
MultiRobot
Exploration and
Planning in
Limited
Communication
Environments
Vibhav Inna Kedege
MSc Thesis Report
October 2020 July 2021

Multi-Robot

Exploration and

Planning in

Limited

Communication
Environments

by

Vibhav Inna Kedege

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday July 5, 2021 at 10:00 AM.
Student number: 4998596
Project duration: October 1, 2020 – July 1, 2021
Thesis committee: Dr. ir. Frans. A. Oliehoek, TU Delft

Dr. ir. Arjan van Genderen, TU Delft
MSc. Ludo Stellingwerff, Almende B.V.

ii

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Multi robot exploration is an area coverage strategy where a team of robots work together to explore
and discover the contents of an environment. This is particularly useful in search and rescue mis
sions. During such missions, a team of robots can be deployed into a disaster environment to map the
surroundings and provide valuable information like the location of victims, heat sources and gas leak
points to rescue personnel. Disaster environments however are most of the time completely unknown,
cluttered, radiohampered and GPSdenied. Thus robot teams need to deal with an environment that is
previously unknown to them and has limited communication avenue. Limited Communication leads to
robots not being able to share information with one another, which can lead to multiple robots exploring
the same region of the environment. This redundant exploration results in increased time for search
and rescue, that could prove to be costly.

Providing a robust solution to the above mentioned problem is the aim of this thesis. In this thesis,
the planning algorithm of Monte Carlo Tree Search (MCTS) is utilised by multiple robots of the explo
ration team in a distributed manner to cooperate and explore an environment effectively. The environ
ment is completely unknown to the team of robots and has restricted communication. Further, each
robot cannot observe the state of the entire exploration environment and is limited to only observing its
nearby/local surroundings based on its sensor range. Therefore exploration strategies that can deal
with an unknown environment, limited communication and local observibility are studied.

For the purpose of exploration performance comparison, a multirobot team is deployed into an en
vironment under various scenarios that is based on the level of communication which is possible No,
Full and Partial. In addition to this, a fourth scenario is created where robots with partial communication
are given the capability to predict the behaviour of teammembers. From extensive simulation tests,
it will be shown that partial communication can recover a significant amount of performance lost by
removing the full communication dependency. Robots with peer prediction ability are found to help
increase this recovery further in very specific situations. Further, it will also be shown that giving prior
information about the environment obstacle locations to robots does not effect the exploration perfor
mance in a limited communication environment. Instead, increasing the number of chances of robots
meeting one another and sharing information positively effects the exploration performance.

iii

Contents

1 Summary 1

2 Introduction 3
2.1 Research Focus . 4
2.2 Research Questions . 5
2.3 Thesis Structure . 5
2.4 Naming Conventions . 6

3 Background and Related Work 7
3.1 Background . 7
3.2 Robot Dispersion . 9
3.3 Cost and Utility . 11
3.4 Scene Partitioning . 14
3.5 Game Theory . 16

3.5.1 Game Theory Fundamentals . 16
3.5.2 Game Theory in Multirobot exploration . 16

3.6 Sequential Decision Planning . 18
3.6.1 Markov Decision Process . 18
3.6.2 Exact Planning Value and Policy Iteration . 19
3.6.3 Approximate Planning Monte Carlo Tree Search 20
3.6.4 Partially Observable Markov Decision Process . 23
3.6.5 Decentralised Partially Observable Markov Decision Process 23
3.6.6 MCTS in Distributed Teams . 25

3.7 Peer Modelling . 28
3.8 Comparisons . 29

4 Approach 33
4.1 Baseline Selection . 33
4.2 Algorithm Design . 34

4.2.1 Problem Setting. 34
4.2.2 Design Stages . 35
4.2.3 Monte Carlo Tree Search Planner Design. 36

4.3 Full Communication . 40
4.4 No Communication . 40
4.5 Partial Communication . 41
4.6 Partial Communication with Prediction . 42

4.6.1 Coveragebystep Heuristic . 43
4.6.2 Special Cases . 44
4.6.3 DIY Rewards and default policy . 46
4.6.4 The Working Algorithm . 47

4.7 Hyperparameter Selection . 48
4.8 Frontier Communication . 49

5 Experiments 51
5.1 Exploration Performance Default Policy Comparison . 52
5.2 Exploration Performance v/s Team Size. 54
5.3 Exploration Performance v/s Prior Information . 58
5.4 Exploration Performance v/s Communication Range. 59
5.5 Exploration Performance FRONTCOMM Comparison 65
5.6 Discussion . 66

v

vi Contents

6 Conclusion 69
6.1 Research Questions Revisited. 69
6.2 Recommendations for future work . 70

7 Appendix 71
7.1 Appendix A Significance Checks. 71
7.2 Appendix B Experiment Additional Graphs . 72
7.3 Appendix C GridMap Collection . 75

8 Scientific Article 79

Acknowledgements
Ever since the start of my masters curriculum back in August 2019, I have been fascinated with the
application of Embedded Systems in the domain of Artificial Intelligence and Robotics. I sincerely be
lieve that a combination of all these areas can help create autonomous systems that support human
activity. Particularly, frequently occurring natural disaster events like floods, earthquakes or forest fires
have shown that using mobile robots to help rescue personnel can expedite victim rescue efforts and
locate the cause of such disasters much faster. Thus there is a huge potential of using autonomous
mobile robots in such an application. Upon further research, I found that Almende B.V. as well as the
Interactive Learning & Decision Making (ILDM) research group of TU Delft were working on this topic
and so I took up the challenge and started to pursue research in this domain as part of my masters
thesis.

First and Foremost, I am thankful to all those involved from both Almende B.V. as well as the ILDM
research group for their invaluable support throughout the process of my thesis. The regular weekly
meetings with Aleksander Czechowski from the ILDM department gave me perspective on state of the
art planners from previous research that have been used in the design of sequential decision planners.
The regular meetings with Ludo Stellingwerff, Reka BerciHajnovics and Snehal Jauhri from Almende
BV were insightful in reinforcing the idea of practical constraints that had to be kept in mind while de
signing distributed algorithms. I am also thankful to Ludo Stellingwerff and Reka BerciHajnovics for
tips on how to design software that is segmented and easy to read. Further, the supervision provided
by Frans A Oliehoek was very useful and particularly the seminars conducted during his COMARL and
ELLISDelft Seminar Series gave me the opportunity to listen to state of the art research in the field
of multiagent systems from researchers from all over the world. Overall, the guidance provided by
each supervisor mentioned kept me focused on the essential problem of limited communication envi
ronments and has shaped this thesis beyond words can describe.

Finally, I would like to also thank my friends and family for their belief and constant support. Par
ticularly I would like to thank my mother Sushma Indrajit for her upbeat attitude, my late father Dr I K
Indrajit for philosophies that have guided me till date and my late dog Ginger whose support cannot be
left unmentioned!

Vibhav Inna Kedege
Delft, July 5th 2021

vii

1
Summary

A team of robots working together to explore an environment is at the core of multi robot exploration.
This is particularly useful in applications like region surveillance, space exploration and disaster man
agement missions. In the case of disaster management or search and rescue missions, a team of
robots usually encounter a situation where the area to be covered is completely unknown. Further, be
ing a disaster zone there is high possibility that the area has restricted communication. An environment
with restricted communication makes it difficult for robots to share information with one another. When
robots do not share information then this hampers the cooperation between robots to achieve the over
all exploration goal. This leads to an increase in the overall exploration time, with the same subregion
of the environment being explored multiple times by many robots. This is referred to as redundant cov
erage. Redundant coverage is particularly problematic in search and rescue operations, as an increase
in the time for complete exploration would delay any further rescue work. A restricted communication
environment also leads to robots having no information about the global state of the environment and
robots can only observe the contents of the subregions of the environment that are within its sensing
range (local observibility) . There is also no possibility to have reliance on any centralised unit of the
environment and thus distributed approaches of exploration are required. Thus, when deployed into a
disaster environment, robots of a team are required to be distributed, deal with local observibility and
move around freely to explore larger portions of the environment. The environment itself has restricted
communication and is unknown to robots.

After going through existing literature on the topic, it was found that there were many previous multi
robot exploration methods that solved the exploration problem through a distributed approach with
cooperative agents having local observibility and the ability to move around freely in the environment.
However among the two environment constraints of an unknown region and limited communication,
most methods considered only one of these. The aim of this masters thesis however is to consider
both these environment constraints and study the coverage capability of locally observable, distributed
& cooperative robots on maps of various sizes.

To perform the exploration, robots planned their paths using the Monte Carlo Tree Search (MCTS)
algorithm. This algorithm was selected due to its ability to plan paths by looking ahead into the future
for a predefined number of steps. This could help direct the robots to move towards unknown regions
for larger number of steps and could also prevent robots from getting stuck within regions that were
cluttered with obstacles. The algorithm was implemented in a distributed manner where robots had
information only of its nearby local surroundings. A significant focus was placed on how to deal with
limited communication. This was done through the creation of various scenarios. The first scenario
was of full communication and was the starting step where the works of previous authors was repli
cated. In this scenario robots could share information with one another irrespective of the distance
between them. During the data sharing stage robots shared their position information, their belief of
the map coverage status and planned paths. This information was used by each robot to update its
belief of the environment and to plan its own paths. Considering the plans of the other robots resulted
in cooperation between robots during exploration.

1

2 1. Summary

After implementation of the existing work was complete, in the next phase a scenario was created
where the communication dependency was completely removed from the replicated work. This led
to a scenario where robots could not share information with one another at any point of time. This
scenario is referred to as No Communication and there was no cooperation between the robots. Fol
lowing this scenario the aim was to bring in some form of cooperation between robots, while taking
into account the environment physical limitations. With this idea in mind, robots were given the capa
bility to communicate and share information only when they were within a predefined communication
range. This scenario is referred to as partial communication. By using partial communication the num
ber of steps required to explore an environment reduced and moved closer to the Full communication
case. The next step was to test techniques that could further lessen the gap between partial and full
communication. To do this, robots were given the capability to reason out and predict the position of
peers robots that were beyond the communication range. This was done by utilising known information
about peer robots as well as using computationally cheap heuristics. This is referred to as the partial
communication with prediction scenario. Thus there were four scenarios that were created based on
communication, namely full, no, partial and partial with prediction.

The total number of steps required for coverage for each communication scenario was compared, for
various sizes of robot teams. Every experiment was performed for at least 10 times on 5 different maps.
From the results it was found that each scenario with MCTS, including no communication could perform
faster than a previous method on frontier based exploration which also assumed the same constraints
as listed earlier. By introducing partial communication there was significant recovery of the lost per
formance when compared to completely removing communication. This lost performance was further
recovered by using predictions, in very specific situations. Particularly in smaller team sizes exploring
large environments, when robot communication range was increased then partial communication with
prediction could further recover lost performance. It was also found that feeding in information of the
contents of the map to robots before the start of exploration did not have any significant effect on the
exploration performance. Instead, increasing the number of instances of robots meeting one another
and sharing important information positively effects the exploration performance of the team.

2
Introduction

Mobile robots have been conceptualised to complement and help human activities ever since the be
ginning of the 21st century. The authors of the Journal of Unmanned Vehicle Systems in their work [10]
mention that ever since 2004, there have been applications of mobile robots in crop survey, atmosphere
data collection, forest fire investigation, radiation contaminated area monitoring, power lines inspection
and pipeline surveillance. Following this, a number of survey papers to study these applications have
been produced, like Dunbabin et al [17] and Perry et al [19] in the field of environment monitoring and
Zhang et el [43] in agriculture. There have also been large efforts in evaluating the various algorithms
that have been used in order to control the coordination between large teams of such mobile robots,
like Schranz et al [37], Brambilla et al [8] and Liew et al [24]. Due to this potential of unmanned systems
in various application areas, there are several organisations that have shown an interest in developing
the efforts of collaborative robots to perform tasks. One such organisation is the COMP4DRONES con
sortium which is an Electronic Components and Systems for European Leadership Joint Undertaking
(ECSEL JU) and brings together 50 partners from around Europe (indicated in figure 2.1) to provide a
framework for safe and autonomous drones to customize their working for civilian services [32]. The
objective of this consortium is to:

1. Ease the integration and customization of drones.

2. Enable drones to take safe decisions in an autonomous manner.

3. Ensure development that is protected against cybersecurity threats.

4. Minimize the design and verification efforts for drone applications.

5. Ensure sustainable impact.

6. Create an industrydriven community

The consortium aims at applying the above objectives in use cases like transport, construction,
logistics, surveillance & inspection and agriculture [32]. The use case of transport is to use drones to
monitor devices, road traffic and infrastructure in order to perform faster detection and early response of
incidents. In construction, the aim is to use drones during the construction phase of civil infrastructure
to keep track of the progress without causing interference to the development of activities undertaken in
the work. The logistics use case will test drones in its capability to deliver equipment in hard to access
areas like forests. It also deals with the transportation of equipment, drugs and blood samples inside
large hospital territories. Under the Surveillance & Inspection use case, the aim is to utilise drones in
inspecting offshore infrastructures like windmills, and also in mapping disaster sites. In the use case
of agriculture, the focus is on crop monitoring and crop and health management.

As seen from figure 2.1, one of the partners of the consortium is Almende B.V and TU Delft. The
use case that the 2 have focused on is the surveillance & inspection aspect and more specifically in
disaster management application. Due to this, the focus of this thesis is on the inspection use case. The
use case is focused on using a team of drones in the mapping and assessment of an indoor disaster

3

4 2. Introduction

Figure 2.1: COMP4DRONES Partners [32]

environment. Such indoor disaster environments can be unsafe for humans and thus having a team of
robots perform exploration can be a safer option for rescue personnel.

The exploration scenario defined by the COMP4DRONES consortium consists of a fleet of ground
and aerial robots navigating and mapping an unknown environment where there is no GPS signal
available [32]. The scenario consists of a mobile control station near an unknown, cluttered, radio
hampered and GPSdenied site. From the mobile control station a wheel based rover consisting of
aerial drones is sent to the site. The rover acts as the reference point for all aerial drones exploring
the environment. The entire system, rover, control station and aerial drones are used to create a
common map of the environment consisting of various points of interest such as victim locations and
heat sources. This map, created from the point of view of various drones is used to find a safe route to
access these points of interest for time critical purposes like victim rescue. The system is also required
to provide a live view of the exploration to the control station andmust be flexible to cope with a changing
environment or failure of a part of the system. From this the objectives of the use case are to reduce
the cost of surveillance, increase the reliability via an automated process, increase the frequency of
surveillance, detect anomalies automatically and reduce the manned entries to the confined/hazardous
spaces.

2.1. Research Focus
From the use case specified in the previous section, it can be summarised that the system to be studied
is a fleet of drones used to map an unknown area to monitor hazardous regions, find safe passageways
and identify victims to be rescued which will provide rescue workers vital information that would help
in rescue efforts. The challenge however is that the environment is GPS denied with limited communi
cation. In such GPS denied cluttered environments drones would not know the exact position of peers
in the environment. Thus, limited communication constraint raises two major issues for the system [3].
The first issue relates to the joint knowledge of the environment during the exploration mission. This
joint knowledge includes map coverage status by the agent team and the positions of the agents in the
environment. With stable communication across the environment, this joint knowledge is accessible by
each robot at any time. However in a limited setting, robots will be unable to access the information of
all neighbours and will possibly only be able to exchange data with peers under very specific situations.
The second issue is in cooperative path planning algorithms of each individual robot that maybe re

2.2. Research Questions 5

quired to track the movements of peer robots. Due to this tracking inability, any cooperation method will
be affected and the amount of redundant coverage increases thereby increasing the number of steps
to explore an environment. Such an increase in the number of exploration steps of the team leads to a
delay in the rescue efforts of victims and search for points in the disaster zone to contain. Multirobot
cooperation and safe autonomous navigation in an unknown & communication limited environment is
thus a challenging and urgent problem that requires to be solved and is the focus of this masters thesis.
The Research focus for the thesis can thus be summarised as,

To design distributed cooperative planning strategies for multirobot exploration systems that
can be deployed in disaster management situations, by considering the lack of prior environ
ment information and restricted communication that exists in such time crucial missions.

From this objective we can extract the main aspects of the system that gives a direction for the lit
erature survey, implementation and experiments.

MultiRobot System Exploration using a single agent can be time consuming and especially as
the exploration area becomes larger. In a search and rescue mission where time is of utmost impor
tance, having multiple robots is extremely beneficial.

Cooperative Strategies As there are multiple agents present, each robot must choose paths based
on the strategies of its peers. This leads to robots executing actions based on team behaviour rather
than executing actions that would only benefit itself.

Restricted Communication As the environment is in a disaster zone, robots are required to deal
with no communication with one another.

Unknown Environment Robots are not given a map of the environment prior to exploration and
thus need to discover paths as they move around the arena.

Distributed Approach There is no centralised system that assigns robots goals and also no leader
that robots can follow. Thus, robots need to follow a peertopeer network and perform exploration.

2.2. Research Questions
Considering the research focus as well as the main aspects from the focus, we can frame the primary
research questions that will be answered at the end of the thesis. These are:

1. RQ1: What distributed strategies can cooperative agents utilise to explore unknown environments
with limited communication, in minimal number of steps?

2. RQ2: What is the effect of limited communication on the cooperative exploration strategies?

3. RQ3: What strategies could help in replicating the performance of agents as in an arena of full
communication?

2.3. Thesis Structure
In terms of the structure, the thesis report has already laid the focus of research in this chapter. The
next chapter, chapter 3 summarises important background knowledge that is required to understand
the remaining parts of the thesis. Chapter 3 also describes various methods used previously to solve
the problem of multirobot exploration. In chapter 4, the algorithm design approach to implement the
baseline as well as additional scenarios of this study are explained. Chapter 5 is the section on ex
periments that explains the simulations that were performed to answer the previously defined research
questions. The chapter ends with a discussion page that summarises important observations. Chap
ter 6 concludes the thesis by answering the research questions and lays down a direction for further
research. The thesis also presents an Apppendix in chapter 7, that presents the statistical significance
tests for certain data populations and the maps that were used for the experiments. At the end of the
thesis, chapter 8 presents the thesis research in a concise scientific paper format.

6 2. Introduction

2.4. Naming Conventions
It is important to note that throughout the thesis, the terms robot, drone, agent and rover is used inter
changeably, and is used to refer to a single robot. Further, as it is a case of multiple robots there are
many parts where the interaction between multiple agents is explained. In such explanations, the term
current agent is used to refer to an agent that is being considered or explained about, while the term
peer agent is used to refer all the other agents except the current agent.

3
Background and Related Work

In order to study existing methods that have been used to approach multirobot exploration, a literature
survey was performed first. In this literature survey, the study was narrowed down to algorithms in
which the agents of multirobot teams adhered to one of the following constraints of having no prior
information of the environment or dealing with limited possibility for communication & data sharing. As
mentioned in the summary in chapter 1, most methods only consider one of these constraints. The
algorithms/methods studied had either one of these constraints present and these can be grouped into
5 broad classes:

1. Robot Dispersion

2. Cost and Utility

3. Scene Partitioning

4. Game Theory

5. Sequential Decision Planning

Each class of methods have been described in the following sections. Before explaining each method,
section 3.1 lays the foundation by highlighting the advantages of using autonomous multiagent sys
tems that follow a distributed architecture. In section 3.2 robot dispersion techniques are discussed
where robots having no prior information about the area, scatter around and explore it. In section 3.3,
cost and utility approaches are discussed where robots first discover certain positions in the area that
are more beneficial in terms of exploration and subsequently negotiate with one another for the as
signing of positions to team members. Section 3.4 summarises techniques where the entire region is
divided into subregions before any exploration takes place. Each subregion is assigned to a single
robot in order to reduce redundant exploration of same regions by multiple team members. Section 3.5
relates the field of game theory to the task of exploration and summarises algorithms where different
robots cooperate and achieve equilibrium positions that is beneficial to the overall goal of environment
exploration. In Section 3.6 sequential decision planners have been discussed, along with how funda
mental Artificial Intelligence (AI) ideas like Markov Decision Processes (MDPs) have been used in path
planning algorithms previously. In such techniques, robots plan their current actions by looking at the
consequences of their actions for a certain horizon of time into the future. In section 3.7 a review on
peer modelling methods, where agents model one another have been described. In section 3.8 a dis
cussion section that reviews the algorithms in terms of their ability of handle the constraints mentioned
in section 2.1 is discussed.

3.1. Background
In this section, the motivation behind utilising autonomous multiagent systems have been described.
As previously mentioned, robotic exploration has been defined as the problem of a robot navigating
through an unknown environment and maximising the knowledge or representation of a particular

7

8 3. Background and Related Work

area [25]. Area exploration is crucial for applications like space exploration, investigation of biological
species, disaster warning systems and search rescue missions. In most of these scenarios however
the environment is highly dynamic and reliable communication with human operators is not always
guaranteed. Therefore the robot needs to be autonomous in order to facilitate crucial functionalities
like safe navigation, map building and victim detection. In the specific case of search and rescue op
erations, an autonomous robot equipped with sensors like camera and LIDAR can be deployed in the
environment in order to find objects/locations of interest, for example fire spots in a forest fire, concen
tration of hazardous materials and victims in disaster areas [39]. In very large environments however
using a single robot to scan the entire area or volume is not enough. This becomes a matter of concern,
especially in search and rescue operations where reducing search time is important. Therefore in such
applications where minimum exploration time of larger regions of search is desirable, using multiple
robots is appropriate and beneficial. Most robots have wireless communication capabilities and there
fore in a multirobot setting there is possibility of having important information being communicated
amongst members of the robot group. This leads to the following advantages that multirobot systems
provide [30]:

1. Reduced Latency If tasks are decomposed in a parallel manner, then the overall goal can be
performed in a lesser amount of time.

2. Distributed Sensing The range of sensing of a group of robots is wider than that of a single robot
and there is also the possibility of having multiple views of the same environment.

3. Distributed Action A group of robots can actuate in different places at the same time.

4. Fault Tolerance Certain system architectures (which will be discussed) provide system redun
dancy where the failure of any single entity does not lead to failure of the entire system.

Figure 3.1: Centralised, Decentralised and Distributed Architectures [4]

On a highlevel, multirobot systems can be modelled as nodes that can follow three possible archi
tectures Centralised, Decentralised or Distributed. This can be seen in figure 3.1, where the nodes
represent robots and links between the nodes represent the existence of a communication channel.
The centralised architecture has a single master node onto which multiple nodes are connected to via a
link. While it is easier to implement this in software for small robot teams, it causes high dependence on
the single central node. If the single central node fails, then it results in the collapse of the entire system.
This is in contrast to the distributed architecture in which there is no centralised master unit, but instead
there is peertopeer communication. This gives following advantages [Brambilla12swarmrobotics:]:

1. Robustness The ability to cope with the failure or loss of an individual node.

3.2. Robot Dispersion 9

2. Scalability The ability to perform well with different group sizes and not be affected by the intro
duction or removal of individuals.

3. Flexibility The ability to cope with a broad spectrum of environments and tasks.

A middle ground between the two architectures is the decentralised architecture where there are mul
tiple master nodes, with no complete reliance on a single unit.

Thus it can be seen that autonomous multirobot teams that follow a distributed architecture are
highly beneficial. The benefits lead to a robust, scalable and flexible system that reduces the time for
exploration, which is very useful in a search and rescue scenario.

3.2. Robot Dispersion
In robot dispersion, robots are treated as nodes that are deployed into an environment, that is unknown
to the robots. These robots begin the search at the same location and spread out during the exploration
process. Each robot spreads out while maintaining communication and tries to maximise the amount of
area searched [20]. This can be understood from figure 3.2. In the method presented by Howard et al
in [20], this has been done by considering an artificial potential field algorithm where each node exerts
a virtual force that causes nodes to move away from each other. The maximum distance between the
nodes is limited by the communication range of each robot, thus ensuring that all the nodes are con
nected. The process of moving away from one another is also possible by considering WiFi intensity
signals as has been done in by Ugur et al in [41]. In this method, wifi signal intensity depends on the
distance and the orientation of the robots. Robots move away from one another when their distance is
lesser than a minimal threshold value.

Figure 3.2: Robot Dispersion [16]

In some methods instead of having robots perform the task of only exploring new regions, robots
also have the possibility to relay communication signals which maintains interrobot connectivity. In the
method presented by Steven et al in [16], 2 methods namely the CliqueIntensity Algorithm and the
backbone dispersion algorithm achieve this.

CliqueIntensity Algorithm
This algorithm is specifically designed for a distributed homogeneous swarm. Each robot has position
information about its peers in the form of a graph where the nodes represent robots and the signal
intensities between the robots act as weights. This type of representation is referred to as a connectivity
graph. A clique is defined as a graph or a subgraph where every node is connected to one another.
In addition, a maximal clique is defined as a clique which is not a subgraph of another clique. Figure
3.3 shows an example of a connectivity graph along with the cliques. Note that each clique is also the
maximal clique in this figure. While dispersing around the area, robots form maximal cliques of sizes 2
or 3. For each clique a single robot is chosen to remain stationary in movement. The remaining robots
in the clique continue to disperse around the area while maintaining connectivity with the stationary
robot. The dispersion continues to occur until a situation of equilibrium is reached where no further
robot movement can take place.

10 3. Background and Related Work

Figure 3.3: Connectivity Graph [16]

Backbone dispersion
In this algorithm each robot can take up the role of a stationary or wanderer robot. The idea is to have a
group of closely connected stationary robots, called backbone onto which every wanderer robot main
tains direct contact. Wanderer robots are allowed to move around freely. There is always possibility to
increase the size of the backbone, by assigning shifting the role of a wanderer robot to stationary. This
is done primarily to cover further areas. Wanderer robots thus need to decide when to move freely and
when to shift roles. The manner in which this is done is shown in figure 3.4. The core idea behind the
actions as presented in the table is to keep each wanderer robot connected with the backbone network.
Thus in the cases where the wanderer robot is not in contact with any robot in the backbone, the robot
itself becomes part of the backbone network.

Figure 3.4: Wanderer robot behaviour in Backbone dispersion [16]

The authors ran the CliqueIntensity Algorithm in a 25 square metre arena with 12 robots having a
maximum cliquedistance as 5 metres, and a robot sensing radius of 2.5 metres. The experiment was
run for 10 times and the robot reached the equilibrium position each time (as seen in figure 3.2) in 60 to
100 seconds [16]. The agents in the same arena were also run with backbone dispersion algorithm and
they reached an equilibrium position in approximately the same amount of time. However in this case,
there was always a possibility for a robot that could not communicate with its teammates to remain
stationary forever.

In another class of methods under this umbrella, the length of the path that each robot travels is
modified based on the environment and neighbors. In the method proposed by Bao Pang et al in [34],
a robot varies its path length based on the density of the robots in the neighborhood that it perceives.
The aim of doing this is to reduce the chances for redundant searches in the environment by multiple
robots. When the robot density is high, then each robots searches a small area around it by taking
smaller steps. When the density is low however, each robot searches a larger area with a large step
size. In order to ensure that the robots explore their own separate areas a robot that encounters another
robot in front moves away in the opposite direction. The robots have no information of the environment
and do not communicate with one another. In order to detect surrounding density each robot considers
its peers to be physical interference from which it must maintain distance. Each robot estimates the
density by considering the time delay value from physical interference. A smaller value of this time
delay indicates a higher density. The authors utilised this method in an arena without any obstacles

3.3. Cost and Utility 11

to locate and reach target objects. There were a total of 6 robots and 6 targets. On performing the
experiment the proposedmethod was able to search for targets in 5minutes which was faster compared
to previous methods on random movement, namely the Levy Distribution method (that took 7 minutes)
and Brownian Motion Foraging (that took 15 minutes). The authors mention that though the method
empirically shows to work faster than other prior methods, the proposedmethod still requires theoretical
analysis that is part of a future work.

3.3. Cost and Utility
In the previous section, methods on how to disperse robots around the surrounding were discussed.
However, none of these methods took the environment contents into consideration. In this section cost
and utility based approaches are considered that direct robots towards points that are beneficial for
the overall system. In the case of multiple robots, many robots can detect such beneficial points. This
leads to a situation where robots are required to negotiate and choose points to explore. Such an idea
is the motivation for the implementation of centralised Multiple Robot Task Allocation (MRTA) methods
in works like [42] and [38], where cost and utility of important points are calculated and assigned in a
centralised manner. The same can also be implemented in a distributed setup where robots share their
detected points with one another and each robot runs its own task allocation method. This has been
done in [6]. In each case, the negotiation is done through the computation of cost and utility of points.
The idea of using cost and utility is to compute the revenue (as given in equation 3.1) of a particular
point/task for every robot and to assign the robot the point/task where the revenue is the highest.

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 − 𝐶𝑜𝑠𝑡 (3.1)

Usually the cost is computed as the distance of a particular point of interest from the robot [42], [38]
[6], while the utility gives the measure of benefit of a point. The benefit can be computed has been
computed in prior works in many ways. For instance utility is computed as the amount of information
the robot discovers by Umari et al in [42]. In another method by Benavides et al [6], points where
robots are able to meet and share information are given a higher reward. The points of the region that
is negotiated is common in these methods. The methods make use of finding frontier points. Frontier
points are those parts of the environment that lie on the boundary of known and unknown regions.
Thus, moving to such points is highly beneficial for the exploration system to discover new regions.

