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ABSTRACT

This thesis presents a comprehensive exploration of the rough Heston model as a means
to enhance financial derivative pricing and calibration in the context of the complex
behavior of market volatility. Recognizing the limitations of classical models, such as
the Black-Scholes and the standard Heston model, which assume constant or mean-
reverting volatility, this research delves into the application of rough volatility models
that account for the empirical ’memory’ effect observed in financial markets. These
models, inspired by the fractional Brownian motion with a Hurst parameter less than
0.5, offer a more accurate representation of the volatility surface.

A significant portion of the thesis is dedicated to the development of a novel co-
sine tensor network that expedites the supervised learning of the characteristic func-
tion of the lifted Heston model. This advancement is pivotal for the rapid pricing and
calibration of European options under the rough Heston framework. The cosine ten-
sor network, leveraging the characteristic function’s availability, enables the efficient ap-
plication of Fourier-based methods, such as the COS method, for option pricing. This
approach is further extended to the pricing of path-dependent options like barrier and
Bermudan options through the 2-dimensional COS method.

The thesis is methodically structured, beginning with a foundational overview of op-
tion pricing and volatility, followed by a literature review that situates rough volatility
within the broader context of quantitative finance. Subsequent chapters detail the math-
ematical framework of the rough Heston model, its derivation from market microstruc-
tures, and the introduction of the lifted Heston model as a multi-factor approximation.

Empirical analysis is provided to validate the lifted Heston model against traditional
methods, demonstrating its superior performance and accuracy. The thesis culminates
in the presentation of a new calibration method, supported by real market data, and a
novel benchmark for pricing complex derivatives under the rough Heston model.

The research encapsulated in this thesis not only sets a new standard for computa-
tional speed and precision in the pricing and calibration of financial derivatives under
the rough Heston model but also opens avenues for future research, particularly in the
application of rough volatility models to other areas of financial mathematics.
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1
INTRODUCTION

Financial markets have always been the epicenter of global economic dynamics, with
their behavior influencing decisions ranging from individual investments to national fis-
cal policies. Understanding, predicting, and quantifying market volatility stands as one
of the paramount challenges in the realm of quantitative finance. Over the decades, an
assortment of models have been proposed to capture the intricacies of this volatility,
each with its own strengths and weaknesses.

The classical Black-Scholes model, which paved the way for modern financial math-
ematics, assumed constant volatility—a simplification that would soon be challenged by
real market behaviors. Subsequent models like the Heston model and stochastic volatil-
ity models brought randomness to the volatility itself, offering a more realistic portrayal
of market dynamics. However, while these models were more sophisticated, they still of-
ten failed to completely capture the rough and irregular nature of actual market volatility.

Enter the concept of rough volatility. Pioneered by researchers like [1],[2] or [3],
rough volatility models build upon the observation that the volatility surface in financial
markets exhibits behavior akin to fractional Brownian motion, particularly with a Hurst
parameter less than 0.5. H < 0.5 suggests that volatility exhibits a sort of "memory" ef-
fect. This means that large moves tend to be followed by small moves and small moves
by large moves, with this dependence decaying very slowly. This notion of ’roughness’
in volatility aligns with the empirical features seen in high-frequency data, leading to
models that not only better fit historical data but also offer more precise tools for deriva-
tive pricing. However, due to the memory effect rough volatility models do not enjoy the
Markov property and classical pricing methods like the PDE approach are not applica-
ble while the well-known Monte-Carlo simulation is converging even slower due to the
fractional nature of these models.

With this groundwork of rough volatility, it becomes intuitive to reassess and adapt
classical models to better capture market dynamics. Among the myriad of models in

1
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the financial literature, the Heston model, known for its portrayal of volatility as a mean-
reverting process, becomes a prime candidate for revision. Enter the rough Heston model,
an innovative fusion that leverages the empirical consistency of rough volatility while re-
taining the structural advantages of the Heston framework, paving a new path for robust
derivative pricing and risk management.

A pivotal advantage of the rough Heston model is the availability of its characteris-
tic function [3]. This facilitates efficient pricing and calibration techniques, especially
when combined with trans-formative mathematical tools. One approach to leverage
this is through Fourier-based methods. One of the most popular methods of this type
is the COS method, introduced by Fang and Oosterlee in [4]. The essence of the method
lies in approximating the probability density function, which appears in the expecta-
tion, through the use of its Fourier-cosine series expansion. It has been established that
the Fourier-cosine series coefficients have a closed-form solution with the characteris-
tic function. This allows the COS method to be applied to a broad class of asset price
processes for which the characteristic function is available [4]. For smooth density func-
tions, the COS method is optimal in terms of error convergence and computational com-
plexity for European options. In case the bi-variate characteristic function between two
processes is known, we can make use of the 2-dimensional COS method introduced by
[5]. This enables us to price path-dependent options like barrier and Bermudan options
efficiently.

In this thesis, we introduce a novel cosine tensor network that significantly enhances
the supervised learning of the characteristic function (chf) of the lifted Heston model,
a cornerstone in our method for fast pricing and calibration of European options un-
der the rough Heston framework. This innovative approach not only establishes a new
benchmark for pricing barrier and Bermudan options within this domain but also en-
ables the use of gradient-based optimization methods. Thanks to the efficiency of the
cosine tensor network, we can calibrate the lifted Heston model against market quotes
in under one minute, marking a substantial improvement in computational speed and
efficiency. Broadly speaking, our work provides a comprehensive toolkit for pricing vari-
ous derivatives under the rough Heston model, catering to the industry’s need for speed
and precision.

This thesis is structured as follows. In Chapter 1, we give a broad introduction to op-
tion pricing and volatility as well as describe the fundamentals of rough volatility models
and their advantages opposite of classical stochastic volatility models like the classical
Heston model. In the following chapter, we give a broad overview of the fundamentals
of option pricing and implied volatility to understand the benefits of rough volatility.
Finally, the rough volatility concept which is the base of the rough Heston model is ex-
plained by introducing the fractional Brownian motion and the rough fractional stochas-
tic volatility model.

This is followed by a broad literature review of the world of option pricing and im-
plied volatility as well as the mathematical foundations and the beginning of rough volatil-
ity and its advantages in comparison to classical stochastic volatility models.
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In Chapter 3, we define the mathematical framework in order to solve the problems
to be able to efficiently price and calibrate derivatives under the rough Heston model.

After introducing Hawkes Processes at the end of chapter 3, chapter 4 starts with the
derivation of the rough Heston model from the microstructural market interactions (and
the following facts of the electronic trading market). Moreover, we introduce the multi-
factor approximation of the rough Heston model, the so-called Lifted Heston model.

In Chapter 5, we introduce the characteristic function of each of the models in order
to use Fourier-based methods to price European options as presented in the following
chapter.

In Chapter 6, we give a detailed analysis in order to justify the lifted Heston model as
our benchmark method for pricing European options. To do so, we give a brief introduc-
tion to the Adams scheme to approximate the characteristic function of the rough Hes-
ton model, as well as the implicit-explicit Euler in order to get the characteristic function
of the lifted Heston model. Moreover, we give some numerical results comparing both
methods in terms of performance as well as accuracy.

Chapter 7 is the first major contribution to this thesis. We use our newly developed
cosine network based on canonical polyadic decomposition (CPD) as our supervised
machine learning technique in order to price European options in a very fast and ef-
ficient way, without using any black-box neural networks. We also present some nu-
merical results calculating single option pricing processes as well as the whole implied
volatility surface.

In Chapter 8, we introduce a new calibration method based on the characteristics
of our novel pricing method derived in Chapter 6. We also give some numerical results
based on real market data.

In the next chapter, we introduce a novel benchmark method for pricing Barrier and
Bermudan options under the rough Heston model. For this purpose, we present the bi-
variate characteristic function between log-stock and volatility process driven by a frac-
tional Brownian motion, as well as the 2D COS method to price options which enables
us to price path-dependent options under the rough Heston model.

Finally, in chapter 10, the thesis is concluded with a summary of the results and some
future research recommendations.
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LITERATURE REVIEW

2.1. OPTION BASICS AND IMPLIED VOLATILITY
An option is a financial derivative that gives the buyer the right to trade an underlying
asset at a predetermined price. Generally speaking, an option gives the holder of the op-
tion the option to buy or sell an asset in the future without any obligations. There is a
key difference between put options and call options.

A call option gives the holder the right to buy an asset, while a put option gives the
right to sell the option. In general, there are different types of options. In this thesis, we
mainly focus on European style options, Barrier options, and Bermudan options [6].

2.1.1. EUROPEAN OPTIONS
European-style options can only be exercised at a pre-specified date, which is known as
the maturity of the option. Moreover, the option will only be exercised if the holder of the
option makes a profit. For example, for a European call option, a profit is made when the
asset price S is bigger than the pre-determined price, called strike price K , at maturity T .
Equivalently for the put option a profit is made once the asset price is smaller than the
strike price at maturity. This results in the following payoff functions [6].

Vcal l ,T = max(ST −K ,0) ,

Vput ,T = max(K −ST ,0) .
(2.1)

2.1.2. BERMUDAN OPTIONS
Bermudan style options can be exercised at multiple pre-specified dates before maturity
called the observation dates. A European option is a Bermudan option with only one
possible exercise date [7]. Analogously, a Bermudan call option gives the option holder
the right to buy the underlying asset S at any of the observation dates at strike price K ,
while a Bermudan put option gives the holder the right to sell S at strike K at any of the

5
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Figure 2.1: Payoff function for a European call and put option with K = 50.

exercise dates. Hence the payoff profile for Bermudan call and put options is the same
as the one for European options at any arbitrary observation date [8].

2.1.3. BARRIER OPTIONS
Last but not least, we want to introduce Barrier options. Discretely monitored "out"
barrier options are options that cease to exist if the asset price hits a certain barrier level,
B , at one of the pre-specified observation dates [9]. If B > S0, they are called "up-and-
out" options, and "down-and-out" otherwise. The payoff for an up-and-out option reads

Vcal l ,T = max((ST −K ) ,0)1{
Sti <B

},

Vput ,T = max((K −ST ) ,0)1{
Sti <B

},
(2.2)

where 1A is the indicator function defined as

1A =
{

1 if A is not empty

0 otherwise.

2.1.4. OPTION PRICING
Definition 2.1.1. (Arbitrage). An investment strategy is called an arbitrage if the value
process V of the strategy satisfies the following two properties: - P (VT > (1+ r )V0) > 0 -
P (VT ≥ (1+ r )V0) = 1, where r denotes the risk-free interest rate in a money-savings ac-
count and T is the maturity time.

In other words, the no-arbitrage principle assures that there is never an opportunity
to make a risk-free profit that gives a greater return than that provided by the interest
from a bank deposit.

One of the most important results in option value theory is the derivation of the par-
tial differential equation (PDE) by Fischer Black and Myron Scholes to price European
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Figure 2.2: Payoff function for a Barrier call and put option with K = 50 , Bcal l = 80 and Bput = 20.

options, published in 1973 [10]. Assuming that the asset price process S is modeled ac-
cording to a geometric Brownian motion, the value of a European option can be repre-
sented as the solution of the following PDE,

∂V

∂t
+ r S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r V = 0 (2.3)

The Black-Scholes Partial Differential Equation (PDE) is derived through a series of
steps, one of which includes creating what’s known as a replicating portfolio. This port-
folio is a mix of the underlying asset, like a stock, and a risk-free asset, typically bonds
or cash, designed to mimic the returns of an option. The idea is to adjust the amounts
of the stock and the risk-free asset so that the portfolio’s value moves in tandem with the
option’s value over time.
According to the principle of no-arbitrage, which states that you can’t have a free lunch
in the market, two portfolios that offer the same payoff must be priced equally. There-
fore, the value of the option should always match the value of the replicating portfolio.
Black and Scholes used this concept to derive their famous pricing equation for Euro-
pean options. However, there’s another way to arrive at the Black-Scholes PDE, and
that’s through the use of martingale theory. This alternative method involves defining
a ’risk-neutral’ probability measure. Under this measure, the expected growth rate of
the underlying asset, when adjusted for risk, is the same as the growth rate of a risk-free
asset. The First Fundamental Theorem of Asset Pricing (FTAP1) backs up this approach
by confirming that if the market doesn’t allow for arbitrage opportunities, such a risk-
neutral measure must exist.
Both methods ultimately provide a mathematical foundation for pricing options in a way
that rules out the possibility of making a riskless profit through arbitrage. By using this
measure, the expected value of the option at maturity can be discounted to its value at
time t < T ,

Vt = EQ
[
e−r (T−t )VT

]
= EQ [

e−r (T−t )H(S,T )
]

,
,
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where H(T,S) denotes the payoff function of the option. The measure Q indicates that
the expectation is taken under the risk-neutral measure. Hence, the value of the op-
tion can be derived either by solving the pricing PDE presented or by evaluating the dis-
counted expected payoff. As mentioned above, by the no-arbitrage principle, these ap-
proaches should ultimately lead to the same value. The equivalence of both approaches
is proved in the famous Feynman-Kac theorem, which connects the discounted expec-
tation as the closed-form solution to the Black-Scholes PDE.

2.1.5. IMPLIED VOLATILITY
In order to price options before maturity, quantitative models are chosen. The most
famous one is the Black-Scholes model invented by Fischer Black and Scholes [10]. In
this model, the interest rate r and volatility σ are supposed to be constant while the
stock price follows a geometric Brownian motion, i.e.

dSt =µt St d t +σt St dWt .

With the above-mentioned Feynman-Kac Theorem, we get the price of a European call
option by solving the discounted expectation under the risk-neutral measure Q, i.e.

Vcal l ,t = e−r (T−t )E
[
(ST −K )1{ST >K } |Ft

]
.

Solving this leads to the famous Black-Scholes price of a European call option [8] de-
noted by

Vcal l ,t = STΦ (d1)−K e−r (T−t )Φ (d2) .

whereΦ is the cumulative distribution function of a standard normal and

d1 =
log(St /K )+ (

r + 1
2σ

2
)

(T − t )

σ
p

T − t
,

d2 = d1 −σ
p

T − t .

The Black-Scholes model is widely recognized for its simplicity and the powerful
framework it provides for option pricing. However, one of its main limitations is the
assumption that volatility remains constant over time. Despite this, the model’s analyt-
ical solution is quite useful in practice. It allows for the calculation of implied volatility
through root-finding algorithms. For instance, by observing market prices of options
and applying these computational techniques, one can back out the volatility that is im-
plied by current market conditions. Hence, we have to solve

VBS (σmarket ,St ,r, t ,K ,T ) =Vmar ket , (2.4)

where VBS (σmarket ,St ,r, t ,K ,T ) is the Black-Scholes formula induced with the volatility
implied by the market. By knowing this formula we can either calculate the implied
volatility when the options price Vt is given or analogously can calculate the price of the
option using the given implied volatility [11].

As mentioned, in order to solve 2.4, root-finding methods can be applied such as
Newton-Raphson.
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NEWTON-RAPHSON ALGORITHM

We apply the Newton-Raphson algorithm [12] in order to find the implied volatility. Let
σ0 be a good estimate of r and let r =σ0 +h. Since the true root is r , and h = r −σ0, the
number h measures how far the estimate σ0 is from the truth.

Since h is ’small,’ we can use the linear (tangent line) approximation to conclude that

0 = f (r ) = f (σ0 +h) ≈ f (σ0)+h f ′ (σ0) ,

and therefore, unless f ′ (σ0) is close to 0 ,

h ≈− f (σ0)

f ′ (σ0)
.

It follows that

r =σ0 +h ≈σ0 − f (σ0)

f ′ (σ0)
.

Our new improved estimate x1 of r is therefore given by

σ1 =σ0 − f (σ0)

f ′ (σ0)
.

The next estimateσ2 is obtained fromσ1 in exactly the same way asσ1 was obtained
from σ0 :

σ2 =σ1 − f (σ1)

f ′ (σ1)

Continue in this way. If σn is the current estimate, then the next estimate σn+1 is
given by

σn+1 =σn − f (σn)

f ′ (σn)
(2.5)

In our context of European call options, we find that

f (σ) =Vmar ket −VBS (σmarket ,St ,r, t ,K ,T ) = 0, (2.6)

while

f ′(σ) =− d

dσ
VBS (σmarket ,St ,r, t ,K ,T ) (2.7)

is the so called option vega which is known in closed form solution denoted by

f ′(σ) =−K e−r (T−t0) fN (0,1) (d2)
√

T − t0 (2.8)

with fN (0,1)(·) the standard normal probability density function, t0 = 0, and

d2 =
log

(
S0
K

)
+ (

r − 1
2σ

2
)

(T − t0)

σ
p

T − t0
.
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2.2. CLASSICAL HESTON MODEL
To address the limitations of the Black-Scholes model, particularly its assumption of
constant volatility, numerous alternative models have been proposed. Among the more
prominent is the Heston model [13]. In this paper, this model retains the geometric
Brownian motion for asset price dynamics but introduces a key innovation: volatility it-
self is treated as a stochastic process. Specifically, volatility follows an Ornstein-Uhlenbeck
process, which allows it to vary over time in a mean-reverting manner. This ultimately
results in the following representation.

dS(t ) =
√

v(t )S(t )dWt ,

d v(t ) = κ[v̄ − v(t )]d t +ν
√

v(t )dBt ,
(2.9)

with initial conditions
S(0) = S0 ≥ 0,

v(0) = v0 ≥ 0.

In this case, the parametersκ, v̄ , v0 andν are positive describing the speed of mean rever-
sion, the long-term variance, the instantaneous variance, and the volatility of the volatil-
ity respectively. W and B are two Brownian motions with correlation coefficient ρ, that
is 〈dWt ,dBt 〉 = ρd t .

Using the Heston model the implied volatility surface can be represented as shown in
2.3. Hence, it is more suitable for modeling market option prices, as The Heston model’s
ability to generate a volatility surface that aligns more closely with observed market data
underscores its advantage over the Black-Scholes model, which assumes a flat volatility
surface [11].

Figure 2.3: Implied volatility surface created using the Heston dynamics with parameters ρ =−0.4, v̄ = 0.056,
ν= 0.15, κ= 2.0 and v0 = 0.060
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2.3. ROUGH VOLATILITY

2.3.1. FRACTIONAL BROWNIAN MOTION
We first give an idea of what it means to have rough volatility. For this purpose, we intro-
duce fractional Brownian motions. In order to define fractional Brownian motions, we
first define α-Hölder continuity

Definition 2.3.1. A path X : [0,T ] → E isα-Hölder continuous forα> 0 if ∥x∥α <∞, with

∥x∥α := sup
t ̸=s

|X t −Xs |
|t − s|α (2.10)

A α-Hölder path is said to be a rough path when the path itself is α′-Hölder conti-
nous for every α′ >α and α≤ 1

2 . The rough path we need to define rough volatility is the
fractional Brownian motion introduced by Mandelbrodt and van Ness. Fractional Brow-
nian motion is a generalized version of Brownian motion where the increments are not
independent anymore. The fractional Brownian motion can be defined by the following
Mandelbrot - van Ness representation [14].

Definition 2.3.2. (Fractional Brownian motion (fBM))

W H
t = 1

Γ(H +1/2)

[∫ 0

−∞
(
(t − s)H−1/2 − (−s)H−1/2)dWs +

∫ t

0
(t − s)H−1/2dWs

]
, (2.11)

where H ∈ (0,1) is called the Hurst parameter and Γ(·) is the gamma function.

It can easily be derived that for H = 1
2 the process coincides with the classical Brow-

nian motion. The fractional Brownian motion has two important propositions on the
increments.

