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Abstract

We present an approach to build a reduced-order model for nonlinear, time-dependent, parametrized partial differential
quations in a nonintrusive manner. The approach is based on combining proper orthogonal decomposition (POD) with a
molyak hierarchical interpolation model for the POD coefficients. The sampling of the high-fidelity model to generate the
napshots is based on a locally adaptive sparse grid method. The novelty of the work is in the adaptive sampling of time, which
s treated as an additional parameter. The goal is to have a robust and efficient sampling strategy that minimizes the risk of
verlooking important dynamics of the system while disregarding snapshots at times when the dynamics are not contributing to
he construction of the reduced model. The developed algorithm was tested on three numerical tests. The first was an advection
roblem parametrized with a five-dimensional space. The second was a lid-driven cavity test, and the last was a neutron diffusion
roblem in a subcritical nuclear reactor with 11 parameters. In all tests, the algorithm was able to detect and include more
napshots in important transient windows, which produced accurate and efficient representations of the high-fidelity models.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Proper orthogonal decomposition; Data-driven; Greedy; Time-adaptive; Locally adaptive sparse grid

1. Introduction

In science and engineering applications, dynamic models can be described by time-dependent mathematical
odels. Often, these models are written as parametrized partial (integro-) differential equations (PDE). Applications

uch as uncertainty and sensitivity analysis and design optimization require solving the equations repeatedly for
ifferent values of the PDE parameters. For complex, large-scale problems, applications of repeated evaluations
emand excessive computational power and memory resources. In such cases, model reduction techniques are used

to overcome the computational burden. Model reduction methods aim to replace the high-fidelity model with an
efficient, low-dimensional reduced-order model (ROM) capturing the main dynamics of the system with a controlled
level of accuracy. Model reduction methods can be classified into intrusive and nonintrusive methods. Intrusive

∗ Corresponding author.
E-mail address: f.s.s.alsayyari@tudelft.nl (F. Alsayyari).
https://doi.org/10.1016/j.cma.2020.113483
0045-7825/ c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113483
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113483&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:f.s.s.alsayyari@tudelft.nl
https://doi.org/10.1016/j.cma.2020.113483
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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ethods are mainly projection-based, where the high-dimensional model is approximated by projecting the original
quations onto a reduced subspace. For an overview of different projection-based approaches, see [1,2].

Intrusive approaches require access to the operator of the high-fidelity model, which can be limiting for
pplications where the numerical solver is closed-source or legacy, coupled multi-physics code. In these cases,
onintrusive methods are applicable where the reduced model is built using only data generated from the high-
delity model. For this reason, they are also called data-driven methods. A class of nonintrusive methods aims
t recovering part of the problem’s physical structure by inferring an assumed operator from the data. In the
oewner framework [3], a reduced model is built by interpolating measurements of the transfer function in the

requency domain. This approach was extended to construct a reduced model from time-domain data [4]. However,
educed models in the Loewner framework are applied to linear, time-invariant systems (or linear PDEs). For non-
arametrized PDEs, dynamic mode decomposition (DMD) [5] learns a linear operator by fitting a sequence of time
napshots data in an optimal least square sense. However, this approach cannot be directly applied to parametrized
roblems.

A different line of research attempts to construct a nonintrusive reduced model for general (nonlinear)
arametrized PDEs without an operator inference. The PDE solver is considered as a black-box. This class of
ethods uses generated data to fit a model mapping a defined input space to the desired output space. Hence,

hey are closer to machine learning techniques. However, while machine learning methods are typically applied in
ettings where data are abundant, in numerical and experimental computational science and engineering applications,
ata are typically expensive to generate [6]. Therefore, an important challenge to overcome for nonintrusive ROM
ethods is to build an accurate model using minimum data size. One effective black-box ROM method adapts the

rojection-based proper orthogonal decomposition (POD) method to be a nonintrusive approach. This nonintrusive
ersion starts in a similar way to the projection-based version by constructing a reduced basis space. However,
nstead of projecting the high-fidelity model equations onto the reduced basis space to solve for the POD coefficients,
ata-fit surrogate models for the POD expansion coefficients are used. Different routes can be followed to construct
he models for the expansion coefficients. One can interpolate with splines [7] or, more commonly, use radial basis
unction (RBF) [8,9]. Additionally, neural networks can be used to learn a surrogate model for the coefficients [10].
aussian process regression (or kriging) is another option to build the surrogate model [11,12]. We have presented

n approach using locally adaptive sparse grid and hierarchical interpolation [13], which was then applied to perform
nalysis of the uncertainties in a coupled multi-physics model of a nuclear reactor system [14].

Most of the work on nonintrusive ROM methods has been developed either for parametrized time-independent
roblems (steady-state solutions) or time-dependent non-parametrized problems. Generalizing a ROM method to
ddress both spatiotemporal discretization as well as the parameter space is not trivial. As a direct approach, one
ould build a separate ROM model for each time instance of interest using any of the (steady-state) nonintrusive
OM methods. However, such an approach is computationally unfeasible for the entire discretized time series. The
hallenge is even more complicated if the boundary and initial conditions are also parameter and time-dependent or
f the parameter space is of a high dimension. Audouze et al. (2013) [9] suggested a nonintrusive ROM approach
or time-dependent PDE problems using a two-level RBF–POD technique. This approach constructs two reduced
asis spaces, one for spatial basis and a second for temporal basis. The authors use a coarse grid discretization of
he spatial coordinates, time, and parameter spaces to sample the high fidelity model and generate the snapshots for
he POD. Chen et al. (2018) [15] extended this work to include adaptive sampling for the parameter space using
n RBF error estimator based on the distance between the RBF coefficients. The adaptivity in this approach cannot
asily be extended to higher dimensional parameter spaces. Xiao et al. (2017) [16] presented an approach to tackle
he high dimensional parameter space challenge using (non-adaptive) sparse grid to generate the sampling points.
heir approach is also based on RBF–POD, but only one reduced basis space is constructed offline while a two-