Figure 3.5: RRT Exploration overview [42]

The method proposed by Umari et al [42] follows the idea of looking for frontier points. There are
4 important blocks in the method that are as shown in figure 3.5. In the figure, the Global Frontier
Detector, filter and assigner run on a centralised unit that is not a robot. The Local Frontier Detector
runs on each robot. Each robot only knows the size of the region it needs to explore. This is represented
as a bounding box. The bounding box is divided into 2D occupancy grid cells which can take the values
of free, obstacle, unknown or frontier cell. This 2D grid representation can be seen in figure 3.6 where
the region is divided into small squares. Prior to exploring the environment, robots assume that each
grid cell is unknown. The authors then perform a novel method of Rapidly Expanding Random Tree
search technique to find frontier points. This method consists of the robot being at a stationary point
and expanding/growing tree to look for unknown points which are then used as targets/tasks for further
processes. The process as in figure 3.5 starts with a local and global frontier detector, where frontiers
are detected first. The number of frontier points detected is usually very high in number. Therefore a 2nd

12 3. Background and Related Work

phase is present that consists of a filter to extract frontier centroid points. Once the points have been
filtered, a fourth phase called the assigner assigns goal positions to each robot. This assignment of goal
positions is done by the assigner through a market based approach where the assigner computes the
revenue (R) of a goal for each robot (equation 3.1). In equation 3.1, the information gain is computed
by calculating the area of the region that is expected to be explored for a frontier point as in figure 3.6,
while the cost is the navigation cost and is the euclidean distance of robot and the task’s position. Each
frontier point is then assigned to the robot that gives the highest revenue. The authors mention that
such RRT based exploration methods are useful in 3D environments where camera based navigation
is likely to fail. However this is left as a future work by the authors.

Figure 3.6: Information Gain [42]

This method of frontier exploration using RRT has also been extended to a leaderfollower case by
Nair et al in [29], where the global frontier detector, filter, task allocator and mapmerger are run on one
of the robots (called robot 1). The remaining follower robots run local detectors, move around and share
their maps. This can be seen in figure 3.7. The work studies the impact of frequency of communication
between robots on the overall exploration. It was found that beyond a certain frequency (0.5Hz) there
was no significant impact on the exploration time of 3 robots.

Figure 3.7: LeaderFollower RRT [29]

In each of the frontier methods mentioned above, communication occurs at all times and robots
communicate with one other irrespective of distance or number of obstacles in between. Some other
methods however consider the impact of these physical constraints while measuring the revenue of a
particular task. Once such method is proposed by Benavides et al in [6] where multirobot cooperative
exploration systems in constrained communication environments have been discussed. Similar to the

3.3. Cost and Utility 13

previous two methods, in this method the size of the bounding box 𝑊 is known by each robot of the
team. Further 𝑊 is divided into an occupancy grid structure where each cell has a probability value
of 0, 1, 0.5 corresponding to the status of 𝑓𝑟𝑒𝑒, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. Each robot also detects frontier
points which are the tasks that are allocated based on a revenue equation similar to equation 3.1. The
specific equation used here is given by,

utility𝑖 (𝑇𝑗) = −𝛼pathCost𝑖 (𝑇𝑗) + 𝛽connectivity𝑇𝑗 (⋃
𝑘≠𝑖

{𝑅𝑘}) (3.2)

In the above equation 𝛼 and 𝛽 are the tuning parameters such that 𝛼, 𝛽 ∈ [0, 1] while 𝑝𝑎𝑡ℎ𝐶𝑜𝑠𝑡 and
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 act as the cost and utility respectively for a given task location. 𝑝𝑎𝑡ℎ𝐶𝑜𝑠𝑡 is defined to
be the Euclidean distance of the present location of the robot to the task location. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is the
measure of how connected a robot would be with the rest of the members of the group at a particular
task location. The authors conducted exploration experiments by using 2 robots in a 16x30 grid arena.

Figure 3.8: Communication Constraint [6]

The authors found that by their method robots could maintain connectivity for information exchange
more than previous benchmarks. However they also acknowledge that increasing the chances to keep
agents connected increases the total exploration time. As a future work, they mention that keeping
separate relay robots to facilitate communication could help increase exploration time.

The previous method of Benavides et al [6] focuses on maintaining communication at every moment
of time. In some other methods however, the approach taken does not require constant communication
between teammates. An example of this is the method proposed by Dadvar et al [15], where communi
cation only occur at very specific moments of time and not between all the robots. The authors propose
2 teams of robots. The first team of UAV’s (called Hunters) are used to search for task locations while
a team of UGV’s (called Gatherers) are used to move towards the detected task locations. Communi
cation can only occur between these two complementary teams using a communication platform that
is referred to an ”online board” through which gatherers notice the location of the new task detection’s.
The new task locations are announced by the hunters. The authors mention that the coordination
through the use of the ”online board” between the 2 complementary teams is necessary for effective
exploration and especially in environments with complex obstacles and narrow corridors. As a future
work, a definition of the cost function that considers the communication burden between agents is
proposed by the authors.

14 3. Background and Related Work

3.4. Scene Partitioning
The idea behind the scene partitioning technique is to divide the exploration environment into sub
regions and assign a subregion to each robot to explore. This can be seen in figure 3.9. The aim of
doing this is to reduce the redundant coverage. Further, having the robots explore subregions also
allows robots to move around a part of the arena independently of the other robot neighbours for a
moment of time. This can lead to the reduction of the need for communication between the robots at all
time steps [25]. In most techniques once the subregions have been allocated, robots explore it using
techniques like frontier detection.

Lopez et el in their method [25] have also followed this method with the motivation of reducing com

Figure 3.9: Scene Partitioning [25]

munication and coverage redundancy. The method considers the space to explore as a bounding box
𝑊 that is divided into grid cells. Every grid cell in the map is associated with a subregion. There is no
communication constraint between the robots and each robot is able to share its location and map with
one another irrespective of the presence of obstacles or distance within the map. There are 4 major
modules that are utilised in the exploration process. These are:

Information Sharing module
A robot shares information about its position and exploration map with other robots. The map informa
tion is shared as occupancy grid data and the locations of all robots are sent as a list 𝑉𝑖 = {𝐶1, 𝐶2...., 𝐶𝑟}.

Zone Assignment module
Each robot 𝑖 is assigned a list 𝐸𝑖 = {𝑐1, 𝑐2...., 𝑐𝑛} of the gridcells that it needs to explore. The list consists
of those unknown gridcells that are closest in terms of euclidean distance to robot 𝑖.

Data Acquisition module
Each robot uses a laser range finder (LRF) to acquire information about the state of each grid cell. Each
grid cell can take one of the values of {𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑𝑐𝑒𝑙𝑙, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑𝑐𝑒𝑙𝑙, 𝑠𝑡𝑎𝑡𝑖𝑐𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑐𝑒𝑙𝑙,𝑚𝑜𝑏𝑖𝑙𝑒𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑐𝑒𝑙𝑙}.

Exploration module
Figure 3.10 shows the overall working of the exploration module. The module is used to guide the
robots towards unknown zones of the scenario and consists of the goal assignment, path planning and
trajectory execution subphases. In the goal assignment subphase, goal cell positions from the set
𝐸𝑖 that are nearest to the robot is assigned as the next goal position. In the path planning phase, 𝐴∗
algorithm is used to plan a global path 𝑃𝑖 from the current position to the goal assigned in the previous
subphase. In the trajectory execution phase, a genetic algorithm is used in order to control the linear
velocity and angular velocity required to move the robot along the planned path 𝑃𝑖.

A high level working of the algorithm that includes the above phases can be seen in figure 3.11. The
exploration process starts by first sharing map and position information between the robots. Following
this step, zones or grid cells that the robots are required to explore are assigned to the robots. The

3.4. Scene Partitioning 15

Figure 3.10: The exploration module [25]

robots then begin the exploration phase and data acquisition phase by moving around and using their
Laser Range Finders to better understand the environment. The data acquisition and exploration phase
occurs until all the goals assigned to a robot are explored. When the zone assigned to the robot is
explored, then the robot is assigned a new zone and when the entire bounding region 𝑊 is explored,
the exploration by the robots stop.

Figure 3.11: Four phases of Scene Partitioning in [25]

The above method was verified by the authors to work and it performed better than previous meth
ods like random frontier and nearest frontier methods when the number of robots was greater than
6. The method is decentralised, modular and can deal with dynamic obstacles. As a future work, the
authors aim to work on running the robots on a scenario where the dimensions of the environment are
unknown and also aim to include localisation uncertainty caused by the sensor noise of the robots.

According to the authors of upma et al in [22] however, the above method has a drawback of re
quiring high computational cost as the distance of every cell from each robot needs to be computed in
the zone assignment phase [22]. Instead, upma et al use a process called Adhoc partitioning in their
work [22]. In this work, the environment boundary (known by the robots prior exploration) is divided into
subregions that are equal in number to the robots. This is shown in figure 3.12. This division is done
by the first robot that enters into the arena and the robots search for frontiers within their subregion
that they explore and do an exploration in this subregion.

16 3. Background and Related Work

Figure 3.12: Adhoc Partitioning [22]

3.5. Game Theory
Ideas from the field of game theory have also been used in surveillance and target detection using
multiple robot systems in previous literature. This is due to the similar underlying ideas in multirobot
systems and game theory. In coordinated Multirobot systems, each robot can be modelled as an in
dividual decision maker that moves based on the strategies of teammates. In game theory, strategic
interaction between multiple decisionmakers is described and analyzed [28]. Further, strategic inter
action activities (commonly called games) give maximum possible outcome for self while at the same
time predicts the rational decision taken by the others. This idea can be useful in a scenario when there
is limited avenue for communication.

3.5.1. Game Theory Fundamentals
Some important fundamentals of game theory are summarised in this section and have been taken
from work of the authors Mkiramweni et al in [28]. The fundamental terms have been summarised in
table 3.1. In any game, players are the entities or individuals who make decisions and perform actions.

Term Description
Players Entities or individuals who make decisions and perform actions
Actions Moves taken by players in a particular game
Strategies a complete plan of actions throughout the game
Payoff Reward that the player receive at the end of game

Table 3.1: Game Theory Terms [28]

Actions are the moves taken by the players in a particular game. Strategies are the description of how
a player could play a game and is a collection of the plan of actions. These strategies can be mixed
or pure. In a mixed strategy, the probability distribution for all possible actions of a player in a situation
are specified while in a pure strategy, a player takes a unique action in a given situation. The Payoff
is also the reward that the players receive at the end of the game which is dependent on the actions
of all other players. In addition to these terms another key terminology is the Nash Equilibrium. Nash
equilibrium is defined as the solution of the game that provides the highest (or most beneficial) payoff to
a given player while keeping the strategies of other players constant. In such an equilibrium condition
there is no benefit or incentive for the agent to change its action, as it would lead to a lower payoff.

3.5.2. Game Theory in Multirobot exploration
In the context of multirobot exploration, one of the earliest techniques involving game theory is of Meng
et al in the work [27]. In this algorithm the authors assume an Urban Search and Rescue (USAR) case
where there is unreliable communication. The region to be explored is divided into subregions before
exploration and each subregion has an associated probability of the existence of a target. A target is
the location of a possible victim or source of the disaster (As in figure 3.13). The authors mention that
this target probability can be supplied by the human operators or another heuristic function and can
reduce the time of search. Thus given a coarse map of the searching area and prior knowledge of the

3.5. Game Theory 17

Figure 3.13: Prior Target in Region information [27]

target distribution, the method aims to find an efficient and robust searching strategy for multiple robots
so that the expected average searching time is minimized [27]. In order to perform this, 2 states (busy
and free) are defined where busy is when a robot is searching inside a region, otherwise it is free. A
new event is defined as the instance when the robot enters a new region or finishes searching a current
region and triggers the update of a robot state. Only when an event occurs is when robots communicate
with one another. This reduces the communication overhead. This communication is independent of
distance and the robots can communicate at all locations within the map. Further, whenever a robot
finishes searching a location and it finds no target, then it updates this in its prior probability tracker.
The data that is communicated amongst the robots are target selection decision, subregion target
existence probability, time taken to travel from the current location to each subregion and the time
taken required to cover each subregion. Each robot then uses a utility function that considers this
data. The authors then propose a greedy strategy as well as a Nash Equilibrium strategy that assigns
subregions to each robot from the individual robot’s perspective. In the case of a greedy strategy,
each robot chooses a subregion with the highest utility value given by the utility function. In the Nash
Equilibrium case however subregions are selected by the agent based on overall benefit given by the
nash equilibrium. The authors implemented each strategy in a distributed manner and found that the
nash equilibrium approach had better search performance and was more robust to handle environment
uncertainty [27]. However, the authors also mention that as the computation of the utility involves all
the peer agents, therefore with increase in the number of agents the computation also increases.

Figure 3.14: Framework used in the method of [27]

In another method by the Ni et al in [31], the problem of performing coordinated surveillance of
the region using a team of UAV’s has been performed. Similar to the previous approach [27], the
assumption here is that each robot has knowledge of the prior distribution of targets in the environment,
that is divided into smaller 2D gridcells. Each UAV has limited sensing & communication range 𝑅𝐶𝑖
and is assumed to move on a fixed plane above the search space, as shown in figure 3.14. The
position of each UAV is projected onto the 2 dimensional environment and is recorded as the UAV
position. A network of the UAV’s is then formed as an undirected dynamic graph which is given by
𝑁𝑒𝑡(𝑡) = (𝐸(𝑡), 𝑉), where the robot represent the vertices and an edge exists between 2 UAVs if
the distance is smaller that the communication range 𝑅𝐶𝑖 . For all the robots present in this graph, a

18 3. Background and Related Work

utility function is computed. The utility function computes the effect of choosing action 𝑖 on the overall
coverage of cells in the 2D gridcell region. The strategies of the neighboring peer agents is also
known and thus a nash equilibrium is computed. To select a suitable action, the authors select a UAV
at random and utilise a modified binary log linear learning algorithm that they mention can find the nash
equilibrium quickly. The modified binary log learning algorithm is used to select the next possible action
for a UAV. The process of collision avoidance and selecting actions is performed in many iterations and
in every iteration one of the UAV is selected randomly while the other UAV’s retain the action from the
previous iteration. The iterations continue to occur until the mission space Ω is completely searched or
the number of iterations of the algorithm reaches a maximum predefined limit. The authors conclude
that this method can achieve the Nash equilibrium faster and can also prevent UAV’s from moving
to zeroutility areas. They however also mention that the search task in environments with moving
obstacles is yet to be tested.

3.6. Sequential Decision Planning
In the previous chapter, game theory methods were discussed where agents would choose actions
based on the computation of a utility value. The utility value in the methods was only computed for
that step alone. This section builds upon this idea of using utility or reward functions and discusses
sequential decision planners. The utility is computed based on the sequence of actions that the agent
performs [36]. In the multiagent case, individual agents consider the plans of the other robots and can
plan out the sequence of paths. Before moving onto the algorithms that have specifically been used
for multirobot exploration, we first present some important definitions related to Sequential Decision
Planners.

3.6.1. Markov Decision Process
Consider a single agent present in an environment. At each time step t the agent takes an action. The
action influences the environment and causes a transition in the state of the environment. This state
transition is usually modelled using probability, and is formally referred to as the transition probability.
At time step t+1, the agent receives an observation of the new state of the environment. If we consider
the situation to be a sequential process then at every time step t, the agent needs to choose an action.
The way in which the agent chooses these actions is through a reward function/model that is modified
as per the goal that the agent is required to achieve. Thus in the above scenario there are states,
actions, transition probabilities and a reward metric. This can be understood by also referring to figure
3.15 where the agent executes an action 𝑎, which results in the transition of the environment state from
𝑠 to 𝑠′ . Through this transition of the environment state, the agent receives a reward 𝑟. The sequential

Figure 3.15: Environment and Transitions [33]

decision problem described in this figure has three important properties:

1. The agent can fully observe what happens in the environment and there is no ambiguity in its
observation.

2. The rewards obtained at every time step can be added and thus are additive rewards.

3. The transition model follows a first order Markovian property, which means that the current state
only depends on the previous state and not on any earlier states.

Such a sequential decision problem model is referred to as a Markov Decision Process (MDP). It is
mathematically defined by a set of states (with initial value 𝑠0), a set of possible actions, a transition

3.6. Sequential Decision Planning 19

model 𝑃(𝑠′ |𝑠, 𝑎) and a reward function 𝑅(𝑠) [36]. In an MDP, the sequence of actions can be grouped
together into a list. This list of actions is usually referred to as a policy (𝜋). Amongst the possible
sequences of actions or policies, there exists an optimal policy (denoted by 𝜋∗) which directs the agent
to a desired behaviour/goal [33]. The goal can be to maximise a total reward, minimise a cost or reach
a particular state. If we consider that the agent interacts with the environment for 𝐻 number of time
steps, then an example of a policy 𝜋 can be the list of actions 𝜋 = [𝑎1, 𝑎2...𝑎𝐻]. The search over the
entire space of policies in order to obtain the optimal policy, by computing the expected reward for each
policy is referred to as Planning.

The optimal policy is also referred to as the trajectory. This can be computed before the motion be
gins or incrementally during themotion. The former trajectory planning strategy is called offline planning
while the latter is called the online planning. Usually offline trajectory planning is associated with the
computation of the entire trajectory form the initial state until the goal. Online planning however is the
incremental computation of action values that lead an agent from its current position to the goal. Offline
planners usually produce globally optimal solutions if the environment is fully known and static, while
online planners produce locally optimal results and are suitable in situations where the environment is
changing during motion or is partially known [18]. The differences have also been concisely shown in
figure 3.2.

Sl. No Attribute Offline Planner Online Planner
1 Solution nature global optimal local optimal
2 Targeted Environment static dynamic
3 Environment Knowledge Full Partial

Table 3.2: Differences between Offline and Online Planning [18]

In the next subsections, we delve more into techniques that can be used to perform planning and
thus obtain the optimal policy.

3.6.2. Exact Planning Value and Policy Iteration
In the field of Artificial Intelligence, planning is defined in many ways. One of the definitions of planning
which is also applicable in this discussion of solving an MDP is that planning is any computation pro
cess that takes a model as input and produces or improves a policy for interacting with the modeled
environment [40]. For an MDP, this computation of policy can be done in either an exact manner that
obtains the exact optimal solution, or though an approximation using search based techniques. Con
sider the process shown in figure 3.16. In this figure, an agent performs an action 𝑎𝑡 at time 𝑡. At the
next timestep 𝑡+1, the agent observes the environment state 𝑠𝑡+1 and obtains a reward 𝑟𝑡+1. All these

Figure 3.16: Planning in MDP’s [40]

variables can be grouped together and used to represent the MDP as a tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝐻), where,

1. 𝑆 is the set of states of the environment.

2. 𝐴 is the set of actions that the agent can execute.

3. 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 × [0, 1, ...𝐻]− > [0, 1] is the transition function that consists of the probabilities
𝑇𝑡(𝑠, 𝑎, 𝑠

′) = 𝑃(𝑠′|𝑠, 𝑎) of moving to a state 𝑠′ when in state 𝑠 and executing an action 𝑎.

20 3. Background and Related Work

4. 𝑅 ∶ 𝑆 × 𝐴 × 𝑆 × [0, 1, ...𝐻]− > ℝ is the reward at (𝑠′ , 𝑠, 𝑎).
5. H is the horizon of planning

Mathematically the goal is to obtain 𝜋 ∶ 𝑆×[0, 1, ...𝐻]− > 𝐴 that maximises the expected sum of rewards.
ie,

𝜋∗ = argmax
𝜋

E [
𝐻

∑
𝑡=0
𝑅𝑡 (𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1) ∣ 𝜋] (3.3)

The computation of the exact value of policy 𝜋 is done using exact methods. Exact methods to solve
MDP’s utilise another popular equation called the Bellman Equation. The Bellman equation is based
on the idea that the utility of a state is the immediate reward for that state plus the expected discounted
utility of the next state, assuming that the agent chooses the optimal action [36]. The Bellman equation
is given by equation 3.4.

𝑉(𝑠) = 𝑅(𝑠) + 𝛾 max
𝑎∈𝐴(𝑠)

∑
𝑠′
𝑃 (𝑠′ ∣ 𝑠, 𝑎) 𝑉 (𝑠′) (3.4)

One example of an exact method that is used to solve an MDP is the Value iteration algorithm. In this
iterative algorithm, a value function/utility value is computed for all states and is updated until equilibrium
is reached. Once this equilibrium condition is reached, the optimal value function is recorded as 𝑈∗ and
the optimal policy is obtained using the equation 3.5 [36] [1]:

𝜋∗(𝑠) = argmax
𝑎∈𝐴

∑
𝑠′
𝑇 (𝑠, 𝑎, 𝑠′) [𝑅 (𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗ (𝑠′)] (3.5)

Another exact algorithm is Policy iteration that consists of policy evaluation and policy iteration steps.
In the policy evaluation step, the current policy is fixed and the value function is obtained using Bellman
updates until convergence [36] [1].

𝑉𝜋0 (𝑠) = 0
𝑉𝜋𝑖+1(𝑠) ← ∑𝑠′ 𝑇 (𝑠, 𝜋(𝑠), 𝑠′) [𝑅 (𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑉𝜋𝑖 (𝑠′)]

(3.6)

In the policy iteration step, the value function is fixed and the best action (or best policy) is computed
for the next iteration.

∀𝑠 𝑉𝜋(𝑠) =∑
𝑠′
𝑇 (𝑠, 𝜋(𝑠), 𝑠′) [𝑅 (𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑉𝜋 (𝑠′)] (3.7)

The 2 steps are repeated until the policy converges.

3.6.3. Approximate Planning Monte Carlo Tree Search
One drawback of the previously described methods is the amount of computation required, as many
iterations need to be done for every possible state of the agent. If the state space is very large, then
a single iteration over all the states is expensive. Instead of finding the exact policy, there are other
methods that can obtain a near optimal solution, referred to as an approximate policy.

This can be done with the help of trees where the nodes of the tree represent the environment state
and the branches of the tree represent the actions that can be selected. This can be seen in figure 3.17
where the scenario of a red robot and its goal are shown in a 5 grid environment in subfigure 3.17a. The
corresponding tree representation with actions and resulting states can be seen in subfigure 3.17b.

Even in most tree solving methods, computations due to branchingmight be an issue and the search
exponentially increases with the increase in action space [1]. Due to this, there are various techniques
that have been used to reduce the amount of computation. One technique is to find the approximate
policy based on random sampling of possible future scenarios. This type of strategy comes under the
umbrella of Monte Carlo methods. In Monte Carlo methods, repeated random sampling is performed
to obtained numerical results. Apart from reducing the branching factor through the reduction of states
to search, Monte Carlo Methods have the advantages of [40]:

3.6. Sequential Decision Planning 21

(a) Scenario

(b) Scenario solved by a tree

Figure 3.17: Approximate Planning using Trees

1. Learning optimal behaviour from interaction with the environment, with no model of the environ
ment dynamics.

2. Planning can be performed by running simulations on a simulator of the environment, that can
also be used to model other agents in multi robot systems.

3. There is no requirement to update the value estimate on the basis of value estimates of successor
states (also called a bootstrapping), as was done in previous exact methods.

Combining the Monte Carlo Method with the tree search over MDP processes, we get a sequential
online path planner which is the Monte Carlo Tree Search (MCTS) algorithm. A basic working of the
algorithm has been shown in figure 3.19. The main intuition behind MCTS is that by using Monte Carlo
simulations to quickly sample thousands of possible trajectories, we can achieve good approximations
of the values of possible actions from the root node (the node from which the search started) [12].
There are 4 major steps that are repeated in every search iteration, which have been described below
[9]:

1. Selection Starting at the root node, the child selection policy is recursively applied to descend
the tree until an expandable node is reached. An expandable node is a non terminal state that
still has unvisited/unexpanded children.

2. Expansion Based on the available actions, more child nodes are added to the tree in this step.

3. Simulation A simulation is run from new nodes according to a default policy, thus leading to an
output.

4. Back Propagation The simulation result is backed up through the tree in order to update their
statistics.

Further, at each iteration there exists 2 rules/policies that must be followed. These are:

1. Tree Policy: Used in the selection or expansion step to select or create an expandable node from
the nodes already present in the search tree

2. Default Policy: Used in the simulation step to play out actions for a predefined number of times
or until a nonterminal state is reached.

22 3. Background and Related Work

Figure 3.18: MCTS PsuedoCode [9]

Figure 3.18 shows a sample psuedo code on how the above mentioned steps and terms come
together. Consider 𝑣0 to be the root node having a state 𝑠0. 𝑣𝑙 is the last node reached during the
tree policy stage corresponding to state 𝑠𝑙. Δ refers to the reward for the terminal state that is reached
by applying the default policy from state 𝑠𝑙. The value of Δ is backed up from the terminal node to the
root node. This process is repeated a number of times and at the end of the entire process, the action
value that leads to the best child from the root node is obtained. There are many ways to extract the
best child and this will be explained further.

Figure 3.19: MCTS Basic [9]

One iteration of the MCTS process has been shown in figure 3.19. The first stage involves the tree
policy step where starting at the root node 𝑣0, child nodes are recursively selected until a node 𝑣𝑛 is
reached that is either a terminal state or is not fully expanded. At such a node an action 𝑎, that has
not been executed yet is selected from the action list. This action is executed, which leads to a new
child node that is added to the list. Following this the simulation step starts where simulations are run
from the newly created node according to the default policy. After a predefined number of times, an
objective function is evaluated which produces a reward value Δ. The reward is then propagated up the
sequence of nodes in order to update each node’s visit count and reward value. These steps continue
to occur until the computation budget is met or the search is interrupted. Following this, the best action
corresponding to the root node is selected. Some ways of selecting the best possible action are:

1. Max child: Selects the child with highest reward

2. Robust child: Selects the child that is most visited

3. MaxRobust child: Selects the child with highest visit count and highest reward

Usually the default policy used in the above tree is a sequence of random actions. The tree policy
however follows an explorationexploitation trade off where at each node either the best possible action
at that moment is chosen (exploitation) or an action is chosen that maybe optimal/superior in the long

3.6. Sequential Decision Planning 23

run (exploration) [9]. A popular relation to perform this is the Upper confidence bound for trees (UCT)
algorithm and is described by the following equation:

UCT1 = �̄�𝑗 + 2𝐶𝑝√
2 ln𝑛
𝑛𝑗

(3.8)

In this equation, �̄�𝑗 refers to the average reward obtained by taking the action 𝑗, 𝑛𝑗 refers to the
number of times that action 𝑗 / child 𝑗 has been selected and 𝑛 refers to the number of times the current
parent node has been visited. It is important to note that the �̄�𝑗 influences exploitation while the latter
term influences the exploration. From the equation it can be seen that for a particular action j, 𝑛𝑗 will
be equal to 0 initially which leads to a UCT value of inf. This leads to every child being visited at least
once, which is essential given the random nature of playouts. Further, the value of �̄�𝑗 lies in the range
[0, 1] and it is found that keeping 𝐶𝑝 = 1/√2 causes the rewards from exploration to be in this range
too [9].

3.6.4. Partially Observable Markov Decision Process
Partially Observable Markov Decision Process, abbreviated as POMDP is an extension of an MDP
process that incorporates the notion of observations and their probability of occurrence. The probability
of occurrence is usually conditional to the state of the environment. The reason for having separate
probability over the observations is because there is always possibility of agents having noisy and
limited range sensors that could prevent it from observing the true state of the environment. This can be
further understood by considering figure 3.20, where a robot is interacting with the world. As compared
to the earlier case (figure 3.15), the agent does not get information about the state of the environment
(due to sensor limitations) but instead gets information as observations (represented as 𝑜(.|𝑠, 𝑎)). As

Figure 3.20: Environment and Transitions in a POMDP [33]

the agent continuously interacts with the environment, the agent usually stores these observations and
uses this history of observations to estimate the probability of the occurrence of states. The agent then
decides upon a suitable action using this probability measure. This probability measure of states is
referred to as the belief of the agent and is mathematically represented as,

∀𝑠𝑡 𝑏 (𝑠𝑡) ≜ Pr (𝑠𝑡 ∣ 𝑜𝑡 , 𝑎𝑡−1, 𝑜𝑡−1, … , 𝑎1, 𝑜1, 𝑎0) (3.9)
where, 𝑠𝑡, 𝑜𝑡 and 𝑎𝑡−1 are the estimated state of the environment at time 𝑡, observation of the

obtained state at 𝑡 and the action executed at time 𝑡 − 1. Thus using the history of observations an
agent can predict a particular state as a belief. Using this belief information the agent can select a
suitable action.

3.6.5. Decentralised Partially Observable Markov Decision Process
Decentralised Partially Observable Markov Decision Process, abbreviated as DecPOMDP is a frame
work that is used to generalise the POMDP to multiple agents in order to model a team of cooperative
agents that operate in a stochastic, partially observable environment [33].

