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Using mobile devices for driving test assessment: a study of acceleration and GPS data
Tom Driessen a*, David Stefanb*, Daniël Heikoop b, Dimitra Dodou a and Joost de Winter a

aFaculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands; bResearch & Development, Centraal Bureau 
Rijvaardigheidsbewijzen, Rijswijk, Netherlands

ABSTRACT
There is a need to improve the validity of the driving test as a measure of an individual’s ability to drive safely. 
This paper explores the use of algorithms to analyze acceleration and GPS data from a smartphone and 
a GoPro to distinguish between different driving styles, as performed by experienced examiners portraying 
stereotypical driving test candidates. Measures from nine driving tests were analyzed, including (harsh) 
accelerations, jerk, mean speed, and speeding. Results showed that the type of car, instructed driving style, 
and driving route impacted the dependent measures. It is concluded that GPS and accelerometer data can 
effectively distinguish between cautious, normal, and aggressive driving. However, it is important to 
consider additional sensors, such as cameras, to allow for more context-aware assessments of driving 
behavior. Furthermore, we demonstrate methods to quantify variations in road conditions and provide 
suggestions for presenting the data to driving examiners.
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Introduction

Young drivers face a high risk of road accidents due to a combination 
of factors such as inexperience and limited skills as well as immaturity 
and risk-taking behavior (Lajunen, Sullman, and Gaygısız 2022; 
Rolison and Moutari 2020; Weast and Monfort 2021). To address 
this issue, several countermeasures have been implemented. One 
such measure is graduated driver licensing (GDL), which restricts 
the driving privileges of new drivers in stages as they gain experience 
(Curry et al. 2017; Fell et al. 2011; Poirier, Blais, and Faubert 2018; 
Williams 2017). Another countermeasure is the introduction of new 
vehicle technology, such as front crash prevention and blind spot 
monitoring, which can help reduce the accident risk of young drivers 
in particular (Mueller and Cicchino 2022). Effective enforcement of 
traffic laws (Bates et al. 2020; De Waard and Rooijers 1994) and anti- 
speeding and anti-drink-drive education campaigns can further 
reduce the number of accidents involving young drivers (Tay 2005). 
Finally, the driving test is considered an important screening 
mechanism that helps ensure that only drivers who are deemed 
skilled receive their driver’s license.

The driving test is often the only formal evaluation of a person’s 
driving skills before they are granted a driver’s license (Helman et al.  
2017). However, the driving test may not provide a veridical assess-
ment of a person’s driving abilities, as it only provides a snapshot of 
the candidate’s skills. The likelihood of making mistakes during the 
test can be influenced by external factors, such as weather conditions 
and the occurrence of specific situations on the road. Furthermore, 
even though driving examiners are trained and qualified, there is still 
room for subjectivity and human error or inconsistency in their 
verdict (Baughan et al. 2005). Another challenge in driver testing is 
the fact that some candidates are disagreeable or may even become 
aggressive when they hear that they failed the exam (Alsharef, Albert, 
and Bhandari 2022; Foxe 2020). Hence, there is a need for a more 
data-driven presentation of the test verdict.

In a previous study with driving examiners in the Netherlands, it 
was found that examiners would like to have access to data-based 
evidence to support their decisions to pass or fail a candidate 
(Driessen et al. 2021). Examples mentioned by the examiners 
include dashcam footage, recordings of the candidate’s viewing 
behavior, and data on speed, headway, and braking behavior. The 
examiners indicated they wanted to be able to access such data in 
a raw (e.g. graphs, footage) or semi-processed (e.g. good/bad eva-
luations) form so that they could provide more detailed explana-
tions for their verdict. However, the examiners also believed that 
current technology is not advanced enough to fully replace human 
judgment with an automated pass-fail system, indicating that tech-
nology can assist but not replace the human evaluator (Driessen 
et al. 2021).

In the area of usage-based insurance, devices like mobile 
phones and dongles are widely used to monitor driving behavior. 
These devices can record driving measures such as speed and 
acceleration and offer the advantage of not requiring modifica-
tions to the vehicle or special hardware installation. Studies have 
shown that hard braking is a reliable predictor of accident risk for 
car drivers (Hunter et al. 2021; Ma et al. 2018; Stipancic, 
Miranda-Moreno, and Saunier 2018) and truck drivers (Cai 
et al. 2021; Driessen et al. 2024). Additionally, studies have 
explored the use of mobile phones to identify different driving 
styles, such as dangerous and aggressive driving (Carlos et al.  
2020; Chan et al. 2020; Johnson and Trivedi 2011; Othman et al.  
2022). Research has also explored the use of smartphone apps for 
providing personalized feedback to drivers (Marafie et al. 2021) 
and stimulating their receptivity for feedback by means of gami-
fication techniques, such as leaderboards, rewards, and group 
forming (Musicant and Lotan 2016; Shanly et al. 2018). Nambi 
et al. (2019) demonstrated several techniques for measuring man-
euvers during Indian driving tests and claimed success using 
driver gaze monitoring to detect mirror scanning before lane 
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changes. They further used a combination of camera, inertial, and 
GPS data for trajectory tracking.