Proposition 2.3.1. The covariance function of the fractional Brownian motion is denoted
by

E
[
W H

t W H
s

]= 1

2

(|t |2H +|s|2H −|t − s|2H )
. (2.12)

From this equation, it can be observed that for H < 1
2 the increments of the fBM are

negatively correlated and for H > 1
2 the increments are positively correlated. Intuitively

one could say that H < 0.5 signifies anti-persistent behavior, where significant changes
tend to be followed by smaller ones, introducing some predictability. H > 0.5 indicates
persistent behavior, where significant changes are more likely to be followed by further
significant changes, making predictions less straightforward.

Proposition 2.3.2. For any t ∈R,∆≥ 0, q > 0, we find that

E
[∣∣W H

t+∆−W H
t

∣∣q
]
= Kq∆

q H . (2.13)

As a result , for H < 1
2 the fBM is an α-Hölder rough path. Hence throughout this

thesis, we only consider H < 1
2 .
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Figure 2.4: Fractional Brownian motion with different Hurst parameter

2.3.2. ROUGH VOLATILITY
As we have introduced above volatility can be modeled in terms of very regular paths in
the case of the well-known Black Scholes model or with a regularity really close to that of
the classical Brownian motion in the case of stochastic volatility like the Heston model.
However, there are two main reasons for the introduction of rough volatility models.

(a) Better fitting of stochastic volatility models
For this purpose, we take a look at the term structure of at-the-money volatility
skew, which is defined as

ψ(τ) :=
∣∣∣∣ ∂∂k

σBS(k,τ)

∣∣∣∣
k=0

. (2.14)

[15] showed in his paper that for small-time maturities the ATM volatility skew is
of the form

ψ(τ) ∼ τH−1/2, (2.15)

when the volatility process follows a fractional Brownian motion with Hurst pa-
rameter H. Hence, 2.14 is called Fukusawa’s approach.
In Gatheral’s study [1], it is noted that the market’s observed term structure of
volatility can be effectively approximated by a power-law function of the time to
expiry.

ψ(τ) = AτH−1/2. (2.16)

However, stochastic volatility models like the classical Heston model generate an
ATM term structure that is constant for small τ and somewhat behaves like a sum
of decaying exponentials for larger τ. As we can see in 2.5 and 2.6, the Heston
model and in general any stochastic volatility models generate volatility surfaces
that are not consistent with observed market data.

(b) Power-law scaling of the historical volatility process
[1] proved the roughness of the volatility by estimating the smoothness of the vari-
ance process from empirical DAX and Bund future data. The authors started by
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Figure 2.5: Term structure of the at-the-money implied volatility skew of SPX options from 05.10.2023

Figure 2.6: Term structure of the at-the-money implied volatility skew created using the classical Heston
dynamics vs. Fukusawa’s approach: ψ(τ) = AτH−1/2 with H = 0.12.

assuming that there is access to discrete observations v0, v∆, ..., vk∆..., with k ∈
{0,⌊T /∆⌋} of the volatility process {vt }t∈[0,T ] on a time grid [0,T ] with mesh∆. They
further define for q ≥ 0

m(q,∆) = 1

N

N∑
k=1

∣∣log(vk∆)− log
(
v(k−1)∆

)∣∣q . (2.17)

They assume that for some sq > 0 and bq > 0

N qsq m(q,∆) → bq (2.18)

as ∆→ 0.

Under a set of additional technical prerequisites, Equation 2.18 proposes a com-
pelling interpretation of the volatility process. It suggests that this process is a
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member of the Besov smoothness space, specifically denoted as Bq,∞sq . How-

ever, it does not extend its membership to the Besov space Bq,∞s′q where s′q > sq .

Proposition 2.3.3. Besov Space Besov spaces are a generalization of the Sobolev
function spaces, which are used as a measure for the regularity (smoothness) of a
function. Hence, Besov spaces can be used as a smoothness indicator in the rough
volatility environment too. For an in depth definition, we refer to [16] and [17].

From this perspective, [1] perceive sq as a measure of the regularity of the volatility
when assessed in lq norm. They elaborate, functions within the bounds of Bs

q,∞
for all q > 0 have the privilege of possessing the Hölder property. This property has
a parameter h that abides by the rule h < s.

The authors in [1] explore a concrete example to further illuminate this concept.
Suppose log(vt ) as a fractional Brownian motion (fBM) with the Hurst parameter
H . In this scenario, for any q ≥ 0, Equation 2.18 is verifiable in probability where
sq = H . What’s intriguing here is that the sample paths of this process virtually
always belong to BH

q,∞.

Developing further, [1] claim that if the increments of the log-volatility process
maintain stationarity and if a law of large numbers can be invoked, one could per-
ceive m(q,∆) as an empirical reflection of

E
[∣∣log(v∆)− log(v0)

∣∣q]= Kq∆
H q .

From the Data they conclude that the Hurst parameter is H ≈ 0.1, yielding the
conclusion that volatility is indeed rough

We note that in [18] and [19] similar results were found in order to prove that the
volatility process is indeed a rough one.

2.3.3. ROUGH FRACTIONAL STOCHASTIC VOLATILITY MODEL
After showing that the volatility is rough, [1] introduced a model called Rough Fractional
Stochastic Volatility (RFSV) model where the log-volatility is driven by an Ornstein-Uhlenbeck
process. They first suggested that

log(vt+h)− log(vt ) = ν(
W H

t+h −W H
t

)
,

where W H is a fBM and ν is a positive constant, since it should be a volatility model with
constant smoothness and with a distribution similar to a Gaussian process. However,
this model is not stationary and stationarity is desired for mathematical tractability and
also to ensure stability of the model at very large times. Adopting a fractional Ornstein-
Uhlenbeck process effectively addressed this issue, resulting in a refined model formu-
lation as follows:

vt = exp(X t ) ,

d X t = νdW H
t −α (X t −x) ,

where x ∈R andα is positive constant. For any ε≥ 0, the volatility process has the Hölder
property of order H −ε, and since we know that H is accepted as approximately 0.1, this
process is rough.
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MATHEMATICAL FRAMEWORK

In this chapter, all the relevant mathematical tools are presented to formulate, model,
and solve the rough volatility option pricing problems.

3.1. STOCHASTIC CALCULUS
Definition 3.1.1. (Filtration). Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P)
is a family of sub-σ-fields

{
Ft , t ≥ 0

}
of F indexed by t ∈ [0,∞), such that Fs ⊂Ft for ev-

ery s ≤ t ≤∞.

Definition 3.1.2. (Adapted process). A process X = {X t , t ≥ 0} is said to be adapted to a
filtration

{
Ft , t ≥ 0

}
if for all t ≥ 0, X t is Ft measurable.

Definition 3.1.3. (Martingale). Let M = {Mt , t ≥ 0} be a process defined on the probability
space (Ω,F ,P) equipped with a filtration {F t , t ≥ 0}. Then M is said to be a martingale if
1. M is an adapted process. 2. For all t ≥ 0, Mt is integrable. 3. M satisfies the martingale
property, which reads

E [Mt |Fs ] = Ms , ∀0 ≤ s < t .

Definition 3.1.4. (Semi-martingale). A stochastic process X = {X t , t ≥ 0} is called a semi-
martingale if it can be decomposed as follows:

X = X0 +M + A,

where the random variable X0 is finite and F0-measurable, the stochastic process M is a
local martingale and the stochastic process A has finite variation.

Definition 3.1.5. (Brownian Motion). A real-valued process {W (t ), t ≥ 0} is called a Brow-
nian motion if 1. Starting at 0 : W (0) = 0. 2. Normally distributed increments: For all
0 ≤ s < t ,W (t )−W (s) ≃ N (0, t − s). 3. Independent increments: For 0 ≤ t0 < t1 < ·· · < tn ,
the random variables Yi := W (ti )−W (ti−1) , i = 1, . . . ,n are independent. 4. Continuous
trajectories: The map t 7→W (t ) is continuous.

15
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Definition 3.1.6. (Itô Integral). For any square-integrable adapted process g (t ) with con-
tinuous sample paths, the Itô integral is given by:

I (T ) =
∫ T

0
g (t )dW (t ) := lim

m→∞ Im(T ), in L2.

Here, Im(T ) = ∫ T
0 gm(t )dW (t ) for some elementary process gm(t ) = ∑n−1

j=0 η j 1[
t j ,t j+1

), sat-

isfying:

lim
m→∞E

[∫ T

0

(
gm(t )− g (t )

)2 d t

]
= 0,

where η j is Ft j measurable for all j = 0,1, . . . ,n −1 and square-integrable.

Theorem 3.1.1. (Itô’s Formula). Let f ∈C 2(R) and consider a continuous semi-martingale
X with decomposition X = M + A. Then, the stochastic process

(
f (X t )

)
t≥0 is also a semi-

martingale and holds

f (X t ) = f (X0)+
∫ t

0

∂ f

∂x
(Xu)d Xu + 1

2

∫ t

0

∂2 f

∂x2 (Xu)d [X ]u ,

with [X ] denotes the quadratic variation of the process (X t )t≥0. Itô’s formula is often ex-
pressed in differential form:

d f (X t ) = ∂ f

∂x
(X t )d X t + 1

2

∂2 f

∂x2 (X t )d [X ]t

Definition 3.1.7. (Convolutions) For a measurable function K on R+ and a measure L on
R+ of locally bounded variation, the convolutions K ∗L and L∗K are defined by

(K ∗L)(t ) =
∫

[0,t ]
K (t − s)L(d s), (L∗K )(t ) =

∫
[0,t ]

L(d s)K (t − s)

for t > 0 whenever these expressions are well-defined, and extended to t = 0 by rightconti-
nuity when possible [20].

If F is a function on R+, we denote K ∗F = K ∗ (F d t ), that is,

(K ∗F )(t ) =
∫ t

0
K (t − s)F (s)d s

3.2. LEVY-PROCESSES
Throughout this thesis, we deal with the classical or the rough Heston model, which both
belong to the class of Levy processes.

Definition 3.2.1. (Lévy process). A Lévy process is a stochastic process X = {X t : t ≥ 0} that
satisfies the following properties:

(a) Initial condition: X0 = 0 almost surely.

(b) Independence of increments: For any 0 ≤ t1 < t2 < . . . < tn < ∞, the random vari-
ables X t2 −X t1 , X t3 −X t2 , . . . , X tn −X tn−1 are mutually independent.
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(c) Stationary increments: For any 0 ≤ s < t , the increment X t −Xs has the same distri-
bution as X t−s .

(d) Continuity in probability: For any ϵ > 0 and t ≥ 0, it holds that limh→0P (| X t+h−
X t |> ϵ) = 0.

If X is a Lévy process, it is possible to construct a version of X such that the mapping t 7→ X t

is almost surely right-continuous with left limits.

Definition 3.2.2. (Characteristic function). Given a stochastic process X and a time t, the
characteristic function of the stochastic process at time t is given by:

ϕX (u, t ) := E
[

e i uX (t )
]

.

Moreover, when conditional on the initial value X (0) = x it will also be written with the
regular φ as:

φX (u, t ; x) := E
[

e i uX (t ) | x
]

Theorem 3.2.1. (Lévy relation ch. f.). Given a Lévy process X = {X t , t ≥ 0}, with X0 = x.
The ch. f . of X given initial value follows the relation:

(u, t ; x) =φ(u, t ;0)e i ux =ϕlevy (u)e i ux ,

where φ(u, t ; x) := E[
e i uX (t ) | X0 = x

]
.

3.3. SINGULAR VALUE DECOMPOSITION (SVD)
Theorem 3.3.1. (SVD) Let A ∈Rm×n with m ≥ n. Then A =UΣV T , where

(a) U ∈Rm×m is an orthogonal matrix,

(b) Σ= diag(σ1, . . . ,σn) ∈Rm×n with σ1 ≥ . . . ≥σn ≥ 0 and σi ∈R for all i ,

(c) V ∈Rn×n is an orthogonal matrix.

The rank of the matrix has value r = min{l |σl > 0}, which is the singular value with
the smallest index that exceeds 0. In SVD these matrices are referred to as:

(i) The column vectors of U = [u1 . . .um] are called the left singular vectors of A,

(ii) The column vectors of V = [v 1 . . . v n] are called the right singular vectors of A,

(iii) he values {σ1, . . . ,σn} are called the non-singular values of A.

3.3.1. SOLVING LINEAR SYSTEM USING SVD
In this paper, SVD is employed to achieve a ’best fit’ solution for a system of linear equa-
tions. This approach is particularly powerful for addressing linear systems, which are
over-determined, i.e., where the number of equations (m) surpasses the number of un-
knowns (n). Let’s consider a linear system represented by the matrix equation:

Ax = b
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Here, A ∈Rm×n , x is an n-dimensional vector of unknowns, and b ∈Rm . The LS solution
xLS aims to minimize the Euclidean distance between the estimated solution AxLS and
the vector of constants b. This leads to an unconstrained optimization problem:

xLS = argmin
x∈Rn

∥Ax −b∥2. (3.1)

To derive the LS solution using SVD, we approach as follows

(a) Compute the SVD of matrix A :
A =UΣV T

(b) Calculate the pseudoinverse of Σ, denoted as Σ†, by taking the reciprocal of each
non-zero singular value and transposing the resultant matrix. The pseudoinverse
is denoted as

Σ† =


1
σ1

. . .
1
σn


where σ1,σ2, . . . ,σn are the singular values of A.

(c) Compute the LS solution xLS using the formula:

xLS =VΣ†U T b

Here, xLS is the vector of least square solutions, representing the solution to the
minimization problem described by equation 3.1.

3.4. TENSOR CALCULUS
Tensor calculus is an advanced mathematical framework that extends the concepts of
matrices and vectors to higher-dimensional objects called tensors. In this thesis, it is
used to describe higher-dimensional problems, which is needed for our approach to
pricing European options under the rough Heston model. The fundamentals of ten-
sor calculus are explained and illustrated in this section. Tensors introduce additional
dimensions and provide a more flexible way to represent and manipulate data. A tensor
can be thought of as a multi-dimensional array of numbers, with each element charac-
terized by its position within the array. While tensors might seem initially daunting due
to their higher dimensionality, they are indispensable when modeling and analyzing sys-
tems with intricate interactions between multiple variables [21].

In tensor calculus, one of the fundamental operations is tensor unfolding. This pro-
cess rearranges the elements of a tensor into a matrix format, unveiling underlying pat-
terns and structures within the tensor. Unfolding tensors enables the application of tra-
ditional matrix-based techniques and algorithms. The number of dimensions in a tensor
is called the order of a tensor. Here every dimension is called a mode of the tensor. To
indicate a specific element of a d-th order tensor X ∈RI1×I2×···×Id an index set (in)d

n=1 is
used. Here 1 ≤ in ≤ In for n = 1, . . . ,d .
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Before delving into tensor operations, it’s important to grasp the concept of fibers.
Just as matrices are composed of rows and columns, this idea can be extended to higher-
dimensional tensors through what are known as fibers. A fiber is essentially a line of ele-
ments within a tensor that you get by keeping all but one of the tensor’s indices fixed. In
the context of a three-dimensional tensor, these fibers are categorized as rows, columns,
and tubes, which can be visualized in Figure 3.1. This concept is crucial for understand-
ing the structure of tensors and how they can be manipulated in mathematical opera-
tions.

Figure 3.1: Fibers of a third-order tensor [21]

Performing operations on higher-order tensors can be quite abstract and involve
some manipulations to make it more intuitive. A transformation process called unfold-
ing is applied to transform higher-order tensors into matrices. As an example, we look
at unfolding an order- 3 tensor with dimension 2×3×4. This tensor can be rearranged
into a 4×6,3×8 or 2×12 matrix. There are a lot of different ways one can unfold a tensor
into a matrix but for our research, only the mode- n unfolding is relevant as explained
in [21]. The mode- n unfolding of a tensor X is denoted as X(n). It is constructed by
setting the mode- n fibers as columns of the matrix. For the example above for R2×3×4

the three possible mode- n unfoldings are:

(i) mode-1 unfolding in R4×6 : using the columns as fibers of the tensor:

X(1) =


x111 x121 x131 x112 x122 x132

x211 x221 x231 x212 x222 x232

x311 x321 x331 x312 x322 x332

x411 x421 x431 x412 x422 x432


(ii) mode- 2 unfolding in R3×8 : using the rows as fibers of the tensor:

X(2) =
 x111 x211 x311 x411 x112 x212 x312 x412

x121 x221 x321 x421 x122 x222 x322 x422

x131 x231 x331 x431 x132 x232 x332 x432

 ,

(iii) mode-3 unfolding in R2×12 : using the tubes as fibers of the tensor:

X(3) =
[

x111 x211 x311 x411 x121 x221 x321 x421 x131 x231 x331 x431

x112 x212 x312 x412 x122 x222 x322 x422 x132 x232 x332 x432

]
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These three unfolding operations are respectively illustrated in Figure. Once the ten-
sors have been unfolded, the standard matrix operations can be applied. The operations
used in this paper will be defined below.

Definition 3.4.1. (Outer Product). Let u ∈ Rm ,v ∈ Rn be two vectors. Their outer product
is denoted with u◦v ∈Rm×n , and the resulting matrix can be obtained by multiplying each
element of u by each element of v,

u◦v =


u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...
um v1 um v2 · · · um vn


= [

u · v1 u · v2 · · · u · vn
]

(3.2)

Definition 3.4.2. (Kronecker Product). The Kronecker product of matrices A ∈ RI×J and
B ∈RK×L is denoted with A⊗B ∈RI K×JL , and is defined by

A⊗B =


a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI 1B aI 2B · · · aI J B

 (3.3)

Definition 3.4.3. (Khatri-Rao Product). The Khatri-Rao product can be viewed as the
column-wise Kronecker product. Given the matrices A ∈ RI×K and B ∈ RJ×K , the Khatri-
Rao product, denoted with A⊙B ∈RI J×K , is defined by

A⊙B = [
a1 ⊗b1 a2 ⊗b2 · · · aK ⊗bK

]
(3.4)

Definition 3.4.4. (Hadamard Product). The Hadamard product is an element-wise ma-
trix product. Therefore, given the matrices A,B ∈ RI×J , the Hadamard product A ⊛B ∈
RI×J produces the matrix

A⊛B =


a11b11 a12b12 · · · a1J b1J

a21b21 a22b22 · · · a2J b2J
...

...
. . .

...
aI 1bI 1 aI 2bI 2 · · · aI J bI J

 (3.5)

To quantify the similarities between two tensors one can use the matrix norm called
the Forbenius norm. This norm can be used to find the distance between two tensors.

Definition 3.4.5. (Frobenius Norm). Given a tensor X ∈RI1×I2×···×Id , its Frobenius norm,
often abbreviated with F-norm, is defined as the square root of the sum of the squares of
all its elements:

∥X ∥2
F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
Id∑

id=1
x2

i1i2...id
.
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3.5. FRACTIONAL CALCULUS
We define the fractional integral and the fractional derivative according to [22].

Definition 3.5.1. (Fractional Integral) We define the fractional integral of order r ∈ (0,1]
of a function f as

I r f (t ) = 1

Γ(r )

∫ t

0
(t − s)r−1 f (s)d s (3.6)

Definition 3.5.2. (Fractional Derivative) We define the fractional derivative of order r ∈
(0,1] of a function f as

Dr f (t ) = 1

Γ(1− r )

d

d t

∫ t

0
(t − s)−r f (s)d s. (3.7)

3.6. HAWKES PROCESSES
In order to later derive the rough Heston model and its characteristic function, we need
to introduce Hawkes processes [23]. Hawkes processes (HP) recently became more pop-
ular in financial models as a non-markovian extension of the well-known Poisson pro-
cess. HP is therefore a counting process, that models, similar to the Poisson process, a
sequence of arrivals over time. In the application of finance, HP for example can model
the arrival time of trade orders.
We start by giving some definitions introduced by [24].

