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Steering agricultural interventions towards sustained irrigation adoption by farmers: 
socio-psychological analysis of irrigation practices in Maharashtra, India
Soham Adla a, Anja Šaponjića, Ashray Tyagib, Anukool Nagib, Prashant Pastoreb and Saket Pandea

aDepartment of Water Management, Delft University of Technology, Delft, The Netherlands; bSolidaridad Network Asia Limited, New Delhi, India

ABSTRACT
Complex contextual and sociopsychological factors influence the adoption of agricultural technologies 
like irrigation. This study used the sociopsychological Risk-Attitude-Norms-Abilities-Self-Regulation 
(RANAS) framework to examine the factors impacting irrigation adoption in Maharashtra (India). 
Logistic regression modelling was conducted based on cross-sectional surveys in 2019 and 2022, with 
interim interventions promoting risk-awareness and irrigation technology training. Effects of the inter-
ventions on the psychological variables in 2022 were corrected using instrumental variable regression. 
While micro-irrigation adoption rose from 36.9% to 62.8%, overall irrigation counterproductively 
decreased from 81.6% to 70.4%. Results indicated that wealth and risk-aversion remained relevant, 
while self-perceived ability and attitude towards irrigation became non-significant to irrigation adoption. 
This study highlights the unintended consequences of interventions and the necessity to also transform 
attitudes, and promote psychological ownership and trust to sustain irrigation technology adoption 
behaviour. These results could support stakeholders (e.g., policy makers, water authorities) in designing 
and implementing more sustainable interventions.
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1 Introduction

The world population was 8 billion in 2022 and is expected 
to rise to 8.2 billion by 2025 (United Nations 2022). This 
implies an ever growing pressure on food production and 
water resources for both agricultural and other uses, such 
as for domestic and industrial purposes, which will be 
further exacerbated by changing climate and variability in 
the availability of water worldwide. Agriculture uses nearly 
70% of global freshwater resources (World Bank 2022), 
making it by far the main user of water. Further, due to 
the growing agricultural demand for water and increasing 
uncertainty about water availability, water saving practices 
and technologies such as efficient irrigation have been 
proposed among key demand-side adaptation mechanisms 
(Garrick et al. 2020). However this adaptation strategy 
critically depends on solutions being taken up by large 
numbers of farmers.

Farmers are key decision makers in the adoption of 
agricultural best practices, such as irrigation (among 
others). They are also the most influential stakeholders. 
Agriculture employs about 866 million people (about 27% 
of the global workforce in 2021), many of them being 
smallholders, with an overall value addition of 3.6 trillion 
USD in 2020 (FAO 2022). Understanding the barriers to 
successful adoption and the effectiveness of interventions to 
ameliorate such barriers are therefore key to improved plan-
ning and dissemination of farm management technologies 

(Mariano et al. 2012) such as irrigation. Often these barriers 
are socioeconomic, relating to income level, availability of 
dependents or labour, smaller land sizes, etc. (Wang et al.  
2016, Tesfaye et al. 2021, Hatch et al. 2022).

Factors such as education, age, family size, social capital (via 
formal and informal networks), land ownership status and 
access to credit have been reported as significant for the adop-
tion of different irrigation technologies (Kulshreshtha and 
Brown 1993, He et al. 2007, Wang et al. 2016, Jordán and 
Speelman 2020, Gautam et al. 2024). The importance of access 
to and quality of extension services has been highlighted by 
several studies (He et al. 2007, Abdulai et al. 2011, Wang et al.  
2016), while it has also been claimed that extension service can 
be more effective during the initial phase of technology adop-
tion (Gautam et al. 2024).

Yet many deeper cognitive factors (such as farmer attitudes 
towards behavioural outcome) have also been identified as 
factors that influence farmers in adopting irrigation 
(Kulshreshtha and Brown 1993, Castillo et al. 2021). Positive 
attitudes towards technology adoption, perceived risk about 
water scarcity as well as new technologies, perceived control 
over the behaviour, and norms have also explained the adop-
tion of different irrigation technologies (Kulshreshtha and 
Brown 1993, He et al. 2007, Jordán and Speelman 2020, 
Castillo et al. 2021, Nair and Thomas 2022, Gautam et al.  
2024).

Among more behavioural science driven studies, Castillo 
et al. (2021) used the theory of planned behaviour (TPB) to 
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explain the adoption of pressurized irrigation technology. 
The TPB claims that the “intention of a behaviour acts as a 
mediator of” attitude (towards behavioural outcomes), sub-
jective norms (perceptions about social pressure) and per-
ceived behavioural control (of the ability to carry out a 
particular behaviour) (Fishbein and Ajzen 2009, Castillo et 
al. 2021 p.2). Adoption was affected by intention, which 
mediates the effect of (social) norms, attitudes and perceived 
control (Castillo et al. 2021). Nejadrezaei et al. (2018) used 
the unified theory of acceptance and use of technology 
(UTAUT; Venkatesh et al. 2003, 2016) to also explain pres-
surized irrigation technology adoption. The UTAUT 
explains the user’s intention to use a technology and their 
usage behaviour, and integrates constructs across eight mod-
els (Nejadrezaei et al. 2018). For behavioural intentions, 
performance expectancy of the system as well as social influ-
ence of others on one’s behaviour was found to be signifi-
cant, and for the behaviour itself, facilitating conditions 
related to the availability of resources, support, and infra-
structure were important (Nejadrezaei et al. 2018).

A review considering studies on micro-irrigation technol-
ogy adoption in India has reported different types of factors 
such as household (e.g. demographic, socioeconomic and 
behavioural characteristics), farm (including cultivation prac-
tices and equipment) and institutional (such as financial and 
technical support) factors (Nair and Thomas 2022). In another 
study, Hatch et al. (2022) found that, in addition to socio-
economic characteristics, awareness-related factors influence 
decisions to adopt. Other factors could include farmers’ per-
ception of drought risk, their perception of what other farmers 
in their neighbourhood think are good practices, confidence in 
their own ability and their discipline to use related technology 
or practices regularly.

Beyond understanding the barriers to successful adoption, 
behavioural evidence-based interventions are often missing in 
attempts to improve adoption (Balasubramanya and Stifel  
2020). By evidence-based interventions it is meant that the 
interventions incorporate learnings about the various factors 
that inhibit farmers from using the technology (e.g. irrigation). 
For example, interventions such as special training, subsidies 
or transferring of institutional arrangements such as property 
rights or “ways to do things” from one country to another are 
often put in place to encourage the adoption of irrigation 
practices (Meinzen-Dick 2014, Balasubramanya and Stifel  
2020). However, such interventions may temporarily build 
trust in the agencies that are implementing interventions and 
hide the needs to change attitudes and abilities that are needed 
towards sustained irrigation adoption. For example, it has been 
argued that Chinese government-led environmental govern-
ance has led to serious dependence of the public on such 
government initiatives (psychology of dependence) and, as a 
result, lower community adoption of conservation interven-
tions in the long run when the government support will no 
longer be around (Ni et al. 2021). As a result, sustainable 
adoption may not be realized if the trust is not converted 
back into individual or collective psychological ownership on 
the part of farmers. This can be achieved by building their 
capacities and abilities to continue using the technology 
(Contzen et al. 2023).

The role of community participation towards ownership 
has been observed in cases of water kiosks and other rural 
water supply infrastructures such as piped water systems in 
Kenya (Marks and Davis 2012, Contzen and Marks 2018). 
In the case of irrigation systems it has been similarly 
argued that any institutional change towards successful 
community-wide adoption should be more organic 
(Meinzen-Dick 2014). That is, it should build on existing 
norms and practices. More appropriate would be the inter-
ventions that encourage peer-to-peer communication 
between adopters and non-adopters, publicize the utility 
of adopting practices such as irrigation in the face of 
higher chances of drought, or continued focus on strategies 
to build psychological ownership.

One key challenge in putting such knowledge into practice 
is to use appropriate methods to understand farmer behaviour 
and to incorporate that understanding in designing the inter-
ventions to improve adoption (Balasubramanya and Stifel  
2020, López-Felices et al. 2023). This paper focuses on a 
model based on socio-psychological theories of farmers’ 
water use behaviour to understand the barriers to adoption 
and whether interventions that are deemed to improve adop-
tion actually ameliorate the barriers. Instead of assuming farm-
ers to be rational decision makers, this paper assumes farmers 
are driven by cognitive factors such as perceptions of risk, 
ability and norms (Hatch et al. 2022). By using two cross- 
sectional surveys on statistically similar samples, intervened 
by a set of standard interventions designed before the cross- 
sectional surveys, this paper deploys methods to understand 
the factors behind the adoption of irrigation and the effects of 
the interventions on factors that facilitate the adoption. It then 
discusses how the interventions could be better designed based 
on the lessons thus learned.