evel RBF interpolation is used online; the first layer generates interpolated coefficients in parameter space then a
econd RBF layer propagate these coefficients in time. Peherstorfer and Willcox (2016) [17] proposed a nonintrusive
perator inference ROM approach that can be applied to linear systems or systems with nonlinear terms of low order
olynomials. As an extension of this work, Qian et al. (2020) [18] proposed first to lift the generated data from
he high-fidelity model to a quadratic form using auxiliary variables. Then apply the operator inference approach
o the lifted system. However, defining the lifting maps is problem specific and requires characterization of the
onlinear term, which is an intrusive step. Guo et al. (2019) [19] proposed an approach based on Gaussian process

egression models for the POD coefficients. Time is treated as a parameter, and the snapshots for the POD basis
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onstruction are generated based on parameter and time tensorization. Recently, several studies investigated ROM
pproaches based on Artificial Neural Networks (ANN) [20–26]. Swischuk et al. [6] compared between different
achine learning methods for POD-based ROM modelling. They found ANN to be underperforming in cases where

ata is scarce. Their finding is in line with ANN literature, where it has been established that successful training
f the ANN model requires a minimum data size that is a multiple of the complexity of ANN structure [27,28].

In all of the studied ROM methods, one must select the time snapshots of the high-fidelity model a priori. If the
napshots are too close to each other in time, the computational burden is unnecessarily increased. On the other
and, defining coarse time intervals risks overlooking important system dynamics. This issue has been identified by
he projection-based community [29–32], where an adaptive selection of the time snapshots has been proposed to
mprove the projection-based POD modelling. However, the selection of the snapshot is imposed based on criteria
hat require knowledge of the governing equations, which is unfeasible when the system’s precise dynamics are
nknown, such as our nonintrusive setting.

In the present work, we aim to develop a general nonintrusive approach to identify and select the snapshots for any
arametrized, time-dependent system. We build on our previous work for steady-state systems where we presented
n adaptive sparse grid approach combined with POD [13]. We extend the adaptivity in parameter space to the time
omain. We consider time as a parameter and use our adaptive technique to choose the important snapshots both in
ime and parameter spaces. This approach assumes a bounded time window of interest (i.e., t ∈ [0, T ]). Therefore,
he reduced model has no predictive capabilities beyond the defined end time T . However, the reduced model is
ble to simulate the spatiotemporal evolution of the system as a function of system parameters up to the end time T .

We present three numerical tests for our adaptive approach. The first is a two-dimensional linear unsteady advection
problem (Molenkamp test) that has an exact solution. This problem has five input parameters to investigate. In this
test, we compare between the direct (fixed time grid) method and our time-adaptive approach. The second test is
a lid-driven cavity problem, which was solved as a non-parametrized model (i.e., only time was considered as a
parameter). The third is a two-dimensional time-dependent neutron diffusion problem in a subcritical reactor, which
was parametrized with an 11-dimensional space. This problem is challenging due to the higher dimensionality of
the parameter space and the abrupt response of the system during the transient.

The remainder of this paper is organized as follows: Problem formulation is introduced in Section 2, along with
a summary of the adaptive-POD algorithm and the time treatment approach. The numerical tests are presented in
Section 3. Our conclusions are discussed in Section 4.

2. Adaptive-POD approach

2.1. Problem formulation

We are interested in building a reduced model for a general parametrized time-dependent problem. Due to our
nonintrusive approach, the governing equations are unknown. Therefore, a general form for the problem under an
unknown nonlinear operator N (·) can be written as

N (y(x, t, α), x, t, α) = s(x, t, α), (1)

here y(x, t, α) is the solution of the system, x is the state independent variable (e.g., spatial coordinates, energy, or
ngular directions), t is time, α ∈ Rd is a vector of d parameters representing properties of the system (e.g., material,
eometry, or boundary conditions), and s(x, t, α) is a source function. We aim at building a reduced model to capture
he dynamics of the solution y(x, t, α) within a defined range of the parameter α. We assume the availability of a

numerical solver for the discretized version of the problem. That is

N ( y(t, α), t, α) = s(t, α), (2)

where y ∈ Rn is a vector with n state variables. The computational burden usually scales with the dimension of the
state vector n. Our approach is based on POD method, where we seek to approximate y(α, t) using an expansion
of the form

y(α, t) ≈

r∑
c j (α, t)v j , (3)
j=1

3
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here v j ∈ Rn is the basis vector (or POD mode) and c j (α, t) is its coefficient that depends on parameter α and
he time (t). The POD method extracts a reduced basis space for the system using the left singular vectors of the
ingular value decomposition (SVD) applied to the snapshot matrix, which is a matrix containing an ensemble of
olutions at different states of the system. The basis space can be truncated at the first r left singular vectors such
hat the truncation error is below a cut-off threshold γtr. That is∑n

j=r+1 σ 2
j∑n

j=1 σ 2
j

< γtr, (4)

where σ j is the singular value of the left singular vector v j .
We have proposed in [13] an iterative algorithm to build a reduced model by adaptively selecting important

points from the parameter space and updating the snapshot matrix. In this work, we propose to deal with time as
a parameter. That is, we consider time to be an additional input parameter such that the solution y(α, t) = y(α∗),
where α∗

= [α⊤, t]⊤ and the symbol ⊤ denotes the transpose. The dimension of the parameter space becomes
∗

= d + 1 and Eq. (3) becomes

y(α∗) ≈

r∑
j=1

c j (α∗)v j . (5)

Formulating the problem in this way allows us to directly use the previously developed adaptive tool. Once the
rthonormal basis is known, the coefficient values at the sampled point α∗

q can be computed as

c j (α∗

q ) = ⟨v j , y(α∗

q )⟩, (6)

here ⟨., .⟩ indicates the scalar product.