Despite the widespread use of sensor measurements for dri-
ver assessment, there is limited research examining the validity 
of these methods from an algorithmic viewpoint and in such 
a way that it can be applied to the on-road driving test. Our 
study aims to fill this gap by presenting a series of algorithms 
for evaluating driving performance in these tests. These driving 
tests were carried out by experienced driving examiners, who 
emulated typical driving styles encountered during exams. The 
algorithms are explained in a step-by-step manner, allowing 
others to use them, and the code for this work is provided as 
supplementary material.

Methods

The data were collected in cooperation with the driving exam-
iner training center of the Dutch Central Office of Driving 
Certification (CBR) in Leusden, Netherlands. At this training 
facility, driving examiner trainees are trained to become 
licensed driving examiners. A part of their training consists 
of on-road sessions, in which qualified instructors (active or 
former driving examiners) emulate driver behaviors commonly 
encountered at the driving test. The examiner trainee in the 
passenger seat receives no information about the role the 
driver takes and is expected to take the role of a real driving 
examiner and form a pass or fail verdict based on the acted 
driving style.

Data collection

The observations took place during 21 training sessions between 
March 30, 2022 and April 13, 2022. All drivers involved were asked 
for consent before the start of the experiment. The research was 
approved by the Human Research Ethics Committee of the Delft 
University of Technology, approval number 2302.

Acceleration data were recorded using the smartphone app 
Matlab Mobile version 9.1.2 (Mathworks 2021) at a frequency of 
10 Hz on an iPhone X (model A1865) and stored on the smart-
phone’s local drive. The phone was placed on the backseat, with its 
back part fixed between the backrest and the seating area of the seat, 
and with its longitudinal axis and the car’s longitudinal axis aligned. 
The screen faced upward, and the charging port pointed to the back 
of the car. Additionally, a GoPro Max was used to record video of 
the road ahead (1920 × 1080 pixels at 30 Hz). The video files con-
tained embedded accelerometer recordings (at about 200 Hz) and 
GPS data (at about 17 Hz). These data logs were extracted from the 
video files using goprotelemetryextractor.com (Telemetry Overlay 
S.L. 2022). The Appendix shows several example rows of data for 
both devices.

Driving tests

The drives all emulated a standard driving exam conducted by the 
CBR, having a duration of approximately 30 minutes. The drives-
started and ended at the same CBR location and sometimes 
involved driving on the same road segments. However, the drivers 
(i.e. ‘test candidates’) drove different routes, as the routes in Dutch 
driving tests are not set in advance but rather are determined by the 
examiner (in our study: the examiner trainee), based on factors such 
as traffic conditions and road closures.

The 21 driving tests emulated various driving styles, including ‘a 
good driving candidate,’ ‘a candidate who was close to passing or 
failing due to certain mistakes,’ ‘a good candidate with poor viewing 
behavior or timing of actions,’ ‘a slow candidate,’ ‘a nonchalant 
candidate,’ ‘a fast candidate,’ etc. Before each drive, the driver 
received a sheet containing the role description for the current 
ride and the intended result (pass/fail). The examiner in the pas-
senger seat was blind to the instructed driving style.

From the 21 driving tests, we selected a total of nine driving tests 
(3 per car) because they allowed for systematic comparison. The 
other driving tests were of limited validity for further analysis 
because of various issues (e.g. inconsistent phone placement 
between drives in the same car, or an interruption of the drive). 
An overview of the nine selected driving tests is provided in Table 1. 
Each car was driven by a different driver, so there were a total of 
three drivers.

Data processing

The first step in processing data was to rotate the accelerometer 
data. Though care was taken to ensure that the GoPro and the 
phone’s x- and y-axes were aligned with the car’s frame, the devices 
still had non-negligible pitch and roll angles relative to the earth, 
which had to be corrected for.

We computed the orientation of the device (phone or GoPro) 
from the acceleration measurements in the three perpendicular 
directions (Figure 1). First, we computed the mean acceleration 
values in each direction over the entire drive. Next, the orientation 
of the device was computed using equations for determining orien-
tation relative to the earth’s gravitational field (Pedley 2013). Our 
assumption here is that, although the car is moving and hence 
continuously experiencing accelerations, the accelerations due to 
vehicle motion can be expected to average out across the entire 
drive, leaving just the acceleration component caused by gravity. 
Next, we computed the roll and pitch angles of the device using 
arctangent functions (see Pedley 2013, Eqs. 25 & 26). Then, 
a rotation matrix was computed, which was used to rotate the 
original acceleration measurements to their new orientation, 
aligned with the earth’s downward gravitational field.