Figure 3.21 illustrates this with 2 robots that each have separate observations about the environ
ment and also execute separate actions. Mathematically, this can be represented as a tuple 𝑀 =<
𝔻, 𝕊, 𝔸, 𝑇, 𝕆, 𝑂, 𝑅, ℎ, 𝑏0 > where,

1. 𝔻 = 1, 2, ..𝑛 is the set of n agents

24 3. Background and Related Work

Figure 3.21: Environment and Transitions in a DecPOMDP [33]

2. 𝕊 is the finite set of states

3. 𝔸 is the set of joint actions

4. 𝑇 is the transition probability function

5. 𝕆 is the set of joint observations

6. 𝑂 is the observation probability function

7. 𝑅 is the immediate reward function

8. ℎ is the finite time horizon, for computations

9. 𝑏0 is the initial state distribution at time t=0

The above model thus, extends the single agent POMDP models by incorporating joint actions and ob
servations. The above tuple model is used to model the sequence decision making from observation
of the environment to emitting actions. At every time step the environment emits a joint observation 𝕆
which consists of 𝑛 individual observations. This is obtained from 𝑂 = 𝑃(𝑜|𝑎, 𝑠′ which represent the
probabilities of joint observations. Each agent observes its own component 𝑖 from 𝑜𝑖 ∈ 𝕆. Each agent
uses its own belief function on the observation 𝑜𝑖 in order to estimate the state and consequently the ac
tion. Each agent 𝑖 takes an action 𝑎𝑖 that together form one joint action 𝑎 =< 𝑎1, 𝑎2...𝑎𝑛 >. Subsequent
to this the transition probability function 𝑇 = 𝑃(𝑠′ |𝑠, 𝑎) is used to obtain the next state corresponding
to the current action and current state. At this time, the agent also receives the immediate reward 𝑅
that is awarded for each join action. In the next time step, the same process repeats again. The finite
time horizon ℎ is used to obtain rewards over certain time steps and obtain a cumulative reward value.
This is used to obtain a joint policy that maximises the expected cumulative reward. The joint policy is
a tuple of individual policies for each agent.

Using the above framework helps model POMDPs for a multiagent setting in a stochastic envi
ronment. It can be used as a starting step for agents to make decisions in an uncertain environment.
There are three broad categories of uncertainty that must be dealt with:

1. Outcome Uncertainty The outcome or effects of actions may be uncertain. The outcome of
wheel on different friction surfaces is a good example of this.

2. State Uncertainty Due to limited/noisy sensors the agent may not be able to determine the exact
state of the environment exactly.

3. Uncertainty over peer agents This deals with the difficulty for each agent knowing the other
agents choice actions as well as states.

3.6. Sequential Decision Planning 25

3.6.6. MCTS in Distributed Teams
In the context of exploration of a region using multiple robots, MCTS has been used in some algorithms.
One example of this is in the work by Hyatt et al in [21]. In this work, Monte Carlo Tree Search has been
used in order to perform coverage path planning (CPP). The authorsmake some important assumptions
like all robots having uninterrupted communication between each other, robots having the capability to
only chose amongst three actions that is, left, right, or straight. The nodes of the tree are the grid
cells that the robots can encounter, the UCT tree policy is used and the default policy is of moving in a
straight line, until the grid square ahead is either occupied or has been covered. The function X that is
calculated at the end of the simulation step is given by equation 3.10.

𝑋 =
𝑇

∑
𝑘=1

[1
(𝑡𝑘 + 1)

2 (𝑝𝑘 − 𝐶ℎ𝑖𝑡𝑞𝑘)] (3.10)

In the above equation, 𝑝𝑘 = 1 if the robot lands up in a newly discovered grid cell at time step k and
”covers” it, else 𝑝𝑘 = 0. 𝑞𝑘 = 1 if the robot hits a wall or a robot at time step k, else it is 0. 𝑇 is the final
time step for the simulation horizon. The normalisation using the (𝑡𝑘 + 1)2 term is used to decay the
reward overtime and takes into account the objective values calculated further in the future as being less
certain. The 𝐶ℎ𝑖𝑡 parameter is used to apply a higher penalty for states that are explored or in collision.
Each robot executes its own version of a search tree thus leading to a decentralised architecture and
computation. The robots are only required to share their discovered map, the best path at the last solve
and their covered grid squares such that in the simulation phase, each robot first simulates the action
of the other robots based on last known best path. This allows the planner to take into account the
plans of the other robots and then simulates its own action. The authors ran experiments of exploration
on previously unknown maps with teams of 1 until 10 robots and found that for large team sizes, the
MCTS algorithm performs better than a previous boustrophedon planner, in which robots explored the
arena by moving repeatedly in an UP to DOWN, and DOWN to UP movement. As a future work the
authors mention that the effects of varying the default policy, horizon length and exploration coefficient
on the planning needs to be studied.

The above method assumes full communication between agents. However MCTS has also been
used in cases that assume intermittent communication along with a dynamic environment. One such
method by Claes et al is presented in [12] in which a team of robots is used in a warehouse com
missioning task where robots gather a deliver items in an efficient manner while adhering to their own
capacity constraints. The authors mention that conventionally this problem is solved by a MultiRobot
Task Allocation (MRTA) approach. However such an approach is centralised and assumes a static
environment. Therefore a new formal framework called Spatial task allocation problem (SPATAP) is
introduced that is distributed and considered dynamic reallocation of tasks. SPATAPS is a subset of a
Multiagent MDP (MMDP) in which multiple decision makers are present who observe the full state of
the environment [13]. This is in contrast to the previously defined DecMDP where each agent is locally
fully observable and can only observe the local state or its own component in the vector of states. The
authors mention that solving SPATAPS is difficult due to the large order of the state space that grows
exponentially with the number of agents and the number of task locations. To solve the commissioning
task, the paper adopted a distributed approach that built on samplebased methods that was indepen
dent on the size of state space. This is done by enabling the agents to predict the behaviour of other
agents, given the common observed global state. To predict the behaviour of teammates, the paper
uses a heuristic approach. The heuristic consists of a utility/reward function which is given by equation
3.11.

NV (𝑛𝑥 , 𝑖) = {
−∞ if 𝜏𝑛𝑥 = 𝔗empty
TV(𝜏𝑛𝑥,𝜄𝑖)
dist(𝜆𝑖 ,𝑛𝑥)

otherwise
(3.11)

where 𝑛𝑥 is the location of the tasks, 𝑖 refers to the agent, 𝑇empty implies that no task is present,
𝑑𝑖𝑠𝑡(𝜆𝑖 , 𝑛𝑥) is the length of the shortest path from agent i to the node 𝑛𝑥 and 𝑇𝑉(𝜏𝑛𝑥 ,𝜄𝑖) is the eval
uation of the task 𝜏𝑛𝑥 , given the current inventory status of the agent 𝜄𝑖. The paper considers this to be
the largest sum of the cost values of the tasks at a particular node that can still be stored by the the

26 3. Background and Related Work

agent 𝑖. The aim is to maximise the value of 𝑁𝑉 as it is a reward function. The evaluation of this is
done by the agents in 3 different ways:

1. Greedy with Social Law

(a) In this approach all agents always try to move towards nodes that has the highest evaluation
of the NV function.

(b) Mathematically this can be written as, 𝑎𝑖 = GoTo (max𝑛𝑥∈𝒩 NV (𝑛𝑥 , 𝑖) , 𝑖), where the 𝐺𝑜𝑇𝑜
operator results in the next action that helps the agent i move along the shortest path to the
task location 𝑛𝑥

2. Reverse Greedy Allocation

(a) In this approach the problem is seen from the perspective of the nodes and each graph
location is assigned to the agent that has the highest value for the value function given in
equation 3.11

3. Iterative Greedy Allocation

(a) In this approach, equation 3.11 is evaluated for all locations and for all agents. Agents are
then selected and then assigned to the node values having the highest reward value.

(b) The agent is then removed from the list and the process is continued for all the remaining
agents in an iterative manner.

It is important to note that as each agent can observe the global state of the environment, each agent
has information on the positions of the other agents at all times. Thus, each agent is able to evaluate
equation 3.11 individually. In the MCTS step, the heuristics are evaluated during the selection, expan
sion and simulation stages. In the selection and expansion stage the action prescribed using the UCT
method usually overrides the action given out by the heuristic. However, the heuristic is completely
utilised in the simulation stage. The authors also note the importance of having a Do it yourself reward
in the MCTS process which gives more weight to movements where the agent is rewarded a higher
reward if it performs a task itself. The authors performed experiments on teams of 2 until 8 agents and
noted that the planning time is better than previous greedy methods of warehouse commissioning. As
a future work, the authors propose to modify the heuristic 𝑁𝑉 function to include some aspect on task
appearance probabilities and also suggest to improve the MCTS search by including prior knowledge
of node positions.

In the method Best et al in [7], the authors propose an MCTS solution for a multirobot scenario for
generalised team orienteering and active object recognition. The approach assumes that communica
tion is intermittent with small amount of data being sent over the network between robots. The data
being sent over (whenever possible) is a highly compressed version of their local search trees that is
probabilistic in nature. More specifically this data is the best selected action strategy. In the algorithm,
the objective function that is evaluated by each agent is a local reward 𝑓 that consists of the action of
the current agent as well as the best shared actions of all other agents. The authors use an algorithm

Figure 3.22: Decentralised MCTS [7]

called DecMCTS whose steps can be seen in figure 3.22. There are three main phases:

3.6. Sequential Decision Planning 27

1. Growth of the search tree using MCTS, while taking into account the information about other
robots.

2. Updating of the probability distribution over possible action sequences.

3. Communication of the probability distribution with other robots.

The 3 phases continue regardless of successful communication, until a computation budget is met.
In the first phase a tree search is run that takes into account the plans of other robots during the
simulation step. This results in an inherent coordination aspect that occurs within the process. The
tree policy used is called discounted UCT which is a modification of the UCT algorithm which accounts
for the nonstationary reward distribution by biasing each sample by a weight 𝛾 which increases at
each simulation stage. In the second phase, the probability distribution 𝑞𝑖 is updated where 𝑞𝑖(x(i))
defines the probability that robot 𝑖 will select x(i) ∈ 𝜒𝑖𝑛. 𝜒𝑖𝑛 is the list of the most promising action
sequences {x(i)1 ,x

(i)
2 ...} for robot 𝑖 found by the first MCTS phase. In the last phase, robots that are able

to communicate, exchange the distribution 𝑞𝑖(x(i)) and the best action sequence 𝜒𝑖𝑛 to one another.
Each robot then replaces prior information of (𝑞𝑖(x(i)), 𝜒𝑖𝑛) with the new obtained information. Using
the above defined DecMCTS algorithm the authors perform a generalised team orienteering problem
where 8 robots aim to visit a maximal number of goal regions, that are weighted by importance. This
can be seen in figure 3.23. The authors studied the effect of communication loss on the algorithm and
found that when around 97% of the packets are degraded, the performance is lost but its still better
than the no communication case.

Figure 3.23: A team of 8 Robots moving into goal locations (green circles) using the method
described in [7]

Combining the above two strategies of sharing a probability distribution and modelling of other
agents has been performed by the Minglong Li et al in their work [23]. In this paper, the authors
use a method of decentralised sharing of paths and prediction of the trajectories based on an MCTS
tree search which they refer to as DecMCTSSP. The method has been specifically used for multi
agent information gathering under threat and uncertainty, which is modelled as a Decentralised Partially
Observable Markov Decision Process (DecPOMDP). The authors mention that their algorithm (the
DecMCTSSP) is inspired by humans playing a game of soccer, where several players playing soccer
do not need not talk frequently to let fellow teammates know what their next move is. Instead, given an
overall goal, a cooperation occurs by the prediction of the behaviour of others.To perform the information
gathering, the environment is modelled as an undirected graph 𝐺 = (𝑉, 𝐸) with number of vertices
𝑁 = |𝑉| and each vertex has 2 states, one of information and the other for threat level. It is assumed
that the agent can only observe the information and threat at the node at which it is located. Thus the
authors formulate the planning problem as a constrained DecPOMDP. Thus, there exists a joint set of
actions that agents can select their actions from. The planning objective of the agents is to choose the
joint movement actions that would help maximise the total expected reward accumulated over ℎ time

28 3. Background and Related Work

steps represented by the below equation,

𝑅(ℎ) =
ℎ

∑
𝑡=0
𝑟(𝑡) (3.12)

where, r(t) is the immediate reward at time step 𝑡. In DecMCTSSP, each agent runs an MCTS algo
rithm with its predictions of the peer agents as well as information obtained from teammates. During
the simulation stage, the tree is grown up to a maximum depth 𝐷 and the reward is computed for the
current planning agetn as well as the peers. In the computation of peers, action sequences are required
and for this the authors use the actions of other robots that are sampled from the shared probability
distributions of action sequences as done in the previous method of Best et al in [7] and is denoted by
𝐷𝑠. Along with this the authors also use the previous heuristic prediction of Claes et al in [12], denoted
by 𝐷𝑝. The idea of 𝐷𝑝 is to predict the actions of other robots in a computationally cheap manner,
reduce the communication pressure and get better coordination.

Figure 3.24: Graph Environment in DecMCTSSP [23]

The authors ran simulations on the communication uncertain environment shown in figure 3.24 that
has 3 agents (blue triangles) patrolling an area of 36 locations (black dots). The information is shown
in yellow circles while the threat levels are shown in red. The size of the circles denotes the information
or threat levels. On comparing the results it was found that with the DecMCTSSP algorithm performs
path planning around 12 seconds faster than DecMCTS, and with the increase in the number of agents
the planning the gap between the 2 increases and with DecMCTSSP performing path planning faster.
As a future work, the authors propose to extend the working under more complex environments and
also experiment with different communication models like broadcasting or sequential communication.

3.7. Peer Modelling
In the field of multi agent systems, there have been various techniques that can be used by agents
to model the behaviour of peer members and predict the actions that peer agents would take. This
approach not only gives the advantage of cooperating actions in order to achieve team goals in a faster
manner, but also reduces the dependency on fullfledged communication in many applications. The
ability to model other agents in these applications becomes a key component for effective collaboration.
A comprehensive survey on autonomous agents modelling one another can be found in Albrecht et al in
[2], in which there exists a modelling agent and a modelled agent. The model is defined to be a function
that takes as input some portion of the observed interaction history, and returns a prediction of some
property of interest regarding the modelled agent. In order to better understand the classifications of
techniques mentioned in the paper, the paper lays down a framework for the possible assumptions
about the modelled agent that has been listed in table 3.3. The categorisation on Deterministic vs
Stochastic is based on the action choices. If the modelled agent chooses an action for a given action
history with complete certainty then it is deterministic, else stochastic. Fixed and changing refers to
behaviour of the modelled agent. If an agent keeps its behaviour of choosing actions, or its decision
making ability unchanged, then it is termed as fixed. A Markovian agent that chooses actions based
solely on its current state is an example of this type of agent. An Adaptive/learning agent is example of
changing behaviour where a modelled agent learns the behaviour of other agents and chooses actions

3.8. Comparisons 29

Sl. No Attribute Type1 Type2
1 Action Choice Deterministic Stochastic
2 Agent Behaviour Fixed Changing
3 Decision factors Known Unknown
4 Action choice Independent Correlated
5 Goals Common Conflicting
6 Action Strategy Simultaneous alternating
7 State Representation Discrete Continuous
8 Environment Observability Full Partial

Table 3.3: Assumption Categorisation [2]

based on these models. Decision factors are attributes that influence the decision of the agent and
are usually based on history (like the most recent n observations), or based on abstract features which
were calculated from the history. The modelled agent can either know all these factors completely or
not know about some or any of them. In terms of action choice, if the modelled agent chooses actions
independently from another agent, then it is independent. When there are multiple agents then the
goals can be common or conflicting and the strategy of action execution plays an important role. It can
be simultaneous like the game of robot soccer, or it can be alternating as in the case of 2player poker.

Using the above assumptions, the authors of [2] broadly categorised peer modelling methods into
the following:

1. Policy reconstruction

2. Typebased reasoning

3. Classification

4. Plan recognition

5. Recursive reasoning

6. Graphical models

7. Group modelling

Policy Reconstruction is the modelling techniques where the modelling agent predicts the action prob
abilities of the modelled agent, by assuming a particular model structure and learning the parameters
based on observed actions. In Typebased reasoning, the action probability of the modeled agent is
predicted by assuming that the modelled agent has one of the several known types of models. Based
on observed actions, the relative likelihood of each of these types is computed and the the one giving
the highest score is selected. Classification is the technique in which the modelling agent assumes a
particular structure of the model and uses machine learning in order to fit the model parameters based
on information from the environment. Plan recognition is the technique by which the model predicts the
goal and future actions of the modelled agent. In recursive reasoning a model is used to predict the
next action of the modelled agent. Graphical models predict the action probabilities of the modelled
agent and use a graphical model to represent the agent decision process. The last category of group
modelling is a technique used to predict the joint properties of the group of agents.

3.8. Comparisons
Having explored the various techniques that have been utilised in multi robot exploration, we now
turn to compare the methods on criteria that is required for the application of this research study. It is
emphasised that the specific scenario that is being targeted is to have a team of multiple robots that can
cooperate effectively in order to explore an unknown region that has a limited communication. Thus,
the constraints that we are interested in are listed below along with an abbreviation which is used in a
following table:

1. Unknown Map (UM) Agents have no prior knowledge of the region that is to be explored.

30 3. Background and Related Work

2. Limited Communication (LC) Agents cannot communicate and share information beyond a com
munication range.

3. Local Observability (LO) Agents can only observe their nearby surroundings, but not the entire
environment.

4. Distributed Team (DT) Agents follow a peertopeer strategy and do not have any dependency
on any centralised entity.

5. Free Movement (FM) Agents move around the entire region continuously and are not restricted
to any position.

Sl. No Method Class UM LC LO DT FM
1 CliqueIntensity Algorithm [16] Robot Dispersion ! ! ! !
2 Backbone dispersion [16] Robot Dispersion ! ! ! !
3 Improved Walk Dispersion [34] Robot Dispersion ! ! ! !
4 RRT Exploration [42] Cost and Utility ! ! !

5 Leader Follower RRT Exploration [29] Cost and Utility ! ! !

6 Communication Revenue [6] Cost and Utility ! ! ! !
7 Hunter Gatherer [15] Cost and Utility ! !
8 Lopez et Uriel [25] Scene Partitioning ! ! ! !

9 EVSA [22] Scene Partitioning ! ! ! !

10 Meng et al [27] Game Theory ! ! !

11 Binary Log Learning [31] Game Theory ! !
12 CPP MCTS [21] SDP ! ! ! !

13 SPATAPS [12] SDP ! ! ! !

14 ABC Deep Learning [14] SDP ! ! ! !

15 Greame et al [7] SDP ! ! !

16 Minglong Li et al [23] SDP ! ! !

Table 3.4: Method Comparison

Each of the methods described in this chapter have been compared on these constraints and can
be found in table 3.4. A tick mark indicates that the method considers the constraint in its implemen
tation. It can be seen that in the Class of methods on Robot Dispersion ([16], [34]) all the methods
consider the constraints. However, all these algorithms have minimal cooperation and are utilised in
applications where after distributing themselves in the environment, they remain stationary. Therefore
in order to maximise the exploration, more robots are required rather than more movement of team
member. Amongst the Cost and Utility based approach, the Rapidly exploring Random Tree (RRT)
based methods ([42], [29]) has free movement available and is biased towards regions that it does not
know yet. Each method does not assume limited communication and relies on a centralised node. In
the Communication Revenue method [6], most of the constraints are adhered to, however agents are
required to continuously maintain positions where they can be in communication with one another. This
restricts their movement to discover new areas individually. This along with no limited communication
constraint is also the drawback with the Hunter Gatherer method [15] where subgroups of agents can
talk to one another via an online board. The existence of the online board however removes the dis
tributed aspect of the system because a failure in the online board will lead to a disruption in the entire
exploration. In the case of both the scene partitioning methods ([25], [22]), the system is completely
distributed and has agents that can move freely. However the main drawback is that the agents do not
consider the constraint of limited communication. Methods under the class of game theory involved a
surveillance system where a team performs continuous monitoring of a region([27], [31]). The methods
do consider a distributed approach with team members negotiating to find a Nash Equilibrium. How
ever, both methods assume a target probability map to be available prior to the exploration that gives a
probabilistic estimate on the existence of a target within each region. Further, the agents in this method

3.8. Comparisons 31

also consider unrestricted communication which allows agents to access the plans of one another at
all times. In the case of sequential decision planners (SDP) , all methods follow a distributed approach
with agents have free movement. In the method on Coverage Path planning [21] agents have the pos
sibility to perform exploration in an unknown area. However the drawback is that the method assumes
unrestricted communication to be available. In the case of the methods related to Heuristic Prediction
([12],[14]) agents do satisfy most of the constraints that are present. However the only constraint not
satisfied is solely having local observibility. The agents in both these methods instead can observe the
global state of the environment at all times. The method of sharing a probability of actions in the work
of Greame et al in [7] is also similar to the heuristic methods in terms of constraint satisfaction, where
agents are modelled to deal with intermittent communication. The additional constraint that this does
not satisfy is working in a setup of a completely unknown system. Instead the region is modelled as a
graph with predefined locations that the team of agents must move through within a given time. The
approach by Minglong Li et al in [23] combines the work of Greame et al with the heuristic prediction
in unseen maps for information gathering. However in this method the communication is unrestricted
and each agent can observe the global state of the environment.

4
Approach

In the previous chapter, various methods utilised to perform multirobot exploration were discussed
and compared. In this section, the approach taken as per the research objective mentioned in section
2.1 will be described. As a starting step, the MCTS Planner of Hyatt et al [21] was implemented first.
The reason for selecting this particular method will be explained in section 4.1. Following this, section
4.2 describes the problem setting, provides motivation for algorithm design choices and highlights the
assumptions that have been made in the implementations. In the case of the method by Hyatt et al
[21] the scenario was an environment of full communication, where agents were allowed to communi
cate important information like their state, position and plans with one another. This has been further
elaborated in section 4.3. Once tested to be working the communication dependency of the algorithm
was dropped in order to have no communication between agents. In this situation agents could not
share any information with one another, but could only sense nearby agents for the purpose of colli
sion avoidance. This scenario has been explained in section 4.4. In order to relax the constraint of
communication while keeping physical limitations in mind, agents were then allowed to communicate
important information only when within a predefined communication range from one another. This is
referred to as partial communication and has been described in section 4.5. In order to bring the be
haviour of agents having partial communication closer to the full communication case, agents were
then given the capability to predict the strategies of peers. Agents performed this by using the most
recently known information of peers and through the use of computationally cheap heuristics. This has
been further elaborated in section 4.6. All the MCTS methods have certain hyperparameters that can
be tuned. The motivation for the specific choice of certain values for these hyperparameters is given in
section 4.7. The MCTS based methods are compared to another existing algorithm that considers the
same environment constraints. This algorithm is referred to as frontier communication and is explained
in section 4.8.

4.1. Baseline Selection
In this section we discuss the selection of the Baseline for further research to be conducted. Each
major method of the class of methods has been compared in table 3.4 based on the ability to deal
with completely unknown maps, work in environments of limited communication, possess only local
observibility, support a distributed team of agents and facilitate free movement. Amongst the methods
discussed, the method on Coverage Path Planning by Hyatt et al [21] using MCTS satisfied 4 out of
5 requirements. The method was also used by the authors to tackle a search and rescue exploration
scenario. Further the ability of an agent to select an action by looking ahead a certain number of
steps and computing the resulting reward could help agents avoid moving towards cluttered regions
where it could get stuck. Themethod also involved the sharing of individual map coverage status, agent
positions and path plans between agents. Being a simulation based method, each agent had the ability
to consider the plans shared by the other robots in the computation of its own plans, which brought in
the aspect of cooperation. The only drawback however was that the method assumed unrestricted
communication.

In order to deal with the limited communication constraint, methods discussed in table 3.4 that

33

34 4. Approach

adhered to the constraint of Limited Communication (LC) were analysed. This included all the methods
of the Robot Dispersion class, the Communication Revenue method [6] of the Cost Utility class and
the SPATAPS [12] ABC Deep Learning [14] methods of the SDP class. The Robot Dispersion class
and the Communication Revenue method however did not satisfy the constraint of Free movement.
This could possibility restrict the time for movement around the arena and increase the exploration
time for the team. The SDP methods did not have this restriction and could move around freely. Each
of these methods utilised computationally cheap heuristics that could predict/estimate the next actions
of team members. This could potentially be useful in the current application where there is limited
communication and such heuristics could be used to predict the next positions along with the planned
actions of the peer agents. This however is still an unanswered question because the heuristics have
previously only been used in a setting where each agent could observe the global environment.

Due to the various merits of MCTS mentioned previously, the method of Coverage Path Planning by
Hyatt et al [21] that used MCTS for exploration was selected as the baseline. In this algorithm agents
could share map coverage, position and the best planned paths at every moment of time, without any
restriction. The algorithm was then modified to remove the full communication assumption to a situation
of completely no communication. In order to include the idea of cooperation between agents the case
of partial communication was implemented, where agents could share information only when present
within a predefined communication range. With the goal of narrowing the difference between Partial
Communication and Full Communication scenarios, every agent was given the capability to predict
the paths of peer agents that were outside the communication range. Agents made such predictions
using known path information, as well as computationally cheap heuristics that was placed on top of the
partial communication setup. It was possible to do this, because the goal of each agent is the same,
that is to maximise the area of coverage. By approaching the study in the above manner important
contributions that have been made are:

1. Extending the study on Coverage Path Planning by Hyatt et al [21] to an environment of limited
communication.

2. Extending the heuristics dealt with in SPATAPS [12] and ABC Deep Learning [14] towards appli
cations where the global state of the environment is unknown.

3. Utilising partial communication to move agents freely in an area thereby removing the need for
restricted movement in previous multirobot exploration work like the communication revenue
method [6] and frontier based communication [5].

4.2. Algorithm Design
At the beginning of this chapter, it was explained that there are 4 different scenarios that have been
considered in this study Full Communication, No Communication, Partial Communication and Partial
Communication with Prediction. The problem setting agents in each scenario perform exploration in
has been explained in section 4.2.1. The stages in the design of the MCTS planner are explained in
subsection 4.2.2. Within the MCTS planner there are a number of design choices and the motivation
for particular design choices is described in subsection 4.2.3.

4.2.1. Problem Setting
Every scenario, irrespective of the communication level involves spawning or deploying multiple robots
into a gridworld. The agents explore a gridworld that consists of a number of gridcells. Each gridcell
can take one of the value of covered, unexplored or an obstacle. The state transitions of the grid
world environment occur based on the actions of the agents. This state transition occurs in discrete
timesteps and is deterministic.

Each agent has the option to execute one of the actions {𝑈𝑃, 𝑅𝐼𝐺𝐻𝑇, 𝐿𝐸𝐹𝑇} and can take up posi
tions in the gridworld which is defined by the tuple (𝑥, 𝑦, 𝑦𝑎𝑤). The position (𝑥, 𝑦) refer to the 𝑥 and
𝑦 coordinates in the gridworld, while 𝑦𝑎𝑤 refers to the heading angle of the agent with respect to
the horizontal axis. The heading angle indicates the orientation of the agent and can take the values
{0, 90, 180, 270} corresponding to pointing right, up, left and down respectively. From the action list, the
action 𝑈𝑃 moves an agent 1 gridcell ahead based on the 𝑦𝑎𝑤 value. 𝑅𝐼𝐺𝐻𝑇 and 𝐿𝐸𝐹𝑇 actions only
turn the agent clockwise or anticlockwise and do not shift the agent by any gridcell.

4.2. Algorithm Design 35

Prior to spawning, each agent knows the size of the area to explore and maintains a separate belief
of the environment as a gridmap. In the belief map of each agent, the gridcells on the map can take
one of the values of {𝐶𝑜𝑣𝑒𝑟𝑒𝑑, 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒}. Each agent assumes that all the gridcells
are 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 at the beginning of the exploration. As an agent moves around the environment, it
acquires more knowledge about the environment and uses this to update its own belief map. Each
agent however has locally observability and can only observe the state of a small segment of gridcells
of the entire gridworld. The extent of local observability is defined by the agent sensor range. For
example, with a sensor range 1 the agent only discovers the values of the 8 adjacent gridcells present
around it. This is indicated in figure 4.1. The colour combination is that 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 gridcells are
marked in blue, 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 gridcells in green and gridcells with 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 are marked in red. In the
figure a 12x12 grid map along with a single spawned agent can be seen. Subfigure 4.1a shows the
position of the agent in the environment while subfigure 4.1b shows the agent’s belief map. When a

(a) Agent position in Environment (b) Agent’s Environment Belief

Figure 4.1: Map Discovery by a Single Agent

team of multiple agents are spawned into the environment, then each agent plans out on its own paths.
This maintains the distributed approach of the problem and there is no dependency on any central
entity. There are also certain assumptions that each agent of the team makes about its team and the
environment. These are:

1. Each agent knows the total number of agents that are present in the exploration team.

2. Each agent knows the size of the map and the origin as a frame of reference.

3. An agent considers a gridcell to be covered when it is directly over it.

Thus, by utilising the above setting agents of a team are distributed, locally observable, can deal with
limited communication and an unknown environment.