2 Methodology

The model of choice to understand the factors behind the 
adoption of irrigation is the RANAS (risk – attitude – norms 
– ability – self regulation) model, which subsumes other beha-
vioural models such as the TPB (Callejas Moncaleano et al.  
2021; but see e.g. Contzen et al. 2023 for its shortcomings, and 
Hatch et al. 2022 for applications of other behavioural the-
ories). The model is populated by two cross-sectional surveys, 
conducted in 2019 and 2022, in four districts of the state of 
Maharashtra in India, intervened by a set of standard inter-
ventions designed before the cross-sectional surveys to 
improve adoption. The paper also uses a methodological inno-
vation to filter out any effect of the interventions that promotes 
adoption on the cognitive factors themselves, so that the effect 
of the latter on the former can be estimated with less bias.

This section first describes the surveys and the RANAS 
model populated by the data collected from the survey. It 
then discusses the logistic regression that is used to implement 
the RANAS model in order to interpret adoption behaviour 
across the two surveys. Additionally, the analysis of the second 
cross-sectional survey uses a two-stage, so-called instrumental 
variable (IV) regression to filter out the effect of reverse caus-
ality of adoption on factors driving the behaviour itself. This is 
then explained. Parts of the overall methodology are modified 
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from a protocol developed to conduct RANAS-based socio-
hydrological surveys (Adla et al. 2023a).

2.1 Study area

The study area comprises Vidarbha region in the eastern part 
of Maharashtra State of India, which is characterized primarily 
by a semi-arid climate (Aher and Yadav 2021). The study area 
is described in detail by van Wirdum et al. (2019), with respect 
to its geology, hydrology, climate, and agricultural practices. 
Maharashtra’s geology is typically characterized by igneous 
basaltic aquifers, which can store water only in secondary 
permeable structures (like fractured spaces), thus limiting the 
availability of groundwater. The four major rivers running 
through Maharashtra (Narmada, Tapti, Godavari and 
Krishna) are non-perennial, monsoonal rivers. The average 
annual rainfall is around 800 mm, most of which occurs in 
the summer monsoon season (June through September), and 
may vary locally (van Wirdum et al. 2019).

Mapping of soil characteristics conducted in the study area 
using a 5 km × 5 km gridded dataset from the Indian Space 
Research Organization https://bhuvan.nrsc.gov.in/) reveals 
that the dominant soil textural classes in the study area are 
clay, clay loam, and sandy loam (van Wirdum et al. 2019). 
These soils, and the study region, are well known for cotton 
cultivation, and also grow other crops such as cereals, pulses, 
oilseeds and sugarcane (Mishra 2006, Pande and Savenije  
2016). India is the largest cotton producer in the world and 
Maharashtra is the largest cotton-producing state in India 
(ICAR-CICR, 2018, USDA ERS 2022). However, both India 
and specifically Maharashtra have relatively low cotton yields 

(Khadi et al. 2010). In this context, it is notable that 67% of 
India’s cotton cultivation is rainfed (Ministry of Textiles 2022), 
and within Maharashtra, this increases to 90% (Blaise 2017). 
Cotton is primarily grown in the monsoon season and is water 
intensive, needing between 700 and 1200 mm/year (Wirdum et 
al. 2019, Hussain et al. 2020). Hence, the lack of supplemental 
irrigation (in combination with other factors) can lead to 
severe agricultural distress, particularly for smallholder farm-
ers (Pande and Savenije 2016). Within Maharashtra, Vidarbha 
is challenged by difficult environmental conditions for agri-
culture, including drought-proneness (Somni et al. 2021, 
Swain et al. 2022), and low farmer incomes, often below the 
poverty line (Hatch et al. 2022).

This study used data from two surveys conducted in 
Vidarbha in 2019 and 2022, respectively. Four districts in the 
region were chosen – Amravati, Yavatmal, Nagpur and 
Wardha (Fig. 1).

2.2 Cross-sectional surveys

In 2019, Hatch et al. (2022) conducted semi-structured 
interviews of 345 households to understand behavioural 
and socio-economic drivers of irrigation adoption. 
Interventions were implemented from 2019 onwards, 
aimed towards achieving water-efficient, sustainable cotton 
production via the adoption of improved agricultural prac-
tices (RVO 2022). The interventions were designed to raise 
awareness about the consequences of water scarcity and 
encompassed comprehensive training on best practices in 
organic cotton cultivation, alongside the adoption of effi-
cient agricultural water use techniques.

Figure 1. An agro-ecological map of India, highlighting the four districts in Maharashtra state selected for the surveys: A – Amravati, N – Nagpur, W – Wardha and Y – 
Yavatmal. The districts lie in the hot semi-arid and hot sub-humid zones. Map modified from the Open Government Data Platform (Goverment of India 2022).
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In 2022, semi-structured interviews were conducted in 419 
households in November and December to understand 
changes in farmer perspectives towards irrigation adoption. 
Both samples were randomly selected, with the inclusion cri-
teria stipulating that selected farmers were exposed to the 
investigated intervention. Both samples were representative 
of the farmers in the region who have been part of these 
interventions, with similar farm sizes (p value = .78) and 
annual farm incomes (p value = .77).

Both questionnaires were developed in English and trans-
lated into Marathi (the regional language). They were digitized 
into mobile phone-based applications using the Kobo 
ToolBox/Kobo collect (Lakshminarasimhappa 2022). The 
complete survey questionnaire for 2022 is included in 
Appendix A; for the survey questionnaire of 2019 the readers 
are referred to Hatch et al. (2022). Independent Marathi- 
speaking surveyors conducted a trial run of the questionnaire, 
and their feedback was incorporated into the final question-
naire. A questionnaire was developed with both quantitative 
and qualitative questions about demographic details (family 
members, education, etc.), socio-economic details (land area 
and tenure, etc.), agricultural inputs (seeds, water, fertilizers, 
pesticides, labour, etc.), agricultural outputs (yields, selling 
prices, etc.), and financial information such as income (on 
and off-farm), expenditures, loans and insurance. Detailed 
questions were asked about water sources, and about the 
irrigation technology used by the farmer if they irrigated 
their cotton farms. Questions were also asked about the farm-
ers’ perceptions – about adoption of irrigation systems, factors 
leading to crop failure and success, and their views about 
relevant agricultural institutions (such as agricultural exten-
sion providers). The final survey was conducted in Marathi on 
a voluntary basis with the only precondition that farmers were 
cultivating cotton.

Data related to prolonged and consecutive dry years (which 
might influence irrigation adoption) was included via the 
Standardized Precipitation Evapotranspiration Index (SPEI- 
12, Vicente-Serrano et al. 2010) computed using an open- 
source Python package (Vonk 2024). Further, to indicate con-
secutive dry years, the 5-year moving average of SPEI-12 was 
also computed. These two indicators were calculated for each 
farm location by interpolating and (inverse-distance- 
weighted) averaging the three nearest gridded data points 
derived from the Power dataset from the US National 
Aeronautics and Space Administration (NASA) Langley 
Research Center (LaRC) (NASA 2023).

The overall behavioural outcome was the adoption of irri-
gation; 280 (81.6%) and 295 (70.4%) farmers adopted irriga-
tion based on the 2019 and 2022 surveys, respectively. The 
variables used to describe factors that might lead to adoption 
included financial literacy and access. Particularly for small-
holders, financial illiteracy and lack of access can limit the 
capacity to invest in technologies (e.g. for irrigation) that can 
increase yields and incomes (World Bank 2014). They were 
gauged via questions on securing agricultural loans (in parti-
cular, identifying “safe” sources of loans such as government 
banks) and availing themselves of crop insurance.

Variables were treated appropriately as numerical or cate-
gorical (nominal or ordinal), based on their variation. For 

example, income was treated as a numerical variable, water 
sources were treated as nominal-categorical variables, and 
educational levels were treated as ordinal-categorical variables. 
All perception-based questions were scored on a 5-point Likert 
scale. The outcome variable of adoption/non-adoption of irri-
gation had only two possible outcomes and was also treated as 
an ordinal categorical variable. The following sections outline 
details of the data collected during the 2022 survey, which were 
compared with the corresponding data collected in the 2019 
survey (Hatch et al. 2022).