Definition 3.6.1. (Counting process) A counting process is a stochastic process (N (t ) : t ≥
0) taking values in N0 that satisfies N (0) = 0, is almost surely (a.s.) finite, and is a right-
continuous step function with increments of size +1. Further, denote by (H (u) : u ≥ 0) the
history of the arrivals up to time u.
(Thus, H (·) can be viewed as a filtration.)

A counting process can be viewed as a cumulative count of the number of ’arrivals’
into a system up to the current time. Another way to characterize such a process is to
consider the sequence of random arrival times T = {T1,T2, . . .} at which the counting
process N (·) has jumped. The process defined as these arrival times is called a point
process.

Definition 3.6.2. (Point process) If a sequence of random variables T = {T1,T2, . . .}, taking
values in [0,∞), hasP (0 ≤ T1 ≤ T2 ≤ . . .) = 1, and the number of points in a bounded region
is a.s. finite, then T is a (simple) point process.

It is important to note that the meaning of a point process or a counting process is
often interchangeable. The point process, however, may be defined via a distribution
function of the next arriving point conditioned on the past. Nevertheless, it is difficult to
work with conditional arrival distributions because of the dependency on the distribu-
tion of the whole history up until the last arrival. Hence, the conditional intensity func-
tion is used to uniquely characterize the finite-dimensional distributions of the point
process.
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Definition 3.6.3. (Conditional intensity function) Consider a counting process N (·) with
associated histories H (·). If a (non-negative) function λ∗(t ) exists such that

λ∗(t ) = lim
h↓0

E[N (t +h)−N (t ) |H (t )]

h

which only relies on the information of N (·) in the past (that is,λ∗(t ) is H (t )-measurable),
then it is called the conditional intensity function of N (·).

As a result of this characteristic, the point process can be described as ’self-exciting’,
i.e. if an arrival causes the conditional intensity to increase, or ’self-regulating’, i.e. if the
conditional intensity drops after an arrival.

Definition 3.6.4. (Hawkes process) Consider (N (t ) : t ≥ 0) a counting process, with asso-
ciated history (H (t ) : t ≥ 0), that satisfies

P(N (t +h)−N (t ) = m |H (t )) =


λ∗(t )h +o(h), m = 1

o(h), m > 1

1−λ∗(t )h +o(h), m = 0

Suppose the process’ conditional intensity function is of the form

λ∗(t ) =λ+
∫ t

0
µ(t −u)dN (u)

for some λ > 0 and µ : (0,∞) → [0,∞) which are called the background intensity and ex-
citation function respectively. Assume that µ(·) ̸= 0 to avoid the trivial case, that is, a
homogeneous Poisson process. Such a process N (·) is a Hawkes process.
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THE ROUGH HESTON MODEL

In this chapter, we derive the rough Heston model as well as the normal Heston model
as the limit of nearly unstable Hawkes processes. The following approach is proposed in
[25].

4.1. TICK-BY-TICK PRICE MODEL
The tick-by-tick price model is defined by [25] as a bi-dimensional Hawkes process. Tak-
ing into account 3.6.4, we find that the bi-dimensional Hawkes process is given by a bi-
variate point process

(
N+

t , N−
t

)
t≥0 taking values in (R+)2 and with intensity

(
λ∗+

t ,λ∗−
t

)
,

i.e. (
λ∗+

t
λ∗−

t

)
=

(
λ+
λ−

)
+

∫ t

0

(
µ1(t − s) µ3(t − s)
µ2(t − s) µ4(t − s)

)
·
(

d N+
s

d N−
s

)
(4.1)

where, λ+and λ−are positive constants and the functions
(
µi

)
i=1,...4 are non-negative

with associated matrix called kernel matrix. It is stated in [25] that for a large tick asset,
which is an asset whose bid-ask spread is almost always equal to one tick and therefore
essentially moves by one tick jumps, the price is denoted by

Pt = N+
t −N−

t . (4.2)

In this model, N+
t denotes the number of upward jumps of the asset in the time interval

[0, t ] whereas N−
t corresponds to the number of downward jumps. As a result, the in-

stantaneous probability of getting an upward or downward jump depends on the arrival
times of the past upward and downward jumps.

We further simplify the model by setting

φ=
(
µ1 µ3

µ2 µ4

)
which yields

23
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(
λ∗+

t
λ∗−

t

)
=λT

(
1
1

)
+

∫ t

0
aTφ(t − s) ·

(
d N T,+

s

d N T,−
s

)
(4.3)

The tick-by-tick price model enables us to incorporate the following 4 characteristics
of modern electronic trading.

(1) Most of the orders hitting the market have no real economic reason but are rather
put by algorithms as a reaction to other orders.

(2) Statistical arbitrage in high-frequency markets is hard to create, meaning creating
trading strategies that are on average possible is hardly possible.

(3) The liquidity in the order book is not symmetrically distributed between the bid
and ask sides, indicating that buying and selling are not equivalent actions. For
instance, a market maker usually maintains a predominantly positive inventory.
When receiving a buy order, a market maker is inclined to increase the price by a
smaller margin compared to decreasing the price following a sell order of equiva-
lent size. This is because a buy order reduces the market maker’s inventory, which
is favorable for them, while a sell order increases it.

(4) A substantial number of transactions are attributed to large orders, known as metaorders.
These are not executed immediately in their entirety but are instead broken down
over time by trading algorithms.

In order to preserve the characteristics (2) and (3) in the assumed Hawkes framework,
[25] state that

E
[
N+

t

]= ∫ t

0
E
[
λ∗+

s

]
d s, E

[
N−

t

]= ∫ t

0
E
[
λ∗−

s

]
d s (4.4)

and

E
[
λ∗+

t

]=λ++
∫ t

0
µ1(t − s)E

[
λ∗+

s

]
d s +

∫ t

0
µ3(t − s)E

[
λ∗−

s

]
d s,

E
[
λ∗−

t

]=λ−+
∫ t

0
µ2(t − s)E

[
λ∗+

s

]
d s +

∫ t

0
µ4(t − s)E

[
λ∗−

s

]
d s.

(4.5)

By setting
µ+ =µ− and µ1 +µ3 =µ2 +µ4 (4.6)

we find a natural no-arbitrage argument, namely E
[
λ∗+

t

] = E
[
λ∗−

t

]
. Characteristic

(iii), which states that the ask side is more liquid than the bis side is translated as the
conditional probability of observing a downward jump after an upward jump is smaller
than the conditional probability of observing a downward jump right after a downward
jump. This yields in the Hawkes framework to

µ1(t ) <µ4(t ) or similarly µ3(t ) >µ2(t ) when t is close to zero.

[25] therefore makes the assumption that there exists
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β> 1 such that
µ3 =βµ2.

Thus, we assume the following structure for the intensity process:(
λ∗+

t
λ∗−

t

)
=λ

(
1
1

)
+

∫ t

0
φ(t − s) ·

(
d N+

s
d N−

s

)
,

where

φ=
(
µ1 βµ2

µ2 µ1 + (β−1)µ2

)
,

with λ> 0 and β≥ 1.
In order to deal with characteristic 1, [25] consider a bi-dimensional Hawkes process

on an interval [0,T ]. They assume that λT > 0

φT = aTφ, φ=
(
µ1 βµ2

µ2 µ1 + (β−1)µ2

)
where β≥ 1,µ1 and µ2 are two positive measurable functions such that

S

(∫ ∞

0
φ(s)d s

)
= ∥∥µ1

∥∥
1 +β

∥∥µ2
∥∥

1 = 1

and aT is an increasing sequence of positive numbers converging to one.

S

(∫ ∞

0
φ(s)d s

)
= ∥∥ϕ1

∥∥
1 +β

∥∥ϕ2
∥∥

1 ,

is defined as the spectral radius of the kernel matrix integral, where S denotes the spec-
tral radius operator.

4.1.1. THE CLASSICAL HESTON MODEL AS A LIMIT OF NEARLY UNSTABLE

HAWKES PROCESSES
For additional details and a more comprehensive understanding, we direct the reader to
the works of [25] and [3]. These references provide deeper insights into the underlying
assumptions. Now, as T tends to infinity the re-scaled microscopic price

1

T
P T

tT = N T,+
tT −N T,−

tT

T

converges in law for the Skorokhod topology to the following Heston model:

Pt = 1

1− (∥∥φ1
∥∥)

1 −
(∥∥φ2

∥∥)
1

√
2

1+β
∫ t

0

√
Xs dWs

with

d X t = λ

m

(
(β+1)λ̄

λ
−X t

)
d t + 1

m

√
1+β2

1+β
√

X t dBt , X0 = 0
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where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t = 1−β√
2
(
1+β2

)d t

and positive parameters λ, λ̄, and m such that

T (1−aT ) →T→∞ λ,λT = λ̄ (4.7)

and

S

(∫ +∞

0
xφ(x)d x

)
= m <∞. (4.8)

4.1.2. THE ROUGH HESTON MODEL AS A LIMIT OF NEARLY UNSTABLE HAWKES

PROCESSES
The model described previously does not account for the impact of metaorders in the
market. To incorporate this effect within the Hawkes process framework, it is necessary
to ensure that the kernel matrix reflects the heavy-tailed distribution that is typically ob-
served in market data. This requires a modification of the existing conditions—specifically,
assumptions 4.7 and 4.8 must be revised to allow for a kernel matrix that exhibits a slow
decay, aligning with empirical observations. This implies a modification in the asymp-
totic setting in order to retrieve a non-degenerate scaling limit. More precisely, 4.7 and
4.8 can be exchanged by the following argument.

There exist α ∈ (1/2,1) and C > 0 such that

αxα
∫ ∞

x
µ1(s)+βµ2(s)d s →x→∞ C

Moreover, for some λ∗ > 0 and λ̄> 0,

Tα (1−aT ) →T→∞ λ∗ > 0,T 1−αλT →T→∞ λ̄

Note that in practice, estimated values for α are actually close to 1/2.

Theorem 4.1.1. Under the previously mentioned assumptions, as T tends to infinity, the
re-scaled microscopic price √

1−aT

µTα
P T

tT , t ∈ [0,1]

converges in the sense of finite dimensional laws to the following macroscopic price pro-
cess:

Pt = 1

1− (∥∥φ1
∥∥)

1 −
(∥∥φ2

∥∥)
1

√
2

1+β
∫ t

0

√
Ys dWs ,

with Y the unique solution of

Yt = 1

Γ(α)

∫ t

0
(t − s)α−1λ

(
(1+β)−Ys

)
d s + 1

Γ(α)

∫ t

0
(t − s)α−1λν

√
Ys dBs



4.1. TICK-BY-TICK PRICE MODEL

4

27

where (W,B) is a correlated bi-dimensional Brownian motion with correlation

ρ = 1−β√
2
(
1+β2

)
and

ν=
√√√√ 2

(
1+β2

)
λ∗λ̄(1+β)2

,λ= αλ∗

CΓ(1−α)

Furthermore, the process Yt has Holder regularity α−1/2−ϵ for any ϵ> 0.

Hence, this result shows that the main stylized facts of modern electronic markets
naturally give rise to a very rough behavior of volatility.

Building upon additional assumptions and technical details—for instance, finding
the appropriate Poisson rate and a specific choice of the Kernel matrix—for which we
refer to [3] and [25], we can now provide a statement about the limiting behavior of the
specific sequence of bi-dimensional nearly unstable Hawkes processes with heavy tails.
For this purpose, we define for t ∈ [0,1]

X T
t = 1−aT

Tαµ
N T

tT , ΛT
t = 1−aT

Tαµ

∫ tT

0
λT

s d s, Z T
t =

√
Tαµ

1−aT

(
X T

t −ΛT
t

)
.

Theorem 4.1.2. As T →∞, the process
(
ΛT

t , X T
t , Z T

t

)
t∈[0,1] converges in law for the Sko-

rokhod topology to (Λ, X , Z ), where

Λt = X t =
∫ t

0
Ys d s

(
1
1

)
, Zt =

∫ t

0

√
Ys

(
dB 1

s
dB 2

s

)
and Y is the unique solution of the rough stochastic differential equation

Yt = ξ+ 1

Γ(α)

∫ t

0
(t − s)α−1λ (1−Ys )d s +λ

√
1+β2

λλ̄
(
1+β2

) 1

Γ(α)

∫ t

0
(t − s)α−1

√
Ys dBs ,

where

B = B 1 +βB 2√
1+β2

and
(
B 1,B 2

)
is a bi-dimensional Brownian motion. Furthermore, for any ε > 0,Y has

Hölder regularity α−1/2−ε.

Taking into account 4.1.2 yields a microscopic process converging to the log price.
More precisely, for θ > 0, [3] define

P T =
√
θ

2

√
1−aT

Tαµ

(
N T,+

.T −N T,−
.T

)
− θ

2

1−aT

Tαµ
N T,+

.T =
√
θ

2

(
Z T,+−Z T,−)− θ

2
X T,+.
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Corollary 4.1.2.1. As T →∞, the sequence of processes
(
P T

t

)
t∈[0,1] converges in law for the

Skorokhod topology to

Pt =
∫ t

0

√
Vs dWs − 1

2

∫ t

0
vs d s

where V is the unique solution of the rough stochastic differential equation

vt = θξ+ 1

Γ(α)

∫ t

0
(t − s)α−1λ (θ− vs )d s +λ

√√√√ θ
(
1+β2

)
λλ̄(1+β)2

1

Γ(α)

∫ t

0
(t − s)α−1

√
Vs dBs

with (W,B) a correlated bi-dimensional Brownian motion whose bracket satisfies

d〈W,B〉t = 1−β√
2
(
1+β2

)d t .

By setting

ν0 = ξθ,ρ = 1−β√
2
(
1+β2

) , v =
√√√√ θ

(
1+β2

)
λµ

(
1+β2

) ,θ = v̄ ,λ= κ

we define our rough Heston model as used in this thesis as

Definition 4.1.1. (Rough Heston model)

dSt = St
p

vt dWt

vt = v0 + 1

Γ(α)

∫ t

0
(t − s)α−1κ (v̄ − vs )d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

p
vs dBs ,

(4.9)

with α = H + 0.5. v̄ denotes the long-term mean of the variance process, κ is the speed
of mean reversion, ν is the volatility of the volatility, ρ is the correlation between the two
Brownian motion and v0 defines the initial variance.

Note that applying Ito’s Lemma to the asset price process dSt yields the form of the
Price process Pt in the Corollary above.

4.2. LIFTED HESTON
Another model which has significant importance throughout this thesis is the Lifted He-
ston model. Introduced by [26], we construct a multi-factor stochastic volatility model
which, in contrast to the standard rough Heston model, enjoys the Markov property. A
similar model has been developed by [27].

Recalling that the rough Heston model is defined as

dSt = St
p

vt dWt

vt = v0 + 1

Γ(α)

∫ t

0
(t − s)α−1κ (v̄ − vs )d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

p
vs dBs ,

(4.10)
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with α= H +0.5. The idea of [2] is to write the fractional Kernel

K (t ) = t H−0.5

Γ(H +0.5)

as a Laplace transform of a positive measure µ, i.e.

K (t ) =
∫ ∞

0
e−xtµ(d x); µ(d x) = x−H− 1

2

Γ(H +1/2)Γ(1/2−H)
d x. (4.11)

Afterwards, the measureµ is approximated by a finite sum of Dirac measuresµn =∑n
i=1 cn

i δxn
i

with positive weights
(
cn

i

)
1≤i≤n

and mean reversions
(
xn

i

)
1≤i≤n

, for n ≥ 1. This yields an
approximation of the fractional Kernel by a sum of smoothed Kernels as follows

K n(t ) =
n∑

i=1
cn

i e−xn
i t , n ≥ 1. (4.12)

As a result, we can define the Lifted Heston model as follows. We fix an n ∈N,

dSn
t = Sn

t

√
vn

t dWt , Sn
0 > 0

vn
t = g n

0 (t )+
n∑

i=1
cn

i U n,i
t

dU n,i
t =

(
−xn

i U n,i
t −κvn

t

)
d t +ν

√
vn

t dBt , U n,i
0 = 0, i = 1, . . . ,n,

(4.13)

with parameters the function g n
0 ,κ,ν ∈ R+,cn

i , xn
i ≥ 0, for i = 1, . . . ,n, and W = ρB+√

1−ρ2B⊥, with
(
B ,B⊥)

a two-dimensional Brownian motion on a fixed filtered proba-
bility space

(
Ω,F ,F := (Ft )t≥0 ,Q

)
, with ρ ∈ [−1,1].

The function g n
0 is often referred to as the forward variance curve. Taking expec-

tation on both sides of the variance process in 4.13 and taking into account that g n
0 is

deterministic, we find that

E
[
vn

t

]+κ n∑
i=1

cn
i

∫ t

0
e−xn

i (t−s)E
[
vn

s

]
d s = g n

0 (t ), t ≥ 0. (4.14)

g n
0 allows one to give initial term structure curves. In practice, these forward variance

curves can be obtained from variance swaps and are plugged in instead of E
[
vn

t

]
in 4.14.

As long as the forward variance curve satisfies certain conditions for which we refer to
[26], we can define a whole set of admissible input curves. Going further, we define the
forward variance curve as

g n
0 : t → v0 +κv̄

n∑
i=1

cn
i

∫ t

0
e−xn

i (t−s)d s, with v0, v̄ ≥ 0. (4.15)

4.2.1. PARAMETRIZATION OF THE WEIGHTS AND THE MEAN REVERSIONS

As we saw above the weights
(
cn

i

)
1≤i≤n

and mean reversions
(
xn

i

)
1≤i≤n

, for n ≥ 1 play a
major role in defining the Lifted Heston model. We want to choose these parameters in
a way such that the Lifted Heston model actually converges to the rough Heston model,
whenever n →∞ [26]. For this purpose we first state the theorem mentioned in [26].
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Theorem 4.2.1. (Representation of the limiting rough process). The fractional kernel ap-
pearing in the variance process of the rough Heston model has the following Laplace rep-
resentation

t H−1/2

Γ(H +1/2)
=

∫ ∞

0
e−xtµ(d x), with µ(d x) = x−H−1/2

Γ(1/2−H)Γ(H +1/2)
,

so that the stochastic Fubini theorem, after setting V0 ≡ 0 in 5.2, leads to

vt =
∫ ∞

0
Ut (x)µ(d x), x > 0

where, for all x > 0,

Ut (x) :=
∫ t

0
e−x(t−s) (κ (v̄ − vs )d s +νpvs dWs

)
. (4.16)

This can be interpreted as the mild formulation of the subsequent stochastic differential
equation (SDE):

dUt (x) =
(
−xUt (x)+κ

(
v̄ −

∫ ∞

0
Ut (y)µ(d y)

))
d t +ν

√∫ ∞

0
Ut (y)µ(d y)dWt

U0(x) = 0, x > 0

By fixing n ≥ 1, we can interpret 4.13 as a discretization of 4.2.1 once the measure µ
is approximated by a sum of Dirac measures µn =∑n

i=1 cn
i δxn

i
.

Taking into account this discretization, we can approximate

vt =
∫ ∞

0
Ut (x)µ(d x), x > 0

by means of [28] and [2] by

v̂t =
∑

i
ciU (xi , t ) .

