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1.  Introduction
1.1.  Model as Assemblages of Hypotheses

Process-based models are abstract simplified representations of the underlying physical processes govern-
ing the behavior of natural systems. Such models are used to characterize our knowledge about the spa-
tio-temporal structural and behavioral properties of natural systems, thereby enabling decision-makers to 
approximate the behavior of a system at a specific space-time location and, ultimately, to infer the impacts 
of various natural changes or anthropogenic modifications to that system. Process-based models can be as 
simple as characterizing only water movement through a homogeneous porous medium under a constant 
head difference based on Darcy's Law (e.g., Fitts, 2012), or be very complex involving large numbers of in-
teracting processes as in terrestrial land [surface] models (Pitman, 2003).

Many factors can shape the process of model building, including the purpose, the data available, the ex-
perience and background of the modelers, the available computational power, and the desired predictive 

Abstract  Process-based hydrological models seek to represent the dominant hydrological processes 
in a catchment. However, due to unavoidable incompleteness of knowledge, the construction of “fidelius” 
process-based models depends largely on expert judgment. We present a systematic approach that 
treats models as hierarchical assemblages of hypotheses (conservation principles, system architecture, 
process parameterization equations, and parameter specification), which enables investigating how the 
hierarchy of model development decisions impacts model fidelity. Each model development step provides 
information that progressively changes our uncertainty (increases, decreases, or alters) regarding the 
input-state-output behavior of the system. Following the principle of maximum entropy, we introduce 
the concept of “minimally restrictive process parameterization equations—MR-PPEs,” which enables us 
to enhance the flexibility with which system processes can be represented, and to thereby investigate 
the important role that the system architectural hypothesis (discretization of the system into subsystem 
elements) plays in determining model behavior. We illustrate and explore these concepts with synthetic 
and real-data studies, using models constructed from simple generic buckets as building blocks, thereby 
paving the way for more-detailed investigations using sophisticated process-based hydrological models. 
We also discuss how proposed MR-PPEs can bridge the gap between current process-based modeling 
and machine learning. Finally, we suggest the need for model calibration to evolve from a search over 
“parameter spaces” to a search over “function spaces.”

Plain Language Summary  Modelers make many decisions in their quest to formulate 
a working model. It is important to evaluate the impact of each modeling decision, and to assess the 
extent to which different decisions improve the representation of the actual system. Building upon past 
work, we present a framework that enables an improved assessment of individual modeling decisions. 
Specifically, we suggest that modelers should pay more attention to the hierarchical structure of model 
building decisions, and to the impact that each such decision can have on the fidelity of resulting process 
representation.
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accuracy (Addor & Melsen,  2019). Generally speaking, constructing a process-based model begins with 
our perceptions regarding the nature of the natural system, resulting in a “perceptual-conceptual” mental 
model that identifies the processes (and their interconnections) believed to be important in determining 
its behavior. The model building process then continues with a formalization of these perceptions into a 
“conceptual model” (that facilitates communication and discussion), and then progressively is translated 
into a “symbolic/mathematical” model (the model equations) and finally a “computational” model realized 
in the form of computer code (Beven, 2011; Blöschl & Sivapalan, 1995; Gupta, Clark, et al., 2012). Finally, 
the model parameter values must be specified based on expert knowledge, or by manual or automatic cali-
bration, and the resulting model simulations must be evaluated (in each particular context) for consistency 
and adequacy of performance (Refsgaard & Henriksen, 2004).

Expanding upon this understanding, it is important to also note that the model building practice involves 
assembling together various hypotheses at each of the aforementioned model building levels (Clark, Kavet-
ski, & Fenicia, 2011). We can characterize this assemblage of hypotheses as being at four hierarchical levels 
as follows:

•	 �System Diagram and Conservation Law Hypotheses: This establishes the control volumes within the 
model domain, specifies the major processes that must be represented, identifies the boundary condi-
tions and main external forces (disturbances, forcings) acting upon the system, specifies the major state 
variables that must be tracked in order to represent the internal system dynamics, and consequently 
identifies the conservation principles (e.g., mass, energy, momentum) that must be obeyed. The result is 
a high-level system diagram that formalizes the main aspects of the model.

•	 �System Architecture Hypothesis: This establishes the manner and level of detail by which the internal 
structure of the system is to be represented, and can vary from a hyper resolution 3-dimensional spatial 
discretization using a finite difference/element grid to a low-resolution directed graph characterized 
by interacting conceptual buckets (as in so-called bucket style watershed models). The result is a finite 
number of subsystem control volumes and associated state variables to be tracked, and a specification 
of which such elements are to be linked via interconnecting fluxes. The resulting overall node and link 
graph specifies the pathways by which mass, energy and momentum are transferred through the system 
to the outputs (Bancheri et al., 2019). In general, each node and link must obey the conservation law 
hypothesis specified by the system diagram and conservation law hypothesis.

•	 �Process Parameterization Hypothesis: This defines the mathematical forms of the Process Parame-
terization Equations (hereafter referred to as PPEs), that relate the state variables to the fluxes, and that 
consequently control the internal (and therefore overall) dynamics of the system. In general, the PPE's 
must conform to the laws of thermodynamics (fluxes arise in response to gradients) and other pertinent 
laws of physics that govern the behaviors of the fluxes represented. Further, suitable choices of the PPEs 
must be consistent with the selected system architecture hypothesis, and therefore must reflect the sys-
tem scale and spatiotemporal resolution to be represented.

•	 �Parameter Specification Hypothesis: This defines the values of the parameters used to specify the 
behaviors of the PPE's for any given physical location and/or application. Further, being conditional 
on the PPE specification, suitable choices for these parameter values must reflect the system scale and 
spatiotemporal resolution to be represented.

Additionally, there are hypotheses that pertain to things outside of the modeled system. These include:

•	 �Forcing/Input Uncertainty Hypothesis: The information provided by the 4 levels of modeling hypoth-
eses mentioned above are conditional on the nature of the system inputs/forcings and their uncertain-
ties. In fact, it is the forcing/input that conditions and shapes the dynamical response of a system. For 
example, no matter how well the model of a watershed is formulated, it may be impossible to adequately 
characterize a particular flood event if information regarding the existence of the causal precipitation 
event(s) is not properly captured by the rain gauges (Beven & Westerberg, 2011). Extensive efforts have 
been carried out in recent years on ensemble probabilistic methods to address the uncertainties in input/
forcing, for example, precipitation and temperature (Clark & Slater, 2006; Cornes et al., 2018; Newman 
et al., 2015; Tang et al., 2020).

•	 �System Response Uncertainty and Evaluation Metric (Objective Function) Hypotheses: Similar to 
the input uncertainty, the measured response of the system, which is often used to infer internal system 
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properties (such as system architecture) and to allocate values for the model parameters, also has its 
associated uncertainties (Kiang et al., 2018; Westerberg et al., 2011). As an example, a large portion of 
the effort to relate signatures built on observed system response(s), such as streamflow, to model param-
eters and processes, falls under the evaluation metric hypothesis (e.g., Bárdossy & Singh, 2008; Euser 
et al., 2013; McMillan, 2020; Westerberg & McMillan, 2015). Given that inference is typically performed 
by selecting one or more performance metrics, different performance metrics have the effect of differ-
ently regularizing the result of the inferential procedure, thereby dramatically influencing the inferred 
representation of internal system structure and behavior (Santos et al., 2018).

Figure 1 provides an illustration of how a modeler interacts with the four hierarchical levels of hypothesis 
specification. Since the model is intended to reflect the behavior of the system, the modeler should give 
early attention to the system input and response uncertainty hypotheses, which should be based on both the 
spatial representativeness of the station network and the physical characteristics of the sensors and instru-
ments used to acquire the data (rather than being inferred along with the four hierarchical levels of model 
building). Similarly, early attention to the regularizing performance metric hypothesis can help to clarify 
what aspects of system response are important (determined by the modeling goals); this can be as basic as 
a visual comparison of observed and simulated responses or involve the design of mathematical metrics to 
quantify the differences between the observed and simulated system behaviors. Note that a modeler may 
choose to treat the measurement errors as being negligible, and therefore represent the inputs and respons-
es as being deterministic. This can affect the design of the metric used for model performance evaluation.

While the four levels of modeling hypotheses are not entirely separable, each is essential to the construct 
a working process-based model. Certainly, different emphases can be placed on which level is given pri-
mary importance. For example, the downward or top-down modeling approach (Klemeš, 1983; Sivapalan 
et al., 2003; Young, 2003) tends to place primary emphasis on the levels that specify the conservation prin-
ciples (the system diagram) and system architecture, leaving PPE forms and parameter values to be inferred 
at the spatiotemporal scale of interest (e.g., Schulz & Beven, 2003). By contrast, the bottom-up approach 
tends to emphasize specification of a system architecture that conforms to available small-scale knowledge 
regarding the spatial distributions of material properties and process behaviors (e.g., 3-D subsurface flow 
based on Richards' Equation; Condon et al., 2013). In cases where analytical solutions exist, such as when 
modeling water table deformations around an abstraction well using the Darcy equation, the system archi-
tecture can be expressed in terms of elements of infinite spatial extent. In general, the various modeling 
hypotheses are refined in an iterative fashion as the modeler gains experience with the model and learns 
more about its strengths and weaknesses. The attempt to formulate an improved working hypothesis can 
involve drawing upon broader sources of knowledge and involve the use of so-called “soft” data (Seibert & 
McDonnell, 2002).

Each of the aforementioned levels of hypotheses progressively changes (increases, decreases, or somehow 
alters) our uncertainty regarding the input-state-output behavior of the system (Figure 2). This change in 
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Figure 1.  The chart illustrates the general manner in which a modeler interacts with the various levels of hypotheses 
(see description in the text) for developing a working process-based model.
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uncertainty occurs due to the fact that “information” is added at each level of the modeling process (infor-
mation in considered to be added when there is a change of uncertainty in a given context). If the added 
information at each level is “good,” we can expect the simulated state-output response to progressively 
converge around the corresponding “true” state-output response as approximated by the observed system 
response and knowledge of the system. In actual practice, there is typically considerable lack of knowledge 
regarding the true nature of the natural system and its input-state-output behaviors. This means that the 
modeling building steps of such a system are inherently uncertain. Consequently, poor hypothesis choices 
at any of these stages can result in uncertainty that must be reflected in the simulated trajectories of the 
state-output responses, and in systematic deviations of those trajectories from the corresponding observed 
ones (as characterized by available measurements). Such tendencies to deviate from the observed measure-
ments are usually masked (made more difficult to detect) by the process of (automated or manual) param-
eter calibration.
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Figure 2.  An example of model building hypotheses in a predominantly top-down approach. (a) A System Diagram 
that identifies the boundary of the system and incoming and outgoing mass and energy fluxes. The mass fluxes are 
precipitation, transpiration, interception, surface runoff, baseflow, and snow/ice sublimation. The energy fluxes are 
incoming short-wave radiation and outgoing latent heat fluxes. (b) A System Architecture Diagram that identifies the 
sub-system components to be modeled as a directed graph of nodes (state variables) and links (processes); here the 
state variables are canopy water holding capacity, soil moisture, and snow. (c) A Process Parameterization Diagram 
that specifies the state-flux relationships determining mass and energy fluxes linking the states. (d) A Parameter 
Specification Diagram, that illustrates the fixing of parameters to appropriate values based on their conceptual and 
physical properties. (e) A cartoon illustrating how the hierarchical progression of model building hypotheses translates 
into information (read change of uncertainty) regarding the system output (total streamflow as summation of surface 
runoff and baseflow; qrunoff + qbase). When the hypotheses are properly specified, the simulated output trajectories 
should closely track the observations, and bracket them with an acceptable level of uncertainty.
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Differences in emphasis, regarding how the system architecture and process parameterization (and even-
tually parameter specification) hypotheses should be specified, have resulted in a variety of modeling ap-
proaches. So-called “physically based” models generally seek to define the parameters of the process equa-
tions as being somehow related (at least in principle) to observable physical characteristics of the system. 
The question of how best to do this has resulted in a significant body of literature (e.g., Abbott et al., 1986; 
Antonetti et al., 2017; Beven & Kirkby, 1979; Flügel, 1995; Gao et al., 2019; Knudsen et al., 1986; Loritz, 
Gupta, et al., 2018; Naef et al., 2002; Reggiani et al., 1998; Uhlenbrook et al., 2004; Winter, 2001; Zehe, 
Loritz, et al., 2019). However, it is fair to say that the predominant approach to such decisions is mainly to 
employ expert judgment and tacit knowledge that is often not well documented, so that model building is 
considered to be largely an “art” (Savenije, 2009).

