensed use limited to: TU Delft Library. Downloaded on April 05,2024 at 11:55:39 UTC from IEEE Xplore.  Restrictions apply. 



9244 IEEE SENSORS JOURNAL, VOL. 24, NO. 7, 1 APRIL 2024

Fig. 2. LiDAR and radar occupancy grid mapping results for scene-165 from the nuScenes dataset. (a) Camera images. (b) Ground truth
map. (c) Occupancy values [5]. (d) Occupancy values [13]. (e) Occupancy values (proposed). (f) Occupancy map [5]. (g) Occupancy map [13].
(h) Occupancy map (proposed). (i) Occupancy values [5]. (j) Occupancy values [13]. (k) Occupancy values (proposed). (l) Occupancy map [5].
(m) Occupancy map [13]. (n) Occupancy map (proposed).

Authorized licensed use limited to: TU Delft Library. Downloaded on April 05,2024 at 11:55:39 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. LiDAR and radar occupancy grid mapping results for scene-204 from the nuScenes dataset. (a) Camera images. (b) Ground truth
map. (c) Occupancy values [5]. (d) Occupancy values [13]. (e) Occupancy values (proposed). (f) Occupancy map [5]. (g) Occupancy map [13].
(h) Occupancy map (proposed). (i) Occupancy values [5]. (j) Occupancy values [13]. (k) Occupancy values (proposed). (l) Occupancy map [5].
(m) Occupancy map [13]. (n) Occupancy map (proposed).

Authorized licensed use limited to: TU Delft Library. Downloaded on April 05,2024 at 11:55:39 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Distribution of the proportion of detected objects to labeled
objects in the ground truth map. The analysis is carried out on 200 sam-
ples from the nuScenes dataset.

β of our PC-SBL-based algorithm is set to 1, prior distribution
parameter a is set to 0.5, and b, c, and d are set to 0 as
suggested in [15]. When a radar point cloud is used for the
proposed approach, we set � = 2◦ and 1 to 2 grid cells for
the conical beam. Finally, to generate the binary occupancy
maps, the threshold ηth is chosen as 0.5 for the benchmark
algorithms and 0.3 for the proposed approach.

A. Performance Metrics
To evaluate the accuracy of the map, we employ two

metrics: angular scan NMSE, where the scan is done at the
ego vehicle, and IoBB. For the ground truth map, we define
d as a vector that comprises the distances from the ego
vehicle to the first occupied cell along each direction of
the angular scan. In particular, d[i] represents the maximum
distance the ego vehicle can travel in direction i before
encountering an obstacle. A similar vector d̂ is defined for the
estimated occupancy map. The angular scan NMSE is defined
as NMSE = (∥d − d̂∥2/∥d∥2). We extend the metric in [23]
to define IoBB as the ratio of the overlapping area between
the occupied cells and the ground truth boundary boxes to
the area of the ground truth boundary boxes. Note that IoBB
lies between 0 and 1, and a score larger than 0 indicates the
detection of the corresponding obstacle.

B. Results Based on LiDAR and Radar Point Clouds
From the nuScenes Dataset

We first consider occupancy map estimation with LiDAR
and radar point clouds from the nuScenes dataset. The
nuScenes dataset contains scenes from the cities of Boston and
Singapore. It includes image views from six cameras (front
center, front left, front right, rear center, rear left, and rear
right), one LiDAR, and five radars (one front, front left corner,
front right corner, rear left corner, and rear right corner) with
bird’s eye view (BEV) object annotations [16]. We chose this
dataset as our main evaluation source because it is one of
the first large-scale autonomous driving sensor datasets widely
used to evaluate automotive perception. It also provides street
map information and BEV bounding box labels for many
object classes on the street. The radar data, however, are
much sparser than the LiDAR data, and the low detection

performance of the radar [24] in the nuScenes campaign is
a known issue.

The assessment is done both qualitatively and using the
NMSE and IoBB metrics that measure the difference from the
ground truth. The ground truth map is created from nuScenes
using the locations and sizes of the boundary boxes within
the focus drivable region. The 2-D footprints of the boundary
boxes of the dynamic objects inside the focus area were drawn
and used as the ground truth representation of the targets.

We first consider scene-165, in which the focus area con-
tains seven objects with labels: six cars at the rear and one
pedestrian on the front right of the ego vehicle. There is also
a fence in the rear right corner, which is manually labeled
as object 8. The ground truth and estimated occupancy maps
for scene-165 are shown in Fig. 2. The better performance
of our algorithm in detecting objects can be observed from
the computed NMSE metric in Table I and the IoBB values in
Table II. For LiDAR, the NMSE values are comparable, while
the pedestrian is detected by our proposed method. For radar,
cars 2, 4, and 5 and pedestrian are not detected in methods
such as [5] and [13], while our method does.