.2. Smolyak interpolation

To compute the coefficient at any non-sampled point, we use the Smolyak iterative interpolant developed
n [13]. Here, we only present a summary of the adaptive algorithm. At iteration k, the d∗-dimensional interpolant
Ak,d∗ (c)(α∗) is given by

Ak,d∗ (c)(α∗) = Ak−1,d∗ (c)(α∗) + ∆Ak,d∗ (c)(α∗) , (7)

ith A0,d∗ (c)(α∗) = 0, and

∆Ak,d∗ (c)(α∗) =

m∆
k∑

n=1

wk
nΘn(α∗), (8)

here m∆
k is the cardinality of the so-called important set Zk . The important set contains the parameter points α∗

t which the interpolant was found to have an error greater than a pre-defined threshold γint. In the next iteration,
he algorithm refines the sampling scheme in the neighbourhood of the points in the important set. The d∗-variate
asis function Θn(α∗) is defined for every point α∗

n = (αi1
n,1, . . . , α

id
n,d ) ∈ Zk as

Θn(α∗) =

d∗∏
p=1

ai p

α
i p
n,p

(αp), (9)

here α∗ has support nodes = (α1, . . . , αd∗ ), and i p is the level (tree depth) index along dimension p. The
nidimensional interpolant ai p

α
i p
n,p

(αp) is defined as

ai
αi

n
(α) = 1 if i = 1,

ai
αi

n
(α) =

⎧⎨⎩1 − (mi
− 1) · |α − αi

n|, if |α − αi
n| <

1
mi − 1

,
(10)
0, otherwise,
4
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Fig. 1. Illustration of the first 4 levels of the tree structure where 0.5 is the root of the tree and nodes are added at half the distance between
he previous nodes. Each node has 2 children except the nodes at level 2 where each has one child only.

nd

mi
=

{
1 if i = 1,

2i−1
+ 1 if i > 1,

(11)

here the dependence on the dimension p is dropped for notational convenience.
The surplus wk

n is defined as the difference between the interpolated value and the true value of the coefficient
t α∗

n . That is

wk
n = c(α∗

n) − Ak−1,d∗ (c)(α∗

n). (12)

The reduced model is then built by using the interpolant of Eq. (7) as a surrogate model for the POD coefficients
n Eq. (5), yielding

y(α∗) ≈

r∑
j=1

Ak,d∗ (c j )(α∗)v j . (13)

.3. Adaptive sampling strategy

The adaptive sparse grid algorithm is based on arranging the nodes along each dimension in a tree structure,
s shown in Fig. 1. Each node has two children and one father with an exception at the boundary nodes in level
where each has one child only. The nodes are then tensorized to form points in parameter space. To maximize

he separation of points in parameter space, we choose the equidistant rule for the unidimensional nodes. Each
oint in parameter space has forward and backward points. The forward points for a point α = (α1, α2 . . . , αd∗ ) is
enerated by tensorizing the children of each node with the rest of the nodes. That is, the first forward point of α is
b1(α1), α2 . . . , αd∗ ), where b1(α) is a function that returns the first child from the tree. The second forward point
s (b2(α1), α2 . . . , αd∗ ), where b2(α) is a function that returns the second child. By applying b1(α) and b2(α) to α2,
he third and fourth forward points are generated and so forth for the rest of the dimensions. Therefore, for any
oint in parameter space we can generate up to 2d forward points. The backward points are generated in the same
anner but by using a function that returns the father of a node instead of the child function. Hence, each point has

t most d backward points. By generating the backward points recursively, the set of ancestors are created. Note
hat a forward point can be shared between two different backward points. Therefore, points in parameter space do
ot form a classical tree structure but rather are connected as a network.

The parameter space is bounded by the defined upper and lower values for each dimension in α∗. This space
s mapped to a unitary hypercube with dimension d∗, where 1 is mapped to the upper value and 0 represents the
ower value of the range. In the initialization step (k = 0), the algorithm selects the central point in the hypercube
nd adds it to the important set Z0. The high-fidelity model is then sampled at that point. Then, a reduced model
s built using Eq. (13). In the first iteration (k = 1), a trial set is generated from the forward points of the points
n Z0. The algorithm then samples the high-fidelity model and computes the error of the reduced model at each
oint in the trial set. Points with an error above a pre-defined threshold (γint) are considered important points. Then,
n any iteration k, the trial set is generated from the forward points of Zk−1. For each point in the trial set, if the
rror is found to be above γint, this point is marked as a candidate point. The algorithm then considers the ancestors
f each candidate point. If all ancestors were included in

⋃k−1
l=0 Z l , that candidate point is added to the important⋃k−1 l
et. On the other hand, if the candidate point has an ancestor that was not included in l=0 Z , that ancestor is

5
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Fig. 2. A flow chart illustrating the adaptive-POD algorithm.

arked important and the candidate point is stored and tested again in the next iteration. Points that are not marked
mportant are added to the inactive set.

To control the efficiency of the sampling scheme, a generated forward point is excluded from the trial set if it
as a fraction of inactive backward points above a predefined parameter µ ∈ [0, 1]. For µ = 1, all forward points
re sampled and the algorithm is more exploratory whereas for µ = 0, the algorithm is more efficient by only
ampling points which have all their backward points in the important set. Fig. 2 summarizes the algorithm with a
ow chart. For a detailed description of the algorithm, we refer the reader to [13].

Clearly, time is not an input parameter and special attention has to be taken with such an approach. This is
ecause numerical solvers are discretized in time. The algorithm could request a snapshot at a certain time tl ,
hich could be a time instance in-between the solver’s default time steps. This can be addressed either by solving
p to the last default time step before tl then modifying the time step to reach tl or interpolating between two time
teps before and after tl . Additionally, for every request of tl , the high-fidelity model will solve for all time instances
rom t = 0 up to tl . Management of the interface with the solver is important to avoid redundant simulations. If at
ne iteration, the algorithm requests αq with tl , we can store all generated snapshots for t < tl in a library. In this
anner, the algorithm can recall from this library instead of rerunning the high-fidelity solver with each αq call.
ikewise, If the algorithm requests t > tl with αq , the solver needs only to be restarted from tl instead of the initial
onditions t = 0. This strategy saves computational resources.

However, in cases where memory is limited, one might opt to store only a certain percentage of the generated
napshots. Then, restart a requested simulation from the closest stored snapshot. Note that storing all generated
napshots is not an integral part of the algorithm. The only snapshots that need to be stored are the ones marked
s important and included in the snapshot matrix. Stored snapshots that are not used during the construction stage
an serve as testing points for the reduced model once the algorithm is terminated. The snapshot matrix is the only
emory consuming step in the algorithm. One can reduce the memory burden of the snapshot matrix with the use

f an SVD updating algorithm [33] instead of the full SVD at each iteration. In our implementation for this work,

owever, we have used full SVD at each iteration.