It is noted that the yaw angle is undetermined since it cannot be 
inferred based on the gravitation vector. In our calculations, the 
yaw angle with respect to the car was assumed to be 0 deg, which is 

Table 1. Nine driving tests used in the analysis.

No Car Weather Date & Time Emulated driving style of ‘candidate’ Emulated test result

1 Peugeot 308 SW 2014 Rainy 4 Apr, 10:13 Difficulty with position on road Fail
2 Peugeot 308 SW 2014 Rainy 4 Apr, 13:11 Difficulty with vehicle control and steady steering Fail
3 Peugeot 308 SW 2014 Rainy 4 Apr, 13:58 Inappropriate timing; acting too early/late Fail
4 Volkswagen T-Roc 2015 Sunny 11 Apr, 10:50 Inappropriate viewing behavior, engine stalling, position on road Fail
5 Volkswagen T-Roc 2015 Sunny 11 Apr, 13:06 Aggressive/dangerous driving Fail
6 Volkswagen T-Roc 2015 Sunny 11 Apr, 14:01 Desirable driving, but one large error (merging without looking) Pass
7 Seat Ateca 2016 Cloudy 13 Apr, 09:21 Cautious/slow driving Fail
8 Seat Ateca 2016 Cloudy 13 Apr, 10:06 Negligent viewing behavior Fail
9 Seat Ateca 2016 Cloudy 13 Apr, 11:00 Desirable driving style, but occasional inappropriate looking Pass

2 T. DRIESSEN ET AL.



a valid assumption since the GoPro and phone were positioned in 
this manner. Note that selecting another yaw angle will not change 
the accelerations in the rotated vertical direction (z), but will affect 
how the accelerations are distributed along the rotated x and 
y directions (while not changing their combined magnitude).

The measurement of acceleration in a moving vehicle is compli-
cated by high-frequency vibrations caused by uneven roads and 
engine vibrations. How this noise protrudes in the signal depends 
on device placement (e.g. hard or soft surface) and the vehicle’s 
damping properties.

A second-order Butterworth zero-phase filter with a cutoff fre-
quency of 0.5 Hz was used to remove these vibrations, resulting in 
a smoother and more accurate representation of the car’s 

acceleration (Figure 2). Figure 2 illustrates the effect of the filter 
on the rotated acceleration data in the y-direction, which represents 
the longitudinal direction of the car. The GPS speed of the GoPro is 
also shown in the figure.

Speed limit extraction

Speed limits were obtained using the Map Matching API provided 
by Mapbox (2023). This service takes a driven GPS path and returns 
the coordinates of the route that was most likely driven, including 
the speed limits on these roads. To obtain a robust response, the 
data were first downsampled to a sample rate of 5 s between points, 
as advised in the API documentation. The paths were split into 
sections of 100 points each (the maximum number of coordinates 
allowed per request) and then merged after receiving the speed 
limits from the API. Then, the coordinates that were left out due 
to the resampling received the same speed limit of the nearest 
neighbor from the downsampled set. Upon visual inspection, it 
was found that the speed zones were correctly assigned, including 
short exceptions in residential districts, such as school areas. The 
API requests and processing were done using a Python script that is 
provided in the supplementary material.

Measures

After the above data pre-processing, five measures were calculated 
for each of the nine driving tests:

(1) Macc: Mean absolute acceleration in the combined x and 
y directions (m/s2). The rotated and filtered longitudinal (y) 
and lateral (x) accelerations were combined using the 
Pythagorean theorem.

(2) Mjerk: Mean absolute jerk in the combined x and 
y directions (m/s3). The rotated and filtered longitudinal 
(y) and lateral (x) accelerations were combined using the 
Pythagorean theorem. Next, the derivative was computed 
(i.e. jerk in m/s3), and the mean absolute value was taken. 
The jerk can be seen as a measure of the abruptness of 
changing acceleration, and has been previously used in 
driver assessment (De Groot, De Winter, and Mulder  

Figure 1. Phone coordinate system (Apple Inc 2022).

Figure 2. Illustration of the effect of low-pass filtering of the accelerometer data of the GoPro for a portion of Driving Test 1. The figure also shows the low-pass filtered 
vehicle speed recorded using the GPS of the GoPro. A negative acceleration means that the car is accelerating.
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2011; Feng et al. 2017; Itkonen et al. 2017). It has been found 
to be associated with tailgating and traffic violations, self- 
reported accident involvement (Bagdadi and Várhelyi 2011), 
and recorded culpable crashes (Khorram, Af Wåhlberg, and 
Tavakoli Kashani 2020). Figure 3 illustrates the meaning of 
jerk, where between 1505 and 1510 s, the driver accelerates; 
the onset and offset of the acceleration are accompanied by 
peaks in jerk.

