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ABSTRACT
A novel approach is proposed for constructing models of anomaly
detectors using supervised learning from the traces of normal and
abnormal operations of an Industrial Control System (ICS). Such
detectors are of value in detecting process anomalies in complex
critical infrastructure such as power generation and water treat-
ment systems. The traces are obtained by systematically “fuzzing”,
i.e., manipulating the sensor readings and actuator actions in ac-
cordance with the boundaries/partitions that define the system’s
state. The proposed approach is tested in a Secure Water Treatment
(SWaT) testbed – a replica of a real-world water purification plant,
located at the Singapore University of Technology and Design. Mul-
tiple supervised classifiers are trained using the traces obtained
from SWaT. The efficacy of the proposed approach is demonstrated
through empirical evaluation of the supervised classifiers under
various performance metrics. Lastly, it is shown that the super-
vised approach results in significantly lower false positive rates as
compared to the unsupervised ones.
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1 INTRODUCTION
A Cyber-Physical System (CPS), as found in critical infrastructure,
e.g., power generation and water treatment plants, is a complex
system consisting of distributed computing elements such as sen-
sors, actuators, and Programmable Logic Controllers (PLCs) that
interact with the underlying physical processes. Compromising the
software and/or the hardware components of such a CPS has the
potential to cause a significant damage and service disruption by
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driving the actuators into states that exceed the physical constrains.
Several incidents of attacks on CPS have been reported. In 2000,
a disgruntled former employee of Australian’s Maroochy Water
Services took control of the organization’s facilities and released
one million litres of untreated sewage into a stormwater drain for
days [26]. In 2011, hackers with Russian IP addresses managed
to gain access to the network of a water utility in the US city of
Illinois and caused damage on the distribution pump by turning it
on and off quickly [21, 30]. In 2016, a water utility company with
pseudonym Kemuri Water Company was compromised by a hack-
tivist group with ties to Syria [14, 25]. The group managed to gain
access to the plant through a vulnerable web server and changed
the amount of chemicals into the water supply which affected the
water treatment and production capabilities [13, 14, 25, 28]. The
above headlines serve as evidence that fast, accurate, and robust
anomaly detection system is needed to protect against potential
cyber attacks. With access to the data traces, logs, and CPS model,
the physical effects due to the attacks could potentially be detected
before any damage is done.

Constructing models of CPS that are accurate enough in practice
is a notoriously difficult task due to the tight integration of algo-
rithmic control and complex physical processes. The emergence
of Artificial Intelligence (AI) and Machine Learning (ML) offers a
practical way of building anomaly detectors for CPS that might be
accurate enough to be practical. Most reported algorithms using
unsupervised learning result in high false positive rates [19, 20].
On the other hand, obtaining labelled data traces for supervised
learning is more difficult, especially for the attack data. Most works
using supervised learning rely on either using plant simulator [7]
or through manual effort of attacking the physical plant [11] to
generate the attack data (i.e., abnormal traces).

The objective of this work is to present a novel approach that
uses a software testing technique, i.e., domain testing, to simulate
the system under attacks by systematically manipulating sensor
readings and actuators actions in accordance with the boundary or
partition that defines the system’s state. It is started with identify-
ing the equivalence class partitions of different CPS components
based on process specification. Combinations of these equivalence
classes are used to attack CPS components to generate the abnormal
operational traces for learning the CPS anomaly detection model.

Overall, six supervised classifiers that learned from from the
normal operational traces and the fuzzing-induced abnormal traces
were evaluated. The results demonstrate the effectiveness of the
proposed approach to generate abnormal data traces for supervised
learning of CPS anomaly detectors as confirmed by empirical eval-
uation under various performance metrics. Additionally, the results
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Figure 1: SWaT testbed at SUTD

exhibit a significantly lower false positive rate when compared
with that from detectors generated using unsupervised ML. The top
performing supervised classifiers in our experiments generate no,
or remarkably low, false positives while achieving high precision
and recall.

2 THE SECUREWATER TREATMENT (SWAT)
TESTBED

The Secure Water Treatment (SWaT) testbed, located at the Sin-
gapore University of Technology and Design (SUTD), is a fully
operational scaled down water treatment plant with a smaller foot-
print that is capable of producing five gallons per minute of treated
water. This testbed is a replica of bigger water treatment plants
such as those found in cities (see Figure 1).

Its main purpose is to enable experimentally-validated research
in the design of security and safety of a CPS. SWaT has six main
processes that correspond to the physical and control components
of a water treatment infrastructure (we refer the reader to [1] for a
better understanding of the infrastructure).