4.2.2. Design Stages
As discussed in the previous subsection, the problem setting is a team of distributed agents having
local observibility spawned into an unknown environment. Each agent can individually sense the en
vironment which helps it update its own belief of the environment. When multiple agents are required
to cooperate and explore an environment, then a fundamental aspect that each agent is required to
know is the actions of peer agents. To do this, agents need have the possibility to share information
with one another. By doing this each agent can get to know the plans of the peer agents. In most of
the scenarios of this study (except No Communication), it is possible for agents to share information
with one another. Agents share their environment belief or map coverage status, position in the arena
and their best planned paths. This shared information is used by the agent to update its own belief of
the environment and also help it make cooperative plans of actions to execute. Overall this leads to
cooperative area coverage where agents explore the area such that a maximum number of gridcells
are covered. This entire coverage algorithm can be grouped into four stages which are Environment
Sensing, Data Sharing, MCTS Planning and Action Execution. The working of the algorithm during
the full communication baseline scenario is explained in Algorithm 1.

36 4. Approach

Algorithm 1: Full Communication
Result: Area Covered by N agents upto user defined Coverage Goal
while Coverage Goal is Not Met do

𝑡 ← 𝑡 + 1 ;
for 𝑖 ← 1 to 𝑁 do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝 ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑆𝑒𝑛𝑠𝑖𝑛𝑔() ;
for 𝑗 ← 1 to 𝑁 and 𝑗 ≠𝑖 do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑗(𝑡 − 1) ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐷𝑎𝑡𝑎𝑆ℎ𝑎𝑟𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑗) ;
end
𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑖(𝑡) ← 𝑀𝐶𝑇𝑆𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛−𝑖(𝑡 − 1)) ;

end
for 𝑖 ← 1 to 𝑁 do

𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴) ;
end

end

Algorithm 1 delineates the way a team of N agents covers an arena. The exploration begins with
a team of N agents spawned into an environment that supports full communication. The team has a
predefined coverage goal that is known before the exploration begins. The coverage goal specifies
the number of gridcells that the team is required to explore. A high level working of the algorithm is
that while the coverage goal is not yet met, each of the stages of Environment sensing, data sharing
and MCTS planning is performed by each agent. Once each agent has performed all these stages, the
planned action of each agent is executed during the Action Execution step.

Each agent maintains its own belief of the environment as a map 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝. At timestep 𝑡, 𝑎𝑔𝑒𝑛𝑡𝑖
runs the Environment Sensing stage and updates 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝. Following this, the Data Sharing stage
occurs for each peer agent 𝑗. During the Data Sharing stage, each agent 𝑖 obtains the Map belief of
each peer agent 𝑗. 𝑎𝑔𝑒𝑛𝑡𝑖 uses this information to update its own map, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝. In addition to the
belief map, agent 𝑖 also obtains the best plan of peer 𝑎𝑔𝑒𝑛𝑡𝑗 that was planned at the previous time
step 𝑡−1. This information is then used during the MCTS Planning stage to compute the best possible
action 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴. It is important to note that at time step 𝑡, 𝑎𝑔𝑒𝑛𝑡𝑖 uses the plans of the peer agents of
a previous time step 𝑡 − 1. While this information is 1 timestep old, it is assumed that the peer agent
will execute actions as per this plan at the current time step 𝑡 also. From timestep 𝑡, the plan to be
executed will be of length 𝑡 − 1. For the last final timestep, the agent computes the missing action
by utilising the default policy strategy, that will be explained. This results in a complete plan of size 𝑡.
After the completion of the MCTS Planning stage, each agent records the action 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴 which it is
supposed to execute. The MCTS planning stage also gives the plan that the agent takes at 𝑡 and which
it will share with other peer agents in the next time step 𝑡𝑘+1. Once the above 3 stages are complete
for all agents, each agent executes their assigned action. Following this, the current coverage status
of the global environment at timestep 𝑡 is compared to the coverage goal. If the coverage goal is still
not yet met then the timestep is incremented and the stages of Environment Sensing, Data Sharing,
MCTS Planning and Action Execution are run again.

Restricted Communication Scenarios:
Algorithm 1 explains the working of the area coverage algorithm for a full communication setup. In the
case of scenarios with limited communication, the algorithm differs in the Data Sharing Step. In the
case of No Communication, there is no possibility of communication and hence there is no Data Sharing
stage. In the case of Partial Communication, the Data Sharing stage is replaced by a Neighbourhood
Data sharing stage. This will be discussed in subsection 4.5. In the case of partial communication with
prediction in addition to the Neighbourhood data sharing stage, there is also an additional stage called
the Peer Prediction stage. These stages are explained further in subsection 4.6.

4.2.3. Monte Carlo Tree Search Planner Design
An MCTS planner has been used in planning the paths of agents. The planning begins from the root
node. At the root node, the agent utilises the environment state, its own position and the position

4.2. Algorithm Design 37

plans of the known peer agents. Using this information the agent needs to choose the most promising
action from its action set ({𝑈𝑃, 𝑅𝐼𝐺𝐻𝑇, 𝐿𝐸𝐹𝑇}). As mentioned in section 3.6.3, an MCTS planner has 4
major steps which are selection, expansion, rollout and backpropagation. These 4 steps are repeated
multiple times and the final output from the entire computation is the action that gives the highest reward
path. Along with the 4 steps, there are 2 important policies that help narrow down the search towards
more promising choices of actions. These are the Tree Policy and the Default Policy. The Tree policy
is used to select nodes or create expandable ones. In the implementation, the tree policy utilises the
Upper confidence bound for trees (UCT1) which is given by equation 4.1.

UCT1 = �̄�𝑗 + 2𝐶𝑝√
2 ln𝑛
𝑛𝑗

(4.1)

In this equation, �̄�𝑗 refers to the reward obtained by taking the action 𝑗, 𝑛𝑗 refers to the number of
times that action 𝑗 has been selected and 𝑛 refers to the number of times the current parent node has
been visited. The �̄�𝑗 term drives selecting actions that maximise rewards while the latter term enables
exploring other possible actions. The equation when put in words, translates into directing the search
towards regions that give a higher reward, while also ensuring that every action from the available list
of actions is executed at least once. The UCT tree policy is able to narrow down the search towards
nodes with larger rewards and gives a fair chance to all actions right in the beginning. It is also the
policy that was utilised by the Hyatt et al [21] for robot exploration. Due to these 2 reasons, equation
4.1 has been chosen.

The default policy is used during the simulation stage to rollout the consequence of the selected
action for a predefined number of steps. Usually in most applications, the default policy used is a
sequence of random actions. However in this case, the default policy selects actions that directs agent
planning towards unknown gridcells. By directing the rollouts towards unknown gridcells, agents can
maximise the detection of unknown gridcells in its plans. This helps create plans that covers larger
number of unknown gridcells.

Upon completion of the default policy rollout after a predefined number of steps, the agent is re
quired to compute a reward. The reward computed is called the 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 and is the weighted sum
of 2 other reward, which are the 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 and the 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑. The 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is given by
equation 4.2,

𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑇

∑
𝑘=1

[1
(𝑡 + 1)2

(𝐶𝑐𝑜𝑣 − 𝐶ℎ𝑖𝑡)] (4.2)

In the above equation 𝐶𝑐𝑜𝑣 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟 if the robot lands up on a newly discovered grid cell at
time step k and ”covers” it, else 𝐶𝑐𝑜𝑣 = 0. 𝐶ℎ𝑖𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟 if the robot encounters an obstacle
or another robot at time step k, else it remains 0. Due to the negative sign, the 𝐶ℎ𝑖𝑡 parameter is used
to apply a penalty for instances of collision. 𝑇 is the final time step for the simulation horizon. The
normalisation using the (𝑡+1)2 term is used to decay the local reward overtime. The decay overtime is
done to give a higher weight to rewards obtained at the nearer timestep 𝑡. The decay overtime is also
referred to as discounting. In general, discounting can be performed by using a general expression
𝑦 = 1

(𝑡+1)𝑛 , where 𝑛 ≥ 1. Figure 4.2 shows the trend of 𝑦 = 1
(𝑡+1)𝑛 for 𝑛 = 1, 2, 3, and with 30 time

steps. 30, as will be seen is the value that the authors of the baseline [21] have considered in their
work. When 𝑛 = 1, it can be seen that 𝑦 takes up a fairly large value (0.10) even when 𝑡 = 10. This
results in reward values 10 steps ahead being given a sizable weight. If along this path at say 𝑡 = 2,
there are obstacles, then the robot is likely to move into the obstacle due to the larger weight for all
subsequent timesteps. This behaviour of the robot moving into an obstacle was seen for 𝑛 = 1 and
thus higher values of 𝑛 were tested. When 𝑛 = 3, then the value of 𝑦 becomes 0.00 at 𝑡 = 6 itself. This
prevents plans from further timesteps to be taken into account and the planning cannot look ahead
beyond 𝑡 = 6. When 𝑛 = 2, then 𝑦 becomes 0.00 at 𝑡 = 15 and the planning horizon increases when
compared to the previous case. Thus, 𝑛 = 2 results in a discounted weight that is not as large as the
𝑛 = 1 case and also that does not become 0.00 at smaller timesteps. Further, 𝑛 = 2 has also been

38 4. Approach

Figure 4.2: Discounting by timestep

utilised by the baseline method [21]. Due to these reasons, discounting using the (𝑡 + 1)2 term has
been chosen for every communication scenario.

Apart from the 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑, the agent also computes a 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑. The 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is
computed after the agent simulates the plans of its peers as well as its own actions. The aim of doing
this is to include a reward for team behaviour and bias the agent to choose actions that do not lead it
to redundant coverage. The 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is given by,

𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = −𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑𝐶𝑒𝑙𝑙𝑠𝑖𝑛𝑡ℎ𝑒𝐺𝑟𝑖𝑑𝑀𝑎𝑝𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶𝑒𝑙𝑙𝑠𝑖𝑛𝑡ℎ𝑒𝐺𝑟𝑖𝑑𝑀𝑎𝑝 (4.3)

The 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is such that it is inversely proportional to the number of unexplored cells, thus
giving higher reward to strategies that result in lesser number of unexplored cells. A lesser number of
unexplored cells implies that there are more cells that have been discovered as covered or an obstacle.
This discovery is made both by the current agent as well as the peer agents and thus using the Global
Reward gives rewards to cooperative team behaviour. Utilising both these rewards, the 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑
is then computed as,

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑤𝐿𝑅𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 + 𝑤𝐺𝑅𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 (4.4)

Here 𝑤𝐿𝑅 and 𝑤𝐺𝑅 are the weights given to the 2 rewards. In the original work [21], 𝑤𝐿𝑅 = 𝑤𝐺𝑅 = 1.
This 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is then utilised during the back propagation step, where the computed reward is
first added to the existing reward of the active node. Following this the parent of each node is updated
with the average of the reward of the child nodes. This propagation of Total Reward occurs until the
root node. It is to be noted that the above terms of 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑, 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 and 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑
have been adopted as per the baseline implementation by Hyatt et al [21]. In actual, it can be seen
that the 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is in fact a Value that is computed over many steps and the 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is a
score that is given after the completion of the rollout phase.

As mentioned in the beginning of this subsection, the default policy used directs the search towards
unknown gridcells. This can be done through 2 different approaches. The 2 design approaches are
referred to as default policy 1 and default policy 2. There are 3 important phases during the default
policy stage. These are Simulation Path Planning, Peer Plan Execution and Reward Computation.
In the Simulation Path Planning phase, an agent begins running the computation of the plans on its
belief map. In the Peer Plan Execution phase, an agent executes the plans of peer agents on its belief
map. Reward Computation is the phase in which an agent computes the Total Reward (equation 4.4)
of its planned actions.

4.2. Algorithm Design 39

The main difference between default policy 1 and default policy 2 is the method by which agents
consider the plans of peer agents. In Default policy 1, an agent follows the sequence of Simulation
Path Planning > Peer Plan Execution > Reward Computation, whereas in Default Policy 2 the
sequence of Peer Plan Execution > Simulation Path Planning > Reward Computation is followed.
Further, the agent performs the planning on its own belief map of the environment. In the below section,
each policy has been explained in more detail. It is important to note that in the explanations, a full
communication case is considered where the environment supports unrestricted communication.

Default Policy 1
This is the default policy implemented in the original paper [21]. As mentioned in the previous para
graph, each agent in the simulation step first executes its own actions in simulation in the Simulation
path planning stage. Subsequent to this the plans of peer agents is executed and marked by the agent
on its belief map. This is possible as data sharing happens before path planning and prior to the execu
tion of default policy 1 each agent obtains the path plans of each peer team member. The agent then
moves onto reward computation, where it computes the 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 and 𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑. This can
be further understood by considering figure 4.3. Subfigure 4.3a shows the current position of 2 agents
in an environment. The left agent is the current agent (agent0) and its peer is on the right (agent1).
Subfigure 4.3b shows the status of the environment at the starting when agent0 begins computing the
simulation paths. Once the simulation paths have been made, these paths along with the peer agent
paths are executed and marked on the belief map of agent0, in the Peer Plan Execution step. In the
Reward Computation step, the 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is computed.

(a) The Environment (b) Simulation Path Planning (c) Reward Computation

Figure 4.3: Default Policy 1 Steps

Default Policy 2
Default Policy2 differs from the earlier case in the execution steps of the 3 processes. At the very
beginning, the agent performs the Peer Plan Execution stage and executes the path of peer agents.
Following this, the simulation path planning stage is executed where agents plan their own paths in
the simulator. The advantage of doing this compared to the above is that the paths of peer agents
are marked as covered on the planning agent’s map. Thus, plans made by the current agent would
not move onto these gridcells. Once the simulation path plans have been created by the agent, the
agent moves onto computing the rewards in the reward computation step. The method can be better
understood by considering figure 4.4. The positions of the 2 agents in the environment can be seen in
subfigure 4.4a with current agent (agent0) on the left and the peer agent (agent1) on the right. Sub
figure 4.4b shows the step of peer plan execution where agent0 executes the plans of agent1 in its
simulation. Following this, the simulation path planning step is run where the agents move towards
unknown gridcells. Finally, at the end the reward computation step is run where the 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 is
computed.

40 4. Approach

(a) The Environment (b) Peer Plan Execution (c) Reward Computation

Figure 4.4: Reward Computation

4.3. Full Communication
The first scenario implemented is the reproduction of the work by Hyatt et al in [21] where agents share
information in an environment that facilitates unrestricted communication. The working has already
been explained in subsection 4.2.2 in terms of the major stages of the design approach. In such an
environment agents can exchange any amount of data irrespective of their position and distance from
one another. The data that agents share at each time step are:

1. Their current position

2. Their computed best path using MCTS

3. Their map coverage status

The position as mentioned in subsection 4.2.1 is the tuple (𝑥, 𝑦, 𝑦𝑎𝑤). The computed best path is the list
of actions that leads to the path with the highest reward, in the previous time step. The map coverage
status contains the value ({𝐶𝑜𝑣𝑒𝑟𝑒𝑑, 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒}) of all the gridcells in the environment,
as perceived by the agent.

4.4. No Communication
In this case of No Communication, agents have no capability to communicate any information to peer
agents. The scenario is used as a starting step to remove the communication dependency from the
original algorithm. While no robot can communicate with one another, agents can still sense the pres
ence of peers that are within the sensing range. This is done for the purpose of collision avoidance.
When planning the next action, the MCTS planner of the agent only simulates its own actions in the sim
ulation step. Thus, there is no difference in using any of the default policies as mentioned previously.
For the sake of uniformity in reward computation, each agent computes the 𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 as before
by using equations 4.2, 4.3 and 4.4. A high level working of this algorithm can be seen in algorithm 2.

It can be seen that there are only 3 stages in the working which are, Environment Sensing, MCTS
Planning and Action Execution. Further, MCTS Planning only uses its own map belief of the environ
ment 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝. Once the most suitable action has been assigned to every agent (𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴), each
𝑎𝑔𝑒𝑛𝑡𝑖 executes its own action and the major stages are repeated if the coverage goal is still not met.

4.5. Partial Communication 41

Algorithm 2: No Communication
Result: Area Covered by N agents upto user defined Coverage Goal
while Coverage Goal is Not Met do

𝑡 ← 𝑡 + 1 ;
for 𝑖 ← 1 to 𝑁 do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝 ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑆𝑒𝑛𝑠𝑖𝑛𝑔() ;
𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴 ← 𝑀𝐶𝑇𝑆𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝) ;

end
for 𝑖 ← 1 to 𝑁 do

𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴) ;
end

end

4.5. Partial Communication
Most robots do have the capability to communicate in a physical environment. The communication
between robots however is usually limited by factors like range, environment noise and energy con
sumption [11]. In order to incorporate this type of behaviour in the system, the scenario of partial com
munication based on the distance between agents is created. In this scenario agents share information
when within a predefined communication range. The data that is shared is the same as mentioned in
the full communication case, that is the individual coverage maps, most recent best paths computed,
and positions. Once data is shared, each agent starts the planning process and considers the peer’s
plans during the simulation/rollout stage. When 2 agents are outside the communication range of one
another, then each agent makes plans without considering the plans of the other. The working of the
major stages of this scenario can be seen in Algorithm 3.

Algorithm 3: Partial Communication
Result: Area Covered by N agents upto user defined Coverage Goal
while Coverage Goal is Not Met do

𝑡 ← 𝑡 + 1 ;
for 𝑖 ← 1 to 𝑁 do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑆𝑒𝑛𝑠𝑖𝑛𝑔() ;
for 𝑗 ← 1 ∈ 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑗(𝑡 − 1) ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝐷𝑎𝑡𝑎𝑆ℎ𝑎𝑟𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑗) ;
end
𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑖(𝑡) ← 𝑀𝐶𝑇𝑆𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑁𝑒𝑖𝑔ℎ(𝑡 − 1)) ;

end
for 𝑖 ← 1 to 𝑁 do

𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴) ;
end

end

Algorithm 3 is similar to Algorithm 1. The difference however is that during the Environment Sensing
stage, 𝑎𝑔𝑒𝑛𝑡𝑖 keeps a track of the neighbours that it senses to be within the communication range in a
list 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ. 𝑎𝑔𝑒𝑛𝑡𝑖 then moves onto obtain the plans for only these Neighbours. If there are no
neighbours around then this list of plans is empty. At the MCTS Planning stage, 𝑎𝑔𝑒𝑛𝑡𝑖 executes the
plans for only the 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ number of neighbours, denoted in the figure as 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑁𝑒𝑖𝑔ℎ(𝑡 −
1)). The best possible action (𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴) is then computed using MCTS Planning. Following this, the
actions of all agents are executed and the above steps repeat until the coverage goal is met by the
team of agents.

42 4. Approach

4.6. Partial Communication with Prediction
In the case of partial communication, agents simulate the actions of peer agents that are within the
agent’s communication range. When peer agents move outside this range, the current agent does not
consider it in its planning. If agents however are given the possibility to predict peer member plans, then
it can lead to a situation where agents can still simulate and consider the plans of peer agents. This
could possibly lessen the gap and make the situation approach the full communication scenario. This
is the idea of Partial Communication with Prediction which is an extension of the Partial Communication
case. The major stages of this scenario are explained in Algorithm 4. Algorithm 4 is similar to Algorithm

Algorithm 4: Partial Communication with Prediction
Result: Area Covered by N agents upto user defined Coverage Goal
while Coverage Goal is Not Met do

𝑡 ← 𝑡 + 1 ;
for 𝑖 ← 1 to 𝑁 do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑆𝑒𝑛𝑠𝑖𝑛𝑔() ;
𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑜𝑛𝑁𝑒𝑖𝑔ℎ ← 𝑁 − 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ ;
for 𝑗 ∈ 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑗(𝑡 − 1) ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝐷𝑎𝑡𝑎𝑆ℎ𝑎𝑟𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑗) ;
end
for 𝑗 ∈ 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑜𝑛𝑁𝑒𝑖𝑔ℎ do

𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑗(𝑡 − 1) ← 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑒𝑒𝑟𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑎𝑔𝑒𝑛𝑡𝑗) ;
end
𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛𝑖(𝑡) ← 𝑀𝐶𝑇𝑆𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑀𝑎𝑝, 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑃𝑙𝑎𝑛−𝑖(𝑡 − 1)) ;

end
for 𝑖 ← 1 to 𝑁 do

𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴) ;
end

end

3. At the beginning, 𝑎𝑔𝑒𝑛𝑡𝑖 computes the list of peer agents that are not in the communication range.
This is denoted by 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑜𝑛𝑁𝑒𝑖𝑔ℎ. As the total number of agents in the team (𝑁) is known to each
agent, therefore 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑜𝑛𝑁𝑒𝑖𝑔ℎ can be computed from the information of the number of neighbours
𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑒𝑖𝑔ℎ. Once 𝑎𝑔𝑒𝑛𝑡𝑖 .𝑁𝑜𝑛𝑁𝑒𝑖𝑔ℎ is computed, the most recent plans of the agents outside the
communication range is predicted using the methods that will be described in the below sub sections.
The plans of all peers, within or outside the communication range is used by 𝑎𝑔𝑒𝑛𝑡𝑖 during the MCTS
planning stage. Once the most suitable action 𝑎𝑔𝑒𝑛𝑡𝑖 .𝐴 is computed in this manner for every agent,
then the actions are executed and the environment makes a transition. These steps continue until the
coverage goal is met.

As the goal of the entire team is to cover gridcells, each agent’s individual behaviour is the same,
that is to be biased towards covering more numbers of unknown gridcells. Each agent can then use
this fundamental rule to predict what its peer agent performed. These predictions will be based on the
agents own map. The agents own map is not the most accurate representation of the environment as
it is continuously getting updated through the sensing mechanism of the agent and map merging with
maps of peer agents within communication range. As it is not an accurate representation, therefore this
may lead to imperfect predictions. However, agents also know the best planned paths of peer agents
that it obtained when within the communication range. This list of best planned paths, though finite
in number can be used to improve the accuracy of predictions. As an example, consider 2 agents,
𝑎𝑔𝑒𝑛𝑡𝑖 and 𝑎𝑔𝑒𝑛𝑡𝑗. When the 2 agents are not in communication range, then 𝑎𝑔𝑒𝑛𝑡𝑖 can predict the
path of 𝑎𝑔𝑒𝑛𝑡𝑗 using the last shared best planned path of 𝑎𝑔𝑒𝑛𝑡𝑗. This information is finite, and thus
for other instances 𝑎𝑔𝑒𝑛𝑡𝑖 needs to make predictions of the path of 𝑎𝑔𝑒𝑛𝑡𝑗. The method by which
agents predict the paths of the peer agents is based on heuristic computation. The heuristic used
is explained in subsection 4.6.1. Further, there are a number of corner cases that must be solved
during the prediction. These will be explained in subsections 4.6.2 and 4.6.3. The entire working of the
prediction algorithm, including the corner cases is explained in subsection 4.6.4.

4.6. Partial Communication with Prediction 43

4.6.1. Coveragebystep Heuristic
When agents are within communication range, then they share the best planned paths. The best
planned paths is a list of actions that the peer agent computed in the last time step. For agents that
are outside the communication range, the current agent makes predictions of peer paths as a list of
actions. These predictions are based on the last shared information by the peer agent. However, as
timesteps progress this information cannot be used used by the current agent at all times. Thus, for
such instances when the actions of peers is completely unknown, the coveragebystep Heuristic is
used. In the coveragebystep heuristic the current agent predicts the next action of the peer agent
by computing a reward for the 8 gridcells around the predicted/last seen position of the peer agent.
This can be understood by considering figure 4.5a. In the scenario shown, there are 2 agents (agent0
and agent1) which are present outside communication range. Subfigure 4.5b shows agent0’s belief
of the environment at the current time step while subfigure 4.5c shows the estimated position of its
peer agent, agent 1 at the current time step. It is important to note that this figure shows the position
of agent 1, as predicted by agent 0. The yellow box shows the 8 zones/gridcells that agent0 uses in
order to predict the next position and next action of agent1, using the heuristic reward.

(a) The Environment (b) Agent Belief (c) Agent Peer Belief

Figure 4.5: Heuristic h1 computation

The heuristic reward (𝑅𝑒𝑤𝑎𝑟𝑑ℎ𝑒𝑢𝑟) is computed using the reward value for each zone. This reward
is computed based on equation 4.5 where 𝑅𝑐𝑜𝑣 denotes the coverage reward of the particular zone and
𝑁𝑚𝑖𝑛𝑠𝑡𝑒𝑝𝑠 gives the minimum number of steps that the belief agent is required to move from the current
position to the zone position.

𝑅𝑒𝑤𝑎𝑟𝑑ℎ𝑒𝑢𝑟 =
𝑅𝑐𝑜𝑣

𝑁𝑚𝑖𝑛𝑠𝑡𝑒𝑝𝑠
(4.5)

The value of 𝑅𝑐𝑜𝑣 is given by the equation

𝑅𝑐𝑜𝑣 = {
+2, if the zone is unknown
+1, if the zone is covered
0, if the zone is an obstacle

(4.6)

The above values of 𝑅𝑐𝑜𝑣 were tested and found to give satisfactory results. Initially the value of 𝑅𝑐𝑜𝑣
was set as +1 for moving to an unknown gridcell, 0 for moving to an already covered gridcell and 1
for moving into an obstacle. However, it was found that this set of 𝑅𝑐𝑜𝑣 did not work well and especially
when the agent’s peer belief was surrounded by covered regions. In such a case, the reward zero
was given to all the surrounding gridcell regions and the peer belief position would remain in the same
position or move around randomly, thus reducing accurate predictions of the peer agent positions.

The value of 𝑁𝑚𝑖𝑛_𝑠𝑡𝑒𝑝𝑠 can be understood by considering figure 4.6. The figure shows the ori
entation of the agent (indicated in orange) in every direction and denotes the corresponding values
𝑁𝑚𝑖𝑛_𝑠𝑡𝑒𝑝𝑠 and the first step in that list as a tuple format (𝑁𝑚𝑖𝑛_𝑠𝑡𝑒𝑝𝑠,First step). As an example con
sider the top left case where the agent faces the upward direction. The gridcell right above the agent
is only 1 move away from the agent and the first action that moves the agent to this gridcell is UP.

44 4. Approach

Therefore the tuple is given by (1,UP). Within the same orientation figure, if the case of the gridcell
just below the agents location is considered, then there are minimum 3 steps that would be required
to move to the grid square. These steps are [RIGHT,RIGHT,UP] or [LEFT,LEFT,UP]. Thus the tuple is
given by (3,LEFT) or (3,RIGHT). The minimum number of steps and the first action of the list can be
computed in the same way for other grid cells. Further the steps are dependent on the orientation of
the agent and therefore the same values apply in all possible orientations when rotated by 90 degrees,
which can be seen in the remaining 3 cases of figure 4.6. Overall using equation 4.5, the agent uses
𝑅𝑒𝑤𝑎𝑟𝑑ℎ1 to obtain the first action that moves it to the zone with the highest value of 𝑅𝑒𝑤𝑎𝑟𝑑ℎ1. In
most cases a higher reward indicates an uncovered zone that can be reached with minimum number
of steps.

Figure 4.6: Step Computation with direction

4.6.2. Special Cases
While the coveragebystep heuristic appears to be a straightforward way in predicting the peer agents
position by biasing it towards unknown regions with minimum number of steps, it does have some limi
tations. There were 2 limitations that have been found and additional measures to deal with them have
been put into place. The first limitation is that the coveragebystep heuristic can sometimes choose
zones that is present behind obstacles. Due to this, agents have no direct path to such zones and no
movement takes place. The second limitation is that agents only have the capability to look one step
ahead to plan paths. As will be mentioned further, looking beyond one step can better mimic the paths
planning of peer agents.

The first limitation about no direct path being present usually occurs when a goal position is blocked
by obstacles. This can be understood by considering the scenario in figure 4.7. In this scenario there
are two agents, agent0 and agent1 that are outside the communication range. Therefore each of them
utilise the coveragebystep heuristic to predict the location of one another. Figure 4.7b shows the

4.6. Partial Communication with Prediction 45

(a) The Environment (b) Agent Belief (c) Agent Peer Belief

Figure 4.7: Obstacle Lock

location of agent1 in the map, as well as what it perceives the environment to be at the current time
step. Figure 4.5c displays what the agent0 currently predicts the location of agent1 to be. It is important
to note that this position of agent1 is obtained after the predicted position of agent1 hasmoved over the 2
grid cells that are on its right and top right corner. Further, the orientation of agent1 is 2∗𝜋, indicating that
it is pointing leftwards. Thus, agent0 assumes that these 2 gridcells are already explored. Therefore
while running the heuristic, agent0 takes this into account and amongst the surrounding 8 cells of
agent1, it only has the top left gridcell as an unknown gridcell. As the orientation of the belief pose
of agent1 is 2 ∗ 𝜋, in such a scenario the top left gridcell which is the only unknown location is 3
steps away (according to figure 4.6) with the first action being UP. However due to the presence of
an obstacle on both the sides, the agent cannot move to this position and keeps attempting to move
straight (UP). Due to this the position of agent1 remains constant and the belief of agent1 appears to be
stuck for all further time steps. This type of blocking by obstacles is what we refer to as the Obstacle
Lock Condition. In order to deal with this scenario, a separate obstacle lock detector is introduced
that adds higher number of steps to such positions. In doing so, the reward for moving to such zones
decreases as per equation 4.5. In addition to observing 2 obstacles that block the movement of a peer
agent, another way of blocking also occurs when a single obstacle is present. This is shown in figure
4.8. In this case the position of the agent has an orientation of 3𝜋2 and is pointing downwards. When the

Figure 4.8: Single Obstacle Lock

coveragebystep heuristic is run, then the unknown region on the bottom right (topright for the agent)
is selected which is the only unknown gridcell and requires an action UP to be executed. However
right in front of the agent, there exists an obstacle and therefore the agent would be unable to move
ahead. Due to this the agent continues to select an UP action, but the peer belief remains in the same
position and gets stuck. In order to tackle this scenario, the agent is given the ability to turn or execute
the action RIGHT/LEFT in order to move out of this position.