Thus, we can choose according to [26]

cn
i =

∫ ηn
i

ηn
i−1

µ(d x), xn
i = 1

cn
i

∫ ηn
i

ηn
i−1

xµ(d x), i ∈ {1, . . . ,n}. (4.17)

As a result, by fixing rn > 1 and using the geometric partition ηn
i = r i−n/2

n for i = 0, . . . ,n
as proposed in [28], we can set

cn
i =

(
r 1−α

n −1
)

r (α−1)(1+n/2)
n

Γ(α)Γ(2−α)
r (1−α)i

n , i = 1, . . . ,n (4.18)

and

xn
i = 1−α

2−α
r 2−α

n −1

r 1−α
n −1

r i−1−n/2
n , i = 1, . . . ,n (4.19)
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where α := H +1/2 for some H ∈ (0,1/2). Last but not least [26] show that once the
sequence (rn)n≥1 satisfies rn ↓ 1 and n ln(rn) → ∞, as n → ∞, the Lifted Heston
model converges to the rough Heston model for n →∞. According to [26], we define rn

as the following sequence
rn = 1+10n−0.9, n ≥ 1.





5
CHARACTERISTIC FUNCTION OF

THE ROUGH HESTON MODEL

The characteristic function plays an important role in option pricing theory as it enables
to use Fourier-based methods to efficiently price options. In this section, we provide
a detailed analysis of the characteristic function of the rough Heston and lifted Heston
model introduced by [3] and [26], respectively.

5.1. CHARACTERISTIC FUNCTION OF THE CLASSICAL HESTON

MODEL

In the classical Heston model, the characteristic function can be derived as follows. For

X(t ) = [X (t ) = log (S(t )), v(t )]T,

the solution φX :=φX(u; t ,T ) satisfies the following pricing PDE :

0 =− ∂φX

∂τ
− 1

2
v
∂φX

∂X
+κ(v̄ − v(t ))

∂φX

∂v
+ 1

2
ν2v

∂2φX

∂v2 + 1

2
v
∂2φX

∂X 2

+ρνv
∂2φX

∂X∂v

(5.1)

subject to the initial condition φX(u;T,T ) = exp(i uX (0)), for τ= T − t = 0. We can easily
prove that the process X(t ) has an affine structure and according to [13] the solution of
the PDE is of the following form

φX(u; t ,T ) = exp(Ā(u,τ)+ B̄(u,τ)X (t )+ C̄ (u,τ)v(t )). (5.2)

33
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By substituting the proposed solution into the pricing PDEs, we find the following set of
Riccati ODEs

dB̄

dτ
= 0, B̄(u,0) = i u,

dC̄

dτ
= B̄(B̄ −1)/2− (

κ−νρB̄
)

C̄ +ν2C̄ 2/2, C̄ (u,0) = 0,

dĀ

dτ
= κv̄C̄ , Ā(u,0) = 0.

(5.3)

According to [8] the solution of the set of ODEs is given by

B̄(u,τ) = i u

C̄ (u,τ) = 1−e−D1τ

ν2
(
1− g e−D1τ

) (
κ−νρi u −D1

)
,

Ā(u,τ) = κv̄τ

ν2

(
κ−νρi u −D1

)− 2κv̄

ν2 log

(
1− g e−D1τ

1− g

)
,

(5.4)

with D1 =
√(

κ−νρi u
)2 + (

u2 + i u
)
ν2 and g = κ−νρi u−D1

κ−νρi u+D1
.

Hence, the characteristic function of the classical Heston model has indeed a closed-
form solution.

5.2. CHARACTERISTIC FUNCTION OF THE ROUGH HESTON MODEL
Again, for further technicalities and an in-depth treatment of the following, we refer to
[3]. Here, we only state their main result. To do so, we first set

v0 = ξθ,ρ = 1−β√
2
(
1+β2

) ,ν=
√√√√ θ

(
1+β2

)
λµ

(
1+β2

) ,θ = v̄ ,λ= κ

This implies that ρ ∈ (−1/
p

2,1/
p

2]. We also write Pt = log(St /S0) and hence consider
the following rough Heston model:

dSt = St
p

vt dWt

vt = v0 + 1

Γ(α)

∫ t

0
(t − s)α−1κ (v̄ − vs )d s + 1

Γ(α)

∫ t

0
(t − s)α−1ν

p
vs dBs

The parameters κ, v̄ ,V0 and ν are positive and play the same role as in the Heston model.
W and B are two Brownian motions with correlation ρ.

Theorem 5.2.1. Consider the rough Heston model 5.2 with a correlation between the two
Brownian motions ρ satisfying ρ ∈ (−1/

p
2,1/

p
2]. For all t ≥ 0, we have

φX(a; t ) = exp
(
v̄κI 1h(a, t )+ v0I 1−αh(a, t )

)
where h is the solution of the fractional Riccati equation

Dαh(a, t ) = 1

2

(−a2 − i a
)+κ(i aρν−1)h(a, s)+ ν2

2
h2(a, s), I 1−αh(a,0) = 0,
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which admits a unique continuous solution.

However, in contrast to the classical model, the fractional Riccati differential equa-
tion does not allow for a closed-form solution. Thus, we have to numerically approxi-
mate the solution, which will be explained in more detail in the next chapter.

5.3. CHARACTERISTIC FUNCTION OF THE LIFTED HESTON MODEL
Before defining the characteristic function, we emphasize that the lifted Heston model
is a n-dimensional multi-factor approximation of the rough Heston model. Hence, we
will see in order to get the characteristic function a n-dimensional Ricatti equation has
to be solved. Thus, we will continue working with logSn

t as our n-dimensional log-stock.
The Fourier-Laplace transform of the Lifted Heston model with respect to the log-

stock price is introduced by [26] and denoted as

E
[
exp

(
u logSn

t

) |Ft
]= exp

(
φn(t ,T )+u logSn

t +
n∑

i=1
cn

i ψ
n,i (T − t )U n,i

t

)
, (5.5)

where
(
ψn,i

)
1≤i≤n solves the following n-dimensional system of Riccati ODE’s

(
ψn,i

)′ =−xn
i ψ

n,i +F

(
u,

n∑
j=1

cn
j ψ

n, j

)
, ψn,i (0) = 0, i = 1, . . . ,n, (5.6)

with

F (u, v) = 1

2

(
u2 −u

)+ (ρνu −κ)v + ν2

2
v2, (5.7)

and

φn(t ,T ) =
∫ T−t

0
F

(
u,

n∑
i=1

cn
i ψ

n,i (s)

)
g n

0 (T − s)d s, t ≤ T.

xn
i and cn

i in 5.6 are defined in 4.18 and 4.19.

Note that for t = 0, we find that U n,i
0 = 0 and hence the unconditioned Fourier-

Laplace transform is given by

φX n (u,T ) = E[
exp

(
u logSn

t

)]= exp

(
u logSn

0 +
∫ T

0
F

(
u,

n∑
i=1

cn
i ψ

n,i (s)

)
g n

0 (T − s)d s

)
.

(5.8)
Even though the solution of the n-dimensional Riccati equation cannot be obtained

in closed form, it is of great computational advantage to numerically solve the n-dimensional
system of Riccati equations instead of the fractional Riccati equation in the rough Heston
model.





6
PRICING EUROPEAN OPTIONS

UNDER THE ROUGH HESTON

MODEL

6.1. 1D COS METHOD FOR EUROPEAN OPTIONS
In this section, we introduce the one-dimensional COS method developed by [4]. The
Feynman-Kac theorem is a cornerstone in the pricing of European options, serving as a
fundamental starting point whether one employs Monte Carlo simulations or Fourier-
based numerical integration schemes such as the Carr-Madan method. Accordingly, we
begin with the risk-neutral pricing formula:

v (x, t0) = e−r∆tEQ[v(y,T ) | x] = e−r∆t
∫
R

v(y,T ) f (y | x)d y (6.1)

Here, v represents the option value, ∆t is the time interval between the maturity
date T and the initial date t0, and EQ[·] denotes the expectation under the risk-neutral
measure Q. The variables x and y correspond to state variables at times t0 and T , re-
spectively. Furthermore, f (y | x) is the probability density of y given x, and r is the risk-
neutral interest rate. However, in practical scenarios, the probability density of more
complex price processes is often unknown, while their characteristic function is typi-
cally available. To leverage the availability of the characteristic function, [4] developed
the COS method. This innovative pricing method is particularly effective for Levy and
Heston processes, allowing for the efficient pricing of options with various strikes in a
single computation.

We commence by establishing the Fourier pair, which delineates the relationship be-
tween the density and the characteristic function, as follows:

φ(ω) =
∫
R

e i xω f (x)d x, (6.2)

37
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f (x) = 1

2π

∫
R

e−iωxφ(ω)dω. (6.3)

The idea of [4] is to reconstruct the whole integral 6.3 from Fourier-cosine expansion.

For an arbitrary function f supported on [0,T ] the cosine expansion is denoted by

f (θ) =
∞′∑

k=0
Ak ·cos(kθ) with Ak = 2

π

∫ π

0
f (θ)cos(kθ)dθ, (6.4)

where
∑′ reads that the first term in the summation is multiplied by 1

2 . In case the func-
tion f is supported on an arbitrary interval [a,b] ∈R, the cosine expansion can be derived
by the following change of variables

θ := x −a

b −a
π, x = b −a

π
θ+a

As a result, we find that

f (x) =
∞′∑

k=0
Ak ·cos

(
kπ

x −a

b −a

)
, (6.5)

with

Ak = 2

b −a

∫ b

a
f (x)cos

(
kπ

x −a

b −a

)
d x. (6.6)

A pivotal aspect of the COS method is its reliance on the relationship between the Fourier
cosine coefficients, denoted as Ak , and the characteristic function. Given that the den-
sity function is confined to the interval [a,b], the corresponding characteristic function
is evaluated within this finite range. The accuracy of the density representation over the
interval [a,b] is only marginally compromised, allowing the truncated integral to serve
as a highly precise approximation of its infinite counterpart, as referenced in 6.2. This
approximation is expressed as follows:

φ̂(ω) :=
∫ b

a
e iωx f (x)d x ≈

∫
R

e iωx f (x)d x =φ(ω). (6.7)

In this formulation, φ̂(ω) represents the approximation of the characteristic func-
tion over the finite interval [a,b], closely mirroring the true characteristic function φ(ω),
which is integrated over the entire real line. This approach effectively harnesses the
power of the COS method in capturing the essential characteristics of the option pric-
ing model within a constrained domain.

Comparing 6.7 with Ak in 6.6 yields to

Ak ≡ 2

b −a
Re

{
φ̂

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
, (6.8)

where Re{·} indicates taking the real part of the argument.
Taking into account 6.7 with φ̂(ω) ≈φ(ω) yielding to Ak ≈ Fk , we find that

Fk ≡ 2

b −a
Re

{
φ

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
. (6.9)
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By replacing Ak with Fk , we find for the approximation of the density function f (x)
on [a,b]

f̂ (x) =
∞′∑

k=0
Fk cos

(
kπ

x −a

b −a

)
(6.10)

and truncate the series summation such that

f̂ (x) =
N−1′∑
k=0

Fk cos
(
kπ

x −a

b −a

)
. (6.11)

For pricing European options, we have the following formula

v1 (x, t0) = e−r∆t
∫ b

a
v(y,T ) f (y | x)d y (6.12)

The conditional density f (y | x) is often not known but the characteristic function is.
As a result, we replace the density by its cosine expansion in y , i.e.

f (y | x) =
+∞′∑
k=0

Ak (x)cos
(
kπ

y −a

b −a

)
(6.13)

with

Ak (x) := 2

b −a

∫ b

a
f (y | x)cos

(
kπ

y −a

b −a

)
d y. (6.14)

This yields the following expression for the price of a European option

v (x, t0) = e−r∆t
∫ b

a
v(y,T )

+∞′∑
k=0

Ak (x)cos
(
kπ

y −a

b −a

)
d y. (6.15)

By interchanging summation and integration in 6.15, we find that

v (x, t0) = 1

2
(b −a) ·e−r∆t ·

+∞′∑
k=0

Ak (x) ·Vk , (6.16)

with

Vk := 2

b −a

∫ b

a
v(y,T )cos

(
kπ

y −a

b −a

)
d y (6.17)

Lastly, by replacing Ak (x) by Fk (x) and setting as seen above and defining x := ln(S0/K )
and y := ln(ST /K ) we have,

v (x, t0) ≈ e−r∆t
N−1′∑
k=0

Re

{
φ

(
kπ

b−a
;x

)
e−ikπ a

b−a

}
Vk. (6.18)

As described in [4], we apply the following property when pricing options under the
(rough) Heston model.

v (x, t0) ≈ e−r∆t
N−1′∑
k=0

Re

{
φ

(
kπ

b−a

)
e−ikπ x−a

b−a

}
Vk. (6.19)



6

40 6. PRICING EUROPEAN OPTIONS UNDER THE ROUGH HESTON MODEL

TRUNCATION RANGE

The accuracy of option price predictions using the COS method significantly depends
on the precise determination of the integration bounds. Setting these bounds too wide
requires employing a larger number of basis functions, which consequently increases
computational complexity. Conversely, overly narrow bounds can lead to increased trun-
cation errors. To achieve an optimal balance, it is recommended to set the bounds as
follows:

[a,b] = [
c1 +x0 −L

p
c2,c1 +x0 +L

p
c2

]
with L = 8,

c1 = T + (
1−e−κT ) v̄ − v0

2κ
− v̄T

2
,

and

c2 = v̄(1+ν)T.

This approach ensures that the bounds are neither excessively wide, which would com-
plicate the computation, nor too narrow, which might compromise the accuracy due
to truncation. By carefully selecting these parameters, the COS method can be utilized
effectively for efficient and accurate option pricing.

6.2. NUMERICAL APPROXIMATION OF THE ROUGH HESTON CHAR-
ACTERISTIC FUNCTION

6.2.1. ADAMS SCHEME
As seen before, the unconditioned characteristic function is entirely defined through the
fractional Riccati equation

Dαh(a, t ) = 1

2

(−a2 − i a
)+κ(i aρv −1)h(a, s)+ v2

2
h2(a, s), I 1−αh(a,0) = 0.

Using the fractional integral operator on both sides yields

h(a, t ) = 1

Γ(α)

∫ t

0
(t − s)α−1F (a,h(a, s)) d s. (6.20)

For 6.20 we use numerical methods and start with the well-known Adams method as
proposed in [3]. The method is described as follows:

First, we define g (a, t ) = F (a,h(a, t )) and define the discrete time grid (tk )k∈N with
mesh ∆(tk = k∆). Now, we estimate

h(a, tk+1) = 1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1g (a, s) d s

by
1

Γ(α)

∫ tk+1

0
(tk+1 − s)α−1 ĝ (a, s) d s,
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where

ĝ (a, t ) = t j+1 − t

t j+1 − t j
ĝ (a, t j )+ t − t j+1

t j+1 − t j
ĝ (a, t j+1), t ∈ [t j , t j+1), 0 ≤ j ≤ k.

This leads to the following expression:

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F (a, ĥ(a, t j ))+ak+1,k+1F (a, ĥ(a, tk+1))

with

a0,k+1 =
∆α

Γ(α+2)
(kα+1 − (k −α)(k +1)α) (6.21)

a j ,k+1 =
∆α

Γ(α+2)

(
(k − j +2)α+1 + (k − j )α+1 −2(k − j +1)α+1), 1 ≤ j ≤ k (6.22)

and

ak+1,k+1 =
∆α

Γ(α+2)
.

We realize that the 6.21 is implicit. However, according to [3] we can use a so-called
predictor, denoted by ĥP (a, tk+1) and defined as

ĥP (a, tk+1) = 1

Γ(α+1)

∫ t

0
(t − s)α−1 g̃ (a, s) d s (6.23)

with

g̃ (a, t ) = ĝ (a, tk ), t ∈ [tk , tk+1).

Hence, we have

ĥP (a, tk+1) = ∑
0≤ j≤k

b j ,k+1F (a, ĥ(a, t j )) (6.24)

with

b j ,k+1 =
∆α

Γ(α+1)
((k − j +1)α− (k − j )α)

As a result, we have the final implicit scheme

ĥ(a, tk+1) = ∑
0≤ j≤k

a j ,k+1F (a, ĥ(a, t j ))+ak+1,k+1F (a, ĥP (a, t j )), ĥ(a,0) = 0. (6.25)

However, we observe that in terms of computation time, the Adams Scheme is rather
inefficient. The computational complexity is of O

(
Ncos N 2

)
, where Ncos is the number of

space steps taken for the COS method and N for the use of the fractional Adams method
[3]. We realize that especially for small H the Adams method needs a lot of steps to
sufficiently converge to the solution of the fractional Riccati equation.
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Figure 6.1: Convergence in the number of cosine basis functions with model parameter ρ =−0.6, v̄ = 0.05,
ν= 0.4, κ= 2 and v0 = 0.0625. Moreover, we have S0 = 100, K = 100 and T = 1.0

6.2.2. NUMERICAL RESULTS

We first assume H = 1
2 . As a result, the rough Heston model coincides with the classical

Heston model. In order to show the convergence and validity of the Adams method, we
benchmark our prices using the 1D COS method and the classical Heston model.

It can be seen in 6.1 that with around 60 basis functions there is a good convergence
towards the benchmark price. However, choosing the right number of cosine basis func-
tions plays a major role in the overall speed of the pricing process. We note that it also
heavily depends on the set of parameters chosen and the time to maturity. We can see
that the amount of time it takes to calculate one pricing grows more or less linearly with
the number of Ncos .

Figure 6.2: Convergence in the number of time steps taken in the Adams method with model parameter
ρ =−0.8, v̄ = 0.05, ν= 0.4, κ= 2 and v0 = 0.0625. Moreover, we have S0 = 100, K = 100 and T = 1.0

In 6.2, the convergence with respect to the number of time steps in the Adams method
is considered. Again, the benchmark is the price of the option under the classical Heston
model using the 1D COS method. Remarkable is the amount of time to archive a very
good approximation of the option price under the classical Heston model. However,
choosing 20,000-time steps to archive an accuracy of 10−5 and better, yields a computa-
tional time of around 9 minutes, which is not really practical. In the literature, the Adams
scheme is often seen as the benchmark method to get the characteristic function which
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is used for pricing options under the rough Heston model. For the following calculations,
we use N = 1,500.

We calculate the implied volatility surface and especially the ATM skew under the
rough Heston model and compare it to the classical Heston model.

Figure 6.3: Implied volatility surface created using the rough Heston dynamics with parameters ρ =−0.4,
v̄ = 0.0678, ν= 0.3, κ= 2.6, v0 = 0.1 and H = 0.12

In 6.5, we can observe that for larger maturities the term structure tends to be the
same for both models. However, we notice that for short-term maturities the ATM skew
of the classical Heston model tends to be constant, while the rough Heston dynamics

generate ATM skews in line with ψ(τ) = AτH− 1
2 as it can be seen in 6.4



Figure 6.4: Term structure of the at-the-money implied volatility skew created using the rough Heston
dynamics vs. Fukusawa’s approach: ψ(τ) = AτH−1/2 with H = 0.12.