It is, of course, well recognized that model parameters tend to be “conceptual and empirical” representa-
tions of system properties (Hrachowitz & Clark, 2017), and it was acknowledged decades ago that it is not 
possible to infer “true” parameter values for a given model (Beck, 1983; Johnston & Pilgrim, 1976; among 
many others). A considerable body of literature has been devoted to parameter value inference and its 
associated uncertainties. In particular, the issue of parameter uncertainty (and sensitivity) has received 
significant attention and spawned numerous methods including Global Likelihood Uncertainty Estima-
tion (GLUE; Beven & Binley, 1992), Bayesian Recursive Estimation (BaRE; Gupta, Thiemann, et al., 2003; 
Misirli et al., 2003; Thiemann et al., 2001), formal Bayesian methods such as DREAM (Vrugt, ter Braak, 
et al., 2008), BATEA (Kavetski et al., 2006), and pareto-based optimization algorithms (Deb et al., 2002; 
Vrugt, Gupta, et al., 2003).

The issue of process parameterization and system architecture uncertainty has also received attention. Sev-
eral studies have explored how model structural changes can help to improve the presumed representation 
of “reality” (e.g., Fenicia, McDonnell, & Savenije, 2008; Freer, Beven, & Ambroise, 1996; Freer, McMillan, 
et al., 2004; Seibert et al., 2003; Son & Sivapalan, 2007; among many others). Recently, in the context of rain-
fall-runoff and land-surface models, there have been efforts to modularize the modeling decision process so 
that both the system architecture and process parameterization hypotheses can be altered to enable investi-
gation of their effects, thereby facilitating the pursuit of multiple working hypotheses (e.g., Clark, Kavetski, 
& Fenicia, 2011). As examples, MMS (Leavesley et al., 1996), RRMT (Wagener et al., 2001), FUSE (Clark, 
Slater, et al., 2008), Noah-MP (Niu et al., 2011), FLEX (Fenicia, Kavetski, & Savenije, 2011), SUMMA (Clark, 
Nijssen, et al., 2015), MARRMoT (Knoben, Freer, Fowler, et al., 2019), and Raven (Craig et al., 2020) enable 
the model developer to select from prespecified sets of system architectural and PPE choices.

In this context, a significant body of literature has sought to employ diagnostic signatures extracted from 
the system response data (Gupta, Wagener, & Liu, 2008; Martinez & Gupta, 2010; Yilmaz et al., 2008; among 
many others) as a means to improve model identifiability and guide proper specification of parameter val-
ues and to lesser extent forms of PPEs. Finally, a small amount of work has explored the use of methods to 
stochastically represent model structural uncertainty, so that model equation forms can be updated/correct-
ed via Bayesian data assimilation (Bulygina & Gupta, 2011; Nearing & Gupta, 2015).

1.2.  Formulating the Research Questions

The overarching research questions of this study are driven by the quest for a “fidelius” model that rep-
resents, as accurately as possible, our understanding of how the natural system works while generating 
input-state-output simulations that agree with the observed data to within an [often subjective] acceptable 
level of uncertainty. In particular, we are motivated by the following specific research questions:

�Q1)	� How does each stage of model building encode information into the model and it's simulated outputs?
�Q2)	� Given a particular system architecture, what mathematical forms for the PPEs are most consistent with 

the information provided by the observed data?
�Q3)	� How uncertain are the inferred PPEs, and how does that uncertainty affect the model generated simu-

lations of system behavior?
�Q4)	� How does information provided in the form of additional constraints on system behavior (beyond that 

encoded via the aforementioned four levels of modeling hypotheses), affect the model generated simu-
lations of system behavior?
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1.2.1.  Question 1—How is Information Encoded Into the Model?

As mentioned earlier, the sequence of structural decisions encoded into 
the model acts to progressively alter (hopefully reduce) our uncertainty 
regarding its input-state-output behavior. We are interested, therefore, 
in understanding how the different kinds of structural information act, 
and interact, to impact the model behaviors and their uncertainty. We 
are also interested in understanding how model structural errors/inad-
equacies can result through incorporating incorrect (i.e., bad) or overly 
strong assumptions. In this regard, we introduce the concept of “mini-
mally restrictive PPEs” that facilitate a more structured approach to model 
development. Our approach generally follows the Information Theoretic 
perspective suggested by Gupta and Nearing (2014).

1.2.2.  Question 2—What PPE Forms are Appropriate Given a 
Particular System Architecture?

While the so-called “flexible” modeling approaches mentioned earlier en-
able selection from different pre-determined formulations of the PPEs, 
the available sets of choices are typically granular (discrete), and speci-
fied without considering the selected system architecture and its degree 
of complexity. For example, various models may exploit a fixed process 
representation such as Jarvis-type stomatal resistance formulation (Jar-
vis, 1976) for plant transpiration regardless of subsurface representation, 
assumptions on intercepted water by the plant foliage, and other assump-
tions made regarding various aspects of the overall system architecture.

Here, we investigate what might be the appropriate forms for the PPE's 
given a selected system architecture, and how these might differ from 
the typical forms that are commonly used (Figure 3a). Usually, most of 

the modeling effort is focused on the parameter specification hypothesis based on the evaluation metric or 
objective function hypothesis, which in turn means modelers often explore “parameter spaces” via manual 
or automatic model calibration to develop a behavioral model. We believe there should be a shift in the focus 
of model calibration from a search over “parameter spaces” to a search over “function spaces.” Exploring 
the “function spaces” enables modelers to test whether the assumptions on functional forms are reproduc-
ible. Although some studies have attempted to explore the “functions spaces” by recreating the PPE's for 
very simple model architectures from data (Bulygina & Gupta, 2009, 2010, 2011; Kirchner, 2009; Koster & 
Mahanama, 2012; Lamb & Beven, 1997), our knowledge of how to systematically explore the interactions 
between data and the PPE forms that are appropriate for a given system architecture is still in its infancy.

This study can be viewed as a preliminary attempt to bridge the physical/process-based and data-driven 
approaches to Earth System modeling. Whereas the former uses theory to guide the selection of an ap-
propriate model representation, the latter seeks to learn the model representation directly from the data. 
With increases in computational power, machine learning approaches are now finding increasingly wide-
spread application in hydrology (Goodwell & Kumar, 2017; Jiang et al., 2020; Karpatne et al., 2018; Kratzert 
et al., 2019; Shen, 2018; Zhao et al., 2019), and attempts are even under way to ensure that such models 
are able to obey conservation principles such as mass, energy and momentum balance across the system 
components.

1.2.3.  Question 3—How Uncertain are the PPE Forms Inferred From Data?

The uncertainty associated with a model is typically expressed in terms of parameter uncertainties (via mar-
ginal distributions) and the consequent output uncertainties. Further, structural uncertainties are typically 
assessed by running discrete sets of model ensembles, where each member of the ensemble represents a 
different possible model structural hypothesis. There has been comparatively little investigation of the un-
certainties associated with the selected forms of the PPEs.

GHARARI ET AL.

10.1029/2020WR027948

6 of 35

Figure 3.  (a) An illustration of how the inferred form (red line) of a 
process parameterization equation (PPE), that accounts for both system 
architecture and information provided by the observed data (red dots), 
may be different from a PPE form that is assumed a priori (blue lines; 
different lines represent different parameter values). (b) An illustration of 
PPE activation that is skewed toward the lower portion of the active range, 
and where there are inactive regions. (c) An example of PPE activation 
that is skewed toward the upper portion of the active range, and that has 
inactive regions.
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In this regard, it is important to note that only a small portion of the functional extent of a PPE might 
actually be activated during any given simulation, and so the available data may only be informative 
(about the nature of that functional form) across a limited portion of its extent. This affects our ability 
to properly and unambiguously infer the correct overall form of the PPE, especially when extrapolating 
beyond the ranges and types of system behaviors represented by the available data. Accordingly, we 
investigate two aspects of this issue: (a) That only a portion of the functional range of a PPE might ac-
tually be activated during a simulation and (b) That the PPEs are not uniformly activated across its full 
behavioral range and are therefore characterized by varying degrees of structural and functional (and 
therefore predictive) uncertainty.

For example, in drier climates the activated portion of the PPEs will likely be the water-stressed por-
tions (Figure  3b). Conversely, in humid regions the activated portion of the PPEs will likely be the 
portions that correspond to no water stress (Figure 3c). The consequence is that the model simulated 
outputs will have different associated uncertainties (and sensitivities) depending on which portions 
of the PPEs are being activated. This kind of variation in functional uncertainty is not properly cap-
tured by the use of fixed PPE forms where the uncertainties are expressed entirely via parameter un-
certainty. The implications are particularly strong when models are used to predict system responses 
under conditions that have not been part of the data record (such as under future or different climate; 
Klemeš, 1986).

1.2.4.  Question 4—How Do Behavioral Constraints Act to Inform the Model Simulations?

Some kinds of important information about the behavior of a natural system may not be inferable (or 
be only weakly inferable) from the observed system responses. Such information can take the form of 
“expert” knowledge that expresses conditional constraints on internal system behaviors, relative mag-
nitudes or rates of internal fluxes, relationships between various signature properties of the system 
responses, and many others. It can also take the form of assumptions that the modeler might wish to 
make/test.

Such information can be expressed via behavioral constraints on the internal process behavior or the mag-
nitude of state variables. In the context of performance metric design, the information may be expressed 
using signature indices extracted from the raw data, rather than directly by the raw data. We are interested, 
therefore, in understanding how much additional information is provided by such expressions of expert 
(i.e., domain) knowledge, and how this knowledge acts to alter our uncertainty about system behavior 
(Wagener & Montanari, 2011). To identify simulations that are “behavioral,” in the spirit of Spear and Horn-
berger (1980), Schaefli et al. (2011), Gharari, Hrachowitz, et al. (2014), Gharari, Shafiei, et al. (2014), and 
Bahremand (2016) among many others, we formulate constraints that impose internal restrictions on sys-
tem component behavior. We exclude, however, any discussion of how the evaluation metrics (or choices of 
signatures) act as hypotheses regarding the response of the system, as that issue is not directly linked to the 
four levels of model building addressed in this study.