The 2nd limitation of planning only 1 step ahead is explained here. While in most cases the
coveragebystep heuristic manages to perform satisfactorily by only sampling gridcells that are 1

46 4. Approach

gridcell away from it, at many positions there are decision points where the agent can choose actions
randomly. Such positions are present especially when the agent is in fully covered zones or when the
agent is surrounded by obstacles. To tackle this, whenever agents are in a scenario where the sur
rounding 8 gridcells around it give the same value of 𝑅𝑒𝑤𝑎𝑟𝑑ℎ𝑒𝑢𝑟, then the agents samples 𝑁 steps
ahead to look for additional difference on the benefit of actions. When looking 𝑁 steps ahead, the
agent calculates the reward of the gridcell that it encounters according to the 𝑅𝑐𝑜𝑣 value obtained from
equation 4.6. As an example consider a simple case shown in figure 4.9, where the peer belief of an
agent is estimated to be present close to the boundary position. The agent is pointing towards the
right direction that is, its yaw angle is 0. If we solely rely on the coveragebystep heuristic, then the
agent obtains the highest reward of 𝑅𝑒𝑤𝑎𝑟𝑑ℎ𝑒𝑢𝑟 for moving UP (rightwards in the gridworld), as it only
requires 1 step to move in this direction. However, it can be seen in the figure that if the peer belief
state agent chooses to turn RIGHT (downwards in the gridworld), then within 2 steps there is a higher
possibility of covering an unknown state. Thus if the peer belief agent is able to look ahead further than
one step in positions of uncertain decisions, then it has the possibility to make a better estimates of the
future positions of its peers. This increases the closeness of its prediction to the actual peer agent, that
uses MCTS and hence is biased towards unknown gridcells that are even located further than 1 step.

Figure 4.9: Look ahead heuristic for decision resolution

...

4.6.3. DIY Rewards and default policy
In the previous subsections it is mentioned that the agent utilises 2 deterministic pieces of information,
that is the position and the best planned paths of the peer agents. Using this, the heuristic prediction
can be used by the agent to predict the actions of the peer agents. However as the environment is
itself unknown and is being discovered by each agent as it moves around the area, agents would not
be able to make perfect predictions about the movement of peers at all times. The number of accurate
predictions decreases with the increase in time since the last meeting between agents. Now, the idea
of using predictions is to enable agents to know the path taken by agents beyond the communication
range. Using this the agent can distribute itself better in the surroundings and avoid redundant cover
age. When the predictions are right, this potentially leads to the coverage of more unknown gridcells
in the map by the team. However when the predictions are wrong, the number of coverage steps can
increase. This is because, in a case when the agent assumes that its mispredicted peer agent would
cover a particular region (say 𝑟𝑒𝑔𝑖𝑜𝑛𝑟), then it would move elsewhere. However, as the peer agent is
mispredicted, none of the agents move towards 𝑟𝑒𝑔𝑖𝑜𝑛𝑟 and the gridcells in this region remain unex
plored. This effects the overall planning with an increase in the number of steps.

This type of problem of mispredicted peer agents was also noticed by Claes et al in [12] and the ap
proach used by the authors was to introduce a doityourself (DIY) reward for planning agents. The
DIY reward tackles such uncertainties by giving preference for the agent to perform tasks themselves.
In the case of exploration if agents compute a DIY reward for those agents whose paths are being
predicted, then the number of chances when gridcells remain unexplored would be minimised. In the
order to mimic this type of Doityourself strategy in this thesis, the default policy utilised by each agent
is modified.

4.6. Partial Communication with Prediction 47

Default Policy 3
In subsection 4.2.3, there were 2 default policies described namely default policy 1 and default policy 2.
Default policy 1 follows the strategy of Simulation Path Planning > Peer Plan Execution > Reward
Computation while Default policy 2 follows the strategy of Peer Plan Execution > Simulation Path
Planning > Reward Computation. It can be seen from above that Default policy 1 involves computing
the simulation path plans before executing the paths of the other agents. Thus by doing this the current
agent does not consider the plans of the peer agents while planning paths. In order to mimic the do
ityourself strategy, agents utilise this strategy for agents that are outside the communication range
and for whom predictions are being made. For the agents that are within communication range, the
agent computes default policy 2. By doing this, the current agent is able to override the plans of peers
for which it predicts paths and has less information about, whereas it considers the plans of agents
within communication range in its plans. It is important to note that the reward computation remains
the same and the peers for which predictions have been made only effects by the computation of the
𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 of the agent. This ensures that the current agent computes plans by taking teammate
behaviour into account. In summary, Default policy 3 is thus a hybrid policy used by current agent in
the simulation step and runs default policy 1 for agents outside the communication range and default
policy 2 for agents within the range.

4.6.4. The Working Algorithm
In the partial communication with prediction scenario, various functions/blocks that have been dis
cussed, namely

1. CoveragebyStep Heuristic

2. Obstacle lock detection

3. One step ahead planning

4. Peer agent best path execution

5. DIY reward and Default Policy 3

Algorithm 5 shows how these stages come together. The algorithm considers 2 agents, 𝑎𝑔𝑒𝑛𝑡𝑖 &
𝑎𝑔𝑒𝑛𝑡𝑗 and shows how 𝑎𝑔𝑒𝑛𝑡𝑖 predicts the path of 𝑎𝑔𝑒𝑛𝑡𝑗. 𝑎𝑔𝑒𝑛𝑡𝑗 ’s path prediction is represented by
a list of actions. When 𝑎𝑔𝑒𝑛𝑡𝑖 detects 𝑎𝑔𝑒𝑛𝑡𝑗 in its communication range then 𝑎𝑔𝑒𝑛𝑡𝑖 obtains the best
planned paths of 𝑎𝑔𝑒𝑛𝑡𝑗 as the list. The last meet time counter which is used to track the time when
the agents last met is reset to 0. When the 𝑎𝑔𝑒𝑛𝑡𝑖 detects that 𝑎𝑔𝑒𝑛𝑡𝑗 is outside the communication
range, it begins the prediction of 𝑎𝑔𝑒𝑛𝑡𝑗 ’s path. The first step however is to update the current location
based on the last known location of the peer agent. This is indicated by the upper part of the algorithm.
At the lower part of the algorithm is the actual computation of the list of actions of the peer agent. In the
case of the upper part of the peer action state update, the algorithm begins by first checking if the action
corresponding to the current time as indicated by last_meet_time in the 𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟 is
known. If this is known, the action is executed and the new position is recorded (𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). In the
case when the agent does not know this action, 𝑎𝑔𝑒𝑛𝑡𝑖 begins to compute the predicted action and uses
an obstacle lock filter to filter out gridcells in its surrounding that do not have an obstacle lock. Following
this the coverage by step heuristic is calculated for the cells under test. The heuristic also includes the
case of one step ahead planning which samples𝑁 steps ahead for additional information that is required
by gridcells of equal computation value. The action is recorded as the next action, which is then used
to update the position (𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). Once the state has been updated, the phase of computing the
action list of peer agents begins. The plans of agents is computed for 𝑇_𝐻𝑜𝑟𝑖𝑧𝑜𝑛 number of steps
using the same method. The difference is that at each iteration, the 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 is recorded into the
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡. After 𝑇_𝐻𝑜𝑟𝑖𝑧𝑜𝑛 number of steps, the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 of 𝑎𝑔𝑒𝑛𝑡𝑗 as
predicted by 𝑎𝑔𝑒𝑛𝑡𝑖 is obtained. This list will then be used in the simulation stage of the MCTS planner.

48 4. Approach

Algorithm 5: Heuristic h3, used by 𝑎𝑔𝑒𝑛𝑡𝑖 to model 𝑎𝑔𝑒𝑛𝑡𝑗 movement
Result: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡
while Coverage Goal is Not Met do

...;
if 𝑎𝑔𝑒𝑛𝑡𝑖 and 𝑎𝑔𝑒𝑛𝑡𝑗 are in communication range then

𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟 = Data Sharing(𝑎𝑔𝑒𝑛𝑡𝑖,𝑎𝑔𝑒𝑛𝑡𝑗);
last_meet_time = 0;

else
// First update the position of the agent (Upper part)
if 𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟[𝑙𝑎𝑠𝑡_𝑚𝑒𝑒𝑡_𝑡𝑖𝑚𝑒] known? then

𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟[𝑙𝑎𝑠𝑡_𝑚𝑒𝑒𝑡_𝑡𝑖𝑚𝑒];
𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛=Motion(𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);

else
𝑐𝑒𝑙𝑙𝑠_𝑡𝑜_𝑡𝑒𝑠𝑡 = Obstacle_Lock_Filter(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑝𝑒𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗);
𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 = Coverage_by_step(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑝𝑒𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑐𝑒𝑙𝑙𝑠_𝑡𝑜_𝑡𝑒𝑠𝑡);
𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛=Motion(𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);

end
// Compute the action list of the peer agent (Lower part)
last_meet_time += 1;
t = last_meet_time ;
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟 = 𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ;
while t<=T_Horizon do

if 𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟[𝑡] known? then
𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑒𝑒𝑟_𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟[𝑡];
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟=Motion(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟,𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡.Append(𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);

else
𝑐𝑒𝑙𝑙𝑠_𝑡𝑜_𝑡𝑒𝑠𝑡 = Obstacle_Lock_Filter(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑝𝑒𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗);
𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛 = Coverage_by_step(𝑎𝑔𝑒𝑛𝑡𝑖 .𝑝𝑒𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗,𝑐𝑒𝑙𝑙𝑠_𝑡𝑜_𝑡𝑒𝑠𝑡);
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟=Motion(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑐𝑘𝑒𝑟,𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡.Append(𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛);

end
t += 1;

end
end
...

end

4.7. Hyperparameter Selection
From the above sections, it can be seen that there are a number of hyperparameters that can be
tuned. These, along with the selected values are listed in table 4.1. In this section, the motivation for
the selection of the values for the listed hyperparameters will be explained.

Sl No Hyperparameter Description Value
1 C_cov Coverage Reward for the MCTS Planner 5
2 C_hit Collision Penalty for the MCTS Planner 2
3 lw Weight for the local reward 1
4 gw Weight for the global reward 1
5 T_horizon Number of rollout steps in the default policy 30
6 C_p Exploration Coefficient for the MCTS Planner 1

√2
7 comp_budget Computational budget for the MCTS Planner 200

Table 4.1: Hyperparameter Values

4.8. Frontier Communication 49

The first two hyperparameters seen in table 4.1 are C_cov and C_hit. These were set as 1 and 2 by
Hyatt et al [21]. However, other values of C_cov and C_hit were also tested by spawning a single agent
into a 20x20 gridcell arena with a goal to explore 95% of the arena. 95% coverage on a 20x20 gridmap,
as will be explained in the next section, corresponds to exploring all 400 gridcells but leaving 3 grid
cells unexplored. In each case C_cov and C_hit values were varied, simulations were ran for 50 times
and the exploration steps were recorded. The results can be seen in figure 4.10. From the figure, it can

Figure 4.10: (C_cov,C_hit) Exploration Comparison

be seen that the combination of C_cov=5 and C_hit=2 results in the lowest number of exploration steps
that has a relatively lower confidence interval overlap when compared to other possible values. This
may possibly be due to a high enough value for C_cov that is constrained by a suitable penalty value.
Due to this observation, these values of C_cov and C_hit were utilised. In terms of the the weight for
the local and global rewards, it was found that setting lw=0 and solely using the global reward resulted
in the agent moving in random directions. This is because of the nature of the global reward that is
given by equation 4.3. The global reward gives a score that is based on the number of covered cells
without discounting the actions taken at later timesteps, which is done in the local reward(equation
4.2). Initially when the entire region is unexplored, moving in any direction gives the same reward
value. If agents initially move around randomly in the arena, then the overall number of steps also
increases. Due to this the local reward was definitely included in the computation of total reward. It
was found that the weights of lw=1 and gw=1 gave comparable numerical values of local and global
rewards. It was also used by Hyatt et al [21] in their experiments. T_horizon = 30 and C_p = 1

√2 was
also used by Hyatt et al [21] and found to work satisfactorily. The comp_budget gives the number of
times an agent performs the basic MCTS steps of selection, expansion, rollout and backpropagation.
Initially 500 was set. However this led to high number of computations that made simulations very slow.
A value of 200 however was found to bring the simulation time lower and hence was chosen.

4.8. Frontier Communication
In order to compare the various scenarios having MCTS with an existing work in literature, the frontier
communication algorithm as presented in the work of Antoine et al [5] and adapted by Benavides et al
[6] was implemented. This specific work was selected as it also worked with the constraints of limited
communication, a distributed setup and an unknown environment. Further the method was applied
to the environment exploration problem. In the approach a team of multiple agents are spawned into
the environment. As it is a limited communication environment, agents have the capability of sharing
information between one another, when within a communication range. The information shared is the
same as the MCTS partial communication case, namely the map coverage status, the position and
best selected path plans in the last time step. Each agent then executes an algorithm that consists of
3 main phases task identification, task allocation and task execution. A task is defined to be a frontier
gridcell. A frontier gridcell is a type of gridcell that is located at the boundary between a known and

50 4. Approach

an unknown region. Figure 4.11 shows an example of frontiers that is marked in yellow. The known
region is marked in white, while the unknown region is marked in grey. The task identification phase

Figure 4.11: Environment Frontier [35]

involves detecting such points in the environment. To detect such points, an agent samples surrounding
gridcells and adds such frontier points to a task list. The number of surrounding gridcells sampled
depends on the sensor range of the agent. It is important to note that this process is done by multiple
agents and if another agent is within communication range, then the agent also adds the peer agent’s
target list to its own list. Once the task list is set, the agent moves onto selecting a task in the Task
allocation phase. In the task allocation phase, each agent runs the minPos algorithm [5] in a distributed
manner. The algorithm is shown in figure 4.12. As seen in figure 4.12, the algorithm requires a list of

Figure 4.12: Minimum Position Algorithm

robot positions 𝑅𝑖 and a cost matrix 𝐶. The cost matrix 𝐶𝑖𝑗 has the robot number as the row values
while the columns indicate the task/frontier number. Each entry of the cost matrix is the cost of agent 𝑖
of selecting the task 𝑗. The cost in this case is the Euclidean distance. It is important to note that each
robot has a cost matrix of its own, whose entries depend on the peer agents that are present around
it. For each task 𝑗, the current agent computes the number of robots that have a lower cost value. The
number of such robots are added together and recorded in a matrix 𝑃𝑖𝑗. The current agent then assigns
itself to task 𝑗 for which it has the lowest 𝑃𝑖𝑗 value. A low 𝑃𝑖𝑗 value indicates that the current agent is
closer to a task 𝑗 than its peers. The current agent does this for itself and nearby peers. Overall, by
using this algorithm the current agent can select frontier zones that are nearest to itself while predicting
the allocation made by nearby peer agents.

5
Experiments

In this chapter the experiments utilised to answer the research questions framed in subsection 2.2 will
be discussed. The term population in this chapter is used to refer to data that have some common
attributes. For example a dataset obtained for the exploration of a 20x20 map with 2 agents having
Partial Communication is one population, and a dataset for the exploration of a 20x20 map with 2
agents having Full Communication is another. The methodology used in each case is to plot the mean
of each population along with a 95% confidence interval overlap. For each population, exploration
scenarios were run 10 times on 5 different maps, thereby leading to 50 simulations each. Table 5.1
gives the abbreviations that are used to refer to various scenarios.

Sl No Communication Prediction Default Policy Abbreviation
1 Full 1,2 FULLCOMM
2 No 1,2 NOCOMM
3 Partial 1,2 PARCOMM
8 Partial Yes 3 PARCOMM_PRED

Table 5.1: Scenarios and Abbreviations for MCTS methods

The categorisation is based on the type of communication, prediction possibility and the default
policy strategy used. Apart from the scenarios mentioned in the table, the scenario of agents performing
frontier based exploration is denoted by the abbreviation FRONTCOMM. Exploration in all scenarios
have been performed on 20x20 or 40x40 grid maps. The obstacle density of each map is set as 10%
and the maps can be seen in Appendix 7.3. The specific size of a 20x20 gridmap with an obstacle
density of 10% was chosen as it is the same size that the authors of the baseline method, Hyatt et al
[21] chose in their experiments. Apart from using a 20x20 gridmap, experiments were also performed
on a 40x40 dimension gridmap with an same obstacle density of 10%. This was done to test the
working of the algorithms on larger environments. Further, all explorations were run with a team of
agents having a 95% coverage goal. Initially a 100% exploration was given to the team of agents.
However in many cases consisting of smaller number of agents (upto 3), there was high variance of
results. This was due to situations in which agents would cover a large portion of the arena but leave
out exploring far off lying single gridcells. Due to finite computation, agents would take more number
of steps to make plans that reach such single unexplored gridcells. Thus, a 95% coverage goal was
used instead. A 95% exploration goal on a 20x20 map translates to exploring all the 400 gridcells but
leaving 3 gridcells unexplored, while a 95% exploration goal on a 40x40 map leaves out 12 gridcells
from the 1600 gridcells present.

By default, the sensor range and communication range of each agent were set as 1. With a sensor
range as 1, agents could sense the status of nearby 8 gridcells as explained in subsection 4.2.1. A
communication range of 1 implied that agents could share information with agents when present in
the surrounding 8 gridcells. Further, termination of experiments/simulations in each case took place
based on the coverage of the actual environment with what the team of agents covered and not based
on the status of coverage of what an agent perceived.

51

52 5. Experiments

To understand the motivation behind the experiments conducted, we refer to the 3 research ques
tions present in subsection 2.2. The first research question RQ1 considers agent strategies that can
lead to minimal number of exploration steps of unknown environments with limited communication. The
second research question RQ2 lays emphasis on the effect of limited communication on cooperative
exploration strategies. The last research question RQ3 puts the focus on techniques that agents in a
limited communication arena can utilise to replicate the performance as in a full communication sce
nario. The first experiment performed studied the effect of the MCTS default policy on exploration. This
will be explained in section 5.1. This experiment was done primarily to motivate the default policy de
sign choice and provide part of the answer to RQ1. Based on the results, a default policy was selected
for all subsequent experiments. A study was then performed to measure the impact of agent team
size on the exploration performance, for each MCTS scenario (section 5.2). The experiment answers
RQ1, RQ2 and RQ3 because it studies the effect of agent team size, as well as the communication
scenarios on the exploration performance. While one major constraint considered was a completely
unexplored arena, a study was conducted to observe the effect of having additional knowledge of the
location of obstacles in the arena in the PARCOMM and PARCOMM_PRED scenarios. This will be
explained in section 5.3. In this study, agents were given prior information of the arena with the aim
of moving the performance closer to FULLCOMM, thus aiming to answer RQ3. Another experiment
that tries to answer this question is the study on the effect of varying the communication range on the
exploration performance for PARCOMM and PARCOMM_PRED. This will be described in section 5.4.
The final experiment conducted was to compare the MCTS based algorithms with the frontier explo
ration (FRONTCOMM) method. The experiment aims at studying the effectiveness of the lookahead
planning capability of MCTS algorithms in the task of exploration, and thus is used to give part of the
answer to RQ1. This will be explained in section 5.12. At the end of the chapter, section 5.6 sum
marises the results obtained from each experiment, draws key points and lays the foundation for the
conclusion to be made in the following chapter, chapter 6.

5.1. Exploration Performance Default Policy Comparison
As discussed in chapter 4, there were 2 default policy methods that were used Default Policy 1
and Default Policy 2. In order to compare the working of each method, simulations were run in the
FULLCOMM scenario for 1 until 10 robots. 50 simulations were run for each population in 20x20 &
40x40 arenas and in each case a coverage goal of 95% is given to the team. The results obtained can
be seen in figure 5.1 and figure 5.2.

In each case, the graph consist of the mean values of the steps along with a 95% Confidence
interval. Tables 5.1b and 5.2b show the exact value of the means as well as the size of the confidence
intervals for 20x20 and 40x40 maps. Some key observations from the graphs and tables are as follows:

1. It can be seen from figure 5.1a, that the downward trend of the exploration with increasing number
of agents is more smoother for the case of Default Policy 2, in a 20x20 arena.

2. From table 5.1b it is observed that in a 20x20 arena, agents with default policy 2 take lesser
number of steps than default policy 1 for 8 out of 10 times. In the case of a 40x40 grid (table
5.2b), agents with default policy 2 take lesser number of steps than default policy 1 for 6 out of
10 times.

The above observations can be reasoned by considering the core difference between Default policy 1
and Default policy 2 which is in the way the agent plans out its current path and compute the reward.
As discussed in section 4.2.3, in Default Policy 1 an agent starts making plans before executing the
policies of peer agents on its own belief map. This is different to what happens in the case of default
policy 2 where the agent executes policies of peer agents on its own belief map. Only after this is when
the agent plans the path and computes the total reward. This implies that the agent considers the
movement of peer agents while computing its own plans. As it is a full communication case, the current
agent can receive information at every point of time. Thus in the case of default policy 2, the agent is
able to give lower local rewards to those gridcells that are already covered by peer agents. This results
in the current agent planning paths towards locations that are away from the peer agents which results
in agents moving away from each other and avoiding redundant coverage. In the case of the default
policy 1, agents plan their actions before considering the plans of peer agents. Due to this, an agent
has already planned the paths and these paths may cross the paths of the peer agents. Due to this,

5.1. Exploration Performance Default Policy Comparison 53

(a) 20x20
Team Size DP1 mean DP1 CI DP2 mean DP2 CI

1 608 32 622 28
2 307 18 313 16
3 218 10 205 9
4 163 7 161 9
5 138 7 133 9
6 123 4 112 6
7 122 6 95 3
8 111 8 86 3
9 105 7 81 2
10 101 9 76 2

(b) 20x20 Data

Figure 5.1: Coverage steps versus Default Policy 20x20

the agents do not spread out and hence have a higher number of steps as compared to Default Policy 2.

As the number of steps of coverage was found to be lower in the case of default policy 2 than default
policy 1 for FULLCOMM in a majority of team sizes for both 20x20 and 40x40 maps, for the remaining
experiments Default Policy 2 has been used in the MCTS planner.

54 5. Experiments

(a) 40x40
Team Size DP1 mean DP1 CI DP2 mean DP2 CI

1 3623 416 3265 233
2 1586 127 1674 138
3 1121 133 1028 91
4 786 79 733 31
5 591 29 582 30
6 514 36 477 17
7 423 33 414 28
8 367 14 367 16
9 321 10 334 19
10 288 8 289 10

(b) 40x40 Data

Figure 5.2: Coverage steps versus Default Policy 40x40

5.2. Exploration Performance v/s Team Size
As mentioned in the beginning of chapter 4, FULLCOMM was implemented first. This scenario is
based on an existing work by Hyatt et al [21]. After dropping the communication dependency from
FULLCOMM, this led to the NOCOMM scenario. Distance based communication was then added to
the NOCOMM case leading to PARCOMM. As an extension of this, agents were given the ability to
predict the paths of peers in the PARCOMM_PRED scenario. In this section, the ability of PARCOMM
and PARCOMM_PRED in recovering the lost performance is studied. The study is performed on the
number of exploration steps required for coverage in each scenario and for varying number of agents.
Each exploration scenario is run on 20x20 and 40x40 maps with varying team sizes. The size of the
teams are varied from 1 until 10 and the team has a coverage goal of 95%. The results are shown in
figure 5.3 and figure 5.4.

In Figures 5.3a and 5.4a, the mean value of the steps for coverage along with the confidence interval
are plotted for each team size. In tables 5.3b and 5.4b, quantitative data on the number of exploration
steps is shown. Each table consists of 6 columns. Column 1 shows the number of agents, while column
2 and column 3 show the mean value of the number of coverage steps for FULLCOMM and NOCOMM
cases, respectively. Column 4 and Column 5 show the recovery that is obtained from using PARCOMM
or PARCOMM_PRED. The computation of this recovery can be understood by considering figure 5.5.
The figure shows an example of the general trend between the steps of the NOCOMM, PARCOMM
and FULLCOMM scenarios that can be seen in figures 5.3a and 5.4a. Each horizontal marker denotes
the number of steps to explore an area. As expected FULLCOMM usually takes the least number of

5.2. Exploration Performance v/s Team Size 55

(a) 20x20 Map
Team Size FULLCOMM NOCOMM PARCOMM recovery PARCOMM_PRED recovery

1 622 634 197 175
2 313 433 46 42
3 205 378 55 55
4 161 318 61 59
5 133 277 61 60
6 112 265 65 71
7 95 246 66 64
8 86 231 70 67
9 81 206 69 73
10 76 201 71 75

(b) 20x20 Map Data

Figure 5.3: Coverage steps versus Team Size 20x20

steps, while NOCOMM takes the highest. PARCOMM usually lies in between the two. The percentage
recovery that PARCOMM provides can be measured by using equation 5.1, where a is the performance
lost when moving from FULLCOMM to NOCOMM and b is the performance lost when moving from
FULLCOMM to PARCOMM. Thus 𝑎 − 𝑏 gives the performance recovered and when this is divided by
a, it gives the percentage recovery. This is indicated in figure 5.5.

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝑎 − 𝑏
𝑎 (5.1)

A smaller value of b indicates that PARCOMM is close to FULLCOMM and when b is small the recovery
provided is larger. Thus a larger value of recovery indicates higher amount of performance regained.
The same equation can also used to compute the recovery for PARCOMM_PRED. On observing the
values of the graphs, we draw some important observations:

1. From figures 5.3a and 5.4a the performance of PARCOMM lies in between that of NOCOMM and

56 5. Experiments

(a) 40x40 Map
Team Size FULLCOMM NOCOMM PARCOMM recovery PARCOMM_PRED recovery

1 3265 3637 83 33
2 1674 2118 28 12
3 1028 1691 38 36
4 733 1562 50 48
5 582 1371 49 58
6 477 1271 56 61
7 414 1174 57 64
8 367 1084 65 63
9 334 1034 63 64
10 289 948 66 66

(b) 40x40 Map Data

Figure 5.4: Coverage steps versus Team 40x40

FULLCOMM with the former being larger in number.

2. From figure 5.3a and 5.4a, the performance of PARCOMM and PARCOMM_PRED are almost
similiar and lie between NOCOMM and FULLCOMM.

3. In each gridmap case, as the team size increases the performance of PARCOMM and PAR
COMM_PRED move closer to the performance of FULLCOMM.

4. From tables 5.3b and 5.4b, it can be seen that the recovery provided by the team increases with
the increase in the size of the team. For instance, in the case of PARCOMM in the 20x20 gridmap
the recovery moves from 46% for 2 agents upto 71% in the case of 10 agents. In the case of
PARCOMM_PRED, this moves from 42% upto 75%.

5. From table 5.3b, PARCOMM_PRED appears to give additional recovery over PARCOMM inmany
cases. However except for the case of a team with 6 agents, none of the differences were found

5.2. Exploration Performance v/s Team Size 57

Figure 5.5: Recovery Computation

to be significant based on the significance test results of table 7.1.

6. From table 5.4b, in the case of a 40x40 graph the recovery provided by PARCOMM_PRED can be
seen to be higher than the recovery provided by PARCOMM for 4 cases. However the significance
test shown in table 7.2 indicate that the difference between PARCOMM_PRED and PARCOMM
is not significant in any case.

The first observation of NOCOMM having the largest number of steps is due to each agent being able
to only sense its peers and not retrieve any information about the environment. Thus each agent ex
plores regions already explored by its peers leading to increased redundant coverage and subsequently
a larger exploration time. In the case of FULLCOMM, at each time step agents communicate with one
another and hence agents can update their simulator at each moment of time. This leads to agents
planning paths that are away from each other at each time, which reduces the amount of redundant
coverage. This leads to faster coverage of the entire arena by the team and thus FULLCOMM gives the
lowest number of coverage steps amongst the scenarios for all team sizes. In the case of PARCOMM,
agents can only share information within a communication range. When agents are outside commu
nication range, agents do not simulate the path of the other agents. As there is still some amount of
information sharing, the performance moves away from the NOCOMM case in each of the team sizes.
For higher team sizes the probability of agents meeting each other and sharing information increases,
due to which the gap between PARCOMM and FULLCOMM decreases. This explains the 3rd obser
vation. This also leads to the explanation of the 4th observation. A decrease in the number of steps
leads to an increase in the recovery as per equation 5.1. When PARCOMM_PRED is considered, then
in the case of a 20x20 grid the additional recovery provided is not significant in most cases, except a
team with 6 agents. However there appears to be no trend followed when compared to any other team
size. Thus, having a significant difference in only 1 case does not indicate any additional benefit of
PARCOMM_PRED. In the case of 40x40 maps also, PARCOMM_PRED performs in a similar manner
as PARCOMM. Thus, other scenarios where PARCOMM_PRED provides additional benefit requires
to be studied.