Figure 6.5: Term structure of the at-the-money implied volatility skew created using the rough Heston
dynamics vs. classical Heston dynamics.
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6.3. NUMERICAL APPROXIMATION OF THE LIFTED HESTON CHAR-
ACTERISTIC FUNCTION

6.3.1. IMPLICIT-EXPLICIT EULER SCHEME
We first recall that in order to get the characteristic function for the lifted Heston model,
we have to solve the following n-dimensional Riccati equation

(
ψn,i

)′ =−xn
i ψ

n,i +F

(
u,

n∑
j=1

cn
j ψ

n, j

)
, ψn,i (0) = 0, i = 1, . . . ,n, (6.26)

with

F (u, v) = 1

2

(
u2 −u

)+ (ρvu −κ)v + v2

2
v2. (6.27)

In order to gain a first idea of the method introduced by [26], consider first the case
where F ≡ 0 so that 6.26 coincides with(

ψn,i
)′ =−xn

i ψ
n,i , i = 1, . . . ,n, (6.28)

where its solution is denoted by

ψn,i (t ) =ψn,i (0)e−xn
i t , i = 1, . . . ,n.

We could first consider an explicit Euler scheme for 6.28, that is

ψ̂n,i
tk+1

= ψ̂n,i
tk

−xn
i ∆tψ̂n,i

tk
= (

1−xn
i ∆t

)
ψ̂n,i

tk
, i = 1, . . . ,n,

for a regular time grid tk = (kT )/N for all k = 1, . . . , N , where T is the terminal time, N
the number of time steps and ∆t = T /N . A sufficient condition for the stability of the
scheme reads

∆t ≤ min
1≤i≤n

1

xn
i

.

The biggest pain point is that xn
n grows very large as n increases. For instance, for

n = 120,r120 = 1.13 and H = 0.1, xn
n = 6449.88. Hence, if we need to secure the stability of

the explicit scheme, we would need a very large number of time steps N . In contrast, the
implicit Euler scheme

ψ̂n,i
tk+1

= ψ̂n,i
tk

−xn
i ∆tψ̂n,i

tk+1
, i = 1, . . . ,n,

is stable for any number of time steps N . The implicit scheme yields

ψ̂n,i
tk+1

= 1

1+xn
i ∆t

ψ̂n,i
tk

, i = 1, . . . ,n. (6.29)

As a result, the authors of [26] consider the following explicit-implicit discretization
scheme of the n dimensional Riccati system of equations denoted by

ψ̂n,i
0 = 0, ψ̂n,i

tk+1
= 1

1+xn
i ∆t

(
ψ̂n,i

tk
+∆tF

(
u,

n∑
j=1

cn
j ψ̂

n, j
tk

))
, i = 1, . . . ,n

for a time grid tk = k∆t for all k = 1, . . . , N , with step size ∆t = T /N , terminal time T and
number of time steps N .
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6.3.2. NUMERICAL RESULTS

We first do similar convergence tests for validating the use of the COS method with the
Lifted Heston model. Thus, we choose H = 0.12 and test convergence against the rough
Heston price generated using the 1D COS method. For the first experiment, we chose a
relatively high number of factors, i.e. n = 5000.

Figure 6.6: Convergence in the number of cosine basis functions with model parameter ρ =−0.6, v̄ = 0.05,
ν= 0.4, κ= 2 and v0 = 0.0625.Moreover, we have S0 = 100, K = 100 and T = 1.0

Next, we test the convergence in the number of factors used in the lifted Heston
model.

Figure 6.7: Convergence in the number factors n used in the Lifted Heston method with model parameter
ρ =−0.6, v̄ = 0.05, ν= 0.4, κ= 2 and v0 = 0.0625. Moreover, we have S0 = 10, K = 10 and T = 1.0

We can observe in 6.7 that a very low number of factors still results in a very good
approximation. Going forward we use n = 120, which marks a good tradeoff between
accuracy and computation time.

In the next step, we benchmark the results to option prices generated by the 1D COS
method under the rough Heston model using the Adams scheme with N = 2500.

In the following table, we take a closer look at the error at different strike levels. We
consider OTM as x =−0.2, ATM as x = 0.0, and ITM as x = 0.2.

As seen in 6.8, for options far out of the money the relative error seems quite high.
However, these prices are anyway close to zero in a range of 10−12 − 10−14. Hence, for
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Figure 6.8: Comparison option price using 1D COS method under the Lifted Heston vs. rough Heston with the
Adams scheme.

CPU Time (s) Price Error (%)
OTM ATM ITM OTM ATM ITM

Lifted Heston 0.201 0.3362 0.9394 2.0043 0.024 0.069 0.032
Rough Heston(N=200) 0.248 0.3343 0.9362 2.0020 0.435 0.262 0.086
Rough Heston(N=2500) BM 18.83 0.3361 0.9387 2.0038 - - -

Table 6.1: Relative error analysis over various strike prices.

these prices, we rather take into account the absolute error which seems more than ac-
curate for out-of-the-money options.

Important to note is that going further the Lifted Heston model becomes our bench-
mark model due to the massive improvement in terms of computational time. Hence,
we benchmark further results against the option prices obtained via the Lifted Heston
model with parameter n = 120.

In the next numerical Experiment, we plot the implied volatility surface created using
the Lifted Heston model and plot the error against the rough Heston implied volatility.
The volatility surface consists of 50 different strike prices and 50 different maturities be-
tween 0.1 and 1.0.

Nevertheless, we note that the computation time for the whole volatility surface for
the lifted Heston is 12.21 seconds, while for the rough Heston using only N = 2,500 steps
the computation time is already at 253.46 seconds, which can be seen in the following
table

CPU Time whole vol surface (s)
Lifted Heston 12.21
Rough Heston(N=2500) 253.46

Table 6.2: CPU Time analysis
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Figure 6.9: Implied volatility surface created using the lifted Heston dynamics with parameters ρ =−0.4,
v̄ = 0.0678, ν= 0.3, κ= 2.6, v0 = 0.1 and H = 0.12

Figure 6.10: Absolute error of the implied volatility surface generated using the lifted Heston dynamics vs. the
rough Heston dynamics with parameters ρ =−0.4, v̄ = 0.0678, ν= 0.3, κ= 2.6, v0 = 0.1 and H = 0.12

Last but not least, we see in 6.11, that the lifted Heston model is creating the same
typical rough volatility behavior of the ATM skew.

However, both models the lifted Heston as well as the rough Heston model find their
bottleneck whenever the density of the underlying log-stock is heavily peaked as shown
in 6.13. In order for the density to be sufficiently smooth, a high number of cosine basis
functions is needed to overcome the Gibbs phenomena, which significantly slows down
the pricing process of both models. The effect of the number of cosine basis functions is
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Figure 6.11: Term structure of the at-the-money implied volatility skew created using the lifted Heston
dynamics vs. rough Heston dynamics.

displayed in 6.13 as well. Moreover, for the implicit-explicit Euler scheme for the lifted
Heston a very small number of steps T /N are needed in order to compensate for the high
number of cosine basis functions and to stay numerically stable. In the following table,
we price an option with parameters given in 6.13 and Ncos = 2000, in order to visualize
the effect.

Figure 6.12: Example of a peaked density
around ATM (Zoomed out)

Figure 6.13: Example of a peaked density
around ATM (Zoomed in)

In comparison to the extreme, in 6.15, we see a density that is less peaked and has
way-fetter tails. We observe that already a small number of basis functions is sufficient
to have a smooth density.

We note that the above-given examples are displayed for a maturity of 0.8 years.
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Figure 6.14: Example of a wider density
with fatter tails (Zoomed out)

Figure 6.15: Example of a wider density
with fatter tails (Zoomed in

CPU Time (s) Price
Lifted Heston(N = 600) 1.109 NaN
Lifted Heston(N = 9000) 5.63 0.873
Rough Heston(N = 600) 1.153 NaN
Rough Heston(N = 2500) 135.6 0.880

Table 6.3: Computational time for the peaked density example 6.13



7
OUR APPROACH OF PRICING

EUROPEAN OPTIONS UNDER THE

ROUGH HESTON MODEL

Efficient and fast option pricing is pivotal in the finance industry as it enables traders to
make timely, informed decisions in the fast-paced derivatives market, where even frac-
tional delays can significantly impact profitability and risk management. In this chapter,
we introduce a novel method of pricing European options in the rough Heston setting.
Our aim in this chapter is to effectively solve the bottleneck in computational time in
pricing options or more explicitly the approximation of the characteristic function in the
pricing process under the rough Heston model.

Introducing the COS-CPD method, which aims to approximate the characteristic
function in a supervised machine learning process by reducing the computational com-
plexity that arises from calculating the multi-dimensional Fourier coefficient tensor re-
sulting from the global decomposition of the characteristic function. Hence, we can effi-
ciently approximate the characteristic function to have a fast option pricing method for
the rough Heston model.

In the first section of this chapter, we describe the initial problem and give an in-
troduction to our global decomposition using a cosine expansion. Moreover, we give
general model assumptions and explain how we make use of our COS-CPD method in
the rough Heston option pricing environment. Hence, the next sections are devoted to
the implementation of the COS-CPD method in the calculation of European options. It
is demonstrated that the COS-CPD method can greatly reduce the computational time
in the option pricing process.

51
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7.1. GENERAL PROBLEM AND ASSUMPTIONS

v (x, t0) = 1

2
(b −a) ·e−r∆t ·

N−1 ′∑
k=0

Fk (x) ·Vk ,

As we have already seen the rough Heston model does not take into account any
interest rate. This yields

v (x, t0, v0) =
N−1 ′∑
k=0

Fk (x, v0) ·Vk .

However, this model assumes fixed model parameters, i.e. in the rough Heston model
the parameter (ρ,ν, H , v̄ ,κ). So whenever we change the model parameters, we obvi-
ously change the characteristic function, which is captured in the Fk− coefficients. As a
result, we have

v (x, t0, v0,θ) =
N−1 ′∑
k=0

Fk (x, v0,θ) ·Vk .

We further assume that the initial v0-value is now part of our parameter set θ. Hence,
from now on θ consists of all model parameters as well as initial market conditions.

Before we start with the actual method, we recall that the Fk -coefficients are given by

Fk (x,θ) = Re

{
φ

(
kπ

b−a
; x,θ

)
e−ikπ a

b−a

}
. (7.1)

Furthermore, by taking into account the Heston model- property for factoring out
the x-values as described in [4], we find that

Fk (x ,θ) = Re

{
φ

(
kπ

b−a
;θ

)
eikπ x−a

b−a

}
. (7.2)

For solving our optimization problem, it is important that the Fk ’s are drawn from
the same function (characteristic function). As a result, we use cosine-series expansion
for the characteristic function, which results in

ϕ(u|θ) = fR (u)+ i · f I (u) =
Nϕ−1∑

j=0
A j (θ)cos

(
jπ

u −aϕ
bϕ−aϕ

)
+ i ·B j (θ)sin

(
jπ

u −aϕ
bϕ−aϕ

)
, (7.3)

where I and R represent the real part and imaginary part respectively.
Recalling that

v(x ; t ,θ) ≈
N−1′∑
k=0

Re

{
ϕ

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk (7.4)

and using Euler identity, i.e.

e i x = cos(x)+ i sin(x),
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we find that

v(x ; t ,θ) ≈
N−1′∑
k=0

Re

{
ϕ

(
kπ

b −a

)
exp

(
i kπ

x −a

b −a

)}
Vk

=
N−1′∑
k=0

Re

{
Nϕ−1∑

j=0

[
A j cos

(
jπ

uk −aϕ
bϕ−aϕ

)
+ i ·B j sin

(
jπ

uk −aϕ
bϕ−aϕ

)]
·
[

cos
(
kπ

x −a

b −a

)
+ i · sin

(
kπ

x −a

b −a

)]}
Vk .

(7.5)

Switching sums and taking a real part leads to

v(x ; t ,θ) ≈
Nϕ−1∑

j=0
A j

[
N−1′∑
k=0

cos

(
jπ

uk −aϕ
bϕ−aϕ

)
cos

(
kπ

x −a

b −a

)
Vk

]

−
Nϕ−1∑

j=0
B j

[
N−1′∑
k=0

sin

(
jπ

uk −aϕ
bϕ−aϕ

)
sin

(
kπ

x −a

b −a

)
Vk

]
.

(7.6)

Now for the sake of simplicity, we denote

C j (x) =
[

N−1′∑
k=0

cos

(
jπ

uk −aϕ
bϕ−aϕ

)
cos

(
kπ

x −a

b −a

)
Vk

]
(7.7)

S j (x) =
[

N−1′∑
k=0

sin

(
jπ

uk −aϕ
bϕ−aϕ

)
sin

(
kπ

x −a

b −a

)
Vk

]
. (7.8)

This yields

v(x ; t ,θ) =
Nϕ−1∑

j=0

(
A j (θ)C j (x)−B j (θ)S j (x)

)
. (7.9)

This linear system can be written as follows

M
[

A
B

]
= v bench (x ; t ,θ), (7.10)

The elements of the respective matrices are defined as follows

(M A)i j =C j (xi ) =
N−1∑
k=0

cos

(
jπ

uk −aϕ
bϕ−aϕ

)
cos

(
kπ

xi −a

b −a

)
Vk ,

(M B )i j =−S j (xi ) =−
N−1∑
k=0

sin

(
jπ

uk −aϕ
bϕ−aϕ

)
sin

(
kπ

xi −a

b −a

)
Vk .

(7.11)

7.2. SVD FOR SOLVING THE LINEAR SYSTEM
As we’re trying to estimate the vectors A and B the matrix M ∈ Rn×2Nϕ is split up in two
parts, i.e. M = [

M A M B
]
, where M A ∈ Rn×Nϕ and M B ∈ Rn×Nϕ correspond respec-

tively to the vectors A and B . This procedure has greatly been researched at FFQuant
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[29]. We solve the linear equation denoted in 7.10 by SVD representation, i.e. we try to
find the least square solution of the following set of equations[

ALS

B LS

]
= argmin

A,B∈RNϕ

∥∥∥∥M
[

A
B

]
−v bench (x ; t ,θ)

∥∥∥∥
2

. (7.12)

Using the LS solution and plugging this into the Fourier expansion of the chf. gives
back the full chf.

We recall that the price of the option is denoted by

v(x ; t ,θ) =
Nϕ−1∑

j=0

(
A j (θ)C j (x)−B j (θ)S j (x)

)
. (7.13)

Subsequently, we can also check the fit of the LS solution directly on the option rice.

7.3. COS-CPD FOR PRICING OPTIONS
Assuming we fix j = 0, ..., Nϕ − 1 we make use of a multidimensional cosine expansion
per j . This approach has already been research at FFQuant by [30] and [31]. This results
in the following:

A j (θ) =
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
. (7.14)

B j (θ) =
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

G j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
. (7.15)

As a result, the price of a European option under the rough Heston model can be
written as

v(x ; t ,θ) ≈
Nϕ−1∑

j=0

K−1′∑
k1=0

· · ·
K−1′∑
kd=0

(
F j ,k1,...,kd

(θ) ·C j (x)−G j ,k1,...,kd
(θ) ·S j (x)

) d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
(7.16)

We further note that
∑N−1′

k=0 means that the first element is taken by 1
2 . However, going

further we try to estimate the matrices F and G and hence for the sake of simplicity, we
assume the 1

2 is already taken into account. To avoid this exponential growth in the com-
putational complexity for increasing d, the CPD technique can be used to approximate
the Fourier coefficient tensor with a sum of rank-one components, i.e.

F j ≈
[
A1, j ,A2, j , . . . ,Ad , j

]
R =

R∑
r=1

a1, j
r ◦a2, j

r ◦ · · · ◦ad , j
r , (7.17)

G j ≈
[
B1, j ,B2, j , . . . ,Bd , j

]
R =

R∑
r=1

b1, j
r ◦b2, j

r ◦ · · · ◦bd , j
r , (7.18)
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where ◦ represents the outer product.

Consequently, the CPD approximation is obtained by computing the 2d factor ma-

trices
{

Ai , j
}d

i=1 and
{

Bi , j
}d

i=1 of sizes K ×R each, as mentioned by [31]. Therefore, the

computational complexity of computing the Fourier coefficients drops from O
(
K 2d

)
to

O(2dK R), which makes this approach more suitable.
Once the factor matrices are computed, the Fourier coefficient tensor can be written as

F j [k1, . . . ,kd ] =
R∑

r=1

d∏
i=1

ai , j
r [ki ] ,

and

G j [k1, . . . ,kd ] =
R∑

r=1

d∏
i=1

bi , j
r [ki ] .

This ultimately leads to the following representation of the option price

v (x ; t ,θ) =
Nϕ−1∑

j=0

K−1∑
k1=0

· · ·
K−1∑
kd=0

R∑
r=1

d∏
i=1

(
ai , j

r [ki ] ·C j −bi , j
r [ki ] ·S j

)
cos

(
kiπ

θi −ai

bi −ai

)
. (7.19)

For the sake of brevity, we denote vi [ki ] := cos
(
kiπ

θi−ai
bi−ai

)
. Hence, we find that

v (x ; t ,θ) =
Nϕ−1∑

j=0

K−1∑
k1=0

· · ·
K−1∑
kd=0

R∑
r=1

d∏
i=1

(
ai , j

r [ki ] ·C j (x)−bi , j
r [ki ] ·S j (x)

)
vi [ki ] . (7.20)

By defining

f j (θ) ≈
K−1∑
k1=0

· · ·
K−1∑
kd=0

R∑
r=1

d∏
i=1

ai , j
r [ki ]vi [ki ] (7.21)

and

g j (θ) ≈
K−1∑
k1=0

· · ·
K−1∑
kd=0

R∑
r=1

d∏
i=1

bi , j
r [ki ]vi [ki ] (7.22)

we find that the price of the option can be written as

v (x ; t ,θ) =
Nϕ−1∑

j=0
f j (θ) ·C j (x)− g j (θ) ·S j (x)

By setting

f j
n,r =

K−1∑
kn=0

an
r [kn]vn [kn] = vT

n An[:,r ]

and

g j
n,r =

K−1∑
kn=0

an
r [kn]vn [kn] = vT

n Bn[:,r ],
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expression 7.21 and 7.22 can greatly be simplified to

f j (θ) ≈
R∑

r=1
f j

1,r (θ1) · · · f j
d ,r (θd ) (7.23)

and

g j (θ) ≈
R∑

r=1
g j

1,r (θ1) · · ·g j
d ,r (θd ) . (7.24)

Each component f j
n,r represents a univariate Fourier-cosine series. Consequently,

the Fourier-cosine series derived through Canonical Polyadic Decomposition (CPD) can
be articulated as a product of these univariate series.
By stating that for each j the output y j given an input vector (θ1, . . . ,θd ) yields

y A
j = (

vT
1 A1, j ⊛ · · ·⊛vT

d Ad , j
)

1 =
(
⊛d

i=1vT
i Ai , j

)
1. (7.25)

yB
j = (

vT
1 B1, j ⊛ · · ·⊛vT

d Bd , j
)

1 =
(
⊛d

i=1vT
i Bi , j

)
1, (7.26)

where ⊛ denotes the Hadamad product as defined in 3.4.4 and 1 the unit vector of
size R. Thus, we find that the price of the option is denoted by

v (x ; t ,θ) =
Nϕ−1∑

j=0

(
⊛d

i=1vT
i Ai , j

)
1 ·C j −

(
⊛d

i=1vT
i Bi , j

)
1 ·S j . (7.27)

7.4. OUR COSINE NETWORK
To enhance the comprehension of the mathematical concepts presented in the preced-
ing section, we aim to provide further clarity through graphical illustrations. These vi-
sualizations not only aid in understanding but also highlight the advantages of this ap-
proach compared to traditional machine-learning techniques.

We begin by examining the multidimensional cosine expansion for each j , as out-
lined in 7.15, which originates from 7.13. It’s important to note that while our discussion
focuses on A j (θ), the process for B j (θ) is entirely analogous.