All the processes are interdependent, with each process is depen-
dent on the previous one. The cyber portion of SWaT consists of
layers communication networks, Programmable Logic Controllers
(PLCs), Human Machine Interfaces (HMIs), a Supervisory Control
and Data Acquisition (SCADA) workstation, and a historian server.
Data from the sensors are available to the SCADA system and
recorded by the historian for subsequent analysis. A separate PLC
is dedicated for each of the six processes. Each of these PLCs has a
pair of a redundant standby PLC for high availability.

The communication in SWaT uses multi-layer communication
links between different switches and routers. This communication
can take place over either Wi-Fi or Ethernet link running various
industrial communication protocols. The sensor readings, as well as
actuator commands, are all communicated to the PLC over thewired
or wireless communication links. These protocols are vulnerable to
network attacks.

In this work, we have successfully launched Man-in-the-Middle
(MITM) attacks to inject false sensor readings and actuator com-
mands into the PLC of the rawwater process using Pycomm commu-
nication library. We use the attacks against the raw water process
(stage 1 of the overall pipeline) as a proof of concept of our domain-
based fuzzing approach for supervised anomaly detection. Findings
from this process can be extended to the other processes in the
future.

3 RELATEDWORK
One fundamental challenge in supervised learning for anomaly
detection arises from the lack of comprehensive training data from
the system under attack. Specifically, the attacks on real-world sys-
tems are sparse and unsystematic. Moreover, not many studies are
reported for supervised learning for anomaly detection as most of
them focus on the unsupervised learning approach. The existing
works in supervised learning were done either using plant simula-
tor [7] or through manual effort of attacking the physical plant [11]
to generate the attack data.

Chen et al. [7] presented the idea of using code mutation to
systematically generate the abnormal data traces for supervised
learning. The approach was inspired by mutation testing, a fault-
based software testing which deliberately introduces errors (small,
syntactic transformations called mutations) which is commonly
used for assessing the quality of the software test cases. The CPS
could be simulated under the original PLC code and different “mu-
tants” from the codemutation to collect sets of normal and abnormal
sensor data traces for supervised learning.

Their framework was applied on the simulator of the SWaT
testbed to run each mutant code at the same initial configuration
for 30 minutes of simulator time unit which is shorter than the
physical time. However, while traces generated by the simulator
have a somewhat high degree of precision, the physical plant is
governed by the law of physics, such as the dynamics of water that
affects the reading of the water level sensor, which makes obtaining
the accurate abnormal traces to follow the framework becomes
more challenging. The time required to run the mutant PLC code on
the physical plant is longer than running on the simulator time unit.
Given the number of mutants is potentially infinite and considering
that each mutant code needs to run for 30 minutes, data collection
is too onerous to apply on the physical plant. Due to this constraint,
it might be more effective and worth the effort of generating the
abnormal traces through manual attack.

In contrast to Chen et al. [7], the work done by Junejo and Goh
was directly applied on the physical plant of SWaT [11]. They
presented a realistic work of behaviour-based anomaly detection
using supervised learning approach on a real CPS plant with all the
physical and control components in place. The behaviour-based
approach learns the model of the physical process of SWaT from
a behaviour perspective to detect and classify cyber-attacks that
alter the physical layer.

The strength of their approach is that it learns directly from the
empirical data of actual operational data traces, which renders its
robustness against incorrect vendor specifications. In particular, this
robustness has allowed authors to rectify or more tightly bound the
system’s real operational limits in comparison to using the vendor’s
specifications. For example, it is observed that the water level in a
tank does not exceed 800 mm under a normal operation, whereas
the vendor’s specification states an upper bound of 1100 mm and
encodes this value in the PLC code.

In addition, Junejo and Goh also evaluated nine supervised learn-
ing classifiers using SWaT-generated data from ten different types
of attacks [11] which follow the attack model in [2]. They then
compared the performance in terms of time to detect an attack,
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types of attacks that are successfully detected or not, and com-
putation time to build the required detection model. Their work
demonstrates that the best classifiers do not only detect almost all
the attacks successfully, but they also detect them earlier than the
specification-based approach.

Despite the sophisticated approach of supervised learning, how-
ever, generating the abnormal data traces was done without au-
tomation. The attacks were performed manually by changing the
sensor value and actuator information to mislead the PLC. Also,
the validity of the classifiers could be questionable as each features
vector for the supervised learning consists of sensors reading and
actuators status at one particular second which might not give suf-
ficient insight due to lack of meaningful pattern. Nevertheless, the
results of their analysis yield valuable insights into the performance
potential of supervised behaviour-based anomaly detection.