(3) Mspeed: Mean speed (km/h)
(4) MspeedE: Speed limit exceedance (proportion of driving 

time)
(5) HarshA: Harsh acceleration events, defined as the mean 

number of combined x and y acceleration threshold excee-
dances per hour of driving (# per hour). This measure was 
obtained by identifying all peaks in the combined accelera-
tion and counting the number of peaks that exceeded 
a threshold value of 3 m/s2. In the literature, there is no 
consensus about which threshold to choose (e.g. Khorram, 
Af Wåhlberg, and Tavakoli Kashani 2020; Stipancic, 
Miranda-Moreno, and Saunier 2016). Depending on the 
application and sample size, different threshold values may 
need to be adopted. Selecting a low threshold will yield 
a large number of threshold exceedances, which may reflect 
driving style but may also involve false positives, such as 
accelerations due to road unevenness. Selecting a high 
threshold, on the other hand, risks missing important events 
and will reduce statistical power. After inspection of the 
acceleration signal, we opted for a threshold of 3 m/s2. 

Indicatively, longitudinal decelerations of up to 3 m/s2 are 
perceived as ‘reasonably comfortable’ (Harwood 1992, p. 
41).

The accelerometer-based measures (Macc, Mjerk, HarshA) were 
computed for both the phone and GoPro, while the GPS-derived 
measures (Mspeed, MspeedE) were computed only for the GoPro. 
The reason for relying on the GoPro’s GPS measurement was that it 
was more accurate. During several drives, the phone’s receiver lost 
connectivity to the GPS satellites.

Data samples with a GPS GoPro speed below 3 km/h, indicative 
of the car being stationary or near-stationary, were excluded from 
the above driver assessment score computations. This was done as 
such instances, which may include special maneuvers or waiting at 
a traffic light, do not provide a valid representation of driving 
abilities.

Results

Table 2 displays the nine driving tests and the corresponding 
dependent measures. Firstly, it seems the type of car used in the 
test has an impact on the results. Specifically, Driving Tests 4 to 6, 
conducted in a Volkswagen, are distinct from the tests performed in 
a Peugeot (Driving Tests 1 to 3) or a Seat (Driving Tests 7 to 9), 
where the results of Driving Tests 4 to 6 show relatively high values 
for the mean absolute acceleration (Macc), mean absolute jerk 
(Mjerk), and harsh acceleration rate (HarshA).

Figure 3. Jerk based on combined acceleration in the xy-plane for a portion of Driving Test 1. The selected time interval is the same as shown in Figure 2.

Table 2. Dependent measure scores for the nine driving tests.

Phone GoPro
No Emulated driving style of ‘candidate’ Macc Mjerk HarshA Macc Mjerk Mspeed MspeedE HarshA
1 Difficulty with position on road 0.86 0.35 35.4 0.81 0.34 36.12 0.08 22.9
2 Difficulty with vehicle control and steady steering 0.78 0.32 34.7 0.73 0.32 36.89 0.10 23.1
3 Inappropriate timing; acting too early/late 0.77 0.33 30.1 0.69 0.31 36.12 0.13 23.2
4 Inappropriate looking, engine stalling, position on road 0.82 0.38 43.2 0.81 0.38 37.31 0.12 40.4
5 Aggressive/dangerous driving 0.81 0.41 54.4 0.81 0.41 47.72 0.43 53.9
6 Desirable driving, but one large error (merging without looking) 0.86 0.37 43.8 0.87 0.37 38.32 0.09 48.1
7 Cautious/slow driving 0.65 0.22 10.5 0.59 0.21 32.61 0.04 8.4
8 Negligent viewing behavior 0.77 0.27 33.3 0.72 0.26 37.03 0.11 16.7
9 Desirable driving style, but occasional inappropriate looking 0.82 0.30 41.0 0.73 0.29 38.35 0.08 28.9

Note. Color coding is applied per column from blue (lowest value) to white (median) to red (highest value).
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Secondly, the instructed driving style seems to have an impact 
on the driving measures. Specifically, Driving Test 7, which was 
performed with a cautious driving style, was characterized by low 
scores on all measures compared to Driving Tests 8 and 9, which 
were conducted in the same car. Driving Test 7 had minimal 
speeding and was characterized by very few harsh acceleration 
events. Moreover, Driving Test 5, which was performed with an 
instructed aggressive/dangerous driving style, had high scores on 
most of the measures compared to Driving Tests 4 and 6. An 
exception was the mean absolute acceleration (Macc), which was 
relatively low, at 0.81 m/s2 for both the phone and GoPro.