1.3.  Focus, Organization, and Scope of This Paper

The goal of this study is to investigate the four research questions formulated in Section  1.2. Section  2 
presents our proposed framework for investigating the information content of modeling hypotheses and 
outlines the methodology used in Section 3, which presents the results of several numerical experiments. 
Being exploratory, the scope of these experiments is limited to relatively simple system architectures that 
can be constructed using a generic bucket, but that encompass the important processes relevant to modeling 
the catchment scale rainfall-runoff process. Section 4 summarizes and discusses our results and explores 
their implications for future work. Finally, Section 5 presents our conclusions, and discusses several broader 
considerations that are suggested by our findings.
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2.  Methodology to Explore the Nature of the 
Hierarchy of Model Development Decisions
2.1.  Establishing the Building Blocks

2.1.1.  Definition of the Generic Bucket Used to Construct Bucket 
Style Models

We define the simplest building block of bucket style models (e.g., 
HBV, HYMOD or FLEX, among others) as a generic bucket (GB) to 
systematically create varieties of different possible system architec-
tural hypotheses. A GB identifies a control volume within the natural 
system in which mass is to be conserved. In principle, the ideas pre-
sented here can be extended to more complex models and processes 
parameterizations.

We focus on three major processes that can represent most of the process-
es in a typical bucket style model:

1.	 �Absorption/Bypass: An incoming flux to the GB can either be ab-
sorbed and stored by the GB or can bypass it. For example, part of 
the incoming water reaching a porous medium, can be absorbed in 
the soil (both micropore and macropore) and thus stored in the part 
of the system represent by the GB, while part of it can bypass the soil 
through preferential flow paths (through macropores) or via surface 
runoff.

2.	 �Depletion: This is a process in which the outgoing flux is depend-
ent on both the amount of water stored in the GB and an external  
[suction] force. The latter may sometimes be parameterized in terms

of a maximum (limiting) or “demand” flux rate such as potential evapotranspiration. In hydrological 
terms, this allows us to simulate mechanisms such as evaporation, transpiration and deep percolation 
based on a maximum rate, and snowmelt based on temperature forcing (degree day factor formulation 
of snow melt), whose flux rates depend both on a supply term (available water) and a demand term.

3.	 �Release: This is a process whereby the flux leaving the GB depends only on the amount of water stored 
in the GB. A (non-)linear reservoir is the simplest example of this process, in which the outgoing flux is 
a function of only the amount of water stored in the GB. In hydrological terms, this allows us to simulate 
drainage mechanisms in their simplest forms.

Figure 4 illustrates the use of a generic bucket to model the hydrological response of few decimeters of the top-
soil. The input flux, inq , is partitioned into an infiltration excess portion (represented as  , ,, |A sm in Aa b a bf S q ) 

that bypasses the GB, and an infiltration portion that is stored (represented as   , ,, |in A sm in Aa b a bq f S q ). 

The drainage release flux,  |r sm rf S  is dependent on the current state of the soil moisture storage, smS . The 
evapotranspirative depletion flux is dependent on both the current soil moisture storage smS  and a driver 
such as potential evaporation (for example,  , |d sm p df S q  in which qp is the demand or potential evapo-
ration in this specific case). The mathematical functions ( ,Aa bf , df  and rf ) represent the PPEs of our generic 
GB, while the θ's represent corresponding parameters whose values must be specified. We should clarify 
that the conceptualization expressed here is specific to this study and can be much more complex based on 
the modeling need.

2.1.2.  Strategies to Construct “Minimally Restrictive” Functional Forms for the PPEs

One of the goals of this study is to investigate the role of the system architectural hypothesis in determin-
ing model behavior. To focus on the influence of system architecture hypothesis on the overall model 
hypothesis, we need to reduce the dependence of the model simulations on the specific mathematical 
forms of the PPEs represented by ,Aa bf , rf  and df . Referring again to Figure 4, the forms of PPEs can be 
conceptualized as:
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Figure 4.  Example of a generic bucket (GB) that can be used for creating 
bucket style models applied to the topsoil layer, illustrating the processes of 
absorption (infiltration) and bypass (infiltration excess), release (drainage) 
and depletion (evapotranspirative fluxes). In this illustration, Ssm is the 
soil moisture of the topsoil layer. qin represents the incoming flux such as 
precipitation or effective precipitation. ,Aa bf  represent the function that 
decides which portion of the incoming flux is absorbed by the topsoil 
layer and which portion is bypassed through the system (similar to the 
concept of variable source area). qp represent the potential demand flux 
that limit the amount of water that can be taken from the soil moisture. 
This maximum potential flux can be expressed as a gradient of the states 
of various kind. fd is the function that related the soil moisture and the 
potential flux, qp, to the depletion flux. fr relates the release from the GB 
to the amount of state in the system.  ,Aa b, θd, and θr are the parameters 
specifying the functions ,Aa bf , fd, fr, respectively.
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1.	 �Parameterization for the absorption and bypass processes (respectively):

   , ,· 1 ( | )a in a b sm a bq q A S� (1)

 , ,· ( | )b in a b sm a bq q A S� (2)

2.	 �Process parameterization for the depletion process:

 · ( | )d p d sm dq q K S� (3)

3.	 �Process parameterization for the release process:

 ( | )·r r sm r smq K S S� (4)

For the rest of this work, we use the units of mm day−1 for fluxes and mm for storages. The functions for 
absorption, bypass, and depletion are unitless; the function for release defines the time constant of the res-
ervoir in unit of day−1.

In current practice, it is typical for the mathematical forms of equations representing, ,a bA , rK , and dK  to be 
rigidly specified, so that any model behavioral flexibility is achieved only by adjustments (over some pre-
specified feasible ranges) to the parameters associated with the functions. Here, we introduce an alternative 
approach that enables us to work with less restrictive functional forms, thereby enabling evaluating the role 
of architectural changes in determining model behaviors. Such functional forms should be designed in such 
a manner that the modeled process behavior:

1.	 �Is constrained by (remains consistent with) the laws and principles of physics, as well as by any well-es-
tablished hydrological principles that may be pertinent at the system scale and resolution represented by 
the chosen system architecture.

2.	 �Does not presume any more information about the behavioral nature of the process than is actually 
known to be reasonably true.

In other words, we aim for process parameterization functions that are maximally uncertain (i.e., maximal-
ly flexible, or alternatively minimally restrictive) while obeying the aforementioned assumptions of mono-
tonicity and conservation. We generate monotonically non-decreasing polynomial transmission functions 
that provide us with the degrees of freedom required to represent the wide range of behaviors that might be 
possible in any given situation. Appendix A discusses our proposed strategy, among many other strategies 
that could be employed, for constructing such equation representations using piecewise linear approxima-
tions. This strategy allows for the “minimally restrictive” functional representations of the PPEs (herein de-
noted as MR-PPEs) to be of varying complexity, ranging from constant, to linearly varying over the domain, 
to having an arbitrarily large number of piecewise linear segments. For practical reasons, we limit ourselves 
to 1000 MR-PPEs each having a maximum of 20 linear segments, which should be more than sufficient to 
represent the kind of functional complexity one might encounter in our experiments in this work.

In each of the above representations (Equations 1–4), the terms, ,a bA , rK , and dK  are represented by pa-

rameters      , , ,low high scale
x x x x  where  low

x  and  high
x  specify the minimum and maximum values that the 

transmission can range over (   0 low high
x x ), and  scale

x  specifies the range of storage, ,smS  over which that 
coefficient variation can occur and defines the storage capacity at which the transmission achieves its max-
imum value (Figure 5). We will refer to these parameters as the MR-PPE parameters.

For the bypass process (Equation 2), if 
,

high
Aa b

 is set to 1.0 the GB will represent a finite capacity bucket, mean-
ing that all of the incoming water inq  bypasses the bucket when its storage amount reaches the maximum 
amount specified by  ,

scale
Aa b ; accordingly  ,

scale
Aa b  represents the storage capacity of the bucket. Alternatively, if 


,

high
Aa b

 is set to 0.0 (accordingly we must also have  , 0.0low
Aa b ), this means that none of the incoming water inq  

will bypass the bucket, so that all of it will be absorbed (infiltrated) and stored in the GB; this simulates a for-
mulation where the GB effectively has an infinite capacity (similar to a linear reservoir). If, in addition, we 

GHARARI ET AL.

10.1029/2020WR027948

9 of 35



Water Resources Research

set the drainage/release parameters to be  low high
r r  for the release function rf , then the GB will represent 

an infinite capacity “linear” reservoir that drains at a constant rate (for more examples see Appendix A). 
In this study we set the upper limit of  high

x  to 1 for all the three processes; however, the theoretical upper 
limit can be higher than 1 for release or depletion (for example in case of a linear reservoir, the analytical 
coefficient can be more than 1, or in case of evapotranspiration, trees can evaporate more than the reference 
potential evaporation typically calculated for grassland). We also would like to emphasize that higher values 
of  high

x  can result in lower storage and state variable values, which in turn can transform the behavior of 
the state variable into that of a flux (reflecting the continuum between state and flux representations in a 
model)

We would like to remind the readers that the initial parameter values specified before the simulation should 
be evaluated for consistency at the end of the simulations. As indicated by Figures 3b and 3c, it is possible 
that only a fraction of the entire functional form of a PPE will be activated during the simulation. This may 
mean that the effective parameters specified when describing the MR-PPE may need to be different from 
those specified at the outset. This is important because poorly specified initial parameter values might indi-
cate a scale range of, say, 40 mm, whereas the actual dynamic range of the storage may only cover a range 
of 20 mm over the course of the simulation. Similarly, while the “low” and “high” range parameters might 
initially be set to 0 and 1, it is possible that the function is only activated between 0.3 and 0.8, respectively 
during the course of the simulation (for more examples see Appendix B). In this study we focus only on the 
active portions of the MR-PPEs.

2.2.  Design of Different System Architectural Hypotheses

For the experiments reported here, we use the GB introduced above (Section  2.1) to construct vari-
ous system architecture hypotheses. We classify the system architecture into two categories, single- and 
multi-component.

2.2.1.  Single Component Architectural Representations

The simplest system architectural hypothesis can be built by a single GB with the existence of three possi-
ble processes (namely absorption/bypass, release and depletion) resulting in the following three different 
system architectures:

1.	 �S1 (Infinite Capacity Draining GB): In this case (Figure 6a), we impose no restriction on the ability of 
the precipitation (or effective precipitation) flux to enter and be stored in the catchment, and so the GB 
has effectively infinite capacity. The processes represented are the accumulation of soil moisture, and its 
depletion by evapotranspiration and a release water flux (e.g., lateral and/or vertical drainage).

2.	 �S2 (Finite/Infinite Capacity Non-Draining GB): In this case (Figure 6b), the ability of precipitation 
(or effective precipitation) to enter the GB is partially restricted, with the remainder bypassing the GB as 
a water flux. The moisture stored in the GB is depleted by evapotranspiration only and no drainage re-
lease occurs in this model. If 

,
high
Aa b

 for the bypass and absorption is set to 1 then the GB is a finite capacity 
bucket otherwise it can represent an infinite capacity bucket.

GHARARI ET AL.

10.1029/2020WR027948

10 of 35

Figure 5.  (a) Example of a physically plausible monotonically non-decreasing process parameterization function, 
and (b) an illustration of how the MR-PPE parameters    , ,low high scale

d d d  can act to alter the properties of the function. 
For the red curve   0.2, 0.8low high

d d  and   40scale
d  mm, and for the green curve   0.0, 0.3low high

d d , and 
  24 mmscale

d  are assumed.
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3.	 �S3 (Finite/Infinite Capacity Draining GB): This case (Figure 6c) represents a combination of the pro-
cesses represented in model structures S1 and S2. The precipitation (or effective precipitation) is partly 
restricted from entering the GB and bypasses (e.g., as macropore water flow or surface flow), while the 
portion that accumulates within the GB can be depleted via evapotranspiration and released by lateral 
and/or vertical drainage. If 

,
high
Aa b

 is set to 1 the GB will represent a finite capacity bucket.