4 THE PROPOSED APPROACH
The supervised learning approach of behaviour-based anomaly
detection yields a performance potential in terms of robustness and
accuracy as compared to the unsupervised approach that is known
to have higher false positive rates [19, 20]. However, supervised
learning requires increased effort to obtain realistic abnormal data
traces.

In a small-scale physical plant that consists of a few sub-
processes, it is feasible to generate realistic abnormal data traces
by manually manipulating the sensor measurements and actuator
states. However, for a complex plant with, say, hundreds of sub-
processes, attacking sensors and actuators in different processes
needs to be done systematically. It could be challenging to manually
launch attacks on sensors and actuators across different processes.

To overcome the challenges stated above, a novel approach is
proposed for supervised anomaly detection using domain-based
fuzzing with equivalence partitioning. This approach simulates the
system under attacks by systematically introducing anomalies on
sensor readings and actuator actions according to the boundaries or
partitions that define the system’s state. The approach is inspired by
a software testing technique known as domain testing [12]. Domain
testing is a type of functional testing that enables the generation
of tests to test the program behaviour such that the output of the
program is tested with a minimal number of inputs. Domain testing
is commonly used as sampling strategy for choosing a few test
cases from a nearly infinity of candidates.

The strategy of domain testing is known under several names,
such as equivalence partitioning and boundary value analysis. Nev-
ertheless, the essence of it is to partition a domain (that is possibly
infinite) into a few sub-domains, known as equivalence classes, such
that the program under test evaluates differently and then select
a few representatives from each sub-domain as test cases. In the
context of a CPS, the domain consists of all possible sensor readings
and actuator actions that serve as inputs to the PLC controlling the
physical process.

In a nutshell, the proposed approachworks as follows: (1)Threat
modelling: Establish a realistic attack model from a set of attack
domains and attacker models; (2) Equivalence class partitioning:
Applied to CPS components to create the attack domain; (3) Data
collection: Collect normal traces from the CPS; (4) Sensor and

actuator fuzzing: Obtain abnormal traces; and (5)Machine learn-
ing: Learn a classification model from the given dataset.

We apply supervised learning of anomaly detector using domain-
based fuzzing with equivalence partitioning on the raw water pro-
cess (stage 1) of the SWaT testbed as a proof of concept by answering
to the following research questions.
RQ1 How well does the domain-based fuzzing with equivalence

class partitioning perform when using supervised learning
to create anomaly detectors for a CPS?

RQ2 How well do the supervised classifiers perform in detecting
anomalies as compared to those detectors obtained from
unsupervised learning?

4.1 Threat Modelling
When conducting this threat modelling, we follow the methodology
proposed by Adepu and Mathur [3], which consists of 5-stage pro-
cess to derive the CPS attacks. As a result, we establish the attack
domain, attacker, and attack models which will be used for the
subsequent domain-based fuzzing.

4.1.1 Attack domain model. We start off by the identification
of items to establish our attack domain. As outlined in [2] and [3],
an attack domain is a triple (Cm, Pr , Pe) that consists of three finite
sets which are referred as component set (Cm), property set (Pr ) and
performance set (Pe) respectively. The component set includes CPS
elements which can be physical, e.g., level sensor, pump, motorized
valve, etc., or cyber, e.g., PLC code, communication network, etc.
The property set includes the physical properties of the resulting
product being produced or controlled by the CPS, such as the water
pH and Oxidation Reduction Potential (ORP). Lastly, the perfor-
mance set includes one or more performance character of a plant,
such as the amount of treated water produced.

However, considering that the rawwater process is one of the less
complex processes in SWaT with no physical properties affecting
the process, as well no performance measure, our attack domain
model can be simplified into the component set only, as shown in
Table 1.

4.1.2 Attacker model. According to Adepu and Mathur [2, 3],
the attackermodel is a pair of (I ,DM)where I is a finite set of intents
and DM an attack domain model. Definition of intent is a goal or
an objective of the attacker. Some possible intents may include
damage, learn, and alter. In general, an intent can be considered as
a function that is applied by an attacker to one or more elements
of an attack domain that defines a CPS.

Based on the attack domain which we have earlier and gen-
eralization of intent, Table 2 shows a derivation of our attacker
model.

