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We analyze the finite-temperature phase diagram of a dipolar Bose-Einstein condensate confined in a tubular
geometry. The effect of thermal fluctuations is accounted for by means of Bogoliubov theory employing the
local density approximation. In the considered geometry, the superfluid-supersolid phase transition can be of
first and second order. We discuss how the corresponding transition point is affected by the finite temperature of
the system.
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I. INTRODUCTION

Supersolidity refers to a state of matter that simultane-
ously features both discrete translational symmetry and a large
superfluid fraction and was conceived 50 years ago [1–3].
Dipolar Bose-Einstein condensates (BECs) have emerged as
a unique platform for the experimental exploration of such
superfluid solids [4–14], and have attracted substantial theo-
retical interest [7,15–25] in recent years.

The physics of dipolar supersolids is closely connected to
quantum fluctuations [26–28] which stabilize the condensate
[22–24,29–31] against dipolar collapse [32,33] due to the at-
tractive part of the mean-field interaction between the dipoles
of the atoms. The important role of quantum fluctuations
results from the anisotropic nature of the long-range dipole-
dipole interaction, which also gives rise to a range of pattern
formation phenomena [16,19,20,34–40].

For the same reasons, thermal fluctuations [41–45] can
also have substantial effects on the phases of dipolar quantum
gases, even well below the condensation temperature [46–49].
In particular, recent calculations showed how heating a dipolar
superfluid can induce a transition to a solid phase with a
periodically modulated condensate density [49].

In this paper, we use Bogoliubov theory [46,47] to numer-
ically study finite-temperature effects on a dipolar BEC with
strong transverse confinement in the thermodynamic limit (see
Fig. 1). Recent studies of the zero-temperature phase diagram
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showed that the superfluid-supersolid phase transition of this
system can be of first as well as second order [16–18,50,51].
We expand on our previous finding [49] that a supersolid
can emerge from a superfluid upon heating a dipolar BEC.
We explore how the domains of first- and second-order phase
transition deform upon increasing temperature in more depth.
However, unlike in [49] we do not fix the chemical potential. It
is not immediately obvious how the inclusion of temperature
fluctuations affects the order of the phase transition or whether
the domain of second order persists. A detailed knowledge of
the location of the critical point separating these two domains
and its dependence on temperature, condensate density, and
scattering length could prove helpful for the design and re-
alization of evaporative cooling protocols to experimentally
drive the quantum phase transition in a controlled way.

II. FINITE-TEMPERATURE THEORY

Detailed discussions of finite-temperature effects in dilute
Bose-Einstein condensates can be found, e.g., in [41,52–55].
In order to account for the effect of thermal fluctuations in
dipolar BECs, we apply Bogoliubov theory and use local
density approximation [46,49]. This yields a temperature-
dependent extended Gross-Pitaevskii equation (TeGPE) given
by

μψ (r) =
(

− h̄2∇2

2m
+ U (r) +

∫
dr′Vdd (r − r′)|ψ (r′)|2

+ 4π h̄2a

m
|ψ (r)|2 + Hqu(r) + Hth(r)

)
ψ (r) (1)

for the condensate wave function ψ (r). Here, μ is the chemi-
cal potential, m is the mass, U describes the trapping potential,
Vdd denotes the dipolar interactions, and a corresponds to
the s-wave scattering length. Furthermore, Hqu and Hth de-
scribe effective nonlinear potentials that arise from quantum
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FIG. 1. Schematic representation of the dipolar system in the
tubular geometry. Dipoles are polarized along the z axis, while the
system extends infinitely along the x axis. By keeping the number of
condensed atoms fixed and increasing the temperature, the system
transitions from an unmodulated gas (b) to a supersolid (a). The
trapping strengths in the y-z plane are given by ω⊥ = 0.165εd/h̄,
with εd = h̄2/(m(12πad )2) and ad denoting the dipolar length.