6
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Fig. 3. Snapshots of the solution for the smooth Molenkamp problem (λ2 = 0.15) at selected time steps (t ∈ {0, 0.3, 0.6}).

Fig. 4. Snapshots of the solution for the steep Molenkamp problem (λ2 = 3) at selected time steps (t ∈ {0, 0.3, 0.6}).

We use the ℓ2 norm to compute the relative error for any point α∗
q as

ek
q =

∥ y(α∗
q ) −

∑r
j=1 Ak,d∗ (c j )(α∗

q )v j∥ℓ2

∥ y(α∗
q )∥ℓ2 + ϵ

, (14)

here ϵ is introduced as an offset for cases when ∥ y(α∗
q )∥ℓ2 has near zero magnitude. A point α∗

q is marked as a
candidate point when ek

q is above the threshold γint. The iterative algorithm is terminated when ek
q for all points in

the trial set of iteration k is below a global tolerance ζ .

3. Applications

Our proposed algorithm is tested on three time-dependent problems. The first is a two-dimensional linear unsteady
advection problem that has an exact solution. This problem is also called the Molenkamp test [34]. We parametrize
this problem on a five-dimensional space. The second is a lid-driven cavity test. This problem is not parametrized but
tests the ability of the algorithm to detect the important transient window. The third is a challenging 11-dimensional
transient nuclear reactor problem. This problem simulates a subcritical reactor with an external source.

3.1. Molenkamp test

The original Molenkamp test [34] is a two-dimensional advection problem which has an exact solution as a
Gaussian cloud of material being transported in a circular path without changing its shape. However, in order
to create a more challenging setting for the adaptive-POD algorithm, we modified this problem to include an
additional reaction term, which in effect causes the amplitude of the solution to decay over time. The dimensionless
advection–reaction equation is

∂q(x, y, t)
∂t

+ u
∂q(x, y, t)

∂x
+ v

∂q(x, y, t)
∂y

+ λ3q(x, y, t) = 0, (x, y) ∈ [−1, 1], (15)

here the velocity field describes a solid body rotation u = −2πy and v = 2πx . The initial condition is

q(x, y, 0) = λ10.01λ2h(x,y,0)2
, h(x, y, 0) =

√
(x − λ4 +

1
)2 + (y − λ5)2. (16)
2
7
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c

Table 1
Range of variations for each parameter in the Molenkamp test.

Parameter Lower bound Upper bound

λ1 1 20
λ2 0.1 (2 for steep setting) 0.2 (4 for steep setting)
λ3 1 5
λ4 −0.1 0.1
λ5 −0.1 0.1

The exact solution is imposed on the inflow boundary condition as

q(x, y, t) = λ10.01λ2h(x,y,t)2
e−λ3t , h(x, y, t) =

√
(x − λ4 +

1
2

cos 2π t)2 + (y − λ5 +
1
2

sin 2π t)2. (17)

The exact solution is evaluated on a Cartesian uniform 100 × 100 grid. Therefore, the model has 10,000 degrees
of freedom. Note that in this problem, evaluating the solution is computationally efficient and a reduced model is
not necessary. However, this problem is selected to test the ability of the developed algorithm in capturing such
dynamics.

The problem is parametrized with a 5 dimensional space λi for i = 1, . . . , 5. Figs. 3 and 4 show selected time
snapshots of the solution for different values of λ2. The snapshots show the Gaussian cloud initially centred at
x = −0.5 and y = 0. Over time, the cloud is transported in a circle which completes a full rotation at t = 1. The
loud also decays to reach a near-zero magnitude after a full rotation. The parameter λ1 is a linear scaling factor

that controls the magnitude of the initial cloud, λ4 and λ5 control the initial coordinates of the centre of the cloud
with respect to the domain centre. The parameter λ3 is the decay constant of the cloud that controls the speed of
the decay. The parameter λ2 controls the size of the cloud. For smaller values of λ2, the cloud size is bigger and
the solution is smoother over the domain as shown in Fig. 3 whereas for higher values, the solution has a steeper
gradient (spike-like) as shown in Fig. 4.

We test two different settings of the problem. The first is a smooth solution by varying λ2 between 0.1 and
0.2 and the second is a steep solution with values of λ2 between 2 and 4. The steep solution is more challenging
to capture for a POD-based ROM because as the solution becomes steeper (or closer to being orthogonal), the
required basis space becomes larger. That is, the rank of the snapshot matrix is higher for snapshots that are already
orthogonal or near orthogonal, which entails more POD modes for an accurate representative model.

Table 1 summarizes the range of variation for each parameter. We are interested in building a reduced model that
can reproduce the solution q(x, y, t) over the spatial domain and time t ∈ [0, 1] for any values of the parameters
within the defined range.

We compare two approaches for this test. The first is the developed time-adaptive approach as described in
Section 2. The second is the more direct approach by defining a fixed time grid then building a separate reduced
model for each time instance in the grid. To reproduce the solution at any time t , the solution of the ROM models
on the time grid is interpolated. However, to select the snapshots in parameter space, we still use the adaptive
algorithm for each model on the grid. For this approach, a single basis space is constructed for all ROM models
on the grid. A point in parameter space is selected to be included in the important set if any of the ROM models
marked that point as important. Thus, the basis space for all ROM models on the fixed grid is updated with any
point marked important by at least one of the ROM models. We initially defined the fixed time grid with 11 times
points uniformly separated in the time window of interest (i.e., t ∈ [0, 1]).