2.3 Descriptive statistics

Descriptive statistics of RANAS factors were generated, prior 
to building a logistic regression model, to estimate the change 
in these factors within the 3 years (between the surveys) during 
which the various interventions were implemented. For every 
RANAS factor, the means of the Likert-scale measures were 
calculated. Subsequently, the means of the RANAS factors 
from the 2019 and 2022 surveys were compared. Statistical t- 
tests were used to identify variables whose respective means 
were significantly different at the 99% confidence level (i.e. 
α = 0.01), and only these variables are subsequently discussed.

2.4 RANAS psychological factors

According to psychological theories, all human behaviour is 
determined by the processes in people’s minds. Knowledge is 
activated, beliefs and emotions rise to the fore, and an inten-
tion to perform a particular behaviour emerges, eventually 
resulting in observable behaviour (Mosler 2012). In other 
words, these processes, also termed behavioural factors, deter-
mine behaviour. The RANAS model is an approach used to 
evaluate influential behavioural factors and design behaviour 
change strategies to change influential factors of specific beha-
viours in specific populations (Mosler 2012). The model is 
divided into five factor blocks favourable to the behaviour of 
interest, that consist of risk factors, attitudinal factors, norma-
tive factors, ability factors, and self-regulation factors.

The risk factors block contains all factors that deal (in our 
case) with an individual’s understanding and awareness of the 
risk of not having enough water for agriculture. Attitude 
factors express a positive or negative stance toward a beha-
viour (in this case, the adoption of irrigation technologies). 
Norm factors represent convictions about the incidence of a 
behaviour and what the social network thinks about the beha-
viour. Ability factors represent attitudes an individual believes 
they must have to acquire the behaviour. Attitudinal, norm 
and ability factors are described by the TPB (Ajzen 1991). Self- 
regulation factors (Albarracin et al. 2005) are responsible for 
the continuance and maintenance of the behaviour.

Within the risk factors, a distinction is made between per-
ceived vulnerability and perceived severity (Floyd et al. 2000). 
Perceived vulnerability is a farmer’s personal belief about the 
possibility of facing water scarcity themselves. Perceived sever-
ity is the farmer’s judgment of how severe the consequences of 
water scarcity could be. Additionally, a farmer should also have 
an understanding (through their knowledge) of how they 
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could be affected by the lack of available water for farming, e. 
g. knowing the possibilities for potential yield loss.

The attitudinal factors encompass instrumental beliefs or 
outcome expectancies, such as the costs in money, time, and 
effort, as well as the benefits, such as savings or other advan-
tages, associated with adopting a new behaviour, such as using 
a specific irrigation system (Mosler and Contzen 2016). 
Attitudes also have an affective component (Mosler 2012). 
Affective appraisals or beliefs are the feelings that emerge 
when someone performs or thinks about a particular 
behaviour.

Various types of norms are relevant when considering 
norm factors. Descriptive norms pertain to people’s percep-
tions of the behaviours that others typically exhibit, while 
injunctive norms concern people’s perceptions of what beha-
viours are typically approved or disapproved of by their rela-
tives, friends, or neighbours (Cialdini et al. 2006, Schultz et al.  
2007). Personal norms represent an individual’s beliefs about 
what they ought to do (Schwartz 1977), and may contradict the 
other norms.

Ability factors refer to an individual’s level of confidence in 
their ability to perform a particular behaviour. To meet this 
condition, a person must possess action knowledge, which 
means they know how to perform the behaviour (Frick et al.  
2004). Moreover, a positive self-efficacy is essential: the belief 
in one’s capacity to plan and execute the necessary actions to 
manage potential situations (Locke 1997). Two additional 
types of self-efficacy are significant in this category. 
Maintenance or coping self-efficacy involves beliefs about 
one’s ability to overcome obstacles that arise during the main-
tenance of the behaviour, and recovery self-efficacy relates to 
the experience of failure and the ability to recover from set-
backs (Schwarzer 2008).

Lastly, self-regulation or self-management factors (Bandura  
2004, Albarracín et al. 2005, Schwarzer 2008) help individuals 
deal with conflicting goals and distracting cues when attempt-
ing to initiate and sustain a behaviour (Gollwitzer and Sheeran  
2006). Action control refers to a tactic where the ongoing 
behaviour is continually assessed based on a pre-determined 
standard (Schwarzer 2008). On the other hand, action plan-
ning involves thoughts on how to establish the behaviour by 
identifying when, where, and how to execute it (Gollwitzer and 
Sheeran 2006). Coping planning refers to anticipating poten-
tial barriers and devising ways to overcome them (Schwarzer  

2008). To maintain the behaviour, an individual must remem-
ber it and make a commitment to continue it (Tobias 2009).

The RANAS-based survey questions designed to collect 
information regarding perception at a sub-factor level are 
listed in Table 1. The 2019 survey collected data on 14 
RANAS sub-factors, whereas the 2022 survey collected data 
on 17 RANAS sub-factors. Hence, the analysis comparing the 
two years of data was done based on the 14 questions in 
common.

2.5 Logistic regression

The statistical method selected for this classification problem 
(of adoption/non-adoption of irrigation) was logistic regres-
sion, which is used to predict a binary outcome (yes/no; 0/1; 
etc.). This prediction is based on a set of independent variables, 
which in this case were the socio-economic and psychological 
RANAS characteristics of the surveyed farmers. Logistic 
regression predicts the likelihood of “yes” or “no” outcomes. 
The dependent variable was classified as either “yes,” if a 
farmer stated that they are using any type of irrigation (i.e. 
sprinkler, drip, or flood irrigation), and “no,” if they relied only 
on rainfall.

After data pre-processing, two assumptions of logistic 
regression were checked. First, the assumption of minimal 
correlation between the independent predictor variables was 
verified by calculating Pearson correlation coefficients between 
different pairs of predictor variables. Next, to ensure large 
enough sample sizes for meaningful results, low events per 
variable (EPV) were considered, which can lead to problems 
such as biased regression coefficients (Peduzzi et al. 1996). 
Hence, the “1 in 10” rule was checked: for every 10 events, 
one predictive variable can be studied, where an event is 
defined as the size of the smallest of the outcome categories 
(Peduzzi et al. 1996). The number of events for 2019 and 2022 
was 62 and 124, respectively, which implies 6 and 12 predic-
tors, respectively, according to the rule. However, this rule has 
been challenged by studies that argued it is too conservative 
(Vittinghoff and McCulloch 2007) or identified total sample 
size as another factor that leads to low-EPV issues (van Smeden 
et al. 2016). Considering this and the reasonable sample sizes 
(n = 343 and n = 419 in 2019 and 2022, respectively), 14 
variables were used as predictors in the logistic regression.

Table 1. Psychological questions asked in the two surveys with their corresponding RANAS factor and sub-factors.

Index RANAS factor RANAS sub-factor Question

R1 Risk Perceived severity How does the current water supply compare to the water you need for your crops?
R2 Risk Perceived severity How severe is the impact on you when you do not have any water for your crops?
R3 Risk Perceived vulnerability How responsible are you for your water source?
R4 Risk Perceived vulnerability How confident are you that you will have enough water in the next 5 years?
At1 Attitude Beliefs about costs & benefits Compared to not irrigating, how much difference in productivity is caused by irrigation?
At2 Attitude Beliefs about costs & benefits How willing are you to pay for irrigation systems?
At3 Attitude Feelings How much more effort do you believe using irrigation takes?
N1 Norms Others’ behaviour What proportion of people in your village use irrigation systems?
N2 Norms Others’ approval People who are important to you, how much do they approve of using irrigation?
N3 Norms Personal importance How important is it to you that you use water as efficiently as possible?
Ab1 Abilities Confidence in performance How confident are you that you could operate an irrigation system?
Ab2 Abilities Confidence in performance How much more time does irrigation take compared to not irrigating?
Ab3 Abilities Confidence in recovering Has it become more or less difficult for you to get water in the last 10 years?
S1 Self-Regulation Barrier planning To what limit could you withstand water shortage?
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A logistic regression model was created using Python 
libraries (Seabold and Perktold 2010, Kramer 2016) which 
computed the odds ratio of adoption (relative to non-adop-
tion) of the behaviour in question (irrigation adoption). The 
significant predictors were detected at a significance level of 
α = 0.05. The logistic regression was conducted in the manner 
described below; a schematic is provided in Fig. 2.