A j (θ) =
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
.

As mentioned above, the goal is to approximate the Fourier coefficient tensor with a sum
of rank-one tensors, i.e,

F j ≈
[
A1, j ,A2, j , . . . ,Ad , j

]
R =

R∑
r=1

a1, j
r ◦a2, j

r ◦ · · · ◦ad , j
r .

Each rank one component consists of a product of three univariate Fourier-cosine se-
ries. As a result, our supervised machine learning method boils down to understanding
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the above-given figure. Even though the mathematics behind it might not be straight-
forward to understand, the intuition however is quite clear. We approximate the mul-
tidimensional Fourier-cosine series by a sum of rank-one components with each com-
ponent given by a product of a univariate Fourier-cosine series, which can be displayed
using the Hadamard product as seen in 7.25 and 7.26. We recap that we thus can write
the price of an option given input parameter vector as

v (x ; t ,θ) =
Nϕ−1∑

j=0

(
⊛d

i=1vT
i Ai , j

)
1 ·C j −

(
⊛d

i=1vT
i Bi , j

)
1 ·S j . (7.28)

However, we can write of the European option in terms of our cosine network as
follows. Before we can actually introduce our cosine network, we have to introduce some
special notation according to [32].

Figure 7.1: Notation for our cosine network

In order to understand how our notation exactly works, we break it down step by step.

(1) vector-vector multiplication. This is just the inner product between two vectors of
the same size. The result is a scalar

(2) vector-matrix multiplication. Having a matrix of K ×R and a vector of size R ×1
results in a vector of K ×1

(3) vector-tensor multiplication. Having a tensor of N ×K ×R and a vector of size R×1
results in a matrix of size of N ×K

(4) Tensor copy. Copying the result of the previous computation for the next step.
I.e. if the previous calculation was vector-matrix multiplication, then the resulting
vector is copied.

(5) Element-wise multiplication. Refers to the Hadamard product explained in 3.4.4.

In the following, we will methodically break down and explain each step to provide
a clear understanding of the process with respect to 7.28. We emphasize that our cosine
network is displayed for d = 4. However, the methodology translated to an arbitrary
number of d .
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Figure 7.2: Our novel cosine network

(1) In the first step, we calculate vT
1 A1, which corresponds to the first vector-tensor

multiplication in the upper row. We point out that A1 is now of form K ×Nϕ×R,
while vT

1 is still of form 1×K . The resulting matrix is of the form Nϕ×R. This matrix
will be element-wise-multiplied using the Hadamard product with the resulting
matrix of the vT

2 A2 vector-tensor multiplication. We continue with this process
until we reach d = 4. We stress that the same procedure applies to vT

i Bi in the
lower row.

(2) In the next step we copy our resulting Nϕ×R-matrix from the Hadamard multipli-
cation (black dot).

(3) Next, we multiply this matrix with the unit vector of size R ×1. This corresponds
to the sum of rank-1 components in 7.23 and 7.24. Again, we note that we do the
same computation for both the upper and lower rows in the figure. The resulting
vector of each computation is Nϕ×1.

(4) Going further, we multiply our resulting vectors with the matrix C and S defined
in 7.7 and 7.8, respectively.

(5) Lastly, We subtract both results, in order to get our vector of option prices with
respect to various strike prices.

In general, we emphasize that by using our cosine network we can loosen up all pa-
rameters in the respective stochastic volatility model, i.e. the rough Heston model up to 6
as well as the strike dimension which is captured in the matrices C and S respectively. In
summary, our novel cosine network presents a tractable and supervised machine learn-
ing approach that efficiently approximates the necessary cosine coefficients, enabling
us to derive the desired characteristic function with superior speed in comparison to ex-
isting benchmark methods. This innovative technique streamlines the process, ensuring
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both accuracy and efficiency in obtaining the characteristic function for complex mod-
els.

Our cosine network distinguishes itself from conventional artificial neural networks
(ANNs), such as those discussed in [33], by maintaining tractability throughout its op-
erational process. Unlike standard ANNs, which often operate as "black boxes" leaving
practitioners and researchers puzzled about the rationale behind specific decisions, our
cosine network offers a transparent and comprehensible decision-making pathway. This
transparency is crucial, as the opacity of ANNs can erode trust and hinder their practical
application in real-world scenarios, a concern highlighted by [34]. Our cosine network’s
clear, tractable nature thus represents a significant advancement, enhancing the inter-
pretability and reliability of neural network decisions in complex tasks.

7.5. TRAINING DATA
In order to find the factor matrices training data is needed. First, we fix the index j and
only focus on the A part, since the other part will be analogous. Secondly, let us consider
the grid of M combinations of d model parameters θ. In order to be able to loosen up
all 6 parameters in the rough Heston model, which in the end will result in the calcula-
tion M = 1.000.000 options pricing per maturity, we want to avoid densities that are too
peaked, as shown in figure 6.13. As a result, our parameters are restricted to the following
intervals. The resulting combinations will be our training input.

Parameters Range
Correlation, ρ (-0.9,0.9)

Reversion speed, κ (1.5,5)
Long average variance, v̄ (0.04, 0.2)

Initial variance, v0 (0.04, 0.15)
Hurst parameter, H (0.05,0.15)

Volatility of volatility, ν (0.1,0.4)

Table 7.1: Parameter Ranges for the Model

Before we further elaborate, we note that the upcoming explanation is done for A j (θi ).
However, B j (θi ) follows analogously.
For i = 1, . . . , M the training output will be A j (θi ). These values are derived using SVD
as explained in the previous sections. With this a set of log-asset prices x is needed
to calculate a set of benchmark values per θi . This means that first the whole vector

A (θi ) =
[

A0 (θi ) , . . . , ANϕ−1 (θi )
]T ∈ RNϕ is computed using minimization problem 7.12.

To get the correct output, we split them apart afterward such that for index j we get the

output vector A j (θ) = [
A j (θ1) , . . . , A j (θM )

]T ∈ RM . We denote the estimated outputs of

A j (θ) and B j (θ) by y j
A and y j

B . In total both

7.6. ALS ALGORITHM
Using the CPD technique yields to solving the following minimization problem.
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min∣∣Ai , j
∣∣d
i=1

1

M

M∑
m=1

(
y j

A,m −
(
⊛d

i=1vT
i Ai , j

)
1
)2

and

min∣∣Bi , j
∣∣d
i=1

1

M

M∑
m=1

(
y j

B ,m −
(
⊛d

i=1vT
i Bi , j

)
1
)2

,

where we use the squared error as the loss function

where Vi ∈ RK×M with Vi [k,m] = cos
(
kπ

θm
i −ai

bi−ai

)
. The value θm

i denotes the value of

the i−th coordinate in sampling vector θm . The Alternate Least Square (ALS) algorithm
can now be exploited to solve the factor matrices iteratively as derived in [21] and [31].
Fixing all factor matrices except for Ai , j (the case Bi , j follows analogously) we have,

min
Ai , j

1

M

M∑
m=1

(
y j

A,m −Vi [:,m]T Ai , j QA
i , j [:,m]

)2
,

where QA
i , j with

QA
i , j =

(
⊛n ̸=i

(
AT

n, j Vn

))
By setting the gradient equal to zero, we find that

2

M

M∑
m=1

(
y j

A,m −Vi [:,m]T Ai , j QA
i , j [:,m]

)
= 0. (7.29)

Rearranging terms leads to the following

1

M

M∑
m=1

(
Vi [:,m]T Ai , j QA

i , j [:,m]
)(

Vi [:,m](QA
i , j )T [:,m]

)
= 1

M

M∑
m=1

y j
A,m

(
Vi [:,m](QA

i , j )T [:,m]
)

.

(7.30)
Note that 7.30 is not a standard linear system of the form Ax = b, which has to be

solved for the unknown vector x. Instead, the system can be seen as a matrix equation,
in which the unknown matrix An has to be solved. A previous thesis done at FF Quant
showed how to transform 7.30 into a equation of the form Ax = b by vectorizing the fac-
tor matrix An [31]. Furthermore, it was shown that the Conjugate Gradient (CG) method
is the fastest method in terms of convergence to solve 7.30.

7.7. TRUNCATION RANGE AND FOURIER EXPANSION TERMS
In order to have a good convergence in the CPD method, the choice of the truncation
range and the number of cosine basis functions (Nϕ and Ncos ) in the COS method is
therefore of high importance.

Even though it is yet to develop a formula for the truncation range, we try to give an
idea of how to carefully choose a proper truncation range in order to avoid reverse en-
gineering. However, knowing that testing truncation intervals with different numbers of
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Nϕ and Ncos in order to check convergence is computationally not feasible for all param-
eters. Assume we have d = 6 with K = 10. Hence, for every different combination of Nϕ

and Ncos we have to go through the whole COS-CPD calculation and generate a training
set of 1 million option pricings. Hence, we fix three parameters and use COS-CPD on 3/6
parameters with K = 10 in the rough Heston model, which then boils down to only have
1000 option pricing processes. Once we were satisfied with the convergence, we tested
it on the value extremes of the three fixed parameters and their combinations.
Afterward, we loosen up one more parameter and check its fit and convergence of the
CPD method of that specific combination in 5D. In the end, this was done for all 5 dif-
ferent maturities on which we later based on our implied volatility surface. Nonetheless,
with the explanations below choosing a suitable truncation range is less of a guessing
game but rather a matter of a careful choice.

Before we analyze the different truncation ranges, we recall that in 7.3, we have to
deal with two different Truncation ranges. First, the one with respect to the series ex-
pansion of the characteristic function. We truncate the series of the characteristic func-

tion with respect to the interval
[

0, Ncosπ
(b−a)

]
. Hence, we find that

[
aϕ = 0,bϕ = Ncosπ

(b−a)

]
. The

other truncation range we deal with is the one of the 1D COS-method as described in [4].
However, these two truncation ranges behave opposite of each other as choosing [a,b]
large results in a tighter interval of

[
aϕ,bϕ

]
, while choosing [a,b] small results in a bigger

interval
[
aϕ,bϕ

]
. Hence, it is important to find a good trade-off between both of them.

Figure 7.3: Absolute and relative error for
an interval of [−1,1] and Nϕ = 32 with Rank

= 15

Figure 7.4: Absolute and relative error for
an interval of [−1,1] and Nϕ = 64 with Rank

= 15

As we can see in figure 7.4, for a very tight interval [a,b] we need a larger number of
Nphi in order to have a less oscillating error, which is accordance to the intuition that a
wider interval needs more cosine basis functions in order to have a good approximation.
However, even though the error seems to improve we observe that when plotting the
density there is not much of an improvement of the overall density function even though
we further increased Nphi . Even though the initial error in 7.4 seems quite promising
using this density in the option pricing method would indeed result in significant errors.
One could argue that choosing a sufficiently wide intervals [a,b] and

[
aϕ,bϕ

]
and a high

number of cosine basis functions in both expansions would solve the problem. However,
first and foremost a very high number of Nϕ would increase the computational time in
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our COS-CPD method by a multiple. Remember we have to find 2Nϕd Factor matrices.

Figure 7.5: [−1,1] and Nϕ = 64. Bad density
due to truncation error

Figure 7.6: [−1,1] and Nϕ = 128. Bad
density due to truncation error

Figure 7.7: Absolute and relative error for an
interval of [−3,3] and Nϕ = 32 with Rank = 1

Figure 7.8: Absolute and relative error for
an interval of [−3,3] and Nϕ = 32 with Rank

= 15

As we can see in 7.8, as mentioned before very wide interval [a,b] results in a very
tight interval

[
aϕ,bϕ

]
. As a result, by looking at the non-improvement of the rank that

there is some kind of dominant truncation error most probably resulting from the very
tight interval

[
aϕ,bϕ

]
.

In comparison to the above two approaches, in 7.10, we see that when having a very
good trade-off between both truncation ranges the COS-CPD method works really well.
We can also see that with an increasing number of Nphi the approximation of the density
is becoming really smooth as seen in 7.12.

As a result, we go with the following set of parameters for the COS-CPD method.

Maturity Nϕ , Interval
1.0 32,[−2.5,2.5]

0.75 32,[−2.25,2.25]
0.5 32,[−2.25,2.25]

0.25 32,[−2.5,2.5]
0.1 32,[−2.5,2.5]

We emphasize that the table mentioned is suitable only for the parameter set defined
in 7.1. Generally speaking, choosing a suitable [a,b] might be a challenging task, but it is
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Figure 7.9: Absolute and relative error for
an interval of [−2.5,2.5] and Nϕ = 32 with

Rank = 1

Figure 7.10: Absolute and relative error for
an interval of [−2.5,2.5] and Nϕ = 32 with

Rank = 15

Figure 7.11: [−2.25,2.25] and Nϕ = 16. Bad
density due to very little Nϕ

Figure 7.12: [−2.25,2.25] and Nϕ = 32. Nice
density recovered from COS-CPD chf.

important to note that a lot depends on the parameter combinations and the maturities
the COS-CPD method is given as input.
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Figure 7.13: Absolute and relative error for a
different number of cosine basis functions
in each parameter dimension. The rank is

set to 15. Here, we consider an example for
ρ = 0.4, v̄ = 0.060 and H = 0.08

Figure 7.14: Absolute and relative error for a
different number of cosine basis functions
in each parameter dimension. The rank is

set to 15. Here, we consider an example for
ρ =−0.7, v̄ = 0.078 and H = 0.12

7.8. NUMBER OF COSINE BASIS FUNCTIONS IN THE PARAME-
TER DIMENSIONS

For choosing a suitable number of cosine basis functions (K ) for the different parameter
dimensions, we first fix the rank at r = 15. Throughout this analysis we consider ATM
options, i.e. keep x = 0 fixed, and plot the different errors against the number of cosine
basis functions. We consider ATM options because the error seems to be the most sensi-
tive for ATM options. As a result, we see if the error improves with a finer grid of training
points and to what degree.

We tested the outcome for various different sets of parameters in 3D, which means
we keep v0 = 0.0625, ν= 0.2 and κ= 2.5 fixed and "loosen up" the rest of the parameters.

It is important to note that a higher number of N does not automatically mean a bet-
ter error as seen above. However, the generation of the training set grows exponentially
with K . K is the number of cosine basis function in in each dimension. As we aim to lose
up all of the 6 parameters in the rough Heston model, K = 10 already yields a training
set of 1,000,000 option prices, while K = 14 would yield a training set of over 7.5 million
option prices.

7.9. OPTIMAL CHOICE OF RANK
Throughout this section, we fix K = 10 as the number of cosine basis functions in each
parameter dimension and try to find an optimal rank. As mentioned in [35] and [31],
finding the rank is a NP-hard problem. However, we find an "optimal" rank as follows.
Again, we fix 3 parameters as we think this is sufficient to prove the point we make. Hav-
ing fixed three parameters, we apply COS-CPD on the remaining 3D tensor and calcu-
late option prices with various different strikes. We then take the mean absolute error
of all the options against our benchmark method. We note that it is suitable to choose
strikes that are not too far from each other as for deep OTM options the absolute error
is around 10−6, which might lead to misleading mean errors. We recommend choosing
strikes around ATM. Next, we repeat this procedure for all sorts of ranks and plot the
resulting error against the rank to see which rank suits best. The results can be seen in
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Figure 7.15: Absolute and relative error for a
different number for the Rank. Here, we

consider an example for ρ =−0.2, v̄ = 0.060
and H = 0.08

Figure 7.16: Absolute and relative error for a
different number for the Rank. Here, we

consider an example for ρ =−0.7, v̄ = 0.078
and H = 0.12

7.15
Even though it might look like a very small number of rank might be sufficient, we

experienced that for higher dimensions, we have to choose a higher number for the rank
in order for the COS-CPD method to sufficiently converge. As a result, we choose rank =
10 going forward.

7.10. NUMERICAL RESULTS

7.10.1. OPTION PRICING
For the first numerical experiment, we chose two different sets of parameters from 7.1,
i.e.

(1) ρ =−0.6,κ= 2.0, v̄ = 0.055, v0 = 0.0625, H = 0.08,ν= 0.15

(2) ρ =−0.26,κ= 1.8, v̄ = 0.95, v0 = 0.0756, H = 0.12,ν= 0.36

for T = 0.75. We see in 7.17 that for both sets of parameters, the price of the COS-CPD is
indistinguishable from the Lifted Heston as well as from the Rough Heston price.

For the first set of parameters the COS-CPD error against the rough Heston and the
lifted Heston can be seen in 7.19. We can see that the error is better against the lifted
Heston, which is expected as that method was used for benchmarking. However, the
COS-CPD pricing performs sufficiently accurately against the rough Heston as well.

Furthermore, we have a closer look at the performance of one single option pricing
process and the relative error analysis through different strike levels. Again, we consider
OTM as x = −0.2, ATM as x = 0.0, and ITM as x = 0.2. Important to note that in the
following analysis, we include the rough Heston price using N = 2,500 time steps just
for the sake of performance comparison. As previously mentioned the lifted Heston was
used as a benchmark.

We conclude that our method is roughly 16 times faster than the lifted Heston and
about 180 times faster than the benchmark most often being used in the literature while
having very promising accuracy through various strike levels.

Lastly, we price 729 options with different parameter values and maturities and see
the accuracy is consistent with the observation we made in 7.17 as well as 7.19. The max-
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Figure 7.17: Price COS-CPD vs rough Heston vs lifted Heston through different values of log-moneyness (x)

Figure 7.18: Absolute and relative error
COS-CPS against rough Heston

Figure 7.19: Absolute and relative error
COS-CPS against lifted Heston

CPU Time (s) Price Error (%)
OTM ATM ITM OTM ATM ITM

Lifted Heston BM 0.161 0.1839 0.7840 1.9595 - - -
COS-CPD 0.010 0.1830 0.7832 1.9602 0.51 0.0986 0.0410
Rough Heston(N=2500) 18.83 0.1829 0.7831 1.9593 - - -

Table 7.2: Relative error analysis over various strike prices for Testset (1). The ’BM’ denotes the benchmark
being used.

imum absolute error throughout the 729 option pricings is 0.00945. In 7.20, we observe
that the absolute error is consistently in the range of 10−3 throughout the whole set of
strikes (displayed as log-moneyness x).
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Figure 7.20: Mean Average and Mean Relative Error
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7.10.2. IMPLIED VOLATILITY SURFACE

In order to get a reasonable implied volatility surface the training step has been done
for 5 different maturities, i.e. 0.1,0.25,0.5,0.75 and 1.0. Afterward, the whole surface was
interpolated using cubic interpolation in order to get a sufficiently smooth surface with
respect to log-moneyness and maturity [36].

Figure 7.21: Implied volatility using
COS-CPD

Figure 7.22: Interpolated implied volatility
using COS-CPD

Figure 7.23: Absolute Error whole implied volatility surface Interpolated COS-CPD surface vs. lifted Heston
implied volatility.

We clearly see that even though we interpolate between the above-mentioned ma-
turities the absolute error is indeed small. We can see the spike in the short-term deep-
in-the-money options. This is due to some Gibbs phenomena when approximating the
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density using COS-CPD. Especially for short-term maturities, we find this problem as we
only chose 10 cosine basis functions in each of the parameter dimensions.

Next, we compare the methods with respect to performance.

CPU Time whole vol surface (s)
Lifted Heston 12.21
Lifted Heston Interpolated 3.9
Rough Heston(N=2500) 253.46
COS-CPD 0.51

Table 7.3: CPU Time analysis

Last but not least, we check the ATM skew of the COS-CPD method in comparison to
our benchmark.