For both approaches, we choose a greediness value of µ = 0 and require the reduced model to have a maximum
of 1% ℓ2 norm error. Therefore, we set the global tolerance (ζ ) to be 1% and the adaptive threshold (γint) to 0.1%.
The POD truncation threshold (γtr) was set to 10−12. The results are summarized in Table 2. The table presents
a comparison between the two approaches for both the smooth and the steep solution settings in the number of
calls to run the high-fidelity model, the total number of snapshots resulted from these runs, the number of POD
modes after truncation, and the maximum relative error resulted from testing the model on 1000 randomly generated
points using latin hypercube sampling (LHS) (i.e., snapshots generated by random point in the space formed by the
parameters λi and time t , which were not part of the snapshot matrix). In Table 2, we report the maximum error

results for the model of the fixed grid approach in two separate occasions: The maximum error at the predefined
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able 2
esults for the Molenkamp problem for the smooth and steep setting comparing time-adaptive and fixed grid approaches. The number of
odel runs indicates the number of calls to run the high-fidelity model. The number of snapshots indicates the total number of snapshots

esulted from the high-fidelity model runs. The number of POD modes indicates the number of basis vectors selected after truncation. The
aximum relative error reports the maximum computed error from testing the model on 1000 randomly generated points that are not part

f the snapshots. For the fixed grid, the errors at the defined grid points and at interpolated time instances are reported separately.

Problem
setting

Approach Number of
model runs

Number of
snapshots

Number of
POD modes

Maximum relative ℓ2 error

Smooth
Molenkamp

Time-adaptive 775 6369 33 0.5%

Fixed grid
(11 points)

1379 1379 × 11 33
At grid points 0.17%
Interpolated 1.1%

Steep
Molenkamp

Time-adaptive 2944 78 035 238 1.4%

Fixed grid
(11 points)

5093 5093 × 11 223
At grid points 0.33%
Interpolated 76%

Fixed grid
(101 points)

5093 5093 × 101 234
At grid points 0.33%
Interpolated 0.34%

fixed grid instances and the maximum error at interpolated points in-between these instances. The maximum of the
two values is the more relevant result to be compared to the error results of the adaptive approach. The interpolated
values were obtained using splines interpolation.

For the smooth Molenkamp setting, the time-adaptive approach needed 775 high-fidelity model runs and
omputed 6369 snapshots. Out of the total number of snapshots, 4692 were marked important and included in
he snapshot matrix. The number of POD modes after truncation was 33. On the other hand, the fixed time grid
pproach needed 1379 model runs resulting in a total of 15 169 snapshots, out of which 9889 snapshots were
mportant. The result of the test on the 1000 random points showed the time-adaptive model having a maximum
rror of 0.5%, which is less than the set tolerance of 1%. The fixed grid model resulted in a maximum error of
.17% at the grid points. However, at interpolated points (time instances in-between the defined grid points), the
aximum error was 1.1%. The adaptive model has a clear advantage in this test as the error was lower and the
odel was more efficient in the number of high-fidelity model calls. Note that for the time-adaptive approach, not

ll high-fidelity model calls are simulated up to the end time T (where in this case T = 1). This is because the
time-adaptive algorithm requests some high-fidelity model runs with a time tl that is less than T . Therefore, the
efficiency in the time-adaptive model is not only in the reduced number of high-fidelity model runs but also in the
reduced computational burden of each model run.

For the steep solution test, we notice that both the time-adaptive and fixed grid approaches needed an increased
number of model runs and a larger POD basis space compared to the smooth solution setting. For the time-adaptive
approach, a total of 2944 high-fidelity model runs were requested with 78 035 snapshots sampled and 64 379 of them
were marked as important. The algorithm selceted 238 POD modes. A conclusion similar to the smooth setting can
be drawn in this case about the time-adaptive model being more efficient and more accurate. In fact, the fixed grid
model captured the dynamics of the solution at the grid points but the error was as high as 76% at the interpolated
points. In order to produce a more accurate model, we built another fixed grid model with 101 time points uniformly
distributed in time t ∈ [0, 1]). This model reduced the maximum error at the interpolated points to about 0.34%.

owever, this was achieved with about twice as much model runs compared to the time-adaptive approach and
bout 6 times more snapshots.

Table 3 summarizes the number of projected important points on each dimension. This number represents the
inearity of the output with respect to each dimension. A value of 1 signals that the algorithm considered that
imension to be constant. In other words, varying the value of that parameter has a negligible effect on the output
f the model with respect to the defined tolerance. A value of 3 means that the algorithm considered the output
f the model to be linear or piecewise linear with respect to that dimension. A higher value implies a nonlinear
arameter, and the degree of the non-linearity scales with the value. It can be seen that the algorithm recognized λ1

as a linear scaling parameter in both settings. The decay constant λ3 was the most sampled parameter and was not
affected by the change in the shape of the solution controlled by λ2. This can be confirmed from the exact solution
in Eq. (17). The parameters λ and λ , on the other hand, were affected by the shape as they control the location of
4 5
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Table 3
Number of unique important nodes along each dimension for the Molenkamp test.

Parameter Smooth setting Steep setting

λ1 3 3
λ2 9 13
λ3 33 33
λ4 5 17
λ5 5 17
t 129 513

the cloud. For this reason, the algorithm added more points along the dimensions of these parameters in the steep
setting, where the cloud size is smaller compared to the smooth setting.

3.2. Lid-driven cavity test

In this test, the incompressible Navier–Stokes equations are solved in a two-dimensional lid-driven cavity. Zero-
elocity boundary conditions are assumed around the cavity except at the top lid, where a velocity equal to vlid is

imposed. The model equations read
∂u(x, y, t)

∂t
+ ∇ · (u(x, y, t) ⊗ u(x, y, t)) − ∇ ·

[
ν(∇u(x, y, t) + ∇(u(x, y, t))⊤)

]
= −∇ p, in Ω = [0, 1]2,

∇ · u(x, y, t) = 0 in Ω ,

u(x, y, t) = 0 on Γ1,

u(x, y, t) = (vlid, 0)⊤ on Γ2,

u(x, y, 0) = 0, (18)

here u(x, y, t) is the flow velocity, ν is the viscosity, p is the pressure, and vlid is the velocity of the top cavity
all, which was imposed as a ramp according to

vlid =

{
−t if 0 ≤ t < 1,

−1 if t ≥ 1.
(19)

The domain is illustrated in Fig. 5. We consider a laminar flow with Reynolds number of 1000 and are interested
n the velocity field within a time range t ∈ [0, 100]. An in-house Navier–Stokes solver was used as the high-fidelity

odel [35]. The system of equations is solved with a pressure-correction method, discretizing the equations in space
ith a discontinuous Galerkin finite element method and in time with the implicit Euler scheme. A fixed time-step

ize of 10−3 was chosen. The domain was discretized on a structured non-uniform (finer near the walls) mesh of
0 × 60 elements. The velocity field was discretized using a second-order polynomial, which leads to a total of
3 200 degrees of freedom for the high-fidelity model. A single high-fidelity simulation to t = 100 requires about
5 CPU-hours.