2.2.2.  Multi-Component Architectural Representations

We further explore several hydrological model hypotheses having different structural architectures, by 
adding elements that perform the process functions of flow routing and interception to the three versions 
single-component models (S1, S2, and S3). Flow routing and interception can both be modeled via imple-
mentations of the GB as follows:

1.	 �I1 (Interception Storage): Interception of precipitating water by the water holding capacity of the 
leaves of plants (and/or by other surfaces) can be modeled by use of a finite capacity non-draining GB 
(Figure 6d). The intercepted water is depleted by evaporation. Accordingly, an interception storage mod-
el component can be achieved similar to model S2.

2.	 �R1 (One-Pathway Routing): A component that performs simple flow routing (Figure 6e) is achieved 
by implementing the GB in such a way that all of the incoming water flux enters the bucket (complete 
absorption with no bypass), no depletion occurs, and water is permitted to leave via drainage release.

3.	 �R2 (Two-Pathway Routing): Two-pathway (fast and slow) flow routing (Figure 6f) is achieved by im-
plementing two R1-type components in parallel, with the fractional input to each determined by a split-
ter (splitter has a value between zero and one). As a side note, splitter can be achieved by GB when 
setting the Kr value to very large numbers while setting the Aa,b value to be equal to the splitter value 
(  , ,

constantlow high
A Aa b a b

).
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Figure 6.  A model consisting of a single GB (a) S1 that represents the partitioning of incoming precipitation flux (P or effP ) into soil moisture storage 
( smS ), evapotranspiration flux (T) and a drainage output flux ( drainq ), (b) S2 that represents the partitioning of incoming flux into soil moisture storage, 
evapotranspiration flux, and surface runoff ( runoffq ) and (c) S3 that represents the partitioning of incoming flux into soil moisture storage, evapotranspiration 
flux, surface runoff ( runoffq ), and lateral or vertical drainage ( drainq ). (d) A model consisting of an Interception Storage, I1 component, that partitions incoming 
precipitation flux into an effective precipitation bypass flux ( effP ), interception storage ( 1I ), and evaporative flux (I ). (e) A model consisting of a one-pathway 
Routing, R1, component representing a single-rate streamflow routing process. (f) A model consisting of a two-pathway Routing, R2, component representing 
parallel fast and slow streamflow routing processes.
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By combining elements of both kinds, single-component and multi-compo-
nent, we can construct a variety of more complex structural architectures to 
represent different hypotheses regarding a catchment (commonly called a 
conceptual rainfall-runoff or bucket style model). In the following analysis 
we investigate and compare several different model structural hypotheses—
to distinguish them we will use a naming convention as follows: a model 
that has an interception bucket (component I1), a bucket that partitions the 
incoming precipitation excess flux into soil moisture storage and surface run-
off (component S2), and that generates streamflow via two-pathway routing 
(component R2) will be referred to as the “I1-S2-R2” model hypothesis.

2.3.  Imposing Behavioral Constraints on Model Simulations

To ensure that our model simulations are “behavioral,” we introduce the 
following constraints that restrict the allowable behaviors of the simulated 
input-state-output trajectories to be conceptually and physically realistic:

1.	 �Non-Accumulating Behavior: We will require that the storage val-
ues in any of the model buckets should not follow a progressively 
increasing trend over long periods of time (such as years). This is 
achieved by imposing the following three different requirements on 
the storage values outside the period specified for model warm up, as 
listed below and illustrated using Figures 7a–7c.

�(i)	� To ensure that water does not accumulate in a storage component at 
any significant rate, the largest yearly minimum water storage value 
should be less than the corresponding smallest yearly maximum.

�(ii)	� To ensure that the storage values do not slowly increase over long pe-
riods of time, we fit a linear regression line to the timeseries of values 
and confine the slope of this line to be within ranges that satisfy our 
(subjective) perception of plausible storage dynamics (an increasing 
or decreasing trend of 100 mm/year).

�(iii)	�To avoid situations wherein a bucket contains a relatively large amount 
of water but experiences dynamic storage variations over only a small 
range of high storage values, we constrain the ratio of the simulated 
maximum to minimum storage to be larger than some specified val-
ue (in this study we subjectively required this ratio to be larger than 
4.0). This constraint prevents cases wherein significant portions of the 
accumulated water act as “inactive storage.” For example, if the stor-
age value only varies between 1,000 and 1,200 mm, then 1,000 mm of 
stored water does not participate in the dynamics of system behavior 
while it might affect the model simulation interpretation.

�These assumptions can be seen as a stationarity assumptions on cycles of model behavior, over a year 
for example, and can be relaxed if external information or forcing that drives the system indicates other-
wise. However, removing the stationarity assumption should be done with special care, given that most 
rainfall-runoff models do not possess memory of more than one hydrological cycle (Fowler et al., 2020).

2.	 �Constraint on the relative behavior of system components: We will require that any storage having a 
“long-time-constant” (e.g., a slow-rate streamflow routing component) must drain more slowly than one 
having a “short-time-constant” (e.g., a fast-rate routing component) for equivalent values of the storage. 
An example of a violation of this constraint is illustrated in Figure 7d.

3.	 �General knowledge about processes in the system of interest: We will require that any other known 
facts (obtained for example via field studies) be imposed as constraints when known. For example, one 
may have rough estimates of the ratio of transpired to intercepted water over some extended period of 
time. In the study region, the ratio of yearly interception to total evaporation has been observed to be 

GHARARI ET AL.

10.1029/2020WR027948

12 of 35

Figure 7.  A schematic illustration of various conditions requiring 
that behavioral constraints be imposed on the model simulations. (a) A 
situation where the maximum storage value during year one (the first 
year) is less than the minimum value for another year (the third year). (b) 
A situation where the storage dynamics indicate a long-term increasing 
trend. (c) A situation where the ratio of the maximum to minimum storage 
values experienced during simulation is not sufficiently large to avoid the 
phenomenon of an inactive storage (200 mm of storage) that does not 
participate in the model dynamics. (d) A situation where the slow bucket/
component in the model react faster than the fast bucket/component for 
storage values between 4.0 and 11.00 mm.
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about 30%–50% (Gerrits et al., 2010), and we impose this knowledge as a constraint by only retaining mod-
el simulations that satisfy this ratio. If more precise information in the form of timeseries data is available, 
it can instead be used as an additional system response when inferring the forms of the MR-PPEs.

As the architectural structure of the model is made more complex, additional behavioral constraints of 
various kinds can be imposed. Examples include the relative functioning of riparian zone areas in compar-
ison to hillslopes during dry and wet periods (e.g., see Gharari, Hrachowitz, et al., 2014; Gharari, Shafiei, 
et al., 2014). Simulations that fulfill these constraints are considered to be constrained simulations.

2.4.  Measures of Uncertainty and Performance

2.4.1.  Measures of Performance

To evaluate the properties of the model simulation ensembles, we use the Kling-Gupta efficiency metric, 
EKG, proposed by Gupta, Kling, et al. (2009). EKG is calculated as follows:

   KG 1 2 31E O O O� (5)

In which the components are:

  
2

1 1 ,O� (6)

  
2

2 1 ,O� (7)

  
2

3 1O r� (8)

where   is the ratio of the simulated to observed mean (   
s o
/ ),   is the ratio of simulated to observed 

standard deviation ( 
s o
/ ), and r is the cross-correlation coefficient between the simulations and ob-

servations for a deterministic simulation. In this regard, “optimal models/simulations” are those that corre-
spond to the Pareto front formed by the three metrics, whereby no other model/simulation exists that can 
simultaneously provide better performance with regard to all three components. Such models/simulations 
are technically referred to as non-dominated solutions within the multi-objective framework. We choose 
to take the Pareto members as optimized simulations to minimize the effect of expert knowledge on the 
thresholds that are often used to identify behavioral simulations.

2.4.2.  Measure of Uncertainty

We use the distance between the 10th and 90th quantile intervals of the simulated streamflow ensemble averaged 
over all of the simulation period time steps, as an approximate measure of uncertainty of the model response:


  ,90 ,10

1

1 ( )
n

t t
t

U Q Q
n� (9)

in which Qt,10 and Qt,90 are 10% and 90% quantile values of the ensemble of simulated streamflow values at 
a specific time, t, and n is the number of time steps. To focus mainly on model structural information, we 
assume no uncertainty in the input used to force the model (precipitation and potential evapotranspiration), 
or in the system response (streamflow).

3.  Experimental Evaluation of Different Model Structures
3.1.  Experiment-1: Single-Component System Architecture

3.1.1.  Design of the Experiment

We first investigate the range of behaviors that are achievable using single-component models, S1, S2, and 
S3 (Section 2.2.1, Figures 6a–6c), that close the water balance (conservation law hypothesis).
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To enable understanding of the possible input-state-output behaviors achievable using such model compo-
nents, we impose a synthetic forcing data set consisting of three precipitation events having successive flux 
magnitudes of 20, 40, and 20 mm/day, each of 3-day duration, spaced 2 weeks apart (and repeated over and 
over again). Potential Evaporation is set to a constant value of 5 mm/day. This setup corresponds to approx-
imately 1,600 mm/y of precipitation and 1,800 mm/y of potential evaporation. To assess the informational 
value of imposing behavioral constraints (Section 2.3), we simulate each model under two different condi-
tions: (a) With no behavioral constraints imposed and (b) With all of the behavioral constraints imposed. We 
should remind the reader that the synthetic example provided here is conditional on the form of the forcing 
or input timeseries that we designed to force the model with (all of the inferences here are conditional on 
the information provided by the synthetic input/forcing).

3.1.2.  Results

Figures 8a–8c illustrates the dynamical behavior of soil moisture storage simulated by each of the three dif-
ferent single-component representations (S1, S2, and S3; see Section 2.2.1) when no behavioral constraints 
are imposed (red) and when all of the behavioral constraints are imposed (blue).

Clearly, the imposition of behavioral constraints limits the range of variation of the soil moisture storage. 
When the behavioral constraints are not imposed, it becomes possible for storage values to increase to 
large values, after which the fluctuations are relatively small, depending on the forcing, and a volume of 
“inactive storage” forms that does not participate in the further dynamics of the model. This has significant 
implications for modeling, because changes in model structure can result in different inferences regarding 
the possible state of the actual system. The formation of this inactive storage can also result in the PPEs 
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Figure 8.  (a–c) Comparison of the storage of the GB for simulations without imposed constraints (red) to simulation with imposed constraints (blue) for 
S1, S2, and S3. The right three columns zoom into 50 days of the simulations that satisfy the constraints; (d–f) soil moisture storage (or simply storage) (g–i) 
streamflow (qrunoff + qdrain) and (j–l) and evapotranspiration.
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being poorly activated across their overall range, which can make inference of the corresponding parameter 
values challenging (Figures 3b and 3c).

Figures 8d–8f compare, for S1, S2, and S3 respectively, the dynamical behavior (over a shorter period of 
time) of soil moisture storage when the behavioral constraints are imposed. Model structure S1, which is de-
pleted only by evaporation and percolation, achieves the highest dynamic range (0–80 mm) because, unlike 
the other two structures, no water is permitted to bypass the GB. Model structure S3 shows larger agility in 
reproducing the range of behaviors, as it includes all the processes represented in S1 and S2. These results 
illustrate how small increases in process complexity can increase the flexibility of a model to emulate more 
diverse system behaviors.