We suspect that the driving route also impacted the measures 
observed. This is illustrated in Figure 4, which presents the absolute 
jerk in the xy-plane during a portion of Driving Test 5. While all the 
other driving tests were conducted in environments consisting 
mostly of roads with speed limits of 30 km/h, 50 km/h, and 100  
km/h highways, the driver in Driving Test 5 chose a route through 

rural areas, primarily consisting of 60 km/h roads. Although the 
driver was tasked to drive with an aggressive driving style, there 
were often limited opportunities for aggressive driving other than 
exceeding the speed limit. That is, the driver drove most of the time 
on 60 km/h roads consisting of smooth asphalt, sometimes following 
behind another vehicle (between 1100 and 1400 s). There were some 
exceptions, such as the 800–1100 s interval, where the driver entered 
a small village. During these moments, the instructed driving style of 
the driver became more manifest, as shown by the spikes in the jerk.

Three measures, namely mean combined acceleration, mean abso-
lute jerk, and mean number of harsh accelerations per hour of driving, 
were calculated using both the accelerometers in the phone and the 
accelerometers in the GoPro (Table 2). These measures were computed 
for the nine driving tests, and the results showed a high correlation 
between the two devices for all three measures (r = 0.929, r = 0.996, and 
r = 0.891, respectively). The correlations for mean combined accelera-
tion and mean absolute jerk are illustrated in Figure 5.

Figure 4. Mean absolute jerk in the xy-plane, vehicle speed recorded using GPS, and the speed limit for a portion of Driving Test 5.
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Characterizing the route driven

As evidenced above, the evaluation of driving proficiency using 
accelerometers is influenced not only by the driving style of the 
candidate but also by the opportunities for high acceleration 
that are contingent upon the type of road being driven. 
Different road conditions require different driving behaviors: 
Driving on a straight road is different from driving on a road 
with multiple curves. This raises the issue of how to account for 
such variations in road conditions. Here, we draw upon prior 
research that used instrumented vehicles (such as Melman et al.  
2021), which indicates that the assessment of driving behavior 
should be specific to a location, rather than relying on measures 
from the entire drive.

The number and curvature of curves can indicate the com-
plexity of the road conditions (and the driver’s ability to handle 
these conditions). The curves were extracted using the GPS 
measurements. First, the bearing of the car was computed from 
all subsequent GPS coordinates, assuming the earth is a sphere 
with a radius of 6371 km. The bearing was computed only if the 
vehicle speed exceeded 5 km/h (at low speeds, the distance 
between GPS points became too small to determine the bearing 
reliably). The bearing angle was filtered with a median filter 
(time window: 2 s), the gaps in the data caused by GPS speeds 

below 5 km/h were linearly interpolated, and a low-pass 
Butterworth filter (cutoff frequency of 0.5 Hz) was applied. The 
effect of the filtering is shown in Figure 6, which compares the 
bearing before and after filtering. The bearing was differentiated 
to obtain bearing rate. To prevent abrupt jumps in the angle due 
to its limited range between 0 and 360 degrees, the unwrap 
function was used before differentiating, which replaces jumps 
greater than 180 degrees by their 360-degree complement, result-
ing in a continuous line. As differentiating the data amplifies 
noise, the bearing rate was filtered using a median filter and 
a Butterworth filter with the same parameters as mentioned 
above. Finally, the curvature of the car’s path was computed by 
dividing the bearing rate by the momentary GPS speed. To 
further reduce any noise in the curvature data, a Butterworth 
filter with a cutoff frequency of 0.5 Hz was applied.

We extracted the peaks in the curvature data to count the 
number of curved paths of the car as well as the moments of 
those curves. Then, several route statistics were computed, which 
were tabulated in Table 3:

● Proportion of time driven under each speed limit (30, 50, 60, 
80, or 100 km/h). These five values were normalized so that 
the total is equal to 100%.

Figure 6. Calculated bearing before and after filtering, and path curvature, for Driving Test 5. A bearing angle of 90 deg corresponds to driving northbound, an angle of 180 
corresponds to driving westbound, etc. The y-axis for the curvature was constrained to −0.1 and 0.1, corresponding to a turn radius of 10 m. Note that high or low curvature 
values occurred when the vehicle was driving slowly (see Figure 4).

Table 3. Route statistics, computed from the GoPro GPS data.