The relationship between the independent variables (xj) 
and the binary outcome (y, with two possible outcomes: adop-
tion and non-adoption) was modelled with a linear equation: 

where βj are regression coefficients corresponding to xj, β0 is a 
constant term, and J is the number of independent variables 
(or predictors). The weighted sum (from the right side of 
Equation 1) was transformed into a probability using a logistic 
function (Kumar and Rath 2016): 

where p is the probability of occurrence of an event given the 
set of predictors. The logistic regression model is a linear 
model for the logarithm of the odds associated with an event 
(Murat 2019). The log odds ratio was used to observe the effect 
of a unit change in any particular predictor (xj in the following 
equation): 

The outputs of the logistic regression model were logits (or 
log-odds) and were obtained by building a logistic regression 
model using the Scikit-learn library of the Python program-
ming language (Pedregosa et al. 2011).

2.6 Endogeneity in irrigation adoption behaviour

In regression, endogeneity (or reverse causality) occurs when 
the dependent variable influences the independent predictor 
variables (see Fig. 3). This can lead to a correlation between the 
independent variables and the error terms (Daniel et al. 2022), 
result in biased regression coefficients, and consequently lead 
to incorrect interpretation of results (Hill et al. 2021, Daniel et 
al. 2022). Since the interventions implemented to encourage 
adoption of irrigation and other best practices between the 
2019 and 2022 surveys influence the adoption, this in turn may 
affect the RANAS psychological factors, leading to possible 
reverse causality.

The IV approach was used to address endogeneity and avoid 
bias in estimating regression coefficients (Hill et al. 2021). 
Previous studies have claimed that culture and institutions can 
influence economic and technological development. In particu-
lar, institutions can be vital in shaping individuals’ motivations 
to innovate and invest (Tabellini 2010). Influenced by geogra-
phy, historical events, or political systems, they underline how 
the characteristics of each place could affect people’s psychology 
and generate regularity in behaviour (Greif 2006, Alesina and 
Giuliano 2015). Institutions are interpreted to represent social 
norms, but since they are long lasting, they can be considered 
“slow-moving variables” that can influence individual percep-
tions (Tabellini 2010, Legros and Cislaghi 2020, Pande et al.  
2020). For example, Daniel et al. (2022) used “quality” of insti-
tutions, measured via multi-dimensional governance indicators 

Figure 2. Schematic for the logistic regression used in the study (image from Šaponjić 2023). Multiple socio-economic characteristics and psychological factors are 
independent predictor variables, and irrigation adoption is the dependent outcome behaviour, modelled by logistic regression for both surveys.

Figure 3. Endogeneity (reverse causality) between the dependent outcome variable (behaviour) and the independent variable (individual psychology) addressed by 
the instrument variable approach. Figure modified from Daniel et al. (2022).
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(Kaufmann et al. 2010), as influencing individual perceptions of 
risks and attitudes directly, and adoption of household water 
treatment technology indirectly, to break the reverse causality 
effect of the latter on the former. World Governance Indicators 
(WGIs; Kaufmann et al. 2010) were used as IVs in the com-
parative study of Household Water Treatment (HWT) adoption 
in eight studies, where the WGI indicator values were available 
at the country level. The present study, however, designed 
questions at the household level to populate various IVs based 
on three relevant dimensions of governance – governance effec-
tiveness, regulatory quality, and voice and accountability – 
based on the findings of Daniel et al. (2022). Table 2 provides 
the variables and related questions introduced in the 2022 
surveys.

The IV approach was implemented using a two-stage 
regression process. In the first stage, IVs are used to predict 
RANAS variables (x) via ordinary least squares (OLS) linear 
regression. The predicted RANAS variables (x̂j) for each 
RANAS factor (xj) were obtained as follows: 

Here xj and bxj represent the jth RANAS factor (e.g. x1 repre-
sents) and its predicted value, respectively; aj;0 and aj;i repre-
sents the regression constant and coefficients corresponding to 
the ith IV zji for the jth RANAS factor; xj and γj represents the 
residual terms of the regression.

In the second stage (called “instrumentalized” logistic 
regression), the predicted RANAS variables are used to esti-
mate the impact on the dependent outcome variable, i.e. irri-
gation adoption, as given in Equation (5). 

IVs that are valid need to satisfy two conditions: (i) relevance – 
they should affect the endogenous predictors (i.e. RANAS 
factors), and (ii) exogeneity – IVs should not directly influence 
behaviour (Hill et al. 2021). Relevance was verified by testing 
the correlation between the IVs and the RANAS factors. 
Exogeneity was tested by examining the significance of IVs in 

the second stage of the regression, verifying that they were not 
significant predictors in the results of the “instrumentalized” 
logistic regression. Since the IVs were designed prior to any 
interviews with farmers, to test their validity, these empirical 
tests identify IVs that are valid (that satisfy the two conditions) 
from the set of originally designed (intended) IVs.

2.7 Logistic regression performance metrics

The performances of the models developed for both surveys 
(including the two-stage regression model in 2022) were 
assessed using indicators commonly employed for classifica-
tion problems (Edo et al. 2023). The data were partitioned into 
training and testing sets using simple random sampling, with 
each data point having an equal probability of being included 
in each set. We assigned 80% and 20% of the data for training 
and testing, respectively, for both surveys.

The performance indicators (Witten et al. 2011, Edo et 
al. 2023) were based on the prediction of positives (irriga-
tion adopters) and negatives (non-adopters) and how they 
compared with observations from the data. Accuracy indi-
cates the proportion of the total predictions that are 
correct. Precision is the proportion of true positive pre-
dictions. Recall is the proportion of true positives that are 
correctly predicted as positive. The F1 score is the har-
monic mean of precision and recall, and hence represents 
a trade-off between the two indicators. The range of 
possible values and the ideal measure of each of these 
indicators are 0–1 and 1, respectively.

Table 2. Questions used as instrument variables (IVs) to address endogeneity (reverse causality), along with their corresponding RANAS factors.

Index RANAS factor Question

IV_R1 Risk How often do you hear/read about water scarcity in the newspaper/radio/TV?
IV_R2 Risk How effective are government drought relief measures?
IV_At1 Attitude How attentive is the government to farmers’ concerns?
IV_At2 Attitude How much trust do you have in the government’s advice?
IV_N1 Norms How often do you hear/read about government irrigation policies/programs in the newspaper/radio/TV?
IV_N2 Norms How concerned are the government officers/extension agents to farmers’ water concerns/issues?
IV_Ab1 Abilities How often do you take part/ get invited to demonstrations of irrigation technologies by agriculture extension services?
IV_Ab2 Abilities How active are agriculture extension services in your area?
IV_Ab3 Abilities How would you rate the quality of the agriculture extension service agents in your area?
IV_Ab4 Abilities How easily accessible/reachable is the local irrigation officer? How easy/hassle-free is it to get work done (e.g. applying for schemes, 

subsidies)?
IV_Ab5 Abilities How many times have you been given crop insurance by the government in the past 3 years?
IV_S1 Self-Regulation How much more dependent are you on chemical inputs (fertilizers/pesticides) than you were 3 years ago?
IV_S2 Self-Regulation Out of these, how many acres of your farmland have you changed to natural/organic farming in the past 3 years?
IV_S3 Self-Regulation Only if there is adoption of natural/organic farming: Have you used subsidies under government schemes for natural/organic farming?
IV_S4 Self-Regulation How much more do you depend on the government for financial aid (including loans) than 3 years earlier?
IV_S5 Self-Regulation How much more dependent are you on your family or neighbours for financial aid (including loans) compared to 3 years earlier?
IV_S6 Self-Regulation How much more dependent are you on microfinancing organizations for financial aid (including loans) compared to 3 years earlier?
IV_S7 Self-Regulation How much more often have you applied for compensation for crop failure in the past 3 years?

Table 3. Descriptive statistics for surveys conducted in 2019 and 2022.

Parameter 2019 (mean ± SD) 2022 (mean ± SD)

Number of respondents n = 343 n = 419
Age 46 ± 13 49 ± 12
Gender Male: 335, Female: 8 Male: 413, Female: 6
Land owned (acre) 7.1 ± 6.8 6.9 ± 8.0
Farm income (INR/year) 220 000 ± 279 544 210 000 ± 230 060
Farm expenditure (INR/year) 150 000 ± 172 616 130 000 ± 146 973
Cotton yield (quintal/acre) 6.3 ± 2.1 13.7 ± 8.6 (conventional) 

6.3 ± 6.3 (organic)

SD stands for standard deviation.
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3 Results

3.1 Descriptive statistics of the 2019 and 2022 surveys

Table 3 presents the descriptive statistics of the data collected 
during both surveys.