Figures 8g–8i compare the corresponding simulated streamflow hydrographs. Model structure S1 is an in-
finite capacity GB, from which streamflow results only due to drainage from the GB, and so the dynamics 
of streamflow are damped. In contrast, model structure S2 is a non-draining GB, from which streamflow 
occurs only due to bypass of rainfall from the GB, and therefore the streamflow response is characterized 
by periods of rapid (flashy) response interspersed with periods when streamflow is zero. As expected, the 
composite structure of S3 results in more complex streamflow behaviors (compared to the other model), 
which clearly shows the informational benefit of structural flexibility in the system.

Finally, Figures 8j–8l compare the evaporation responses of the three models. As an example, model S2 that 
only depletes by transpiration, shows decreasing actual evaporation with time after the precipitation event. 
Model S3 however, can generate conditions in which evaporation is almost zero, because the system can be 
depleted by lateral flow. Overall, as with streamflow, this illustrates that, when a particular mathematical 
form for the evaporation function is employed with different model structures, one can arrive at different 
inferences regarding how water-stressed, wet or dry, the system can be.

Figure 9 illustrates the constrained minimally restrictive PPE forms obtained for the three models with sin-
gle-component architecture. From Figures 9a–9c it is clear that the constrained forms (blue) of the bypass 
functions for models S2 and S3 are rather different, with S3 allowing a wider range of bypass function be-
haviors than model S2. Note that model S3 has two processes for emptying the storage (evaporation/deple-
tion and lateral flow/release), and more degrees of freedom are therefore expected in the process parameter-
izations. For the evaporation process, S2 has the most identifiable (constrained) process parameterization, 
because the storage in model S2 can only be reduced via evapotranspiration process (Figures 9d–9f). These 
two examples illustrate how adding processes, when there is little knowledge regarding how to constrain 
them, may result in increased uncertainty associated with the process parameterizations and their related 
parameter values. For the drainage process parameterization, which is only present in models S1 and S3, 
Figures 9g and 9i indicate that the maximum storage amount and Kr values defining the release are inverse-
ly related. While this may not be surprising, it relates to our discussion in Section 2.1.2 where we mentioned 
how the state variable of a GB can effectively behave like a flux if the Kr is set to very high values.

We emphasize here that the progressive inclusion of various processes in the three models does not neces-
sarily result in progressively reduced uncertainty bounds (ranges) on the model fluxes and states. Instead, it 
results in a “change” of uncertainty regarding the model fluxes and states.

3.2.  Experiment-2: Exploring the Information Added by More Complex Structural Architectures

3.2.1.  Design of the Experiment

In the second experiment, we investigate how the dynamical behavior of a model is shaped by changes to 
the model system architecture hypothesis (model topology, model structure). While the single-component 
models do simulate the three major processes of preferential flow, soil moisture accumulation and release, 
and evapotranspirative fluxes, more behavioral complexity can be achieved by incorporating additional 
structural components. In this experiment, we make use of a “non-draining GB” (S2; Figure 6b) that does 
not allow drainage release and construct a family of models that incorporate additional processes through 
a series of four progressively more complex system architectures.
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Specifically, the first model architecture is S2 (as described above) and this is used as our baseline. The 
second model is S2-R1 in which a simple component that performs flow routing has been added, the third 
model is S2-R2 in which components that facilitate more complex two-pathway flow routing have been add-
ed, and the fourth model is I1-S2-R2 in which a precipitation interception process has been incorporated.

All four of these models are forced with daily precipitation and potential evapotranspiration, calculated 
based on the Hamon Equation (Hamon, 1960), from the Wark Catchment in the Grand Duchy of Luxem-
bourg for three years 2005–2007 (2005 is used as a warmup period, and no behavioral constraint is applied 
to this time window). The simulations generated by these models are evaluated against observed streamflow 
data for the same period, using the performance and uncertainty metrics described in Section 2.4.

To investigate the interplay between the model system architectures and process parameterizations in more 
detail, we compare the transpiration functions associated with two model structures, S2-R2 and I1-S2-R2, 
obtained via behavioral constraining and via calibration to observed data.

To achieve these results, we need to tackle three issues as described below:

1.	 �Evaluating the information provided by 4 level of modeling hypotheses against the informa-
tion provided by the forcing data: As described earlier, forcing plays a significant role in providing 
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Figure 9.  (a–c) The active part of the MR-PPEs for bypassing rainfall, (d–f) for relating evaporation to potential evaporation and (g–i) for percolation from 
the GB to its storage, for the three single-component models, S1, S2, and S3. Red indicates the PPEs when behavioral constraints are not imposed, and blue 
represent the PPEs when constraints are imposed.
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information regarding the input-state-output mapping. A model may perform well (or poorly) mainly 
due to the behavioral nature of the inputs that it is forced with. To characterize the information provided 
by the forcing (i.e., the information provided by precipitation and potential evaporation based on tem-
perature), we first generated (samples of) all the possible streamflow sequences that can be realized by 
all possible system architectures constructed using the structural elements introduced in Section 2.2. 
These system architectures are S1, S2, and S3 and all of the corresponding variations, SX, SX-R1, SX-R2, 
I1-SX-R2. In principle, there can be an infinite number of possible system architectures, and a variety of 
minimally restrictive PPE forms that are more complex than those used in this study. The ensemble of 
all the possible model structures can provide a baseline for assessing what effects the forcing can have.

2.	 �Contrasting the information provided by conventional and minimally restrictive PPEs: To 
compare the difference in information provided by the conventional rigidly pre-specified PPEs (CRP-
PPEs) with that provided by the MR-PPEs, we use the MR-PPE framework to recreate the simpler forms 
of the CRP-PPEs to ensure a consistent numerical implementation. For the threshold-like CRP-PPE of 
the interception bucket, we design the MR-PPE to fully store water, so that when the maximum capacity 
is reached the incoming extra fluxes are bypassed (i.e., the bypass is always set to 0 except when storage 
exceeds the scale parameter,  ,

scale
Aa b ). For soil moisture, the bypass function is based on the power function 

commonly used in bucket style models, in which the ratio of soil moisture to maximum soil moisture 

capacity is used (





 
 
 
 ,

scale
Aa b

S
, 0 < β < 4 for S <  ,

scale
Aa b ). The fast and slow routing components, R1 and R2, 

both are constrained to have linear behavior ( low =  high) and are sampled from a logarithmic space 
(Figure A1f).

3.	 �Unifying the comparison of process parameterization values across different system architec-
tures: In model I1-S2-R2, transpiration from S2 is limited by the potential evaporation value depleted 
by the interception flux (Ep-I). To ensure a one-to-one comparison for models having and not having an 
interception component, we recompute the ratio of transpiration from S2 based on (Ep-I)/Ep for every 
time step for models S2-R2 and I1-S2-R2. As an example, for a given time step, if Ep is set to 3 mm day−1, 
the interception flux is 2 mm day−1 and the transpiration to potential evaporation ratio is 1.0 so that, 
assuming no water limitation, transpiration flux should be 1 mm day−1. The recomputed transpiration 
ratio is adjusted by a factor of (Ep-I)/Ep which is 1/3 for this example, and hence the “effective” value of 
Kd for transpiration is 1/3 instead of 1. This rescaled transmission values, Kd, are then comparable to that 
for a model that does not include the interception process. Similarly, to permit a one-to-one comparison 
of how much water bypasses S2 in the model I1-S2-R2 with that for model S2-R2, we recompute the ratio 
of bypass to effective precipitation (Peff/P).

3.2.2.  Results

Figure 10 illustrates the progressive change in uncertainty of the simulated streamflows, where the darker 
blue shading indicates the 10%–90% quantile intervals; the benchmark uncertainty associated with the forc-
ing and the ensemble of all possible system architectures, SX, SX-R1, SX-R2, I1-SX-R2, considered here is 
shown in lighter blue. The red line indicates the observed streamflow values.

Figure 10a shows the results for model S2, which lacks a proper routing component and therefore generates 
a very flashy streamflow behavior during rainfall events, and no flow on days without precipitation. This ar-
chitecture reduces the average uncertainty, U (see Equation 9), from 2.8 mm (light blue envelope) to 1.0 mm 
(dark blue envelope), but clearly does not represent the observed sequence of flows very well. As soon as a 
routing component is included (model S2-R1), the envelope of model simulations (Figure 10b) more closely 
reflects the behavior of the observed hydrograph (mainly during higher flow events), while the average un-
certainty increases from 1.0 mm (model S2) to 1.9 mm (of course it is still smaller than the 2.8 mm).

This example nicely illustrates the trade-offs between uncertainty and performance that can occur as we 
vary the system architectural hypothesis. In this case, adding further structural elements (models S2-R2 and 
I1-S2-R2) progressively reduces the uncertainty from 1.9 to 1.5 mm and 1.3 mm, respectively (Figures 10c 
and 10d).
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Next, we examine the EKG component metrics 1O , 2O , and 3O  discussed in Section 2.4.1. Figures 11a–11c 
show metric boxplots for the MR-PPE ensembles generated using each model structure. Clearly, the general 
move is toward better overall performance (0.0 is best for all three metrics) as more structural elements are 
added. Adding the interception module (I1-S2-R2), clearly results in improved water balance performance 
(Figure 11a), as the model now has more ways of losing water. While this seems to be accompanied by a 
slight decrease in the ability to reproduce streamflow variability, the observed decrease is not significant.

Figures 11d–11f show corresponding plots obtained when the conventional approach of using de-
terministic fixed mathematical forms for the process parameterization equations is employed in-
stead and the parameters are sampled over the full extent of their feasible ranges. Note that use of 
fixed mathematical forms amounts to providing very strong constraints on possible model behav-
iors (strong prior information). In this case, the main impact is seen in terms of the abilities of the 
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Figure 10.  The model simulation envelope (10–90 percentile) for streamflows simulated by models (a) S2, (b) S2-R1, (c) S2-R2, and (d) I1-S2-R2 (darker blue) 
in comparison with benchmark uncertainty associated with the forcings and all possible system architectures considered here (lighter blue).

Figure 11.  Plots comparing model performance (in terms of the EKG component metrics 1O , 2O , and 3O ) obtained using 
the MR-PPE approach (left column) and a conventional PPE or CRP-PPEs approach (right column). In each case 0.0 
indicates best possible performance. The top row presents 1O , which is associated with overall long-term water balance 
for (a) MR-PPEs and (d) CRP-PPEs. The middle row illustrates 2O  which is associated with streamflow variability for (b) 
MR-PPEs and (e) CRP-PPEs. The bottom row shows 3O  which is associated with cross-correlation between simulated 
and observed streamflows for (c) MR-PPE and (f) CRP-PPEs.
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models to simulate the overall long-term catchment scale water balance (compare Figures 11a–11d), 
with no major impacts on variability and correlation.

It should be borne in mind that the “improvement” shown here is mainly a result of the fact that our imple-
mentation of the MR-PPE approach included only a limited set of PPE samples (1000) drawn from a very 
high-dimensional space of possible PPE forms. As such, the sample of CRP-PPE forms being compared with 
here can be considered as being a subset of the forms that can be constructed using the MR-PPE approach. 
So, what has actually been gained by using the CRP-PPE forms is that a very strong informational prior has 
been imposed, restricting the possible PPE forms that to a sub-region of the overall MR-PPE space, thereby 
improving the chance of selecting PPE forms that provide “good” model performance.