No Emulated driving style of ‘candidate’ 30 
km/h

50 
km/h

60 
km/h

80 
km/h

100 
km/h MildC# SharpC# MildC

Macc
SharpC

Macc
1 Difficulty with position on road 0.28 0.53 0.04 0.06 0.10 114.3 43.7 1.18 2.26
2 Difficulty with vehicle control and steady steering 0.27 0.50 0.05 0.06 0.12 101.6 48.5 0.94 1.99
3 Inappropriate timing; acting too early/late 0.33 0.47 0.05 0.07 0.08 108.8 39.4 0.93 1.90
4 Inappropriate looking, engine stalling, position on road 0.30 0.47 0.04 0.07 0.12 130.8 45.2 1.07 2.87
5 Aggressive/dangerous driving 0.20 0.11 0.69 0.00 0.00 90.6 17.1 1.65 2.68
6 Desirable driving, but one large error (merging without looking) 0.32 0.38 0.04 0.01 0.26 101.6 61.5 1.30 2.35
7 Cautious/slow driving 0.29 0.49 0.05 0.06 0.11 125.9 35.7 0.74 1.81
8 Negligent viewing behavior 0.26 0.42 0.06 0.11 0.15 130.5 50.0 1.05 1.77
9 Desirable driving style, but occasional inappropriate looking 0.30 0.25 0.22 0.06 0.18 118.0 48.2 1.26 2.01

Note. Color coding is applied per column from blue (lowest value) to white (median) to red (highest value).
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● MildC#: The number of mild curves (absolute curvature 
between 0.005 and 0.05) per hour of driving. This corresponds 
to a turn radius between 20 and 200 m.

● SharpC#: The number of sharp curves (absolute curvature of 
0.05 or greater) per hour of driving. This corresponds to 
a turn radius of 20 m or less, and can be seen as turning at 
an intersection, turning around, etc.

● MildC Macc: Mean absolute acceleration in the combined 
x and y directions (m/s2), averaged across the mild curves.

● SharpC Macc: Mean absolute acceleration in the combined 
x and y directions (m/s2), averaged across the sharp curves.

The statistics for Driving Test 5, referred to as the ‘aggressive/ 
dangerous’ drive, show that 77% of the drive took place in a 60  
km/h zone. Although the number of curves was low, the accelera-
tion in these curves was relatively high compared to other driving 
tests. This highlights the importance of presenting driving exam-
iners with both objective performance measures (as shown in 
Table 2) and route statistics (as shown in Table 3) in order to 
provide a more complete understanding of the driver’s behavior. 
The combination of these two tables makes it clear that the driver in 
Driving Test 5 was driving aggressively in relatively easy road 
conditions.

Discussion

We presented algorithms that could help distinguish between over-
cautious, normal, and aggressive driving during the driving test. We 
solely relied on accelerometer and GPS data and found that these 
sensors were enough to identify the overcautious and aggressive 
driving styles. The percentage of driving time exceeding the speed 
limit, mean jerk, and mean harsh acceleration rate were effective 
measures in this discrimination. However, mean absolute accelera-
tion across the entire drive was not a clear indicator, as it can vary 
greatly depending on the eventfulness of a drive, such as the pre-
sence of curves. To overcome this issue, we proposed additional 
measures, namely the speed limit distribution, mild and sharp curve 
rate, and mean absolute acceleration in curves, to assess the route 
driven.

The current study provides several insights into the use of 
accelerometers and GPS. One of our observations was that the 
combination of x and y acceleration was found to be robust. In 
particular, the mean absolute jerk measurement demonstrated 
a particularly high consistency between a smartphone and 
a GoPro (r = 0.996; see Figure 5, right), even though they employed 
a different measurement unit and were positioned differently in the 
car (flat on the back seat vs. upright on the dashboard). The 

robustness of the jerk measure could be attributed to it reflecting 
changes in acceleration and thus being less susceptible to possible 
offsets in the acceleration measurement.

Previous interviews revealed that driving examiners could ben-
efit from data-driven support, particularly in communicating their 
evaluation to test candidates (Driessen et al. 2021). The current 
study demonstrates that it is possible to generate numerical scores 
that reflect the driving style and the dynamic nature of the route. 
These scores could be presented in graph form or in a map format, 
for example, by visualizing the GPS-recorded route along with 
color-coded speed, deviation from the speed limit, harsh accelera-
tions, or moving averages of accelerations or jerk values. If dashcam 
images are used, it may also be feasible to automatically identify and 
replay segments in the video where driving behavior was particu-
larly noteworthy (e.g. around the moment of the highest recorded 
acceleration or jerk). Such techniques have the potential to aid the 
examiner in explaining their evaluation.