3.1.1 Financial literacy and access
In 2019 (n = 343) and 2022 (n = 419) about 98% and 98.5% of 
the respondents were male with an average age of 46 ± 13 and 
49 ± 12 years, respectively. The mean total area owned and 
used for farming was 7 acres and most farmers had less than 
10 acres in both surveys. Out of this total area, an average of 
nearly 5 acres and 4 acres, respectively, was used for cotton 
growing. Among those who responded to both surveys, about 
96% grew other crops besides cotton (including legumes like 
lentils and soybean, and various vegetables). From crops 
alone, the average farmer reported earning more than 220 
900 INR/year (INR is the Indian national currency, rupees; 1 
INR ≈ 0.01 €) and 209 911 INR/year, with total annual crop 
expenses of just over 125 254 INR and 126 495 INR, in 2019 
and 2022, respectively. About 84% and 88% of the farmers 
reported that they had accrued loans in 2019 and 2022, 
respectively. The median cotton yield was 6 quintal/acre (1 
quintal = 100 kg) in 2019, and 13 quintal/acre and 5 quintal/ 
acre for conventional and organic cotton in 2022 (when this 
distinction was made).

3.1.2 Outcomes related to irrigation behaviour
There was a marked increase in the adoption of sprinkler 
systems, from 31.6% in 2019 to 49% in 2022 (Fig. 4). The 
reported average cost of the sprinkler irrigation system was 
33 289 INR/acre. Additionally, this cost was also split into its 
components, and the average reported yearly costs of installa-
tion, maintenance, and repair were 2847 INR/acre/year, 1327 
INR/acre/year, and 1498 INR/acre/year, respectively. The cor-
responding reported percentage of drip irrigation systems 
among the respondents increased from 5.3% to 13.8%. The 

average total cost of purchasing a new drip irrigation system 
was reported as 42 090 INR/acre. The average reported yearly 
costs of its components were 11 482 INR/acre/year for installa-
tion, 1515 INR/acre/year for maintenance, and 1601 INR/acre/ 
year for repair. Interestingly, rainfed agriculture reportedly 
increased from 17.3% to 28.1%.

The overall increase in the adoption of reported micro- 
irrigation systems from 36.9% to 62.8% was balanced by a 
reduction in the reported frequency of usage of furrow irriga-
tion technology, which decreased from 44.8% to 7.7%. This 
was perhaps a consequence of the intervention activities, 
which included training of efficient irrigation techniques, 
including the adoption of micro-irrigation. Overall, it is appar-
ent that better cultivation practices (related to the adoption of 
more efficient micro-irrigation technology) were adopted by 
more farmers in general.

3.2 Changes in RANAS factors from 2019 to 2022

The significant changes in the perceived psychological vari-
ables moving from 2019 towards the 2022 survey data are 
shown in Fig. 5. Farmers’ perception of severity of the effect 
of water scarcity on crop loss decreased in 2022 as compared to 
2019 (e.g. there was a perceived increase in water supply as 
compared to the amount needed for agriculture). Farmers 
perceived a stronger social norm about the adoption of irriga-
tion technologies by others. Farmers also perceived that yield 
improvements were lower in 2022 compared to 2019. That is, 
while the perception of the supplied amount of water increased 
along with the perception of the proportion of people using 
irrigation and of lower crop loss due to water shortage, the 
perceived increase in yield achieved by irrigation declined 
significantly.

The perceived self-responsibility of the farmer to organize 
their own water source increased. However, the perceived 
confidence in operating irrigation systems slightly decreased 

Figure 4. Changes from 2019 to 2022 in the adoption of different irrigation technologies.
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and the perceived time taken for irrigation increased. This may 
imply that the interventions in the form of training have led to 
a more realistic self-perception of farmers’ perceived self-abil-
ity to operate the irrigation systems (i.e. they may have been 
overconfident of their own abilities to operate such systems 
during the 2019 survey, before the interventions). Another 
implication could be that there is a need to ensure long-term 
uptake of the training objectives.

3.3 Logistic regression results based on 2019 and 2022 
surveys

The data from the 2022 survey were treated with a two-stage 
IV approach to account for the endogenous effect of the 
intervention on the psychological variables. Section 3.3.1 pre-
sents the results of the logistic regression without considering 
endogeneity, as well as testing the exogeneity assumption of 
the IV approach. Section 3.3.2 presents the results of the first- 
stage regression. Finally, a comparison of logistic regression 
results of the 2019 and (two-stage, instrumentalized) 2022 data 
is given in Section 3.3.3.

The two drought-related indicators, SPEI and their corre-
sponding moving averages taken for the 5 previous years 
including the current year (SPEI_MA), which were computed 
at the farm level, were also included in all the following 
analyses. The variation of SPEI and SPEI_MA for both farmers 
who adopted irrigation (adopters) and those who did not 
(non-adopters) corresponding to both surveys is depicted in 
Fig. A1. SPEI increased (significantly) from the 2019 survey 
(2018 data) to the 2022 survey (2021 data), for both SPEI and 
SPEI_MA, while irrigation adoption decreased significantly. 
Within each survey, non-adopters had significantly higher 

mean SPEI (and mean SPEI_MA) than adopters, except for 
the difference between the SPEI_MA of adopters and non- 
adopters in 2018, based on t-test conducted for unequal 
variances.

Moreover, when SPEI and SPEI_MA were introduced in 
both regressions, they were both found not significant 
(α = 0.05) in explaining adoption. Hence, it was concluded 
that (prolonged) drought was not a significant factor in 
explaining irrigation adoption.

3.3.1 Logistic regression on 2022 survey without 
considering endogeneity
Table 4 presents the results of three logistic regressions for 
irrigation adoption based on the 2022 survey data: the stan-
dard regression without considering IVs, a second-stage 
regression (considering updated RANAS factors), and a 
regression testing the exogeneity condition for the IV 
approach. It presents the regression coefficients (β) along 
with the level at which they were significant (***significant < 
.01, **significant < .05, and *significant < .10), categorized into 
socio-economic characteristics (SECs), exogenous RANAS fac-
tors, endogenous predicted RANAS factors (only for the sec-
ond stage and exogeneity testing), and IVs (only for exogeneity 
testing).

3.3.2 Updating RANAS factors for the 2022 survey 
considering endogeneity
Table 5 presents the results of the first-stage linear regres-
sions performed using the 2022 survey data on each 
RANAS sub-factor on the IVs. Two regressed sub-factors 
had significant coefficients of determination (R2 > 0:30Þ, i.e. 
R4 (“confidence of having enough water in the future,” 

Figure 5. Comparison of RANAS psychological factors between the surveys in 2019 and 2022. The alphanumeric combination at the beginning of the x-axis labels 
denotes the RANAS factor (“R,” “At,” “N,” “Ab,” and “S”) followed by an index (see Table 2) within the particular RANAS factor (e.g. the second “Risk” factor is “R2”). The 
bars represent the average Likert scale perception with the respective standard deviations represented as error bars.
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R2 ¼ 0:39) and At1 (“increase in yield achieved by irriga-
tion” R2 = 0.34). Out of these, only one sub-factor, R4, was 
significant during the standard regression performed with-
out considering endogeneity (in Table 4). Hence, this was 
then regressed on all the IVs. Subsequently, updated pre-
dictions for R4 were used along with other RANAS and 
SEC variables in their original form (as collected during the 
survey), to then conduct the second-stage logistic regres-
sion, with irrigation adoption as the outcome variable 
(Table 4).

Based on Table 4, the impact of the risk sub-factor R4: 
“Confidence in having enough water in the future” on the 
adoption remained relatively unaffected by the second-stage 
regression, with the β values being 0.40 for the standard 
logistic regression. Once this variable was treated as endo-
genous and controlled for by predicting new values using 
assigned IVs, the β value became 0.41. Hence, “Confidence 
of having enough water in the future” was endogenous in 
irrigation adoption behaviour with a relatively low biased 
estimation, by 2.5%.

The effect of the risk sub-factor R1 (“Perception of water 
supply decrease”) as well as the ability sub-factor Ab3 
(“Difficulty to get water (previous 10 years) decrease”) were 
overestimated (in terms of their absolute values) by the first- 
stage regression results. The value for the decrease in percep-
tion of water supply was −0.47 in the standard regression, and 
relatively increased to −0.43 in the second-stage regression. 
The β value for the decrease in perceived ability to get water 
(in the previous 10 years) decreased from 0.47 to 0.42 (from 
the standard regression to the second-stage regression).