4.1.3 Attack model. The formalization of attack model requires
us to have our attack domain model and attacker model estab-
lished [2, 3]. Consider an attacker model ARSW aT = (I ,DM) for
SWaT, where DM = (Comp, Pr , Pe), the attack model for SWaT
is denoted as AMSW aT in a form of sextuple (M,G,D, P, S0, Se ),
whereM is potentially infinite set of procedures to launch attacks,
G ⊆ I is a finite set of attacker intents, D is the domain model for
the attacks derived from the domain model DM of C , P ⊆ Cm is
a finite set of attack points, S0 and Se are possibly infinite sets of
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Table 1: Attack domain model of SWaT stage 1

Component Type Description

LIT 101 Sensor Level indicator transmitter of
the raw water tank

FIT 101 Sensor Flow indicator transmitter for
water inflow from the city water
supply

MV 101 Actuator Motorized valve for city water
supply to the raw water tank

P101 / P102 Actuator Pumps to transfer water to the
next stage of the plant

P601 Actuator Pump in the RO permeate (stage
6) to transfer clean water to the
raw water tank

T 101 Storage Raw water storage tank
PLC1 Controller PLC controlling the raw water

storage of the plant

Table 2: Attacker model of SWaT stage 1

Components Type Attacker Intent

LIT 101 Sensor Learn, alter
FIT 101 Sensor Learn, alter
MV 101 Actuator Damage, alter
P101 / P102 Actuator Damage, alter
P601 Actuator Damage, alter
T 101 Storage Damage
PLC1 Controller Alter

states of C that denote the possible start and end states which is of
the interest to the attacker.

As this paper serves as a proof of concept that equivalence class
partitioning can be used for fuzzing a CPS to generate abnormal
data traces for supervised learning of anomaly detection, we limit
the scope of the attack points to include only LIT 101, FIT 101, and
MV 101 for simplification reason. Based on our intention to gen-
erate attacks for the purpose of supervised learning approach of
behaviour-based anomaly detection, we define our attack model
for the raw water process as shown in Table 3.

4.2 Equivalence Class Partitioning (ECP)
Domain testing is a form of functional testing where the program
is viewed as a function and tested by feeding some inputs and
evaluating its outputs [12]. Fundamentally, functional testing can
be done through exhaustive testing that includes all possible inputs
to the system. However, this is highly impractical. Due to this
reason, the concept of domain testing was introduced. Instead of
testing the program with all possible inputs, the input domain is
divided into a set of equivalence classes with an assumption that if
the program exhibit a certain behaviour for a certain value then it
eventually exhibit the same behaviour for all other values within
the same class [17]. This assumption allows the tester to select
exactly one test case from each equivalence class resulting in a

test suite of exactly N test cases. Therefore, the essence of domain
testing is to partition a domain of possibly infinite values into
couple of subdomains or equivalence classes which the program
evaluates differently and then select some representatives from
each subdomain to be tested [12].

For a CPS, the domain is the sensors readings and the actuators
actions which serve as inputs to the PLC controlling the physical
environment. The set of equivalence classes are defined based on
the specification of a particular process. In the case of the raw water
process of SWaT, there are two sensors which is the level indica-
tor transmitter (LIT101) of the water tank and the flow indicator
transmitter (FIT101) of the inflow to the water tank. For the actu-
ators, there are the motorized valve (MV 101) which regulate the
inflow to the water tank and two pumps which are configured in
active-standby mode to regulate the outflow to the next process.

The specification of the raw water process marks the water level
sensor reading into certain predefined constants of LL (Very low),
L (Low), H (High) and HH (Very high) as 250 mm, 500 mm, 800
mm and 1000 mm, respectively. In normal operation, the motorized
valve MV 101 should open when the water level reaches L and
close when it reachesH . When the water level in the ultra-filtration
process is low, the PLC will turn on the pump P101 to transfer water
to the ultra-filtration tank in the subsequent process. Regardless of
whether the ultra-filtration process needs water or not, the pump
P101 should stop when the water level reaches LL. Likewise, the
reading of FIT 101 should indicate a normal operating flow between
0.0 to 4.40 m3/h.

With the same reason as mentioned on the earlier part, only
LIT101, FIT101, andMV 101 are included into the possible combi-
nations of the equivalence class partitions. Therefore, based on the
process specification, the water level and flow indicator sensors
readings, and the motorized valve actions are partitioned into equiv-
alence classes (details can be found in the online appendix [29]).
There are 4 equivalence classes in LIT 101, 3 equivalence classes in
FIT 101, and 2 equivalence classes inMV 101. Thus, up to 24 possible
combinations of the equivalence class partitions can be obtained,
as shown in Table 4.

It is observed that all the attacks defined in Table 3 correlate
to at least one combination of equivalence classes from Table 4
(A1: #19, A2: #4, A3: #14, A4: #17, #18, A5: #7, A6: #22). Therefore,
this establishes our confidence that 24 possible combination of
equivalence classes for the dataset generation would cover the
threat model as well as some other anomalies which could be due
to faulty sensors or actuators.