Figure 7.24: Term structure of the at-the-money implied volatility skew created using our COS-CPD approach
vs. lifted Heston dynamics.

We highlighted the points that are actually computed by the COS-CPD method, namely
maturities 0.1,0.25,0.50,0.75 and 1.0. As a result the error of the ATM skew mainly results
from the interpolation procedure. We further highlight that the whole implied volatility
surface can be calculated in about half a second around 8 times faster than the interpo-
lated Lifted Heston surface.





8
OUR CALIBRATION APPROACH

One of the most important tasks in quantitative finance is the calibration of the model to
actual market data, which is equal to finding the optimal parameters such that the model
output is as close as possible to the actual market data. In this chapter, we introduce
a novel method of calibrating the rough Heston model to market data using the COS-
CPD method using the first derivative of the option price with respect to each of the
considered parameters in the rough Heston model. Our cosine network enables us to
derive the derivative with respect to each parameter analytically which in combination
with the very efficient pricing method from 7, results in a calibration within a minute
while current benchmark methods take hours in calibration time.

8.1. OUR COS-CPD CALIBRATION APPROACH

8.1.1. ROUGH HESTON MODEL DERIVATIVES
The COS-CPD environment enables us to compute the derivatives of the option price
with respect to each of the parameters in the rough Heston model. We recall that the
European option price in the COS-CPD environment can be denoted by

v(x ; t ,θ) =
Nϕ−1∑

j=0

(
A j (θ)C j (x)−B j (θ)S j (x)

)
(8.1)

with

A j (θ) =
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
. (8.2)

B j (θ) =
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

G j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
. (8.3)

Let us first denote ζ as a placeholder for any of the rough Heston parameters

θ = ρ, v̄ ,ν, v0, H ,κ.

71
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Then, we find that

d v(x ; t ,θ)

dζ
=

Nϕ−1∑
j=0

d

dζ

(
A j (θ)

)
C j (x)− d

dζ

(
B j (θ)

)
S j (x). (8.4)

We note that C j (x) and S j (x) are both independent of any model parameters. Hence,

we only have to take care of d
dζ A j (θ) and d

dζB j (θ). The following calculations are done

for d
dζ A j (θ). However, d

dζB j (θ) follows analogously.

d

dζ
A j (θ) = d

dζ

K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)

=
K−1′∑
k1=0

· · ·
K−1′∑
kd=0

d

dζ

(
F j ,k1,...,kd

d∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)) (8.5)

Realizing that F j ,k1,...,kd
is the coefficient matrix, which is independent of any param-

eter leaves us with the derivative of
∏d

i=1 cos
(
kiπ

θi−ai
bi−ai

)
with respect to ζ. We recall that

ζ is a placeholder for any of the rough Heston parameters in θ. As a result, taking the
derivative with respect to ζ yields

d

dζ
A j (θ) =−

K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd
sin

(
kζπ

ζ−aζ
bζ−aζ

)d−1∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
(8.6)

To make things clearer, we set ζ = H . Then the derivative of the option price with
respect to H is given by

d v(x ; t ,θ)

d H
=

Nϕ−1∑
j=0

d

d H

(
A j (θ)

)
C j (x)− d

d H

(
B j (θ)

)
S j (x), (8.7)

with

d

d H
A j (θ) =−

K−1′∑
k1=0

· · ·
K−1′∑
kd=0

F j ,k1,...,kd
sin

(
kHπ

H −aH

bH −aH

)d−1∏
i=1

cos

(
kiπ

θi −ai

bi −ai

)
(8.8)

and consisting of all other parameters but H .

In order to check if the derived gradients are correct, we make use of Taylor expan-
sion, with respect to each of the parameters and check if the Taylor expansion converges
to the actual price. For this purpose, we take derivatives of the option price with respect
to ρ, H ,ν respectively. This is enough to validate our derivatives. Let’s consider the fol-
lowing parameter set

θ = (H = 0.12,ρ =−0.6,ν= 0.27),

and
θ̃ = (H̃ = 0.13, ρ̃ =−0.55, ν̃= 0.25).
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Next, we consider the following Taylor expansion

v(x ; t ,θ) = v(x ; t , θ̃)+ d v(x ; t ,θ)

d H
· (H − H̃)+ d v(x ; t ,θ)

dρ
· (ρ− ρ̃)+ d v(x ; t ,θ)

dν
· (ν− ν̃). (8.9)

Figure 8.1: 1st order Taylor expansion with respect to Parameters H ,ρ,ν.

We can easily observe in 8.1 that the Taylor expansion significantly improves the error
against the initial option price with parameter set θ. "AbsError no Taylor" is the absolute
error of v(x ; t , θ̃) and v(x ; t ,θ). and As a result, we can be confident that the derivatives
are correctly derived.

In order to use the gradients, we tried different Python built-in optimizers. Whenever
a good initial guess is at hand for the parameters then L −BFGS −B , a quasi-Newton
method suits best as it converges really fast [37]. As the algorithm together with our pric-
ing method converges quite fast, one can allow a couple of calibration procedures with
different initial guesses. Nevertheless, another method of choice can be the conjugate
gradient (CG) method. Nonetheless, L −BFGS −B seems to converge a bit faster once a
good initial guess is at hand.

L-BFGS-B - ALGORITHM

Objective Function: Accoring to [37], we define an objective function f (θ) that measures
the difference between model-generated option prices and observed market prices for a
set of parameters θ.

Steps:

1. Initialization: Choose an initial guess for the parameters θ0 and set k = 0.

2. Evaluate: Calculate the gradient of the objective function with respect to the pa-
rameters, ∇ f (θk ).
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3. Quasi-Newton Direction: Determine the search direction pk using the inverse
Hessian approximation:

pk =−Hk∇ f (θk )

4. Line Search: Find a step size αk that reduces f (θ) along pk .

5. Update: Adjust the parameters:

θk+1 = θk +αk pk

6. Limited Memory Update: Update the inverse Hessian approximation.

7. Check for Convergence: If criteria are satisfied (e.g., gradient close to zero), stop.
Otherwise, return to Step 2.

Box Constraints: Enforce constraints on the parameter values, if needed.

CG-METHOD (CONJUGATE GRADIENT METHOD)
Objective Function: As before, define an objective function f (θ) [37].

Steps:

1. Initialization: Choose an initial guess for the parameters θ0 and compute the ini-
tial gradient g0 =∇ f (θ0). Set the search direction p0 =−g0 and k = 0.

2. Compute step size:

αk = g T
k gk

pT
k ∇2 f (θk )pk

3. Update parameters:

θk+1 = θk +αk pk

4. Update gradient:

gk+1 = gk +αk∇2 f (θk )pk

5. Check for Convergence: If ∥gk+1∥ is sufficiently small, stop.

6. Compute beta:

βk = g T
k+1gk+1

g T
k gk

7. Update direction:

pk+1 =−gk+1 +βk pk

8. Return to Step 2.
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8.1.2. CALIBRATION TO OPTION PRICE
In order to properly calibrate with respect to the option price, we use as an objective
function

min
θ

1

M

M∑
m=1

(vmar ket − vmodel (θ))2

v2
mar ket

. (8.10)

We start by calibrating our model to synthetic market prices generated by the COS
method. For this purpose we generate around 216 option prices with maturities vary-
ing between (0.1,0.25,0.5,0.75,1.0), different strike levels and a random combination of
parameters within the range defined in 7.1. In the following table, we show the mean
absolute and maximal absolute error throughout the whole calibration process. We note
that the calibrated option values are very close to the the synthetic market prices with
maximum absolute error over all calibrations being 0.00463.

Parameter Mean absolute error Maximum absolute error
v0 0.0035 0.0211
θ 0.0015 0.047
v̄ 0.0042 0.035
ρ 0.019 0.165
κ 0.418 1.095
H 0.0032 0.045

In order to calibrate against actual market data, we fix two parameters v0 and κ. The
choice of these two are quite practical. v0 can very well be estimated by ATM implied
volatility of some short term maturity. For this purpose, consider the following lemma
by [11]

Lemma 8.1.1. (Term structure of the Black-Scholes implied volatility in the Heston Model).

σ2
AT M (T ) ≈ 1

T

∫ T

0

[(
v −θ′)e−κ

′t +θ′
]

d t

= (
v −θ′) 1−e−κ

′T

κ′T
+θ′

where κ′ = κ− ρη
2 ,θ′ = θκ

κ′ . The ATM BS implied variance limT→0σ
2
BS (T )

∣∣
AT M → v0.

As a result we conclude that the relationship between the ATM black-scholes vari-
ance and the initial variance v0 can be assumed as linear. Hence, we estimate the initial
variance with an ATM options with maturity up to 1 months.

In order to justify the fixing of κ, we make a small sensitivity analysis of the param-
eters κ, v̄ and ν. In the figures 8.2-8.4 below, we find that different values of κ have a
bigger influence for options that a further out-of-the-money, while ν drives the skew-
ness of the implied volatility skew. Lastly, we observe that higher v0- values shift the
whole smile/skew.

These characteristics enable us to fix κ and by slightly changing the skewness as well
as the up or downward shift, to overcome the defiance of fixing κ. In Figure 8.5, we can
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Figure 8.2: Implied volatility with different v̄-values.

Figure 8.3: Implied volatility with different κ-values.

see by carefully alternating v̄ and ν, we can even overcome large differences in κ. Again,
we note the values for v̄ and ν were chosen based on careful consideration and without
any optimization.

Now, we try to calibrate SPX options from 06-Oct-2023 for different maturities. We
estimated the initial variance as mentioned above with a value of v0 = 0.025, while we
fixed κ= 0.5.

Important to know, is that the calibration procedure for both examples took less than
1 minute while a the calibration procedure using the lifted Heston model, took in be-
tween 3-6 hours. We can see in 8.7 and 8.6 that the COS-CPD calibration is nicely able
to handle the the skewness of the price. Even though our model prices seems deviating
quite a lot for deep in the money option prices, we are still in a relative error range of
10−1.
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Figure 8.4: Implied volatility with different ν-values.

Figure 8.5: Implied volatility fit for different κ-, ν- and v̄-values

Figure 8.6: Calibrated SPX option prices on 06-Oct-2023 for maturity 0.8 years
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Figure 8.7: Calibrated SPX option prices on 06-Oct-2023 for maturity 0.2 years



9
NOVEL METHOD OF PRICING

BARRIER AND BERMUDAN OPTIONS

UNDER THE ROUGH HESTON

MODEL

We want to price Barrier and Bermudan options with the COS method under the rough
Heston model. Pricing such options are essentially pricing path-dependent options. As
[9] states, we have to make use of the a priori not known joint density function between
the log-stock price and the variance process given by a CIR process. For the classical
Heston model, however, it can be recovered from the characteristic function in closed
form. As we have already seen in the previous sections there is only a semi-closed-form
solution available when dealing with the rough Heston model.

9.1. BI-VARIATE CHARACTERISTIC FUNCTION OF LOG-STOCK

AND VARIANCE IN THE CLASSICAL HESTON MODEL

As previously mentioned by using the 2D COS method, the computation for the bi-
variate characteristic function of the log-stock and variance process is needed. Accord-
ing to [5] the bi-variate characteristic function for the affine process Xt = (l og (St ) =
X t , vt ) is of the form

φ (a,Xt , t ,T ) = E
[

e i a1 XT +i a2vT | X t ,νt

]
= exp(B1(T − t ,a)X t +B2(T − t ,a)vt + A(T − t ,a)) ,

(9.1)

with

79
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HESTON MODEL

β :=λ− iρνa1

D :=
√
β2 +ν2a1 (i +a1)

h := (
β−D − i a2ν

2)/
(
β+D − i a2ν

2) .

(9.2)

The functions A,B1, and B2 are solutions to a system of ordinary differential equations
(ODEs) of Riccati type:

∂B1(t ,a)

∂t
= 0,

∂B2(t ,a)

∂t
= 1

2
η2B 2

2 (t ,a)−βB2(t ,a)− 1

2
a1 (i +a1) ,

∂A(t ,a)

∂t
=λθB2(t ,a),

(9.3)

with initial conditions B1(0,a) = i a1,B2(0,a) = i a2, A(0,a) = 0. Solving the ODEs gives

B1(t ,a) = i a1

B2(t ,a) = 1

ν2

β−D − (β+D)he−Dt

1−he−Dt

A(t ,a) = λθ

ν2

[
(β−D)t −2ln

(
he−Dt −1

h −1

)]
.

(9.4)

9.2. BI-VARIATE CHARACTERISTIC FUNCTION OF LOG-STOCK

AND VARIANCE IN THE ROUGH HESTON MODEL
In order to use the 2D COS method for the rough Heston model, we first have to find the
bi-variate characteristic function for the rough Heston case. The authors of [20] expand
the idea of [3] define the full Fourier-Laplace functional as

E
[

eu1 logST +u2vT +( f1∗logS)T +( f2∗v)T

]
= exp

(
φ(T )+ψ1(T ) logS0 + I 1−αψ2(T )v0

)
, (9.5)

where ψ1 = u1 +1∗ f1 and φ and ψ2 solve the fractional Riccati equations

φ′ = κv̄ψ2, φ(0) = 0,

Dαψ2 = f2 + 1

2

(
ψ2

1 −ψ1
)+ (

ρσψ1 −λ
)
ψ2 + ν2

2
ψ2

2, I 1−αψ2(0) = u2,
(9.6)

where ∗ is the convolution between f1 and log S defined in 3.1.7
For our purpose, we set f1 = f2 = 0, u1 = i a1,u2 = i a2 and obtain

E
[

ei a1 logST +i a2vT
]
= exp

(
φ(T )+ i a logS0 + I 1−αψ2(T )v0

)
, (9.7)

where ψ1 = i a1 and φ and ψ2 solve the fractional Riccati equations

φ′ = κv̄ψ2, φ(0) = 0,

Dαψ2 =−1

2
a (a + i )+ (

ρσi a −λ)
ψ2 + ν2

2
ψ2

2, I 1−αψ2(0) = i a2.
(9.8)
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9.3. 2D COS METHOD FOR OPTION PRICING
For pricing path-dependent options like Barrier or Bermudan options under the Heston
dynamics, we are dealing with a multidimensional asset price process. For this purpose
[5] established the two-dimensional Fourier cosine series expansion or short 2D COS
method. The idea behind this is similar to the 1D COS method introduced above.

9.3.1. GENERAL IDEA AND FORMULA FOR EUROPEAN OPTIONS
We again start with the risk-neutral option valuation formula

v (t0,x) = e−r∆tEt0,x [
g (XT )

]= e−r∆t
Ï
R2

g (y) f (y | x)dy, (9.9)

where in this case x = (x1, x2) is the current state, f
(
y1, y2 | x1, x2

)
is the conditional den-

sity function, r is the risk-free rate, and time to expiration is denoted by ∆t := T − t0. In
our application of the Heston model x = (x1, x2) is equivalent to x = (

x = log (S), v
)
. By

truncating x to a domain [a1,b1]× [a2,b2] ⊂ R2 without losing significant accuracy, we
find that using multidimensional Fourier cosine expansion

v (t0,x) =e−r∆t
∫ b2

a2

∫ b1

a1

g (y) f (y | x)d y1d y2

=e−r∆t
∫ b2

a2

∫ b1

a1

g (y)
+∞∑

k1=0

+∞∑
k2=0

Ak1,k2 (x)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

(9.10)
We note that - equivalent to the 1D cae -

∑′ means that the first term of the sum-
mation is weighted by 1

2 . In the second line, we replaced the conditional density with
its Fourier cosine expansion on [a1,b1]× [a2,b2] with respect to y, with the series coeffi-
cients defined by

Ak1,k2 (x) := 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ b1

a1

f (y | x)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

(9.11)
Following the approach of [5], we truncate the series and approximate the series co-

efficients by

Fk1,k2 (x) := 2

b1 −a1

2

b2 −a2

Ï
R2

f (y | x)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

(9.12)
Now using

2cos(α)cos(β) = cos(α+β)+cos(α−β),

we obtain
2Fk1,k2 (x) = F+

k1,k2
(x)+F−

k1,k2
(x),

where

F±
k1,k2

(x) := 2

b1 −a1

2

b2 −a2

Ï
R2

f (y | x)cos

(
k1π

y1 −a1

b1 −a1
±k2π

y2 −a2

b2 −a2

)
d y1d y2.
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Analogously to the 1D COS method, Fk1,k2 are now given by

Fk1,k2 =
2

b1 −a1

2

b2 −a2
Re

(
ϕ

(
k1π

b1 −a1
,± k2π

b2 −a2
| x

)
exp

(
−i k1π

a1

b1 −a1
∓ i k2π

a2

b2 −a2

))
,

(9.13)
with ϕ(· | x) representing the bivariavte conditional characteristic function of XT , given
Xt0 = x.

As a result, we find for the 2D COS method formula for pricing European options
that,

v̂ (t0,x) := b1 −a1

2

b2 −a2

2
e−r∆t

N1−1∑
k1=0

N2−1∑
k2=0

1

2

[
F+

k1,k2
(x)+F−

k1,k2
(x)

]
Vk1,k2 (T ). (9.14)

Taking into account (9.13) finally yields

v̂ (t0,x) =e−r∆t
N1−1∑
k1=0

N2−1∑
k2=0

1

2

[
Re

(
ϕ

(
k1π

b1 −a1
,+ k2π

b2 −a2
| x

)
exp

(
i k1π

−a1

b1 −a1
+ i k2π

−a2

b2 −a2

))
+Re

(
ϕ

(
k1π

b1 −a1
,− k2π

b2 −a2
| x

)
exp

(
i k1π

−a1

b1 −a1
− i k2π

−a2

b2 −a2

))]
Vk1,k2 (T ).

(9.15)

9.3.2. 2D COS METHOD FOR PRICING DISCRETE BARRIER OPTIONS
Throughout the following section, we adjust the method presented by [5] to price dis-
cretely monitored barrier options. Throughout this section, only the knock-out event
is considered, or even more specifically the up-and-out barrier option. This means that
the option becomes worthless if on one of the M monitoring dates T = {tm : 1 É m É M },
with tM = T , the underlying stock price process (St )tÊ0 is above the barrier level B . More-
over, the option can only be exercised at maturity T . Equivalently this means that the
payoff is:

v(x,T ) = (α (ST −K ))+ ·1τ>T , (9.16)

where τ := inf
{

tm Ê t0 : Stm Ê H
}

is the first monitoring date that registers a breach of
St on the barrier level B . As a result, the indicator 1τ>T is zero once the barrier level is
crossed at one of the monitoring dates by the underlying stock process. Furthermore, x
is the log-asset price and α= 1 for a call option and -1 for a put option.