The current study highlights the effectiveness of using GPS and 
accelerometers to distinguish between slow and fast driving styles. 
Some drivers were instructed to exhibit poor viewing behavior but 
otherwise normal driving behavior. Indeed, their driving behavior, 
as measured by acceleration and speed, appeared normal (Table 2: 
Driving Tests 4, 8, 9). Incorrect viewing behavior is a common 
cause of failing the driving exam (De Winter et al. 2008; UK 
Government 2022), and while it is possible that poor anticipation 
skills may manifest as harsh accelerations and high jerk (Fisher et al.  
2002; Parmet et al. 2015), this relationship is only indirect. Other 
types of sensors may have to be explored to support the assessment 
of a candidate’s viewing behavior. For example, eye-tracking tech-
nology is feasible: eye-tracking systems that detect visual distraction 
are becoming available in modern cars (e.g. DS Automobiles 2023), 
and several recent research studies have used eye-tracking in com-
bination with object detection to establish at which object the driver 
was looking (Kim et al. 2020; Qin et al. 2022).

As previously noted, accelerometer and GPS data alone offer 
a limited perspective on a driver’s performance as they fail to 
capture the driver’s interaction with other road users. To gain 
a better understanding of driving behavior, object detection based 
on camera images, similar to those employed by automated vehi-
cles, may be necessary (see Figure 7 for an illustration). An online 
experiment has revealed that the number of identified individuals 
and the bounding boxes surrounding other road users can predict 
perceived risk (De Winter et al. 2023). Figure 8 provides examples 
of how computer vision techniques could be used, namely by 
counting the number of persons and estimating headway to the 
car in front using the width of the bounding box (for more, see 
Rezaei, Azarmi, and Mir 2021). Automated identification of high- 
risk scenarios, such as passing another road user too closely, may 

Figure 7. Bounding boxes generated using the YOLOv4 algorithm for Driving Test 5 (left: elapsed time = 1039 s, right: elapsed time = 1400 s). A YOLOv4 model 
(Bochkovskiy, Wang, and Liao 2020) pretrained on the COCO dataset was used (Lin et al. 2014; obtained from sbairagy-MW 2021).
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help examiners form a more objective assessment of driving beha-
vior. However, this type of approach toward the driving test would 
require further research and validation.

A potential issue in the driver assessment process is that the 
examiner in the passenger seat occasionally applied the secondary 
brake pedal to intervene in dangerous situations, which complicates 
the analysis of the accelerometer data. Future investigations may 
need to record brake pedal inputs of both the driver (i.e. candidate) 
and the passenger (i.e. examiner), to isolate their respective con-
tributions. This could also aid in the debriefing session following 
the driving test, where the examiner could replay the moments of 
intervention that occurred during the drive, as identified automa-
tically based on the examiner’s brake pedal inputs.

A limitation of the current study is its small sample size, com-
prising nine driving tests and three drivers. In studies analyzing 
naturalistic driving data, larger sample sizes are typically recom-
mended to ensure that external factors such as weather impact and 
traffic variability over time are adequately represented across the 
sample. It is advisable to augment the current analysis with larger 
sample sizes in future research. Despite the small sample size, this 
study can serve as an initial framework for designing algorithms 
aimed at detecting anomalous driving styles typically associated 
with novice or trainee drivers.

A second limitation is that the study assumed that experienced 
driving instructors are able to realistically imitate the driving styles 
of test candidates. Additionally, the driving examiners may have 
focused on specific, extreme scenarios, which may not be represen-
tative of typical driving tests. For example, it has been argued that 
the driving test is a test of driving skill rather than driving style, and 
that individuals attempting to obtain their driving license are unli-
kely to engage in e.g. excessive speeding (Alsharef et al. 2021; 
Senserrick and Haworth 2005). Another limitation is that traffic 
density in the test region was relatively low compared to dense city 
environments.

Apart from driver testing, we see further use in driving data 
collection during driver training, either for student drivers prior to 
obtaining their driver’s license (Driessen et al. 2021) or for more 
experienced drivers who engage in self-coaching (Takeda et al.  

2012). Similarly, a government report on reforming the Dutch 
driver education system by Roemer (2021) pointed out the value 
of using data to help students reflect on their learning progress. 
Information gathered prior to the final exam may assist driving 
schools in determining the candidate’s readiness for the driving test, 
thereby reducing the number of unsuccessful test takers (Alsharef, 
Albert, and Bhandari 2022). Additionally, at present, there is no 
motivation or requirement for individuals to maintain their driving 
skills after obtaining a license. The use of data could potentially 
address this issue.

To determine if recorded data can predict driving test results, 
collecting data from more driving tests is recommended. For exam-
ple, sensor data, dash-camera images, and map data could be fed to 
a machine learning algorithm that predicts pass or fail outcomes. 
However, it is noted that predicting the test outcome may be chal-
lenging due to the fact that test candidates tend to apply for the exam 
when they have just that amount of driving experience where they 
have a moderate probability of passing (Baughan et al. 2005).