fluctuations and thermal fluctuations, respectively. They are
given by

Hqu(r) = 32

3
√

π
g
√

a3Q5(ad/a)|ψ (r)|3, (2)

Hth(r) =
∫

dk
(2π )3

1

(eβεk − 1)
Ṽ (k)

τk

εk(r)
, (3)

where εk(r) =
√

τk[τk + 2|ψ (r)|2Ṽ (k)] is the Bogoliubov
excitation spectrum for a given local density |ψ (r)|2 of the
BEC, τk = h̄2k2

2m , β = 1/kBT , and T denotes temperature.
Ṽ (k) represents the Fourier transform of the sum of the
dipole-dipole interaction and the contact interaction, given by

Ṽ (k) = 4π h̄2a

m
+ 4π h̄2ad

m

(
3

k2
z

k2
− 1

)
. (4)

The parameter ad = mCdd/(12π h̄2) corresponds to the dipo-
lar length, Cdd is the strength of the dipolar interaction, and
the auxiliary function Q5(ad/a) is given by [28]

Q5(ad/a) =
∫ 1

0
du

[
1 − ad

a
+ 3

(ad

a

)
u2

]5/2
. (5)

The term Hqu in Eq. (2) that accounts for quantum fluctua-
tions increases with the condensate density and is responsible
for arresting collapse as discussed above [22,29,56]. In con-
trast, thermal fluctuations, as described by Eq. (3), decrease
with increasing density ρ [46,49]. Figure 2 illustrates this
density dependence and shows that the total fluctuation

FIG. 2. Density dependence of the energy contributions to the
TeGPE from quantum fluctuations, Hqu, and thermal fluctuations,
Hth, along with the total energy Hfl = Hth + Hqu. The results are
shown for a/ad = 0.7 and different indicated temperatures kBT/εd =
1, 2, 3.

energy, Hfl = Hqu + Hth, features a minimum that shifts to-
wards higher densities with increasing temperature.

The evaluation of Eq. (3) for values of the scattering length
that are lower than the dipole length requires special attention
since the integrand can in this case become complex. This
reflects the instability of a homogeneous condensate, as the
excitation spectrum, εk, turns imaginary for small momenta
and a < ad . The finite transverse size of the partially confined
condensate, however, introduces a natural low-momentum
cutoff for the considered system. Due to the symmetry of the
dipole-dipole interaction, the contribution to the fluctuation
energies depends only on kz and kρ =

√
k2

x + k2
y . Considering

radial confinement as shown in Fig. 1 with typical system
sizes ly and lz along the y axis and the z axis, respectively, one
obtains lower bounds, kz > 2π/lz and kρ > 2π/ly, for both
momenta. Here, we use kz > 0.007/ad and kρ > 0.017/ad

and have checked that a 30% increase of these values does
not significantly affect the numerical results.

III. FINITE-TEMPERATURE PHASE DIAGRAM

Equation (1) can be solved numerically by imaginary time
evolution to obtain the condensate wave function ψ for a finite
temperature, T , and a fixed condensate density or chemical
potential, μ. Figure 3 shows the contrast

C = ρmax − ρmin

ρmax + ρmin
(6)

where ρmax and ρmin denote the maximum and minimum
of the axial density ρ(x) = ∫

dydz|ψ (r)|2 along the x axis.
The latter is also used to define the overall axial density
ρ̄ = L−1

∫ L
0 dxρ(x) for a given value of the length L of the

simulation box along the x direction.
The axial density contrast vanishes in the superfluid phase,

for large ratios a/ad in Fig. 3, and takes on finite val-
ues below a critical value of a/ad as one enters the solid
phase with finite density modulations. For the chosen den-
sity of ρ̄ad = 4.77, the zero-temperature simulation yields a
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FIG. 3. Contrast of the wave function vs scattering length in a
(a) first- and (b) second-order phase transition for ρ̄ad = 4.77 and
two different temperatures: kBT/εd = 0 (a) and kBT/εd = 2 (b).

discontinuous increase of the contrast, characteristic for
a first-order phase transition. For a finite temperature of
kBT/εd = 2, however, one finds a second-order phase transi-
tion with a continuous rise of the density contrast. Apart from
shifting the transition point, thermal fluctuations, therefore,
may also qualitatively affect the fluid-solid phase transition.