By correcting the endogeneity of irrigation adoption influ-
encing farmers’ psychology, another risk sub-factor became 
dominant (R3: “Responsibility of securing own water source 
decrease”), which illustrated how responsible farmers felt 
towards securing their irrigation water source.

The exogeneity condition was also satisfied as none of the 
IVs on being included in the logistic regression along with the 
other second-stage regression variables (SECs, exogenous 
RANAS factors, predicted endogenous RANAS factors) were 
found to be significant.

3.3.3 Logistic regression performance metrics
Table 6 gives some details of the performance indicators accu-
racy, precision, recall and F1 score, as well as indicating the 
performance of the models developed for both surveys via the 
same.

Both models performed adequately, with accuracy of 
0.83 and 0.73, precision of 0.84 and 0.78, recall of 0.95 
and 0.87, and F1 scores of 0.89 and 0.82, for 2019 and 
2022, respectively. This performance was comparable to 
similar studies investigating the adoption of different tech-
nologies (Chauhan et al. 2021, Edo et al. 2023). When only 
those farmers who adopted irrigation were considered, the 
recall values were 0.87 and 0.90 in 2019 and 2022, 
respectively.

Table 4. Results from various logistic regression analyses for irrigation adoption based the 2022 survey data: standard regression (without IVs), second-stage regression 
(considering predicted values of endogenous RANAS factors), and for testing the exogeneity assumption for the instrument variables from Table 3.

Variable 
category Variable name

Coefficient (β) in irrigation adoption for 
various logistic regressions

Standard regression 
(without IVs)

Second-stage 
regression

Testing exogeneity 
assumption

Socio-economic variables 
(SECs)

Education level 0.25** 0.24** 0.24**
Land area increase (scaled) 0.65** 0.66** 0.65**
Livestock owned increase (scaled) 0.37** 0.37** 0.38**

Exogenous RANAS factors R1 Risk (perception of water supply decrease): How does the current water 
supply compare to the water you need for your crops?

−0.47*** −0.43*** −0.43***

R4 Risk (confidence in having enough water (next 5 years) decrease): How 
confident are you that you have enough water in the next 5 years?

0.40** Endogenous Endogenous

R3 Risk (responsibility of securing own water source decrease): How 
responsible are you for your water source?

−0.47** −0.49**

Predicted endogenous 
RANAS factors

bR4 Risk (confidence in having enough water (next 5 years) decrease): How 
confident are you that you have enough water in the next 5 years?

0.41** 0.42

Instrument variables IV_risk_ii 0.07
IV_norms_i −0.05
IV_selfreg_i −0.14

***Non-significant < .01, **significant < .05.

Table 5. First-stage regression results for RANAS sub-factor “R4” (“confidence of 
having enough water in the future”), illustrating significant variables. The IV index 
is taken from Table 2, is the regression coefficient, SE(β) is the standard error in 
the coefficient, and p value corresponds to α< 0:01.

IV index Coefficient β Standard error SE βð Þ p value

IV_R1 0.75 0.11 .00
IV_N1 0.24 0.07 .00
IV_S1 0.32 0.08 .00

Table 6. Performance indicators of the logistic regression models, randomly 
sampled into 80% training and 20% testing datasets, for both the 2019 and 
2022 surveys.

Performance indicator Formula Value (2019) Value (2022)

Accuracy TPþ TN
TP þ FP þ TNþ FN

0.83 0.73

Precision TP
TPþ FP

0.84 0.78

Recall TP
TP þ FN

0.95 0.87

F1 – score 2� Precision� Recall
Precisionþ Recall

0.89 0.82

TP – true positive; TN – true negative; FP – false positive; FN – false negative.
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3.3.4 Comparison of logistic regression results based on 
2019 and 2022 surveys
Table 7 presents the results obtained from the binary logistic 
regression model for both the surveys, highlighting the signif-
icant SECs and RANAS factors. The results report the impact 
of each independent RANAS variable that is significant at 
p < .05 on the odds ratio of the observed event of interest, 
while keeping other variables constant (Sperandei 2014). The 
results for 2022 were generated from the second stage of the 
two-stage regression performed to address endogeneity. It 
could be observed that the influential factors and the magni-
tude of their effects on the adoption behaviour, and corre-
sponding sensitivities (defined as % change = (OR − 1)*100, 
where OR is the odds ratio) denoting the magnitude of the 
effects, changed.

Within the SECs, the total annual income was significant 
in 2019, but was replaced in 2022 by other factors such as 
land area, livestock and educational level. In 2019, a unit 
increase in total annual income led to an increase in the 
likelihood of adoption by 244%. In 2022, a unit increase in 
scaled land area (1 scaled unit area = 7.73 acres), scaled 
livestock owned (1 scaled unit of livestock = 3.74 livestock 
animals), and educational level (across seven levels from no 
education to a master’s degree) led to an increase in like-
lihood of adoption of 93%, 45% and 27%, respectively. 
Almost all these SECs (except educational level) represented 
indicators of wealth, so it could be concluded that wealth 
continued to play a role in the adoption of irrigation systems 
for farmers. The relevance of educational level could indi-
cate that the interventions may have had more influence on 
educated farmers.

Among the RANAS factors, the following differences were 
observed. In 2019, if the farmer perceived a decrease in their 
water supply (in comparison to the crop water demand) from 
“supply meets demand” to “less than I need,” the likelihood of 
the adoption decreased by 48%. With reference to perceptions 
regarding the irrigation behaviour itself, as farmers perceived 
lesser effort in irrigation (decreasing from “significantly more 

effort” to “significantly less effort”), the likelihood of adoption 
increased by 106%. Farmers’ perception of decreases in crop 
yields due to irrigation (moving from “significant increase in 
yield” to “significant decrease in yield”) led to the likelihood of 
adoption dropping by 159%. The farmers’ perception of people 
using irrigation systems in their village was also an important 
factor; as it increased (from 0% to 100%), the likelihood of 
adoption increased by 51%. Lastly, as perceived self-confidence 
in operating irrigation systems decreased (from “completely 
confident” to “not confident at all”), farmers were 72% less 
likely to adopt irrigation.

In 2022, a perceived decrease in water supply for crops 
(from “supply meets demand” to “less than I need”) decreased 
the likelihood of adoption by 35% (compared 48% in 2019). As 
farmers perceived lower vulnerability (from “very confident” 
to “confident”), in terms of having enough water for the next 
5 years, their likelihood of adoption increased by 50%. 
Decrease in farmers’ self-perceived responsibility for their 
water source from “mostly my responsibility” to “not my 
responsibility at all” led to a decrease in the likelihood of the 
adoption by 38%. Lastly, when farmers’ ability to get water in 
the previous 10 years increased (from “easier” to “much 
easier”), their likelihood of adopting irrigation increased 
by 52%.

Among the RANAS factors, self-regulation did not appear 
as an influential factor in both years. In 2019, one SEC, one 
risk-related sub-factor, two attitude-related sub-factors, one 
norm-related sub-factor and one abilities-related subfactor 
appeared to be influential. In 2022, three SECs, three risk- 
related sub-factors and one abilities-related sub-factor were 
influential towards adoption behaviour.

It appears that farmers were driven by their risk perception 
towards adopting irrigation behaviour throughout the inter-
vention. In 2019, attitude and norm factors played a role in 
adoption. However, during the course of the interventions in 
between the two surveys, these influences seem to have 
decreased. The adoption decisions of farmers are influenced 
by a combination of the RANAS psychological sub-factors 

Table 7. Significant socio-economic (SEC) and psychological (RANAS) factors in the logistic regression for the 2019 and 2022 survey data.

Survey in 2019 Survey in 2022

Number of 
significant factors

SECs 1 SECs 1
RANAS 7 RANAS 3

β OR p value % change β OR p value % change

SECs Total annual income increase 1.23 3.44 .01 244% Land area increase (scaled) 0.66 1.9 .02 93%
Livestock owned increase 

(scaled)
0.37 1.45 .03 45%

Educational level 0.24 1.27 .01 27%
RANAS Risk: Perception of water supply 

decrease
−0.65 0.52 .00 −48% Risk: Perception of water supply 

decrease
−0.43 0.65 .00 −35%

Attitude: Effort needed for 
irrigation decrease

0.72 2.06 .00 106% Risk: Confidence in having 
enough water (next 5 years) 
decrease

0.41 1.50 .02 50%

Attitude: Change in yield 
caused by irrigation decrease

0.95 2.59 .00 159% Risk: (Self) Responsibility of 
securing own water source 
decrease

−0.47 0.62 .04 −38%

Norms: Proportion of people 
using irrigation systems 
increase

0.41 1.51 .01 51% Ability: Difficulty to get water 
(previous 10 years) decrease

0.42 1.52 .01 52%

Ability: Confidence in operating 
irrigation systems decrease

−1.28 0.28 .00 −72%

β is the regression coefficient, OR is the odds ratio, % change = (OR − 1)*100, and p value corresponds to α = 0.05.
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(and not a function of individual sub-factors), which points 
towards the complexity in understanding the drivers of adop-
tion behaviour.