If larger maps are considered, then the probability of agents meeting one another is low. This leads
to lesser chances where agents can share information and correct the mispredictions made about
its positions by peers. As mentioned in section 4.6.3 of chapter 4, in such an unknown environment
where agents are still discovering the area, the chances of such mispredictions are quite high. If agents
are able to correct one another’s mispredictions, then this may lead to accurate predictions for more
number of time and hence better performance of PARCOMM_PRED. Such corrections can happen
through sharing of information. Given that the agent only has 1 gridcell communication range, the
probability of sharing information and correcting the mispredictions of the peer agents is low. However
the predictions may improve if the communication range is increased. This is another study which has
been conducted in section 5.4. Another way is to feed the agent with some idea about the contents of

58 5. Experiments

the environment. This could possibly enable the prediction of the paths of peers agents while avoiding
obstacles and keeping it close to the true position of the peer. The next section studies this idea further.

5.3. Exploration Performance v/s Prior Information
As seen in the previous section, in both 20x20 and 40x40 maps the gain by using PARCOMM_PRED
was not significant. This was speculated to be because of the increased number of mispredictions of
the positions of the peer agents. The proposal was to check if this could be solved on larger maps
by increasing the communication range or by giving the agent additional information about the envi
ronment. In this section, the effect of prior environment information on the exploration performance
is studied. This has been done by running the PARCOMM_PRED scenario with 3 agents on a map
with a coverage goal of 95%. Before the exploration however each agent is given the same prior infor
mation of obstacle positions in the environment. This is given as the percentage of known obstacles
in the environment to each agent. The percentages used in the study are 0%, 25%, 50% and 100%.
The percentage corresponds to the percentage of obstacles whose position the agent knows before
entering the arena. Thus 0% corresponds to the agent knowing nothing about the obstacle positions
while 100% meant that the agent knows the location of all obstacles in the arena. The exploration has
been performed on a 20x20 as well as a 40x40 map and the results are indicated in figure 5.6 and
figure 5.7. Both figures also consist of subgraphs that show the mean coverage steps along with the
confidence interval for each prior information case. From both figures it can be seen that irrespective

(a) 20x20 Map
Prior Steps mean Steps CI
0 292 14

0.25 303 24
0.5 295 13
0.75 289 13
1 294 19

(b) 20x20 Data

Figure 5.6: Coverage steps versus Prior Information 20x20

of the gridmap size, having prior information does not effect the exploration performance. Figures 5.6a
and 5.7a also show no trend of the results. In the case of the 20x20 map, from table 5.6b it can be
seen that irrespective of the prior percentage the team takes roughly around 300 steps for coverage.
While the confidence intervals for the 40x40 grid case of table 5.7b are higher, it can be seen that the

5.4. Exploration Performance v/s Communication Range 59

(a) 40x40 Map
Prior Step mean Step CI
0 1358 62

0.25 1509 125
0.5 1509 234
0.75 1396 77
1 1417 69

(b) 40x40 Data

Figure 5.7: Coverage steps versus Prior Information 40x40

step means roughly lie between 1300 until 1500. The same experiment of spawning 3 agents into an
environment and varying the prior information was also performed in the PARCOMM scenario. The
results are shown in figure 7.1 for a 20x20 gridmap and figure 7.2 for a 40x40 gridmap, and the same
observation is seen that there is no effect of having prior information on the exploration performance.
Thus, the presumption that giving agents prior information in order to improve the exploration does not
hold well for the PARCOMM_PRED as well as PARCOMM scenarios.

Instead we move onto the other presumption, that making the agents share information with one
another more often to correct mispredictions may help further increase the performance of PARCOMM
and PARCOMM_PRED. The difference between sharing information and knowing about the parts of
the environment is that in the former case the agents also get to know the coverage status of the
environment in addition to the obstacle positions. An agent can update its own belief with the coverage
maps of peers and can make plans in the updated environment. With more information about the
environment, the amount of redundant coverage by the agent also decreases. To check the hypothesis
we increase the chances of communication by increasing the communication range of each agent. The
study has been further explained in the next section.

5.4. Exploration Performance v/s Communication Range
In this section, a team of a certain number of agents with the no information of the environment are
spawned into an arena. As before the exploration goal is to perform 95% coverage. The communication
range is varied to take one of the values in the set {1, 2, 3, 4, 5}. Each of the scenarios of NOCOMM,
FULLCOMM, PARCOMM and PARCOMM_PRED have been simulated and the recovery provided by
the PARCOMM and PARCOMM_PRED has been measured using equation 5.1. In the first experiment
3 agents were spawned into a 20x20 arena. The results obtained can be seen in figure 5.8

60 5. Experiments

(a) 20x20 Map
Comm Range FULLCOMM NOCOMM PARCOMM recovery PARCOMM_PRED recovery

1 205 377 49 55
2 205 377 72 69
3 205 377 87 84
4 205 377 84 94
5 205 377 95 99

(b) 20x20 Data

Figure 5.8: Coverage steps versus Communication Range 20x20, 3 agents

Figure 5.8a shows the trend of the steps as a function of the communication range. The correspond
ing table in figure 5.8b shows the value of the average number of steps for FULLCOMM and NOCOMM
in column 2 and column 3. The recovery of performance by PARCOMM and PARCOMM_PRED are
shown in column 4 and column 5 for the other 2 cases. From the figure we obtain the following obser
vations:

1. With an increase in communication range, both PARCOMM and PARCOMM_PRED approach
the behaviour of FULLCOMM. At a communication range of 5, the recovery provided is as high
as 99% for PARCOMM_PRED.

2. When running significance tests on the steps of PARCOMM_PRED and PARCOMM, it is found
that there is no significant difference. The results can be seen in figure 7.3.

In a 20x20 arena when agents are given the capability to communicate upto a width of 5 gridcells
around it, then at every moment of time the agents can communicate with agent positions that are in
upto (5+5+1) ×(5+5+1) = 121 number of gridcell positions. This is about 30% (121/400) of the entire en
vironment. With 3 agents, the chances of information sharing is even higher. This explains the cause
of PARCOMM_PRED and PARCOMM reaching above 95% of coverage recovery. Along with more
information on the coverage status of the map, more number of communications also correct the mis
predictions in PARCOMM_PRED. Further, whenever agents move out of the communication range of

5.4. Exploration Performance v/s Communication Range 61

one another then the predictions are made on a map that has more amount of certain information. This
results in agents cooperating better, avoiding redundant coverage and achieving almost FULLCOMM
behaviour. As seen from the significance tests, this is true for both PARCOMM & PARCOMM_PRED
cases and there is no effect of using predictions, due to the increased number of communication mo
ments.

The situation can however change in 40x40 gridmaps. In such a map, a 5 gridcell communication
range will imply that at every point of time the agent can communicate with only about 7.5% (121/1600)
of the gridmap cells. Thus, it is possible that the percentage recovery may not be as high as what is
observed in 20x20 even with PARCOMM_PRED. In order to test this, 3 agents were spawned into a
40x40 grid with a team coverage goal of 95%. The resulting graph are shown in figure 5.9a and the
percentage recovery data is shown in table 5.9b. It is important to note that at first, 50 simulations

(a) 40x40 Grid, 3 agents Graph
Comm_Range FULLCOMM NOCOMM PARCOMM_Rec PARCOMM_PRED_Rec

1 1066 1715 44 43
2 1066 1715 47 59
3 1066 1715 62 73
4 1066 1715 73 79
5 1066 1715 77 81

(b) 40x40 Grid, 3 agents Data

Figure 5.9: Coverage steps versus Communication Range 40x40, 3 agents

were performed. However due to the high value of variance, comparisons were difficult to perform
and therefore additional data was added which raises the number of simulations to 400. We draw the
following observations from the 2 figures:
1. In a 40x40 gridmap the performance of PARCOMM and PARCOMM_PRED approach the cover

age steps of FULLCOMM with an increase in the communication range.

2. Significance tests from table 7.4 indicate that the difference between the values obtained in PAR

62 5. Experiments

COMM and PARCOMM_PRED is significant for communication range values of 2 and 3. At com
munication range 2, the additional benefit provided by PARCOMM_PRED is about 12%, while it
is 9% in the case of a communication range of 3.

The percentage recovery provided by 5 gridcell communication reaches a maximum of 96% in the
case of PARCOMM_PRED in a 40x40 gridmap as compared to the 99% recovery in case of a 20x20
gridmap. However in spite of this the general trend of the increase in communication range positively
impacting the coverage steps remains. Increasing the communication range by 1 gridcell causes PAR
COMM_PRED to add upto a 12% benefit. This can be attributed to the higher chances of misprediction
corrections, cooperation and minimal redundant coverage. As the communication range increases, this
percentage of added benefit decreases. With increasing communication range, there aremore chances
of communication between agents and this leads to agent not being given enough chances to make
predictions. Thus, with increased communication range PARCOMM and PARCOMM_PRED tend to
become equivalent, and together approach the performance of FULLCOMM.

From the above results, it can be seen that the size of the arena causes a limit in the benefit that
PARCOMM_PRED can provide. It can also be seen that there is potential to improve the PARCOMM
performance further. This can be done by increasing the number of sharing instances between agents.
Sharing of information as discussed in this section can come from increasing the communication range.
However as seen from section 5.2, it can be seen that sharing is also influenced by the size of the team.
In order to test the size of the team and its effect on the PARCOMM and PARCOMM_PRED for varying
communication range, the same experiment has been conducted with 6 agents and 9 agents in a 40x40
map with a coverage goal of 95%. The results can be seen in figure 5.10 and figure 5.11.

From figures 5.10 and 5.11, it can be seen that there is a lot of overlap in the behaviour of PAR
COMM and PARCOMM_PRED. Statistical tests that can be seen in table 7.5 and 7.6 indicate that the
difference is not significant. This is due to the increased number of chances where agents can meet
one another and exchange information. This leads to similiarity in the behaviour of PARCOMM and
PARCOMM_PRED cases. What remains definite is that in the cases of 6 and 9 agents, PARCOMM
and PARCOMM_PRED is able to reach the performance level of FULLCOMM.

Thus, in large gridmaps PARCOMM_PRED can provide additional benefit to PARCOMM for smaller
team sizes and increased communication range. However the additional benefit is only upto a certain
communication range, after which the performance of PARCOMM_PRED and PARCOMM are similiar.
In both 20x20 and 40x40 gridmaps, with an increase in the communication range the behaviour of both
PARCOMM and PARCOMM_PRED approach the behaviour of FULLCOMM. This indicates that having
agents that communicate and share information is more beneficial for agents to maximise cooperative
coverage, than giving prior information about the environment.

5.4. Exploration Performance v/s Communication Range 63

(a) 40x40 Grid, 6 agents Graph
Comm Range FULLCOMM NOCOMM PARCOMM Rec PARCOMM_PRED Rec

1 514 1271 64 63
2 514 1271 74 76
3 514 1271 83 89
4 514 1271 92 92
5 514 1271 91 96

(b) 40x40 Grid, 6 agent Data

Figure 5.10: Coverage steps versus Communication Range 40x40, 6 agents

64 5. Experiments

(a) 40x40 Grid, 9 agents Graph
Comm_Range FULLCOMM NOCOMM PARCOMM Rec PARCOMM_PRED Rec

1 321 1034 66 66
2 321 1034 76 72
3 321 1034 87 86
4 321 1034 92 92
5 321 1034 94 95

(b) 40x40 Grid, 9 agent Data

Figure 5.11: Coverage steps versus Communication Range 40x40, 9 agents

5.5. Exploration Performance FRONTCOMM Comparison 65

5.5. Exploration Performance FRONTCOMM Comparison
In this section each MCTS scenario is compared with the FRONTCOMM algorithm. The working of
FRONTCOMM has been explained in section 4.8. For comparison, the number of steps required for
each scenarios has been compared for 1 until 10 agents. In each case agents have been spawned
into 20x20 and 40x40 arenas with a 95% team coverage goal. The results have been shown in figure
5.12.

(a) 20x20

(b) 40x40

Figure 5.12: Scenarios v/s FRONTCOMM

It can be observed from the figure, that the MCTS method performs area exploration much faster
than the frontier communication method. This can be attributed to the look ahead planning capability
of MCTS where it plans paths based on the reward obtained for a sequence of future actions. FRONT

66 5. Experiments

COMM has no such computation possible and only looks at the action for the current time step. This
also means that FRONTCOMM would make it difficult for an agent to come out of cluttered zones
of the environment. It is important to note that FRONTCOMM does have partial communication and
can share map coverage information when within communication range. Due to this, the number of
coverage steps decreases with an increase in the number of agents in the environment, However, the
aspect of look ahead planning makes even NOCOMM perform faster than FRONTCOMM. From each
subgraph of figure 5.12, this type of behaviour is true for both 20x20 and 40x40 maps.

5.6. Discussion
In this section, the results from various experiments conducted have been summarised and discussed.
The chapter began with the experiment to compare default policy 1 and default policy 2 (in section
5.1). It was found that using default policy 2 was giving faster exploration for large team sizes in the
20x20 map than default policy 1, which was the default policy implemented by Hyat et al in [21]. Once
the MCTS algorithm working was verified and default policy 2 was selected, the MCTS scenarios were
compared for their exploration steps as a function of the team size in section 5.2. In this case, the key
observations made were that as per expectations the order of number of coverage steps in decreas
ing order was NO_COMM, PARCOMM & PARCOMM_PRED and then FULL_COMM. It was found
that the recovery of performance provided in the 10 agent case by PARCOMM & PARCOMM_PRED
was greater than 70% for 20x20 maps and 60% for 40x40 maps. It was also noticed that there was
no significant benefit being provided by PARCOMM_PRED to PARCOMM in this experiment. There
fore, the exact scenario where predictions could provide additional benefit was to be tracked. The first
speculation was that giving prior knowledge would help the predictions. However from the study in
section 5.3, it was found that giving prior information did not have much effect. Instead, the next spec
ulation of increasing the number of misprediction corrections by increasing the communication range
was tested in section 5.4. It was found that with increase in communication range, the performance
of both PARCOMM as well as PARCOMM_PRED comes closer to FULLCOMM and the performance
recovery provided by each was greater than 90% for both 20x20 and 40x40 maps in the 5 gridcell
communication range case. Further, it was found that for 3 agents in a 40x40 gridmap, increasing the
communication range results in PARCOMM_PRED providing additional benefit over PARCOMM by
upto 12%. This difference was also found to be statistically significant. The additional benefit however
decreased with an increase in the communication range. This study also found that in the case of 6
and 9 agents in a 40x40 gridmap, PARCOMM and PARCOMM_PRED performed in a similar manner
for 1 until 5 number of communication ranges. The experiments ended with section 5.5 where MCTS
based algorithms were found to perform faster than the frontier communication method.

Each finding in the above steps can be grouped into the following broad points:

1. Look Ahead Planning Benefit From figures 5.12a and 5.12b that compare the MCTS and
Frontier Communication algorithms, it can be inferred that the look ahead capability of MCTS is
highly beneficial for exploration. This not only helps the agent move out of cluttered environments,
but can help in good collaborative behaviour due to its simulation based approach.

2. Significance of Default Policy Contrary to what is mentioned by Hyatt et al [21], it was found
from figure 5.1a where the default policies have been compared, that the default policy does
impact the coverage of results. Particularly the manner in which the current agent makes predic
tions of the movement of its peers makes a difference in the coverage performance. It was found
that agents must first simulate the plans of peer agents in belief maps before executing its own
actions in order to get better performance which also increases with the size of the agent team.

3. Performance Recovery by Partial Communication NOCOMM is the scenario of removing the
communication dependency from FULLCOMM, which is the original baseline work of Hyatt et al
[21]. From figures 5.3a and 5.4a that compared the coverage steps with the team size, it was
found that PARCOMM can recover the lost efficiency by moving from FULLCOMM to NOCOMM.
The recovery provided by partial communication rises with the increase in the number of agents.

4. Unprofitable prior map information on predictions From figures 5.6 and 5.7 that compared
the coverage steps with the amount of prior information of the environment, it was found that

5.6. Discussion 67

having prior information of the map contents did not help improve the prediction for 20x20 and
40x40. This was also found for the PARCOMM scenario from figures 7.1 and 7.2.

5. Positive impact of increased communication range on partial communication From figures
5.8, 5.9, 5.10 and 5.11 that compared the coverage steps with the communication range, it was
observed that increasing the communication range is helpful to reduce the coverage steps of
PARCOMM and PARCOMM_PRED and bring it to approximately the same level as FULLCOMM.

6. Positive impact of communication range on predictions for small number of agents on
larger maps From table 5.9b that compares the data on the percentage recovery by PAR
COMM and PARCOMM_PRED for 3 agents in a 40x40 map, it is observed that increasing the
communication range upto a limit can help a team of smaller agents with predictions cover a large
arena with lesser number of steps as compared to only using partial communication. Beyond the
limit, PARCOMM performance also becomes better and agents in both the scenarios perform
almost similar.

6
Conclusion

In this thesis, strategies that enable multirobot exploration in limited communication environments
have been studied. The first phase was to perform an indepth literature study on existing methods.
Monte Carlo Tree Search (MCTS) algorithm was selected from it due to its advantages of being a look
ahead planner and its ability to simulate the actions of peer agents which could help with a cooperative
strategy. An existing work that used MCTS by Hyatt et al [21] was implemented first. The communi
cation dependency of this work was completely removed and strategies to recover the lost efficiency
were studied. As seen from chapter 5 the strategy of providing robots with the ability communicate
when within a communication range could regain the lost efficiency by a percentage as high as 75%.
By increasing the communication range and number of robots in the team, this percentage could be
increased upto 99%. It was also found larger maps, that increasing the communication range of the
agents upto a limit could enable peer prediction to bring an additional benefit to the exploration for a
small teams size. Apart from these important findings, there were also 4 other key inferences made
that are discussed in section 5.6 of chapter 5. In this section the research questions mentioned in chap
ter 2 have been answered following which the thesis is concluded by mentioning directions of further
research.

6.1. Research Questions Revisited
RQ1 What distributed strategies can cooperative agents utilise to explore unknown environments with
limited communication, in minimal number of steps?
The strategy utilised by each agent was that of MCTS. From section 5.6 of the previous chapter it has
been observed that this strategy helps a team of agents perform faster than the existing frontier com
munication method by effectively avoiding cluttered regions. In a limited communication environment,
including partial communication helps decrease the exploration steps and the number of exploration
steps decreases with the increase in the number of agents and communication range.

RQ2 What is the effect of limited communication on the individual strategies?
Limited Communication, especially of useful information like map coverage and best plan information
can increase the number of steps required by the team for area coverage. If the case of completely
removing communication is considered then the No Communication takes the maximum number of
steps. This can be seen in the graphs of chapter 5. Partial communication improves this behaviour
and reduces the number of steps for exploration. The number of steps can be further reduced with an
increase in the number of agents or communication range. Thus limited communication impacts the
individual strategy of agents in a team in its ability to plan effective paths and leads to an increased
number of coverage steps.

RQ3 What strategies would help in replicating the performance of agents as in an arena of full com
munication?
As seen from the graphs in section 5, full communication behaviour can be replicated upto a significant
extent by introducing partial communication. In addition to this, giving the agents the ability to predict

69

70 6. Conclusion

the behaviour of peer agents can help further reduce the steps of coverage in very specefic situations.
It has also been found that increasing the number of agents in the team as well as the communication
range can help replicate the behaviour full communication. This is because of the increased number of
chances for agents to share important map coverage information and also correct the mispredictions
of their paths made by peer agents, in the case of partial communication with prediction. Further, it has
also been found that giving prior information of the arena in terms of the locations of obstacles does
not have much of an effect on improving exploration, for the scenarios of partial communication and
partial communication with prediction.

6.2. Recommendations for future work
The research conducted in this thesis focuses on creating distributed algorithms for robots that explore
an unknown map with limited communication, with no information on the global positions of the peer
agents. Some directions for further research while considering these constraints are:

1. 100% area coverage Currently the simulation terminates even when certain gridcells are not
explored. This has been done as the MCTS planner tends to be limited by the finite T_horizon
and computation budget and not plan paths towards far off and missed out gridcells. Increasing
the computation budget can possibly help in this process. However, the amount of computation
possible by the system must be taken into account.

2. Distributed Termination Currently, the simulation terminates when an external entity perceives
that 95% of the region has been covered. This however brings in a type of centralised termination
into the system. Instead, if simulations can be terminated when each agent perceives that 95%
of the region has been covered, then it enhances the distributed approach to the problem.

3. Line of Sight Communication Currently agents share information based on the communication
range. This however does not take into account if obstacles are present between agents. Thus,
extending partial communication to a situation where agents can only communicate if there are
no obstacles or are in line of sight communication is required to be explored.

4. Including a Meeting Reward Currently the default policy computes a local and reward. How
ever as seen in the thesis, the ability of peer agents meeting one another to share information
is very beneficial. Thus, adding a weighted meeting reward can help with reduced value of ex
ploration steps. A meeting reward can also be used by the agents to create more chances for
misprediction corrections.

5. Dynamic Obstacles Currently the maps and study have only considered static obstacles. How
ever being a search and rescue operation, there is quite a high possibility of obstacles shifting
around at various times that could change the belief of agents. While the MCTS approach is
independent on the type of arena it is deployed it, studying the effect of dynamic obstacles on the
scenarios is yet to be explored.

6. 3Dimensional Case Currently the thesis focuses on a 2D exploration case. The same ex
ploration is yet to be tried out in a 3D environment, where the region can be divided into a 3D
gridworld with cubes and action space of MCTS would increase from 3 to 5 (additionally including
TOP and BOTTOM actions).

7
Appendix

7.1. Appendix A Significance Checks
Statistical Significance tests have been presented in this Appendix. This has been done for Partial
Communication, abbreviated as PC and Partial Communication with Prediction, abbreviated as PCP.
In statistical tests, the mean, standard deviation and number of datapoints are taken for each of the
populations under test. From these measures, a tvalue is computed. The tvalue computed in this
case is the Welch’s ttest [26]. This specific test has been used as it does not require the assumption of
the 2 data populations having similar variance. From the tvalue, a corresponding pvalue is computed.
If the pvalue is less than a predefined value 𝛼, then the difference between is said to be significant.
The value of 𝛼 is usually set as 0.05, which indicates that there is 95% chance that the means of the
populations are different. Thus, in the tables given below whenever pvalue≤ 0.05 then the populations
are said to have a statistically significant difference.

Team PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 611 39 140 613 36 128 0.1 0.92 No
2 378 15 54 382 18 63 0.4 0.69 No
3 283 15 52 282 14 50 0.02 0.98 No
4 222 10 37 225 10 34 0.36 0.72 No
5 189 8 30 191 15 52 0.19 0.85 No
6 166 7 23 157 6 20 2.1 0.04 Yes
7 146 7 27 149 10 36 0.45 0.66 No
8 129 5 18 134 5 19 1.23 0.22 No
9 120 6 20 114 5 18 1.46 0.15 No
10 112 5 16 107 6 20 1.29 0.2 No

Table 7.1: Statistical Significance Check Cvg v/s TeamSize 20x20

71

72 7. Appendix

Team PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 3328 292 1044 3515 421 1503 0.72 0.47 No
2 1994 156 556 2062 208 743 0.53 0.6 No
3 1436 82 294 1455 104 372 0.29 0.77 No
4 1145 59 211 1161 59 210 0.36 0.72 No
5 987 76 272 915 33 119 1.73 0.09 No
6 826 50 180 789 33 120 1.19 0.24 No
7 742 49 174 688 28 100 1.89 0.06 No
8 620 31 112 629 27 95 0.43 0.67 No
9 595 52 187 583 39 138 0.36 0.72 No
10 511 18 63 514 14 50 0.25 0.81 No

Table 7.2: Statistical Significance Check Team Cvg v/s TeamSize 40x40

Comm PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 293 16 59 283 19 67 0.8 0.43 No
2 253 12 44 259 16 57 0.58 0.56 No
3 228 8 27 232 10 35 0.7 0.49 No
4 233 26 94 215 6 23 1.29 0.2 No
5 214 10 35 207 6 23 1.18 0.24 No

Table 7.3: Statistical Significance Check Team Cvg v/s Comm 20x20, 3 agents

Comm PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 1431 39 402 1433 37 381 0.08 0.93 No
2 1408 52 532 1334 42 433 2.16 0.03 Yes
3 1312 44 446 1241 30 302 2.62 0.01 Yes
4 1241 38 392 1205 37 376 1.32 0.19 No
5 1217 41 415 1187 41 418 1.01 0.31 No

Table 7.4: Statistical Significance Check Comm Cvg v/s Comm 40x40, 3 agents

Comm PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 787 32 114 792 30 106 0.24 0.81 No
2 709 38 137 697 33 117 0.46 0.65 No
3 640 40 143 595 26 93 1.85 0.07 No
4 576 31 109 578 43 152 0.08 0.94 No
5 579 46 165 543 45 161 1.12 0.26 No

Table 7.5: Statistical Significance Check Comm Cvg v/s Comm 40x40, 6 agents

Comm PC Mean PC CI PC Std PCP Mean PCP CI PCP Std t_val p_val Sig?
1 565 24 87 567 30 108 0.09 0.93 No
2 491 31 111 522 45 162 1.11 0.27 No
3 413 15 54 421 26 93 0.49 0.63 No
4 382 31 112 380 21 73 0.06 0.95 No
5 365 26 93 355 18 66 0.62 0.53 No

Table 7.6: Statistical Significance Check Comm Cvg v/s Comm 20x20, 9 agents

7.2. Appendix B Experiment Additional Graphs

7.2. Appendix B Experiment Additional Graphs 73

(a) 20x20 Map
Prior Steps mean Steps CI
0 294 13

0.25 286 11
0.5 324 28
0.75 292 14
1 292 11

(b) 20x20 Data

Figure 7.1: Coverage steps vs Prior Information (PARCOMM) 20x20

74 7. Appendix

(a) 40x40 Map
Prior Step mean Step CI
0 1453 76

0.25 1414 81
0.5 1496 115
0.75 1427 91
1 1461 74

(b) 40x40 Data

Figure 7.2: Coverage steps versus Prior Information (PARCOMM) 40x40

7.3. Appendix C GridMap Collection 75

7.3. Appendix C GridMap Collection

76 7. Appendix

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Map 5

Figure 7.3: 20x20 Maps

7.3. Appendix C GridMap Collection 77

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Map 5

Figure 7.4: 40x40 Maps

8
Scientific Article

79

Multi Robot Exploration and Planning in
Limited Communication Environments

Abstract:- Distributed cooperative robots can be
highly beneficial in mapping disaster environments
and assisting with search and rescue operations.
In most situations such environments only allow
for only limited communication between robots.
This paper reports on simulation experiments
conducted to test the impact of having only partial
communication capabilities between cooperative
agents on area exploration strategies. The Monte
Carlo Tree Search (MCTS) planning algorithm has
been utilised by multi-robot teams to cooperate
and explore an environment effectively. On top of
this base case, other communication scenarios are
applied: No communication at all, and near-neighbor
communication at various ranges. In addition to these
communication strategies, robots are also given the
ability to predict the paths of peers. From extensive
simulation tests, it is shown that partial communication
can recover a significant amount of performance in
a limited communication environment. Giving agents
a peer prediction ability is not shown to have a
significant positive efficiency effect, except in very
specific situations. It is also shown that providing prior
information of the environment obstacle locations to
agents is not useful. Instead, increasing the number
of chances of agents sharing information positively
effects the exploration performance.

Keywords Artificial Intelligence, Multi-Agent Systems,
Robotic Exploration, Planning

I. INTRODUCTION

Multi robot exploration is an area coverage strategy
where a team of robots work together to explore and
discover the contents of an environment. This is par-
ticularly useful in applications like region surveillance,
space exploration and disaster management missions. In
the case of disaster management or search and rescue
missions, a team of robots usually encounter a situation
where the area to be covered is completely unknown.
Further, being a disaster zone there is high possibility that
the area has restricted communication. An environment
with restricted communication makes it difficult for robots
to share information with one another. When robots can-
not share information then this hampers the cooperation
between robots to achieve the overall exploration goal.
This leads to an increase in the overall exploration time,
with the same sub-region of the area being explored
multiple times by many robots. This is referred to as
redundant coverage. Figure 1 gives an example of 4
robots spawned in a grid-cell arena with obstacle grid-
cells indicated in red, unexplored ones in blue and already

covered regions in green. To avoid redundant coverage, the
4 robots would need to share the regions they have already
covered. Redundant coverage is particularly problematic
in search and rescue operations, as an increase in the
time for complete exploration would delay any further
rescue work. A restricted communication environment also
leads to robots having no information about the global
state of the environment and robots can only observe the
contents of the sub-regions of the environment that are
within its sensing range (local observibility) . There is
also no possibility to have reliance on any centralised
unit of the environment and thus distributed approaches
of exploration are required. Thus, when deployed into
a disaster environment, robots of a team are required
to be distributed and deal with local observibility. The
environment itself has restricted communication and the
location of obstacles is unknown to robots.