Thermal effects are further illustrated in Fig. 4, where we
show the contrast across the phase transition as a function
of temperature for two different values of the condensate
density. In agreement with [49], for the depicted cases we find
that heating induces a transition to a density-modulated state.
Furthermore, we find that the latter can proceed via a first- or
second-order phase transition.

Around the second-order phase transition, one finds mod-
erately modulated states with a density contrast that remains
significantly below unity. Concurrently, such states are ex-
pected to feature a substantial superfluid fraction [3,57,58]
and should, therefore, realize a supersolid. On the other hand,
a direct first-order transition from a superfluid to a solid
with near unit modulation contrast and no global superfluidity
should eventually occur upon decreasing density.

Figure 5 provides a more complete picture of the fluid-solid
transition, showing the phase diagram at zero temperature
and kBT/εd = 2 as a function of the condensate density and
the competing interaction strengths. The chosen parameters
lie in typical regimes of current experiments, e.g., whereby
the temperature corresponds to T � 87 nK for a quantum
gas of 164Dy atoms. The calculations show that such low

FIG. 4. Contrast of the wave function as a function of temper-
ature for ρ̄ad = 6.89, a/ad = 0.676 (a) and ρ̄ad = 4, a/ad = 0.64
(b). The lines correspond to eye guides.

FIG. 5. Superfluid-supersolid phase diagram for T = 0 (gray
line) and kBT/εd = 2 (purple line). Solid lines show regions where
the transition is of continuous or second order whereas dashed lines
indicate the presence of a first-order phase transition. The black point
marks the low and high density critical point separating regions of
first- and second-order phase transitions. The gray crosses refer to
Figs. 4(a) and 4(b).

temperatures do not qualitatively alter the phase diagram com-
pared to the ground state behavior of dipolar condensates,
discussed recently in [18,50].

As the temperature is increased, the solid-fluid transition
line shifts towards larger values of the scattering length a.
Starting from the superfluid phase close to the quantum phase
transition (T = 0) and increasing the temperature, therefore,
leads to the emergence of a solid phase upon heating the
system regardless of the precise values of the otherwise fixed
parameters (i.e., a, ad , and ρ̄). This effect, which has been
reported in recent experiments with 164Dy atoms [48,49],
can be understood from the characteristic density depen-
dence of the energy, Hth, of thermal fluctuations shown in
Fig. 2. A decreasing energy with increasing density, |ψ |2,
implies that Hth[|ψ (r)|] acts as a focusing nonlinearity in
the generalized GPE [49] and, therefore, tends to support the
density-modulated phase. Here, the term “focusing nonlinear-
ity” has been borrowed from optics. The connection to the
excitation spectrum can be found by applying linear response
theory on an unmodulated stationary solution of the TeGPE,
where one finds that Hth leads to a roton softening [49] due to
dHth
d ρ̄

being negative.
We would like to proceed with discussing Fig. 5. To sim-

plify what follows we will roughly distinguish regions of
“large” and “small” densities. These regions are separated
by the density where the curve of the superfluid-supersolid
phase boundary assumes its maximal value of a/ad . One
observes in Fig. 5 a convergence of the phase boundaries for
the two considered different temperatures for large densities,
which shows again that thermal effects on the phase boundary
weaken as the density increases. This can again be readily
understood from Fig. 2, which shows that quantum fluctua-
tions yield the dominant contribution to the energy correction
Hfl at higher densities. While thermal fluctuations always shift
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FIG. 6. Contrast C of the wave function vs axial density in the
(a) low density and (b) high density regimes. The value of a/add

corresponds to a/add = 0.645 in (a) and to a/add = 0.6965 in (b).