We now consider scene-204, in which the focus area con-
tains 11 labeled objects, including four cars and six pedestrians
to the right of the ego vehicle. As two of the pedestrians
are close to each other, they are represented with a single
boundary box, leading to five boundary boxes for pedestri-
ans in Fig. 3(b). Fig. 3 shows that [13] and our approach
successfully detect all the cars, whereas [5] does not detect
the car at the right end of the road. Furthermore, the three
methods demonstrate varying performances in detecting pedes-
trians with IDs 1, 2, 3, 7, and 8, positioned to the right
of the car. The IoBB values in Table III indicate that [5]
detects two of the pedestrians, [13] detects four of them, and
our approach detects five of them. The pedestrian with ID
1 remains undetected by all algorithms since this pedestrian’s
visibility is obstructed by a neighboring pedestrian. The better
performance of our algorithm in pedestrian detection is also
reflected in the lower NMSE value in Table IV. The results
with radar are inferior for all three methods, with all the
pedestrians undetected. Our method performs nominally better
than [5] and [13] in detecting the larger objects, e.g., the van is
detected by our method, while the reference methods missed
it.

We finally analyze the statistical performance of the pro-
posed method with [5] and [13] using the LiDAR point clouds
corresponding to 200 samples. As a metric, we consider the
ratio of detected objects in the estimated occupancy map to
the number of actual labeled objects in the ground truth.
From Fig. 4, we infer that the median of this metric for
our method (0.84) is higher than those of the other methods
(0.74 for [5] and 0.69 for [13]); the variance of our method is
0.02, while [5] has a higher value of 0.03 and a similar value
of 0.02 for [13].

C. Results Based on LiDAR and Radar Point
Cloud From RADIal Dataset

The RADIal dataset contains a single front-looking camera,
LIDAR, and radar, with object bounding boxes indicated
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Fig. 5. LiDAR and radar occupancy grid mapping results for scene-2681 from RADIal dataset. (a) Camera images. (b) Occupancy values [5].
(c) Occupancy values [13]. (d) Occupancy values (proposed). (e) Occupancy map [5]. (f) Occupancy map [13]. (g) Occupancy map (proposed).
(h) Occupancy values [5]. (i) Occupancy values [13]. (j) Occupancy values (proposed). (k) Occupancy map [5]. (l) Occupancy map [13].
(m) Occupancy map (proposed).
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Fig. 6. LiDAR and radar occupancy grid mapping results for scene-3218 from RADIal dataset. (a) Camera images. (b) Occupancy values [5].
(c) Occupancy values [13]. (d) Occupancy values (proposed). (e) Occupancy map [5]. (f) Occupancy map [13]. (g) Occupancy map (proposed).
(h) Occupancy values [5]. (i) Occupancy values [13]. (j) Occupancy values (proposed). (k) Occupancy map [5]. (l) Occupancy map [13].
(m) Occupancy map (proposed).

by 2-Di camera coordinates [17], [18]. This dataset is our
secondary performance evaluation source since its radar
point cloud density is much higher than that in nuScenes,

although it has no street annotations or BEV bounding
boxes. Hence, we shall limit our evaluation to a qualitative
comparison.
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In Fig. 5, there is a car (labeled in the dataset) and a cyclist
(manually labeled) in the scene as seen in the camera view.
From the LiDAR results in Fig. 6(b)–(g), it is observed that
the discrimination between the cyclist and the adjacent street
pole is better in [13] and our method compared to [5]. All
the methods based on LiDAR and radar data perform well in
detecting both the car and estimating the occupancy map.

In Fig. 6, there is one car in the camera view. All the
methods perform well in car detection and map estimation,
while the radar results provide a better representation of the
car in comparison to the LiDAR results in Fig. 6(b)–(g). This
can be attributed to the better detection capabilities of radar
in comparison to LiDAR for objects at longer ranges.

V. CONCLUSION AND DISCUSSION

Occupancy map estimation based on PC-SBL was consid-
ered using point clouds that originate from automotive LiDAR
or radar sensor measurements. When applying the proposed
approach to LiDAR point cloud data, better performance
is evident in two aspects than the benchmarks. First, the
occupancy values due to road reflections are suppressed due
to the use of a sparse prior on the occupancy map and due to
exploiting spatial correlation. Second, the proposed method is
able to detect smaller obstacles like pedestrians better. Finally,
we observe that our method results in low IoBB values for the
detected objects than the other methods. This is because our
method promotes a sparse prior on the occupancy map. This
trend is also observed in the evaluation of the proposed method
with radar point cloud data. Occupancy map estimation with
LiDAR data is better than with radar data on the nuScenes
dataset, which can be attributed to LiDAR point cloud data
being one to two orders denser compared to radar point
cloud data [16]. On the RADIal dataset, the occupancy map
estimates were comparable with both LiDAR and radar point
clouds, with radar providing better detection of objects at
longer ranges.

It is known that under adverse weather scenarios, a radar
point cloud provides better occupancy grid estimates, while in
some scenarios, the high-resolution capabilities of a LiDAR
or semantic understanding capabilities of a camera can be
advantageous. In future work, early/middle fusion of sen-
sor point clouds from multiple modalities, such as camera,
LiDAR, and radar using Bayesian learning approaches to
improve occupancy map estimation, will be explored. We also
intend to explore the mapping techniques based on other
machine learning techniques, such as deep learning. Further-
more, path-planning solutions for automated driving based on
the occupancy maps are also an interesting avenue for future
work that builds upon past works [8], [9].
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