Fig. 1: Multi-Robot Exploration using 4 robots

From existing literature on the topic, most previous
distributed cooperative multi-robot exploration methods
considered only one amongst the two environment con-
straints of an unknown region and limited communication.
One algorithm that incorporated both these constraints is
the work on minPos algorithm by Bautin et al [1] that was
further adapted by Benavides et al [2] to perform Frontier
based Exploration. Apart from this another approach of
the Monte Carlo Tree Search (MCTS) algorithm was used
by Hyatt et al [3] specifically for multi-robot exploration.
The work however assumed an environment having full
communication. MCTS however has the ability to plan
paths by looking ahead into the future for a predefined
number of steps and the simulation based approach also
makes it possible for an agent to simulate the paths of peer
agents. Due to this, MCTS was the algorithm selected as

1

the baseline for this study.
The approach taken was to first implement the existing

work of Hyatt et al [3] as a baseline. Following this, a sce-
nario was created where the communication dependency
was completely removed from the replicated work. This
led to a situation called No Communication. In order to
bring in some form of cooperation between robots, while
taking into account the environment physical limitations,
robots were given the capability to share information
with peers within a predefined communication range. This
scenario is referred to as partial communication. With the
aim of moving the performance of robots even closer to
the full communication case, robots were then given the
ability to predict the plans of peer agents that were beyond
the communication range. This type of prediction is based
on the approach that was used in the work of Claes et al
[4]. By following this approach, this paper aims to focus
on designing a distributed cooperative planning strategy
for multi-robot exploration systems that can be deployed
in disaster management situations, by considering the lack
of prior environment information and restricted communi-
cation that exists in such time crucial missions. From this
research focus, 3 research questions are to be answered:

1) RQ1 - What distributed strategies can cooperative
agents utilise to explore unknown environments with
limited communication, in minimal number of steps?

2) RQ2 - What is the effect of limited communication
on the cooperative exploration strategies?

3) RQ3 - What strategies could help in replicating
the performance of agents as in an arena of full
communication?

The contributions made by the work are to extend the
study on Coverage Path Planning by Hyatt et al [3] to
an environment of limited communication, to extend the
heuristics dealt with in SPATAPS [4] towards applications
where the global state of the environment is unknown and
to compare the performance of look-ahead path planning
methods with one step methods like Bautin et al [1] &
Benavides et al [2].

The paper begins by explaining the problem and the
direction of research in this section. The next section
II on related work explains the relevant work that has
been used previously to perform multi-robot surveillance
and exploration. Section III defines the specific problem
being tackled and the important assumptions made in the
approach taken in this paper. Section IV on theoretical
framework goes into explaining important ideas behind
MCTS that will be needed to understand the approach
taken. Section V explains the approach taken by the thesis.
Following this section VI presents the experimental results
that are used in section VII to answer the research ques-
tions mentioned previously. Finally, section VIII draws key
conclusions and also provides direction for future work.

II. RELATED WORK

One of the earliest techniques taken to approach multi-
robot exploration is to have robots perform exploration
individually. The robots are then deployed into an un-
known environment where they spread out. In the method
presented by Howard et al in [5], this was done by
considering an artificial potential field algorithm where

each robot exerts a virtual force that causes robots to
move away from each other. Steven et al in [6] run
two algorithms namely the Clique-Intensity Algorithm and
the backbone dispersion algorithm for exploration, where
robots give high priority to maintaining communication
with one another. In some other methods, robots focus on
varying their length of movement based on the neighbour-
hood density. This was the approach taken by Bao Pang
et al in [7] where each robot takes smaller steps when the
neighborhood density is high, else it takes larger step size.

Some approaches follow the strategy of taking into
account the contents of the environment and direct robots
to move towards points that are beneficial to the overall
exploration. A popular idea that has been used by Umari
et al [8], Nair et al in [9], Dadvar et al [10], Antoine et al
[1] and Benavides et al in [2] is for each robot to identify
frontier points in the environment. Frontier points are
those parts of the environment that lie on the boundary of
known and unknown regions. Figure 2 shows an example
of frontier points that can be seen in yellow. Once robots

Fig. 2: A robot detecting frontier points [8]

identify frontier locations, a task location algorithm is run
such that robots get assigned a frontier point. This task
location algorithm is usually based on the distance of the
robots to the task. Benavides et al in [2] also considers
how well connected a robot is at a frontier point with
peer robots.

Methods like Lopez et el [11] and Upma et al [12]
follow the strategy of dividing the arena into subareas
that each robot is assigned to explore. This technique
is referred to as scene partitioning and aims at reducing
redundant coverage by multiple robots.

As multi-robot exploration involves multiple agents
cooperating with one another to achieve a common goal,
certain works have used ideas from the field of game
theory in exploration. One of the earliest techniques in-
volving game theory is the work by Meng et al [13]. In
this work, agents share map information of sub regions
of the exploration area and allocate sub-regions based on
the computation of the Nash Equilibrium for a predefined
utility measure. In another method by Ni et al [14],
the authors extend the same idea and use methods that
achieve Nash equilibrium faster. The authors also make
sure that sub-region allocations that provided no benefit
(zero utility) are avoided.

In some methods, authors have used sequential decision
planners in which the utility or benefit of a particular
action is based on the reward of subsequent future actions
that an agent performs. Hyatt et al [3] used Monte Carlo
Tree Search (MCTS) for the cooperation of multiple robots

2

exploring an unknown environment. Another method by
Claes et al [4] uses MCTS for a warehouse commissioning
task where robots gather and deliver items in an efficient
manner. The method also introduces the idea of a single
robot predicting the behaviour of peer robots. In another
work by Best et al [15], a limited communication setting
was considered for the multi-robot scenario of generalised
team orienteering and active object recognition. The al-
gorithm also uses the MCTS algorithm and agents share
highly compressed data with one another in a probabilistic
manner. Minglong Li et al in [16] combine the works of
Claes et al [4] and Best et al [15], to create a system where
agents predict the actions of peers in a computationally
cheap manner, reduce the communication pressure when
sharing information and get better coordination.

Amongst the various techniques presented in section
II, the method on Coverage Path Planning by Hyatt et
al [3] using MCTS could deal with completely unknown
maps, work in environments of limited communication,
possess only local observibility and support be used in
a distributed manner. The method was also used by the
authors to tackle a search and rescue exploration scenario.
Further the ability of an agent to select an action by
looking ahead with a certain number of steps could help
agents avoid moving towards cluttered regions where it
could get stuck. Robots could also share information with
one another. Being a simulation based method, each agent
had the ability to consider the plans shared by the other
robots in the computation of its own plans, which brought
in the aspect of cooperation. The only drawback however
was that the method assumed unrestricted communication.
However due to the other mentioned advantages, this
algorithm was used as the baseline for this research.

III. PROBLEM STATEMENT

The specific application considered in this paper is an
exploration scenario consisting of a fleet of aerial robots
navigating and mapping an unknown environment [17].
The unknown environment is cluttered, radio-hampered,
GPS-denied and thus facilitates limited communication
between peer agents. Each agent of the team can only
observe nearby surroundings. This is referred to as local
observibility. Local observibility can be understood by
considering figure 3 where the agent’s position in the envi-
ronment can be seen in sub-figure 3a, while what the agent
perceives of the environment can be seen in sub=figure 3b.
The colours Green,Blue,Red correspond to the states of
{Covered, Unexplored,Obstacle} respectively. Keeping
these constraints in mind, the following assumptions are
made by each agent:

1) Each agent only knows the size of the region of
exploration and the origin as a frame of reference.

2) Each agent divides the region of exploration into
grid-cells that can take one of the values of
{Covered, Unexplored,Obstacle}.

3) Each agent knows the total number of agents that
are present in the exploration team.

4) An agent considers a grid-cell to be covered when
it is directly over it.

Each agent has the option to execute one of the actions
{UP,RIGHT,LEFT} and can take up positions in the

(a) Agent position in En-
vironment

(b) Agent’s Environment
Belief

Fig. 3: Map Discovery by a Single Agent

grid-world which is defined by the tuple (x, y, yaw). The
position (x, y) refer to the x and y coordinates in the
grid-world, while yaw refers to the heading angle of the
agent with respect to the horizontal axis. The heading
angle indicates the orientation of the agent and can take
the values {0, 90, 180, 270} corresponding to pointing
right, up, left and down respectively. From the action list,
the action UP moves an agent 1 grid-cell ahead based
on the yaw value. RIGHT and LEFT actions turn the
agent Right and Left only, and does not actually shift the
agent by any grid-cell.

IV. THEORETICAL FRAMEWORK

A Markov Decision Process (MDP) is a mathematical
framework that is used to model the decision of an
agent in a fully observable, stochastic environment with
a Markovian transition model and additive rewards. It is
mathematically defined by a set of states (with initial value
s0), a set of possible actions, a transition model P (s

′ |s, a)
and a reward function R(s) [18]. In an MDP, the sequence
of actions can be grouped together into a list. This list of
actions is usually referred to as a policy (π). Amongst the
possible sequences of actions or policies, there exists an
optimal policy (denoted by π∗) which directs the agent to a
desired behaviour/goal [19]. The goal can be to maximise
a total reward, minimise a cost or reach a particular state. If
we consider that the agent interacts with the environment
for H number of time-steps, then an example of a policy
π is the list of actions π = [a1, a2...aH]. The search over
the entire space of policies to obtain the optimal policy is
called Planning.

Monte Carlo Tree Search (MCTS) is a planning algo-
rithm that is used to find an approximate value of the
optimal policy π∗. The main intuition behind MCTS is
that by using Monte Carlo simulations to quickly sample
thousands of possible trajectories, we can achieve good
approximations of the best value among possible actions
from the root node (the node from which the search
started) [4]. The tree nodes are the environment states and
the branches are the actions that can be taken. There are
4 major steps that are repeated in every search iteration,
which have been described below [20]:

1) Selection - This step starts at the root node and keeps
selecting nodes until an expandable node is reached.
An expandable node is a non terminal state that still
has some actions that are not yet executed.

3

2) Expansion - Based on the available actions, more
child nodes are added to the tree in this step.

3) Simulation - In this phase, a rollout of usually
random actions is run for a predefined number of
steps following which a reward value is computed.

4) Back Propagation - The simulation result is backed
up through the tree to update the result of the path
upto the root-node.

There are 2 important rules/policies as mentioned above
that must be followed. These are:

1) Tree Policy: Used in the selection or expansion step
to select or create an expandable node from the
nodes already present in the search tree.

2) Default Policy: Used in the simulation step to play
out actions for a predefined number of times or until
a non-terminal state is reached.

TreePolicy = X̄j + 2Cp

√
2 lnn

nj
(1)

The Tree policy is given by equation 1. In this equation,
X̄j refers to the average reward obtained by taking the
action j, nj refers to the number of times that action j
/ child j has been selected and n refers to the number
of times the current parent node has been visited. From
the equation it can be seen that for a particular action
j, nj will be equal to 0 initially which leads to a UCT
value of inf . This leads to every child being visited at least
once, which is essential given the random nature of play-
outs. The default policy used in the above tree is usually
a sequence of random actions.

Fig. 4: MCTS Basic [20]

One iteration of the MCTS process has been shown
in figure 4. The first stage involves the tree policy step
where starting at the root node, child nodes are recursively
selected until a node is reached that is either a terminal
state or is not fully expanded. In the expansion stage, at
such a node an action that has not been executed yet
is selected from the action list. This action is executed,
which leads to a new child node that is added to the tree.
Following this the simulation step starts where simulations
are run from the newly created node according to the
default policy. After a predefined number of times, an
objective function is evaluated which produces a reward
value ∆. The reward is then propagated up the sequence of
nodes in order to update each node’s visit count and reward
value. These steps continue to occur for many iterations,
until the computation budget is met or the search is
interrupted. Following this, the best action corresponding

to the root node is selected and executed. Some ways of
selecting the best possible action are:

1) Max child: Selects the child with highest reward
2) Robust child: Selects the child that is most visited
3) Max-Robust child: Selects the child with highest

visit count and highest reward

V. APPROACH

As mentioned in section I there were 4 different scenar-
ios created in this study based on the level of communica-
tion between agents in the environment. The first scenario
implemented is referred to as the Full Communication
scenario (subsection V-A). This scenario is the baseline
method and is the method on coverage path planning
by Hyatt et al [3] in an environment where unrestricted
communication exists between agents. Once tested to be
working the communication dependency of the algorithm
was dropped in order to have no communication between
agents (subsection V-B). In this situation agents could
not share any information with one another, but could
only sense nearby agents for the purpose of collision
avoidance. In order to relax the constraint of communi-
cation while keeping physical limitations in mind, agents
were then allowed to communicate important information
only when within a predefined communication range from
one another. This is referred to as partial communication
(subsection V-C). In order to bring the behaviour of
agents having partial communication closer to the full
communication case, agents were then given the capability
to predict the strategies of peers. Agents performed this by
using the most recently shared information from peers as
well as through the use of computationally cheap heuristics
(subsection V-D).

A. Full Communication

The approach that each agent uses in this scenario can
be divided into 4 stages, which are Environment Sensing,
Data Sharing, MCTS Planning and Action Execution. En-
vironment Sensing is used by the agent to obtain the status
of nearby grid-cells. This is done using the technique that
was explained earlier in figure 3. During the data Sharing
stage each agent obtains the map belief of all peer agents,
the position information and the best plans made by the
peers in the previous time-step. The agent updates it own
map belief of the environment using this information from
peer agents. Further, the agent simulates the plans made
by the peers in the MCTS planning stage. This helps bring
in the aspect cooperation in the plans made by the agent.

An MCTS planner is used in planning the paths of
agents. The planning begins from the root node. At the
root node, the agent utilises the environment state, its
own position and the position & plans of the known
peer agents. Using this information the agent needs to
choose the most promising action from its action set
{UP,RIGHT,LEFT}. Equation 1 is the tree policy
used and is referred to as the Upper confidence bound
for trees (UCT1). The Default Policy selects actions that
directs agent planning towards Unexplored grid-cells.
There are 3 cases that arise here:

1) If grid-cell in front is Unexplored, move UP .

4

2) If grid-cell in front is not Unexplored, check
RIGHT and LEFT grid-cells. Move to the grid-
cell which is Unexplored.

3) If none of the surrounding cells are Unexplored,
move in the direction of one of the grid-cells that is
Covered.

As mentioned in the previous section after the completion
of the simulation/rollout stage, a reward value ∆ is com-
puted. The ∆ computed in this case is referred to as the
TotalReward and is given,

TotalReward = wLRLocalReward+ wGRGlobalReward
(2)

wGR and wLR are the weights given to the global
and local rewards respectively. In the above equation
GlobalReward is given by the relation:

GlobalReward = −N(UnexploredCells)

N(TotalCells)
(3)

In the above equation N(UnexploredCells) refers to
the number of unexplored grid-cells in the gridmap and
N(TotalCells) refers to the total number of grid-cells
present in the gridmap. The LocalReward is given by
equation 4,

LocalReward =
T∑

k=1

[
1

(tk + 1)
2 (Ccov − Chit)

]
(4)

In the above equation Ccov = positivenumber if the
robot lands up on a newly discovered grid cell at time
step tk and ”covers” it, else Ccov = 0. Chit =
positivenumber if the robot encounters an obstacle or
another robot at time step tk, else it remains 0. The
normalisation using the (tk + 1)2 term is used to decay
the reward overtime. The decay overtime is done to give a
higher weight to rewards obtained at a nearer time-step tk.
This has been done as the state of the environment is still
being discovered and is less certain further into the future.
The weighted value at each time-step tk is computed upto
a predefined time horizon T .

In the simulation/rollout stage of MCTS planning, the
agent first simulates the plans of all peer agents. Once
computed, the agent begins to make its own plans by
following the default policy using the 3 cases mentioned
previously. During this time, the agent also computes the
LocalReward. After time horizon T , the agent computes
the GlobalReward using equation 3. The relation of the
GlobalReward is such that, a higher score is given to
plans that result in lower number of Unexplored grid-
cells. The aim of doing this is to include a reward for
team behaviour and bias the agent to choose actions that
do not lead it to redundant coverage. After the computation
of the TotalReward or ∆, the value computed obtained
is back-propagated until the root of the tree.

Once the MCTS planning stage is complete, the most
suitable action that an agent needs to execute is obtained
and the agent moves as per this action in the action
execution stage.

B. No Communication

In this case of No Communication, each agent follows
3 stages which are Environment Sensing, MCTS Planning
and Action Execution. In this scenario, agents have no
capability to communicate any information to peer agents.
While no robot can communicate with one another, agents
can still sense the presence of peers that are within the
sensing range. This is done for the purpose of collision
avoidance. When planning the next action, the MCTS
planner of the agent only simulates its own actions in
the simulation step. The TotalReward that each agent
computes is obtained using equation 2. Once the agent
computes a suitable action, it executes it in the action
execution stage.

C. Partial Communication

In the partial communication stage, agents that are
present within a predefined communication range are said
to be neighbours. The 4 high level stages followed in order
are Environment Sensing, Neighbour Data Sharing, MCTS
Planning and Action Execution. Environment Sensing and
Action Execution are similar to the previous 2 scenarios. In
the Neighbour data sharing stage however, an agent only
obtains information from neighbouring agents. The data
shared is the same as the full communication scenario.
An agent uses this shared data to update its own map
of the environment. During the simulation/rollout stage,
an agent only simulates the path of known peer agents
and then computes the reward using equation 2. Once a
suitable action is obtained from the planning stage, the
agent executes it in the action execution stage.

D. Partial Communication with prediction

There are 5 stages present in this scenario. They are
in the order of Environment Sensing, Neighbour Data
Sharing, Non-Neighbour Prediction, MCTS Planning and
Action Execution. This scenario builds over the previous
scenario by predicting the paths of agents that are not
within communication range (Non-Neighbours). As each
agent knows the total number of team members, obtaining
the Non-Neighbours from the known Neighbours is pos-
sible. To make predictions, an agent uses the most recent
plans that it obtains from Non-Neighbours. The plans
obtained is a list of actions that a peer agent executes.
This list is finite in number. When this list gets exhausted,
agents predict the path of the peer agents using a heuristic
computation. The result of the heuristic prediction is
an action that the current agent believes the peer non-
neighbour agent will execute.

The heuristic computed is called the coverage-by-step
heuristic. In this, the current agent predicts the next action
of the peer agent by computing the reward for the 8 grid-
cells around the predicted/last seen position of the peer
agent. This can be understood by considering figure 5a.
In the scenario shown, there are 2 agents (agent0 and
agent1) which are present outside communication range.
Sub-figure 5b shows agent0’s position and belief of the
environment at the current time step while sub-figure 5c
shows the estimated position of its peer agent, agent 1
at the current time step. It is important to note that this
sub-figure shows the position of agent 1, as predicted by

5

agent 0. The yellow box shows the 8 zones/grid-cells that
agent0 uses to predict the next position and next action of
agent1, using the heuristic reward.

(a) Environment (b) Agent Position (c) Peer Belief

Fig. 5: Heuristic h1 computation

The heuristic reward (Rewardheur) is computed using
the reward value for each zone. This reward is computed
based on equation 5 where Rcov denotes the coverage
reward of the particular zone and Nminsteps gives the
minimum number of steps that the belief agent is required
to move from the current position to the zone position.

Rewardheur =
Rcov

Nminsteps
(5)

The value of Rcov is given by the equation

Rcov =

+2, if the zone is unknown
+1, if the zone is covered
0, if the zone is an obstacle

(6)

Fig. 6: Step Computation, yaw = 90

The value of Nmin steps can be understood by con-
sidering figure 6. The figure shows the orientation of the
agent (indicated in orange) in pointing upwards (yaw=90)
and denotes the corresponding values Nmin steps and the
first step in that list as a tuple format (Nmin steps,First
step). As an example if the case of the grid-cell just
below the agents location is considered, then there are
minimum 3 steps that would be required to move to
the grid square. These steps are [RIGHT,RIGHT,UP] or
[LEFT,LEFT,UP]. Thus the tuple is given by (3,LEFT)
or (3,RIGHT). The values for (Nmin steps,First step) for
other yaw angles (0,180 and 270) are the same but only
rotated by 90 degrees. Overall using equation 5, the agent
uses Rewardh1 to obtain the first action that moves it to
the zone with the highest value of Rewardh1. In most
cases a higher reward indicates an uncovered zone that
can be reached with minimum number of steps.

In the Non-Neighbour prediction stage of this scenario,
the actions of the peers are predicted for a predefined

number of steps T . This is also the size of the best selected
paths list that peers share with one another and which
is executed in the simulation/rollout phase of the MCTS
planning. An important aspect to consider is that for each
agent, the environment is itself unknown and is being dis-
covered by each agent as it moves around the area. Due to
this, agents would not be able to make perfect predictions
about the movement of peers at all times. The number
of possibilities for accurate predictions decreases with
increase in time since the last meeting between agents.
When the predictions are right, this potentially leads to
the coverage of more unknown grid-cells in the map by
the team. However when the predictions are go wrong,
the overall number of steps for coverage can increase.
This is because, in a case when the agent assumes that its
mispredicted peer agent would cover a particular region
(say regionr), then it would move elsewhere. However
as the peer agent position is mispredicted, none of the
agents move towards regionr and the grid-cells in this
region remain unexplored.

One way to solve this is inspired from the do-it-yourself
(DIY) reward by Claes et al in [4]. The idea is for an
agent to have certain bias to perform tasks on its own.
This idea is incorporated into the default policy of the
simulation/rollout step of the MCTS planner. In the MCTS
planner, the current agent only simulates the actions of the
Neighbour agents in its own map. For the Non-Neighours,
the current agent simulates the plans only after it has
planned its own path. By doing this the current agent is
able to override the plans of peers for which it predicts
paths and has less information about, whereas it considers
the plans of agents within communication range in its
plans. It is important to note that the reward computation
remains the same and Non-Neighbour peers only effect
the computation of the GlobalReward. This ensures that
the current agent still takes into account the plans of Non-
Neighbour peers while making its own plans.

E. Frontier Communication

In order to compare the various scenarios having MCTS
with an existing work in literature, the frontier communi-
cation algorithm as implemented in the work of Antoine et
al [1] and adapted by Benavides et al [2] was implemented.
This specific work was selected as it also worked with
the constraints of limited communication, a distributed
setup and an unknown environment. In the approach a
team of multiple agents is spawned into the environment.
Agents have the capability of sharing information with
one another, when within a communication range. The
information shared is the map coverage status of an
agent and their environment position. Each agent then
executes an algorithm that consists of 3 main phases -
task identification, task allocation and execution. A task is
defined to be a frontier grid-cell. Each agent senses tasks in
the task identification phase. In the task allocation phase,
agents select frontier zones that are nearest to itself while
predicting the allocation made by nearby peer agents. This
is done by using the min-Pos algorithm whose working can
be found in [1]. Once allocated, each agent executes the
computed action following which the process is repeated
again.

6

VI. EXPERIMENTS

The experiments used to answer the main questions
of this paper (in section I) will be explained in this
section. The implementation of all the experiments was
done on a python based simulator. In this section, each
scenario is given an key word and abbreviation based
of communication. These are FULLCOMM (FC), NO-
COMM (NC), PARCOMM (PC) for full, no and partial
communication respectively. Partial Communication with
Prediction is given the abbreviation of PARCOMM PRED
(PCPD) and the scenario of limited communication where
agents identify frontiers is given by FRONTCOMM. The
experiments involved spawning a team of multiple robots
into a 20x20 and 40x40 gridmap and recording the number
of steps for coverage. The specific size of a 20x20 gridmap
with an obstacle density of 10% was chosen, as it is the
same size that the authors of the baseline method, Hyatt
et al [3] chose in their experiments. A 40x40 gridmap
was also selected to test the working of the algorithms
in larger gridmaps. In each gridmap dimension case,
all experiments were conducted on at least 5 different
gridmaps for 10 times each. Therefore each population
consists of at least 50 simulations. Further, all explorations
were run with a team of agents having a 95% coverage
goal. Initially a 100% exploration was given to the team
of agents. However in many cases consisting of smaller
number of agents (upto 3), there was high variance of
results. This was due to situations in which agents would
cover a large portion of the arena but leave out exploring
far off lying single gridcells. Due to finite computation,
agents would take more number of steps to make plans that
reach such single unexplored gridcells. A 95% exploration
goal on a 20x20 map translates to exploring all the 400
grid-cells but leaving 3 grid-cells unexplored, while a 95%
exploration goal on a 40x40 map leaves out 12 grid-cells
from the 1600 gridcells present. By default, the sensor
range and communication range of each agent were set as
1. With a sensor range as 1, agents could sense the status
of nearby 8 grid-cells as explained in subsection III. A
communication range of 1 implied that agents could share
information with agents when present in the surrounding 8
grid-cells. Further, termination of experiments/simulations
in each case took place based on the coverage of the actual
environment with what the team of agents covered and not
based on the status of coverage of what an agent perceived.
The hyper-parameters that were utilised is listed in table
I

Sl No Hyperparameter Description Value
1 C cov Coverage Reward 5
2 C hit Collision Penalty 2
3 lw Local Reward Weight 1
4 gw Global Reward Weight 1
5 T horizon Rollout steps 30
7 C p UCT1 Exploration 1√

2

TABLE I: Hyperparameter Values

As mentioned in section V, FULLCOMM is the sce-
nario that was implemented first. After dropping the
communication dependency from FULLCOMM, this led
to the NOCOMM scenario. As there is no communication,
agents in a NOCOMM environment usually takes more

time for coverage than FULLCOMM. By adding partial
communication to the system, some of the lost perfor-
mance can be recovered. In most of the experiments, this
recovery of lost performance by PARCOMM and even
PARCOMM PRED is measured using a percentage recov-
ery metric. The metric can be understood by considering
figure 7. The figure shows an example of the general trend

Fig. 7: Recovery Computation

between NOCOMM, PARCOMM and FULLCOMM. The
percentage recovery that PARCOMM gives can be mea-
sured by using equation 7, where a is the lost performance
when moving from FULLCOMM to NOCOMM and b is
the lost performance when moving from FULLCOMM to
PARCOMM. The same equation can also used to compute
the recovery for PARCOMM PRED.

Recovery =
a− b
a

(7)

When the percentage recovery provided is larger, it indi-
cates a smaller value of b. When b is smaller, PARCOMM
is closer to FULLCOMM. Thus a larger value of recovery
indicates higher amount of performance regained by the
PARCOMM (or PARCOMM PRED) scenario.

A. Exploration Performance v/s Team Size

In this experiment, the number of exploration steps
required for coverage is studied for increasing team size,
for each scenario. This was done on a 20x20 and 40x40
gridmap.

1) 20x20

Fig. 8: 20x20 Map

From figure 8, it can be seen that the performance
of PARCOMM and PARCOMM PRED lies in between
NOCOMM and FULLCOMM. The performance of PAR-
COMM and PARCOMM PRED is almost similiar and

7

from table II in the Appendix, it can be seen the recovery
increases with the increase in number of agents in both
scenarios. The recovery increases from 46% for 2 agents
upto 71% for 10 agents in PARCOMM and from 42% upto
75%, in the case of PARCOMM PRED. From statistical
significance tests, it is found that there is no significant
difference between the exploration steps of PARCOMM
and PARCOMM PRED in a 20x20 map.

2) 40x40

Fig. 9: 40x40 Map

From figure 9, it can be seen that the trend of PAR-
COMM & PARCOMM PRED lying between NOCOMM
and FULLCOMM is true for even a 40x40 graph. The
recovery provided also increases with the increase in
number of agents. The recovery increases upto 66% with
10 agents, for both scenarios. While table III has some
points where PARCOMM PRED gives higher recovery
than PARCOMM, this difference is not found to be
significant.

B. Exploration Performance v/s Prior Information

In this experiment, 3 agents were spawned into an arena
under the PARCOMM PRED scenario. The number of
steps were measured for various values of prior infor-
mation percentage. Prior information percentage refers to
the percentage of obstacle locations in the arena that each
spawned agent knows about. Thus 0% corresponds to the
agent knowing nothing about the obstacle positions while
100% implies that the agent knows the location of all
obstacles in the arena.

From both figures it can be seen that irrespective of the
gridmap size, having prior information does not effect the
exploration performance. Figures 10 and 11 also show no
trend of the results. In the case of a 20x20 map, from table
IV it can be see that irrespective of the prior percentage
the team takes roughly around 300 steps for coverage. For
the 40x40 grid case of table V the mean steps roughly lie
between 1300 until 1500. This behaviour is also seen for
each gridmap in the PARCOMM scenario from tables VI
and VII.

C. Exploration Performance v/s Communication Range

1) 20x20

In this experiment, a team of 3 agents with the no
information of the environment are spawned into an 20x20

Fig. 10: 20x20 Map

Fig. 11: 40x40 Map

arena. The communication range is varied to take one
of the values in the set {1, 2, 3, 4, 5}. A communication
range of N indicates that an agent can communicate
N grid-cells around it in all directions. Each of the
scenarios of NOCOMM, FULLCOMM, PARCOMM and
PARCOMM PRED have been simulated and the recovery
provided by the PARCOMM and PARCOMM PRED has
been measured using equation 7.