the phase boundary towards larger scattering lengths, a, their
effect on the critical density depends on the density itself.
At lower densities, where the energy corrections from quan-
tum fluctuations and thermal fluctuations are comparable, the
phase boundary is shifted towards lower densities and thereby
facilitates the formation of the solid phase. In contrast, at
higher densities, where quantum fluctuations dominate the
energy correction, Hfl, a larger temperature requires an in-
creased density to form a modulated state. Yet, heating still
facilitates the solid phase, since the critical scattering length
decreases with density in this regime (see Fig. 2). This effect is
illustrated in Fig. 6, where we show the contrast as a function
of ρ̄ in the two different density regimes.

We finally discuss the order of the phase transition and how
it is affected by thermal fluctuations. At very low densities,
the transition is of first-order type but turns into a continuous
second-order phase transition with increasing density. Even-
tually, the phase transition becomes once again discontinuous
in the high density regime. This general phenomenology of
the quantum phase transition (T = 0) [18,50] prevails at finite
temperatures, while thermal fluctuations can shift the critical
points at which the order of the phase transition changes.

At the low density critical point (see Fig. 5) the change of
the critical value of the scattering length [(a/add ) = 0.655 ±
0.005] is small compared to the experimental resolution for
the values considered [see Fig. 7(a)], meaning that, for prac-
tical purposes, it can be considered constant with respect
to temperature. Its quantitative dependence within the given
range is subject to the specific momentum cutoff employed in
the computation of Eq. (3), as seen in Fig. 7(a). In contrast
to that, one finds a substantial effect on the critical density,
which decreases significantly with increasing temperature of
the BEC [see Fig. 7(b)]. On the other hand, the shift in the
critical point is less pronounced in the high density regime, as
can be seen in Fig. 5. This is a consequence of the aforemen-
tioned weakening of thermal effects for increasing condensate
density. These findings suggest that, from an experimental
perspective, the first- or second-order transitions could be
probed (aside from finite size effects) by fixing the value
of the scattering length, as the value of critical scattering
length barely changes with temperature. Then, carrying out
an evaporative cooling protocol in the low density regime,
where different condensate densities are sampled at different

FIG. 7. Scattering length (a) and density (b) of the low density
critical point as a function of the temperature. In the plot (a), “Cut-
off 1” corresponds to the low-momentum cutoff for the computation
of Eq. (3) employed in all the calculations of this paper (i.e., {kz >

0.007/ad , kρ > 0.017/ad}), while “Cut-off 2” corresponds to a 30%
increase of these values.

temperatures, leads to either a second-order (a/add > 0.66) or
a first-order (a/add < 0.65) phase transition.

IV. CONCLUSIONS

In our previous work [49], we computed the phase dia-
gram of the dipolar BEC under a tubular confinement for
a fixed chemical potential of μ/εd = 1. With this paper we
aim to provide a useful followup by means of extending
to finite temperature published works [18,50] that employ a
tighter trap. Therefore, we have used the condensate density
as a parameter for the phase diagram instead of fixing the
chemical potential and, furthermore, focus the discussion on
the order of the fluid-to-supersolid phase transition in terms
of scattering length, condensate density, and temperature. In
qualitative agreement with [49], we have seen that an increase
of temperature at constant condensate density can yield a tran-
sition from an unmodulated superfluid to a supersolid, thus
impelling the solid-fluid boundaries of the zero-temperature
diagram towards larger values of the scattering length. We
have also seen how the low density critical point where the
fluid-solid transition shifts from first to second order (or vice
versa) changes with temperature and that it moves to lower
values of the condensate density, thus yielding a range of
parameters for which temperature effectively changes the or-
der of the phase transition. We have also shown that the low
density critical scattering length remains unchanged up to
experimental resolution, meaning that tuning the scattering
length can enable a potential experiment to probe the first-
or second-order phase boundaries in a controlled way through
an evaporative cooling protocol. For a sufficiently large con-
densate density we enter a regime where quantum fluctuations
dominate and thermal effects become small in comparison. As
a consequence, the high density critical point experiences a
less significant shift than the low density one.