This result illustrates a limitation of our methodology—more exhaustive sampling should result in MR-
PPE ensembles that include the CRP- PPE ensembles as a subset, whereas use of CRP-PPE forms reduces 
the space to be searched and therefore considerably reduces the computational demands associated with 
selection of PPE form. On the other hand, the MR-PPE approach provides more flexibility in selection of the 
PPE forms, with the potential to obtain a better representation of process behaviors and consequent overall 
system response.

It can be argued that our implementation of the MR-PPE approach reported here has been insufficiently 
well constrained using prior expert knowledge regarding process behavior (we did this for the purposes of 
illustration and investigation) and that a better compromise could perhaps be achieved by either (a) impos-
ing more constraints on the MR-PPE form, or (b) starting with CRP-PPEs and progressively relaxing their 
structural forms to enable more flexibility in functional representation. For now, these remain as areas for 
future investigation.

Figure 12 shows how the overall ensemble envelope of streamflow simulations progressively changes as 
information is added at each level of model building. The lightest shade of blue represents the benchmark 
streamflow simulation uncertainty (determined by the forcings and the ensemble of all possible system ar-
chitectures considered). The I1-S2-R2 structural hypothesis with MR-PPEs (second-lightest shade of blue) 
results in considerable reduction of the widths of the uncertainty ranges. When strong prior information 
about the forms of the PPEs is imposed—the MR-PPEs are replaced with CRP-PPEs (second-darkest shade 
of blue)—the widths of the uncertainty bounds are further significantly reduced during the relatively dry 
period (days 550–675), but not as much during the relatively wet period (days 675–750).

In general, for all three of these cases the uncertainty bounds bracket the streamflow observations specified 
in red except a few days around day 730. When the multi-objective calibration method is used to further 
constrain the parameters of the conventional PPEs (darkest shade of blue), we see that the uncertainty 
bounds no longer bracket the observations at all times, indicating that the model has become over-con-
strained (or over-confident).

As a practical matter, while it might be expected that the ensemble of streamflow simulations at each 
progressive modeling step should be contained within the benchmark uncertainty ensemble (i.e., every 
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Figure 12.  Progressive change in the 10–90 percentile streamflow intervals during the model building process. The 
lightest blue represents the benchmark ensemble of model simulations provided by the forcing only (conforming 
with conservation principles using all possible system architectures and MR-PPE forms considered here for models 
SX, SX-R1, SX-R2, I1-SX-R2). The next darker blue represents model I1-S2-R2 using minimally restrictive PPEs. The 
next darker blue represents the use of conventional process parameterization equations (CRP-PPEs). The darkest blue 
represents the behavioral simulations associated with the Pareto members obtained via calibration.
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system architecture is contained within the ensemble, as illustrated in Figure 2e), the need to sample in 
high-dimensional spaces makes this difficult to demonstrate perfectly. Of course, this issue also exists when 
using conventional PPE forms. This should be borne in mind when examining the figures presented.

Figure 13 illustrates the interplay between uncertainty and overall model performance as information is 
added during the model building process and the model structural hypothesis becomes progressively more 
complex. Here uncertainty is quantified as the average (over all time steps) width of the 10%–90% quantile 
intervals, while performance is quantified using 1 KGE , where 

KGE  is the average KGE  value taken over all 
ensemble members (best possible value is 0.0).

Adding a single-rate routing component to the single-component model S2, thereby obtaining model S2-
R1, results in larger simulation uncertainty, but considerable improvement in average overall performance. 
Changing the routing scheme to a more complex one, having fast and slow pathways for flow (S2-R2), only 
slightly improves overall performance but does reduce the simulation uncertainty a bit. Further adding an 
interception component (I1-S2-R2) results in a significant improvement in performance, and some addi-
tional reduction in uncertainty.

This model development process could be continued by adding additional information in the form of 
hypotheses regarding system architecture and/or PPEs, with the goal of moving closer to the origin in 
Figure 13 (into the lower left-hand region indicated by the light gray box). At any point, the modeler can 
choose instead to use inverse procedures (calibration) to further constrain the model ensemble.
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Figure 13.  The effect of progressively adding information, in the form of structural elements, on both performance 
and uncertainty as the model system architecture is changed. If there is no further information to improve the model 
system architecture or process parameterization beyond that represented by the most complex model, I1-S2-R2, any 
possible solution in the area identified by the gray rectangle is unsupported by available knowledge and can only be 
inferred based on calibration to the observations. Point B represent a specific case where a single model simulation 
is chosen as behavioral via single objective calibration; in this case the apparent uncertainty is artificially (and 
unjustifiably) suppressed to be zero.
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For illustration, we used calibration to select a single “best” model (a single parameter set) that gives the 
closest match to the observed streamflow data in terms of KGE . Since this results in a deterministic rep-
resentation of the system, we arrive at the point marked “B” where  0.75KGE  (  1 0.25KGE ) and uncer-
tainty is zero. This further illustrates a point that should be kept in mind when interpreting Figure 13, which 
is that performance and uncertainty clearly do not represent “independent” aspects of model behavior; i.e., 
the fact that model performance is not perfect (  1KGE ), while uncertainty is reported as being zero, indi-
cates that we have over-constrained the model by adding “too much information” (first through the choice 
of conventional PPE forms and then through calibration on observed timeseries such as streamflow).

Accordingly, while real uncertainty continues to exist (as evidenced by the fact that the model does not 
perfectly reproduce the observations), the incorporation of “bad” information—by imposing overly strong 
restrictions on the PPE forms and by selecting only a single corresponding parameter set—has reduced the 
“apparent” simulation uncertainty to zero while not continuing to bracket (i.e., exactly match) the observed 
data. In other words, we have replaced simulation uncertainty with model structural overconfidence (an 
insidious form of model structural inadequacy).

It should also be kept in mind that the points representing each model in Figure  13 are not associated 
with “deterministic” models. By applying bootstrapping when computing the performance metric, and by 
considering input and response data uncertainties, neither of which was done here, each such point would 
actually be replaced by a fuzzy region (probability density) in the performance/uncertainty space.

Finally, we compare the process parameterization equation values obtained for two different system archi-
tectures, model structure S2-R2 which has no interception component, and I1-S2-R2 which does. Specifi-
cally, we look at the ratio that the process parameterization equation yields over the course of simulation 
for (a) transpiration from soil moisture and (b) water bypassing the soil moisture storage. In all cases, we 
examine only the functions obtained for the simulations that both satisfy the behavioral constraints and that 
lie on the Pareto Optimal frontier obtained by subjecting the simulation to streamflow observation (calibra-
tion). To enable one-to-one comparison across system architectures, the I1-S2-R2 actual transpiration to 
potential evaporation ratio is rescaled based on precipitation and total potential evaporation.

The first row of Figure 14 is for the evapotranspiration process parameterization from the soil moisture 
GB of model S2-R2. Subplots 14a and 14b are identical as recomputing the ratio of actual transpiration 
to potential evaporation has no effect for this model structure that lacks the canopy interception process 
(the ratio of actual evapotranspiration to potential evaporation follows the MR-PPEs). Corresponding to 
these, subplot 14c shows how often a particular ratio of actual transpiration to potential evaporation has 
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Figure 14.  Model S2-R2 Evapotranspiration: (a) The minimally restrictive PPEs that are Pareto members and that satisfy all the constraints for 
evapotranspiration without recomputing to total potential evaporation; (b) Recomputed MR-PPE evaporation to total evaporation; (c) The frequency of days 
that a process parameterization for transpiration yields a value for the period of modeling. Model I1-S2-R2 Evapotranspiration: (d) The minimally restrictive 
PPEs that are Pareto members and that satisfy all the constraints for evapotranspiration without recomputing to total potential evaporation; (e) Recomputed 
MR-PPE evaporation to total evaporation; (f) The frequency of days that a process parameterization for transpiration yields a value for the period of modeling.
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been activated; for example, the transpiration ratio to potential evaporation was ∼0.8 on about 700 days in 
the simulation period. The dashed line indicates the average ratio to potential evaporation value over the 
entire period.

The second row is for the evapotranspiration process parameterization of model I1-S2-R2 in which in-
terception is also present and therefore the ratio of actual evaporation to potential evaporation different 
from values from MR-PPEs. Subplot 14d shows the MR-PPEs for transpiration, while subplot 14e shows 
the recomputed profile based on potential evaporation accounting for the effect of interception flux 
on the evapotranspiration. Notice, from the recomputed profile (Figure 14e), that the effect of interde-
pendence between the transpiration and interception model components is now apparent, whereby a 
given value of potential evaporation and soil moisture storage does not map to a unique value of com-
puted transpiration—there is an additional dependence on the amount of water evaporated from the 
interception storage (which reduces the demand on transpiration from the soil moisture storage). The 
consequence is that the distribution of days with similar ratio of transpiration to potential evaporation 
values has been dramatically altered, and the average ratio over the period is now only ∼0.35. Clearly, 
this kind of interdependence must be accounted for when comparing different kinds of model structural 
hypotheses.

The first row of Figure 15 is for the bypass process parameterization of model S2-R2. Again, subplots 15a 
and 15b are identical, as the recomputed ratio of bypassed water to total precipitation has no effect, while 
subplot 15c shows how often a particular bypass ratio (ratio of bypassed water to precipitation) has been 
activated on average (around 0.4). The second row show corresponding results for model I1-S2-R2. Similar 
to the transpiration process the effect of process interdependence is again apparent, illustrating the fact that 
the dependence of estimates of bypass flow (macropore flow for example) from different model structural 
hypotheses should be interpreted in the broader context of processes that have been included/excluded. For 
example, this dependence of computed flux values on the complexity of the model structural hypothesis 
can have significant implications when coupling surface hydrology models with subsurface/groundwater 
models.

Another noteworthy aspect of subplots 15a and 15d (also 15b and 15e) is the apparent threshold-like nature 
(S-curve shape) of the inferred forms of the bypass process parameterization. This form is compatible with 
expert knowledge of the Wark Catchment, where a fill and spill mechanism has been observed to occur at 
the hillslope scale (Matgen et al., 2012; Tromp-van Meerveld & McDonnell 2006; Westhoff et al., 2011). Here 
we see that a similar mechanism may conceptually be inferred to be operating at the larger catchment scale. 
The inference becomes increasingly difficult when the system architecture becomes progressively more 
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Figure 15.  Model S2-R2 Bypass: (a) The minimally restrictive PPEs, that are Pareto members and satisfy all the constraints for the bypass without recomputing 
to total precipitation; (b) Recomputed MR-PPE bypass to total to total precipitation; (c) The frequency of days that a process parameterization for transpiration 
yields a value for the period of modeling. Model I1-S2-R2 Bypass: (d) The minimally restrictive PPEs that are Pareto members and that satisfy all the constraints 
for the bypass without recomputing to total precipitation; (e) Recomputed MR-PPE bypass to total to total precipitation; (f) The frequency of the days that a 
process parameterization for bypass yields a value for the period of modeling.
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complex (for example moving from P2-R2 to I1-P2-R2), and indicates the kind of challenge that a modeler 
may face when incorporating information into parameters and process parameterization of a complex mod-
el via calibration.

4.  Summary, Discussion, and Implications for Future Work
4.1.  Summary

In this work, we have investigated how the progressive steps in model development (including impos-
ing behavioral constraints on model behavior, and ultimately model calibration to data), can impact the 
uncertainty and performance of model simulations as compared to the observed system responses. In 
particular, we have explored how the progressive addition of information (in the form of model structural 
hypotheses) can increase, decrease, or alter our uncertainty regarding the input-state-output behavior of 
a system.