4.3 Traces Generation
Supervised learning requires two sets of labelled data traces – nor-
mal and attack. The normal traces are generated by running the
SWaT under normal conditions while the abnormal traces are gener-
ated by running a fuzzer. Python scripts are used to create the fuzzer.
The fuzzer uses the Pycomm library developed by Ruscito [24] to
communicate with the Allen-Bradley ControlLogix PLC of SWaT
(specifically, in this experiment, the PLC1 which controls the raw
water process). Pycomm is used to emulate realistic attacks against
level sensor LIT101, motorized valve MV 101, and the flow rate
indicator FIT 101, by systematically modifying the sensor readings
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Table 3: Attack model of SWaT stage 1

Attack ID Attack Procedure (M) Intention (G) Attack Point (P ) Start state of the system (S0)

A1 Increase LIT 101 value to above H Stopping inflow LIT 101 Water level is between L and H and
MV 101 is OPEN

A2 Decrease LIT 101 value to below LL Stopping outflow LIT 101 Water level is between L and H and
P101 is ON

A3 Change FIT 101 value to zero Falsify inflow rate FIT 101 MV 101 is OPEN
A4 Change FIT 101 value to less than or be-

yond the normal range (< 0.0 or >= 4.40)
Falsify inflow rate to
give impression of
faulty sensor or valve
leakage

FIT 101 MV 101 is OPEN or CLOSED

A5 OverrideMV 101 to close Underflow tank MV 101 Water level is between L and H
A6 OverrideMV 101 to open Overflow tank MV 101 Water level is between L and H

Table 4: Possible combinations of the equivalence classes

# LIT 101 MV 101 FIT 101 Anomaly

1 Underflow Closed Zero Yes (LIT, MV )
2 Underflow Open Zero Yes (LIT, FIT )
3 Underflow Closed Flowing Yes (LIT, MV, FIT )
4ˆ Underflow Open Flowing Yes (LIT )
5 Underflow Closed Abnormal Yes (LIT, MV, FIT )
6 Underflow Open Abnormal Yes (LIT, FIT )
7ˆ Low Closed Zero Yes (LIT, MV )
8 Low Open Zero Yes (LIT, FIT )
9 Low Closed Flowing Yes (LIT, MV, FIT )
10 Low Open Flowing Yes (LIT )
11 Low Closed Abnormal Yes (LIT, MV, FIT )
12 Low Open Abnormal Yes (LIT, FIT )
13 Normal Closed Zero Yes (LIT )
14ˆ Normal Open Zero Yes (FIT )
15 Normal Closed Flowing Yes (FIT )
16 Normal Open Flowing Yes (LIT )
17ˆ Normal Closed Abnormal Yes (FIT )
18ˆ Normal Open Abnormal Yes (FIT )
19ˆ High/Overflow Closed Zero Yes (LIT )
20 High/Overflow Open Zero Yes (LIT, MV, FIT )
21 High/Overflow Closed Flowing Yes (LIT, FIT )
22ˆ High/Overflow Open Flowing Yes (LIT, MV )
23 High/Overflow Closed Abnormal Yes (LIT, FIT )
24 High/Overflow Open Abnormal Yes (LIT, MV, FIT )

in the PLC memory and overriding the commands sent to the actua-
tors following the combinations of equivalence class partitioning as
in Table 4. This fuzzer is referred as Equivalence Class Partitioning
(ECP) fuzzer. The generated dataset used in this work is available
in the online appendix [29].

4.3.1 Normal traces. The normal traces were generated on 29th
May 2019 while running SWaT for 4.5 hours under normal condi-
tions. The historian records all sensor measurements and actuator
states every one second. Hence, a total of 16,200 data points are in
the normal trace.

4.3.2 Abnormal traces. Prior to launching attacks using the ECP
fuzzer to generate the abnormal traces, preliminary attacks were
launched only on the level sensor LIT101 to determine the time
required by the system to completely return to normal state from
an anomalous state. This time is referred as the “rest interval”. It is
crucial to have a sufficient rest interval before launching the next
attack. The abnormal trace data will be used for supervised learning
and thus we do not want to launch another attack when the system
is still in an anomalous state for accuracy purposes, as different
attacks are generated by different equivalence class partitions of
different sensors and actuators.

A few preliminary attacks were launched by changing the LIT 101
readings to a constant (randomly chosen) anomalous value (be-
tween LL to L or H to HH ) for 30 seconds, restoring it to the actual
value, and giving the system time to recover before launching an-
other attack. We experimented with different rest intervals of 1,
3, and 5 minutes. It turned out that the rest interval of 1minute is
sufficient to allow the system to completely return to its normal
state before another attack is launched. Based on this finding, rest
interval of 1 minute was used in the ECP fuzzer.