While, in this paper, the emergence of the dipolar su-
persolid by heating is observed under a constant condensate
density as temperature rises, this phenomenology still occurs
if the total density is kept constant instead. This is proven
by the calculations in [49], which were carried out for a
fixed value of the chemical potential. In the thermodynamic
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limit, keeping the chemical potential constant within the grand
canonical ensemble is equivalent to keeping the total density
constant within the canonical ensemble, thus implying that the
solidification of the system by an increase of the temperature
should still occur for a constant total density.

The role of temperature in dipolar systems still remains
a relatively unexplored subject. It remains unclear how tem-
perature will affect the different geometrical phases both
in infinite and trapped quasi-two-dimensional dipolar sys-
tems [16,19,20] as well as their superfluid properties [59].
Furthermore, improved theoretical calculations for specific
geometries where the local density approximation is not
necessary could present avenues towards more accurate
quantitative predictions that can be compared with future

experiments. Similarly, the realization of ab initio calculations
[25] that are able to fully account for the effect of temperature
could help extend the formalism presented in this paper to
the high-temperature regime, where the fraction of condensed
atoms is small.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund
(Grant No. 10.55776/COE1) and the European Union
(NextGenerationEU). F.M. acknowledges support from the
Ministerio de Economía y Competitividad (AEI/FEDER UE
Grant No. PID2021-128910NB-I00) and support from the TU
Delft Open Access Fund.

[1] A. F Andreev and I. M. Lifshitz, Quantum theory of defects in
crystals, Sov. Phys. Usp. 13, 670 (1971).

[2] G. V. Chester, Speculations on Bose-Einstein condensation and
quantum crystals, Phys. Rev. A 2, 256 (1970).

[3] A. J. Leggett, Can a solid be “superfluid”? Phys. Rev. Lett. 25,
1543 (1970).

[4] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Long-lived and transient
supersolid behaviors in dipolar quantum gases, Phys. Rev. X 9,
021012 (2019).

[5] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T.
Langen, and T. Pfau, Transient supersolid properties in an array
of dipolar quantum droplets, Phys. Rev. X 9, 011051 (2019).

[6] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Obser-
vation of a dipolar quantum gas with metastable supersolid
properties, Phys. Rev. Lett. 122, 130405 (2019).

[7] M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel,
H. P. Büchler, T. Langen, and T. Pfau, The low-energy goldstone
mode in a trapped dipolar supersolid, Nature (London) 574, 386
(2019).

[8] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C.
Gabbanini, G. Modugno, A. Recati, and S. Stringari, Supersolid
symmetry breaking from compressional oscillations in a dipolar
quantum gas, Nature (London) 574, 382 (2019).

[9] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J.
Mark, L. Chomaz, and F. Ferlaino, Excitation spectrum of a
trapped dipolar supersolid and its experimental evidence, Phys.
Rev. Lett. 123, 050402 (2019).

[10] L. Tanzi, J. G. Maloberti, G. Biagioni, A. Fioretti, C. Gabbanini,
and G. Modugno, Evidence of superfluidity in a dipolar su-
persolid from nonclassical rotational inertia, Science 371, 1162
(2021).

[11] D. Petter, A. Patscheider, G. Natale, M. J. Mark, M. A. Baranov,
R. van Bijnen, S. M. Roccuzzo, A. Recati, B. Blakie, D. Baillie,
L. Chomaz, and F. Ferlaino, Bragg scattering of an ultracold
dipolar gas across the phase transition from Bose-Einstein con-
densate to supersolid in the free-particle regime, Phys. Rev. A
104, L011302 (2021).

[12] G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A. Fioretti, C.
Gabbanini, L. Tanzi, and G. Modugno, Dimensional crossover

in the superfluid-supersolid quantum phase transition, Phys.
Rev. X 12, 021019 (2022).