This paper may be interpreted as call to shift the focus of model calibration from a search over “parameter 
spaces” to a search over “function spaces.” It is known that the best performing parameter set based on con-
ventionally used evaluation metrices may not result in the most hydrologically appealing simulation (An-
dréassian, Le Moine, et al., 2012; Beven, 2006), and hence we should strive to find those parameter sets that 
are hydrologically “behavioral”. The same can be said about the process parameterizations, where a priori 
assumptions regarding the forms of the process equations may not represent the most appropriate forms in 
the context of a model implemented at a given scale. By introducing the concept of “minimally restrictive 
process parameterization equations,” or MR-PPEs, we have shown how the flexibility of process representa-
tions in models can be enhanced. This enables an investigation of the role that the system architecture 
hypothesis plays in determining model behavior, helping to reveal the complex process-level interactions 
that can occur (even in relatively simple models) as the system architecture is altered. The presented con-
cept of MR-PPEs can be expanded to energy and momentum formulations in more complex models which 
can have profound implications for model uncertainty and sensitivity analysis. The MR-PPEs can play a 
significant role in assessment and quantification of, often inseparable, forcing uncertainty, model structural 
uncertainty and parameter uncertainty (Montanari & Koutsoyiannis, 2012). Whilst this study is not focused 
on machine learning, the presented MR-PPE can enable process-based modelers to benefit from the recent 
wave of ML techniques to learn from data.

4.2.  Discussion

4.2.1.  Implications to Model Implementation at Scale

Our study results have several implications for hydrological modeling practice. First, we have seen that 
the choice of system architecture hypotheses can substantially influence the forms that should be adopt-
ed for the PPEs in order to obtain behavioral input-state-output simulations. In current hydro-meteoro-
logical modeling practice, the true nature of our lack of knowledge regarding the appropriate forms of 
the PPEs is seldom represented. In general, we use a priori fixed functional forms for the PPEs, where the 
only flexibility available to the model is via adjustment of the parameter values within some predefined 
feasible space.

For example, transpiration is commonly represented in land models using a fixed formulation (such as the 
Penman-Monteith equations using Jarvis-type stomatal resistance terms), whose parameters values can 
often be difficult to specify from the available physical information on catchment attributes. Further, this 
lack of flexibility in functional choice does not take into consideration the manner by which the processes of 
canopy interception or subsurface flow are represented in the model. Specifying a fixed functional form im-
poses very strong restrictions on process behavior that may be difficult to defend given current knowledge 
of the system to which the model is being applied (Mendoza et al, 2015). By implementing a deterministic 
formulation, we are failing to represent the uncertainty of our knowledge of catchment scale transpiration 
behavior for the specific catchment of interest. This can result in systematic time-varying biases in the 
simulated input-state-output trajectories. To compensate for this, we may be forced to alter (increase) our 

GHARARI ET AL.

10.1029/2020WR027948

23 of 35



Water Resources Research

posterior representation of parameter uncertainty, and even this may not help to resolve the problems with 
systematic bias.

In this regard, we note that selecting parameter values should be based on the following considerations:

�(1)	� Different models may be based on different system architectural hypotheses, which control the scales 
at which the system processes are being represented and whether or not various important system pro-
cesses are being represented.

�(2)	� Appropriate selection of the forms for the PPEs is necessarily conditional on the system architecture 
(and its resulting effects on operational scale and process description).

�(3)	� The meaning/interpretation of parameters in the PPEs is conditional on the system architecture, and 
necessarily varies across models with different system architectures.

So, while process modelers should, and do, attempt to parameterize system processes in such a manner that 
the associated parameters are physically meaningful entities that are related (in principle) to actual physical 
properties of a given location, the connection between those parameters and meaningful properties of the 
physical system becomes somewhat less definitive when the equations are implemented into a hydrological 
model at scale. This issue clearly applies to the practice whereby parameter values for models implemented 
at some larger-scale are inferred from lookup tables that were in turn inferred from small-scale experiments.

4.2.2.  Implications to Specification of Process Parameterization Form

Second, we have seen that imposing reasonable behavioral constraints based on expert knowledge can dra-
matically constrain the space of feasible PPE forms—and thereby the space of feasible input-state-output 
solutions. When used in conjunction with minimally restrictive PPEs, we can obtain insights into what 
functional forms are plausible for the process parameterization (at scale and consistent with the selected 
system architecture). Such insights can be used to guide the design/selection of conventional (fixed) for-
mulations for the process parameterization hypothesis. Coupled with supportable hypotheses regarding 
system architecture, this may support better understanding of how the associated processes function at 
scale, which in turn may help to reduce the problem of systematic time-varying biases in the simulated 
input-state-output trajectories, and the associated need for model-correction/state-updating via data as-
similation. Hopefully this will also pave the way for having flexible system architectures, and also process 
parameterizations that allow for a model to be used at any place (models of everywhere; Blair et al., 2019).

4.2.3.  Implications to the Practice of Model Calibration via Parameter Optimization

Third, we noted during Experiment-2 of this study that a simple model architecture based on only two GB's 
(representing catchment storage and routing) is able to result in model performance (assessed in terms of 
the EKG metric components) that is as high as that previously achieved using a more complex model applied 
to the catchment of interest. This illustrates the fact that use of model calibration/optimization to push the 
envelope of model performance may result in models with a variety of system architectures being able to 
excel in terms of performance metrics, while in no way guaranteeing that their internal representation of 
process dynamics is reliable and can be used to inform decision-making that requires model-based esti-
mates of unobservable quantities. As a relatively simple example, the inclusion/exclusion of an interception 
component dramatically altered the model-based inferences of evapotranspiration rates from soil moisture 
storage.

So, while calibration can be a useful step in model development, it is worth questioning whether the re-
sulting models (and associated model parameter values) can be the basis of very strong inference regarding 
the underlying physical properties of the system. Further, the potential value of using “uncalibrated” but 
behaviorally constrained models in combination with calibrated models should not be overlooked.

4.3.  Implications for Future Work

Here, we briefly discuss several potential avenues for exploration that were not pursued in this paper, and 
which may motivate future studies. These avenues are discussed in the context of the research questions 
posed in Section 1.2:
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4.3.1.  What Information Does Each Level of Model Building Add in a Modeling Exercise?

In this study we investigated the nature of added information for a specific type of environmental mod-
el—namely the bucket style rainfall-runoff model. Similar strategies can be applied to a range of models 
constructed based on various modeling philosophies (e.g., process-based models that conserve energy and 
momentum). Despite existing efforts (see Loritz, Hassler, et al., 2017; Or et al, 2015; Vogel & Ippisch, 2008, 
as examples), it is of interest to know whether commonly used formulations such as the Richards Equation 
and its associated uncertainties can be inferred at the scale of interest (and to what degree). Similar concepts 
can be used to study the effects of system architecture in more complex models (Medici et al., 2012). Pre-
liminary analysis of a semi distributed model using the minimally restrictive PPE concept can be found in 
Chapter 6b of Gharari (2016); for the sake of brevity, we have limited this current study to spatially lumped 
models. Given the recent focus on hyper resolution modeling (Maxwell et al., 2015; Wood et al., 2011), it is 
of interest to investigate, using the concept of MR-PPEs, how much information is actually gained from the 
use of assumptions imposed as distributions instead of by resolving the processes at finer model resolutions 
(for a debate on this, please refer to Beven et al. [2015] and Melsen et al. [2016]).

4.3.2.  Given a Particular Model Architecture, What Mathematical Forms for the Process 
Parameterization are Consistent With the Information Contained in the Observed Data?

As shown in the experiments of this study, the choices made regarding system architecture will significant-
ly affect the appropriate forms of process parameterization equations to be used in a model. The MR-PPE 
concept can enable modelers to investigate whether or not an assumed functional form, such as the widely 
used van Genuchten formulation (van Genuchten 1980), can in fact successfully represent the intended pro-
cess, given the system architecture specified for a system. In this regard, MR-PPE formulations can be con-
structed with various degrees of freedom enabling them to span the spectrum of process parameterizations. 
Further, while this study only investigated simple representations wherein each process was conditioned 
on only a single state variable value, in general we might expect that such functional relationships can be 
multi-variate. Similarly, inclusion of more degrees of freedom when creating the process parameterizations 
(e.g., incorporating hysteretic components) may enable representation of the effects of small-scale processes 
(such as wetting and drying of soil) at the scale of the model (Appelbe et al., 2009; Gharari & Razavi, 2018; 
O'Kane & Flynn, 2007). Given that the PPEs must necessarily reflect uncertainties in knowledge of sub-el-
ement scale heterogeneities, one might expect such representations to take probabilistic functional forms 
(Riihimäki & Vehtari, 2010).

Accordingly, the use of large-sample databases and studies (Addor, Newman, et al., 2017; Duan et al., 2006; 
Knoben, Freer, Peel, et al., 2020; Mathevet et al., 2020) is necessary to enable such understanding of the 
process parameterization for larger spatial domains. The growing existence of other sources of information, 
such as remotely sensed products, may also prove to be helpful to the task of reconstructing PPE forms at 
the desired scale. While it has been suggested that inclusion of remotely sensed data can help to reduce 
modeling uncertainties (Crow et al., 2003; Livneh & Lettenmaier, 2012; Nijzink et al., 2018), such reports 
have typically been based on the development of process parameterizations for a single specific system re-
sponse (such as runoff). It will be useful to investigate whether or not the information provided by remotely 
sensed data can, in fact, help to constrain a formulation based on use of minimally restrictive PPE forms 
and what those forms will become.

This study did not delve into spatially distributed models. In general, parameter specification can be based 
on a “Property to Parameters Hypothesis (P2P)” that relates the parameter values to material and geometrical 
properties of the system proposed (Götzinger & Bárdossy, 2007; Parajka et al., 2005). This set of hypotheses 
also imposes a form of model regularization. It is currently poorly understood which catchment character-
istics add the most value to a regionalization effort. For example, while Samaniego et al. (2010) proposed a 
transfer function approach for upscaling model parameters based on soil characteristics, others report not 
finding such a strong correspondence (Addor, Nearing, et al., 2018; Merz et al., 2020; Oudin et al., 2010; Ta-
fasca et al., 2020). The fact that the P2P hypothesis can be subject to significant uncertainty has been largely 
ignored in the literature. The concept of MR-PPE's may facilitate investigation into whether or not the 
often-assumed formulations of property to parameter and subsequent regionalization can be reproduced at 
the scale of interest (while considering associated uncertainties).
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Of course, we expect that machine learning can play an important role in developing strategies to identify the 
MR-PPEs conforming to a particular model architecture and/or given application. In general, the efforts to in-
corporate machine learning into the Earth Sciences tend to be focused on: (a) learning directly from the data 
instead, without presence of a hydrological model (Addor, Nearing, et al., 2018; Stein et al., 2021) and/or (b) 
replacing an entire physics-based model, or its internal sub-structures or processes, with machine learning com-
ponents (Bennett & Nijssen, 2020). The latter approach can benefit from the idea of minimally restrictive process 
parameterization equations (MR-PPEs) presented in this work, and is consistent with recent calls for process 
modelers to play a more active role in the use of machine learning for scientific discovery (Nearing et al., 2021).

Additionally, using machine learning, modelers can explore the degrees of freedom to which a MR-PPE 
should be exposed. This can enable more efficient exploration of the range of model structural architectures 
and process parameterizations and may help avoid unnecessary complexity in both the system architecture 
and the process parameterization equations. This is aligned with the concept of parsimony (or Occam's 
razor; Jakeman & Hornberger, 1993; Jakeman et al., 2006; Weijs & Ruddell, 2020). The MR-PPEs and their 
various form can also help understand the inherent uncertainties in Earth System Modeling.