Conclusions and outlook

The study used accelerometer and GPS data to distinguish between 
slow, normal, and aggressive driving during driving tests. The 
findings show that these sensors are sufficient to identify different 
driving styles, and that the percentage of driving time exceeding the 
speed limit, mean jerk, and mean harsh acceleration rate are effec-
tive measures in this discrimination. However, the study also high-
lights the limitations of using these sensors alone, as they fail to 
provide insight into the driver’s viewing behavior and interaction 
with other road users. Future investigations may address this issue 
by incorporating computer vision methods.

The study concludes that the use of GPS and accelerometers has 
the potential to aid driving examiners in their assessments and 
communication with test candidates. However, more research is 
needed, as the number of driving tests was small and there are 
limitations associated with experienced driving instructors imitat-
ing the driving styles of test candidates. Instead of using ex- 
examiners, future studies could record data from real candidates 
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Figure 8. Number of persons (top) and headway to the vehicle in front (bottom) measured at a frequency of 1 Hz for a portion of Driving Test 5 (same portion as shown in 
Figure 4). In this 700-s interval, the driver encountered a number of persons (see Figure 7, left), proceeded to a 60 km/h road, and followed another car for approximately 
250 s (see Figure 7, right). Only objects straight in front of the ego-vehicle were considered (top figure: a 400-pixel horizontal range, bottom figure: a 50-pixel horizontal 
range. Gaps in the headway of 5 s or less were spline-interpolated.
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in driving exams or lessons, provided proper precautions regarding 
consent and data protection are taken.

It is also acknowledged that the current data proved to be 
specific to the vehicle used, as different vehicles have varying 
spring-damper characteristics, engine power, and therefore differ-
ent acceleration capabilities. This can influence the accelerometer 
readings and should be considered when interpreting the results.

The use of sensors may contribute to increasing the efficiency of 
the driving test, and potentially provide valuable data for improving 
driver training programs. Data-based driving assessments may also 
prove useful to pre-license driver training and post-license driver 
monitoring.
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Appendix: Example rows of raw data collected by iPhone X and GoPro Max

Tables A1–A3 show example rows of data recorded.

Table A1. Example of phone acceleration data (measurement frequency: 10 Hz).

Timestamp X (m/s2) Y (m/s2) Z (m/s2)

04-04-2022 10:13:38.186 −0.236 6.940 7.216
04-04-2022 10:13:38.287 −0.626 6.955 7.348
04-04-2022 10:13:38.387 0.126 7.619 6.059
04-04-2022 10:13:38.488 0.869 7.293 7.691
04-04-2022 10:13:38.589 1.997 6.670 5.816
: : : :
04-04-2022 10:46:42.163 −1.219 4.693 8.316
04-04-2022 10:46:42.264 −1.544 4.919 8.676
04-04-2022 10:46:42.364 2.094 6.665 6.603
04-04-2022 10:46:42.465 −1.113 6.537 7.096
04-04-2022 10:46:42.566 −1.338 5.267 8.178

Table A2. Example of GoPro acceleration data (measurement frequency: approximately 
200 Hz, except for the first few samples).

Timestamp X (m/s2) Y (m/s2) Z (m/s2)

2022-04-04 10:13:29.024 −1.012 −1.122 −9.827
2022-04-04 10:13:29.036 −1.405 −1.275 −9.508
2022-04-04 10:13:29.048 −1.309 −1.048 −9.340
2022-04-04 10:13:29.061 −0.815 −0.686 −9.892
2022-04-04 10:13:29.073 −0.206 −0.341 −10.251
: : : :
2022-04-04 10:46:57.012 −0.180 −0.638 −9.765
2022-04-04 10:46:57.017 −0.751 −1.031 −9.892
2022-04-04 10:46:57.022 −1.290 −1.185 −9.731
2022-04-04 10:46:57.028 −1.393 −1.048 −9.326
2022-04-04 10:46:57.033 −1.028 −0.847 −9.925

Table A3. Example of GoPro GPS data (the measurement frequency was fluctuating but averaged approximately 
17 Hz).

Timestamp Latitude Longitude Altitude 2D Speed

2022-04-04 10:37:05.715 52.144 5.388 −2.477 11.105
2022-04-04 10:37:05.773 52.144 5.388 −2.516 11.129
2022-04-04 10:37:05.831 52.144 5.388 −2.513 11.226
2022-04-04 10:37:05.889 52.144 5.388 −2.502 11.219
2022-04-04 10:37:05.947 52.144 5.388 −2.532 11.188
: : : : :
2022-04-04 10:46:57.108 52.144 5.423 −4.613 0.010
2022-04-04 10:46:57.189 52.144 5.423 −4.619 0.070
2022-04-04 10:46:57.269 52.144 5.423 −4.625 0.050
2022-04-04 10:46:57.349 52.144 5.423 −4.661 0.040
2022-04-04 10:46:57.430 52.144 5.424 −4.652 0.020
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