Lorenzi et al. (2016) [36] has presented an approach to build a reduced model for this benchmark using a
rojection-based POD approach. To select the snapshots, the authors sampled the velocity field using a fixed grid
f 1000 equally spaced time points. As pointed out in their work, this test is challenging for projection-based POD
ethods due to the potential instability of the reduced model induced by truncating modes that have small energy
agnitudes but are important for dissipating the energy of the system. Nonintrusive approaches do not face such

n issue.
We aim to build a non-parametrized reduced model that captures the velocity evolution with time as a response

o vlid. We require a 0.5% maximum ℓ2 norm error and set a POD truncation threshold γtr to 10−12. The algorithm
elected 463 snapshots and marked 232 of them as important. The number of POD modes was 229. The selected
oints are shown in Fig. 6. The algorithm was successful in identifying the first part of the transient to be more
mportant than the last. This is because most of the changes to the velocity field occur within the first few seconds
nd then gradually stabilize until a steady-state is reached. In fact, the algorithm recognizes that the flow is in a
teady-state by t = 50 and no snapshots were marked important between t = 50 and t = 100.
10
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Fig. 5. Illustration of the domain for the lid-driven cavity problem. The boundaries around the cavity are marked by Γ1 except at the top
lid where Γ2 labels the boundary there.

Fig. 6. Time instances selected by the time-adaptive algorithm for the lid-driven cavity test. Points added to the important set are marked
with a red circle.

Fig. 7. Relative ℓ2 error in the reduced model for the lid-driven cavity problem tested on 10,000 points that were not part of the snapshot
matrix. The global tolerance was set at 0.5%.

To test the reduced model, Fig. 7 shows the computed relative ℓ2 norm error between the reduced model and the
high-fidelity model at 10,000 randomly generated points in time. The tested points were not part of the snapshots
matrix. It can be seen that all tested points resulted in an error below the set tolerance of 0.5%. The figure shows
the error to oscillate between 10−7 and the tolerance (5 × 10−3), with the oscillation frequency being higher in the
first part of the time domain. These oscillations are due to the fact that some of the tested points are very close to
points that were marked important and included in the snapshot matrix. The error for reconstructing a point in the
snapshot matrix can be estimated with the POD truncation threshold γtr = 10−12. Therefore, γtr can be considered
as a lower bound of the error in the ROM model. When a point is tested near a point included in the snapshot

matrix, the error can be expected to approach γtr. On the other hand, when the tested point is further from any

11
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Fig. 8. Comparison between the reduced model (ROM) and the high-fidelity model (HFM) for the lid-driven cavity problem at t = 68.157
where the relative ℓ2 error was found to be 0.054%.

point in the snapshot matrix, the error increases to the tolerance. This is evident by considering Fig. 6 where the
frequency of the selected important points correlated well with the frequency of the oscillation in the error shown
in Fig. 7.

The figure shows the maximum error to be 0.38%. In fact, this maximum is at the first time step of the high-
fidelity model. This high error is attributed to the discontinuity in the velocity field between the initial conditions
(null velocity everywhere) and the first time step (velocity almost zero except at the very top of the cavity where vlid

s introduced). The relative error is magnified by the near zero ℓ2 norm of the solution at this first step. The maximum
bsolute difference between the reduced model and the high-fidelity model at this point was about 6 × 10−6, while
he magnitude of the maximum velocity at the top of the cavity was 8 × 10−4. Beyond t = 1 (when the input ramp
nds), the highest error is observed to be 0.054% at t = 68.157 s. A comparison between the high-fidelity model

nd the reduced model at this point is shown in Fig. 8. We also plot the velocity components along the horizontal

12



F. Alsayyari, Z. Perkó, M. Tiberga et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113483

r
t
P
t
r

3

d

w
i

w
s
o

Fig. 9. Velocity components profile along the central line for both the high-fidelity (HFM) and the reduced model (ROM) for lid-driven
cavity problem at the time t = 68.157 s. Benchmark data from Botella and Peyret (1997) [37] are also marked. The right axes of the figures
show the difference between HFM and ROM (uHFM

− uROM).

and vertical central lines in Fig. 9 at t = 68.157. The figures show that the reduced model produced an accurate
epresentation of the high-fidelity model despite the fact that no snapshots were selected in the important set between
= 50 and t = 100. In addition, Fig. 9 compares the results with steady-state benchmark data from Botella and
eyret (1997) [37] to verify that the algorithm was successful in recognizing the flow to be in a steady-state beyond
= 50. Simulating the flow for the 10,000 tested points required about 10 s on a personal computer with the

educed model compared to the 35 CPU-hours needed by the high-fidelity model to simulate the flow to t = 100.

.3. Subcritical reactor test

Nuclear reactors are complex systems with multiple interacting physical phenomena. A standard model to
escribe the neutron flux dynamics inside a reactor is the time-dependent diffusion equation [38]

1
v

∂φ(x, t)
∂t

− ∇ · D(x)∇φ(x, t) + Σa(x)φ(x, t) = S(x, t), x ∈ Ω (20)

here φ(x, t) is the one-speed neutron flux with speed v = 300,000 cm/s, D(x) is the diffusion coefficient, and Σa

s the absorption (removal) cross section. The source term S(x, t) is defined as

S(x, t) = (1 − β)νΣ f (x)φ(x, t) + λC(x, t) + q(x, t), (21)

here β is the delayed neutron fraction, ν is the number of neutrons emitted per fission, Σ f is the fission cross
ection, q(x, t) is the external neutron source, and λ is the decay constant of the precursors C(x, t). The dynamics
f the precursors is governed by

∂C(x, t)
∂t

= −λC(x, t) + βνΣ f (x)φ(x, t). (22)

We consider a two-dimensional domain (i.e., x = (x, y)) divided into 4 regions as shown in Fig. 10. The
dimensions of the reactor (including the extrapolated length) were set to x, y ∈ [−109.36, 109.36], which were
chosen such that the flux φ(x, t) is zero at the boundary Γ . Each region has uniform material properties such that
D(x),Σa(x),Σ f (x) → D,Σa,Σ f ∈ R4. The external source q(x, t) is assumed to be present only in the lower
left corner of the domain,

q(x, t) =

{
qext(t) ∀x ∈ Region 1,

0 elsewhere.
(23)
13
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Fig. 10. Domain of the subcritical reactor test showing the boundary Γ and the 4 regions. The neutron source is present only in Region 1.