The abnormal traces were generated on 19th July 2019 by run-
ning the ECP fuzzer for 3-hours while SWaT was running in nor-
mal state. The ECP fuzzer generates 24 different attacks on LIT 101,
MV 101, and FIT101 following the combinations of equivalence
classes of different sensors and actuators (see Table 4) with each
attack lasting for 30 seconds followed by 60-seconds of rest interval
before another attack is launched. This resulted in 10,800 datapoints
(seconds) in the abnormal trace.

4.3.3 ECP fuzzer. The ECP fuzzer extends the functionality pro-
vided by the Pycomm library for overwriting different tags that
store the sensor readings and actuator status in the PLC memory.

4.3.4 Features. Following is a list of the measurements and states
used by the ECP fuzzer to generate attacks. (i) Motorized valve
MV101 (integer; 0: TRANSITION, 1: CLOSED, 2: OPEN) (ii) Wa-
ter level sensors LIT101 and LIT301 of the raw water tank (real)
(iii) Flow indicator sensor FIT 101 (real) (iv) Pumps P101, P101, and
P601 (integer; 1: OFF, 2: ON)
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4.4 Learning the Classifiers
Our machine learning workflow starts with pre-processing of the
dataset to obtain the desirable features vector and splitting the
dataset for training and testing with proportion of 60:40 respec-
tively. The training dataset is used to train different classifiers such
as Multilayer Perceptron [23], Support Vector Machine [4], Logis-
tic Regression (LR), Decision Tree [27], Random Forest [6], and
Extremely Randomized Trees [9].

The performance of each classifier is evaluated against the test
dataset using various evaluation metrics such as accuracy, preci-
sion, recall, and F1. Stratified k-fold cross-validation was also used
to validate the classification model against generalization error.
The implementation of the entire training process is carried out
using Python with the support of Scikit-learn [22], Keras [8], and
Pandas [18].

4.4.1 Pre-processing of the dataset. The dataset consists of
both normal and abnormal traces extracted from the historian that
collects data from all sensors and actuators every second. As the
scope of this study is only within the raw water process, only the
features that consist of sensor readings and actuator states status
involved in the raw water process, were extracted. Nevertheless,
feature reduction (i.e., dimensionality reduction) was performed,
as doing so would lead to obvious benefits in terms of reduction
of computational resources such in memory usage and CPU time.
As the dataset consists of a small number of features, feature re-
duction can be done manually by removing the components that
are not controlled by PLC1, or are not part of the attack, or do not
influence the control decision of PLC1. Thus, seven features were
reduced to five by removing P601 and P102. P601 was removed as
it is controlled by PLC6 in stage 6 and neither part of the attack
influences the control decisions of PLC1. Pump P102 is not part of
the attack despite being controlled by PLC1; it serves as a backup
when P101 fails. During the experiments, no failures of P101 were
encountered and therefore P102 was safely removed from the set
of features.

The normal and abnormal traces consist of 16,200 and 10,800
rows, respectively. However, within the abnormal data itself, not all
rows correspond to attack data. Recall that the ECP fuzzer launches
an attack on a set of sensors and actuators that last for 30 seconds
and followed by a rest interval of 60 seconds to allow the system to
completely stabilize from an anomalous state. For every 90 seconds
of the abnormal traces, the actual attack only occurs for 30 sec-
onds of actual attack and the remaining 60 seconds consist of both
anomalous state after the attack and small portion of normal state
before the next attack comes in. Due to this reason, the dataset is
pre-processed to obtain a desirable feature vector, such that each
feature vector on both normal and abnormal datasets consists of
every 90 seconds of data (i.e., a vector of 5 features times 90 data
points). The following matrix shows the final representation of the
feature vector for our machine learning classifiers.



(
MV 101 FIT 101 LIT 101 P101 LIT 301

)
t=1(

MV 101 FIT 101 LIT 101 P101 LIT 301
)
t=2

...(
MV 101 FIT 101 LIT 101 P101 LIT 301

)
t=90



After obtaining the desirable feature vector, the dataset is split
into a training and a testing set. The dataset for training and test-
ing is split in the proportion of 60:40, respectively. After splitting,
the dataset contains 108 normal and 72 abnormal data points for
training, and 72 normal and 48 abnormal data points for testing.

Optional feature scaling is included to scale the dataset depend-
ing on the classification algorithms applied. The feature scaling
performs standardization of data values that vary in magnitude and
range. It is applied only for the MLP and SVM classifiers. As the fea-
ture vector, particularly the abnormal data, contains some outliers
of normal system state due to the rest interval before launching
another attack which might affect the distance calculation in the
MLP and SVM objective functions, the robust scaler is chosen as
it is more robust to estimate for the centre and range of the data.
For each feature, the robust scaler works by subtracting with the
median and dividing it by the interquartile range that makes it more
robust against the outliers [10, 15].