Knowing the payoff at time T , this problem is solved backward in time using the
following relation 

v (tM ,x) = g (x)
c (tm−1,x) = e−r∆tE

[
v

(
tm ,Xtm

) | Xtm−1 = x
]

v (x, tm−1) =
{

0, if x Ê h

c (x, tm−1) , if x < h

, (9.17)
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where h = log (B/K ) and c (tm−1,x) is called the continuation value and can be approxi-
mated by

ĉ (tm−1,x) := b1 −a1

2

b2 −a2

2
e−r∆t

N1−1′∑
k1=0

N2−1′∑
k2=0

1

2

[
F+

k1,k2
(x)+F−

k1,k2
(x)

]
Vk1,k2 (tm) . (9.18)

The Fourier coefficients of the value function in (9.18) are given by

Vk1,k2 (tm) := 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ b1

a1

v
(
tm ,y

)
cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

As shown in equation (9.18), the continuation value at tm−1 is calculated using the
2D COS method but depends on the coefficients of the value function at tm . Hence, we
have to find a recursive relation of these coefficients and solve them backward in time.
Using

v (x, tm−1) = v̂ (x, tm−1) =
{

0, if x Ê h

ĉ (x, tm−1) , if x < h

and
c (x, tm−1) ≈ ĉ (x, tm−1)

from 9.18, we can approximate Vk1,k2 (tm) by

V̂k1,k2 (tm−1) = 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ b1

a1

v̂
(
tm−1,y

)
cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2

= 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ h

a1

ĉ
(
tm−1,y

)
cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2

= Ĉk1,k2 (a2,b2, a1,h, tm−1) ,
(9.19)

with

Ĉk1,k2 (a2,b2, x1, x2, tm−1) = 2

b1 −a1

2

b2 −a2

∫ b2

a2

∫ x2

x1

ĉ
(
tm−1,y

)
cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

(9.20)
Taking into account (9.18) yields

Ĉk1,k2 (a2,b2, a1,h, tm−1) =
∫ b2

a2

∫ h

a1

N1−1′∑
j1=0

N2−1′∑
j2=0

e−r∆t 1

2

[
F+

j1, j2
(y)+F−

j1, j2
(y)

]
V̂ j1, j2 (tm)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2.

(9.21)

Knowing V̂k1,k2 (tM ) as the Fourier coefficients of the value function for normal Eu-
ropean option this recursion formula is well-defined.
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9.4. PRICING BARRIER OPTIONS UNDER THE ROUGH HESTON

MODEL
For a fixed time step ∆t = tm − tm−1 defining u1 = i a1 and u2 = i a2, we find that

ϕ (u1,u2 | x,ν) :=φ (u,x, tm , tm+1) := eu1x eφ(∆t ,u)νϕA(u), where

ϕA(u) := e I 1−αψ2(∆t ,u).
(9.22)

As a result, we find that

Ĉk1,k2 (a2,b2, a1,h, tm−1)

= Re

(
N1−1′∑
j1=0

N2−1′∑
j2=0

1

2
ϕA

(
j1π

b1 −a1
,+ j2π

b2 −a2

)
V j1, j2 (tM )

M+
k1, j1

(a1,h, a1,b1) H+
k2, j2

(
a2,b2, a2,b2,

j1π

b1 −a1

))
+Re

(
N1−1′∑
j1=0

N2−1′∑
j2=0

ϕA

(
j1π

b1 −a1
,− j2π

b2 −a2

)
V j1, j2 (tM )

M+
k1, j1

(a1,h, a1,b1) H−
k2, j2

(
a2,b2, a2,b2,

j1π

b1 −a1

))
:= Re

(
N1−1′∑
j1=0

M+
k1, j1

(a1,h, a1,b1)A j1,k2

)
,

(9.23)

where the matrices H± and M+ are given by

H±
k2, j2

(
a2,b2, a2,b2,

j1π

b1 −a1

)
:= 2

b2 −a2

∫ b2

a2

e
y2φ(

(
∆t ,

j1π
b1−a1

,± j2π
b2−a2

)
e
±i j2π

−a2
b2−a2 cos

(
k2π

y2 −a2

b2 −a2

)
d y2,

(9.24)

and

M+
m,n (x1, x2, a,b) := 2

b −a

∫ x2

x1

e i nπ y−a
b−a cos

(
mπ

y −a

b −a

)
d y. (9.25)

The (N1 ×N2)-matrix A q is now calculated in a row-wise fashion and the row-vector
A j1,. =

{
A j1,k2

}N2−1
k2=0 is denoted as two matrix-vector multiplications, i.e.,

A j1,. = H+
(

a2,b2, a2,b2,
j1π

b1 −a1

)
w+

j1.. +H−
(

a2,b2, a2,b2,
j1π

b1 −a1

)
w−

j1,., (9.26)

with

w±
j1,. :=

{
w±

j1, j2

}N2−1

j2=0
, with w±

j1, j2
:= 1

2
ϕA

(
j1π

b1 −a1
,± j2π

b2 −a2

)
V j1, j2 (tm) . (9.27)
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9.4.1. NUMERICAL RESULTS

CHOICE OF BENCHMARK

For validating the pricing method, we choose H = 1
2 . As a result, the rough Heston model

coincides with the classical Heston model. Next, we use Monte-Carlo simulation for con-
tinuously monitored Barrier options under the classical Heston model and check if the
Barrier option price using the 2D COS-method lies in between a 5%-confidence interval.

CONVERGENCE IN THE NUMBER OF BASIS FUNCTIONS

Figure 9.1: Convergence in the number of cosine basis functions with model parameter ρ =−0.6, v̄ = 0.16,
ν= 0.5, κ= 1.5 and v0 = 0.0925. Moreover, we have S0 = 90, K = 90 and Barrier B = 120 as well as T = 0.5 with

number of watchtimes being 30.

As we can see in 9.1, with an increasing number of cosine basis functions the price
of the up and out-call option becomes constant and lies in between a 5%− confidence
interval, which is desired. However, the computational time increases drastically with
the number of "cos-" terms.

COMPUTATIONAL COMPLEXITY ADAMS SCHEME

In the numerical experiment above, we set N = 500. However, we observe a similar be-
haviour in the computational time as in the 1D-approximation (6.2) of the characteristic
function whenever we increase the number of steps taken in the Adams scheme. In the
2D case, an increase in the number of timesteps taken in the Adams scheme leads to a
significant increase in the overall pricing process as we can see in 9.2. The computa-
tional complexity is O

(
N 2

cos N 2
)
, where Ncos is the number of space steps taken in the

COS method.

CONVERGENCE IN THE NUMBER OF BASIS FUNCTIONS VS EUROPEAN OPTIONS

In the next numerical experiment, we validate our model by pricing our Barrier option
against a European one by setting the watchtime to 1, which is equivalent to considering
a European option observed at time T. We set the Barrier level B to a value high enough
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Figure 9.2: Computational time with different numbers of time steps N in the Adams scheme with model
parameter ρ =−0.6, v̄ = 0.16, ν= 0.5, κ= 1.5 and v0 = 0.0925. Moreover, we have S0 = 90, K = 90, and Barrier

B = 120 as well as T = 0.5 with the number of watchtimes being 30.

to consider it "unreachable". We observe that indeed the prices coincide with a suffi-
cient number of cosine basis functions. As we can see in 9.3, in this specific example 250
cosine basis functions are needed to get an error of 10−13.

Figure 9.3: Convergence in the number of cosine basis functions against 1D Cos-European option price with
model parameter ρ = 0.4, v̄ = 0.060, ν= 0.3, κ= 2.5 and v0 = 0.065. Moreover, we have S0 = 90, K = 90 and

Barrier B = 1200 as well as T = 0.5 with number of watchtimes being 1.

However, throughout this validation, we considered parameter combinations such
that the Feller condition, i.e. 2κv̄

ν2 ≥ 1, is satisfied and the densities are well-behaved in a
sense that they do not spike too much. In the following, we consider two parameter sets.
one for which the Feller condition is satisfied and one for which it is violated.

We can see in 9.5, that for the case where the feller condition is highly violated the
density has its peak where v = 0.0, whereas when the Feller condition is satisfied the
density has almost no mass whenever v = 0.0. Moreover, we see that the density is more
well-behaved in the sense that the values of the density are not peaking too much. In our
example, the maximum value is around 20. In contrast, the value of the peaked density
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Figure 9.4: Density with values satisfying
the feller condition.

Figure 9.5: Density with values not
satisfying the feller condition.

is around 2000. As a result, similar to the 1D case, we need more cosine basis functions
in order to have a good approximation for the density function. Another challenge is
pricing discrete barrier options boils down to pricing European options on the very small
end. For example, a barrier option with a maturity of 1 year and 24 watchtimes is, in
terms of density, similar to pricing European options with a maturity of 2 weeks. The
density naturally peaks way more with smaller maturities, as seen in the 1D case as well
as in 9.6.

Figure 9.6: Same parameters as in wider 9.5 case but with 20 more watchtimes.

As a result, the computational times for pricing barrier options under the rough He-
ston model vary quite a lot depending on which set of parameters we choose. In the
following, we show the option pricing process for 3 different sets of parameters. The first
one, whenever the Feller condition is satisfied, i.e. 2κv̄

ν2 >> 1, the second set for which

the parameters are such that 2κv̄
ν2 ≈ 1. Lastly, we choose parameters such that the feller

condition is violated, i.e. 2κv̄
ν2 < 1. Moreover we choose T = 0.5, S0 = 90, K = 80,90,100
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and B = 120. Last but not least, we chose the number of watchtimes to 6, equivalent to
monthly monitored Barrier options.

(a) ρ =−0.6, v̄ = 0.16, ν= 0.5, v0 = 0.0925, κ= 1.5 and H = 0.12,

(b) ρ =−0.6, v̄ = 0.125, ν= 0.5, v0 = 0.0925, κ= 1.0 and H = 0.12,

(c) ρ =−0.6, v̄ = 0.16, ν= 0.8, v0 = 0.0925, κ= 0.5 and H = 0.12.

We note that 128, 150 and 400 cosines basis functions respectively were chosen in
order to be certain that the densities are sufficiently smooth. Moreover, we chose N =
500, N = 500 and N = 1000 respectively.

CPU Time (s) Price
OTM ATM ITM

Parameter set (a) 61.3 2.362 5.172 6.603
Parameter set (b) 96.5 2.913 5.505 6.464
Parameter set (c) 45.2 (min) 2.915 5.509 6.462

Table 9.1: CPU time analysis for different parameters.
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9.5. PRICING BERMUDAN OPTIONS UNDER THE ROUGH HES-
TON MODEL

Throughout this section, we introduce a method to price Bermudan options under the
rough Heston model. As proposed in [5], to calculate Bermudan options, we have to di-
vide the domain where the log-stock and variance process live on into early exercise and
continuation regions. To do so, we divide the domain [a1,b1]× [a2,b2] into rectangular
subdomains C q and G p , so that approximately for all states y ∈C q it is optimal to con-
tinue and for all y ∈G p it is optimal to exercise the option.

The idea is to split the Vk1,k2− coefficients into two parts, namely

Vk1,k2 (tm) = 2

b1 −a1

2

b2 −a2

∑
p

Ï
G p

g (y)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
dy

+ 2

b1 −a1

2

b2 −a2

∑
q

Ï
C q

c
(
tm ,y

)
cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
dy

:=∑
p

Gk1,k2

(
G p)+∑

q
Ck1,k2

(
tm ,C q )

(m ̸= 0,M ).

(9.28)
We straight away see that once we determined the early exercise and continuation

regions
∑

p Gk1,k2 (G p ) has a closed form solution as g (y) is just the payoff function of a
European call option. For

∑
q Ck1,k2

(
tm ,C q

)
(m ̸= 0,M ), we apply the same recursion

formula as for Barrier options given by 9.21, i.e.

Ĉk1,k2

(
tM−1,

[
zq , zq+1

]× [
wq , wq+1

])
= Re

(
N1−1′∑
j1=0

N2−1′∑
j2=0

1

2
e−r∆tϕA

(
j1π

b1 −a1
,+ j2π

b2 −a2

)
V j1, j2 (tM )

M+
k1, j1

(
zq , zq+1, a1,b1

)
H+

k2, j2

(
wq , wq+1, a2,b2,

j1π

b1 −a1

))
+Re

(
N1−1′∑
j1=0

N2−1′∑
j2=0

1

2
e−r∆tϕA

(
j1π

b1 −a1
,− j2π

b2 −a2

)
V j1, j2 (tM )

M+
k1, j1

(
zq , zq+1, a1,b1

)
H−

k2, j2

(
wq , wq+1, a2,b2,

j1π

b1 −a1

))
:= Re

(
N1−1′∑
j1=0

M+
k1, j1

(
zq , zq+1, a1,b1

)
A

q
j1,k2

)

(9.29)

The procedure for getting the early exercise points is described in [5] and [9]. For this,
we divide the domain of the variance dimension, [a2,b2], into J sub-intervals:

[a2,b2] = [w0, w1]∪ [w1, w2] . . .
[
wq , wq+1

]
. . .

[
w J−1, w J

]
.

At the center of each sub-interval, we determine the value(s) y∗ for which the optimal
exercise policy changes to the optimal continuation, i.e.,

g

(
y∗,

1

2

(
wq +wq+1

))= c

(
tm , y∗,

1

2

(
wq +wq+1

))
. (9.30)
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For a call option, we can then define an early-exercise region G q = [
y∗,b1

]× [
wq , wq+1

]
and a continuation region C q = [

a1, y∗]×[
wq , wq+1

]
. Therefore, the computational do-

main is divided into J early-exercise and continuation regions. Note that, in order to
solve 9.30, we need some root-finding technique. We chose Brent’s method. However,
the Newton method or any other root-finding method works as well. The values wq are
computed beforehand on an equidistant grid, i.e.

wq = a2 + (b2 −a2) q/J .

In order to create a benchmark pricing method for Bermudan options under the
rough Heston model, we choose H = 1

2 and benchmark our values against Bermudan
options priced under the classical Heston model using the 1D COS method as described
by [9]. We consider again the three parameters as above, i.e.

(a) ρ =−0.6, v̄ = 0.16, ν= 0.5, v0 = 0.0925 and κ= 1.5,

(b) ρ =−0.6, v̄ = 0.125, ν= 0.5, v0 = 0.0925 and κ= 1.0,

(c) ρ =−0.6, v̄ = 0.16, ν= 0.8, v0 = 0.0925 and κ= 0.5.

For simplicity, we consider the three parameter sets with K = 90, S0 = 90 and again
T = 0.5 with watchtimes being 6.

1D COS method Price Absolute Error
Parameter set (a) 8.1548 8.1493 0.0055
Parameter set (b) 7.6422 7.6338 0.0084
Parameter set (c) 7.6202 7.6105 0.0097

Table 9.2: Error analysis against 1D COS method for different parameter sets.

We note that, we only used N = 800 for the Adams scheme to approximate the char-
acteristic function. Hence, the error can very well be optimized. However, due to in-
creasing computational time, we believe this is sufficient in order to validate our method.

Next, we again consider the same 3 different parameter sets used above (now ex-
tended by H = 0.12). We use 24 early exercise points. However, we note that especially
for parameters for which the feller condition is not satisfied, a lot of cosine basis func-
tions are needed in order to get sufficiently smooth density (Gibbs phenomena). It can
be already be seen in [5] that for 100 basis functions in each dimension the computa-
tional time for the classical Heston model is more than 50 seconds. In the following, we
consider S0 = 90 and K = 90.



9.5. PRICING BERMUDAN OPTIONS UNDER THE ROUGH HESTON MODEL

9

91

CPU(s) Price
Parameter set (a) 93.4 8.2196
Parameter set (b) 266.4 7.7145
Parameter set (c) 55.6(min) 7.7067

Table 9.3: Error analysis against 1D COS method for different parameter sets.





10
CONCLUSION AND FUTURE

RESEARCH

The primary objective of this thesis is to provide a comprehensive suite of derivative pric-
ing methodologies within the framework of the rough Heston model. Our exploration
begins with European options, highlighting the challenge of efficiently pricing options
under the rough Heston model due to significant computational demands. This work
initiates with an in-depth introduction to the rough Heston model and its multi-factor
approximation, the Lifted Heston model, subsequently comparing the computational
efficiency of these two models.

Given the inherent roughness in the volatility process, conventional industry meth-
ods for option pricing typically resort to the Monte Carlo method or Fourier-based ap-
proaches, such as the COS method developed by [4]. However, even when employing
the relatively efficient COS method for European options, the limitations of both the
rough and lifted Heston models become evident, particularly in terms of computational
performance during the pricing and calibration processes. This thesis endeavors to ad-
dress and surmount these challenges, offering novel insights and solutions in the field of
derivative pricing under complex models.

Indeed, in Chapter 6 a novel method, the COS-CPD option pricer, was derived in or-
der to efficiently price European options. Throughout a whole set of tests using different
parameter sets, strikes and time to maturities a very promising accuracy is maintained
while being able to significantly speed up the pricing process in comparison to industry
standard methods.

Rough volatility models are complex and harder to work on, but they have some bet-
ter qualities than other option pricing models. First, the real market data for option
prices implies that the volatility behavior is rough as shown in Chapter 2. Moreover,
it is shown that the implied volatility behavior of the rough volatility models has a great
resemblance to the market-implied volatility behavior. Hence, it can be said that the
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rough volatility models tend to reflect real market behavior. As a result, it is shown that
our novel method of pricing options under the rough Heston model is very well captur-
ing the market-implied behavior.

In quantitative Finance, it is of utmost importance to not only have an efficient pric-
ing method but also be able to calibrate the model to actual market data in an efficient
way. Hence, we developed a novel calibration method based on the derivatives of the
option price with respect to the model parameters for faster convergence. In Chapter 7,
it is shown with actual market data that our calibration approach is indeed able to find
suitable optimal parameters to capture the market prices.

Barrier and Bermudan options are exotic derivatives whose payoffs depend on the
underlying asset’s price path; the former is activated or deactivated by breaching a pre-
set price level, while the latter can be exercised at several predetermined dates, offer-
ing a blend of American and European option features. In the last chapter, we derive a
novel benchmark method to price Bermudan and Barrier options under the rough Hes-
ton model. Even though the computational time is significant, especially when the so-
called Feller condition is not satisfied, our method can be used in order to benchmark
future improvements in path-dependent option pricing.

10.1. FUTURE RESEARCH
For further research, we start with our novel COS-CPD option pricing method. Finding
the right truncation range is indeed a difficult task and should definitely be the starting
point for further research. As of now, one has to have extensive knowledge of the method
to have a proper guess for the things truncation range in the first place. Hence, deriving
some mathematical proof in order to justify a good choice can be advantageous. Next,
as of today we first have to generate the cosine coefficients via SVD in order to have the
input data for the COS-CPD method. In the future, one can try to use the COS-CPD
method directly on the option price to avoid further numerical errors and gain even bet-
ter accuracy.
Another approach to optimize the COS-CPS option pricing method is trying to find an
optimal number of cosine basis functions. As of now for each parameter, the same num-
ber of basis functions is used in the CPD-method. Nevertheless, this might not even
be needed as [30] showed. This would also help to further reduce the bottleneck in the
training set generation.
Our calibration method leads to the idea of hedging under the rough Heston mode. Due
to the non-markovianity and the lack of a pricing PDE hedging under the rough Heston
model is more difficult. However, due to our COS-CPD approach derivatives can eas-
ily be implemented with respect to each of the parameters. Hence, the hedging process
can be greatly simplified and might be researched and tested against market data in the
future. On pricing path-dependent options like Bermudan or Barrier options, a good
starting point for further research is to speed up the whole pricing process. Either trying
to find a way to speed up the approximation of the characteristic function or to directly
speed up the option price. This might even be doable with our COS-CPD method. How-
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ever, at some point, the bottleneck in computational time to generate the training set
will arise.
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A
SPX OPTIONS DATA

This appendix contains the option quotes in order to calibrate our COS-CPD rough volatil-
ity model to actual market data 8.

Figure A.1: Maturity 1week
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Figure A.2: Maturity 2weeks
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Figure A.3: Maturity 3weeks
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Figure A.4: Maturity 1month

Figure A.5: Maturity 2months
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Figure A.6: Maturity 8months





B
HISTORICAL S&P DATA

This appendix contains the historical S&P 500 data in order to create the ATM Skew used
in 2.
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