Fig. 12: 20x20 Map

It can be seen from figure 12 that with an increase
in communication range, both PARCOMM and PAR-
COMM PRED approach the behaviour of FULLCOMM.
At a communication range of 5, the recovery provided is

8

as high as 99% for PARCOMM PRED.

2) 40x40

In this subsection, a team of 3 agents with the no
information of the environment was spawned into a 40x40
arena. Due to the high variance in the 50 simulation case,
more number of simulations were added into the study
thereby leading to 400 simulations for each population.

Fig. 13: 40x40 Grid, 3 agents

In the case of 3 agents spawned into the arena, the
performance of PARCOMM and PARCOMM PRED ap-
proach the coverage steps of FULLCOMM with an in-
crease in the communication range. It is also found that
there is significant difference between PARCOMM and
PARCOMM PRED and that PARCOMM PRED is able
to provide additional benefit when the communication
range is set as 2 or 3. This is indicated in table XI. At
communication range 2, the additional benefit provided by
PARCOMM PRED is about 12%, while it is 9% in the
case of a communication range of 3. Apart from this, the
working with a team of 9 agents in a 40x40 map was also
studied.

Fig. 14: 40x40 Grid, 9 agents

From figure 14, it can be seen that there is a lot
of overlap in the behaviour of PARCOMM and PAR-
COMM PRED. This is due to the increased number of
chances where agents can meet one another and exchange
information.

D. Exploration Performance - FRONTCOMM Compari-
son

In this section each MCTS scenario is compared with
the FRONTCOMM algorithm. For comparison, the num-
ber of steps required for each scenarios has been compared
for 1 until 10 agents. The results have been shown in figure
15.

(a) 20x20 Map

(b) 40x40 Map

Fig. 15: Scenarios v/s FRONTCOMM

It can be observed from the figure, that the MCTS
methods perform area exploration much faster than the
frontier communication method. This also includes the
NOCOMM method that has no possibility for communi-
cation. This can attributed to the benefit provided by look
ahead planning in the MCTS algorithms.

VII. DISCUSSION

In this section, the results from various experiments
conducted are summarised. The MCTS scenarios were
compared for their exploration steps as a function of
the team size in section VI-A. In this case, the key
observations made were that as per expectation the order
of number of coverage steps in decreasing order was
NO COMM, PARCOMM & PARCOMM PRED and then
FULL COMM. It was found that the recovery of perfor-
mance provided in the 10 agent case by PARCOMM &
PARCOMM PRED was greater than 65% for both 20x20
and 40x40 maps. It was also noticed that there was no
significant benefit being provided by PARCOMM PRED
to PARCOMM in this experiment. Therefore, the exact

9

scenario where predictions could provide additional bene-
fit was to be tracked. The first speculation was that giving
prior knowledge could help the predictions. However from
the study in section VI-B, it was found that giving prior
information did not have much effect. Instead, the next
speculation of increasing the number of meetups & infor-
mation sharing instance by increasing the communication
range was tested in section VI-C. It was found that with
increase in communication range, the performance of both
PARCOMM as well as PARCOMM PRED comes closer
to FULLCOMM and the performance recovery provided
by each was greater than 90% for both 20x20 and 40x40
maps in the 5 grid-cell communication range case. Further,
it was found that for 3 agents in a 40x40 gridmap, increas-
ing the communication range can provide an additional
benefit of prediction over the PARCOMM by 12%. This
difference was also found to be statistically significant.
The additional benefit however decreased with an increase
in the communication range. The experiments ended with
section VI-D where MCTS based algorithms were found
to explore faster than the frontier communication method.

We turn back to the research questions mentioned in
section I and answer them using the observations made.

1) RQ1 - What distributed strategies can cooperative
agents utilise to explore unknown environments with
limited communication, in minimal number of steps?

The strategy utilised by each agent was that of MCTS.
From subsection VI-D of the previous chapter it has been
observed that this strategy helps a team of agents perform
faster than the existing frontier communication method by
effectively avoiding cluttered regions. In a limited com-
munication environment, including partial communication
helps decrease the exploration steps and the number of
exploration steps decreases with the increase in the number
of agents and communication range.

2) RQ2 - What is the effect of limited communication
on the individual strategies?

Limited Communication, especially of useful informa-
tion like map coverage and best plan information increases
the number of steps required by the team for area cover-
age. If the case of completely removing communication
is considered then the No Communication scenario takes
the maximum number of steps. This can be seen in the
graphs of chapter VI. Partial communication improves this
behaviour and reduces the number of steps for exploration.
The number of steps can be further reduced with an
increase in the number of agents or communication range.

3) RQ3 - What strategies would help in replicating
the performance of agents as in an arena of full
communication?

As seen from the graphs in section VI, full communica-
tion behaviour can be replicated upto a significant extent
by introducing partial communication. In addition to this,
giving agents the possibility to predict the behaviour of
peer agents can help further reduce the steps of coverage
in very specefic situations. It has also been experimentally
found that either increasing the number of agents in the
team or the communication range can help replicate the

behaviour full communication. This is because of the
increased number of chances for agents to share important
map coverage information and also correct the mispredic-
tions of their paths made by peer agents, in the case of
partial communication with prediction. Further, it has also
been found that giving prior information of the arena in
terms of the locations of obstacles does not have much
of an effect on improving exploration, for the scenarios
of partial communication and partial communication with
prediction.

VIII. CONCLUSION

In this thesis, strategies that enable multi-robot explo-
ration in limited communication environments have been
studied. The first phase was to perform an in-depth litera-
ture study on existing methods. Monte Carlo Tree Search
(MCTS) algorithm was selected from this study, due to its
advantages of being a look ahead planner and its ability to
simulate the actions of peer agents which could help with a
cooperative strategy. An existing work that used MCTS by
Hyatt et al [3] was implemented first. The communication
dependency of this work was completely removed and
strategies to recover the lost efficiency were studied. As
seen from chapter VI the strategy of providing robots with
the ability communicate when within a communication
range could regain the lost efficiency by a percentage as
high as 75%. By increasing the communication range this
percentage could be increased upto 99%. It was also found
for larger maps, that increasing the communication range
of the agents up-to a limit could enable peer prediction to
bring an additional benefit to the exploration for a small
team size.

Some recommendations for future work include find-
ing techniques on how to ensure 100% area coverage
and enabling distributed termination such that explo-
ration terminate only when each agent discovers that
the area is terminated. Another direction is to con-
sider the working with dynamic obstacles, that are very
likely to be present in disaster environments. Further,
the working of MCTS in multi-agent exploration is yet
to be performed in a 3-D case, where the action set
would increase from 3 {UP,RIGHT,LEFT} to 5
{UP,RIGHT,LEFT, TOP,BOTTOM}.

REFERENCES

[1] A. Bautin, O. Simonin, and F. Charpillet, “Minpos : A novel frontier
allocation algorithm for multi-robot exploration,” in Intelligent
Robotics and Applications, C.-Y. Su, S. Rakheja, and H. Liu, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 496–508.

[2] F. Benavides, P. Monzón, C. P. Carvalho Chanel, and E. Grampı́n,
“Multi-robot cooperative systems for exploration: Advances in
dealing with constrained communication environments,” in 2016
XIII Latin American Robotics Symposium and IV Brazilian Robotics
Symposium (LARS/SBR), 2016, pp. 181–186.

[3] P. Hyatt, Z. Brock, and M. D. Killpack, “A versatile multi-robot
monte carlo tree search planner for on-line coverage path planning,”
2020.

[4] D. Claes, F. A. Oliehoek, H. Baier, and K. Tuyls, “Decentralised
online planning for multi-robot warehouse commisioning,” May
2017, pp. 492–500, Best paper nominee. [Online]. Available:
http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p492.pdf

[5] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in Proceedings of the Inter-
national Symposium on Distributed Autonomous Robotic Systems,
2002, pp. 299–308.

10

[6] S. Damer, L. Ludwig, M. A. LaPoint, M. Gini,
N. Papanikolopoulos, and J. Budenske, “Dispersion and exploration
algorithms for robots in unknown environments,” in Unmanned
Systems Technology VIII, G. R. Gerhart, C. M. Shoemaker, and
D. W. Gage, Eds., vol. 6230, International Society for Optics
and Photonics. SPIE, 2006, pp. 251 – 260. [Online]. Available:
https://doi.org/10.1117/12.668915

[7] B. Pang, Y. Song, C. Zhang, H. Wang, and R. Yang, “A swarm
robotic exploration strategy based on an improved random walk
method,” J. Robotics, vol. 2019, pp. 6 914 212:1–6 914 212:9, 2019.

[8] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2017, pp. 1396–1402.

[9] M. Nair and S. Givigi, “The impact of communications consider-
ations in multi-robot systems,” in 2019 International Conference
on Communications, Signal Processing, and their Applications
(ICCSPA), 2019, pp. 1–6.

[10] M. Dadvar, S. Moazami, H. R. Myler, and H. Zargarzadeh, “Ex-
ploration and coordination of complementary multi-robot teams in
a hunter and gatherer scenario,” 2020.

[11] J. Lopez-Perez, U. Hernandez-Belmonte, J.-P. Ramirez-Paredes,
M. Contreras-Cruz, and V. Ayala, “Distributed multirobot explo-
ration based on scene partitioning and frontier selection,” Mathe-
matical Problems in Engineering, vol. 2018, pp. 1–17, 06 2018.

[12] U. Jain, R. Tiwari, and W. Godfrey, “A hybrid evsa approach
in clustered search space with ad-hoc partitioning for multi-robot
searching,” Evolutionary Intelligence, vol. 13, 12 2020.

[13] Y. Meng, “Multi-robot searching using game-theory based
approach,” International Journal of Advanced Robotic Systems,
vol. 5, no. 4, p. 44, 2008. [Online]. Available: https://doi.org/10.
5772/6232

[14] J. Ni, G. Tang, Z. Mo, W. Cao, and S. X. Yang, “An improved
potential game theory based method for multi-uav cooperative
search,” IEEE Access, vol. 8, pp. 47 787–47 796, 2020.

[15] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
mcts: Decentralized planning for multi-robot active perception,”
Int. J. Robotics Res., vol. 38, no. 2-3, 2019. [Online]. Available:
https://doi.org/10.1177/0278364918755924

[16] M. Li, W. Yang, Z. Cai, S. Yang, and J. Wang, “Integrating
decision sharing with prediction in decentralized planning for
multi-agent coordination under uncertainty,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 450–456. [Online].
Available: https://doi.org/10.24963/ijcai.2019/64

[17] R. Nouacer, M. Hussein, H. Espinoza, Y. Ouhammou, M. Ladeira,
and R. Castiñeira, “Towards a framework of key technologies for
drones,” Microprocessors and Microsystems, vol. 77, p. 103142,
2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0141933120303094

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, 3rd ed. Prentice Hall, 2010.

[19] F. A. Oliehoek and C. Amato, A Concise Introduction to De-
centralized POMDPs, 1st ed. Springer Publishing Company,
Incorporated, 2016.

[20] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
S. Tavener, D. Perez, S. Samothrakis, S. Colton, and et al., “A
survey of monte carlo tree search methods,” IEEE TRANSACTIONS
ON COMPUTATIONAL INTELLIGENCE AND AI, 2012.

APPENDIX A
EXPERIMENT NUMERIC RESULTS

In all the tables, the abbreviation and meaning are as
follows:

1) TS - Team Size
2) CR - Communication Range
3) FC - Full Communication
4) NC - No Communication
5) PC - Partial Communication
6) PC - Partial Communication with Prediction

TS FC NC PC Rec PCPD Rec
1 622 634 197 175
2 313 433 46 42
3 205 378 55 55
4 161 318 61 59
5 133 277 61 60
6 112 265 65 71
7 95 246 66 64
8 86 231 70 67
9 81 206 69 73

10 76 201 71 75

TABLE II: Coverage steps versus Team Size Data - 20x20

TS FC NC PC Rec PCPD Rec
1 3265 3637 83 33
2 1674 2118 28 12
3 1028 1691 38 36
4 733 1562 50 48
5 582 1371 49 58
6 477 1271 56 61
7 414 1174 57 64
8 367 1084 65 63
9 334 1034 63 64

10 289 948 66 66

TABLE III: Coverage steps versus Team Size Data - 40x40

Prior Steps mean Steps CI
0 292 14

0.25 303 24
0.5 295 13

0.75 289 13
1 294 19

TABLE IV: PARCOMM H3G Coverage steps versus
Prior Information Data - 20x20

Prior Step mean Step CI
0 1358 62

0.25 1509 125
0.5 1509 234
0.75 1396 77

1 1417 69

TABLE V: PARCOMM H3G Coverage steps versus Prior
Information Data - 40x40

Prior Steps mean Steps CI
0 294 13

0.25 286 11
0.5 324 28

0.75 292 14
1 292 11

TABLE VI: PARCOMM Coverage steps versus Prior
Information Data - 20x20

Prior Step mean Step CI
0 1453 76

0.25 1414 81
0.5 1496 115
0.75 1427 91

1 1461 74

TABLE VII: PARCOMM Coverage steps versus Prior
Information Data - 40x40

11

CR FC NC PC rec PCPD rec
1 205 377 49 55
2 205 377 72 69
3 205 377 87 84
4 205 377 84 94
5 205 377 95 99

TABLE VIII: Coverage steps versus Communication
Range Data - 20x20, 3 agents

CR FC NC PC rec PCPD rec
1 1066 1715 44 43
2 1066 1715 47 59
3 1066 1715 62 73
4 1066 1715 73 79
5 1066 1715 77 81

TABLE IX: Coverage steps versus Communication Range
Data - 40x40, 3 agents

CR FC NC PC rec PCPD rec
1 321 1034 66 66
2 321 1034 76 72
3 321 1034 87 86
4 321 1034 92 92
5 321 1034 94 95

TABLE X: Coverage steps versus Communication Range
Data - 40x40, 9 agents

Comm PC Mean PCP Mean t val p val Sig?
1 1431 1433 -0.08 0.93 No
2 1408 1334 2.16 0.03 Yes
3 1312 1241 2.62 0.01 Yes
4 1241 1205 1.32 0.19 No
5 1217 1187 1.01 0.31 No

TABLE XI: Statistical Significance Check Comm - Cvg
v/s Comm 40x40, 3 agents

12

Bibliography
[1] URL: https://people.eecs.berkeley.edu/~pabbeel/cs287fa12/#syllabus.
[2] Stefano V. Albrecht and Peter Stone. “Autonomous agents modelling other agents: A compre

hensive survey and open problems”. In: Artificial Intelligence 258 (May 2018), pp. 66–95. ISSN:
00043702. DOI: 10.1016/j.artint.2018.01.002. URL: http://dx.doi.org/10.
1016/j.artint.2018.01.002.

[3] F. Amigoni, J. Banfi, and N. Basilico. “Multirobot Exploration of CommunicationRestricted Envi
ronments: A Survey”. In: IEEE Intelligent Systems 32.6 (2017), pp. 48–57. DOI: 10.1109/MIS.
2017.4531226.

[4] P. Baran. “On Distributed Communications Networks”. In: IEEE Transactions on Communications
Systems 12.1 (1964), pp. 1–9. DOI: 10.1109/TCOM.1964.1088883.

[5] Antoine Bautin, Olivier Simonin, and François Charpillet. “MinPos : A Novel Frontier Allocation
Algorithm for Multirobot Exploration”. In: Intelligent Robotics and Applications. Ed. by ChunYi
Su, Subhash Rakheja, and Honghai Liu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 496–508. ISBN: 9783642335150.

[6] F. Benavides et al. “Multirobot Cooperative Systems for Exploration: Advances in Dealing with
Constrained Communication Environments”. In: 2016 XIII Latin American Robotics Symposium
and IV Brazilian Robotics Symposium (LARS/SBR). 2016, pp. 181–186. DOI: 10.1109/LARS
SBR.2016.37.

[7] Graeme Best et al. “DecMCTS: Decentralized planning for multirobot active perception”. In: Int.
J. Robotics Res. 38.23 (2019). DOI: 10.1177/0278364918755924. URL: https://doi.
org/10.1177/0278364918755924.

[8] Manuele Brambilla et al.Swarm robotics: a review from the swarm engineering perspective. 2012.
[9] Cameron Browne et al. “A survey of Monte Carlo tree search methods”. In: IEEE TRANSAC

TIONS ON COMPUTATIONAL INTELLIGENCE AND AI (2012).
[10] Dominique Chabot. “Trends in drone research and applications as the Journal of Unmanned

Vehicle Systems turns five”. In: Journal of Unmanned Vehicle Systems 6.1 (2018), pp. vi–xv. DOI:
10.1139/juvs20180005. eprint: https://doi.org/10.1139/juvs20180005.
URL: https://doi.org/10.1139/juvs20180005.

[11] Saad Chakkor et al. “Comparative Performance Analysis of Wireless Communication Protocols
for Intelligent Sensors and Their Applications”. In: CoRR abs/1409.6884 (2014). arXiv: 1409.
6884. URL: http://arxiv.org/abs/1409.6884.

[12] Daniel Claes et al. “Decentralised Online Planning for MultiRobot Warehouse Commisioning”.
In: Best paper nominee. May 2017, pp. 492–500. URL: http : / / www . ifaamas . org /
Proceedings/aamas2017/pdfs/p492.pdf.

[13] Daniel Claes et al. “Effective Approximations for MultiRobot Coordination in Spatially Distributed
Tasks”. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multi
agent Systems. AAMAS ’15. Istanbul, Turkey: International Foundation for Autonomous Agents
and Multiagent Systems, 2015, pp. 881–890. ISBN: 9781450334136.

[14] Aleksander Czechowski and Frans A. Oliehoek. “Decentralized MCTS via Learned Teammate
Models”. In: Proceedings of the TwentyNinth International Joint Conference on Artificial Intelli
gence (July 2020). DOI: 10.24963/ijcai.2020/12. URL: http://dx.doi.org/10.
24963/ijcai.2020/12.

[15] Mehdi Dadvar et al. Exploration and Coordination of Complementary MultiRobot Teams in a
Hunter and Gatherer Scenario. 2020. arXiv: 1912.07521 [cs.MA].

93

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/#syllabus
https://doi.org/10.1016/j.artint.2018.01.002
http://dx.doi.org/10.1016/j.artint.2018.01.002
http://dx.doi.org/10.1016/j.artint.2018.01.002
https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1109/TCOM.1964.1088883
https://doi.org/10.1109/LARS-SBR.2016.37
https://doi.org/10.1109/LARS-SBR.2016.37
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1139/juvs-2018-0005
https://doi.org/10.1139/juvs-2018-0005
https://doi.org/10.1139/juvs-2018-0005
https://arxiv.org/abs/1409.6884
https://arxiv.org/abs/1409.6884
http://arxiv.org/abs/1409.6884
http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p492.pdf
http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p492.pdf
https://doi.org/10.24963/ijcai.2020/12
http://dx.doi.org/10.24963/ijcai.2020/12
http://dx.doi.org/10.24963/ijcai.2020/12
https://arxiv.org/abs/1912.07521

94 Bibliography

[16] Steven Damer et al. “Dispersion and exploration algorithms for robots in unknown environments”.
In: Unmanned Systems Technology VIII. Ed. by Grant R. Gerhart, Charles M. Shoemaker, and
DouglasW.Gage. Vol. 6230. International Society for Optics and Photonics. SPIE, 2006, pp. 251–
260. DOI: 10.1117/12.668915. URL: https://doi.org/10.1117/12.668915.

[17] Matthew Dunbabin and Lino Marques. “Robots for Environmental Monitoring: Significant Ad
vancements and Applications”. In: IEEE Robotics Automation Magazine 19.1 (2012), pp. 24–
39. DOI: 10.1109/MRA.2011.2181683.

[18] Alessandro Gasparetto et al. “Path Planning and Trajectory Planning Algorithms: A General
Overview”. In: Motion and Operation Planning of Robotic Systems: Background and Practical
Approaches. Ed. by Giuseppe Carbone and Fernando GomezBravo. Cham: Springer Interna
tional Publishing, 2015, pp. 3–27. ISBN: 9783319147055. DOI: 10.1007/9783319
147055_1. URL: https://doi.org/10.1007/9783319147055_1.

[19] Perry J. Hardin and Ryan R. Jensen. “SmallScale Unmanned Aerial Vehicles in Environmental
Remote Sensing: Challenges and Opportunities”. In: GIScience & Remote Sensing 48.1 (2011),
pp. 99–111. DOI: 10.2747/15481603.48.1.99. eprint: https://doi.org/10.2747/
15481603.48.1.99. URL: https://doi.org/10.2747/15481603.48.1.99.

[20] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. “Mobile Sensor Network Deploy
ment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem”. In:
Proceedings of the International Symposium on Distributed Autonomous Robotic Systems. 2002,
pp. 299–308.

[21] Phillip Hyatt, Zachary Brock, and Marc D. Killpack. A Versatile MultiRobot Monte Carlo Tree
Search Planner for OnLine Coverage Path Planning. 2020. arXiv: 2002.04517 [cs.MA].

[22] Upma Jain, Ritu Tiwari, andWilfred Godfrey. “A hybrid EVSA approach in clustered search space
with adhoc partitioning for multirobot searching”. In: Evolutionary Intelligence 13 (Dec. 2020).
DOI: 10.1007/s12065020003561.

[23] Minglong Li et al. “Integrating Decision Sharing with Prediction in Decentralized Planning for
MultiAgent Coordination under Uncertainty”. In: Proceedings of the TwentyEighth International
Joint Conference on Artificial Intelligence, IJCAI19. International Joint Conferences on Artificial
Intelligence Organization, July 2019, pp. 450–456. DOI: 10.24963/ijcai.2019/64. URL:
https://doi.org/10.24963/ijcai.2019/64.

[24] Chun Fui Liew et al.Recent Developments in Aerial Robotics: A Survey and PrototypesOverview.
2017. arXiv: 1711.10085 [cs.RO].

[25] Jose LopezPerez et al. “Distributed Multirobot Exploration Based on Scene Partitioning and
Frontier Selection”. In: Mathematical Problems in Engineering 2018 (June 2018), pp. 1–17. DOI:
10.1155/2018/2373642.

[26] Zhenqiu Lu and KeHai Yuan. “Welch’s t test”. In: Jan. 2010, pp. 1620–1623. DOI: 10.13140/
RG.2.1.3057.9607.

[27] Yan Meng. “MultiRobot Searching using GameTheory Based Approach”. In: International Jour
nal of Advanced Robotic Systems 5.4 (2008), p. 44. DOI: 10.5772/6232. eprint: https:
//doi.org/10.5772/6232. URL: https://doi.org/10.5772/6232.

[28] M. E. Mkiramweni et al. “A Survey of Game Theory in Unmanned Aerial Vehicles Communica
tions”. In: IEEE Communications Surveys Tutorials 21.4 (2019), pp. 3386–3416. DOI: 10.1109/
COMST.2019.2919613.

[29] M. Nair and S. Givigi. “The Impact of Communications Considerations in MultiRobot Systems”.
In: 2019 International Conference on Communications, Signal Processing, and their Applications
(ICCSPA). 2019, pp. 1–6. DOI: 10.1109/ICCSPA.2019.8713614.

[30] Iñaki Navarro and Fernando Matía. “An Introduction to Swarm Robotics”. In: ISRN Robotics 2013
(Sept. 2012). DOI: 10.5402/2013/608164.

[31] J. Ni et al. “An Improved Potential GameTheory BasedMethod forMultiUAVCooperative Search”.
In: IEEE Access 8 (2020), pp. 47787–47796. DOI: 10.1109/ACCESS.2020.2978853.

https://doi.org/10.1117/12.668915
https://doi.org/10.1117/12.668915
https://doi.org/10.1109/MRA.2011.2181683
https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/10.2747/1548-1603.48.1.99
https://doi.org/10.2747/1548-1603.48.1.99
https://doi.org/10.2747/1548-1603.48.1.99
https://doi.org/10.2747/1548-1603.48.1.99
https://arxiv.org/abs/2002.04517
https://doi.org/10.1007/s12065-020-00356-1
https://doi.org/10.24963/ijcai.2019/64
https://doi.org/10.24963/ijcai.2019/64
https://arxiv.org/abs/1711.10085
https://doi.org/10.1155/2018/2373642
https://doi.org/10.13140/RG.2.1.3057.9607
https://doi.org/10.13140/RG.2.1.3057.9607
https://doi.org/10.5772/6232
https://doi.org/10.5772/6232
https://doi.org/10.5772/6232
https://doi.org/10.5772/6232
https://doi.org/10.1109/COMST.2019.2919613
https://doi.org/10.1109/COMST.2019.2919613
https://doi.org/10.1109/ICCSPA.2019.8713614
https://doi.org/10.5402/2013/608164
https://doi.org/10.1109/ACCESS.2020.2978853

Bibliography 95

[32] Réda Nouacer et al. “Towards a framework of key technologies for drones”. In: Microprocessors
and Microsystems 77 (2020), p. 103142. ISSN: 01419331. DOI: https://doi.org/10.
1016/j.micpro.2020.103142. URL: https://www.sciencedirect.com/science/
article/pii/S0141933120303094.

[33] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
1st. Springer Publishing Company, Incorporated, 2016. ISBN: 3319289276.

[34] Bao Pang et al. “A Swarm Robotic Exploration Strategy Based on an Improved Random Walk
Method”. In: J. Robotics 2019 (2019), 6914212:1–6914212:9.

[35] Ankit Ravankar et al. “Autonomous Mapping and Exploration of UAV Using Low Cost Sensors”.
In: vol. 4. Nov. 2018, p. 5753. DOI: 10.3390/ecsa505753.

[36] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd ed. Prentice Hall,
2010.

[37] Melanie Schranz et al. “Swarm Robotic Behaviors and Current Applications”. In: Frontiers in
Robotics and AI 7 (2020), p. 36. ISSN: 22969144. DOI: 10.3389/frobt.2020.00036. URL:
https://www.frontiersin.org/article/10.3389/frobt.2020.00036.

[38] Reid G. Simmons et al. “Coordination for MultiRobot Exploration and Mapping”. In: Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Inno
vative Applications of Artificial Intelligence. AAAI Press, 2000, pp. 852–858. ISBN: 0262511126.

[39] D. K. Sutantyo et al. “Multirobot searching algorithm using Lévy flight and artificial potential field”.
In: 2010 IEEE Safety Security and Rescue Robotics. July 2010, pp. 1–6. DOI: 10.1109/SSRR.
2010.5981560.

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018. ISBN: 0262039249.

[41] E. Ugur, A. E. Turgut, and E. Sahin. “Dispersion of a swarm of robots based on realistic wireless
intensity signals”. In: 2007 22nd international symposium on computer and information sciences.
2007, pp. 1–6. DOI: 10.1109/ISCIS.2007.4456899.

[42] H. Umari and S. Mukhopadhyay. “Autonomous robotic exploration based on multiple rapidly
exploring randomized trees”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2017, pp. 1396–1402. DOI: 10.1109/IROS.2017.8202319.

[43] Chunhua Zhang and John M Kovacs. “The application of small unmanned aerial systems for
precision agriculture: a review”. In: Precision agriculture 13.6 (2012), pp. 693–712.

https://doi.org/https://doi.org/10.1016/j.micpro.2020.103142
https://doi.org/https://doi.org/10.1016/j.micpro.2020.103142
https://www.sciencedirect.com/science/article/pii/S0141933120303094
https://www.sciencedirect.com/science/article/pii/S0141933120303094
https://doi.org/10.3390/ecsa-5-05753
https://doi.org/10.3389/frobt.2020.00036
https://www.frontiersin.org/article/10.3389/frobt.2020.00036
https://doi.org/10.1109/SSRR.2010.5981560
https://doi.org/10.1109/SSRR.2010.5981560
https://doi.org/10.1109/ISCIS.2007.4456899
https://doi.org/10.1109/IROS.2017.8202319

	Summary
	Introduction
	Research Focus
	Research Questions
	Thesis Structure
	Naming Conventions

	Background and Related Work
	Background
	Robot Dispersion
	Cost and Utility
	Scene Partitioning
	Game Theory
	Game Theory Fundamentals
	Game Theory in Multi-robot exploration

	Sequential Decision Planning
	Markov Decision Process
	Exact Planning - Value and Policy Iteration
	Approximate Planning - Monte Carlo Tree Search
	Partially Observable Markov Decision Process
	Decentralised Partially Observable Markov Decision Process
	MCTS in Distributed Teams

	Peer Modelling
	Comparisons

	Approach
	Baseline Selection
	Algorithm Design
	Problem Setting
	Design Stages
	Monte Carlo Tree Search Planner Design

	Full Communication
	No Communication
	Partial Communication
	Partial Communication with Prediction
	Coverage-by-step Heuristic
	Special Cases
	DIY Rewards and default policy
	The Working Algorithm

	Hyper-parameter Selection
	Frontier Communication

	Experiments
	Exploration Performance - Default Policy Comparison
	Exploration Performance v/s Team Size
	Exploration Performance v/s Prior Information
	Exploration Performance v/s Communication Range
	Exploration Performance - FRONTCOMM Comparison
	Discussion

	Conclusion
	Research Questions Revisited
	Recommendations for future work

	Appendix
	Appendix A - Significance Checks
	Appendix B - Experiment Additional Graphs
	Appendix C - Grid-Map Collection

	Scientific Article