4.4.2 Supervised classification models. The training dataset
is to train different classifiers from six different classification algo-
rithms. Three algorithms are discriminative classifiers, namely Mul-
tilayer Perceptron (MLP) [23], Support Vector Machine (SVM) [4]
and Logistic Regression (LR). The other three are tree-based classi-
fiers, namely Decision Tree (DT) [27], Random Forest (RF) [6] and
Extremely Randomized Trees (ExtraTrees) [9].

4.4.3 Unsupervised models for performance comparison.
To compare the performance of the supervised models against
the unsupervised approach in detecting anomaly the results from
two unsupervised novelty/outlier detectors, the One-Class Support
Vector Machine (OC-SVM) [5] and Isolation Forest (IF) [16], are
shown. These unsupervised models are trained only with the nor-
mal data from the same training dataset used by the supervised
classifiers and tested using the normal data of test dataset and the
entire abnormal data (of both the training and test dataset).

4.4.4 Evaluation. Confusion matrix is used to represent the per-
formance of each classifier with some basic information such as
True Positive, False Positive, False Negative, and True Negative
counts. The following performance evaluation metrics were used
in conjunction with the confusion matrix to evaluate the classifiers:
accuracy, error rate, precision, recall, and F1 scores (detailed ex-
plainations can be found in the online appendix [29]. These are
the commonly accepted metrics to summarize and compare the
classifiers performance.

All models were also validated using stratified k-fold cross-
validation to assess how well the classifiers generalize the dataset.
The k-fold cross-validation involves dividing the dataset into k
partitions or folds of the same size, training on k-1 partitions and
testing on the remaining partition, repeating with respect to differ-
ent validation partitions. In stratified k-fold cross-validation, the
data was arranged such that each fold has a good representation
of both normal and abnormal vectors from of the entire dataset
to ensure that one class of data is not overrepresented especially
when the target variable is unbalanced.

The models were trained on a laptop with 4.1GHz Intel Core
i7-8750 processor, 16GB RAM and Nvidia GeForce GTX 1060 Max-Q
with 6GB VRAM.
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Table 5: Performance summary of the supervised and unsu-
pervised classifiers.

Classifiers Accuracy Precision Recall F1

MLP 97.50 95.92 97.92 96.91
SVM-RBF 96.67 92.31 100.00 96.00
SVM-LNR 87.50 94.60 72.92 82.35
LR 90.83 89.36 87.50 88.42
DT 94.17 90.20 95.83 92.93
RF 98.33 100.00 95.83 97.87
ExtraTrees 99.17 97.96 100.00 98.97

OC-SVM 91.15 87.59 100.00 93.39
IF 74.48 79.83 79.17 79.50

5 RESULTS
The performance of our supervised (MLP, SVM, DT, RF and Extra-
Trees) and unsupervised classifiers (OC-SVM and IF) are shown
in Table 5. The model parameters and confusion matrix of each
classifier can be found in the online appendix [29].

5.1 RQ1: How well does the domain-based
fuzzing with equivalence class partitioning
perform when using supervised learning to
create anomaly detectors for a CPS?

It is observed that majority of the supervised classifiers show ac-
curacy scores above 90% against the test dataset, except for the
SVM-linear and LR, which show lower accuracy. It is also observed
that most classifiers have F1 scores which are almost as high as
their accuracy scores with some observable gaps between F1 and
accuracy are on the SVM-linear, LR and DT. Moreover, SVM-linear
and LR score below 90% for F1. The accuracy and F1 scores on the
other classifiers such as MLP, SVM-RBF, DT, RF and ExtraTrees
noticeably outperform the SVM-linear and LR which are linear
models. This means that the features vectors in the dataset are high
dimensional and non-linearly separable by linear classifiers.

Only the SVM-RBF and ExtraTrees classifiers manage to accu-
rately classify all the abnormal traces within the test dataset, while
the Random Forest set as the only classifier with zero false alarm.
The SVM-linear and LR occupy the bottom two with significantly
higher false alarm and misdetection rates.

Stratified k-fold cross-validation (with k=5) was applied to obtain
k different F1 scores for each classifier, using k different training-
test partitions of the dataset. The cross-validated F1 score is the
average accuracy of five different models on each classifier, each
is obtained by partitioning the dataset set into five, training on
four partitions, and validating on the fifth, then repeating with a
different validation partition until all the partitions are covered.
This is to assess how well the supervised classifiers generalise the
dataset (the Tables can be found in the online appendix [29]). The
ExtraTrees classifier again comes out as the top performer in cross-
validated F1 with score of 98.28%, followed by the MLP at 97.97%,
while the two linear models (SVM-linear and LR) are the worst
performers with significantly lower scores of around 80%.