4 Discussion

In 2019, the RANAS factors that were significant towards 
adoption (along with the number of questions/variables) 
were attitude (two in number), risk, norms, and abilities (one 
each). This was aligned with previous studies. Positive atti-
tudes towards irrigation technology, which may include a 
conviction about the advantages of such technology (e.g. 
across economic and environmental aspects), have led to 
more likely adoption behaviour, or an intention towards it 
(Kulshreshtha and Brown 1993, He et al. 2007, Azizi 
Khalkheili and Zamani 2009, Nejadrezaei et al. 2018, Castillo 
et al. 2021, Hatch et al. 2022, Nair and Thomas 2022). Risk 
aversion towards water scarcity (such as via the perceived 
water availability) and new technology (including the aspect 
of investment decision making) can influence adoption beha-
viour (Jordán and Speelman 2020, Hatch et al. 2022, Nair and 
Thomas 2022, Gautam et al. 2024). Social influence via 
(injunctive) norms has influenced irrigation technology adop-
tion or a corresponding intention to adopt (Nejadrezaei et al.  
2018, Castillo et al. 2021). Perceived control over the beha-
viour, which corresponds to a perception of one’s ability to 
perform the behaviour, has also been seen as significant to 
adoption (Castillo et al. 2021).

The interventions were designed based on risk percep-
tion (awareness about water scarcity and its effects) and 
abilities (water efficient techniques including irrigation 
adoption) directly, and norms indirectly (adoption of 
water efficient techniques itself altered the farmers’ norm 
perceptions). The standardized nature of the interventions 
may not have sufficiently targeted influence attitudinal fac-
tors such as affective beliefs (e.g. feelings about irrigation 
behaviour), and instrumental beliefs (e.g. costs and benefits 
of irrigation).

The behavioural changes from 2019 to 2022 reflect the 
same. In terms of risk perceptions, farmers perceived an 
increase in the supply of water (compared to their needs), 
a decrease in the perceived crop loss due to water shortage, 
and a perception of higher responsibility for their water 
source. This implied that there was a continued perception 
of risk surrounding the supply of water itself. In previous 
studies, The perception of reliability of the water supply 
has been a significant factor to adoption (Jordán and 
Speelman 2020), also in the Indian context (Nair and 
Thomas 2022). There was also an increase in the percep-
tion that people in their village were adopting irrigation, 
which meant that the interventions influenced norms posi-
tively. Previous studies have also highlighted the positive 
effect of social influence (via injunctive norms) on adop-
tion (Nejadrezaei et al. 2018). However, notably, there was 
an attitudinal shift in farmers towards the benefits of 
irrigation for crop production; in 2022 they felt that irriga-
tion led to lower increases in yield as compared to 2019, 
which implies a reduction in their attitude towards irriga-
tion adoption. Moreover, their ability factors also 

decreased; farmers felt that their confidence to irrigate 
had decreased, and the time that it took to irrigate had 
increased. This observation was counterproductive to the 
goals of the intervention (to improve farmers’ abilities to 
adopt water saving techniques). However, one explanation 
is that the interventions targeted the abilities of the farmers 
in adopting irrigation without focusing adequately on their 
attitudes towards adopting irrigation (which was a signifi-
cant influencing factor observed in the 2019 regression 
results, from before the interventions). Overall, one result-
ing hypothesis is that including training aspects that 
change attitude is essential for the success of any ability- 
based intervention (Duflo et al. 2011, Gaffney et al. 2019) 
if attitude is observed to be a significant behavioural factor 
prior to the intervention. Only ability-based interventions 
may lead to counterproductive results (even in improving 
farmers’ self-perceived abilities themselves) if attitudinal 
aspects are not well accounted for (assuming attitude was 
significant a priori).

There was still an increase in micro-irrigation adoption 
from 2019 (36.9%) to 2022 (62.8%), during the intervention 
period. Figure 6 describes the relevant RANAS factors during 
the 2019 and 2022 surveys (in the rounded rectangles with 
solid boundaries), as well as potentially relevant factors for 
sustainable adoption long after the interventions, as explained 
further. The rounded rectangles with dashed boundaries are 
interpretations of potentially relevant factors, based on the 
literature.

Based on the surveys, farmers continued to be risk averse 
during the intervention; the perception of available water 
supply (compared to the crop water requirement) and the 
confidence in having adequate water after 5 years continued 
to remain significant for adoption in 2022. Hence, the inter-
ventions did continue to highlight the importance of risk- 
averse behaviour in water scarcity, which is particularly rele-
vant for India, where it is an under-acknowledged barrier to 
adoption (Nair and Thomas 2022). Moreover, the perceived 
responsibility to secure their own water sources also became 
significant once reverse causality was accounted for in the 
regression. However, factors such as the attitude of farmers 
towards the effects of irrigation on crop yields, and the ability 
to irrigate, became non-significant in explaining adoption 
behaviour going from 2019 to 2022. This is particularly con-
cerning for the Indian context, where potential adopters need 
to be convinced about the advantages of irrigation technolo-
gies and the need to shift towards them, and to develop a 
positive attitude towards technological change (Nair and 
Thomas 2022).

Farmers not being convinced of the value of irrigation could 
be interpreted as having a lack of trust in the technology itself, 
as per the recently expanded conception of RANAS which 
includes trust in the technology as a factor relevant to adoption 
(Contzen et al. 2023). Perhaps, with the presence of the inter-
vening agency, attitude and ability factors were transferred 
into trust in operators (the intervening agency), without real 
ownership and trust in the technology (Contzen et al. 2023). 
This may lead to an increase in adoption which is unsustain-
able beyond the intervention, since capacity development 
entails not only the development of abilities (e.g. to operate 
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technology), but also a change of attitudes and mindsets 
(UNDP 2015).

Similar interventions (where attitude and ability factors are 
significant a priori) may perhaps seem to be successful during 
the period of intervention but not later. This may be because 
subjects’ attitude- and ability-related aspects are transferred 
towards increased trust in operators and an unintentional (and 
invisible) decrease in psychological ownership felt by the 
farmer themselves towards the technology (Contzen et al.  
2023). This may have partly contributed to the decline in 
adoption during the intervention itself. Further, to ensure 
that the favourable behavioural adoption lasts beyond the 
intervention period, it is important that this loss of relevant 
attitude and ability factors (compensated for by the trust in 
operators) is regained via interventions not only targeting 
attitude and ability factors, but also transforming the trust in 
operators into psychological ownership towards the technol-
ogy, and trust in the technology itself. Psychological ownership 
can be a key mediating factor between the participation of 
beneficiaries in developmental interventions and the sustain-
ability of the intervention itself (Aga et al. 2018). Future studies 
could account for factors such as trust and ownership to more 
holistically identify the socio-psychological drivers and bar-
riers to adoption. Further, it becomes even more important if 
the monitoring and maintenance of the technology is challen-
ging (Contzen et al. 2023), which could be the case in irrigation 
adoption.

Technological adoption, rather than being a binary decision 
(yes/no), is a multi-stage process, and different stages can be 
associated with different psychological factors driving adop-
tion behaviour (Weersink and Fulton 2020). One theory is that 
humans first become aware of the technology, then evaluate it 
in light of their own circumstances, adopt it, and then revise or 
dis-adopt based on changing circumstances. While social and 
cognitive factors could be more influential in the earlier stages, 
economic factors could become more important in the later 
stages (Weersink and Fulton 2020). One model used to study 
this is the stage model of self-regulated behavioural change 
(SSBC; Bamberg 2013), which proposes four qualitative stages 
of adoption: predecisional, preactional, actional and 

postactional. This theory proposes that interventions are not 
“one size fits all,” and can be made more effective by first 
identifying the current stage, and then suitably pairing them 
to the specific needs of the individuals within each stage of 
behavioural change. In the future, models such as the SSBC 
could be used to gather a more nuanced understanding of 
adoption vs. non-adoption and could be compared or com-
bined with models such as RANAS. Future studies could 
integrate such models to develop a subtler understanding of 
adoption behaviour of water-resilient technologies in 
agriculture.