[13] T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino,
L. Santos, and R. N. Bisset, Two-dimensional supersolid for-
mation in dipolar condensates, Phys. Rev. Lett. 128, 195302
(2022).

[14] M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J. Mark,
L. Santos, R. N. Bisset, and F. Ferlaino, Can angular oscillations
probe superfluidity in dipolar supersolids? Phys. Rev. Lett. 129,
040403 (2022).

[15] R. Bombín, J. Boronat, and F. Mazzanti, Dipolar Bose super-
solid stripes, Phys. Rev. Lett. 119, 250402 (2017).

[16] Y.-C. Zhang, F. Maucher, and T. Pohl, Supersolidity around a
critical point in dipolar Bose-Einstein condensates, Phys. Rev.
Lett. 123, 015301 (2019).

[17] P. B. Blakie, D Baillie, and S. Pal, Variational theory for the
ground state and collective excitations of an elongated dipolar
condensate, Commun. Theor. Phys. 72, 085501 (2020).

[18] P. B. Blakie, D. Baillie, L. Chomaz, and F. Ferlaino, Superso-
lidity in an elongated dipolar condensate, Phys. Rev. Res. 2,
043318 (2020).

[19] Y.-C. Zhang, T. Pohl, and F. Maucher, Phases of supersolids in
confined dipolar Bose-Einstein condensates, Phys. Rev. A 104,
013310 (2021).

[20] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H.
Ng, S. D. Graham, P. Uerlings, T. Langen, M. Zwierlein,
and T. Pfau, Pattern formation in quantum ferrofluids: From
supersolids to superglasses, Phys. Rev. Res. 3, 033125
(2021).

[21] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H.
Ng, S. D. Graham, P. Uerlings, H. P. Büchler, T. Langen,
M. Zwierlein, and T. Pfau, Supersolidity in two-dimensional
trapped dipolar droplet arrays, Phys. Rev. Lett. 127, 155301
(2021).

[22] F. Wächtler and L. Santos, Quantum filaments in dipolar Bose-
Einstein condensates, Phys. Rev. A 93, 061603(R) (2016).

[23] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-
state phase diagram of a dipolar condensate with quantum
fluctuations, Phys. Rev. A 94, 033619 (2016).

[24] D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, Self-
bound dipolar droplet: A localized matter wave in free space,
Phys. Rev. A 94, 021602(R) (2016).

023183-5

https://doi.org/10.1070/PU1971v013n05ABEH004235
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1038/s41586-019-1569-5
https://doi.org/10.1038/s41586-019-1568-6
https://doi.org/10.1103/PhysRevLett.123.050402
https://doi.org/10.1126/science.aba4309
https://doi.org/10.1103/PhysRevA.104.L011302
https://doi.org/10.1103/PhysRevX.12.021019
https://doi.org/10.1103/PhysRevLett.128.195302
https://doi.org/10.1103/PhysRevLett.129.040403
https://doi.org/10.1103/PhysRevLett.119.250402
https://doi.org/10.1103/PhysRevLett.123.015301
https://doi.org/10.1088/1572-9494/ab95fa
https://doi.org/10.1103/PhysRevResearch.2.043318
https://doi.org/10.1103/PhysRevA.104.013310
https://doi.org/10.1103/PhysRevResearch.3.033125
https://doi.org/10.1103/PhysRevLett.127.155301
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevA.94.021602


SÁNCHEZ-BAENA, POHL, AND MAUCHER PHYSICAL REVIEW RESEARCH 6, 023183 (2024)

[25] F. Böttcher, M. Wenzel, J.-N. Schmidt, M. Guo, T. Langen,
I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez-Baena, J.
Boronat, and F. Mazzanti, Dilute dipolar quantum droplets be-
yond the extended Gross-Pitaevskii equation, Phys. Rev. Res. 1,
033088 (2019).