Moreover, it can be seen from the F1 score of each fold that these
linear models are prone to generalization error. This might due to
the features vectors in the dataset are highly dimensional and thus
non-linearly separable. Intuitively, the linear classifiers are insuffi-
cient because the features vector contains various sensors reading
and actuators status in SWaT that are correlated in complicated
ways beyond the capability of these linear classifiers.

Summary of RQ1: Results clearly suggest the efficacy of
domain-based fuzzing with equivalence class partitioning for
supervised learning of anomaly detection in CPS environment.
Moreover, ExtraTrees outperforms the other classifiers in al-
most all metrics and it generalises the dataset very well.

5.2 RQ2: How well do the supervised classifiers
perform in detecting anomalies as
compared to those detectors obtained from
unsupervised learning?

It is observed that the OC-SVM is a clear winner against the Isola-
tion forest in all performance metrics that include accuracy, false
positive and false negative rates, precision, recall and F1 scores. The
superior performance of the OC-SVM is due to the models was ini-
tially designed as a novelty detection algorithm that is specifically
trained on a dataset which is free from anomaly, while the IF works
by isolating the outliers or anomalies from the dataset instead of
profiling the normal datapoints.

Nevertheless, despite the OC-SVM’s superior performance as
an unsupervised anomaly detection model, it exhibits noticeably
lower precision score as compared to the supervised classifiers.

The precision score shows a ratio of the correctly detected ab-
normal traces versus all traces that are detected as abnormal. Com-
paring the false positive rates of the supervised classifiers and the
unsupervised models, it can be seen that the OC-SVM’s lower pre-
cision score is due to a significantly higher false positive rate as
compared to the supervised classifiers. Nevertheless, it has a perfect
recall rate which shows that it has zero false positive or misdetec-
tion of abnormal traces, similar to the SVM-RBF and ExtraTrees
from the supervised classifiers.

Summary of RQ2: Intuitively, supervised classifiers gener-
ally still hold better performance on detection accuracy with
significantly lower false positive rates in comparison to the
unsupervised models.

6 THREATS TO VALIDITY
Internal validity. (1) The amount of data used to train our mod-
els was not large (see Section 4.4.1). However, we are certain that
our models are not memorising them as the falsified sensor values
and actuators status are randomly generated while satisfying the
“abnormal” boundary of the equivalence partitions. The resulting
dataset were also validated using 5-fold cross-validation to check
if the learned models have good generalization ability. The results
of the k-fold validation confirms our confidence that the learned
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models are not memorizing the attacks. (2) A 90 seconds window of
“normal + attack” situation was chosen to generate our dataset (in a
way that it consists of 10s of rest + 30s of attack + 50s of rest). We
conjectured that this window would better represent a real-world
situation, where the system is under control and suddenly receives
an (yet not known) attack. We finally chose 90s after short experi-
mentation. Future work should explore the impact of different time
windows on the performance of the models.

External validity. Despite the results showing that the super-
vised approach outperforms the unsupervised approach, the super-
vised approach is still not as practical on real-world CPS. It is not an
option to simulate attacks with the purpose of obtaining abnormal
traces on real CPS plants, such as water treatment plant or power
grids, given that most of them are critical infrastructures where
their operational availability, performance and stability are very
sensitive. Future work needs to focus on testing the models built in
the testbeds, such as SWaT, in realistic CPS attacks.

7 CONCLUSION
Having reliable and realistic datasets that contain both the normal
and abnormal operational traces of a CPS is a fundamental challenge
in behaviour-based supervised anomaly detection. In this study, a
novel approach is proposed to address this challenge by using a
software testing technique, i.e., domain testing using equivalence
class partitioning, to systematically derive attacks for attacking the
sensors and actuators of the raw water process in the SWaT testbed.
This testbed is a replica of real-world water purification plant. These
abnormal traces are combinedwith the traces of normal operation to
form a labelled dataset that can be used to train different supervised
classifiers.

The reported study demonstrates the effectiveness of using
domain-based fuzzing with equivalence class partitioning to gener-
ate abnormal data traces for supervised learning of CPS anomaly
detection, as confirmed by empirical evaluation under various per-
formance classification metrics. It also shows that supervised learn-
ing approach of anomaly detection results in significantly lower
false positive rates that intuitively contributes to higher overall
accuracy and recall scores of the supervised classifiers as compared
to the unsupervised models which have higher false positive rates.
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