Table 4
Nominal values and range of variations of each parameter in the subcritical reactor test.

Parameter Nominal value % variation Parameter Nominal value % variation

D1 9.21 cm ±5% Σa3 0.153 cm−1
±5%

D2 9.21 cm ±5% Σa4 0.153 cm−1
±5%

D3 9.21 cm ±5% β 0.00686 ±20%
D4 9.21 cm ±5% λ 0.08 s−1

±20%
Σa1 0.153 cm−1

±5% q1 2.5 n/cm3 s ±100%
Σa2 0.153 cm−1

±5%

The multiplication factor of a reactor (keff) is the ratio of the neutrons produced from fission in one generation to
he neutrons lost in the previous generation. For keff < 1, a fission chain reaction cannot be sustained and the reactor
s said to be subcritical, while for keff > 1, the reactor is supercritical since the neutron population is multiplying
ver time. For keff = 1, the reactor is critical and the neutron population is constant in time. In our test, the reactor
s assumed to be in a subcritical condition with a multiplication factor keff = 0.94 in the nominal state. The neutron
opulation is kept in a steady-state due to the external source qext(t) = 1. At time t = 100 s, the source intensity
s perturbed. This is equivalent to a step-change in the source at time t = 100 s,

qext(t) =

{
1 for 0 ≤ t < 100,

q1 for t ≥ 100,
(24)

here q1 ∈ [0, 5]. The neutron flux response is then observed as a function of time and space. We aim to
uild a reduced model that captures the dynamics of flux under different conditions of material properties D =

D1, D2, D3, D4]⊤,Σa = [Σa1,Σa2,Σa3,Σa4]⊤, λ, β and source intensity q1. Therefore, the model is parametrized
ith an 11-dimensional space. The nominal values and range of variations of each parameter are summarized in
able 4.

The parameters range of variations was chosen such that the reactor is kept in a subcritical condition (keff < 1)
n all cases. The level of the subcritical condition is controlled with Σa and D, which also set the initial flux value.
s the reactor gets closer to criticality, the response following a perturbation becomes steeper and the transient
ecomes longer. Therefore, the time until reaching a new steady state is a function of the material properties. The
ux response to the perturbations can be described by two main parts. First, an initial abrupt response due to the
rompt neutrons, which has a magnitude controlled by β, Σa and D. This prompt response has a duration in the
rder of 1/vΣa = 2 × 10−5 s. The second is the response due to the delayed neutrons emitted from the decay of
he precursors, which is governed by a time in the order of 1/λ = 12 s. The final steady-state value scales linearly
ith the external source q1. Therefore, this test poses a challenge for any nonintrusive approach because different
arameters affect the dynamics at different timescales.

The model was solved using a finite element method with an unstructured mesh discretizing the spatial domain
uch that the model has 1084 degrees of freedom. An implicit Euler discretization for time was employed with

−5
ariable step sizes. The step size following the perturbation was taken as 10 s for the first 0.1 s to resolve steep

14
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Fig. 11. Comparison of the distribution of the initial neutron flux (t = 0) for the subcritical reactor test showing the difference in the flux
ntensity and shape between the case of all parameters at nominal values and a case of Σa reduced by 5% of the nominal value while all
ther parameters are kept at nominal values.

ariations. Then, a step size of 10−2 s was employed for the remainder of the transient. A single simulation of
he transient takes about 30 s on a personal computer. Therefore, this model is not computationally demanding.
owever, we considered this test to challenge the algorithm in capturing the effect of the 11 parameters on the

omplete transient. The initial flux distribution before perturbing the source (t = 0) for the nominal case is shown
n Fig. 11a while Fig. 11b shows the initial flux distribution when reducing Σa by 5%. It can be seen that reducing

a caused the flux intensity to increase and the shape to broaden over the spatial domain, which is expected since
ewer neutrons are being absorbed in this case. Fig. 12 shows the transient tracking the flux at the centre of the
eactor following three different source perturbations q1 ∈ {0, 2.5, 5} and compares the case of all parameters at the
ominal values with the case of only reducing Σa by 5% of the nominal value. The figure shows that by reducing
a , the reactor is closer to criticality, which not only has an effect on the initial flux value but also resulted in a

lower response to reach a new steady-state following a perturbation.
We built a reduced model with a global tolerance of 1% and a POD truncation threshold of 10−12. The algorithm

an 3295 high-fidelity simulations and selected 155 270 snapshots, where 52 710 were marked important. The
umber of POD modes was 294 after truncation. The high number of selected snapshots is a result of the high
imensional parameter space combined with the complex dynamics of the problem. Note that the number of selected
napshots is not a function of the number of degrees of freedom. Therefore, scaling this problem to larger degrees
f freedom will not affect the selection of the snapshots.

The projection of the important points onto each dimension is given in Table 5. The table shows that the algorithm
onsidered the diffusion coefficient to be linear within the defined range of ±5% while the absorption cross section
as the most nonlinear parameter. This is expected because the absorption cross section has a direct effect on the

ubcriticality level of the reactor. In addition, it is shown that Σa1 was considered the most nonlinear parameter and
as sampled more densely because it belongs to the region that contains the external source. On the other hand,
a4 belongs to the region furthest from the source and was sampled the least. The parameters λ and β had 3 unique
odes each, which implies that within the defined ranges of ±20%, the effect of these parameters on the dynamics
f the reactor is linear. The external source intensity was correctly identified as a linear scaling factor. The time
arameter was considered important at 110 time instances.