[26] R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer,
Mean-field expansion in Bose-Einstein condensates with
finite-range interactions, Int. J. Mod. Phys. B 20, 3555
(2006).

[27] A. R. P. Lima and A. Pelster, Quantum fluctuations in dipolar
Bose gases, Phys. Rev. A 84, 041604(R) (2011).

[28] A. R. P. Lima and A. Pelster, Beyond mean-field low-lying
excitations of dipolar Bose gases, Phys. Rev. A 86, 063609
(2012).

[29] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I.
Ferrier-Barbut, and T. Pfau, Observing the rosensweig in-
stability of a quantum ferrofluid, Nature (London) 530, 194
(2016).

[30] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Self-bound droplets of a dilute magnetic quantum liquid,
Nature (London) 539, 259 (2016).

[31] H. Saito, Path-integral Monte Carlo study on a droplet of a dipo-
lar Bose-Einstein condensate stabilized by quantum fluctuation,
J. Phys. Soc. Jpn. 85, 053001 (2016).

[32] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A.
Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda,
d-wave collapse and explosion of a dipolar Bose-Einstein con-
densate, Phys. Rev. Lett. 101, 080401 (2008).

[33] T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, and
T. Pfau, Stabilization of a purely dipolar quantum gas against
collapse, Nat. Phys. 4, 218 (2008).

[34] A. Macia, D. Hufnagl, F. Mazzanti, J. Boronat, and R. E. Zillich,
Excitations and stripe phase formation in a two-dimensional
dipolar Bose gas with tilted polarization, Phys. Rev. Lett. 109,
235307 (2012).

[35] A. Macia, J. Boronat, and F. Mazzanti, Phase diagram of dipolar
bosons in two dimensions with tilted polarization, Phys. Rev. A
90, 061601(R) (2014).

[36] A. Gallemí and L. Santos, Superfluid properties of a hon-
eycomb dipolar supersolid, Phys. Rev. A 106, 063301
(2022).

[37] G. Guijarro, G. E. Astrakharchik, and J. Boronat, Ultradilute
quantum liquid of dipolar atoms in a bilayer, Phys. Rev. Lett.
128, 063401 (2022).

[38] G. Guijarro, G. E. Astrakharchik, G. Morigi, and J. Boronat,
Self-assembled chains and solids of dipolar atoms in a multi-
layer, arXiv:2403.14511.

[39] C. Staudinger, D. Hufnagl, F. Mazzanti, and R. E. Zillich,
Striped dilute liquid of dipolar bosons in two dimensions, Phys.
Rev. A 108, 033303 (2023).

[40] J. Sánchez-Baena, R. Bombín, and J. Boronat, Ring solids and
supersolids in spherical shell-shaped dipolar Bose-Einstein con-
densates, arXiv:2312.12164.

[41] A. Griffin, Conserving and gapless approximations for an in-
homogeneous Bose gas at finite temperatures, Phys. Rev. B 53,
9341 (1996).

[42] S. Ronen and J. L. Bohn, Dipolar Bose-Einstein condensates at
finite temperature, Phys. Rev. A 76, 043607 (2007).

[43] R. N. Bisset, D. Baillie, and P. B. Blakie, Finite-temperature
trapped dipolar Bose gas, Phys. Rev. A 86, 033609 (2012).

[44] C. Ticknor, Finite-temperature analysis of a quasi-two-
dimensional dipolar gas, Phys. Rev. A 85, 033629 (2012).

[45] K. Pawlowski, P. Bienias, T. Pfau, and K. Rzazewski, Correla-
tions of a quasi-two-dimensional dipolar ultracold gas at finite
temperatures, Phys. Rev. A 87, 043620 (2013).

[46] E. Aybar and M. Ö. Oktel, Temperature-dependent density pro-
files of dipolar droplets, Phys. Rev. A 99, 013620 (2019).