Policy-based support for agriculture in India includes sub-
sidies for agricultural inputs like fertilizers, electricity, and 
irrigation water minimum support prices for certain crops, as 
well as direct income transfer via the Pradhan Mantri KIsan 
SAmman Nidhi (PM-KISAN) programme (OECD 2023). For 
irrigation in particular, support has been provided to expand 
access to electricity, lowering irrigation costs. This has had 
impacts such as increased agricultural production (Badiani 
and Jessoe 2011) and rural incomes (Briscoe and Malik  
2006), while also contributing to financial insolvency and 
unreliability of electricity services (World Bank 2002), and 
environmental costs such as excessive groundwater depletion 
(Badiani and Jessoe 2011, Badiani et al. 2012). Within irriga-
tion systems, micro-irrigation systems have been incentivized 
more recently by subsidies, increasing coverage from 2.3 Mha 
in 2005–2006 to 11.4 Mha in 2018–2019, assuming widespread 
adoption of efficient technologies would lead to lowered water 
usage and hence a reduction in electricity consumption (Reddy  
2016, Nair and Thomas 2022). Still, uncertain governmental 
guidelines, delays in subsidy distributions and loan sanction-
ing processes are often considered challenges to micro-irriga-
tion adoption (Namara et al. 2007, Gupta et al. 2022). Further, 
subsidies alone may not lead to widespread adoption as deci-
sion making related to irrigation technology adoption is 
shaped by farm, household, and institutional factors (Nair 
and Thomas 2022). This highlights that achieving systemic 
impacts can involve three types of scaling – scaling up (by 
changing institutions at the policy level), scaling deep (by 
changing values and beliefs to impact cultural roots), and 

Figure 6. Relevant RANAS factors during 2019, 2022 and (potentially) beyond the intervention. The rounded rectangles with solid boundaries are based on data 
analysis, and those with dashed boundaries represent interpretations and suggestions based on the literature.

HYDROLOGICAL SCIENCES JOURNAL 13



scaling out (by replicating and disseminating among more 
communities) (Moore et al. 2015). Nonetheless, the results 
from this and previous studies (Hatch et al. 2022) in such 
contexts imply that policymakers could establish contextual 
and socio-psychological “baselines” and, if appropriate, strate-
gically design corresponding irrigation extension services to 
focus on sustaining positive attitudes towards adoption, high-
light water security-related risks and leverage existing societal 
norms.

It is important to note that efforts focused on increasing 
efficiency in agricultural water management may not always 
lead to effective and/or equitable water allocations (Grafton et 
al. 2018), and could lead to a counterproductive increase in 
water use (Birkenholtz 2017), or power dynamics adversely 
affecting marginalized or tail-end farmers (Linstead 2018). 
This is also observed specifically regarding irrigation technol-
ogies in India (Nair and Thomas 2022). Hence it is important 
to account for human–water feedbacks and consider potential 
negative externalities to avoid supporting existing inequalities 
(based on financial capital, knowledge or gender) and natural 
resource degradation (Adla et al. 2023b). This study focuses on 
irrigation adoption as one specific technology that was pro-
moted during the overall intervention (on sustainable cotton 
production practices).

Transferability and generalizability of such results would 
require a comparative analysis of similar studies across differ-
ent geographies and contexts. This would require such studies 
to be comparable (with standardized explanatory and depen-
dent variables and similar theoretical underpinnings, scopes 
and methodological components). Such comparative global 
studies exist in the scope of household water treatment 
(Daniel et al. 2022). However, studies related to the adoption 
of irrigation technologies are different in several respects. 
Dependent variables vary, from water saving technologies 
which include rainwater harvesting (He et al. 2007), to pres-
surized irrigation technologies (Friedlander et al. 2013, Wang 
et al. 2016, Nejadrezaei et al. 2018, Castillo et al. 2021) and 
furrow irrigation (Gautam et al. 2024). Often, dependent vari-
ables can include other associated farm management choices, 
such as soil moisture monitoring-based irrigation scheduling, 
land levelling or soil water conservation practices (Jordán and 
Speelman 2020). Farmer participation in irrigation manage-
ment schemes could also be a dependent variable (Azizi 
Khalkheili and Zamani 2009). The scope of the investigations 
can vary widely, each with their own theoretical frameworks. 
Some studies have aimed at identifying technical constraints to 
irrigation adoption (Friedlander et al. 2013), while most have 
identified demographic, socio-economic, and farm- and exten-
sion-related factors (He et al. 2007, Abdulai et al. 2011, Wang 
et al. 2016, Jordán and Speelman 2020, Gautam et al. 2024).

These results reinforce some of the results of studies in 
similar climatic (He et al. 2007) and socio-economic contexts 
of middle-income countries, like Iran (Nejadrezaei et al. 2018) 
and India (Nair and Thomas 2022). Factors influencing micro- 
irrigation technology adoption in India can be broadly cate-
gorized into three levels – household level, farm level and 
institutional (Nair and Thomas 2022). Studies which have 
used behavioural science frameworks have identified factors 
explaining the adoption-related intention and behaviour 

(Nejadrezaei et al. 2018, Castillo et al. 2021). While there is 
relatively lower variability in the methodologies adopted, with 
many studies using different types of regression analyses 
applied to primary data (Abdulai et al. 2011, Wang et al.  
2016, Nejadrezaei et al. 2018, Castillo et al. 2021, Gautam et 
al. 2024), the differences in dependent variables would make a 
reasonable comparison challenging.

5 Conclusions

This study used the socio-psychological RANAS approach to 
analyse systematic behaviour change in the drivers of and bar-
riers to adoption of irrigation behaviour. This was tested on an 
intervention towards increased irrigation adoption, implemen-
ted between 2019 and 2022 in four districts of Maharashtra 
(India). Data from two statistically similar surveys (n = 343, 
and n = 419 in 2019 and 2022, respectively) were used as inputs 
for logistic regression models developed with independent 
socio-economic variables and RANAS psychological factors 
and the dependent binary variable of irrigation adoption.

There was an overall increase of micro-irrigation adoption 
from 36.9% to 62.8% which corresponds with the interventions 
which promoted micro-irrigation, but with a reduction in over-
all irrigation adoption, from 81.6% to 70.4%. In terms of socio- 
economic characteristics, the wealth of the farmer continued to 
influence irrigation adoption, via the total annual income in 
2019, and land area and livestock in 2022, respectively. 
However, RANAS psychological factors seemed to be more 
influential in determining irrigation adoption in both years. 
While the contribution of each RANAS factor may be too 
difficult to isolate, the risk-aversion of farmers (against water 
scarcity) seemed to be a significant factor towards irrigation 
adoption. Furthermore, the impact of risk-aversion on irrigation 
adoption was underestimated by standard logistic regression 
and could be correcting for the endogenous influence of the 
behaviour on the RANAS risk factor.

Farmers also felt that more of the people around them 
were irrigating, which may have resulted from the interven-
tion efforts. However, farmers felt that their self-perceived 
ability to irrigate decreased during the intervention (perhaps 
due to a more accurate self-assessment), which was counter-
productive to the goals of the intervention. While this factor 
was significant in driving adoption behaviour in 2019, it 
ceased to be so during 2022. This may have been due to 
the fact that while farmer attitudes towards irrigation were 
influential before 2019, the interventions were shaped more 
by perceptions of risk (raising awareness about water scar-
city) and abilities (training of irrigation behaviour), and not 
adequately about necessary attitudinal shifts. Hence, the 
attitude towards adoption became non-influential after the 
interventions, as revealed by the 2022 survey. Moreover, 
interventions could be designed more towards transforming 
the trust in the operator (inculcated during the interven-
tions) towards psychological ownership and trust in the 
technology itself, to ensure more sustainable interventions 
overall. Technology adoption can also be a multi-stage pro-
cess, and thus we may potentially require commensurate, 
more nuanced modelling to understand the adoption of 
water-resilient agricultural technologies.
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Appendix A

Figure A1. Box plots displaying (a) the Standardized Precipitation Evapotranspiration Index (SPEI) and (b) the moving average of SPEI (SPEI_MA) for non-adopters and 
adopters for both surveys. The input data were taken from the year preceding the survey years (2018 for 2019, and 2021 for 2022) on the assumption that agricultural 
management decisions would be made based on previous experiences. Irrigation non-adopters are denoted by the suffix “_N” and adopters are denoted by “_Y,” 
respectively.
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