Fig. 13 shows the projection of the sampled points onto the (Σa1, t) plane. It can be seen that the algorithm
ampled most of the points during the period from t = 100 s to t = 250 s, which is the transient time following the
ource perturbation. Along the Σa1 dimension, most of the sampled points were in the lower range of the domain.
his is expected, because for lower values of the absorption cross section, the reactor is closer to criticality and the
esponse becomes more nonlinear.

15
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Fig. 12. Transients for the subcritical reactor test at a point in the centre of the reactor following selected perturbation of q1 ∈ {0, 2.5, 5}

howing the difference in response between the case of all parameters at nominal values and a case of reducing Σa by 5% of the nominal
alue.

Table 5
Number of unique important nodes along each dimension for the subcritical reactor test.

Parameter Number of unique nodes Parameter Number of unique nodes

D1 3 Σa3 12
D2 3 Σa4 8
D3 3 β 3
D4 3 λ 3
Σa1 22 q1 3
Σa2 11 t 110

Fig. 13. Projection of the sampled point onto the (Σa1, t) plane for the subcritical reactor test. Points included in the important set are
marked with a circle.

The model was tested on 1000 randomly generated points using LHS method. The histogram of the relative

errors in Fig. 14 shows that 99.5% of the points were below the tolerance. The maximum relative error was found
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Fig. 14. Histogram of the relative error resulting from testing the reduced model for the subcritical reactor on 1000 random points. The
maximum error was 3.2%. 99.5% of the points resulted in errors below the tolerance of 1%. A close up of the histogram for the values
above the tolerance is shown in the box.

to be 3.2%. The point with the maximum error corresponds to a case where the source value q1 = 1.1×10−3 n/cm3

s and time t = 203 s. The solutions of the reduced and high-fidelity models are compared for this case in Fig. 15. It
can be seen from the figure that the flux at this case is almost zero at t = 203 s. The maximum absolute difference

etween the reduced and high-fidelity models was found to be 7 × 10−3 n/cm2 s. The complete transient for this
ase is also shown in Fig. 15d. The figure shows that the ROM model was able to track the reference solution with
reat accuracy at the initial and final steady-state while most of the discrepancy was contained in the transient. The
econd highest error was 1.5%, which was also a point with q1 near zero (q1 = 7×10−4 n/cm3 s). The third highest

error was 1.2%, which was found at q1 = 1.76 n/cm3 s and time t = 470 s. This case is shown in Fig. 16, which
shows that the error in this case was in the steady-state value rather than the transient. Simulating the 1000 points
needed 10 s with the reduced model while the high-fidelity model required about 6 h for the same points.

4. Conclusions

This work presented an approach for time and parameter adaptivity to build a nonintrusive reduced-order model.
The approach is an extension of our sparse grid adaptive-POD algorithm to time-dependent parametrized problems.
Time was considered as an additional parameter, which enabled the locally adaptive sparse grid algorithm to be
applied directly. The adaptivity provided a tool to include more snapshots from important time windows, which
reduces the probability of overlooking crucial dynamics in the POD snapshot matrix. Moreover, the efficiency of
the construction phase (offline phase) is improved by sampling the high-fidelity model less in time periods of
steady-state or slow (smooth) changes.

Three numerical problems were presented to test the proposed approach. The first was a Molenkamp problem
with five parameters, which was solved in two settings: a smooth solution and a more challenging steep solution.
In this test, we compared the time-adaptive approach with an a priori fixed sampling approach of the time domain.
The results in both settings showed that the time-adaptive approach was more efficient without compromising the
accuracy. Additionally, the algorithm was able to identify the linearity of the response with respect to each parameter.
The second test was a standard lid-driven cavity problem. For this problem, only time was considered as a parameter.
The adaptive algorithm was able to identify that the important time period was the first few seconds of the transient
when the flow is still developing.

Moreover, the algorithm recognized that after about t = 50, the flow was fully developed and no important
snapshots were selected between t = 50 and t = 100. The reduced model was able to simulate the flow in 10 s

compared to the 35 CPU-hours needed by the high-fidelity model. The last subcritical reactor test was challenging
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Fig. 15. Comparison between ROM and HFM for the subcritical reactor test at the point with the maximum error (3.2%), q1 = 1.1 × 10−3

/cm3 s and time t = 203 s.

ot only due to the higher dimensionality of the parameter space but also due to the abrupt dynamics at small
imescales. The algorithm correctly recognized the time of the important transient following the source perturbation.
n addition, the algorithm revealed the region of importance of each parameter and correspondingly concentrated
he sampling of the points in these discovered regions. This improved the efficiency of the approach compared to
on-adaptive techniques. The model was tested on 1000 randomly generated points which were simulated in 10 s
hile the reference model needed about 6 h to simulate the same points. In all tests, the reduced models built
ith the time-adaptive approach captured the dynamics of the model with an accuracy that fell within the defined

olerances.
Our approach was nonintrusive which can be applied to a wide range of problems. Despite the fact that

onintrusive approaches do not preserve the physical structure of the system, using adaptive approaches, such as
he one presented in this work, provides an insight into the physics of the system by ranking the importance of the
arameters or exploring linearity. A challenge for any adaptive method is to scale efficiently to higher dimensional
paces. This issue was addressed in our approach by using the locally adaptive sparse grid approach. However, for
he Molenkamp and subcritical reactor tests, the algorithm required a high number of snapshots compared to the
umber of POD modes selected after truncation. This is an indication that most of the sampled snapshots were
eeded for the construction of the surrogate model of the POD coefficient more than revealing additional dynamics
18
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Fig. 16. Comparison between ROM and HFM for the subcritical reactor test at the point with error 1.2%, q1 = 1.76 n/cm3 s and time
= 460 s.

f the system. Therefore, an area to study in future work is the use of higher order interpolation models for the
OD coefficients with the aim to reduce the number of snapshots and further improve the efficiency. Another

nteresting area of research to achieve this goal is investigating a space–time decomposition of the basis space or
he construction of several local basis spaces tailored to different dynamics instead of a single global basis space.
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