[47] S. F. Öztürk, E. Aybar, and M. Ö. Oktel, Temperature depen-
dence of the density and excitations of dipolar droplets, Phys.
Rev. A 102, 033329 (2020).

[48] M. Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark, M. A.
Norcia, and F. Ferlaino, Birth, life, and death of a dipolar super-
solid, Phys. Rev. Lett. 126, 233401 (2021).

[49] J. Sánchez-Baena, C. Politi, F. Maucher, F. Ferlaino, and
T. Pohl, Heating a dipolar quantum fluid into a solid, Nat.
Commun. 14, 1868 (2023).

[50] J. C. Smith, D. Baillie, and P. B. Blakie, Supersolidity and
crystallization of a dipolar Bose gas in an infinite tube, Phys.
Rev. A 107, 033301 (2023).

[51] T. Ilg and H. P. Büchler, Ground-state stability and excitation
spectrum of a one-dimensional dipolar supersolid, Phys. Rev. A
107, 013314 (2023).

[52] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Thermodynamics
of a trapped Bose-condensed gas, J. Low Temp. Phys. 109, 309
(1997).

[53] H. Shi and A. Griffin, Finite-temperature excitations in a dilute
Bose-condensed gas, Phys. Rep. 304, 1 (1998).

[54] S. C. Cormack and D. A. W. Hutchinson, Finite-temperature
dipolar ultracold Bose gas with exchange interactions, Phys.
Rev. A 86, 053619 (2012).

[55] J. Wang, X.-J. Liu, and H. Hu, Ultradilute self-bound quantum
droplets in Bose-Bose mixtures at finite temperature, Chin.
Phys. B 30, 010306 (2021).

[56] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L.
Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover
from a dilute Bose-Einstein condensate to a macrodroplet in a
dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016).

[57] N. Sepúlveda, C. Josserand, and S. Rica, Nonclassical rotational
inertia fraction in a one-dimensional model of a supersolid,
Phys. Rev. B 77, 054513 (2008).

[58] A. J. Leggett, On the superfluid fraction of an arbitrary many-
body system at t = 0, J. Stat. Phys. 93, 927 (1998).

[59] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J.
Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Two-dimensional
supersolidity in a dipolar quantum gas, Nature (London) 596,
357 (2021).

023183-6

https://doi.org/10.1103/PhysRevResearch.1.033088
https://doi.org/10.1142/S0217979206035631
https://doi.org/10.1103/PhysRevA.84.041604
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature20126
https://doi.org/10.7566/JPSJ.85.053001
https://doi.org/10.1103/PhysRevLett.101.080401
https://doi.org/10.1038/nphys887
https://doi.org/10.1103/PhysRevLett.109.235307
https://doi.org/10.1103/PhysRevA.90.061601
https://doi.org/10.1103/PhysRevA.106.063301
https://doi.org/10.1103/PhysRevLett.128.063401
https://arxiv.org/abs/2403.14511
https://doi.org/10.1103/PhysRevA.108.033303
https://arxiv.org/abs/2312.12164
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1103/PhysRevA.76.043607
https://doi.org/10.1103/PhysRevA.86.033609
https://doi.org/10.1103/PhysRevA.85.033629
https://doi.org/10.1103/PhysRevA.87.043620
https://doi.org/10.1103/PhysRevA.99.013620
https://doi.org/10.1103/PhysRevA.102.033329
https://doi.org/10.1103/PhysRevLett.126.233401
https://doi.org/10.1038/s41467-023-37207-3
https://doi.org/10.1103/PhysRevA.107.033301
https://doi.org/10.1103/PhysRevA.107.013314
https://doi.org/10.1007/BF02396737
https://doi.org/10.1016/S0370-1573(98)00015-5
https://doi.org/10.1103/PhysRevA.86.053619
https://doi.org/10.1088/1674-1056/abd2ad
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevB.77.054513
https://doi.org/10.1023/B:JOSS.0000033170.38619.6c
https://doi.org/10.1038/s41586-021-03725-7