4.3.3.  How Uncertain are the Inferred PPEs, and How Does that Uncertainty Affect the Model 
Generated Simulations and Model Internal Behavior?

It is also important to develop strategies to account for the fact that the minimally restrictive PPEs will 
typically not be “properly” sampled over their entire behavioral ranges. Of course, this issue also arises for 
conventional PPEs where the marginal distribution of parameter uncertainty may result in only portions of 
the model space being extensively sampled. This will require the development of new families of optimiza-
tion/search algorithms, that are capable of efficiently searching over functional spaces. In turn, this requires 
methods for developing, and sampling from, families of minimally restrictive PPEs that are consistent with 
known principles of physics (conservation, thermodynamics, etc.). Such PPE families will likely need to be 
constrained via the imposition of smoothness (capacity) and monotonicity constraints, while also permit-
ting thresholding and saturation behaviors to be efficiently represented.

In regard to the information content of data sets, it is important to note that the overall identifiability of a 
model is strongly conditioned by the nature of the input forcing data and observed system response (Kavet-
ski, et al., 2006; Vrugt, ter Braak, et al., 2008). As an exaggerated example, one can expect that the plausible 
range of input-state-output trajectories will increase when the data uncertainties are larger. Without loss of 
generality, the case studies presented here can be revisited by assuming an input uncertainty distribution, 
and by the use of likelihood measures to assess model performance; for a preliminary investigation see 
Chapter 6 of Gharari (2016). The MR-PPE concept can provide a platform for investigating the old debates 
regarding the dominance of model structural uncertainties or input uncertainties. Note that inferring the 
true nature of input and output data uncertainty cannot be achieved via the modeling exercise itself and 
must therefore be performed by examining the inherent uncertainties associated with the measurement 
techniques used (fully separate from the modeling hypotheses).

4.3.4.  What is the Effect of Additional Behavioral Constraints (Additional Information Beyond 
That Provided in the Form of the Aforementioned System Hypotheses), Imposed as Modelers' 
Decisions, on the Nature of the Model Simulations?

Obtaining data sets that are informative about the forms of PPEs but that do not strongly influence stream-
flow, and instead control other aspects of the system response, can be a challenge. This is akin to the pa-
rameter identifiability problem associated with model calibration to estimate parameter values (Guillaume 
et al., 2019). For example, data is often not available to unambiguously constrain the partitioning of the 
precipitation flux into evaporation, transpiration, soil moisture, drainage to groundwater, and streamflow. 
As pointed out by Andréassian, Perrin, and Michel (2004), evaporative fluxes are generally inferred as the 
by-product of attempts to properly simulate streamflow (and thereby infer soil moisture). Further, remotely 
sensed transpiration product that might be used to constrain model responses are themselves the outputs of 
other models—often land [surface] models with their own hard-coded process parameterizations, param-
eters and assumptions, which increases the challenge of properly identifying the internal states and fluxes 
(Khatami et al., 2019).
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In this regard, the use of behavioral constraints based on expert knowledge can serve as a form of “soft” 
regularizing information to enhance identifiability of the model parameterizations resulting in forms that 
are at least plausible while remaining consistent with the input-output data. Although suggested almost 
two decades ago by Seibert and McDonnell (2002), the development and use of such behavioral constraints 
is still largely missing from current hydrological modeling practice. Similarly, the interaction of “expert 
knowledge” in conjunction with various system architecture hypotheses is not very well explored (includ-
ing, despite recent efforts, a “comprehensive” assessment of uncertainty and feedback processes). It is, for 
example, desirable to know how the observed threshold behaving fill and spill mechanism is translated into 
the form of a process parameterization (second experiment from this study). In the process of this evolving 
perspective on how to develop improved scientific understanding of hydrologic systems, we hope that this 
paper will inspire modelers and experimentalists to collaborate more closely, thereby learning from each 
other and improving the transfer of hydrological knowledge among them. Such a dialog will eventually 
improve understanding of the extent to which various processes can be successfully incorporated into the 
models we work with, which in turn will provide us with strategies to balance the resources spent on data 
collection effort alongside the modeling efforts.

5.  Conclusions
The problem of designing an appropriate model-based representation of the processes governing the hy-
drological responses of a watershed is challenging. It can therefore be helpful to characterize the model 
development process as a hierarchical sequence of conditional hypotheses, beginning with the conservation 
law and system diagram hypothesis, and proceeding through the steps of system architecture specification, 
process parameterization specification, and parameter specification. Moreover, viewing the development 
process as progressively adding information to constrain model structural and behavioral uncertainty can 
help in diagnosing where and how “bad” information is being incorporated, leading to model structural 
inadequacy (Gupta, Clark, et al., 2012). Given modern computing power, it is (in principle) now possible to 
acknowledge the uncertainty in our hydrological knowledge and to “err on the side of caution” by adopting 
a maximum entropy approach to model development (Jaynes, 1963; Zehe, Ehret, et al., 2014), wherein we 
do not impose excessively strong prior information in the form of pre-specified deterministic forms for the 
process parameterization equations. At the same time, we can acknowledge and exploit the power of soft 
information in the form of reasonable and plausible behavioral constraints.

Our results suggest the following broader considerations:

1.	 �The system architecture aspect of model structure design, including its scale related and process inclu-
sion/exclusion considerations, can be as important, if not more so, than the issues of process parame-
terization equation selection and parameter specification. It seems important to reemphasize the value 
of spending more attention on the problem of system architecture and process parameterization iden-
tification and less on the problem of parameter identification. Subsequently, more of the efforts from 
uncertainty and sensitivity of parameters should be focused on process parameterization equations and 
system architectures.

2.	 �Process parameterization equations should be treated as conditionally dependent on the system archi-
tecture selected for a given application. If there is reason to believe that a particular process param-
eterization equation form is definitively appropriate at a given spatiotemporal scale, then the system 
architecture should be selected in a way that is consistent with both the scale and also the process pa-
rameterization hypothesis.

3.	 �The relative identifiability of the process parameterization equation forms can be strongly dependent on 
the degree of activation of the corresponding process, and such activation will rarely (if ever) be uniform 
across its behavioral range. Accordingly, we may have more confidence regarding the form of the process 
parameterization equation along some portions of its conceptual range and considerable uncertainty 
along other parts. Such uncertainty should, in principle be projected into the state and output spaces.

4.	 �The use of “soft information” in the form of simple behavioral constraints on internal model behaviors, 
based in hydrologically informed knowledge, can help to dramatically increase the identifiability of the 
model state and output spaces and hence facilitate developing a “fidelius” model.

GHARARI ET AL.

10.1029/2020WR027948

27 of 35



Water Resources Research

5.	 �Model calibration, in the traditional sense of optimization to minimize a cost function, should only 
be used as an adjunct to the other stages of physical-conceptual model development. However, done 
correctly, with appropriate attention to proper imposition of prior knowledge in the development of the 
model structural representation, calibration of parameters can be replaced by inference of the form of 
the process parameterization equation (e.g., using machine-learning).

It is our hope that this study can inspire future work on how best to combine prior knowledge about the sys-
tem of interest with the capabilities of machine learning to extract patterns from data. Despite the increas-
ing attention toward application of machine learning in hydrological modeling, we still see a substantial 
philosophical chasm between those engaged in process-based modeling and those engaged in data science. 
On the one hand, the process-based modeling approach often results in time-stepping simulation models 
that are based in strong (and often rigid) hydrological hypotheses, assumptions and empirical formulations 
(e.g., see Clark, Schaefli, et al., 2016). Consequently, the hypotheses embedded in process-based models may 
be weak (e.g., not generally applicable), and the process parameterizations and parameters in models may 
be overly specific (see Mendoza et al., 2015). On the other hand, the machine learning approach focuses on 
extracting patterns from large datasets (e.g., Kratzert et al., 2019), thereby advancing traditional research 
in comparative hydrology (Gupta, Perrin, et al., 2014). Arguably, the promise of machine learning—that of 
learning from data—has yet to be realized, and current data science implementations have yet to demon-
strate the ability to improve explanations (theories) of hydrologic processes. Recent developments in in-
terpretable machine learning (e.g., Molnar et al., 2018; 2019) and explainable artificial intelligence (e.g., 
Arrieta et al., 2020) have the potential to enables data-driven discoveries within the context of process-based 
hydrologic models, bridging the gaps between data science and process-based hydrologic modeling. We 
hope that this paper will motivate additional efforts to integrate data science into process-based modeling 
studies, thereby strengthening the theoretical underpinnings of our models and improving our confidence 
in model predictions.

Appendix: 
Appendix A.  The Construction of Minimally Restrictive Process Parameterization Equations 
(MR-PPE)

A monotonically non-decreasing minimally restrictive process parameterization, MR-PPE, is a randomly 
generated function that projects X  [0 1] into Y  [0 1]. The algorithm used in this study is described 
below:

1.	 �Divide the X space into a finite number of points from 0:1, in steps of 0.05, and create the set of M which 
has 21 members from 0 to 1 (X0 = 0, X1 = 0.05, …, X20 = 1).

2.	 �Assume that X0 = 0 then Y0 = 0 and X20 = 1 then Y20 = 1; create the sets M′ = {X0, X20} and M″ = {Y0, Y20}.
3.	 �Randomly pick a member Xi from set M = {X1,..,X19}, remove it from M and add it to M′.
4.	 �Find the closest greater value Xig and smaller value Xis to Xi in M′.
5.	 �Find the corresponding Yig and Yis values in set M″.
6.	 �Generate a random value between Yig and Yis and add this to the set M″.
7.	 �If M = φ then stop else go back to line 3.

We assume that the values of Y for X greater than 1 remain constant at 1 (Y = 1). A schematic view of 
how the MR-PPE is generated is illustrated in Figures A1a–A1d. To allow flexibility in generation of the 
function, three scaling parameters are introduced, with the role of adjusting the lower and upper limits of 
the random function and to scale the amount of storage      , ,low high scale

x x x x . Figure A1e illustrates the 
effect of these three scaling parameters on a random function. For some storage-flux relations that need 
differentiation at very small values, the random function can be instead be generated using a semi-log 
space (Figure A1f).
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It is also possible to create (emulate) commonly used PPE forms using this methodology. An MR-PPE that 
behaves as a threshold can be designed by constraining the random function to always return zero below 
storage equal to θscale and return one otherwise; in this case the reservoir will act as a non-leaky bucket. 
Similarly, by setting θlow and θhigh to the same (equivalent) values one can represent the behavior of a linear 
bucket.

Appendix B
To determine the active portion of a PPE at the end of the model simulation, the MR-PPEs are restricted 
to being active only in the region between minimum and maximum storage. This results in only the active 
part of the parameterization being represented. The inactive portions of the parameterization that lie out-
side of these bounds contain no information that is relevant to the output simulation, as the model never 
uses them. For the problem of inversely inferring the PPE forms given data (and other hypotheses and 
assumptions), it is important to use only the active portion of the parameterization to avoid misjudgment 
about the nature of the PPE. The values for θlow, θhigh, and θscale can be further refined during inference 
(Figure B1).
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Figure A1.  (a–d) An example of developing a monotonically non-decreasing random function and (e) the effect 
of scale parameters on the shape of the generated random function. In this example the θlow = 0.2 and θhigh = 0.8 
with θscale = 40 mm. (f) Projection of the function into a semi-log space with θlow = 10−4, θhigh = 10−1, and 
θscale = 40 mm.
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